Recycled Composite Cast Glass Panels made of C&D Waste

Assessing the structural performance

MSc Architecture, Urbanism and Building Sciences Technical University of Delft (TU Delft)

Building Technology Graduation Project

P5 Presentation

Student: Véronique van Minkelen 4552156

Supervisors:

First mentor: Dr. ir. Faidra Oikonomopoulou

Second mentor: Dr. ing. Marcel Bilow

CONTAMINANTIONS

0 | START

CONTAMINANTIONS

"Glass is **100% recyclable**. Despite its recyclability, end-of-life building glass is rarely recycled into new flat glass products" (Oikonomopoulou et al., 2023)

"End-of-life insulating glass units (IGUs) continue to follow a linear, wasteful path from renovation and demolition sites into landfills or low-value recycling" (Geboes et al., 2022)

"How to transition from an open-loop to a closed-loop recycling process despite the contaminations?"

WHY DO WE NEED TO CHANGE THE WAY WE PRODUCE GLASS?

FLAT GLASS

FLOAT GLASS

Thin walled

Changing recipes not easy

Can't have impurities

Ends into landfill

CAST GLASS

VOLUMETRIC GLASS

Volumetric

Flexible design, create all sorts of shapes and design

Works well with mixed or imperfect glass

Better for the environment, glass casting reuses cullet, cutting down waste

WHY CAST GLASS

Littleton (1942) observed that: "We never test the strength of glass: all we test is the weakness of its surface"

Composite cast glass C&D waste panels?

PREVIOUS WORK FROM TU DELFT

PREVIOUS WORK FROM TU DELFT

COMPOSITE CAST GLASS WASTE PANELS

RESEARCH GAP

MAIN RESEARCH QUESTION

"What is the effect of the different parameters in respect to the geometry and glass composition of **composite cast glass beams** to their overall structural performance made out of Construction and Demolition (**C&D**) (float) glass waste?"

EXPERIMENTAL OVERVIEW

- 250 kg of Silica Crystal Moulds produced
- 3 Tiles with pure contaminants
- 1 Prototype
- 8 Fire Rounds

- 58 Beams produced, tested and evaluated
- 4 Four-point bending tests
- + 250 hours of Lab work at Civil Engineering
- Microscopic research

EXPERIMENTAL OVERVIEW

Experiment Type 1: Homogeneous beams

Experiment Type 2:
Composite beams:
What is the influence of the ratio
between surface and bulk

Experiment Type 3:
Composite beams
What is the influence of the bulk material

Experiment Type 4:
Composite beams
What is the influence of the surface material

EXPERIMENTAL OVERVIEW

Experiment Type 1: Homogeneous beams

Experiment Type 2:
Composite beams:
What is the influence of the ratio
between surface and bulk

Experiment Type 3:
Composite beams
What is the influence of the bulk material

Experiment Type 4:
Composite beams
What is the influence of the surface material

(Source: (20) DeBrincat & Babic, 2023)

CULLET CLASSIFICATION

Class A Cullet: Highquality, contaminant-free, ideal for new glass production

Cutting

Drilling

Class B Cullet: Mixed quality, may have contaminants

Coated Glass

Laminated Glass

Printed Glass

Tinted Glass

Class C Cullet: Contaminated, unsuitable for remelting

Chemical treating **Metallic Pollutants**

CSP Pollutants

DESIGN CONCEPT

Experimental set-up for homogeneous beam

TYPE C CULLET

- **CSP Pollutants**
- Heat Resistant glass
- **Metallic Pollutants**

STRUCTURAL FEASIBILITY VALIDATION

FOUR POINT BENDING TESTS

Homogeneous beams: A cullet vs B cullet vs C cullet

Flexural strength of homogeneous beams of Cullet Type A, Cullet Type B and Cullet Type C

