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Preface

The goal of this report is to present and describe the effort surrounding the completion of the
Master Thesis Project of classification in football. Classification is a procedure which belongs in the
field of Statistics. The objective is to capture, detect and distinguish certain actions relative to the
environment of analysis. In our case we are focused on classification for actions related to football,
using sensor data. As a first step we introduce the motivation that enforces our project and also the
nature of the sensors that provide us with the information for our analysis. We follow with some
enlightening review of previous research on motion recognition related projects, in order to have some
supplemental information that will provide us with experience that will serve as guidance and further
direction. Afterwards we introduce the methodology of the classification. The methodology includes all
the models and tools needed to achieve a precise and robust classification outcome. As a next step, we
dive through the details of the experiment we are going to analyse, while we explain the process followed
in order to create a refined data set that will consist the input of our models. After the description of
the data and the preprocessing procedure, we present the results obtained by the analysis along with
the evaluation and relative comparisons. Finally, we give the most important conclusions we reached
in the whole process along with some proposals for future improvements.
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Introduction

1.1. Motivation behind the classification of acceleration signals

In the soccer world the coaches and athletes put their interest in statistics like number of shots and
passes during training sessions and tournaments. The main reason to use acceleration signals is that
cameras or GPS sensors cannot detect the forces on the upper leg, knee and hip. Monitoring these forces
can help to prevent injuries. The primary motivation for this project is to develop an efficient classifier
that will be able to recognize and classify acceleration signals produced by sensors the football players
wear, while doing specific soccer related activities. The athletes that participate in the experiment wear
five sensors (right thigh, left thigh, pelvis, right shank, left shank). The mentioned method has the
potential to be a low-cost inertial sensor based approach for activity classication in soccer, which can
be used by teams with low budgets and elite teams as well. This approach will be able to revolutionize
football, and the amount of competition will keep rising because every kind of team will have access to
premium quality information, that will enable them to improve their club and also the skills of their
players. An additional advantage will be the enlightenment about the strengths and weaknesses of the
players of a team based on the quantified information of their movements and ways of handling the
ball in the field. Furthermore the coaches will be enabled to efficiently plan the appropriate training
schemes in order to strengthen and improve the weak points of their players.

The big picture and aspiration of this project, is to be able to construct a model that will be able in
the near future to provide football teams of any budget, with reliable information, in order to improve
their progress. This can be achieved when the coaches, trainers and recruiters of a team utilize the
facilities that the method provides. This way they can extract vital knowledge on the strain of the
body of the participants on specific exercises and drills. The reliable classified acceleration data, can
be studied and correlated to certain injuries that are inflicted on the players, due to excessive pressure
on the muscles that are responsible for their exact movements. Based on the experience on certain
exercises, the training tactics can prove to be the most efficient they have ever been by minimizing the
amount of effort and strain on the subjects and maximizing their endurance, stability and stamina.
Subsequently, the career of the football players can be extended while they remain in healthier physical
condition, by protecting their bodies from excessive short and long term damage.
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1.2. IMU (Inertial Measurement Unit) Sensors

In scientific research that demand data acquisition, the IMU sensors are broadly used. The specific
devices are wireless and can be applied on the limbs of the athletes that perform certain experiments
that include explosive motions, running and direction changing. The IMU can efficiently detect and
capture the acceleration of the body parts they are placed on. Because they are comfortable and easy
to wear, they are chosen very frequently in the wide world of sports. Specifically for our case the IMU
sensors are responsible for detecting the movements of the soccer players they are placed on. The
standard IMU sensors include an accelerometer, a gyroscope and a magnetometer. For the purpose of
this research we are going to use the acceleration data, which measure the acceleration of the specific
limb they are placed on. We will also use the gyroscope data which measure the angular velocity of
a specific body part. The data we have at our disposal come on the three axis scheme relative to the
sensor for the three dimensional space. In Figure 1.1 we provide the IMU sensor used in the project.

Figure 1.1: Sensor unit as used in 2020 version of the Sensor Shorts (21*24*8 mm) at the project CAS P6 of TU Delft
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1.3. Classification of data

The strategy for the generic classification of data begins with the establishment of the wearable
sensors to the subjects relative to the experiment. The next step is to define the features of choice that
will consist the input data representative to the activities performed by the subjects, for the classification
algorithm. Further we split our input data to a training set and a test set. The purpose of the training
set is to assist the classification algorithm to distinguish the patterns of our data, so that it can be able
to recognize the nature of the test data set, which is used for the validation of the algorithm. At this
point the features for the training and test data are chosen and extracted. After the completion of the
training phase, the model is applied on the test data followed by the assessment of the effectiveness and
precision of the algorithm. In Figure 1.2 the general classification scheme is presented.

wearable sensor feature
selection specification
st ol . feature classification performance
selection and extraction algorithm assessment
feature i i
data acquisition - »
-3 computation
training set training phase: training phase:
- feature = classification
selection and extraction algorithm

Figure 1.2: Schematic diagram for classification|[13]



1. Introduction

1.4. Research questions

In this Section we formulate the most important research questions that concern the specific project.
After the completion of the procedure the research questions will be answered on Chapter 6, based on
the conclusions and remarks that were born from our analysis of classification in football.

1.

Should we focus on the analysis of raw three dimensional data or should we consider the Eu-
clidean Norm also? Do we save a significant amount of time by analysing only the norm of the
data?

Is it more effective to use all of the five sensors or three sensors (pelvis, right thigh, left thigh)
are enough? How much loss in accuracy there is for the simplified version of the sensor shorts?

Do we need the settings S2 (gyroscope and spatial domain features) and S5 (gyroscope with
spatial and spectral domain features) for the raw data case or the settings S1 (acceleration with

spatial features) and S4 (acceleration with spatial and spectral features) also?

Should we utilize only spatial domain features or mixed features (Spatial together with spectral
domain features)?

Which of the six settings works best and which one gives the lowest accuracy?

Does the classification accuracy increase or decrease if seven instead of four actions are consid-
ered and why?



