Computer Engineering 2009
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS

Energy Efficient Branch Prediction
for the Cell BE SPU

Martijn Briejer

Abstract

We propose a power efficient branch predictor for the Cell SPU,
which normally depends on compiler inserted hint instructions to
predict taken branches. We designed four predictors all using Branch
History Table (BHT) to store the Branch Target Address and the
prediction, which is computed using a bimodal counter. The Simple
Bimodal Predictor (SBP) predecodes instructions in the Instruction
Line Buffer and accesses the BHT only for a branch instruction and
ignores hints. For the second design, four ways to combine hints
with the SBP are studied, by not or partially overruling hints by
the predictor. We also introduce Branch Warnings (BW). The SPU
only accesses the predictor when a BW or a hint is executed and
hints can be overruled. The Aggressive Bimodal Predictor is an
aggressive implementation of the SBP that starts predicting when
instructions are fetched from local store. It is not designed for energy
efficiency but to investigate the maximum possible speedup for a
branch predictor not using hints.

CE-MS-2009-10 Results show that a SBP in combination with overruling hints (SBP-
OH-NLS) and a 256-entry BHT can have a speedup of 18.8%. The
Branch Warning predictor is the fastest in some occasions, however
a non optimal compiler makes it the worst for others. The SBP has
the lowest performance overall. The estimated extra power needed for the SBP and SBP-OH-NLS is about
1% of the total SPE power and even less for the BW-OH-NLS. The energy-delay product is reduced the
most for the SBP-OH-NLS.

]
T Delft

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science

Energy Efficient Branch Prediction
for the Cell BE SPU

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Martijn Briejer
born in Voorburg, The Netherlands

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Energy Efficient Branch Prediction
for the Cell BE SPU

by Martijn Briejer

Abstract

e propose a power efficient branch predictor for the Cell SPU, which normally depends

on compiler inserted hint instructions to predict taken branches. We designed four

predictors all using Branch History Table (BHT) to store the Branch Target Address
and the prediction, which is computed using a bimodal counter. The Simple Bimodal Predictor
(SBP) predecodes instructions in the Instruction Line Buffer and accesses the BHT only for a
branch instruction and ignores hints. For the second design, four ways to combine hints with the
SBP are studied, by not or partially overruling hints by the predictor. We also introduce Branch
Warnings (BW). The SPU only accesses the predictor when a BW or a hint is executed and
hints can be overruled. The Aggressive Bimodal Predictor is an aggressive implementation of
the SBP that starts predicting when instructions are fetched from local store. It is not designed
for energy efficiency but to investigate the maximum possible speedup for a branch predictor not
using hints.

Results show that a SBP in combination with overruling hints (SBP-OH-NLS) and a 256-
entry BHT can have a speedup of 18.8%. The Branch Warning predictor is the fastest in some
occasions, however a non optimal compiler makes it the worst for others. The SBP has the
lowest performance overall. The estimated extra power needed for the SBP and SBP-OH-NLS is
about 1% of the total SPE power and even less for the BW-OH-NLS. The energy-delay product
is reduced the most for the SBP-OH-NLS.

Laboratory : Computer Engineering
Codenumber : CE-MS-2009-10

Committee Members

Advisor: Ben Juurlink, CE, TU Delft
Chairperson: Kees Goossens, CE, TU Delft
Member: René van Leuken, CAS, TU Delft

Member: Cor Meenderinck, CE, TU Delft

ii

This thesis is dedicated to my parents,
for their love and continuous support

iii

iv

Contents

[List of Figures|

[List of Tables|

[Acknowledgements|

(1__Introduction|

1.2 Thesis Objectives|.

[1.3 Thesis Organization and Contributions|.

2_Related Workl

3 ackground: The Ce

[4 Energy Efficient Branch Prediction|

4.1 Hint for Branch Instructiond. o oL

411 Tamitationso
4.2 The Basis: a Bimodal Branch Predictor]
4.3 A Simple Bimodal Predictor|. L.
4.4 Combining the Simple Bimodal Predictor with Hints[.

4.5 An Aggressive Branch Predictor|

4.6 A Predictor using Branch Warning Instructions|

4.6.1 Compiler Modifications|
4.7 Summary|

[6 Experimental Environment|

[5.3.2 Bughixing CellSim| . . .

5.3.3 Adjusting the Branch Miss Penalty].

15.3.4 Extending CellSim with Hint for Branch Instructions|.

b.4 Summary|

6 Benchmarks|
6.1 lastrank|

6.1.1 Optimization of Listrank|
[6.1.2 Analysis of ListrankMJ$|

vii

ix

xi

10
10
12
13
15
17
17
19

21
21
21
21
22
23
24
25
27

|6.1.3 Performance Validation: IBM SystemSim versus CellSim|.
6.2 MergeSort|

6.3 QuickSort|

6.4 ClustalWl
6.5 MiniGZip| e
[6.5.1 Porting to CellSm|,
6.5.2 Performance Validation|
6.6 SPE-JPEG] s

[6.7 Deblocking Filter|

0.8 Summary|]

[7.1.1 Simple Bimodal Predictor|
[7.1.2 Simple Bimodal Predictor Combined with Hints|
[7.1.3 Aggressive Bimodal Predictor|
[7.1.4 Branch Warnings| 0oL
7.2 Energy Efficiency|
[7.2.1 Simple Bimodal Predictor|
[7.2.2 Simple Bimodal Predictor Combined with Hints|
[7.2.3 Branch Warnings| o000
[[3 Conclusionsl

(Bibliography|

vi

51
ol
o1
93
54
o6
60
61
63
63
63

65
65
66

69

List of Figures

3.1 Overview of the Cell BEJ 5
B.2 Overview of the SPEJ 6
3.3 SPE Pipeline| 7
4.1 Design of the Branch History Table| 11
4.2 Modified SPU pipeline for the Simple Bimodal Predictor.| 13
4.3 Modified SPU pipeline for the Simple Bimodal Predictor combined with

T RISl - . oo 14
4.4 Modified SPU pipeline for the Aggressive Branch Predictor.| 15
4.5 Modified SPU Pipeline for the Branch Warnings Predictor.| 18
b.1 Block Diagram ot CellSim modules.|. 22
5.2 DMA Get List command bug in CellSim.| 24
(6.3 Instruction formats of the 3 Hint Instructions). 26
6.1 Speedup ot ListrankMS compared to the original Listrank.|. 30
[6.2 Breakdown of the performance cycles for ListrankMS. 32
[7.1 Speedups for the Simple Bimodal Predictor.|. 51
7.2 Speedups tor the Simple Bimodal Predictor combined with hints.| 53
(7.3 Speedups for the SBP-OH-NLS predictor.,| 54
7.4 Comparison of the proposed branch predictors with 256 entry BHT. . . . 55
[7.5 Speedups for the Aggressive Bimodal Predictor.|. 55
7.6 Speedups for the Branch Warning Predictor.| 56
(7.7 Speedups for the Branch Warning Predictor with overruled hints|. 57
[7.8 Number of branch instructions relative to the performance instruction |

| count and the performance cycle count.| 62

vii

viii

List of Tables

4.1 Difterent policies used to combine hints with the SBP.| 15
4.2 Maximum number of outstanding taken branches using the ABP| 16
4.3 Properties of the different Branch Predictors. 20
6.1 SPU Statistics Explained.| o 00000 32
6.2 SPU Statistics for ListrankMS of SystemSim and Cellsim with original |

settings.| L 33
6.3 Latency of SPU Pipeline Functional Units.| 34
6.4 Cell5im Configuration for ListrankMS.| 37
[6.5 SPU Statistics for TistrankMS.J] 37
6.6 SPU Statistics for ListrankMS-P3Jfo o000 00 37
6.7 CellsSim Configuration for MergeSort.|. 38
6.8 SPU Statistics for MergeSort.| 38
6.9 SPU Statistics for MergeSort Random.| 39
16.10 CellSim Configuration for QuickSort.|. 40
[6.11 SPU Statistics for Quickdort.|o oo 40
[6.12 SPU Statistics for QuickSort Random| 40
6.13 SPU Statistics for ClustalW.l . . . o0 000000000000 41
[6.14 SPU Statistics for MiniGZip with MIN_. BRANCH_DIST=8| 43
[6.15 Hint instructions which are to close to the branch in MiniGZip.| 43
[6.16 CellSim Configuration for MiniGZip Compression.| 45
16.17 SPU Statistics for MiniGZip with MIN_BRANCH_DIST=5. 45
6.18 CellSim Configuration for SPE-JPEG. 47
6.19 SPU Statistics for SPE-JPEGSo 47
16.20 CellSim Configuration for Deblocking Filter.|. 49
[6.21 SPU Statistics for Deblocking Filter,| 49
(7.1 Branch statistics of MiniGZip.| 57
[[.2_Branch statistics of SPE-JPEG]. L. 59
(7.3 Branch statistics of Deblocking Filter| 59
7.4 Branch statistics of MergeSort.| 0o L 60
(7.5 Used CACTT Settings for 256 8-byte lines cache.| 61
[7.6 CACTI Results for cache with 256 8-byte lines.| 61

(7.7 CACTI Results corrected for 256 18-bit entry BH'I' running at 3.2 GHz.| . 62

X

Acknowledgements

First of all, I would like to thank my supervisor Ben Juurlink for guiding me through
my Master Thesis. In addition to this, I want to thank him for useful advice all along
this project.

I also want to thank Cor Meenderinck for the valuable input he gave during the
project by asking critical questions, assistance with the simulator and for proofreading
this thesis.

I would like to thank my friends and family for supporting me and showing a lot of
faith in me during my entire study. I especially would like to thank my fellow student
Javier Quintela for all the great discussions and fun we had.

Last, but not least, I want to thank Kees Goossens and René van Leuken for being
part of my graduation committee.

Martijn Briejer
Delft, The Netherlands
June 23, 2009

xi

xii

Introduction

The first section presents the motivation behind the presented work. In the second section
we explain the objectives of this project. In the final section the organization of this thesis
is described.

1.1 Motivation

Recently, there is a clear trend towards multi-core in order to increase the performance
of modern processors. Because the size of transistors is decreasing with every new pro-
duction technology, it is possible for manufacturers to put more transistors on the same
area, which enables the use of multiple cores. Due to the power constrains however, the
processor cores need to be more energy efficient. One of the most advanced multi-core
processors is the Cell Broadband Engine (Cell BE) designed by IBM, Sony and Toshiba.
Because of its area and energy efficient design, it contains one general purpose core, the
Power Processing Element (PPU), and eight Synergistic Processing Elements (SPEs)
which are SIMD media accelerators.

To improve the Cells performance further, researchers have proposed various mod-
ifications for the SPUs. Different parts of the SPU were targeted, from the memory
system [I] to the instruction set [2]. Giorgi et al [3] added some extra hardware for
thread scheduling and synchronization. However, no research was done to investigate
the possible performance increase of hardware branch prediction.

The SPU has no dynamic hardware branch predictor and uses hint-for-branch in-
structions, inserted by the compiler, to statically predict branches. Optimized SPU code
generally avoids branches by using select statements and loop unrolling. However, this
is not possible for all code sequences and a branch predictor could improve performance.
The Cell SPU was designed for high frequency and low power, thus a branch predictor
should be energy efficient. Although various research is done on energy efficient branch
prediction for different architectures, none of them targeted the SPU.

We propose four branch predictions. We tried to reduce the energy consumption
by reducing the number of predictions. The Simple Bimodal Predictor (SBP) does a
prediction only for branch instructions. Normally, a branch predictor does a prediction
for every instruction that enters the pipeline. The SBP identifies branch instructions
early in the pipeline by pre-decoding instructions. We created a second version of this
predictor that also uses hint instructions. The third branch predictor uses branch warn-
ing instructions to identify branches, in combination with hints. We also implemented
an aggressive branch predictor as a reference, that does a prediction for each instruction
when it is fetched from the local store.

Results show that the SBP in combination with overruling hints and 256-entry branch
history table can have a speedup of 18.8%. The branch warning predictor is fast in some

2 CHAPTER 1. INTRODUCTION

occasions, however a non-optimal compiler makes it the worst for others. The aggressive
predictor is fastest for all benchmarks, but the second best predictor is not far behind
in most cases. We estimated that the energy consumption of the predictors is relatively
low, thus the total energy consumption for running a program actually decreases.

1.2 Thesis Objectives

When we started this project our goal was to find some dwarfs and use them to investigate
the scalability limitations of the Cell BE. Dwarfs are benchmarks that comply to one
of the 13 communication and computation patterns defined by researchers from the
University of California at Berkeley [4] to investigate the performance of multi-core
systems. These 13 patterns belong to classes of important applications.

However, we soon found out that the limited branch prediction mechanism of the
Cell BE SPU has a significant impact on the performance of many applications. Thus
we refocused to energy efficient branch prediction for the Cell BE SPU with the following
goals:

e Investigate if performance can be improved by adding a dynamic branch predictor

to the Cell SPU.

e Propose techniques for power efficient branch prediction.

e Implement the proposed techniques in CellSim

1.3 Thesis Organization and Contributions

The remainder of this thesis is organized as follows. Related work on power efficient
branch prediction is presented in Chapter [2l In Chapter [3| background information on
the Cell BE is presented. Chapter[d]describes the current branch prediction capabilities of
the Cell SPU and its limitations. We propose three energy efficient branch predictors and
one more aggressive predictor as indication of the performance improvement that can be
achieved by adding a branch predictor. Chapter 5| describes the two simulators we used
for our experiments. IBM SystemSim was used as reference, while CellSim was extended
with our branch predictors. The benchmark programs are described in Chapter [6l The
process of porting the benchmarks to CellSim and finding a valid configuration is also
described. Finally, the performance and energy efficiency results of the proposed branch
predictors are presented in Chapter[7] Our conclusions are written in Chapter[8] together
with recommendations for future work.

Related Work

A branch prediction unit uses energy to predict the outcome of branches. In modern
architectures, the branch predictor power consumption can be up to 10% of the entire
processor power consumption [5]. To save energy, the branch prediction unit can be made
more energy efficient, but when the accuracy decreases, the total energy consumption
decreases less, or might even increase. So the method used to save energy in the branch
prediction unit should not decrease the prediction accuracy much. Many researchers
have proposed techniques for energy efficient branch prediction for various architectures.

A branch predictor table can be split into several parts called banks. To read a
prediction from the table, only the bank that contains it has to be active, which reduces
the energy needed. Parikh et al. [5] searched for an optimal banking strategy. Also,
a Predictor Probe Detector (PPD) is proposed, which pre-decodes the instructions
in the instruction cache to detect a branch. This information is stored in an extra
so-called pre-decode bit in the instruction cache for each instruction. Only when the
PPD indicates a branch, a lookup to the predictor and/or Branch Target Buffer (BTB)
occurs. This reduces the branch predictor energy consumption by approximately 45%.

Yang [6] proposed a Branch Identification Unit (BIU), to early identify incoming
branch addresses using statically extracted program control flow information and branch
distance. This information is loaded at the start of a basic block. Only when a branch
occurs that is predicted taken by the BIU, a BTB lookup is performed. Also predictor
entries are hibernated to reduce leakage power.

Modern processors use multiple predictors. The Branch Predictor Prediction
(BPP) [7] selectively turns off 2 of the 3 used predictors, using the same predictor as
used the last time the branch was executed. This saves 28% for non-banked and 14%
for banked predictors.

Selective Prediction Access (SEPAS) [§] identifies well behaving branches and stores
them. Using this information, the predictor and the BTB do not need to be accessed
for every branch, avoiding unnecessary BTB lookups and predictor updates. Also, if
possible only one predictor is used as with the BPP. PABU [9] is a slightly different
version of SEPAS.

The branch predictor hardware can also be adapted on the fly. In [10] programs are
divided into modules. Using profiling, the optimal configuration of the BTB size and
the prediction algorithm is determined. The compiler adds configuration instructions in
front of the module providing on the fly reconfiguration.

Like in the SPU, hint instructions can be used. These hint instructions [I1] are
inserted well in front of the branch instruction and inform the processor that a branch
is coming. When the target and direction are known at compile time, they are included
in the hint-instruction. Then the branch can be predicted right even without using the

4 CHAPTER 2. RELATED WORK

branch predictor and the BTB. This technique is implemented on a VLIW processor,
and the hint instructions are inserted only instead of NOP instructions and thus cause
no overhead.

Reducing the number of bits in the BTB can save about 35% of power used by the
BTB, as shown in [I2]. The tag length can be reduced by half a byte and the target
address length by one byte, without loss of performance. Besides saving power, silicon
area and access time are also reduced.

Kahn et al. [I3] reduce the dynamic power dissipation of the BTB by reducing the
number of lookups. They propose two mechanisms: the serial-BTB and the filter-BTB.
For the serial-BTB, the BTB is split in a tag array and data array containing the branch
target. Only if the tag has a match, a look-up of the data array is performed. The
filter-BTB uses a counting Bloom filter to determine if an address is in the BTB and
thus a look-up is necessary. Because both methods introduce an extra delay, a small
direct mapped BTB is also used in parallel, for a fast response in case of a hit. This
gives a 51% reduction in dynamic power consumption at a cost of 1.2% less performance.

The techniques described above are for various architectures, although not for
the Cell SPU that we target. We use some of the ideas and implemented them with
some modifications for the Cell SPU. First, our Simple Bimodal Predictor pre-decodes
instructions to detect a branch like the PPD. However, we do not use a separate table
to store the results but incorporated this in the instruction fetch pipeline which saves
area and time. We also combined this with hint instructions, which has not been done
before.

Second, we also use the idea of inserting hint instructions for branches with unknown
target (at compile time) to access the branch predictor. However, our so-called Branch
Warning Predictor also does a prediction for hint instructions with known target address
and can overrule it when the predictor predicts 'not taken’. This leads to more lookups,
but the accuracy improves more.

Background: The Cell BE

In this chapter we provide some background information on the Cell BE which is
investigated in this project.