CRACK PATTERNS

Low energy vs High energy

Beam: V-1A-H-C-2
Homogeneous beam with CSP Pollutants
Cullet Type C

SALUNE ENERGY FAILURE AND HOTH

Beam: V-1D-H-FI-3
Homogeneous beam with Float glass
Cullet Type A

FLAW CATEGORIESTheory

INCLUSIONS

- Bulk flaw
- Ceramic inclusion
- Silica inclusion

INFOLDS

- Surface flaw
- Cullets did not fully interfere
- Small gaps in the glass

CRYSTALLIZATION

- Surface flaw
- High temperature reaction
- Affected by the heating and cooling ramp at various speeds

MACHINING

- Surface flaw
- Surface and edge treatment by grinding and cutting

FLAW CATEGORIES Crystallization

Beam V-1B-H-HR-1

FLAW CATEGORIES

Inclusions

INCLUSIONS AT THE

Beam V-1A-H-C-2

FLAW CATEGORIES

Inclusions

CONE INCLUSIONS

Beam V-1A-H-HR-2

CERAMIC INCLUSIONS

CULLET SELECTION

Tiles arrangement

- Silicone inclusions
- Ceramic inclusions
- Metal traces

- CSP Pollutants
- Mirror
 - Tinted glass
- Plastics
- Papers
- Wood

MAKING MOULDS

EXPERIMENTAL OVERVIEW

Experiment Type 1: Homogeneous beams

Experiment Type 2:
Composite beams:
What is the influence of the ratio
between surface and bulk

Experiment Type 3:
Composite beams
What is the influence of the bulk material

Experiment Type 4:
Composite beams
What is the influence of the surface material

MECHANICAL BEHAVIOUR

3 layered structure for composite beam

2 layered structure for composite beam

DESIGN CONCEPT

Experimental set-up for composite beams – What is the influence of the ratio between surface and bulk?

FOUR POINT BENDING TESTS

Composite vs Homogeneous beams

FOUR POINT BENDING TESTS

Composite vs Homogeneous beams

Flexural strength of Composite and Homogeneous beams

FLAW CATEGORIES Infolds

Beam V-2D-C12-C-2

FOUR POINT BENDING TESTS

Composite vs Homogeneous beams

Expected curve for the flexural strength of Composite and Homogeneous beams

FOUR POINT BENDING TESTS

Composite vs Homogeneous beams

Flexural strength of Composite and Homogeneous beams Influence of a higher temperature schedule

FLAW CATEGORIES

Relation between flaw types and the flexural strength of composite beams

Normal temperature schedule

(1070 degrees)

(1120 degrees and 1070 degrees)

FLAW CATEGORIES Crystallization

Beam V-2C-C10-C-1

EXPERIMENTAL OVERVIEW

Experiment Type 1: Homogeneous beams

Experiment Type 2:
Composite beams:
What is the influence of the ratio
between surface and bulk

Experiment Type 3:
Composite beams
What is the influence of the bulk material

Experiment Type 4:
Composite beams
What is the influence of the surface material

DESIGN CONCEPT

Fire Round 3: Experimental set-up for composite beams – What is the influence of the bulk material?

3 | MECHANICAL TESTS

FOUR POINT BENDING TESTS

Composite beams – What is the influence of the bulk material?

Flexural strength of Composite beams with 8 mm Float glass Influence of bulk material

Flexural strength of Composite beams with 10 mm Float glass Influence of bulk material

FLAW CATEGORIES

Machining

MACHINING

Beam V-3A-C8-M-1

FLAW CATEGORIES

Machining

BULK **INCLUSIONS**

EXPERIMENTAL OVERVIEW

Experiment Type 1: Homogeneous beams

Experiment Type 2:
Composite beams:
What is the influence of the ratio
between surface and bulk

Experiment Type 3:
Composite beams
What is the influence of the bulk material

Experiment Type 4:
Composite beams
What is the influence of the surface material

DESIGN CONCEPT

Fire Round 4: Experimental set-up for composite beams – What is the influence of the surface material?

3 | MECHANICAL TESTS

FOUR POINT BENDING TESTS

Composite beams – What is the influence of the surface material?