Literature overview

2.1. History and development on classification in sports

Nowadays tactics in sports are becoming strongly dependent on the mathematical field of data
science. Machine Learning methods are utilized in order to capture and detect complicated patterns
in the data[6]. In the early stages of this model based direction, the researchers were mainly focused
on sports related to specific and easily identifiable activities and moves. Such a sport is baseball as it
encompasses explosive and agile movements of the players arms to hit the ball[6]. As the advances in
Stochastic mathematics and specifically machine learning touched a high point the research became way
more broad and focused on more complex sports[6] that include a wider variety of actions like football or
basketball. Those sports for example, demand continuous movements and extensive ball handling[18].
Machine learning models that are up to date are capable of classifying these connected movements of
the players effectively. Ways of capturing the data from the movements of the players usually come
from video imaging or on-body sensor detecting. The reason behind the classification involved in sport
related activities is to monitor the physical performance of athletes[6] and also to acquire enlightening
information on the pressure concentrated on the bodies of the athletes to prevent injuries, which is
the main idea discussed in this project. In the following paragraphs we briefly present some significant
research related to classification in sports along with the results of the classification.

In the specific analysis|7] the researchers were focused on Tennis, and the classification concerns the
three main strikes in a tennis match (forehand, backhand, serve)[7] using Wireless Inertial Measuring
Units (WIMU). The maximum accuracy achieved using fusion of the sensors was 90%[7] using the Naive
Bayes classifier.

The goal of this research[2] was to classify human physical activities of different kinds of intensities
using wearable accelerometers. Those activities are low speed walking, high speed walking, sitting,
shoulder lifting, squatting, jumping[2]. The Figure 2.1 which shows the results of the classification by
comparing the predicted classes with the actual classes is presented below. The results are obtained
using the k-Nearest Neighbors classifiers.

Predicted claz=
Lom'];z:?ﬁwal— nghki‘:::ﬁwal_ Sitting, % Shuulﬂ:; lifting, Squatting, % Ju.lréﬁing,
Low zpeed walking 385 0 0 ] 11.1 0
" High zpeed walking 11.1 834 0 55 0 0
2 Sitting 833 0 833 833 0 0
% Shoulder lifting 0 34 5.56 66.7 222 0
- Squat-ting 0 11.1 0 336 77.8 11.1
Jumping 0 556 0 0 356 289

Figure 2.1: Confusion Matrix showing the correct classifications and misclassifications|2]
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This analysis[6] concerns Table Tennis and utilizes Inertial Measuring Units (IMU) for the move-
ment detection. The eight strokes that were classified are the following: Forehand drive, Forehand
push, Forehand block, Forehand topspin, Backhand drive, Backhand push, Backhand block, Backhand
topspin|[6]

The Figure 2.2 shows the accuracy of the predictions in a similar way with the previous case.

Type || FD  FP FB FI' BD BP BB BT

FD 401 0 2 1 0
FP 0 183 0O 0 0
FB 12 237 0 0

FT 292 1)

BD 0 261
BP 0 o 179
BB 0 19 0 141
BT 0 8 0

=r-N-Y-¥-F-
croocos

=20 o0
o= D0
ScCoOoOoo0 o

i R o e ) e i i Y e

=
I
fand

Figure 2.2: Confusion Matrix showing the correct classifications and misclassifications|6]
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2.2. Examination of previous research on classification in sports

In this chapter we are going to make a review on activity classification studies available in literature,
focusing on sensor data. It is of significant importance to mention that the direction for this chapter is
to dive through the way of thinking and approaches of different scientific teams that handled problems
of classification and activity recognition in sports. For a subject like classification, which is heavily
based on research, the consideration of the experience of experts might prove to be crucial for the
progress of the analysis. Based on the insight that will be achieved through the project, all the results
and observations will be taken into account in order to shed light on the search for the optimal classifier
concerning the problem of classifying sport related data from different situations.
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2.3. Review on Literature studies on activity classification

2.3.1. Skateboarding

Introduction

The specific study|[10] includes an informative and enlightening application of classification in skate-
boarding. As in soccer it is of significant importance to be able to distinguish and isolate the movements
of the subjects through the signals provided by the IMU sensors. In this particular case the researchers
where interested in recognition of tricks performed by the subjects using the board. An important
observation for the research[10] is that the team considered time windows which included time intervals
related to the vital motions related to the activities in examination. "Based on considerations about the
length of a trick and the duration of the landing impact, the length of the windows was set to 1 second
with an overlap of 0.5 seconds”[10]. The experts computed features as the mean, variance, kurtosis and
skewness on all of the data belonging to the time windows mentioned above [10]. The specific features
were calculated on the raw data that an IMU produces, meaning the three dimensional data for (x,y,z)
axis but also on the norms of the three dimensional sets[10]. For the evaluation, four fundamental
classification techniques were used. The Naive Bayes (NB), Partial Decision Tree (PART), Support
Vector Machines (SVM), k-Nearest Neighbors (kNN). These methods were applied in the appropriate
time windows that included the data relative to the tricks. Below follows the Figure 2.3 which includes
the accuracies, the computational operations and the computational times of the methods[10].

NB PART SVM kNN
accuracy [%] 978 934 978 %60
computation low low high  middle
-operations: 360 41 1015 1086
- time Jg; 62 106 27 62

Figure 2.3: Accuracies and computational costs|[10]
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Connection to current project

The experts of [10] utilized norms to create a single representative vector of data that consist the
new signal that is going to be the input or training data for the classification algorithms. The use
of norms is also considered in the current project along with the time windows to isolate the useful
activities from the noise. The use of the mentioned spatial features of [10] will also consist a part of our
research. Another similar vital tactic that is going to consist the evaluation of the models of the current
project, is the comparison of the predictive precision of our methods and also the comparison of the
computational costs. The approach taken by the experts involved in the skateboarding experiment|[10]
seems to be encouraging, as the steps introduced fit the classification in football idea. In other soccer
related classification schemes like[9][17] the way of handling the raw data with the application of features
is similar, using measures and norms to cope with the three dimensional nature of acceleration and
gyroscope signals.