The Cell Broadband Engine (Cell BE), developed by Sony, Toshiba and IBM is a
heterogeneous shared memory multi-core processor [14]. It is originally designed for
high performance with multimedia applications and games. Using two different core
designs on one chip, each core design can be optimized for the task it performs.

The Cell BE consist of one POWER Processing Element (PPE) and 8 Synergistic
Processing Elements (SPE), which are connected to each other and to the main memory
by the Element Interconnect Bus (EIB) (see Figure[3.1]). The PPE consists of a POWER
Processing Unit (PPU) and Level 1 and Level 2 caches. The PPU is based on the 64-bit
Power Architecture with vector media extensions (Altivec) and provides common system
functions. The PPE runs the operating system and coordinates the SPEs.

The SPEs are designed to accelerate media and streaming workloads. The design
was optimized for performance, power, and area. Area and power consumption were
important design parameters. Less area means that more SPEs can fit in one core and
less power makes higher clock frequency possible.

The SPE consists of a Synergistic Processing Unit (SPU), a Local Store (LS), and a
Memory Flow Controller (MFC) (see Figure[3.2). The 256 KB local store contains both

SPE SPE SPE SPE SPE SPE SPE SPE

EIB
PPE : !]
L2 Cache MIC IO Controller
: !
PPU .
L1 Cache Main Memory

Figure 3.1: Overview of the Cell BE.

6 CHAPTER 3. BACKGROUND: THE CELL BE

SPE
SPU
LB Local
1 Store
GPR
l 1
MFEFC

Figure 3.2: Overview of the SPE.

instructions and data and can be accessed directly by the SPU. The SPU can access
the main memory through the MFC only using DMA Requests. The MFC then moves
data between the local store and main memory using the EIB. It can also be used to
communicate with the other SPUs and the PPU.

The SPU is a 32-bit RISC like processor. It uses instructions with a fixed length
of 32 bits. The SPU has 128 128-bit general purpose registers. These can be used by
both integer and floating point instructions. Because all SPU instructions are Single
Instruction Multiple Data (SIMD) instructions, these 128 bit vectors can be treated as
one quad-word, 16 bytes, and everything in between. The large number of registers allow
loop unrolling and function inlining, which improves performance.

Instructions are fetched from the LS into the Instruction Line Buffer (ILB) in groups
of 32 4-byte instructions called a line. The ILB can store up to 3.5 lines. The SPU
pipeline issues instructions from half a line. Two lines are used for inline prefetching.
The remaining line is used as a branch target buffer as explained further on.

The SPU can execute up to two instructions per cycle. The SPU has six functional
units divided among an odd and an even execution pipeline (see Figure. Instructions
are fetched from the ILB in pairs, called a fetch group. If two instructions from a fetch
group are mapped to different pipelines, they can be executed simultaneously. To reduce
dependency stalls, the SPU uses forward macros. This technique makes a result from an
execution unit available as an input once it is calculated. Normally, the result can only
be used as an input after it is written in the Register File.

Instructions are executed in order. The SPU has no dynamic hardware branch pre-
dictor. In case of branches, the SPU continues execution sequentially, except when a hint
for branch instruction is used. Because of the long pipeline, a branch miss will result in a
penalty of 18 cycles. A hint instruction (inserted at compile time) fetches the predicted
branch target into the ILB. After the hinted branch instruction is fetched from the ILB,
these instructions are fetched next. When a hint instruction is executed more than 16
cycles before the branch, the SPU can continue without delay if the branch is taken.

SPU PIPELINE FRONT END

SPU PIPELINE BACK END

Branch Instruction Odd execution pipeline

Permute Instruction IF Instruction Fetch
1B Instruction Buffer

“—-»-{»-»m-» ID Instruction Decode

Load/Store Instruction IS Instruction Issue

X EX2-EX3EXA-EXB-EXG - I+ WB > Ro0ster File Access
_ EX Execution
Fixed Poin] Instruction Even execution pipeline | WB Write Back

—>

Floating Point Instruction

X EXE- X ~EXA-EXG X6 W

Figure 3.3: SPE Pipeline, taken from [15].

CHAPTER 3. BACKGROUND: THE CELL BE

Energy Efficient Branch
Prediction

The Cell SPU does not have a dynamic branch predictor. One of the reasons for that
was to keep the power consumption low. However, the SPU does have some static branch
prediction using hint for branch instructions. As will be explained in Section this
technique has some limitations. Code optimizations like loop-unrolling and changing if
statements into select statements can be used to reduce the number of branches. However,
in some cases this is not possible or effective.

In this chapter a few different dynamic branch predictors are proposed, which are
designed for energy efficiency. They all use the same Bimodal Branch Predictor (BBP)
described in Section but in a different way. The Simple Bimodal Predictor (Sec-
tion uses only the BBP. The predictor in Section uses the BBP in combination
with hints. The Aggressive Branch Predictor in Section is a non-energy-efficient
implementation of the BBP to investigate how much performance improvement is pos-
sible. Finally, in Section the hint instructions are extended with branch warning
instructions in combination with the BBP.

4.1 Hint for Branch Instructions

The SPU uses hint-for-branch instructions to reduce branch miss stalls. Normally, the
SPU predicts a branch 'not taken’. But a hint instruction lets the SPU predict 'taken’,
prefetches the target instructions and lets execution continue without delay when the
branch is taken.

These hint instructions are inserted some distance (at least four instruction pairs
and 11 cycles in order to branch without delay) [L6] ahead of a branch instructions. The
operands of a hint-for-branch instruction are the Branch Instruction Address (BIA) and
the Branch Target Address (BTA). A hint instruction loads the SPU’s Branch Target
Buffer (BTB) with the BTA and the BIA. The BTB monitors the instruction stream
going into the issue stage of the pipeline. When the instruction address matches the
BIA, the SPU continues with the instructions from the BTA, which are prefetched into
a special line of the Instruction Line Buffer (ILB).

When the BTB matches the BIA, the prefetched instructions are seamlessly put after
the branch instruction in the pipeline. If the branch is taken, execution can continue
without delay. If it is not taken (hint miss), the buffer is flushed and new instructions
need to be fetched from local store. Then the normal branch penalty of 18 cycles applies.

If the hint is more than the four required instruction pairs in front of the branch
instruction, but the other requirement of the 11 cycles is not met, the SPU goes into
hint stall mode. The four instruction pairs are required, because a hint instruction needs
four pipeline stages to execute and set the trigger. If the trigger is not set, the SPU
does not know that there is a hint for the branch. After executing the hint, the branch

10 CHAPTER 4. ENERGY EFFICIENT BRANCH PREDICTION

target is fetched. It takes at least 11 cycles to do this and put the target instruction in
the pipeline just after the branch instruction. The branch instruction is stalled until this
can be done, which is called Hint Stall.

4.1.1 Limitations

Using hint instructions for branch prediction has some limitations. First, it is static and
not dynamic, thus it cannot adapt the prediction during the execution. The compiler
uses some heuristics to determine if a branch is taken or not. For example, a loop-
iteration branch is always predicted taken, while a loop-termination branch is predicted
not taken. Or when a conditional branch depends on a comparison greater than zero it
is predicted taken, while for less than zero it is predicted not taken. The actual values
compared are not used in this prediction, only the program code.

The compiler tries to insert a hint instruction as far as possible (maximum 256
instructions) in front of the branch instruction. If two branches that should be hinted
are less than four instruction pairs away, the hint cannot be inserted because there can
be only one hint active at a time. Thus if the first branch is hinted, the second hint
cannot be inserted before the first branch, because that would replace the first hint. The
compiler can chose between hinting only one of them, or adding NOP instructions to
increase the distance. The NOP instructions will incur extra performance cycles and
most likely, the SPU still needs to go into Hint Stall mode.

Inserting hint instructions sufficiently in front to continue execution without delay
can be difficult or even impossible. In some cases it is even impossible to insert a hint
more than four instruction pairs in front. If insertion is succeeded, the branch prediction
is based on static compile time heuristics. So branches that are hinted 'taken’ are likely to
have some delay, but it is also possible that the hint is wrong. And non-hinted branches
(and thus predicted 'not taken’) can also be taken.

4.2 The Basis: a Bimodal Branch Predictor

This section describes the Bimodal Branch Predictor, which will be used as the basis
for the branch predictors we propose in the next sections.

We use a bimodal branch predictor because is a simple predictor. Other predic-
tors like a local or a global predictor use more complex algorithms to do a prediction.
They can be more accurate, but doing the prediction takes more time and energy. The
used area is also larger.

Predictions are calculated with a 2-bit saturation counter. The prediction can have
the following values:

Value Meaning
00 Strongly Not Taken
01 Weakly Not Taken
10 Weakly Taken
11 Strongly Taken

4.2. THE BASIS: A BIMODAL BRANCH PREDICTOR 11

Branch Instruction Address

0 | 151617 |

Branch History Table
Tag Branch Target Address Prediction

\Used as indexy, ™) o (size) bits 16 bits 2 bits

Figure 4.1: Design of the Branch History Table.

The leftmost bit determines if the branch is predicted ’taken’ or 'not taken’. If a
branch is taken, one is added to the prediction. If the branch is not taken, one is
subtracted. When 00 or 11 is reached, the counter is saturated. Adding one to 11 or
subtraction one from 00 does not change the value any more.

We implemented a branch predictor which uses a bimodal predictor scheme using
a Branch History Table (BHT). The BHT has BHT_SIZE entries and each entry has
three fields: a tag, the branch target address, and the prediction. It is indexed by
the logo(BHT _SIZE) least significant bits of the 16-bit branch instruction word address
(see Figure . Since instructions are stored in the Local Store, which is only 256 KB,
there addresses can be represented with 18 bits. Because instructions addresses are word
aligned, the two least significant bits are always zero and can be discarded. Therefore
the tag should contain the remaining 16 - logo(BHT_SIZE) most significant bits of the
branch instruction address. In case of BHT_SIZE = 256, the index is 8 bits and the tag
is 8 bits.

The branch target address contains the predicted target of the branch instruction.
When a branch is predicted taken, instructions are fetched from this address. 16 bits
are sufficient to address the instruction words in the 256 KB Local Store.

It is assumed that a prediction can be done in one cycle. Agarwal et al [17] inves-
tigated the access times of various structures including a Branch Target Buffer (BTB),
which structure is comparable to that of our BHT. This was done for design with a
different clock cycle time, expressed in terms of the time required for an inverter to drive
four copies of itself, called an fan-out-of-four (FO4). The access time for a 512 96-bit
entry BTB is one cycle for a 16 FO4 design and two cycles for a 8 FO4 design, when
70nm or 100nm technology is used to make the structure. The Cell has a 11 FO4 design
and is made with 90nm technology. Our BHT has as most 512 entries, but the entries

12 CHAPTER 4. ENERGY EFFICIENT BRANCH PREDICTION

contain only 30 bits. This decreases the access time. Therefore it is reasonable to assume
an access time of one cycle.

4.3 A Simple Bimodal Predictor

In this section the first energy efficient branch predictor is proposed, based on the
BBP. The Simple Bimodal Predictor (SBP) only uses the BBP to do a prediction.
Instructions are pre-decoded in order to do the prediction as early as possible. Hint
instructions are ignored.

In this implementation, the BBP is accessed when an instruction is read from
the Instruction Line Buffer and enters the SPU pipeline. For energy efficiency reasons,
this is done only for branch instructions. This saves many unnecessary lookups for
non-branch instructions, because branches are just a small fraction of the code.

To only access the BHT for a branch instruction, the predictor should know if the
instruction is a branch or not. To do this, the instruction has to be decoded. The original
SPU pipeline depicted in Figure shows that there are three Instruction Decode (ID)
stages. The instruction is decoded in stage ID1 and ID2 and stage ID3 is used for
dependency checking. Thus in the ninth stage ID2, it is known if there is a branch
instruction in the pipeline. The branch prediction can take place in the next cycle.
Then a correctly predicted taken branch will have a penalty of 10 cycles instead of the
normal 18 cycles. The modified SPU pipeline for the SBP is depicted in Figure [£.2]

Instead of waiting for the instruction to be decoded in the SPU pipeline, the branch
detection is moved to the front. Like the Predictor Probe Detector [6], the instruction
line buffer can be extended with some logic that (partially) pre-decodes the instruction
to detect a branch instruction. When the instruction is fetched from the ILB, a extra
bit indicates if it is a branch or not. In case of a branch, the BBP is accessed in the
same cycle. The benefits of this is a smaller penalty. However, some extra logic to
pre-decode/detect a branch instruction is necessary.

The branch prediction is done when a branch is fetched from the Instruction Buffer
(stage IB2). A BHT lookup is done using the program counter. If the branch is predicted
taken, its target instructions are fetched from local store. It takes 7 cycles before the
first instruction can be read from the instruction buffer. Meanwhile the pipeline is fed
with NOP instructions. So the penalty for a correctly predicted taken branch is 7 cycles
(this was 18 cycles without prediction). It is assumed that a BHT lookup can be done
in the same cycle as the instruction fetch.

Hint instructions go through the pipeline like normally. However, they are handled
like a NOP instruction, thus they do not have any effect on branching and/or fetching
instructions. Simply, instead of executing hint instructions, they are ignored.

The SBP was implemented in CellSim by changing the file spu.sim. The predictor can
be enabled by setting the macro definition USE_PREDICTOR to 1 (0 for no predictor).
Because hints are ignored, the macro definition USE_HINT must be set to 0.

4.4. COMBINING THE SIMPLE BIMODAL PREDICTOR WITH HINTS 13

SPU PIPELINE FRONT END

SPU PIPELINE BACK END

Branch Instruction Odd execution pipeline

Permute Instruction

RF1—~>RF2
IF Instruction Fetch
1B Instruction Buffer
| ID Instruction Decode

Load/Store Instruction IS Instruction Issue

X EX2-EX3EXA-EXB-EXG - I+ WB > Ro0ster File Access
' EX Execution
Fixed Point Instruction Even execution pipeline | WB Write Back
-2 - - B | OF rench Predicton
PD Predecode

Floating Point Instruction

—

Figure 4.2: Modified SPU pipeline for the Simple Bimodal Predictor.

4.4 Combining the Simple Bimodal Predictor with Hints

In this section we propose a branch predictor that uses the BBP and hint instructions.
We extend the SBP described in the previous section. The SBP uses only BBP, and
ignores the hint instructions, including the valuable branch information in it. By using
both dynamic branch prediction and hint instructions, we can take advantage of both.

The straightforward implementation is to use the branch hints for hinted branch
instructions and to use the predictor for non-hinted branch instructions. But in part 3
of the ListrankMS SPU program (described in Section , only half of the hints are
correct (see Table. So it could be more effective to let the branch predictor overrule
a branch hint when it was wrong for the last couple of times.

Therefore we implemented a scheme where the predictor can overrule the branch
hint when the prediction is opposite to the hint, thus not taken. This can be done
only for strongly not taken predictions or also for weakly not taken predictions. These
options are selected by setting the macro definition BP_.OVERRULES_LIMIT in spu.sim
to respectively 0 and 1. The macro definition BP_.OVERRULES is used to control the
overruling:

14 CHAPTER 4. ENERGY EFFICIENT BRANCH PREDICTION

BP_OVERRULES Behaviour

0 Hints are always used.

1 Hint targets are not fetched at all when branch is predicted not
taken by the predictor.

2 Hint targets are fetched, but not used while the branch predic-

tor predicts not taken.

We implemented the third option because some hints are used multiple times. For
example, the hint instruction for a branch in a small loop can be inserted outside (thus
before) the loop. The hint instruction is executed once, but the fetched hint target
can be used every iteration, until they are replaced because another hint instruction is
executed. If we do not fetch the hint target, this is not possible. Therefore it could be
more effective to load the target, but not to use it.

We used four different combination of BP_OVERRULES_LIMIT and
BP_OVERRULES for our research which are described in table {1l The modi-
fied SPU pipeline for these predictors is shown in Figure

SPU PIPELINE FRONT END

SPU PIPELINE BACK END

Branch Instruction Odd execution pipeline

RE—REZ -
IF Instruction Fetch

Permute Instruction 1B Instruction Buffer
ID Instruction Decode

IS Instruction Issue
Load/Store Instruction RF Register File Access

XX ~ G- ~ X658 I I - | £ Evecution
' WB Write Back

Fixed Point Instruction Even execution pipeline | BP Branch Prediction
— | PD Predecode

Floating Point Instruction

- EXHEX-~ X ~EXa-EXG X6 > 1~ W >

Figure 4.3: Modified SPU pipeline for the Simple Bimodal Predictor combined with
hints.

—-

4.5. AN AGGRESSIVE BRANCH PREDICTOR 15

Table 4.1: Different policies used to combine hints with the SBP.

Name Description
Always Hints are always used like normally. For non-hinted branches, the predictor
is used.

OH-NLS Hints target is not loaded when the predictor predicts Strongly Not Taken

OH-NUS Hints target is loaded but not used while the predictor predicts Strongly
Not Taken

OH-NLW Hints target is not loaded when the predictor predicts Strongly or Weakly
Not Taken

4.5 An Aggressive Branch Predictor

To investigate how much the performance can be improved by a bimodal branch predic-
tor, we also implemented a more aggressive version of the bimodal predictor. We did
not constrain ourselves to make a energy efficient or simple design. The most important
feature is that this predictor does a prediction for every instruction, without knowing
if it is a branch or not. In this way, the predictor can already start predicting in stage
IF1, when the instructions are fetched from the local store to the ILB (after a flush) or
are in the ILB. Doing a prediction for all instruction costs more energy than predicting

SPU PIPELINE FRONT END

SPU PIPELINE BACK END

Branch Instruction Odd execution pipeline

RET-REZ - - -

Permute Instruction IF Instruction Fetch
1B Instruction Buffer

I“.I’-*-*-*“* ID Instruction Decode
Load/Store Instruction IS Instruction Issue

EXTHEXE XS EX-EXS EXB I WB o poote! Fie Access
| EX Execution

Fixed Point Instruction Even execution pipeline | WB Write Back
- - - B | °F ranch Pedicton

Floating Point Instruction

XX~ B~ X~ X6~ £ - I~ I~ B~

Figure 4.4: Modified SPU pipeline for the Aggressive Branch Predictor.