Flexural strength of Composite beams with CSP Pollutants in the bulk Influence of surface material – Fritted Glass

Flexural strength of Composite beams with Metallic Pollutants in the bulk Influence of surface material – Fritted Glass

CONCLUSIONS

Experiment Type 1: Homogeneous beams

Experiment Type 2:
Composite beams:
What is the influence of the ratio
between surface and bulk

Experiment Type 3:
Composite beams
What is the influence of the bulk material

Experiment Type 4:
Composite beams
What is the influence of the surface material

FOUR POINT BENDING TESTS

FLAW CATEGORIES

Conclusion

Flaws in Composite and Homogeneous beams

FOUR POINT BENDING TEST

Conclusions

HOMOGENEOUS BEAMS

TYPE C CULLET

COMPOSITE BEAMS – RATIO SURFACE VS BULK

6 mm Float

10 mm Float

HOMOGENEOUS BEAMS

COMPOSITE BEAMS

12 mm Float

FOUR POINT BENDING TEST

Conclusions

COMPOSITE BEAMS – INFLUENCE BULK MATERIAL

COMPOSITE BEAMS – INFLUENCE SURFACE MATERIAL

A FACADE CLADDING APPLICATION WHY

The current facade panels end up in the **landfill**

Reduction of the use of raw materials

Reduction of energy consumption

Turns **cullet** into new, useful building materials

RECYCLED COMPOSITE CAST GLASS PANELS

How to integrate in buildings

Step 1: Create a mould

Step 2: Place the surface

Step 3: Place the bulk

Step 4: Place the surface

RECYCLED COMPOSITE CAST GLASS PANELS

RECYCLED COMPOSITE CAST GLASS PANELS

Connections

RECYCLED COMPOSITE CAST GLASS PANELS

Connections

Clamp on the outer edge

P5 | Véronique van Minkelen | Recycled Composite Cast Glass Panels made of C&D waste

Clamp in the bulk

Clamp on the outer edge

Clamp on the outer edge on an angle

RE3 COMPOSITE CAST GLASS PANELS Connections

3D Blind Connection

- 1. Stainless steel clamp screwed onto timber
- 2. Thermal insulation
- 3. Weather barrier (vapour permeable)
- 4. Ventilated cavity

- 5. Recycled Composite Cast Glass Panels
- 6. Adjustment block thickness 8 mm
- 7. Ventilation profile

7 | CONCLUSION

RECYCLED COMPOSITE CAST GLASS PANELS Recap

"What is the effect of the different parameters in respect to the geometry and glass composition of **composite cast glass beams** to their overall structural performance made out of Construction and Demolition (**C&D**) (float) glass waste?"

7 | CONCLUSION

RECYCLED COMPOSITE CAST GLASS PANELS

Recap

Experiment Type 1: Homogeneous beams

Experiment Type 2:
Composite beams:
What is the influence of the ratio
between surface and bulk