Conclusion

The highest predictive accuracy was achieved by Naive Bayes and Support Vector Machines with a
percentage of 97.8% as it is inferred by the experts[10]. This appears to be an encouraging observation
since our research will also utilize those classifiers in a frequent manner.
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2.3.2. Classification of human physical activity

Introduction

This section discusses a study[13] that was conducted with the goal of classifying data that are
derived from a bi-axial accelerometer based approach. This study concerns a more general vision on
the recognition and detection of human motion. The actions examined are the following: sitting,
lying, standing, walking, stair climbing, running, cycling[13]. In this particular case a window segment
approach is applied in order to isolate the utilizable data that are relevant to the activities from the
noise. There was a 50% overlapping of the sliding windows with 512 samples[13]. The features used were
extracted based on that approach. It is clearly implied by the experts that these windows have ”a finite
and constant width”[13] and also each window lasted 6.7 seconds with every new window available
every 3.35 seconds[13] as also indicated by the researchers. Regarding the features, the Euclidean
distance of the signals is considered as one of the dominant ways of refining the data from the signals.
In Figure 2.4 the results of the classification are presented by giving the accuracy of every individual
classifier trained for the purpose of the study|[13]. The classification methods are the Naive Bayes (NB),
Gaussian Mixture Model (GMM), Logistic, Parzen, Support Vector Machines (SVM), Nearest Mean
(NM), k-Nearest Neighbors (k-NN), Multilayer Perceptron (ANN), Binary Decision Tree (C4.5).

Classifiers Classification accuracy, [%]

NB 97.4
GMM 022
Logistic 94.0
Parzen 92.7
SVM 97.8
NM 08.5
k-NN 08.3
ANN 96.1
C4.5 93.0

Figure 2.4: Accuracy of classifiers|13]
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Connection to current project

We can see that the research [13] has many common characteristics with our own project meaning
the use of time windows for the isolation of the useful activities, the application of features on the data
and the use of the Euclidean distance to refine the signals.

Conclusion

An obvious but very interesting observation from the Figure 2.4 is that all of the classifiers achieved
a very high amount of precision. The SVM classifier achieved one of the most efficient results (97.8%)
and it is enlightening to see that the Naive Bayes scored an accuracy of 97.4%. By correlating this
study[13] with our project we can infer that the SVM and NB classifiers can prove to be stable and
robust candidates.



12 2. Literature overview

2.3.3. Tennis Stroke Recognition

Introduction

This study[12] is focused on detection and classification of acceleration data related to the different
strikes that can happen in a tennis game. The IMU sensors are attached to the subjects in order to
acquire the desired signals that will yield the data set for the analysis[12]. This specific research|[12]
focused on the Support Vector Machine classifier to derive the desired results. A window based approach
was applied in order to isolate and distinguish between the data that concern the strokes, and avoid
noisy data irrelevant to the activities of interest[12]. The author mentions that a time interval of 1
second is enough to include the useful information that represent the stroke[12]. The Euclidean norm is
used as the main feature in order to handle the multidimensionality of the acceleration signals, as the
acceleration is measured in the 3D space. As a result, a vector representative to the striking activities
was derived.

Connection to current project

From this research[12] we see the approach of time windows for the extraction of the activities,
which is a trait common to our research. The same holds for the use of the Euclidean Norm to derive
a single vector from the 3D space signals.

Evaluation of SVM and conclusion

The evaluation of prediction in this study[12] was achieved in three steps. The first step is the
consideration of individual SVM classifications for the sensors of the forearm and the upper arm with
predictive precisions of 0.69 and 0.70 respectively[12]. Then the methods are not applied to the training
data set but to an extended training data set, with increased precisions of 0.75 and 0.79[12] for each of
the sensors. The third step combined the expanded data sets of two sensors, and the SVM produced
precision of 0.79[12]. These results consist an additional strong indication that the SVM classifier
performs very effectively in an environment that includes activities of explosive fast motions as in
soccer.
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2.3.4. Classification during a soccer match

Introduction

Here we present a research[18] of nature very similar to the current project. This research[18]
concerns Classification during a Soccer match using IMU sensor data. The goal was to classify two
activities, meaning the shot and the pass|[18], but there was an additional activity called other”[18] that
included actions irrelevant to the pass and shot like "tackling”[18], "fast running”[18] and "side steps”[18].
The first goal of the research was to detect the peaks of their data[18]. Then a window segmentation
was applied to the data based on the peaks of the previous step[18]. We also mention that the specific
research used features like the mean, variance, skewness and kurtosis[18]. The classification methods
utilized by the researchers of the project are the Support Vector Machines (SVM), Classification and
Regression Tree (CART) and the Naive Bayes (NB)[18].

Connection to current project

Comparing this research|[18] with the current project, we see that the window segmentation is a
process that was also used in our study. We also see the use of feature extraction which is also applied
in our project.

Conclusion

An enlightening observation is the high effectiveness of the three classification methods SVM (99.9%),
CART (99.1%), NB (98.5%)[18]. These are the highest rates achieved by those methods. The SVM
and NB methods will also be included in our analysis and we receive an important indication of their
high level strength on action recognition.






Methodology

3.1. Machine Learning

Machine Learning is a term that encompasses a broad variety of algorithms that can be applied to
a data set[19][3]. These data that train algorithms make it possible for the algorithms to be applied
in new data sets even though they may have entirely different practical applications. Some significant
use of the mentioned algorithms is prediction and pattern recognition. The broad term of Machine
Learning can be classified into Supervised and Unsupervised learning [3], terms that are discussed in
the next paragraph. The main focus of this research is the application of Supervised Learning models
but it is useful to mention that Unsupervised learning includes methods that are looking for structure
in data sets without having any prior reference or knowledge behind it[1].

3.1.1. Supervised learning

Supervised Learning is the term for the process of building a predictive model that can map a set
of input variables to a response. In contrast to Unsupervised learning, in this case we have previous
information about the specific class each observation is assigned to.

3.1.2. Introduction to the classification methods

The primary direction of this project from a researchers point of view, is to be able to find and
handle the most appropriate supervised learning algorithms that are related to the classification of the
soccer based activities. The classification methods that are frequently utilized are the Naive-Bayes,
K-Nearest Neighbors, Multiclass Support Vector Machines, Discriminant Analysis, Decision Trees. The
mentioned methods are the fundamental part of supervised learning.