16 CHAPTER 4. ENERGY EFFICIENT BRANCH PREDICTION

only branch instructions because a lot more BTH accesses are necessary.

When the ILB is empty, i.e., after a flush, new instructions are fetched from the
local store. The PC of the first instruction is known at that time, so the predictor can
be accessed. While the SPU is waiting for the instructions to be fetched, every cycle
two predictions are done (dual issue). So when the first instruction is in stage ID1, the
predictor has already been accessed 14 times. From now on, a prediction only is done
when a instruction is executed. Thus there can be 0 (stall), 1 or 2 (dual issue) predictions
per cycle. Figure shows the modified SPU pipeline.

The branch predictor is 14 cycles ahead of the real execution. This is a speculative
execution path and when the predictor is wrong, the ILB needs to be flushed the same
way when a normal branch miss occurs. But when the predictor is right, there is no
penalty for a branch.

There are two parameters that can be modified to change the behavior of this predic-
tor. First, the macro definition PREDICTION_WIDTH in spu.sim defines the number
of instructions to process while the SPU is fetching instructions from the local store
after a flush, which is set to 14 in our experiments. Second, the macro definition PRE-
DICTION_DEPTH in BranchPredictior.hxx defines the number of branches that can be
taken speculatively by the predictor. As shown in Table shows, most of the bench-
marks (see Chapter @ we use have less than eight outstanding taken branches. For the
others, increasing PREDICTION_DEPTH above eight does not have a significant effect
on the performance, thus we will use PREDICTION_DEPTH=8 in our experiments.

Table 4.2: Maximum number of outstanding taken branches using the ABP.

Parameter Value
ListrankMS 4
QuickSort 17
QuickSort Rnd 10
MergeSort 4
MergeSort Rnd 4
MiniGZip 5
SPE-JPEG 5
Deblocking Filter 8

The instruction line buffer has to be extended in order to store the prefetched instruc-
tions with PREDICTION_DEPTH lines, one for each outstanding speculatively taken
branch.

The Aggressive Branch Predictor is not a serious candidate for implementation in
the SPU. The SPU is designed to be simple, energy efficient, and small. This predictor
is more complex than the others, because it is much more speculative. It also is less
efficient, because it does a prediction for every instruction fetched. And finally, the used
area is twice as large, because of the eight extra lines in the ILB that cost about the
same area as a 256 entry BHT.

4.6. A PREDICTOR USING BRANCH WARNING INSTRUCTIONS 17

4.6 A Predictor using Branch Warning Instructions

In Section [4.3] and energy efficiency of the branch predictor is achieved by accessing
the BHT only when a branch instruction is fetched. For this, it is necessary to know
if the fetched instruction is a branch instruction. This can be done by accessing the
predictor further down the pipeline, or pre-decode the instructions in the ILB. In this
section we propose a new approach: using extra instructions to let the SPU know a
branch is coming, which we will call Branch Warnings.

When a branch warning instruction is executed, the SPU uses the BBP to do a
prediction for the branch the warning belongs to. For branches that are not preceded by
branch warning, no prediction is done. When the branch warning is scheduled sufficiently
far in front of the branch instruction (like for normal hint: four instruction pairs and
11 cycles), a correctly predicted branch has no penalty. Due to the double execution
pipeline, these extra instructions could possibly be scheduled in such a way that they do
not introduce extra execution cycles. However, the extra instructions need to be fetched
from memory, which could cost extra time. Also, the size of the program will increase.
This could be a problem for some programs, because of the limited size of the local store.
This is also true for hints.

We implemented the branch warnings as hint-for-branch instructions with target 0.
Therefore, the handling of hints with 0 is changed. Instead of loading the target, the
BBP is accessed. When it predicts the branch taken, it fetches the branch target. The
target is thus in a different (extra) line in the ILB than a normal hint. If there is a hint
active, it stays active when a branch warning is executed. In case the branch is predicted
not taken, the execution continues sequentially and no actions are taken.

When the branch instruction is executed, its target is compared to the predicted
target. If they are the same, execution can continue. Else the pipeline is flushed and the
correct target is fetched.

For hints, the SPU stalls when the target is not ready yet when it is needed. However,
if the branch is not taken, thus the prediction is wrong, these stall cycles are an unneces-
sary extra penalty on top of the normal branch miss penalty of 18 cycles. Therefore we
do not stall the SPU to wait for the Branch Warning target, but feed the pipeline with
NOP instructions after the warned branch instruction. The execution of instructions in
the pipeline continues and when the branch is not correctly predicted ’taken’, there is
no extra penalty. For correctly predicted branches, there is no performance difference.

The branch warnings are used in combination with hint instructions. The macro
definition BP_.OVERRULES determines the behavior of the hint instructions. If 0, the
hints are always used. If 1, the hint instruction is ignored when the BBP predicts strongly
not taken and thus the hint target is not fetched. The modified SPU pipeline of this
predictor is depicted in Figure |4.5

4.6.1 Compiler Modifications

To insert the branch warnings in the program, the compiler had to be modified. We
modified GCC 4.1.1, the file gce/config/spu.c. Hints are generated in the optimiza-
tion pass of gee, in the function spu-machine_dependent_reorg-mb(). For each branch

18 CHAPTER 4. ENERGY EFFICIENT BRANCH PREDICTION

SPU PIPELINE FRONT END

SPU PIPELINE BACK END

Branch Instruction Odd execution pipeline

RET-REZ - -
IF Instruction Fetch

Permute Instruction IB Instruction Buffer
ID Instruction Decode
—> .
IS Instruction Issue
Load/Store Instruction RF Register File Access

-5 ~ G~ 658 I~ - | £ Evecution
. WB Write Back
Fixed Poin] Instruction Even execution pipeline | BP Branch Prediction
—p

Floating Point Instruction

- EXTHEX- X XA ~EXG B>+ WB >

Figure 4.5: Modified SPU Pipeline for the Branch Warnings Predictor.

instruction, the compiler checks if it can determine the branch target using the function
get_branch_target(). Originally, when the compiler could not determine if a branch was
taken, 0 was returned. Then no hint for branch instruction was generated.

We replaced the return 0 statements in the function get_branch_target() to return
GEN_INT(0). The function GEN_INT(0) creates an internal representation of an integer
with value 0. GCC now thinks the branch has 0 as predicted target and will try to insert
a hint for branch instruction in front of this branch. For branches of which a target can
be determined, a normal hint is generated. Some branches will have no branch warning,
because the compiler cannot place the instruction far enough ahead. The warning should
be placed at least 4 instruction pairs before the branch. No other hint instruction can
be placed between a hint and its branch.

The placement of branch warnings can be improved. Branch warnings are handled
differently in hardware, therefore they can also be handled differently at compile time.
They could be placed in between a hint and its branch, because they do not interfere
in hardware. Probably, a new instruction should be added instead of using the hbra
instruction with target 0. In that way they can be easily distinguished and thus scheduled
differently. Currently, the compiler assumes that there can be only one hint or branch
warning (because they are the same for the compiler) active at the same time. This
means the compiler in some cases has to chose if it inserts a branch warning or a hint,
while by using two different instructions they both can be inserted. This also gives
other possibilities to improve the performance, for example by allowing two or more
outstanding branch warnings by adding extra lines to the ILB. Because these compiler

4.7. SUMMARY 19

changes need a thorough knowledge of GCC, this work has not been done but it would
be very interesting to do in the future.

4.7 Summary

In this chapter the limited branch prediction capabilities of the SPU are discussed. We
proposed four types of branch predictors to improve the branching behavior of the SPU.
All predictors use a Bimodel Branch Predictor (BBP) as base, that uses a branch history
table to store the prediction and the target address.

Only two of the proposed branch predictors use hint instructions and can overrule
the hint if the predictor predicts not taken, while the others ignore the hint instructions.
Because we defined four policies for using hint instructions (see Table , we have
eight branch predictors to investigate. Table [£.3] shows the names we will use and the
properties of those branch predictors.

The branch predictors have different Branch Hit Delays (BHD) because of the dif-
ferent pipeline stage the prediction is done. The branch miss penalty of 18 cycles is
not changed by adding a branch predictor to the SPU. For energy efficiency, we tried
to minimize the number of predictions. The ABP is the only branch predictor that
does a prediction for every instruction that enters the pipeline, the other predictors do
a prediction only for branch, hint or branch warning instructions.

CHAPTER 4. ENERGY EFFI JTI_E]N T BRANCH PREDICTION

20

Table 4.3: Properties of the different Branch Predictors. The abbreviation in the name column is how we will refer to this
predictor from now on. Branch Hit Delay (BHD) is best case delay in cycles for a correctly predicted taken branch. BBP Access
indicates when the predictor does a prediction. Hint policy indicates if and how the predictor uses the hint-for-branch instructions

(see Table 4.1 for explanation of the policies)

Name Type of Branch Predictor BHD BBP Access Hint Policy
SBP Simple Branch Predictor 7 Only for branches None

SBP-H SBP combined with hints 7 Only for branches and hints Always
SBP-OH-NLS SBP combined with hints 7 Only for branches and hints OH NLS
SBP-OH-NUS SBP combined with hints 7 Only for branches and hints OH NUS
SBP-OH-NLW SBP combined with hints 7 Only for branches and hints OH NLW
ABP Aggressive Branch Predictor 0 For every instruction None
BWP-H Branch Warning Predictor 0 Only for Branch Warnings and hints Always
BWP-OH-NLS Branch Warning Predictor 0 Only for Branch Warnings and hints OH NLS

Experimental Environment

During our research, several development and experimental environments have been used,
which are described in this chapter. Besides a hardware Cell Blade server (Section[5.1),
we also used 2 simulators: The IBM SystemsSim (Section provided with Cell SDK,
and CellSim (Sectz'on which we could extend with new branch prediction techniques.
Howewver, before we could extend CellSim, some modifications had to be made in order
to make CellSim more accurate. These modifications are also described.

5.1 Cell Blade Server

Some of the tests are done on the Cell BladeServer from the Barcelona Supercomputing
Center. This is a prototype blade server with two 3.2 GHz Cell BE processors having
8 SPUs and 512 MB main memory each. It runs Fedora Core 7 with Cell SDK 3.0
installed. Applications are compiled using the GNU toolchain 4.1.1.

5.2 IBM SystemSim

The Cell Software Development Kit 2.1 comes with a simulator: the IBM Full-System
Simulator for the Cell Broadband Processor Version 2.1 (SystemSim) [I8]. SystemSim
is a sophisticated simulator that can be used for both functional and performance sim-
ulations of the Cell BE. Besides simulating the processor, other parts of the system like
network, I/O devices and disks are simulated as well. This allows an operating system
to run on the simulator, in this case Linux.

SystemSim was used for development and testing of applications. Performance statis-
tics were also gathered using this simulator. This was done in default configuration,
which means an 8 SPU Cell running at 3.2 GHz and 256 MB main memory. The sim-
ulated operating system is Fedora Core 5. Applications are compiled using the GNU
toolchain 4.1.1.

5.3 CellSim

SystemSim is a fast simulator which is very suitable for developing applications. Al-
though it is possible to change machine characteristics like main memory size, it is not
possible to change the architecture of the simulated system without the source code that
is not publicly available. This makes it not suitable for architecture research. There-
fore, another simulator is used: CellSim [I9]. This is a modular simulator based on
UNISIM [20]. UNISIM takes care of the communication between the modules and exe-
cutes the required functionality each cycle, also providing a general clock signal. Each

21

22 CHAPTER 5. EXPERIMENTAL ENVIRONMENT

module is a C++ class with methods for communication between modules. In CellSim,
the Cell BE is divided in the modules which are connected as shown in Figure The
PPE consist of two modules: a PPU, and a cache. The SPE consist of a SPU, a Local
Store and the MFC. The interconnection network connects the PPU, SPU, and Main
Memory.

PPE

PPU

CACHE

>_
o
% — INTERCONNECTION NETWORK
L
=

MFC MFC

o 00
MEMORY — SPU MEMORY H SPU
SPE SPE

Figure 5.1: Block Diagram of CellSim modules, taken from [19].

We used CellSim version 0.9 in combination with UNISIM 3.5. For the PPU, memory,
cache, and interconnection network the default configuration is used. The configuration
changes made in the other modules are described in Chapter[6] Applications are compiled
using the GNU toolchain 4.1.1.

5.3.1 Limitations

Unlike IBM SystemSim, CellSim is not a cycle accurate simulator but an instruction set
simulator. This means that CellSim mimics the behavior of a Cell BE, but not every
aspect is simulated correctly. For example, the pipeline stages of the SPU (which is the
main subject of this research) are not simulated separately, but a instruction is executed
in one simulation cycle. Latencies are used to stall the simulator when dependencies
occur or when the SPU has to wait for load. However, CellSim has a lot of configuration
parameters which tweak the performance of the simulator. With this, CellSim can be
configured for each program in such a way that its performance is close to the real world.
For each benchmark used in this research (Chapter @, this validation is done.

Also, CellSim does not run an operating system, but only the program. As a re-
sult the simulator has to handle system calls, which is normally done by the operating
system. However, not all system calls are implemented in CellSim. Programs that use
unimplemented system calls will not work correct. These programs need to be modified
so they do not use these system calls any more, which we did for some of the benchmarks

5.3. CELLSIM 23

we used.

5.3.2 Bugfixing CellSim

When executing the first benchmark (Listrank, see Chapter @, the program kept termi-
nating with an error. Debugging led to the DMA List Get command. Every time the
program tried to get a list, it terminates. This was due to a bug in CellSim. After fixing
the bug (Section the Listrank program ran, but now it never terminated. There
was another bug in CellSim. At first we modified Listrank to work around this bug, but
later on we decided to fix the bug so the results are more accurate (Section [5.3.2.2).

5.3.2.1 DMA Get List bug 1

CellSim terminated the Listrank program when a DMA Get List command occurred
with the following error:

cellsim: ../../src/library/simulator/MemoryAccess.h:353:
simulator::address_t simulator::MemoryAccess::get_target() const:
Assertion ¢ _busy’ failed.

Assertion _busy failed means that a MemmoryAccess object is accessed after it is
destroyed, which is not possible. Inspecting the code, the destroying of the Memmory-
Acces object is done at line 136 of the file DMAListCommand.hxx in the function
processListElement(MemoryAccess * ma):

136 MemoryAccess: :destroy(ma) ;

Commenting out this line solved the problem.

5.3.2.2 DMA Get List bug 2

After fixing the first bug, the Listrank program ran fine, but never stopped. It was
caught in an infinite loop. Debugging showed that the program did not receive data
on the right place when using a DMA GETL command. The DMA GETL command
fetched data from a main memory address EAL (Effective Address Long) and placed
it in the local store at address LSA (Local Store Address). All data was placed in the
local store in the first element of a 4-element array with address LSA, while the program
expects it in element EAL modulo 4.

At first we corrected this by adjusting the Listrank program to get the value from
the correct place. We just used a 0 instead of a modulo 4 operation for the index. Later
on, when validating the CellSim results, the number of performance instructions was
significantly lower than with the original implementation. Thus we started repairing the
bug in CellSim.

Further investigation showed that all values aligned on a 16 byte boundary were
correctly placed in the local store, but the others were not. Page 531 of the Cell BE
Programming Handbook [16] contains the following sentence:

24 CHAPTER 5. EXPERIMENTAL ENVIRONMENT

EAL: Ox17ED3500 0x17ED3504 Ox17ED3508 O0x17ED350C O0x17ED3510

Memory A - /B - 2

16 byte boundary
-+ Wrong Placement

16 byte aligned -» Correct Placement

target address

Local ¢ VP, | (! | [; |
Store T T T T
LSA: 0x3BAO 0x3BA4 0Ox3BA8 Ox3BAC 0x3BBO

Figure 5.2: DMA Get List command bug in CellSim: Dataparts A to D from Main
Memory are all placed in Local Store at A instead of A to D.

”For list elements smaller than 16 bytes, the least-significant four bits of the
transfer-element LSA are equivalent to the least-significant four bits of its
EAL.

Thus the 4 bytes of data requested from main memory by the DMA Get List command
should be placed in the Local Store in such way that the last 4 bits of the LSA are
the same as the requested data’s EAL. The target address given to the DMA GETL
command should be 16 byte aligned (and is the same for all requests). This is illustrated
in Figure Data elements A to D are placed in the local store as shown, although the
given target address is the same for all.

To make CellSim handle these list requests correctly, we modified the function pro-
cessListElement(MemoryAccess * ma) in DMAListCommand.hxx. Now, when a transfer
of less than 16 bytes is detected, the EALSs offset to the 16 byte boundary is calculated
and added to the given LSA, which fixes the problem.

5.3.3 Adjusting the Branch Miss Penalty

A branch miss was not simulated correctly in CellSim. The penalty after a branch miss
(this occurs when a ’taken’ branch is predicted 'not taken’, or the other way around)
was much lower than it should be. This was corrected before extending CellSim with
other branch predictors.

5.3. CELLSIM 25

CellSim simulates a branch miss by flushing the instruction buffer. In the next cycle,
new instructions are fetched. In the cycle after those instructions arrive in the buffer,
the execution continues. The number of cycles needed to fetch an instruction from the
local store is defined by de CellSim configuration parameter LS_LATENCY, which is
6 by default. The branch miss penalty then becomes 6 + 1 = 7 cycles. This is much
lower than the 18 cycles of the real Cell processor. This is because the pipeline is not
simulated.

To get the branch miss penalty closer to reality, we added a counter. This counter
(which initial value can be set using BRANCH_MISS_PENALTY in spu.sim) prevents the
execution of instructions after they are fetched to the instruction buffer for the specified
number of cycles. BRANCH_MISS_PENALTY=11 makes the total branch miss penalty
7 + 11 = 18 cycles, which is the same as for the real SPU. The results of a simulation of
ListrankMS using these modification shows that the number of branch miss stall cycles
is now differs only 2.1% from the SystemSim results (see Table [6.5).