Experiment Type 3:
Composite beams
What is the influence of the bulk material

Experiment Type 4:
Composite beams
What is the influence of the surface material

7 | CONCLUSION

RECYCLED COMPOSITE CAST GLASS PANELS

Fire Round 1: Homogeneous beams

Fire Round 2:
Composite beams
Ratio 8 mm surface and 13 mm bulk

Composite beams
CSP Pollutants in the bulk

Fire Round 4: Composite beams Float glass

8 | RECOMMENDATION

RECYCLED COMPOSITE CAST GLASS PANELS

How to continue

Literature review

Optimise the recycling process

Shape

- Other beam lengths
- Tiles

Thermal shock

- Behaviour of cast glass
- Stress

Safety requirements

Experimental tests

Design optimisation

- FEM Model
- Structural behaviour

6 | REFLECTION

RECYCLED COMPOSITE CAST GLASS PANELS

Thesis traject

Academic value

Applicable in the built environment

Societal value

Innovative research

Value of transferability

Circular economy

10 | REFERENCES

- (1) Geleff, J. (2021, 22 april). New York tried banning glass skyscrapers. What comes next? Journal. https://architizer.com/blog/practice/materials/glass-skyscrapers-passe/
- (2) Foyt, M. Y. A. S. (2024, 1 februari). Romantic Things to Do in Hudson Yards: NYC's Most Blingy Neighborhood. Getaway Mavens. https://www.getawaymavens.com/hudson-yards-nyc/
- (3) Schröder, P. (2023, 18 oktober). *nvm-opname-kantoorruimte-trekt-aan-vooral-door-amsterdam*. https://www.vastgoedmarkt.nl/186753/nvm-opname-kantoorruimte-trekt-aan-vooral-door-amsterdam
- (4) HR-glas.com. (z.d.). HR-glas.com. https://www.hr-glas.com/
- (5) Safety glass cut to any shape. (2012, 25 oktober). EurekAlert! https://www.eurekalert.org/news-releases/851706
- (6) Drilled glass | Using the latest glass drilling technology | Tufwell Glass. (2023, 26 januari). Tufwell Glass. https://tufwellglass.co.uk/drilled-glass/
- (7) Coated glass. (2019, 15 juli). Constituents Listed And Monitored. https://www.cekal.com/en/coated- (18) Bristogianni, T. (2022). Anatomy of cast glass glass.html
- (8) Express Toughening Ltd. (2024, 28 februari). Laminated Glass Manufacturers UK | Express Toughening. https://expresstoughening.com/glass/laminated-glass/laminated-glass/
- (9) Ceramic Fritted Glass Modern Safety Glass Pvt. Ltd. (z.d.). https://modernsafety.co.in/products/ceramic-fritted-glass/
- (10) Varna Group of Companies. (2023, 10 maart). Tinted Glass | Tinted Glass Suppliers Varna Group. Varna Group. https://varnagroup.com/product/tinted-glass/
- (11) Dubbel glas op maat. (z.d.). Glasdiscount.nl. https://www.glasdiscount.nl/dubbel-glas-op-maat

- (12) Glass Chemical Strengthening Abrisa Technologies. (z.d.). Abrisa Technologies. https://abrisatechnologies.com/glass-fabrication/chemical-strengthening/
- (13) Wired Glass Good Soundproofed Material for Modern Room Decor. (z.d.). https://www.walcoom.com/products/architecturalmesh/metal-curtain/wired-glass.html (14) Solstice Solar BIPV Solution Provider. (z.d.). https://solstice.id/applications/
- (15) Oikonomopoulou, F., DeBrincat, G., & Fuhrmann, S. (2023). Glass and circularity. Glass Structures & Engineering, 8(2), 165-166. doi:10.1007/s40940-023-00230-3
- (16) Geboes, E., Galle, W., & De Temmerman, N. (2023). Make or break the loop: a cross-practitioners review of glass circularity. Glass Structures & Engineering, 8(2), 193-210. doi:10.1007/s40940-022-00211-y
- (17) Bristogianni, T., & Oikonomopoulou, F. (2023a). Glass up-casting: a review on the current challenges in glass recycling and a novel approach for recycling "as-is" glass waste into volumetric glass components. Glass Structures & Engineering, 8(2), 255-302. doi:10.1007/s40940-022-00206-
- (18) Bristogianni, T. (2022). Anatomy of cast glass
 The effect of casting parameters on the meso-level structure and macro-level structural
 performance of cast glass components. (Doctor of Philosophy). Delft University of Technology, TU Delft
 Repisotory. Retrieved from https://repository.tudelft.nl/islandora/object/uuid%3A8a12d0b1-fee2-47f1-9fa9-ff56ab2e84c1
- (19) Matskidou, I. (2022). Re-Facade Glass Panels. (Master). Delft University of Technology, TU Delft Repisotory. Retrieved from https://repository.tudelft.nl/islandora/object/uuid%3Ae804092c-5006-428f-b8b7-fce799f4a32b
- (20) DeBrincat, G., & Babic, E. (2023). Re-thinking the life-cycle of architectural glass. Retrieved from https://www.arup.com/perspectives/publications/research/section/re-thinking-the-life-cycle-of-architectural-glass

APPENDIX

Results

Fracture origin location compared with flaw types