15
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3.1.3. Methodology for classification

K-nearest neighbors

In order to classify a new observation, we assign it to the same category as each closest observation
which is called nearest neighbour|[1][3]. This method is sensitive to known data which may not be
separated very cleanly, also it is very sensitive to outliers. A way to reduce the mentioned weakness
of this method is to use many different neighbours. A practical way can be to give weights to the
neighbours[1]. Then the closer neighbours have a heavier impact compared to the ones further away,
and as a result the noise created by the outliers is limited [8][1]. The K-nearest neighbor method is
available in Matlab as the fitcknn function[l]. Figure 3.1 shows the details.

Function fitcknn
Fit Time Prediction Time Memory Overhead
Performance + Fast ¢ Fast ¢ Small

# o (Data ..“.--i:-:lle]2

"NumNeighbors" — Number of neighbors used for classification. (Default: 1)

C : ,
Fr[;m::t?:s "Distance” — Metric used for calculating distances between neighbors.
I
P "DistanceWeight™ — Weighting given to different neighbors.
For normalizing the data, use the "Standardize" option
Special
Notes The “cosine® distance metric works well for “wide® data (more predictors

than obsenvations) and data with many predictors.

Figure 3.1: Schematic diagram of K-nearest neighbors|1]
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Decision Trees

This method considers all the possible splits in each variable and chooses the most efficient way
of splitting[1][15]. The process repeats at every next level of the tree, and this continues when all the
branches terminate, which happens when no more splits can improve the partition[1]. This method may
overfit the data which means that it will be perfectly adapted to the training data, but predictions for
new data will be very weak[1]. This implies great classification error. The specific problem can be fixed
by pruning the tree and reducing the number of splits, to create a model with higher resubstitution
loss (training data misclassification) but better generalization to the new data[15]. The Decision Trees
method is available in Matlab as the fitctree[l]. Figure 3.2 shows the details.

Function fitctree
T ————— Fit Time Prediction Time Memory Overhead
» = Size of the data » Fast s Small

"splitCriterion™ — Formula used to determine optimal splits at each level

Common "MinLeafSize" — Minimum number of observations in each leaf node
Properties “Maxhumsplits"” — Maximum number of splits allowed in the decision tree
Special

Not Trees are a good choice when there is a significant amount of missing data
otes

Figure 3.2: Schematic diagram of Decision Trees|1]
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Naive Bayes

The observations in each response class are samples from a probability distribution for each class|1][3].
By determining the probability of a new observation belonging to a given class, we manage to assign
the observation to the class that it is most likely to belong based on the probabilities[1]. This particular
method is based on the hypothesis of independency. The predictions depend on the statistical distribu-
tion of all the data and the method is robust to noise from training data [20]. The Naive Bayes method
is available in Matlab as the f£itcnb function[l]|. Figure 3.3 shows the details.

Function fitcnb
Fit Time Prediction Time Memory Overhead
Performance + Mormal Dist. - Fast + Mormal Dist. - Fast + Mormal Dist. - Small
« Kemel Dist. - Slow » Kemel Dist. - Slow + Kemel Dist. -

Moderate to large

"pistributionNames” — Distribution used to calculate probabilities
Common “Width" = Width of the smoothing window (when “DistributionMames™ is set to
Properties “"kernel™ )

“Kernel” — Type of kermel to use (when “DistributionNames® is setto “kernel”).

Special

Not Maive Bayes is a good choice when there is a significant amount of missing data
otes

Figure 3.3: Schematic diagram of Naive Bayes[1]
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Multiclass Support Vector Machines

This method is mainly used for the binary class case[1|[3]. It classifies the data by setting linear
boundaries between them [1][3]. The goal is to maximize the margin between each class, which means
that each class will be as cleanly separated from the others as possible, and the penalty for misclassi-
fication will be very small[1]. The Support Vector Machines(SVM) method can be used for linear but
also nonlinear classification problems by performing a transformation of variables into a space where
the classes are linearly separable[l]. Even though the SVM method is utilized for the binary case there
are ways to apply it for the multiclass case [4]. There are three different ways to approach SVM for
the multiclass case. The One Versus All (OVA) approach, the One versus One (OVO) approach and
the Error Correcting Output Code (ECOC) approach[4][22]. The Multiclass Support Vector Machines
method is available in Matlab as the £itcsvm function[l]. Figure 3.5 shows the details.

ovo

In the One Versus One case, we consider all the possible pairs for all the existing K classes and
that is why we end up receiving K(K-1)/2 binary classification problems. We then assign one classifier
to each of the pairs. For every pair of classes we use a subset of our data to have a training set for
every classifier. After we train our classifiers the data points are labelled as positive or negative for the
identification. Each of the K(K-1)/2 classifiers has its own result of a class. In conclusion we select the
class that is chosen with the biggest frequency between the classifiers[22].

OVA

In the One Versus All method we have K binary classification problems for a K-class problem. Each
time we choose one of the individual classes as one class and all the remaining classes together as the
second class, and we train a classifier for each case. In this case we use all of our training data to train
every classifier. The data points in the mentioned binary classifications that belong to the individual
class are labelled as positive while the other points of the combined classes are labelled as negative.
Through this approach we base ourselves to our degree of belief of each of the positive results indicated
by the classifiers and we choose the class with the largest confidence. In case of only one positive result,
it is selected as the correct class[4].
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ECOC

In the Error Correcting Output Codes we consider K classes and N binary classifiers. First of
all every classifier will be trained in a binary classification problem by considering one individual class
against a class consisted by the combination of all the remaining classes, meaning that the one multiclass
problem is converted to K binary classification problems. For every data point predicted to be in a
certain class we give a positive mark to the class it is assigned to by the respective classifier. Negative
marks will be given to the other classes for the respective classifier case. At the end, for a new data
point we assign a positive mark if it belongs to the class marked with positive for the respective classifier
and negative otherwise. We measure the distance between the predictions (+ or -) of the classifiers for
the specific point and the predictions for the previous data and subsequently we assign the data point
to the class with the least number of mismaches[22]. On Figure 3.4 our new data is assigned to class 2.