5.3.4 Extending CellSim with Hint for Branch Instructions

Hint for branch instructions are a static way of branch prediction used by the SPU as
described in Section However, CellSim did not support hint for branch instructions.
The simulator accepted the instructions, but did not execute them. This means that
no branches were predicted taken, and thus there were a lot more branch misses in
CellSim than on the original Cell SPU. To have a good reference point for further branch
prediction extensions in CellSim, it was necessary to add support for hint instructions
to CellSim. This section describes the implementation.

The first step in implementing branch hints in CellSim was getting the right
information out of the instructions. There are three branch hint instructions [21] of
which the binary instruction formats are depicted in Figure :

hbr s11, ra The RO field, formed by concatenating the ROH and ROL fields,
contains the signed word offset from this instruction to the Branch
Instruction Address (BIA). After appending 00 on the right to cre-
ate the byte offset, the value is sign extended to 11-bit signed value
s11. Word element 0 of register ra contains Branch Target Address
(BTA). There is also a P-bit. When this is set, the SPU performs
an inline prefetch instead of a hinting a branch. This can be used
if a program has many loads and stores, which prevent instruction
prefetching. Executing this instruction prevents a load/store (be-
cause they use the same execution pipeline), so a prefetch can be
done. This behavior is not guaranteed in CellSim, because then
a load/store instruction and the hbrp instruction can be executed
in the same cycle.

hbra s11, s18 The RO field contains the signed word offset from this instruction
to the BIA. After appending 00 on the right to create the byte
offset, the value is sign extended to 11-bit signed value s11. The
116 field specifies the Branch Target word address. Appending 00
to the right creates the 18-bit BTA (s18)

26 CHAPTER 5. EXPERIMENTAL ENVIRONMENT

hbr brinst,brtarg

00110101 100FP " ROH RA ROL
RN R A v !
0 1 2 3 4 5 6 7 8 9 10[11]12 13 14 15[16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31|
hbrr brinst,brtarg

0 0 0 1 0 0 1 ROH 16 ROL

EER RN = v
0 1 2 3 4 5 6|7 &8[9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24[25 26 27 28 29 30 31
hbra brinst,brtarg

000 1 0 0 0 RO 1e ROL
RN v ;
[0 1 2 3 4 5 6|7 B 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24[25 26 27 28 29 30 31

Figure 5.3: Instruction formats of the 3 Hint Instructions, taken from [21].

hbrr s11, s18 The RO field contains the signed word offset from this instruction
to the BIA. After appending 00 on the right to create the byte
offset, the value is sign extended to 11-bit signed value s11. The
116 field specifies the signed word offset to the Branch Target Ad-
dress. The BTA is calculated by appending 00 to the right and
then sign extend to the 18-bit signed value s18. Adding s18 to the
current instruction address gives the BTA.

To distinguish the hint instructions the class Instruction has been modified. The
function isBranchHint() was added, which reads the newly added protected boolean
_branch_hint. The protected variable _ROH_value and _-ROL_value are added to support
the RO (= ROH || ROL) field in the branch hint instructions.

Also, a new class BranchHintInstruction is added, which extends the Instruction
class. This class contains functions and values specific to Branch Hints:

getBT() returns Branch Target Address
getBIA() returns Branch Instruction Addres
getP() returns value of the P-bit

A hint instruction loads the SPU’s Branch Target Buffer (BTB) with the BTA and
the BIA. The BTB monitors the instruction stream going into the issue stage of the
pipeline. When the instruction address matches the BIA, the SPU continues with the
instructions from the BTA. The BTB is defined in the new class BranchTargetBuffer. It
also contains control functions regarding hints.

When a hint instruction is executed and its branch target address is more than
MIN_BRANCH_DIST instructions away, CellSim stores the hint information in the BTB

5.4. SUMMARY 27

using set().

In the next cycle, the instructions from the BTA are prefetched, if there is no in-
struction fetch in progress. Else this instruction fetch has to finish before the branch
target instructions can be fetched.

The prefetched instructions are stored in the BTB instead of the instruction buffer.
In this way no modifications are needed to the instruction buffer. In the real SPU, these
instructions are placed in a special line of the ILB.

When a branch instruction is executed, the BTB is checked if there is a branch hint
available for this branch instruction using the PC. When a hint is available there are two
options:

1. The hint is ready for use, which means that the instructions at the BTA are
fetched from the local store and stored in the BTB. The instruction buffer is
flushed and the prefetched instructions are moved into it. The next cycle, the
instruction at the BTA is available for execution. In case of a hint miss (branch
not taken), only the instruction buffer is flushed and the instructions need to be
fetched from local store.

2. The hint is not ready yet. SPU goes to hint stall mode: the branch is stalled until
the BTB gets ready. Then the hint is used as described above.

The hint stays available in the BTB until a new hint instruction is executed or a
SYNC or STOP instruction is executed. So the same hint can be used multiple times
for the same branch (for example in a loop, the end of loop branch can be hinted outside
the loop)

5.4 Summary

In this chapter we described the 2 simulators used. First we discussed IBM Full-System
Simulator for the Cell Broadband Processor Version 2.1 (SystemSim), provided with
CellSDK 2.1. It simulates the Cell BE cycle accurate, but we cannot modify it.

To implement the proposed branch predictors CellSim is used. This is a modular
simulator based on UniSim and it is an instruction set simulator, which means it does
not simulate cycle accurate. However, there are a lot of configuration parameters which
can be modified in order to get the performance close to reality (which is in our case
SystemSim).

Besides extending CellSim with the branch predictors, we also had to make some
fixes. First there were 2 bugs regarding DMA List Requests. Second, CellSim does not
have support for hint instructions, it simply ignores them. To have a good reference for
our branch predictors, hint support was added.

28

CHAPTER 5. EXPERIMENTAL ENVIRONMENT

Benchmarks

In this chapter the programs used to test the different branch predictors are described.
Also the validation of CellSim and the settings used for each benchmark are described. For
the first benchmark Listrank, the entire validation process is described to explain how all
parameters affect the performance statistics (Section . For the other benchmarks,
only a brief explanation of the problems encountered is given, together with the final
CellSim settings and validated performance.

We selected these benchmarks using the following constrains: 1. the benchmark can
be ported to CellSim, 2. a simulation on CellSim can be done within a reasonable time,
and 3. the benchmark needs to have a significant amount of branch miss stall cycles.

6.1 Listrank

The list ranking problem is a fundamental problem for many combinatorial and graph-
theoretic applications. It is characterized by fine-grain memory accesses with low locality.
The nodes of a linked list are stored in a contiguous memory area. The list ranking
problem determines the distance of each node to the head of the list. Bader et al. [22]
developed an efficient implementation for the Cell BE. To hide the memory latency, the
entire list is divided in sublists. Each SPU processes eight sublists simultaneously in a
round robin fashion. While waiting for the DMA request for a node of one list, the other
sublists are processed.

The algorithm can be divided into four parts. First, the head of the list is calculated,
which is mostly done on the SPU. Second, the list is divided by the PPU into eight
sublist per SPU. Third, each SPU calculates the rank of each node to the head of the
sublist it is in. Finally, the PPU combines the results and calculates the global rank for
each node.

We created two benchmarks out of the Listrank program: First, we use the entire
SPU program as a benchmark, and second, we use only part 3 as a benchmark. We did
this because part 3 is the only part that has a significant amount of branch miss stall
cycles. However, we also wanted to know the effect of our branch predictors on the entire
SPU program.

6.1.1 Optimization of Listrank

We selected the Listrank program as a test case for improving the SPU performance.
It was made for high performance on the Cell using the SPUs, so it can be used as a
benchmark.

The original Listrank program consist of one PPU-program and two SPU-programs.
The first SPU-program is for calculating the head of the list, the second is for process-

29

30 CHAPTER 6. BENCHMARKS

Listrank Merged Speedup

2.0

=216
277
Vv 2718
A-2M9
»>-272C
<2721
2722

Speedup

SPU

Figure 6.1: Speedup of Listrank with merged SPU programs for ordered lists with dif-
ferent sizes, compared to the original Listrank with two SPU programs.

ing/ranking the eight sublists. This gives unnecessary overhead on the PPU, because
for each SPU used, there is an extra creation and destruction of an SPU thread for
the second SPU program. Because this overhead depends on the number of SPUs, the
listrank program scales worse to large number of SPUs. By merging the two programs
into one by using mailboxes as synchronization, this overhead can be eliminated. The
mailbox message contains the address of the context block that was normally sent on
the start of the SPU program.

With the two SPU programs merged into one, the PPU waits for all SPUs to finish
stage 1, using a while loop that tries to read the mailboxes. Another option was to imple-
ment this using an interrupting mailbox. Then the PPU suspends until it is interrupted
by a mail message from an SPU. The PPU is then available for other tasks. However,
CellSim does not support this. There is no significant difference in performance between
the two implementations.

The speedup of this modified implementation with respect to the original Listrank

6.1. LISTRANK 31

program with two SPU programs is shown in Figure For list size 2'6 and eight SPUs
the speedup is almost 2, but for list size 222 it is only 3.5%. The speedup increases with
the number of SPUs. The time saved by not creating and destroying a thread for the
second SPU program depends on the number of SPUs used. For larger list sizes, the
speedup is less, because then time needed for thread creation and destruction is a smaller
portion of the total execution time.

The Listrank program was also modified to accept the command line parameter
#spus, which gives the number of SPUs to use. This version is called Listrank Merge
Scalable (ListrankMS) and is used as benchmark. The benchmark that only uses part 3
of the algorithm is called ListrankMS-P3.

ListrankMS can rank two classes of list, ordered and random. For an ordered list, all
elements are placed on positions corresponding with their rank. Thus the i** element
in the list has rank i and its successor is element i+1. For a random list, successive
elements are placed randomly in the array. The branching behavior of ListrankMS is the
same for both lists. Therefore we use a ordered list. To keep the simulation time low,
we use a list with size 2'6.

6.1.2 Analysis of ListrankMS

IBM SystemSim provides different ways to analyze the performance of an application [18].
We used the SPU performance statistics for analyzing the performance of ListrankMS.
To obtain the statistics, the simulation mode was set to 'cycle’. Also commands to start,
stop, and clear the profiling were added to the SPU code in order to profile only the
part of the code which is doing the calculations. In this way we can leave out the cycles
needed for initializing and terminating the SPU, which is not accurately modeled by
CellSim, and thus gives a more accurate comparison.

The results are depicted in Figure[6.2] The chart shows how each of the performance
statistics described in Table contributes to the total number of performance cycles.
The number of performance cycles is the part of the total execution cycles that is profiled
using the profiling commands. The results are quite similar for random and sequential
lists, but between different list sizes there is a large difference. This difference is mainly
due to the smaller fraction of channel stall cycles for large lists. Most of these channel
stall cycles occur when the SPU waits for the PPU to divide the sublists. The amount
of calculations for this does not scale with the list size, but with the number of sublists
and thus is almost constant.

A large portion of stall cycles is due to dependencies. 20% for a list with 2'6 elements
and 45.8% for size 222. Because the code to calculate the head (summation) and the
rank is simple and consist of few statements, little can be improved here.

Also, there are a significant amount of branch stall cycles. These are stalls after a
branch miss. The processing of 8 sublists has led to a code with many if-statements.
Besides that, there are some loops and thus there are a lot of branches. The hint
instructions used to hint branches work fine for the loops, but not for the if-statements.
Ranking a 2'6 elements sequential list needs 333K branches. 140K hints instructions
are used, which gave 131K hits. This seems quite good, but one hint instruction can
lead to multiple hint hits. In this case, about half of the hint hits are due to 31 hint

32

CHAPTER 6. BENCHMARKS

B Single cycle

M Dual cycle

[Nop cycle

B Stall due to branch miss

B Stall due to prefetch miss
[Stall due to dependency

B Stall due to fp resource
conflict

[Stall due to waiting for
hint target

B Issue stalls due to pipe
hazards

[Channel stall cycle

29
qf¢

Figure 6.2: Breakdown of the performance cycles for ListrankMS: a) Random list size
216 1) Sequential list size 2!6, ¢c) Random list size 222, d) Sequential list size 2%2.

Table 6.1: SPU Statistics Explained.

Single cycle

Dual cycle

NOP cycle

Stall due to branch miss

Stall due to prefetch miss
Stall due to dependency

Stall due to fp resource
conflict

Stall due to waiting for
hint target

Issue stalls due to pipe
hazards

Channel stall cycle

Cycles in which only 1 non-NOP instruction was executed
Cycles in which 2 non-NOP instructions were executed
Cycles in which only NOP instructions were executed
Cycles in which branch mispredict prevented any instruction
from executing

Cycles in which instruction run-out occurred

Cycles in which source/target operand dependencies pre-
vented any instruction from being issued

Cycles in which shared use of FPU stages prevented any
instruction from being issued (e.g. FXB, FP6, FP7, FPD)
Cycles for which target load delay for a hinted branch pre-
vented instruction fetch

Cycles for which pipeline scheduling hazards prevented in-
struction issue

Cycles for which the pipeline was stalled waiting on channel
operations to complete

6.1. LISTRANK 33

Table 6.2: SPU Statistics for SystemSim and CellSim with original settings for Lis-
trankMS with a sequential list of size 2'6. The percentages are the number of stall cycles
as percentage of performance cycles. The error is relative to SystemSim

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 44856696 100.0% 18092508 100.0% -26764188 -59.6%
fetch_stall_cycles 0 0.0% 66151 0.4% 66151 0%
dependency _stall_cycles 8353631 18.6% 9289640 50.8% 936009 11.2%
channel_blocked_cycles 26738143 59.6% 2873 0.0% -26735270 -100.0%
branch_miss_stall_cycles 2318048 5.2% 2458302 13.4% 140254 6.1%
Instr. Instr. Instr.
performance_instructions 7044541 7044557 16 0.0%
branch_instructions 333001 333001 0 0.0%
hint_instructions 140072 140072 0 0.0%
hint_hits 131844 131844 0 0.0%

instructions. This means that about half of the hints do not lead to a hint hit. A wrong
hint instruction leads to a branch miss stall penalty of 18 cycles. The branch predictors
we proposed in Chapter 4| can handle this type of branches much better and could give
a speedup.

6.1.3 Performance Validation: IBM SystemSim versus CellSim

Table shows the first results of ListrankMS on CellSim compared to SystemSim.
Besides a selection of the most important performance statistics mentioned earlier, the
number of performance cycles and instructions are given. Also the number of executed
branch and hint instructions are given, together with the number of hint hits (number
of correctly hinted branches).

The results obtained with CellSim are very different from those obtained with IBM
SystemSim, even with the same compiler settings (spu-gcc 4.1.1 with options -O3 -W
-Wall -Winline -Wno-main). To get useful results from CellSim, this had to be solved.
For better understanding the differences, the SPU code was split into three parts using
the profiler clear, start and stop functions: 1) Calculating the head node, 2) wait for
sublists, and 3) calculating sublist ranks. ListrankMS was executed with listsize 16,
listtype 1 (sequential) and one SPU.

6.1.3.1 Dependency Stalls

The number of stalls due to dependencies was 11% larger for CellSim than for SystemSim.
Investigation of the CellSim settings showed that all the pipeline function unit latencies
were set to 6 cycles. Using the correct values (as found on page 690-1 of [16]) gives
much better results. The Latency for Load/Store instructions (LS) is set to 0, because
this is already modeled in the Local Store latency (LS_LATENCY). Also, the Branch

34 CHAPTER 6. BENCHMARKS

Table 6.3: Latency of SPU Pipeline Functional Units.

Instruction Type SPU CellSim

FP6 6 6
FP7 7 7
FX2 2 2
PPD 7 7
FX3 4 4
FXB 4 4
NOP 0 0
SHUF 4 4
LS 6 0
BR 4 0
SPR 6 6
LNOP 0 0

latency is set to 0. CellSim executes them right away, so this number does not affect the
simulation. The full list of used latencies compared with the real SPU values is given in
Table

Getting the correct number of dependency stall cycles is very difficult, because the
SPU pipeline is not simulated fully. Therefore CellSim has different rules to determine
if there can be a dual issue, single issue or no issue at all. For example, instructions
that use the same pipeline can be executed in one cycle in CellSim, which is not possible
on the real SPU. If this happens between two instructions with a data dependency, the
number of dependency stall cycles can be different. The number of instructions executed
in one cycle is determined by the SPU Issue Width. This parameter is changed in

Section [6.1.3.41

6.1.3.2 Issue Stalls due to Pipe Hazards

SystemSim results in Table show 786432 issue stall cycles due to pipe hazards. These
happen when the pipeline is not ready to receive the next instruction. CellSim does not
measure it, because this behavior is not modeled at all (due to the pipeline stages that
are not modeled).

The issue stalls are generated by two double-precision floating point instructions
which are part of the loop that sums the list elements in order to calculate the start of
the list. These are the instructions dfs and dfa in the loop code depicted in Listing [6.1]

The two double-precision floating point instructions are right after each other. In
the SPU no instructions can be issued in the six cycles after a double-precision floating
point instruction is issued. So in each loop, the pipeline is stalled twice for six cycles.
Having 2'¢ elements to add, the total number of stall cycles is 786432 which corresponds
with the number stall cycles in SystemSim.

6.1. LISTRANK 35

Listing 6.1: Loop code in ListrankMS with double floating points instructions.

5e0: 18020305 a $5,%6, %8
5ed: 38820303 Igx $3,%6,%8
5e8: 41400002 ilhu $2,32768
5ec: 40820f15 il $21,1054
5f0: 1c010306 ai $6 ,%$6 ,4
5f4: 78024304 ceq $4 ,%6,%9
5f8: 3b814183 rotgby $3,$3,85
5fc: 48208182 xor $2,$3,$2
600: 54a00103 clz $3,%2
604: b60cl05 shl $5,%2,%3
608: 7c080194 ceqi $20,%$3,32
60c: 8054195 st $21,%3,%21
610: 18014285 a $5,%5,%5

614: 58250a95 andc $21,%$21,$20
618: b2alda8a shufb $21,%21,%5,%10
61lc: 3f610a82 shlgbii $2,%$21,4

620: 59a2c102 dfs $2,%2,%11
624: 59808387 dfa $7,87,%2
628: 4020007 f nop $127

62c: 207ff684 brz $4,0x3ffb4

However, part of those cycles can be found in the CellSim statistics. The two double-
precision floating point instructions have a data dependency. In SystemSim, six of the
seven cycles of this dependency are hidden by the issue stalls. But not for CellSim,
there those stall cycles are just dependency stall cycles. Which means CellSim has more
dependency stall cycles than SystemSim, namely half of the issue stall cycles, which are
393216 cycles. The other half is not simulated and thus the number of performance
cycles is lowered by the same amount.