Classifier 1 Classifier 2 Classifier 3
Class 1 + - -
Class 2 - + -
Class 3 - - +
New data - + -
Figure 3.4: ECOC case
Function fitcswm
Fit Time Prediction Time Memory Overhead
" g = s N i
Parformance Fast Very Fasi loderate
« = gquare of the size of # = square of the size of
the data the data
"KernelFunction™ — Variable ransformation to apply
Common "Kernelscale” — Scaling apphed before the kemel transformation. (Default valua: 1)
Properties "BoxConstraint” = Regulanization parameter controlling the misclassification penalty. (Default

value: 1)

SVMs use a distance based algorithm. For data that is not normalized, use the "Standardize”
Special option

Hotes
Linear SWMs work well for “wide” data (more predictors than obserdations). Gaussian SVMs often

work better on tall” data (more observations than predictors)

Figure 3.5: Schematic diagram of Support Vector Machines[1]
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Discriminant Analysis

This technique uses the training observations to locate the boundary between the response classes|[16][1].

The location of the boundary is determined by treating the observations of each class as samples from
a multidimensional normal distribution[16]. If we assume the distributions have the same shape, then
the boundaries turn out to be linear[16]. In case the covariance matrices are not the same for all
classes the boundaries turn out to be quadratic[16]. Quadratic discriminant analysis is still relatively
quick although it requires more calculations and memory to evaluate and store the multiple covariance
matrices[16]. The Discriminant Analysis method is available in Matlab as the fitcdiscr function[1].
Figure 3.6 shows the details.

Function fitcdiscr
Fit Time Prediction Time Memory Overhead
» Fast + Fast # Linear DA - Small
Performance # = size of the data * = size of the data + Quadratic DA, -

Moderate to large
+ o number of predictors

"DiscrimType” - Type of boundary used.
Common "pelta" - Coefficient threshold for including predictors in a linear boundary. (Default: 0)

Properties "Gamma" - Regulanzation to use when estimating the covariance matrix for linear DA
Special Linear discnminant analysis works well for “wide” data (more predictors than
MNotes obsenations)

Figure 3.6: Schematic diagram of Discriminant Analysis[1]
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3.2. Comparison of methods

One of the standard ways to approach the described methods is to utilize every possible approach
and compare based on the minimal percentage of misclassification, but it is also considered useful to
develop some prior directional line that indicates which method is preferable for our analysis.

From other studies[10][5], it seems like the Multiclass SVM method is a strong candidate. The reason
being that the prediction time is substantially faster. Another strong candidate appears to be the k-
nearest neighbour method since the fitting time is low and the prediction time is fast while the memory
overhead remains at a low level. The Discriminant analysis could also prove to be a viable method to
choose since the memory overhead seems to remain at a reasonable level in our case. Regarding the
Decision Trees what seems to be relatively suspicious is that the fitting time is proportional to the size
of our data table which is large enough. The Naive-Bayes appears as a safe choice both in terms of
computational speed and memory overhead. The Multiclass SVM method seems to adapt very well in
the nature of our data as we have a big number of observations. We address that the default version of
the methods were used, without specifying in command properties.
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3.3. Goal of the analysis

The goal for the completion of this project, is the creation of a robust classifier that fits well on the
training data and also adjusts to new data from well defined exercises as well as new data from field
activities. That means that it will be able to classify the observations from soccer related activities
with the highest possible accuracy, which means the least amount of misclassification errors.






Data overview and preprocessing

4.1. Data overview and experiment

This Chapter focuses on the clarification of the experiment held along with the description of the
nature of the data extracted. Later on the Chapter we give the details of the preprocessing procedure
held in order to acquire the final form of the data which are utilized as the input information for the
models described on Chapter 3. At this point we need to mention that the data described and analyzed
were provided by Mister Erik Wilmes|21]

The experiment held included 12 subjects with 5 IMU sensors attached to their pelvis, left thigh,
right thigh, left shank and right shank. Each of the 12 subjects completed a number of activities ranging
from 77 to 94. These activities are based on soccer related actions. The activities discussed included
a variety of movements that simulate the behavior of a soccer player in a real football match. The
specific actions completed are the pass, the long pass, the shot, the 90 degree turn, the 180 degree turn,
the jump and the running. It is important to mention also for the next sections of our discussion that
in the process of completing these actions, the subjects had some running or rest prior to the specific
activity and also some running or rest afterwards. The IMU sensors captured all the information from
the moment the running or rest started till the player stopped moving completely. This situation
naturally created some noise to the signals produced. For a better clarification and understanding of
the activities completed by the subjects, we present the definitions of some actions at the next page.
We also mention that for the specific project we considered two classification approaches, the results of
which are presented and discussed on Chapter 5. The first approach is classification using four activities
(pass, shot, 90 degree turn, 180 degree turn). The second approach included all the mentioned actions
(pass, long pass, shot, 90 degree turn, 180 degree turn, jump, running). For each of these approaches
we considered 40 segmented subsets for each of the actions having a total of 160 actions for the four
activity classification and 280 actions for the classification of all seven activities. At this section we also
present a picture with the placement of the five sensors (right thigh, left thigh, pelvis, right shank, left
shank) on the body of the subjects on Figure 4.1 and also some plots that include the Euclidean Norm
of the acceleration signals from the right thigh sensor for all the seven activities on Figure 4.2. The
next Section discusses the preprocessing steps for the acquired data obtained by the IMU sensors.

25
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e Pass: The kicking of the ball usually with the side of the foot with the
purpose of transferring it to a teammate of close or medium distance

e Long pass: The kicking of the ball with the purpose of transferring it
to a teammate of long distance

e Shot: The strong kicking of the ball in order to score a goal through
the net of the opponent team

e 90 degree turn: The change of direction of a player by completing a 90
degree maneuver

e 180 degree turn: The change of direction of a player by completing a
180 degree maneuver

Figure 4.1: Illustration of the IMU sensors on the body of the subjects[17]
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Figure 4.2: Euclidean Norms of the acceleration signals from the right thigh sensor for every action.
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4.2. Preprocessing

The preprocessing techniques that are going to follow, served the purpose of creating an informative
final dataset, representative of the actions presented previously. An important goal in order to achieve
that is to reduce the amount of noise through the time window segmentation procedure. Also the
possible calibration error in case of a wrongly placed sensor will be decreased through the use of the
FEuclidean Norm. The aspiration for the final filtered data set is to consist the basis for the computation
of our features in order to establish the fundamentals of a precise and consistent motion recognition
and classification.