6.1.3.3 Fetch Stalls

The adjusted pipeline latency settings have introduced new fetch stall cycles in CellSim.
Investigation of the SPU trace shows that the pipeline runs out of instructions, especially
when a hint target is fetched. This is because the simulated instruction buffer size (16
instructions) and fetch width (8 instructions) are much lower than for the real SPU (76
and 32 instructions respectively) to increase simulation speed. Increasing the instruction
buffer size to 32 and the fetch width to 16 instructions, makes the number of fetch stall
cycles zero.

But it also leads to slightly more dependency stall cycles, because some of those
were hidden by fetch stall cycles. Besides that, the number of branch miss stall cycles
is decreased. After a branch, the new target instructions are fetched. When the SPU
is busy fetching other (now unnecessary) instructions, it has to wait till it is finished
before a new fetch can be done. These cycles are counted as branch miss stall cycles. If
there are less instruction fetches because of the larger buffer size and fetch width, this
happens less.

36 CHAPTER 6. BENCHMARKS

6.1.3.4 Performance Cycles

The number of performance cycles in Table differs. CellSim always tries to issue
two instructions every cycle, even if they use the same pipeline. This is not the correct
behavior. But in the file default_configuration_parameters.h the parameter SPU issue
width can be changed. When the issue width is set to 1.5, CellSim issues on average
1.5 instructions per cycle. This means that the first cycle it issues one instruction, the
following two instructions and the next one instruction again.

The SPU issue width does not only affect the number of performance cycles, but it
also has affect on the number of dependency stall cycles and fetch stall cycles. Increasing
the issue width gives more dependency stall cycles. Also the number of fetch stall cycles
could increase, because the SPU runs out of instructions earlier.

Changing the SPU issue width to 1.8 makes the performance cycle count close to
that of SystemSim, especially for part 3. Although it is a little larger, the percentages
of dependency stall and branch miss stalls are almost identical for both CellSim and
SystemSim.

6.1.3.5 Channel Stalls

The SystemSim statistics in Table show that 59.6% of the performance cycles are
Channel Stalls. These happen when the SPU has to wait for a channel operation to
complete. These are operations for communication between the SPU and memory, PPU
or another SPU like DMA transfers and Mailbox Read and Writes.

CellSim has only 0.01% Channel Stalls. When different parts are investigated, most
of the stalls occur in part 2 for SystemSim. CellSim has no channel stalls for stage 2.

In part 2, the SPU sends a mail to the PPU and then waits until it gets a mail back.
Inspecting the event log of SystemSim shows that most channel stall cycles are due to
waiting on the mail to return. When the SystemSim simulation mode is changed to
Simple (instead of Cycle) and the SPU mode is set to Pipe, the simulator still does a
cycle accurate simulation of the SPU, but not anymore for the PPU and the memory.
Now the number of Channel Stalls is reduced to only 0.26% and thus the difference with
CellSim is much less.

Also, in part 3 SystemSim has 245K channel stall cycles more than CellSim. The
SystemSim event log shows that channel stalls happen when the SPU writes the partial
results back to memory, after the for loop. The SystemSim event log shows that these
stalls are due to a memory address translation fault. These do not occur in CellSim so
there are no stalls for that.

6.1.3.6 Final Settings

Table shows the final CellSim settings we will use for the ListrankMS benchmarks.
With those settings, the performance statistics of CellSim are now quite similar to those
of SystemSim with simulation mode ’simple’ and SPU mode ’pipe’. In Table[6.5]statistics
for the ListrankMS SPU program are depicted.

But part 3 of the ListrankMS program is the most interesting part, because this is
the part with the most stall cycles due to branch misses. The statistics for this part are

6.1. LISTRANK

37

Table 6.4: CellSim Configuration for ListrankMS.

Parameter

Value

BRANCH_MISS_PENALT
HINT_TRIGGER_DELAY
IBUFF_CAP
FETCH_WIDTH

SPU Issue Width
LDSTQ_SIZE

Y 11
8
32
16
1.8

1

Table 6.5: SPU Statistics for SystemSim and CellSim with adjusted settings for Lis-
trankMS program with a sequential list of size 2!6. The percentages are the number of
stall cycles as percentage of performance cycles. The error is relative to SystemSim.

Counter SystemSim CellSim Error

Cycles % Cycles % Cycles %
performance_cycles 18437301 100.0% 18288224 100.0% -14907 -0.8%
fetch_stall_cycles 0 0.0% 0 0.0% 0 0.0%
dependency _stall_cycles 8353631 45.3% 8977009 49.1% 623378 7.5%
channel_blocked_cycles 318750 1.7% 2872 0.0% -315878 -99.1%
branch_miss_stall_cycles 2318048 12.6% 2367438 13.0% 49390 2.1%

Instr. Instr. Instr.
performance_instructions 7044539 7044557 18 0.0%
branch_instructions 333001 333001 0 0.0%
hint_instructions 140072 140072 0 0.0%
hint_hits 131844 131844 0 0.0%

Table 6.6: SPU Statistics for SystemSim and CellSim with adjusted settings for

ListrankMS-P3 with a sequential list of size

216

The percentages are the number of

stall cycles as percentage of performance cycles. The error is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 15085386 100.0% 15662336 100.0% 576950 3.8%
fetch_stall_cycles 0 0% 0 0% 0 0.0%
dependency _stall_cycles 7042185 46.7% 7464861 47.7% 422676 6.0%
channel_blocked_cycles 245420 1.6% 268 0% -245152 -99.9%
branch_miss_stall_cycles 2317758 15.4% 2367132 15.1% 49374 2.1%
Instr. Instr. Instr.
performance_instructions 5733021 5733051 30 0.0%
branch_instructions 267449 267449 0 0.0%
hint_instructions 140041 140041 0 0.0%
hint_hits 66310 66310 0 0.0%

38 CHAPTER 6. BENCHMARKS

in Table Although CellSim uses more cycles, the percentage of branch miss stall
cycles and dependency stall cycles are almost identical for CellSim and SystemSim.

6.2 MergeSort

MergeSort is an SPU-only implementation of the recursive merge-sort algorithm. An
array of elements is sorted by dividing it into two equally sized arrays, which are then
sorted using merge-sort. When they are sorted, the two arrays are merged into one array
containing the sorted elements.

The input array is created by the SPU. For testing, 1024 elements are used. It is a
decreasing sequence starting at 1024 and ending with 1. Because the branching behavior
depends on the input, we also implemented a random input array of equal size. This
benchmark is referred to as MergeSort Random.

Table 6.7: CellSim Configuration for MergeSort.

Parameter Value
BRANCH_MISS_PENALTY 11
HINT_TRIGGER_DELAY 8
IBUFF_CAP 32
FETCH_WIDTH 16
SPU Issue Width 1.7
LDSTQ_SIZE 1

Table 6.8: SPU Statistics for MergeSort at IBM SystemSim compared to CellSim. The
percentages are the number of stall cycles as percentage of performance cycles. The error
is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 672244 100.0% 685548 100.0% 13304 2.0%
fetch_stall_cycles 0 0% 7 0% 7 %
dependency _stall_cycles 220546 32.8% 214717 31.2% 0 0.0%
channel_blocked _cycles 0 0% 0 0% -5829 -2.6%
branch_miss_stall_cycles 147595 22.0% 148709 21.7% 1114 0.8%
Instr. Instr. Instr.
performance_instructions 342176 342175 -1 0.0%
branch_instructions 37000 37000 0 0.0%
hint_instructions 7195 7195 0 0.0%

hint_hits 20525 20525 0 0.0%

6.3. QUICKSORT 39

Table 6.9: SPU Statistics for MergeSort Random at IBM SystemSim compared to Cell-
Sim. The percentages are the number of stall cycles as percentage of performance cycles.
The error is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 712395 100.0% 744114 100.0% 31719 4.5%
fetch_stall_cycles 0 0% 7 0% 7T %
dependency stall_cycles 237402 33.3% 244623 32.9% 7221 3.0%
channel_blocked_cycles 0 0% 0 0% 0 0.0%
branch_miss_stall_cycles 131679 18.5% 138545 18.6% 6366 5.2%
Instr. Instr. Instr.
performance_instructions 381514 381515 1 0.0%
branch_instructions 39179 39179 0 0.0%
hint_instructions 11023 11023 0 0.0%
hint_hits 20018 20018 0 0.0%

6.2.1 Performance Validation

To validate the results on CellSim, the MergeSort programs were also profiled with IBM
SystemSim. These results were used as reference to fine tune the different CellSim para-
meters. Finally, the parameters as shown in Table[6.7] make the CellSim results approach
IBM SystemSim results the closest for both the ordered and random input. Table
and show the performance statistics of CellSim compared to IBM SystemSim.

6.3 QuickSort

QuickSort is a SPU-only implementation of the recursive quick-sort algorithm. First, an
array element in the middle is chosen as so-called pivot. Then, the array is divided into
two parts. Elements with a value smaller than the pivot value are placed in the lower
part and larger values in the higher part. When the array is divided, both lower and
higher part are sorted using a recursive call to quick-sort. The recursion stops when the
array contains one or zero elements (thus is sorted).

As was the case in MergeSort, the input array is created by the SPU. For testing,
1024 elements are used. It is a decreasing sequence starting at 1024 and ending with 1.
Because the branching behavior is depends on the input, we also implemented a random
input array of equal size. This benchmark is referred to as QuickSort Random.

6.3.1 Performance Validation

To validate the results on CellSim, the QuickSort programs were also profiled with IBM
SystemSim. These results were used as reference to fine tune the different CellSim param-
eters. Finally, the parameters as shown in Table make the CellSim results approach
IBM SystemSim results the closest for both the ordered and random input. Tables
and [6.12] show the performance statistics of CellSim compared to IBM SystemSim.

40 CHAPTER 6. BENCHMARKS

Table 6.10: CellSim Configuration for QuickSort.

Parameter Value
BRANCH_MISS_PENALTY 11
HINT_TRIGGER_DELAY 8
IBUFF_CAP 32
FETCH_WIDTH 16
SPU Issue Width 1.7
LDSTQ_SIZE 1

Table 6.11: SPU Statistics for QuickSort at IBM SystemSim compared to CellSim. The
percentages are the number of stall cycles as percentage of performance cycles. The error
is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 363944 100.0% 377308 100.0% 13364 3.7%
fetch_stall_cycles 0 0% 0 0% 0 0.0%
dependency _stall_cycles 88706 24.4% 93882 24.8% 5176 5.8%
channel_blocked_cycles 0 0% 0 0% 0 0.0%
branch_miss_stall_cycles 167038 45.9% 171288 45.4% 4250 2.5%
Instr. Instr. Instr.
performance_instructions 114491 114495 4 0.0%
branch_instructions 16285 16284 -1 0.0%
hint_instructions 1537 1538 1 0.1%
hint_hits 3604 3605 1 0.0%

Table 6.12: SPU Statistics for QuickSort Random at IBM SystemSim compared to
CellSim. The percentages are the number of stall cycles as percentage of performance
cycles. The error is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 538141 100.0% 551716 100.0% 13575 2.5%
fetch_stall_cycles 0 0% 0 0% 0 0.0%
dependency stall_cycles 146019 27.1% 153141 27.8% 7122 4.9%
channel_blocked_cycles 0 0% 0 0% 0 0.0%
branch_miss_stall_cycles 212671 39.5% 218764 39.7% 6093 2.9%
Instr. Instr. Instr.
performance_instructions 182640 182644 4 0.0%
branch_instructions 24426 24425 -1 0.0%
hint_instructions 4126 4127 1 0.0%
hint_hits 4277 4278 1 0.0%

6.4. CLUSTALW 41

Table 6.13: SPU Statistics for ClustalW at IBM SystemSim. The percentages are the
number of stall cycles as percentage of performance cycles.

Counter SystemSim
Cycles %
performance_cycles 104746645 100.0%
fetch_stall_cycles 0 0%
dependency_stall_cycles 43281987 41.3%
channel_blocked_cycles 0 0%
branch_miss_stall_cycles 35566 0%

Instructions

performance_instructions 72603137

branch_instructions 1398878

hint_instructions 1019

hint_hits 1395828

6.4 ClustalW

ClustalW is a sequence alignment application used in the field of bioinformatics to com-
pare multiple biological sequences like DNA, proteins and RNA. It uses a slightly mo-
dified Needleman-Wunsch algorithm to study the similarity between one sequence and
many others. We use an SPU implementation made by Isaza et al [23]. The algorithm
consists of 3 steps: 1) All-to-all pair wise alignment, 2) Creation of a phylogenetic tree
and 3) Use of the phylogenetic tree to carry out a multiple alignment. Profiling showed
that 70% of total execution time was used for step 1 by the function forward_pass. This
function calculates the similarity of two sequences. It was implemented on the SPU and
is used as a benchmark. Two sequences, containing about 2000 symbols each, are used
as input.

We profiled the ClustalW kernel using SystemSim. As the results in Table [6.13] show,
there are few branch miss stall cycles. There are a lot of branches, but their behavior
is very predictable. Most of these branches are correctly hinted using only 1019 hints.
This means that there is almost no speedup possible by using a branch predictor and
thus it is not an interesting benchmark.

6.5 MiniGZip

MiniGZip is an SPU implementation of the GZIP (de)compression program based on the
ZLIB library. The MiniGZip program uses the SPU optimized version of ZLIB Library
(version 2.0) implemented by Seunghwa Kang [24]. Various optimization techniques like
SIMDization, branch hints and loop unrolling are used. The code is also parallelized,
thus it can use multiple SPUs. Load balancing is achieved using a work queue.

As input for the benchmark, a 39 KB JPEG image is used. MiniGZip is run without
options, which means it compresses the image on one SPU. It uses both LZ77 and
Huffman coding and the compression level is 6. The program and the library are compiled

42 CHAPTER 6. BENCHMARKS

using gce with the standard makefiles which are provided in the package.

6.5.1 Porting to CellSim

In order to use the MiniGZip program on CellSim, some modifications were needed to
the PPU part of the program. Out of the box a lot of errors occurred. First, all functions
related to semaphore.h were removed, because they are not supported by CellSim. Also,
a copy of free_align.h was added to the include directory of CellSim. This was not
there before, but is needed by the program. Now the program can compile, but while
running CellSim reports systemcalls that are not implemented. These are the functions
sched_yield() and usleep(), which function calls we removed from the code. Then there is
an fstat error. Fstat is not supported, thus the file_stat.size statements were replaced by
a new variable file_size. At last a standard input filename was set, because no command
line parameter can be passed to the program by CellSim.

After all those changes, the program runs on CellSim. A lot of synchronization logic
is removed, but because only 1 SPU is used in our experiments, this is not a problem. But
removing the instructions makes the program incapable of creating a correct output file.
However, all these changes are made in de PPU part of the program and the SPU part
is unchanged. In the next section can be seen that the number of executed instructions
on the SPU is almost identical. Also the program flow is not affected, which can be
seen by the number of (taken) branches. This indicates that the SPU program executes
correctly and can be used as a benchmark.

6.5.2 Performance Validation

To validate the results on CellSim, the ClustalW kernel was also profiled with IBM
SystemSim. Changing the CellSim configuration as described for the other benchmarks,
we get the results depicted in Table Most of the results are quite similar, but the
number of hint hits is not! Running at SystemSim, there are 19% more hint hits than
with CellSim. This is strange, because the number of performance, branch and hint
instructions is the same on both. Also the number of taken branches is the same. The
number of hint hits should also be the same.

6.5.2.1 Solving the Hint Hits Difference

The large difference in hint hits led to a significant higher amount of branch miss stall
cycles, because when there is a hint hit, the branch penalty is reduced (sometimes even
till 0 cycles). To have a good benchmark for branch prediction, the branch behavior
(which includes hints) should be representative. Thus the cause of the difference in hint
hits should be found.

First, the part of the code that is responsible for the difference was identified
by narrowing the profiling step by step. Most of the difference is caused by the
do-while-loop in the function longest_match() in deflate.c of the ZLIB library. On
IBM SystemSim, this function has 31704 hint instructions that give 15990 hint hits.
On CellSim, the same function generates 523 hits. This is the exact difference as
found earlier. The function does not contain very special code that is not supported

6.5. MINIGZIP 43

Table 6.14: SPU Statistics for MiniGZip Compression at IBM SystemSim compared to
CellSim with MIN_BRANCH_DIST=8. The percentages are the number of stall cycles
as percentage of performance cycles. The error is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 22431156 100.0% 23318383 100.0% 869187 3.9%
fetch_stall_cycles 10 0% 84 0% 74 740.0%
dependency _stall_cycles 9167727 40.9% 9193783 39.4% 26056 0.3%
channel blocked_cycles 500341 2.2% 12981 0.1% -505400 97.5%
branch_miss_stall_cycles 2485953 11.1% 2712869 11.6% 226916 9.1%
Instr. Instr. Instr.
performance_instructions 12425240 12425238 -2 0.0%
branch_instructions 619438 619438 0 0.0%
hint_instructions 58829 58829 0 0.0%
hint_hits 96297 80830 -15467 -16.1%

by CellSim, thus this can not be the cause. Therefore the fault should be in the simulator.