4.2.1. Time window segmentation

The first step for the filtering of data is to separate the data relevant to the activities discussed from
the noise. As mentioned before each of the activities completed by the subjects, included some running
or moments of rest before the action started, and also after the finish of the action. The way to achieve
the separation of the data relative to the activities from the data relative to the moments of rest or
extra irrelevant motions, is to use specific time windows to achieve the extraction of the data that come
from the action (pass, long pass, shot, 90 degree turn, 180 degree turn, jump, running). The average
time windows used for each of the activities are presented in the Table 4.1. The following numbers
also consist the estimation of how long each activity lasted on average. The duration of 90 degree turn
is a little longer than the one of the 180 degree turn since the 90 degree turn was performed while
running and in the 180 degree case the change of direction was almost instant, having the subject turn
without running. The algorithms do not use the window lengths for the classification. The algorithms
are applied to the features calculated on the data derived from the described intervals.

Time windows
Action Time duration
Pass 1.14s
Long pass 0.92s
Shot 0.71s
90 degree turn 1.01s
180 degree turn 0.92s
Jump 1.29s
Running 1.5s

Table 4.1: Average time windows applied to the data in order to isolate and extract the actions
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4.2.2. Euclidean Norm and raw data

The second step after the extraction of the data relevant to the specific activities of interest, is to
examine the Euclidean Norm and apply it to the filtered data. The raw data that are produced by the
IMU sensors contain three signals for the coordinates of 3D space. The reason to compute the Euclidean
Norm of the acquired data is to compensate for any possible small misplaces of the attached sensors on
the body of the subjects. By using the Euclidean Norm we obtain a refined signal that compensates for
any errors in the calibration of the sensors. Another reason to apply the specific norm is to begin our
study and classification of the data using one signal for every sensor. That way we can have a sufficient
indication of how the classification methods behave without involving complicated forms of data as in
the raw data case.

The next step after the examination and classification based on Euclidean Norm signals, is to apply
the data in their raw form. By doing that we manage to utilize all the information included in the signals,
because the exact vectors for the three dimensions are used without any modification. The advantage
we expect by doing that is to obtain more accurate distinction between the different activities by the
methods of Chapter 3. These methods should be able to distinguish between the data patterns of the
different classes of actions with higher efficiency. A drawback we expect by applying the data in their
pure form, is to have additional computational costs compared to the Euclidean Norm case, since the
input of the methods will be much larger. The reason being that we are going to have three signals
instead of one in the Euclidean Norm case. Before we proceed to the next step of the preprocessing, we
include the definition of the Euclidean Norm which will be computed based on the raw three-dimensional
signals (x,y,z).

Vx2 +y2 + 72 (4.1)
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4.2.3. Features

This section involves the specific features used in this research as the third step of the preprocessing.
The features utilized will be computed on the filtered data created by the previous steps and specifically
for the Euclidean Norm and the raw data of the signals belonging to the specific activities discussed.
In total we have nine features. Seven of them belong to the spatial domain and two belong to the
spectral domain. The reason of the specific choice is to include information relative to the distribution
of the data and also relative to the domain of frequencies. For spatial features we used seven statistical
measures and for the spectral domain we utilized two features based on the coeflicients of the Discrete
Fourier Transform. Below we present the features followed by some important definitions based on
references included in this document.

Spatial domain

e Mean

e Median

e Standard deviation
e Skewness

e Kurtosis

e Minimum

e Maximum

Spectral domain

e Sum of the real parts of coefficients of the Discrete Fourier Transform

e Maximum of the real parts of coefficients of the Discrete Fourier Trans-
form
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Skewness

The skewness measures the asymmetry of a distribution and has values in the interval (-c0,00)[11]. A
positive skewness indicates a heavy right tail, showing the existence of a lot of extreme positive values
of the distribution[11], while negative values indicate a heavy left tail[11]. Also the skewness consists
the third moment of the distribution[11]. Below, the mathematical expression of skewness is presented
as appears in [11] for a population of size n and mean X.

LS (- 0
. n(n-—1) nZl(x ) (4.2)

RO NCES IOt

Kurtosis

The kurtosis consists the fourth moment of a distribution[11] with range of values at [1,00)[11].
When the value of the kurtosis is below 3 the distribution ”is platykurtic”’[11]. When kurtosis is larger
than 3 the distribution ”is leptokurtic”’[11]. Below, the mathematical expression of kurtosis is presented
for a population of size n and mean X as appears in [11].

_nn+Dm-1 ¥ (- X)*
C (n=2)(n—-3) & (x; — X)?)?

(4.3)

Discrete Fourier Transform
The Discrete Fourier Transform for a continuous time non periodic signal x(t)[14] is presented below.
The Discrete Fourier Transform synthesis and analysis equations are given in the equations (4.4) and

(4.5) respectively as defined in [14]. The synthesis equation decomposes a set of N time samples to N
exponentials[14] the magnitude of which is given by the analysis equation[14].

N—-1
1 , 2T
x(n) = — Z X (k)e/ GOk (4.4)
k=0

N-1

X(k) = z x(n)e Ik (4.5)

n=0






Evaluation of results

5.1. Euclidean Norm case for the classification of four activities

This case involves the classification of four activities which are the short pass, the shot, the 90 de-
gree turn and the 180 degree turn. The processing of data was done using the Euclidean norm of the
raw acceleration and gyroscope signals. The next section involves some comparisons and observations
regarding the quality and behavior of the methods using the graphs of Section Graphs. The meth-
ods taken into account are the M1:Naive Bayes (NB), M2:K-nearest neighbors (K-NN),
M3:Multiclass Support Vector Machines (MSVM), M4:Discriminant Analysis (DA),
M5:Decision Trees (DT). The classification is done in the following six different settings but we
focus on the method with the highest accuracy which is selected for each setting.

e S1: Euclidean Norm of the acceleration data of the sensors using only
spatial domain features

e S2: Euclidean Norm of the gyroscope data of the sensors using only
spatial domain features

e S3: Euclidean Norm of the mixed acceleration and gyroscope data of the
sensors using only spatial domain features

e S4: Euclidean Norm of the acceleration data of the sensors using spatial
and spectral domain features

e S5: Euclidean Norm of the gyroscope data of the sensors using spatial
and spectral domain features

e S6: Euclidean Norm of the mixed acceleration and gyroscope data of the
sensors using spatial and spectral domain features