One of the CellSim parameters that can influence the number of hint hits is
MIN_BRANCH_DIST. It defines the number of instructions that should be between the
hint and its branch, based on the instruction addresses. When this difference is smaller
or equal than MIN_BRANCH_DIST, the hint instruction is not used. Normally, it is
set to 8. The Cell BE Programming Handbook [16] states that four instruction pairs
must separate the hint from the branch in order for the branch to be predicted to the
taken path, which means eight instructions. This is because a hint instruction takes
four pipeline stages to complete. Only after completion, the hint trigger is set and a
branch can trigger it. If a branch enters the execution pipeline before that, the hint is
not ready and can not be used.

Table 6.15: Hint instructions which are to close to the branch in MiniGZip. The hint
instruction is used count times. Offset is the distance between hint and branch instruc-
tion.

Hint Instruction Address Count Offset

0x10764 7 8
0x1038c 8 8
0x3ebe 30366 6
0x3fc4 694 6
0x12b4 1 6
0x12d4 1 6
0xf35¢ 1 6
0x11d30 1 8

N O U WN

44 CHAPTER 6. BENCHMARKS

Listing 6.2: MiniGZip output trace with Odd/Even pipeline indication.

0x3E6C: 1007c306 hbra 0x18,0x3el8 Odd
0x3E70: 3884c502 lgx $2,$10,9$19 Odd
0x3E74: 3b820102 rotgby $2,%$2,%8 Odd
0x3E78: 1822c¢10d and $13,%2,811 Even
0x3E7C: 58064683 clgt $3,%13,%25 Even
0x3E80: 20000103 brz $3,0x8 Odd
0x3E84: 217ff289 brnz $9,0x3ff94 Odd

When MIN_BRANCH_DIST=0 is used, a lot more hint hits occur: 19173 hits in
the function longest_match() and 99426 hits in total (see Table|6.17]). So now there are
3129 hits more on CellSim than on IBM SystemSim. Adding some more counters to
CellSim to gather some statistics about the hint misses give some interesting results (see
Table . There are eight hint instructions that are eight or less instructions away
from their branch. Three of them have seven instructions between the hint and the
branch, the other five are separated by five instructions.

The hint at address 0x3E6C is used 30366 times, so could be the cause of problem.
The output trace given in Listing of CellSim shows the following code (Odd/Even is
the pipeline in which the instruction is executed).

Just before the hinted branch is another branch. Based on a comparison, it makes
the program skip the hinted branch or not. When it is not skipped, the branch is hinted
correctly most of the time.

Nevertheless SystemSim uses this hint. This could be explained as followed. As
mentioned earlier, the hint instruction needs four execution pipeline stages to complete.
When the hint has left the pipeline, the branch can enter. The five instructions above are
executed in five separate stages because of dependencies or usage of the same pipeline
as depicted in Listing [6.3}

Although there are less than eight instructions, there are more then four pipeline
stages between the hint and the branch. The SPU pipeline will insert NOP and LNOP
instructions in case of a single issue. The five instructions are then transformed into five
instruction pairs and the hint is ready for usage when the branch enters the execution
pipeline.

Listing 6.3: MiniGZip code with dependency indication.

hbra 0x18,0x3el8

lqx $2,%10,%19 Same pipeline
rotgby $2,%$2,$8 Dependency $2
and $13,%2,9%11 Dependency $2
clgt $3,$13,8$25 Dependency $13
brz $3,0x8 Dependency $3

brnz $9,0x3ff94 Same pipeline

6.5. MINIGZIP 45

CellSim does not simulate the SPU pipeline stage by stage and thus cannot handle
this kind of behavior. The number of instructions executed per cycle depends on the
parameter SPU Issue Width. No NOP/LNOP instructions are padded into the instruc-
tion stream so there is no way to determine the number of stages between a hint and its
branch. Setting MIN_BRANCH_DIST=5 gives the same result for this program.

We could not find any reason why now there are 3129 more hint hits on CellSim.
The other hint instructions mentioned in Table have the same behavior. Also, none
of them (including 0x3E6C) are placed outside a loop which could make them hint a
branch multiple times.

Finally, the CellSim configuration parameters as shown in Table are used for the
benchmarks. Table [6.17] shows the profiling statistics when these parameters are used.

Table 6.16: CellSim Configuration for MiniGZip Compression.

Parameter Value
BRANCH_MISS_PENALTY 10
HINT_TRIGGER_DELAY 8
IBUFF_CAP 48
FETCH_WIDTH 24
SPU Issue Width 1.7
LDSTQ_SIZE 1
MIN_BRANCH_DIST 5

Table 6.17: SPU Statistics for MiniGZip Compression at IBM SystemSim compared to
CellSim with MIN_.BRANCH_DIST=5. The percentages are the number of stall cycles
as percentage of performance cycles. The error is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 22431156 100.0% 23003099 100.0% 552872 2.5%
fetch_stall_cycles 10 0% 84 0% 74 0.3%
dependency _stall_cycles 9167727 40.9% 9193905 40.0% 26178 0.3%
channel_blocked_cycles 500341 2.2% 12980 0.1% -505401 -97.5%
branch_miss_stall_cycles 2485953 11.1% 2396457 10.4% -89496 -3.6%
Instr. Instr. Instr.
performance_instructions 12425240 12425572 -2 0.0%
branch_instructions 619438 619438 0 0.0%
hint_instructions 58829 58829 0 0.0%

hint_hits 96297 99426 3129 3.2%

46 CHAPTER 6. BENCHMARKS

6.5.2.2 Compiling with Branch Warnings

When both the library and the SPU Compress program are compiled with the modified
compiler used for the branch warnings, CellSim generates the following error when
running the program:

minigzip: gzopen failure

This error is thrown on line 223 of minigzip_spu_compress.c, after the following
statement on line 217 returned NULL:

out = gzopen w(aoutfile, cb.a_outmode, p_out, write_data_dma);

Compiling the library with the modified compiler and using the normal compiler
for the SPU Compress program solves the problem. The application spends most of its
time execution functions from the library, so this only affects the results slightly. We
could not find the source of the problem.

6.6 SPE-JPEG

SPE-JPEG is a program made by Vitaly Vidmirov, that decodes a JPEG-image
on using the SPU. I used version 0.6 beta which can be downloaded from
http://cellrb.blogspot.com/. A 512x384 demo image is included, which is used in the
benchmark. The program uses 1 SPU to decode the image, using vectorized Huffman
decoding, SIMDimized IDCT and colorspace conversion, and double buffering.

The code was originally made to show the image on a PS3. The used simulators
only have a text output, so this part of the (PPU) code was removed. In the SPU
code, the mfc_getb() statements are replaced with mfc_get(), because mfc_getb() is not
supported on CellSim. The difference between the two DMA get request is that with
mfc_get(), the SPU can change the order in which the DMA request are processed to
improve performance, while with mfc_getb() the order is preserved. Simulation shows
that the performance statistics using mfc_getb() and mfc_get() are exactly the same, so
in this case it does not matter which get command is used.

To compile the program, two modifications were made to the Makefile. First, the
program is compiled with option -O3. Originally this option was not used, thus it
contains no hints. With -O3 the program has hints and is a lot faster (3K instead of
20K performance cycles, mainly due to a reduction of dependency stall cycles). Second,
the option -std=c99 is replaced by -std=gnu99 to support profiling on CellSim. The
profiling commands are implemented as assembly instructions, which are not supported
by the c99 standard.

6.6.1 Performance Validation

To validate the results on CellSim, the SPE-JPEG program was also profiled with IBM
SystemSim. Using the CellSim configuration parameters as shown in Table give the

6.7. DEBLOCKING FILTER 47

Table 6.18: CellSim Configuration for SPE-JPEG.

Parameter Value
BRANCH_MISS_PENALTY 10
HINT_TRIGGER_DELAY 8
IBUFF_CAP 40
FETCH_WIDTH 20
SPU Issue Width 1.7
LDSTQ_SIZE 1
MIN_BRANCH_DIST 8

Table 6.19: SPU Statistics for SPE-JPEG at IBM SystemSim compared to CellSim. The
percentages are the number of stall cycles as percentage of performance cycles. The error
is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 3278101 100.0% 3132410 100.0% -145691 -4.4%
fetch_stall_cycles 3840 0.1% 91 0.0% -3749 -97.6%
dependency _stall_cycles 576591 17.6% 564805 18.0% -11786 2.0%
channel_blocked_cycles 41166 1.3% 5352 02% -35814 -87.0%
branch_miss_stall_cycles 476574 14.5% 479459 15.3% 2885 0.6%
Instr. Instr. Instr.
performance_instructions 2708609 2708609 0 0.0%
branch_instructions 95120 95120 0 0.0%
hint_instructions 20961 20961 0 0.0%
hint_hits 18754 18754 0 0.0%

results in Table

SystemSim 3.1 beta is used for this benchmark and the following, because the com-
puter with version 2.1 crashed. This version does not provide the number of hint hits
directly. To get this number, request the hint statistics using the command ”mysim spu
n display statistics hint”. At the bottom of these statistics is the number of unhinted
instruction sequence errors. The number of hint hits is calculated using this formula:

Hint Hits = Branch taken - Unhinted instruction sequence errors

6.7 Deblocking Filter

The Deblocking Filter is a kernel from the H.264 video processing coder/decoder [25].
The video bitstream created by the H.264 codec is half the size of the bitstream generated
using the MPEG-4 standard. To sustain the same quality, the computational complexity
is increased. The Deblocking Filter is a way to improve the quality of a video image.

48 CHAPTER 6. BENCHMARKS

The H.264 codec uses a discrete cosine transform for compression, which can produce
some square artifacts known as blocking. The Deblocking Filter smoothens these edges
when decoding the video. The filter is applied on both vertical and horizontal edges. It
is a highly adaptive filter, that has 5 strengths. The strength is determined dynamically,
depending on the current quantizer, the coding of neighboring blocks and the gradient
of the image samples across the boundary.

Arnaldo Azevedo made an SPU implementation of this filter (based on the FFMPEG
H.264 decoder) [25] which we use as benchmark. The filter is applied to a full video
frame of 320x240 pixels and runs on one SPU. The program reads the input frame from
a textfile, filling the different data arrays. This is a very time consuming process in
the simulation that takes more than a hour in CellSim, because the data needs some
processing on the PPU. To speedup this process, we wrote the data arrays in binary
format to a file and used these files to load the different arrays. Now it takes only a few
seconds to load the arrays.

6.7.1 Performance Validation

To validate the results on CellSim, the Deblocking Filter kernel was also profiled with
SystemSim. Using the CellSim configuration parameters shown in Table give the
results in Table [6.2T]

6.8 Summary

This chapter described the 9 benchmarks we will use to test the branch proposed predic-
tors. For some benchmarks we encountered problems while porting the code to CellSim.
We described how we solved those problems and the effect on the results. For each
benchmark, the CellSim results were validated with SystemSim. We adjusted the Cell-
Sim configuration in order to get results close to the SystemSim results.

6.8. SUMMARY 49

Table 6.20: CellSim Configuration for Deblocking Filter.

Parameter Value
BRANCH_MISS_PENALTY 11
HINT_TRIGGER_DELAY 8
IBUFF_CAP 78
FETCH_WIDTH 32
SPU Issue Width 1.5
LDSTQ_SIZE 1
MIN_BRANCH_DIST 8

Table 6.21: SPU Statistics for Deblocking Filter at IBM SystemSim compared to CellSim.
The percentages are the number of stall cycles as percentage of performance cycles. The
error is relative to SystemSim.

Counter SystemSim CellSim Error
Cycles % Cycles % Cycles %
performance_cycles 2372687 100.0% 2363310 100.0% 6517 0.3%
fetch_stall_cycles 0 0.0% 7882 0.3% 0 0.0%
dependency _stall_cycles 445359 18.8% 427052 18.1% -18879 4.2%
channel_blocked _cycles 7020 0.3% 3032 0.1% -3984 -56.8%
branch_miss_stall_cycles 336835 14.2% 316688 13.4% 3659 1.1%
Instr. Instr. Instr.
performance_instructions 1923937 1923936 -1 0.0%
branch_instructions 53568 53568 0 0.0%
hint_instructions 10928 10928 0 0.0%

hint_hits 12680 12680 0 0.0%

50

CHAPTER 6. BENCHMARKS

Results and Evaluation

This chapter describes the evaluation of the proposed branch predictors using the bench-
marks described in the previous chapter. In the Section[7.1 we describe how the predictors
performs with respect to the original SPU without predictor. In Section we discuss
the energy efficiency.

7.1 Performance

7.1.1 Simple Bimodal Predictor

Figureshows the speedup obtained with the Simple Bimodal Branch Predictor (SBP)
using the different benchmarks. All speedups are relative to the original SPU architec-
ture. No hints are the results when the hint instructions are ignored and no branch
predictor is used. Perfect BP is when the predictor predicts all branches perfectly. This
is simulated by setting BRANCH_MISS_PENALTY=0. It gives an idea what is possible
using this predictor, so further results can be compared to this perfect situation. The
numbers 64 to 512 are the BHT sizes used.

Simple Bimodal Predictor

1.4
1.3
1.2
M Hints
11 H No Hints
O Perfect BP
I SBP 64
0.9 B SBP 128
O sBP 256
08 B sBP 512

0.7

1.0

Speedup

0.6

0.5
MiniGZip SPE-JPEG Listrank Listrank P3 QuickSort QuickSort Rnd MergeSort MergeSort Rnd DB Filter

Figure 7.1: Speedup of different benchmarks for the Simple Bimodal Predictor with size
64 to 512.

Ignoring the hint instructions (no hints) gives a significant slowdown for most of the
benchmarks. The MergeSort benchmarks have the largest slowdown. This means the
hint instructions are very accurate in predicting the branches. ListrankMS-P3 is the only
benchmark that shows a speedup when the hints are not used. This is because more
than half of the hints are wrong.

Perfect BP shows that speedups from 2.5% for MiniGZip up to 28.3% for QuickSort

o1

52 CHAPTER 7. RESULTS AND EVALUATION

are possible. However, for MergeSort a slowdown of 4.4% is the best possible result.
The program has 7195 hints that produce 20525 hits, which means one or more hints
are reused several times. Using a hint multiple times is very efficient. When a hint is
used for the second time, the SPU can continue execution after a taken branch without
a branch miss penalty. For the Simple Bimodal Predictor, it still takes seven cycles
before the target of a correctly predicted taken branch is fetched from the local store.
This is where the hints take advantage.

For MiniGZip, using a Simple Bimodal Branch Predictor instead of branch hints
does not make a significant difference in performance.

SPE-JPEG also shows little speedup when the SBP is used. A 512 entry BHT gives
a speedup of 1.4%. The maximum speedup that can be achieved is 9.0% which indicates
that the bimodal predictor cannot predict the branches very accurate.

ListrankMS benefits more from the branch predictor. A 64 entry BHT gives a 4.3%
speedup which increases to 7.0% for BHT larger than 256. When we only look at
ListrankMS-P3, these figures increase to 8.3% and to 11.9% for the same sizes. For
both, these results are very close to the perfect prediction case, which means that the
branches have a very predictable behavior.

QuickSorts has the largest speedup of all benchmarks. It is also the only benchmark
that has some performance gain when the BHT size is increased from 256 to 512. For the
sequential input, the speedup then becomes 18.1%. However, when the random input
is used, there is no significant speedup anymore. For smaller BHT sizes there is even a
little slowdown. This shows that the branching behavior of QuickSort is depending on
the input. When there is some ordering, the branching is also more predictable. This is
because of the while statements that partition the array in a lower en higher part. When
a contiguous sequence of elements belongs to the same partition, the program stays in
the loop. The branch predictor will be correct then. But if the elements alternately
belong to the higher or lower part, the predictor cannot predict this correct.

MergeSort has no speedup, but only slowdown. For all BHT sizes this is the same,
namely 8.4%. When the random input is used, it becomes even worse. The slowdown
now becomes 15.1%. Like with QuickSort, the branching behavior depends on the input.

The Deblocking Filter also has a small slowdown for al BHT sizes. The slowdown is
between 1.9% and 0.3% for BHT size 64 and 512 respectively. When SIMDimizing the
SPU code, many if statements are replaced by select statements. So a large part of the
branches are due to loops and function calls, which can be predicted quite accurate with
hint instructions. The SBP is less accurate for those and thus there are more branch
misses. For the other branches, the prediction is just not accurate. For example, there
is a branch that alternates between taken and not taken. The predictor cannot predict
it right. However, with no branch predictor the SPU is right half of the times (in case
the branch is not taken).

Only two of the benchmarks have a speedup when the SBP is used, while others have
no significant difference or even a slowdown. Thus the original SPU configuration using
hints is a better choice in most cases. If the SBP is used, increasing the size of the BHT
above 256 does not significantly improve the performance anymore.

7.1. PERFORMANCE 93

7.1.2 Simple Bimodal Predictor Combined with Hints

The Simple Bimodal Predictor was modified in order to let it take advantage of the hint
instructions that are in the code. The implementation makes it possible to combine the
information of the hints and the predictor in different ways. The speedup with respect
to using only hints for the combinations of hints and a Bimodal Predictor with BHT size
256 described in Table are showed in Figure

SBP combined with Hints

13

12

W sBP
B sBP-H

O sBP-OH-NLS
1.0 H SBP-OH-NUS
B SBP-OH-NLW
0.9
0.8
0.7

MiniGZip SPE-JPEG Listrank Listrank P3 QuickSort QuickSort Rnd MergeSortMergeSort Rnd DB Filter

Speedup

Figure 7.2: Speedup of different benchmarks for the Simple Bimodal Predictor combined
with Hints in different ways as described in Table

MiniGZip has the same speedup for all four hint policies, namely 3.2%. This is better
than the 0.1% speedup of the Simple Bimodal Predictor. It has the same speedup for
all the different hint policies, because only a few hints are overruled, namely 143 for the
OH-NLS policy. Thus, the speedup is due to correctly predicting non-hinted branches.

SPE-JPEG also has the same speedup for all 4 hint policies, namely 6.2%. This is
significantly better than the speedup for the Simple Bimodal Predictor without using
hints.