33
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5.1.1. Evaluation

We considered a data set consisting of 40 subsets of each action (pass, shot, 90 degree turn, 180
degree turn). For the training of the methods we used 70% of the data and 30% for the validation or
testing. In order to reduce the error, each classification scheme was evaluated 100 times and only the
sums of confusion matrices are shown for each scheme in the Section Graphs. Also, in the confusion
matrices of the Section Graphs, we include the percentages of correctly predicted observations for each
class in blue color, and the percentage of misclassifications in pink, again for the specific class. The
accuracies presented in the descriptions of this section are the highest average accuracies achieved
between the models for the test data over the 100 times evaluated schemes. We focus our comments
and comparisons mainly on the average test accuracy because this is the precision of prediction on the
test data for which we trained the model, as mentioned before. For this section, under every evaluation
of a setting, we include a table with additional information including the average percentage of the
accuracy for the test data and also for the training data, along with the computational time for every
method in seconds. The computational time is given in three different numbers, the total time, the
time for the training of the method and the time for the testing or validation. We also clarify that both
the test times and train times are based on 100 runs, obtaining an improved prediction for the test
accuracy and also for the train accuracy.

As shown in Table 5.1, for the classification of the acceleration data using only spatial features
(setting S1), we observe a test accuracy of 92% which is achieved by the Discriminant Analysis
method (M4). That means that the different activities are well classified. Also the small error is
explained by the fact that there is a big similarity between the two kinds of turns and that can be also
seen in Figure 5.1 that includes the correct predictions and the misclassifications, having a relatively
large number of wrong predictions for the two turns.

S1
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 85% 90% 33s 26s 7s
M2 (K-NN) 90% 100% 31s 29s 2s
M3 (MSVM) || 91% 100% 40s 31s 9s
M4 (DA) 92% 99% 34s 31s 3s
M5 (DT) 78% 96% 32s 30s 2s

Table 5.1: Table of results for the Euclidean Norm case of setting S1

In the classification of the gyroscope data using spatial features (setting S2), we observe from the
Table 5.2 that the highest test accuracy of 92% was achieved by the MSVM method (M3) which is the
best among the six settings taken into account. From Figure 5.2 we observe that the distribution of the
small number of misclassified observations is the same as the previous case with the acceleration data.
The setting S2 performs more effectively compared to S1 and S3 (Table 5.1 and Table 5.3) because
the gyroscope data might contain identifiable patters that for example the mixed data setting S3 may
not contain due to the combination of signals. This is still an issue that can be examined more in the
future.
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S2
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 87% 94% 38s 30s 8s
M2 (K-NN) 90% 100% 30s 28s 2s
M3 (MSVM) || 92% 100% 40s 32s 8s
M4 (DA) 87% 99% 33s 30s 3s
M5 (DT) 2% 95% 32s 30s 2s

Table 5.2: Table of results for the Euclidean Norm case of setting S2

Regarding the case of the mixed data using spatial features (setting S3), based on Table 5.3 we see
a test accuracy of 89% with an identical distribution of misclassifications as in our previous two cases
as observed in Figure 5.3. The specific estimation was made using the Discriminant Analysis

method (M4).

S3
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 85% 91% 34s 27s 7s
M2 (K-NN) 82% 100% 29s 27s 2s
M3 (MSVM) || 85% 100% 41s 32s 9s
M4 (DA) 89% 99% 35s 32s 3s
M5 (DT) 74% 96% 34s 31s 3s

Table 5.3: Table of results for the Euclidean Norm case of setting S3

For this analysis we utilized the acceleration considering spatial and spectral domain features (setting
S4). The addition of the spectral features seems to retain the test accuracy at a high level meaning
92% as seen in Table 5.4 by the Discriminant Analysis method (M4). Based on Figure 5.4, we
also have the same distribution of misclassifications as in the previous cases. We notice that we have a
decrease in the performance of the methods when adding spectral features. This is an issue that needs
further investigation and it is also addressed in Chapter 6. We also observe a big decline in the accuracy
of the method M3 (MSVM) an issue that also needs further research.
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S4
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 85% 91% 37s 28s 9s
M2 (K-NN) 67% 100% 33s 31s 2s
M3 (MSVM) || 44% 49% 13m 10m 3m
M4 (DA) 92% 100% 31s 29s 2s
M5 (DT) 7% 97% 30s 28s 2s

Table 5.4: Table of results for the Euclidean Norm case of setting S4

In this particular setting of gyroscope data using spatial and spectral features (setting S5), the
Naive Bayes method (M1) achieved the highest test accuracy of 89%. Based on Table 5.5, we can see
a similarity comparing with the previous settings where only spatial features were used, but the addition
of the spectral features caused a small differentiation in the distribution of misclassified observations.
This can be seen in Figure 5.5 by the fact that we not only have more misclassifications for the two
turns, but we also observe a higher number of misclassifications for the ball kicking activities. This
phenomenon can be explained by the fact that these are the two most commonly misplaced activities,
meaning the ball kicking and the turning, since the movement and behavior of the legs of the player is
very similar between a pass and a shot and also between the two different turns.

S5
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 89% 96% 37s 28s 9s
M2 (K-NN) 67% 100% 33s 31s 2s
M3 (MSVM) || 79% 100% Sm 4m 1m
M4 (DA) 88% 100% 30s 28s 2s
M5 (DT) 72% 95% 32s 30s 2s

Table 5.5: Table of results for the Euclidean Norm case of setting S5
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The last classification scheme is the one including the acceleration and gyroscope data along with all
of the features, including the spatial and spectral ones (setting S6). The Discriminant Analysis
method (M4) was the method that performed the best test accuracy of 88% as inferred by the Table
5.6. The distribution of misclassified observations followed a very similar pattern with the previous
case, having the two turns as the main source of confusion as seen by the Figure 5.6. We also see a very
low performance of the method M3 (MSVM), an issue that can be clarified through additional future
research.