ListRankMS is the only benchmark that has a lower speedup when the hints are
used in combination with the SBP than for the SBP alone. This is because most of the
wrongly hinted branches are correctly predicted 'not taken’ by the predictor. When the
predictor prevents hint execution in case it predicts a branch ’strongly not taken’, the
speedup increases to 13.1% (15.6% for ListrankMS-P3), which is much better than hints
only. Also preventing execution of 'weakly not taken’ predicted branches does not make
a difference. But loading the hint target and not using it, is a little slower.

The performance of MergeSort increases a lot when hints are also used. This results
in a speedup for the sequential input of 2.7%. However, the random input still has a
slowdown of 4.8%. Overruling hints gives some more speedup. As with ListRank, loading
but not using the hint target is the hint policy with the lowest speedup.

Combining hints with the SBP turns the performance slowdown into a speedup of
3.9% for QuickSort with random input. Not loading the hint target is a little slower,
especially when 'weakly not taken’ predicted branches are also not loaded. But loading
the target and not using it gives a higher speedup of 4.3%. This indicates that the hints
that are overruled are used several times by the same branch before they are replaced.

54 CHAPTER 7. RESULTS AND EVALUATION

With the sequential input, using the hints has no performance improvement. When hints
are overruled, the effect is the same for the different hint policies as with the random
input, only with larger differences. The highest speedup is 21.3% for the SBP-OH-NUS
predictor.

The Deblocking Filter has a speedup for of 2.8% for all combinations where hints
are overruled. When the hints are not overruled, there is a the speedup is 1.0%, but
that is still faster than without using hints.

In general using hints gives a better speedup than ignoring them, provided that
they are overruled by a branch predictor when it predicts not taken. The SBP-OH-NLS
predictor that is not loading the hint targets when the prediction is strongly not taken
gives the highest speedup in most cases.

Figure [7.3]| shows the results of this combination for different BHT sizes. Compared
to the results of the Simple Bimodal predictor in Figure the speedups are higher, but
difference between different BHT sizes is quite similar. Only for the Listrank benchmarks,
the speedup difference between BHT sizes is larger, while for QuickSort it is smaller.

SBP-OH-NLS
13
12 m32
W64
a 0128
_g 1.1 H 256
)
Q
o3
%]
) I] I] [I I] I]
0.9 .]
SPE-JPEG Listrank P3 QuickSort Rnd MergeSort Rnd
MiniGZip Listrank QuickSort MergeSort DB Filter

Figure 7.3: Speedup of the SBP-OH-NLS predictor with BTH size 32 to 256 for the
different benchmarks.

7.1.3 Aggressive Bimodal Predictor

The Aggressive Bimodal Predictor (ABP) differs from the SBP in the fact that a correctly
predicted taken branch instruction could have no branch miss penalty, where the SBP
has at least 7 cycles penalty. This should give a higher speedup. However, the hint
instructions are ignored so it can not take any advantage from them. Nevertheless,
Figure [7.4] that compares the proposed predictors shows that the ABP has the highest
speedups for all benchmarks. The speedups for the ABP are depicted is Figure [7.5] for
different BHT sizes.

MiniGZip has a small improvement in speedup over both the SBP and the SBP-OH-
NLS. For a 256 entry BHT, the speedup becomes 6.1%. This shows that the branching

7.1. PERFORMANCE 95

Comparison of different predictors
1.30 1.55

[N
o

1.20
1
1

0.
SPE-JPEG Listrank P3 QuickSort Rnd MergeSort Rnd Average
MiniGZip Listrank QuickSort MergeSort DB Filter

o
o

©
o

Figure 7.4: Comparison of the proposed branch predictors with 256 entry BHT.

Aggressive Bimodal Predictor

1.6

15

1.4 H 32
M 64

13 0128
H 256

1.2

11

0.9

SPE-JPEG Listrank P3 QuickSort Rnd MergeSort Rnd
MiniGZip Listrank QuickSort MergeSort DB Filter

Figure 7.5: Speedup of different benchmarks for the Aggressive Bimodal Predictor with
BTH size 32 to 256.

behavior is very variable and thus hard to predict. Decreasing the size of the BHT also
decreases the speedup.

SPE-JPEG is also faster, the speedup for a 256 entry BHT is 8.1%. Increasing the
size of the BHT above 64 entries gives only a very small performance improvement.

ListrankMS has a larger speedup improvement, especially when a 256 entry BHT is
used. The speedup is 16.0% and 19.2% for ListrankMS-P3. As with the other predictors,
using a smaller BHT decreases the speedup.

The speedup for Quicksort is about 55%, thanks to the very predictable branching
behavior. This speedup is much higher than for the other benchmarks. This is possible
because the number of branch miss stall cycles on the original SPU configuration is
relatively high compared to the other benchmarks, namely 45%. For the random input,
it just 11.0%. However, this is still twice as much as for SBP-OH-NLS.

MergeSort has the same speedup for all BHT sizes, except 32 which is lower. All

56 CHAPTER 7. RESULTS AND EVALUATION

are higher then both SBP and SBP-OH-NLS. MergeSort Random has a speedup of the
ABP, while it has a slowdown for all other predictors. A 32 entry BHT performs worse
than the larger ones.

The Deblocking Filter has a speedup of 3.4% for the 256 entry BHT, which is only
slightly better than the SBP-OH-NLS. Decreasing the number of BHT entries to 32
makes the speedup decreases to 1.0%.

For all benchmarks, the Aggressive Bimodal Predictor has the highest speedup. Thus,
predicting a branch earlier pays off even without using the hint instructions. However,
the branch predictor does a prediction for every instruction, which cost more energy.
Also, the instruction line buffer has to be extended with eight lines, which also increases
energy consumption. Besides that, it also covers more area than the other predictors
because of these extra lines.

7.1.4 Branch Warnings

The results for the branch warning predictor are generated using two configurations:
the SBP-H predictor that always uses hint instructions, and the BWP-OH-NLS that
overrules the hints using the OH-NLS hints policy. The latter gave the best results for
the SBP predictor in Section [7.1.2] The results for both are depicted in Figures [7.6
and [7.7] respectively. MiniGZip, SPE-JPEG, Deblocking Filter and MergeSort show
some odd behavior, which is discussed in Sections [7.1.4.1] [7.1.4.2] [7.1.4.3] and [7.1.4.4]

respectively.
Branch Warnings
1.2
1 3
Hea
o 0128
_g 1.0 M 256
[}
Q
j=5
n
) I] I] I] I]
0.8
SPE-JPEG Listrank P3 QuickSort Rnd MergeSort Rnd
MiniGZip Listrank QuickSort MergeSort DB Filter

Figure 7.6: Speedup of different benchmarks for the Branch Warning Predictor with
BTH size 32 to 256.

ListrankMS performs slightly better using a branch warning predictor with both hint
policies, than when the SBP combined with hints is used. The branch prediction using
branch warnings takes place earlier than for the SBP, because the branch warnings can
be inserted far enough in front of the branch instruction. Thus, there is less penalty for
a correctly predicted branch. However, the ABP is still faster.

Both QuickSort benchmarks are slower with the branch warning predictors than for
the Simple Bimodal Predictor in combination with hints. Even the Simple Bimodal
Predictor is faster when a sequential input is used. Inspecting the programs trace shows

7.1. PERFORMANCE o7

Branch Warnings with Overruled Hints
1.2

H32
11 W64
d128
H 256
) I]
0.9 I] .] I] I]

SPE-JPEG Listrank P3 QuickSort Rnd MergeSort Rnd
MiniGZip Listrank QuickSort MergeSort DB Filter

Speedup

Figure 7.7: Speedup of different benchmarks for the Branch Warning Predictor with
OH-NLS hint policy and BTH size 32 to 256.

that a lot of branch misses occur in the second half of the programs execution. There
are several pieces of code that have two branches that are separated by only one other
instruction. The first branch has a branch warning and when is correctly predicted
‘taken’, the program continues with no branch miss stall cycles. When the branch is not
taken, the second branch instruction is executed. But the second branch has neither a
branch warning nor a branch hint. Therefore it is never predicted 'taken’. However, it
is taken a lot of times, thus a lot of branch miss stall cycles occur.

7.1.4.1 MiniGZip

MiniGZip has a slowdown of 1.4% for both configurations with a 256 entry BHT, where
there was a speedup for all other predictors. When we look at the Branch Statistics in
Table the number of hint instructions is more than halved with 33K instructions
less. Also the number of hint hits is decreased with 20K. This is a indication that the
insertion of branch warnings interferes with the insertion of hint instructions.

Comparing the output trace of the MiniGZip program with branch warnings with
the original leads to code in Listing[7.1] which is the same piece of code as in Listing [6.2
However, there is a slight difference.

Table 7.1: MiniGZip branch statistics for Branch Warning and Simple Bimodal Predictor
both with 256 entry BHT and OH-NLS hints policy.

BWP-OH-NLS SBP-OH-NLS

Branch Instructions 619437 619438
Hint Instructions 25184 58829
Hint Hits 78406 99490

Branch Warnings 300098 N.A.

58 CHAPTER 7. RESULTS AND EVALUATION

Listing 7.1: MiniGZip code with branch warning instead of hint.

0x4034: 10000009 hbra 0x24,0
0x4038: 38848285 lgx $5,%5,%18
0x403c: 4020007 f nop $127
0x4040: 4020007 f nop $127
0x4044: 4020007 f nop $127
0x4048: 4020007 f nop $127
0x404c: 3b820282 rotgby $2,8$5,%8
0x4050: 1822810c¢ and $12,%2,%10
0x4054: 58060603 clgt $3,$12,%24
0x4058: 20000103 brz $3,0x8
0x405c: 217ff08f brnz $15,0x3ff84

Besides the differences in instruction addresses, used registers and the four NOP in-
structions, the most important difference is the hint instruction. In the original program,
this was a hint instruction for the second branch, which is responsible for 19K hint hits.
But now it is a branch warning instruction for the first branch. The second branch is
now not hinted, neither does it have a branch warning. Thus it is predicted not taken
every time which means it is wrong 19K times. If it would be hinted correctly, this could
give 342K (19K times 18) less branch miss stall cycles, which would turn the slowdown
in a (small) speedup. Probably the same kind of interference applies to the other 3K
hint hits that are missing.

As also described in Section[6.5.2.2] part of the code is not compiled with the compiler
that inserts branch warnings. Thus there can be branches that are not predicted (which
could have been if the modified compiler was used) and thus there can be some extra
branch misses with the corresponding branch miss stall penalty.

7.1.4.2 SPE-JPEG

SPE-JPEG also has a slowdown for both hint policies, 3.2% and 3.3% for respectively
always using the hints and overruling the hints. Table depicts the branch statistics
for the BWP-OH-NLS predictor and the SBP-OH-NLS predictor. The first thing noticed
is that the number of hints is 36% less for the branch warning predictor. Because of that,
the number of hint is 5K or 27% lower. 5K less hint hits means 90K more branch stall
cycles, which is about 3% of the total performance cycle count.

Besides that, the number of branch warnings is also quite low. The branch predictor
is only used when a branch warning or a hint instruction is executed. Adding those
numbers shows that for only 47K branches, which is 49% of the branches, the predictor
is used. That explains why this predictor does not have good results.

7.1.4.3 Deblocking Filter

The Deblocking Filter also has a slowdown for both configurations, 2.8% and 2.1% for
respectively the BWP-H and the BWP-OH-NLS. Table depicts the branch statistics
for the Branch Warning Predictor that overrules hints and the SBP-OH-NLS predictor.

7.1. PERFORMANCE 99

Table 7.2: SPE-JPEG branch statistics for Branch Warning and Simple Bimodal Pre-
dictor both with 256 entry BHT and OH-NLS hints policy.

BWP-OH-NLS SBP-OH-NLS

Branch Instructions 95120 95120
Hint Instructions 13758 20961
Hint Hits 13630 18662
Branch Warnings 33280 N.A.

Table 7.3: Deblocking Filter branch statistics for Branch Warning and Simple Bimodal
Predictor both with 256 entry BHT and OH-NLS hints policy.

BWP-OH-NLS SBP-OH-NLS

Branch Instructions 53568 53568
Hint Instructions 8641 10928
Hint Hits 11519 12680
Branch Warnings 18735 N.A.

When branch warnings are used, the number of hint instructions is 30% less. This
results in the number of hint being 1K or 10% lower. The extra branch miss stall cycles
introduced give a slowdown of 0.7%.

As was the case for SPE-JPEG, the number of branch warnings is also quite low. The
branch predictor is only used when a branch warning or a hint instruction is executed.
Adding those numbers shows that for only 27K branches or 51% of the branches the
predictor is used. That explains why this predictor does not have good results.

7.1.4.4 MergeSort

MergeSort has a larger speedup for the branch warnings predictor than for the SBP in
combination with hints, using the same hint policy. The speedup now becomes 9.9%
for a 256 entry BHT and overruled hints. MergeSort Random also performs better with
branch warnings, although the difference is smaller. But there still is a slowdown of 1.7%
in the best case.

The results for MergeSort using branch warnings show some strange behavior: for
BHT size 32 the speedup is higher than for BHT size 64 and larger, while the op-
posite is expected. Further investigation shows that for BHT size 64, 512 branches are
wrongly predicted taken. For size 32 there are no wrongly predicted taken branches. The
mispredictions are all from one branch instruction: brhnz $2,0x78 at address 0x8FC. Al-
ternately, the branch is taken and not taken. The used bimodal predictor cannot handle
that kind of switching efficient and thus the branch is mispredicted every time, which
leads to an increase of branch miss stall cycles.

But when a 32 entry BHT is used, the behavior changes. Because there are fewer

60 CHAPTER 7. RESULTS AND EVALUATION

Table 7.4: Branch Prediction Statistics for MergeSort with 32 and 64 entry BHT.

32 entries 64 entries

BP Hits 5119 5119
BP Miss 0 512
BHT Entries 23 37
BHT Entries Replaced 4137 32
Hint Hits 20252 20252
Hint Miss 278 278

entries available, more entries are shared between different branch instructions. Now 23
entries are used against 37 for the 64 entry BHT. During the execution of the program,
4137 times an entry replacement occurs (32 for the 256 entry BHT). The branch at
0x8FC is also replaced. The replacement takes place just after the branch was taken to
address 0x974. Thus, the next time the branch instruction is executed, no prediction
is in the BHT, thus the branch is predicted not taken, which happens to be correct.
Therefore there are no branch miss stall cycles. This saves 512%18=9126 cycles, which
is about the same as the measured difference.

7.2 Energy Efficiency

IBM has not revealed information about the power dissipation of the SPE. However, a
power estimation can be made for a SPE at 3.2GHz made with the 90nm SOI process.
Flachs et al [I4] made a Voltage/Frequency Schmoo that gives an estimation of the
power consumption of the 90nm SPE for different voltage and frequencies. The power is
calculated by taking the difference of total power consumption between operating with
one and two SPE enabled. Wang [26] tells us that the 65nm Cell processor operates
with Vdd = 0.9V. Riley [27] says that the 90nm operates on a 100mV higher power
supply setting, thus 1.0V. This Schmoo gives a power of 3W for the SPE at 3.2GHz.

We use CACTI 5.3 rev 174 [28] to create an estimation of the power needed by the
BHT. CACTI is a tool for modeling dynamic and leakage power, area and access time
of caches and memories. The BHT is quite similar to a direct mapped cache: they are
indexed by the address and use tags to identify entries. However, CACTI only supports
caches with at least 8 bytes of data per line while our BHT only has 18 bits of data
(16-bit BTA and 2-bit prediction). Kahn [I3] presents a method to correct for this by
scaling the power of the wordline and bitline in the data array with 18/64.

To get a power estimation of a 256 entry BHT, we modeled a cache of size 2048,
with 256 lines of 8 bytes. Table gives a full overview of the settings used. Table
shows a selection of the CACTI outputs. The dynamic read power gives the power used
when the cache is fully utilized, so there is a read every cycle. The percentages dynamic
energy bitlines and wordlines gives the portion of energy that is used by the bitlines and
wordlines with relative to the total read energy. The random cycle time is the cycle time

7.2. ENERGY EFFICIENCY 61
Table 7.5: Used CACTI Settings for 256 8-byte lines cache.
Parameter Value Parameter Value
C 2048 TEMPARATURE 300
B 8 DATA_ARRAY_CELL_DEVICE_TYPE 0
A 1 DATA_ARRAY_PERIPH_DEVICE_TYPE 0
RWP 0 TAG_ARRAY_CELL_DEVICE_TYPE 0
RP 2 TAG_ARRAY_PERIPH_DEVICE_TYPE 0
WP 1 INTERCONNECT_PROJECTION_TYPE 0
NSER 0 WIRE_TYPE_INSIDE_MAT 1
NBANKS 1 WIRE.TYPE_OUTSIDE_MAT 1
TECH 90 REPEATERS_IN_HTREE 1
OUTPUT_WIDTH 18 VERT_HTREE_WIRES_.OVER_THE_ARRAY 0
CUSTOM_TAG 1 BROADCAST_ADDR_DATA_OVER_VERT_HTREE 0
TAG_WIDTH 8 MAX_AREA_CONSTRAINT 50
ACCESS_.MODE 0 MAX_ACC.TIME_.CONSTRAINT 10
PLAIN_RAM 1 MAX REPEATER_DELAY_CONSTRAINT 10
DRAM 0 PAGE_SIZE 0
OPT_DYN_ENERGY 0 BURST_LENGTH 1
OPT_DYN_POWER 0 INTERNAL_PREFETCH 1
OPT_LEAK_POWER 0 OPT_RAND_CYCLE_TIME 1

Table 7.6: CACTT Results for cache with 256 8-byte lines.

Parameter Value
Dynamic read power (mW) 26.21400
Standby leakage per bank(mW) 0.49773
Dynamic read energy (nJ) 0.011002
Dynamic write energy (nJ) 0.008260
Perc dyn energy bitlines (%) 14.03230
Perc dyn energy wordlines (%) 5.60833
Random cycle time (ns) 0.41970

used for the modeling.

The results should be corrected for the larger line size. For that, the power used
by the bitlines and wordlines is scaled with 18/64. Besides that, the frequency is also
incorrect (2.37 GHz instead of 3.2 GHz) is also corrected. Table shows that reading
a entry from a 256-entry BHT every cycle costs 30.24 mW.

7.2.1 Simple Bimodal Predictor

The power efficiency of the Simple Bimodal Predictor is based on the fact that only a
small portion of the executed instructions is a branch instructions. Instead of doing a
BHT lookup for every instruction, this is only done for branch instructions. Figure [7.8

62 CHAPTER 7. RESULTS AND EVALUATION

Table 7.7: CACTTI Results corrected for 256 18-bit entry BHT running at 3.2 GHz.

Parameter Value
Power bitlines + wordlines (mW) 5.15
Line size corrected power bitlines + wordlines (mW) 1.45
Line size corrected dynamic read power (mW) 22.51

Frequency and linesize corrected dynamic read power (mW) 30.24

16%
14%]
12%
10%

8% 0 % of Instructions

B % of Cycles
6%

4%

- 11

MiniGZip Listrank MergeSort QuickSort SPE-JPEG DB Filter

Figure 7.8: Number of branch instructions relative to the performance instruction count
and the performance cycle count.

shows that the number of branch instructions relative to the number of performance
instructions for the used benchmarks is between 3.5% for SPE-JPEG and 14.2% for
QuickSort, or 8.7% on average. This means that the energy needed for determining if
a instruction is a branch should be less than 85.8% of the energy to do a BHT lookup
in order to be more efficient in worst case. We have no options to determine this, but
because the logic for this is quite simple, we assume this is true.

Besides table lookups, the BHT also has to be written/updated when a branch is
executed. The number of writes does not change with the proposed predictors. The
CACTI results show that a write uses 25% less energy that a read.

The CACTI results are for a BHT that is read every cycle, but this is not true
for our implementation. To scale the power result, Figure shows the number branch
instructions relative to the number of performance cycles. In the worst case (QuickSort),
there is a branch instruction in 5.07% of the performance cycles. This means that the
power needed for the BHT read and writes is 1.75 * 5.07% * 30.24 = 2.86 mW. Adding
the leakage power gives a total of 2.91 mW, which is about 0.1% of the total SPU power.

However we have to add some power for the branch instruction detection. If we
assume that detecting a branch instruction costs the same as a BHT lookup, the SPU
power increases less then 1% in total.

Also we have to adjust for not using hint instructions. Most of the power is used to

7.3. CONCLUSIONS 63

fetch the branch target into the instruction line buffer. However, these instructions also
have to be fetched if no hints are used, so not much power is saved. So for simplicity we
assume that not using the hints needs no correction in SPU power usage.

The energy used by a program is determined by the product of the power of the SPU
and the time it is running. This is called the Energy-Delay product. Less cycles means
less energy. With the Simple Bimodal Predictor, the SPU uses 1% more energy. In order
to use less energy, the speedup has to be larger than 1%. For the used benchmarks, this
is only true for ListrankMS and QuickSort. All others have a lower speedup or even a
slowdown. Therefore, overall this is not a efficient solution.

7.2.2 Simple Bimodal Predictor Combined with Hints

For the Simple Bimodal Predictor in combination with hints the power usage is about
the same as without hints, because we assume that not using hints would not affect the
SPU power.

The energy-delay products are very different story. The SBP-OH-NLS predictor has
a speedup larger that 1% for all benchmarks, except MergeSort Random. Thus this
combination of the SBP and hint instructions is much more efficient than without hints.

7.2.3 Branch Warnings

The predictor that uses branch warnings only does a BHT lookup when a hint instruction
or a branch warning instruction is executed. Because in most cases not all branches have
a warning or a hint, and some hints are used multiple times, there are less BHT lookups
than branch instructions. In worst case the power is the same as for the SBP, 2.91 mW
or 0.1% of the total SPU power.

Executing the branch warnings costs extra energy, but because it also costs extra
cycles, we do not have to take that into account. The branch targets that are prefetched
are stored in a extra line in the ILB, that will also use some power. However, because it
is used even less then the BHT (only for predicted taken branches), we can assume that
the extra power is not more than that of the BHT. Thus in total the SPU only needs
0.2% extra power, which is the lowest value of all proposed predictors.

When we look at the energy-delay product, this predictor has the best results for
ListrankMS, MergeSort and MergeSort Random. For these benchmarks the speedup
is highest of all predictors, however MergeSort Random has still a slowdown which
makes the energy-delay product increase. For MiniGZIP and SPE-JPEG the product is
increased too.

7.3 Conclusions

In the first part of this chapter we discussed the performance results of the proposed
branch predictors using different benchmarks. The results of the Simple Bimodal Pre-
dictor are very different for all benchmarks. For two is a speedup, and for three a
slowdown. For the other there is little difference. The average speedup is 1.4%. For
most benchmarks, having more than 256 entries in the BHT does not give a significant

64 CHAPTER 7. RESULTS AND EVALUATION

improvement of the performance. When the hint instructions are also used, the results
are much better. If the predictor overrules hints that are predicted ’strongly not taken’
the speedup is second best for most benchmarks, up to 19.2% for ListrankMS-P3 and
7.3% on average. As expected the Aggressive Bimodal Predictor performs even better.
It has the highest speedup of all predictors, on average 15.5%. The Branch Warning
Predictor shows some mixed results. For three benchmarks it performs very good, but
for three it is the worst. Nevertheless, with an average speedup of 4.7% it is faster that
the SBP. However, these bad results are mainly due to the branch warning placement
strategy of the compiler, which can be improved. If that is fixed, this can be the best
choice, but for now the Simple Bimodal Predictor that overrules hints using the OH-NLS
policy is the best in general. The Aggressive Branch Predictor is faster, but is not a seri-
ous candidate because of its complexity, the higher energy consumption, and area usage.
This conflicts with the SPU’s design characteristics, which are simplicity, low power and
area usage.

In the second part of this chapter the energy efficiency was discussed. The additional
power needed by the SBP and the SBP-OH-NLS predictor is estimated to be 1% of the
3W total power dissipation of the SPU. The branch warning predictor uses less power,
because it does not have to detect branch instructions. When we look at the total
amount of energy used for executing the benchmarks using the energy-delay product,
the SBP-OH-NLS predictor gives the best results with a reduction 6.6%, mainly because
of its performance is highest.

Conclusions and Future Work

In this chapter we summarize the work done and draw conclusions. We also do some
recommendations for future work in Section [8.9

8.1 Conclusions

The Cell SPU does not have a dynamic branch predictor, but relies on hint instruction
inserted by the compiler to predict branches taken. Because there is a large penalty of
18 cycles for a branch miss, branching can have a large influence on performance.

We proposed four branch predictors to investigate if the branching performance of
the SPU can be improved. All are based on a Branch History Table (BHT) that stores
the branch target address and a prediction which is made using a bimodal counter.

The first proposed predictor is the Simple Bimodal Predictor(SBP) that does a BHT
lookup when an instruction is fetched from the Instruction Line Buffer (ILB). To save
energy, this is only done for branch instructions. Detection of a branch instruction is
done by pre-decoding the instruction in the ILB. Because of that, a correctly predicted
taken branch still has a penalty of 7 cycles.

The SBP ignores hint instructions, but they contain valuable information. Therefore
we also made an implementation that uses both hints and a predictor. We combined
them using four different hint policies, ranging from always use the hint to ignore the
hint when the prediction is not taken.

For the third predictor we introduced branch warnings, that are hint instructions
for branches of which the compiler cannot determine the target. The predictor is only
accessed when a branch warning or a hint instruction is executed, which makes branch
detection in the ILB unnecessary. We tested the predictor using different hint policies.

Finally, we proposed an Aggressive Branch Predictor (ABP) to find out how much
speedup is obtainable with only a hardware branch predictor. It is a more complex
design and is not supposed to be energy efficient. The branch prediction process is
started when instructions are fetched from the local store after a flush, two every cycle.
When instructions are issued, the prediction is done for each issued instruction.

The branch predictors are implemented in CellSim, a simulator based on UniSim.
Before that, CellSim was extended to support hint instructions and two bugs involving
DMA list requests were fixed. To test the performance of the branch predictors we used
several benchmarks, which we had to port to CellSim. Before testing, we validated the
benchmarks performance on CellSim using IBM SystemSim and adjusted the CellSim
settings to get comparable results.

65

66 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

As expected, the aggressive branch predictor has the best performance, with an
average speedup of 15.5%. However, it is not a good choice for the SPU because of its
complexity. The SBP that uses the OH-NLS hints policy improves performance with an
average speedup of 7.3%. The extra power needed is estimated at 1%, thus the energy-
delay product decreases by 6.6%. Therefore this is a good extension to the current
SPU.

The Branch Warning Predictor that overrules hints (BWP-OH-NLS) currently
achieves an average speedup of 4.7%. However, we except the performance to be better
than the SBP-OH-NLS predictor, when the compiler is further improved regarding the
insertion of branch warnings. The estimated extra power is already lower, which makes
the energy-delay product even lower. Thus this is probably the best branch predictor to
add to the SPU.

8.2 Future Work

Evaluating the results showed that insertion of branch warnings is not optimal. Cur-
rently, the branch warnings are handled like normal hint instructions, only with target
0. However, this interferes with the placement of normal hint instructions and for some
benchmark programs the branch warnings prevent a hint to be inserted. In hardware
the two are handled differently, therefore the compiler should also do that. In that way,
more branches that can have either a hint instruction or a branch warning. Finding an
optimal algorithm for inserting hints and branch warnings is needed to get the best out
of this predictor.

We used a bimodal counter to calculate the branch prediction because of its simplicity.
However there are a lot of other ways to calculate the prediction. Using one of those
with the proposed branch predictors is also a good idea for further research.

Bibliography

1]

C. Gou, G. Kuzmanov, and G. N. Gaydadjiev, “Matched sams scheme: Supporting
multiple stride unaligned vector accesses with multiple memory modules,” Tech.
Rep., October 2008.

C. Meenderinck and B. Juurlink, “Specialization of the cell spe for media applica-
tions,” in Proceedings of the IEEE International Conference on Application-Specific
Systems, Architectures and Processors, July 2009.

R. Giorgi, Z. Popovic, and N. Puzovic, “Introducing hardware tlp support for the
cell processor,” in Proceedings of IEEE International Workshop on Multi-Core Com-
puting Systems, 2009.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis et al., “The landscape
of parallel computing research: A view from berkeley,” EECS Department,
University of California, Berkeley, Tech. Rep., Dec 2006. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006 /EECS-2006-183.html

D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. R. Stan, “Power issues
related to branch prediction,” in Proceedings of the Sth International Symposium
on High-Performance Computer Architecture (HPCA), 2002.

C. Yang and A. Orailoglu, “Power efficient branch prediction through early identifi-
cation of branch addresses,” in Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems (CASES), 2006.

A. Baniasadi and A. Moshovos, “Branch predictor prediction: A power-aware
branch predictor for high-performance processors,” in Proceedings of the 2002 IEEE
International Conference on Computer Design: VLSI in Computers and Processors

(ICCD), 2002.

——, “Sepas: a highly accurate energy-efficient branch predictor,” in Proceedings of
the 200/ international symposium on Low power electronics and design (ISLPED),
2004.

A. Baniasadi, “Power-aware branch predictor update,” in IEE Proceedings Comput-
ers and Digital Techniques, 2005.

D. Chaver, n. Luis Pi M. Prieto, F. Tirado, and M. C. Huang, “Branch prediction
on demand: an energy-efficient solution,” in Proceedings of the 2003 international
symposium on Low power electronics and design (ISLPED), 2003.

M. Monchiero, G. Palermo, M. Sami, C. Silvano, V. Zaccaria, and R. Zafalon, “Low-
power branch prediction techniques for vliw architectures: a compiler-hints based
approach,” Integration VLSI Journal, vol. 38, no. 3, 2005.

67

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

68

BIBLIOGRAPHY

[12]

[13]

[14]

[24]

N. Tomas, J. Sahuquillo, S. Petit, and P. Lopez, “Reducing the number of bits in the
btb to attack the branch predictor hot-spot,” in Proceedings of the 14th international
Euro-Par conference on Parallel Processing (Euro-Par), 2008.

R. Kahn and S. Weiss, “Thrifty btb: A comprehensive solution for dynamic power
reduction in branch target buffers,” Microprocessors & Microsystems, vol. 32, no. 8,
2008.

B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee et al., “Microarchitecture and
implementation of the synergistic processor in 65-nm and 90-nm soi,” IBM Journal
of Research and Development, vol. 51, no. 5, 2007.

M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins et al., “Synergistic processing
in cell’s multicore architecture,” IEEE Micro, vol. 26, no. 2, 2006.

“Cell Broadband Engine - Programming Handbook - Version 1.1,” 2006. [Online].
Available: http://www.bsc.es/plantillaH.php?cat_id=326

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus
ipc: the end of the road for conventional microarchitectures,” SIGARCH Computer
Architecture News, vol. 28, no. 2, 2000.

Performance Analysis with the IBM Full-System Simulator - Modeling
the Performance of the Cell Broadband Engine Processor, 2007. [On-

line]. Available: http://www.ibm.com/developerworks/power /cell/documents.
html?S_ TACT=105AGX16&S_CMP=LP

F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade,
“Cellsim: A validated modular heterogeneous multiprocessor simulator,” in X VIIT
Jornadas de Paralelismo, 2006, pp. 181-188.

“UNISIM.” [Online]. Available: http://unisim.org/site/

Synergistic Processor Unit - Instruction Set Architecture - Version 1.2, 2007.
[Online|. Available: http://www.bsc.es/plantillaH.php?cat_id=326

D. A. Bader, V. Agarwal, and K. Madduri, “On the design and analysis of irregular
algorithms on the cell processor: A aase study on list ranking,” in IEEE IPDPS,
2007.

S. Isaza, F. Sanchez, G. Gaydadjiev, A. Ramirez, and M. Valero, “Preliminary
analysis of the cell be processor limitations for sequence alignment applications,”
in Proceedings of the 8th international workshop on Embedded Computer Systems
(SAMOS), 2008.

D. A. Bader, V. Agarwal, K. Madduri, and S. Kang, “High performance combinato-
rial algorithm design on the cell broadband engine processor,” Parallel Computing,
vol. 33, no. 10-11.

http://www.bsc.es/plantillaH.php?cat_id=326
http://www.ibm.com/developerworks/power/cell/documents.html?S_TACT=105AGX16&S_CMP=LP
http://www.ibm.com/developerworks/power/cell/documents.html?S_TACT=105AGX16&S_CMP=LP
http://unisim.org/site/
http://www.bsc.es/plantillaH.php?cat_id=326

BIBLIOGRAPHY 69

[25]

[26]

[27]

[28]

A. Azevedo, C. Meenderinck, B. Juurlink, M. Alvarez, and A. Ramirez, “Analysis
of video filtering on the cell processor,” May 2008.

D. T. Wang, “ISSCC 2008 Cell Processor update,” Real World Technolo-
gies. [Online]. Available: |http://www.realworldtech.com/page.cfm?ArticleIlD=
RW'T022508002434&p=2

M. Riley, B. Flachs, S. Dhong, G. Gervais, S. Weitzel, M. Wang et al., “Implementa-
tion of the 65nm cell broadband engine,” in Custom Integrated Circuits Conference

(CICC), Sept. 2007.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.1,” HP
Laboratories, Tech. Rep., 2008.

http://www.realworldtech.com/page.cfm?ArticleID=RWT022508002434&p=2
http://www.realworldtech.com/page.cfm?ArticleID=RWT022508002434&p=2

70

BIBLIOGRAPHY

Curriculum Vitae

Martijn Briejer was born in Voorburg, The
Netherlands on the 4th of February 1980. From
1992 to 1998 he did his secondary education at
Sint Laurens College in Rotterdam. There he
studied at the level of VWO and successfully took
the exams in the subjects: Dutch, English, Math-
ematics B, Physics, Chemistry, Biology and Ge-
ography.

After the secondary education he became a
student at the Technical University Delft. He
enrolled in the faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS).
There he got his Bachelor Degree in Electrical
Engineering in September 2002.

He chose to continue with the Master Com-
puter Engineering at the same faculty. In November of 2003 he started an internship at
DDInfo. There he designed a incremental backup algorithm for the BackupAgent and
implemented the server software. After a break, he started in May 2008 with his thesis at
the Computer Engineering group of the EEMCS faculty the Delft Technical University
with Ben Juurlink as his advisor.

Most of his weekend he is active by Seascouts ”De Argonauten” in Rotterdam, where
he is the Skipper (team leader). Together with the scouts he does a lot of outdoor
activities like sailing, hiking, camping, and climbing. In the winter he likes to go skiing
in the Alps.

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation
	Thesis Objectives
	Thesis Organization and Contributions

	Related Work
	Background: The Cell BE
	Energy Efficient Branch Prediction
	Hint for Branch Instructions
	Limitations

	The Basis: a Bimodal Branch Predictor
	A Simple Bimodal Predictor
	Combining the Simple Bimodal Predictor with Hints
	An Aggressive Branch Predictor
	A Predictor using Branch Warning Instructions
	Compiler Modifications

	Summary

	Experimental Environment
	Cell Blade Server
	IBM SystemSim
	CellSim
	Limitations
	Bugfixing CellSim
	Adjusting the Branch Miss Penalty
	Extending CellSim with Hint for Branch Instructions

	Summary

	Benchmarks
	Listrank
	Optimization of Listrank
	Analysis of ListrankMS
	Performance Validation: IBM SystemSim versus CellSim

	MergeSort
	Performance Validation

	QuickSort
	Performance Validation

	ClustalW
	MiniGZip
	Porting to CellSim
	Performance Validation

	SPE-JPEG
	Performance Validation

	Deblocking Filter
	Performance Validation

	Summary

	Results and Evaluation
	Performance
	Simple Bimodal Predictor
	Simple Bimodal Predictor Combined with Hints
	Aggressive Bimodal Predictor
	Branch Warnings

	Energy Efficiency
	Simple Bimodal Predictor
	Simple Bimodal Predictor Combined with Hints
	Branch Warnings

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