S6
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 85% 91% 39s 30s 9s
M2 (K-NN) 66% 100% 33s 31s 2s
M3 (MSVM) || 28% 30% 14m 11m 3m
M4 (DA) 88% 99% 34s 31s 3s
M5 (DT) 73% 96% 34s 31s 3s

Table 5.6: Table of results for the Euclidean Norm case of setting S6
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5.1.2. Graphs
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Figure 5.1: Confusion Matrix of M4 (DA) for the setting S1 with predictive accuracy of 92% for the Euclidean Norm case.
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Figure 5.2: Confusion Matrix of M3 (MSVM) for the setting S2 with predictive accuracy of 92% for the Euclidean Norm

case.
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Figure 5.3: Confusion Matrix of M4 (DA) for the setting S3 with predictive accuracy of 89% for the Euclidean Norm case.
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Figure 5.4: Confusion Matrix of M4 (DA) for the setting S4 with predictive accuracy of 92% for the Euclidean Norm case.
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Figure 5.5: Confusion Matrix of M1 (NB) for the setting S5 with predictive accuracy of 89% for the Euclidean Norm case.
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Figure 5.6: Confusion Matrix of M4 (DA) for the setting S6 with predictive accuracy of 88% for the Euclidean Norm case.
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5.2. Raw data case for the classification of four activities

This case involves the classification of four activities which are the short pass, the shot, the 90 degree

turn and the 180 degree turn. The data were used in their raw form which means that we had the
acceleration and gyroscope signals in the form of three dimensional axis (X,Y,Z). The next section
involves some comparisons and observations regarding the quality and behavior of the methods using
the graphs of Section Graphs. The models that were taken into account are the M1:Naive Bayes
(NB), M2:K-nearest neighbors (K-NN), M3:Multiclass Support Vector Machines
(MSVM), M4 :Discriminant Analysis (DA), M5:Decision Trees (DT). The classification is
done in the following six different settings but we focus on the method with the highest accuracy which
is selected for each setting.

e S1: Raw acceleration data of the sensors using only spatial domain
features

e S2: Raw gyroscope data of the sensors using only spatial domain features

e S3: Raw mixed acceleration and gyroscope data of the sensors using only
spatial domain features

e S4: Raw acceleration data of the sensors using spatial and spectral
domain features

e S5: Raw gyroscope data of the sensors using spatial and spectral domain
features

e S6: Raw mixed acceleration and gyroscope data of the sensors using
spatial and spectral domain features
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5.2.1. Evaluation

We considered a data set consisting of 40 subsets of each action (pass, shot, 90 degree turn, 180 degree
turn). For the training of the methods we used 70% of the data and 30% for the validation or testing.
In order to reduce the error, each classification scheme was evaluated 100 times and only the sums of
confusion matrices are shown for each scheme in the Section Graphs. Also, in the confusion matrices
of the Section Graphs, we include the percentages of correctly predicted observations for each class in
blue color, and the percentage of misclassifications in pink, again for the specific class. The accuracies
presented in the descriptions of this section are the highest average accuracies achieved between the
models for the test data over the 100 times evaluated schemes. For this section, under every evaluation
of a setting, we include a table with additional information including the average percentage of the
accuracy for the test data and also for the training data, along with the computational time for every
method in seconds. The computational time is given in three different numbers, the total time, the
time for the training of the method and the time for the testing or validation. Both the test times and
train times are based on 100 runs, achieving an improved prediction for the test accuracy and also for
the train accuracy.

For the classification of the acceleration data for the spatial features (setting S1) the highest test
accuracy achieved is 94% by the Naive Bayes method (M1) as can be seen from the Table 5.7. We
can observe from Figure 5.7 of Section Graphs that apart from the successfully classified observations,
we have a very small number of misclassifications which are well explained by the fact that the two
turns are very similar. As an indication, the model can confuse in some simulations the kind of turn
that it is performed. The reason why the method M4 (DA) performed so poorly remains a matter that
can be discussed more in future research.

S1
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 94% 97% 46s 30s 16s
M2 (K-NN) 91% 100% 40s 38s 2s
M3 (MSVM) || 93% 100% 39s 31s 8s
M4 (DA) 57% 100% 33s 30s 3s
M5 (DT) 1% 96% 33s 30s 3s

Table 5.7: Table of results for the Raw Data case of setting S1

For the classification of the gyroscope data using only spatial features (setting S2), the MSVM (M3)
model achieved the highest test accuracy of 99% as inferred by the Table 5.8. This percentage also
consists the highest test accuracy achieved between the settings of the raw data case and the euclidean
data case. As we can also see from Figure 5.8 we have a very small number of misclassified observations.
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S2
Method Test accuracy Train accuracy Total time | Test time Train time
Ml (NB) 97% 100% 52s 33s 19s
M2 (K-NN) 94% 100% 34s 32s 2s
M3 (MSVM) || 99% 100% 40s 31s 9s
M4 (D ) 62% 100% 38s 34s 4s
M5 (DT 80% 98% 45s 42s 3s

Table 5.8: Table of results for the Raw Data case of setting S2

For the case of mixed data (setting S3) we have again a very small number of misclassifications for
the two turns as we can see from the Figure 5.9. The highest test accuracy level was achieved by the
NB method (M1) being 93% as indicated in Table 5.9.

S3
Method Test accuracy Train accuracy Total time | Test time Train time
Ml (NB) 93% 95% 53s 35s 18s
M2 (K-NN) 89% 100% 35s 33s 2s
(MSVM) 92% 100% 47s 38s 9s
M4 (DA) 57% 100% 33s 30s 3s
M5 (DT) 2% 96% 38s 35s 3s

Table 5.9: Table of results for the Raw Data case of setting S3

For the classification of the acceleration data using the spatial and spectral domain features (setting
S4) we get a similar misclassification rate with the previous cases. The two turns are the main activities
that create a very small confusion to the model, and that is the main observation that can be made for
this particular scheme based on Figure 5.10. The largest test accuracy was achieved by the NB method
(M1) being 94% as can be inferred from Table 5.10. In this case the MSVM (M3) model is not included
since the running time was extremely long. The process was stopped after 30 minutes of running time.
Moreover we can see that the method M2 (K-NN) provided a very low accuracy and this is a matter of
further future discussion.
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S4
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 94% 97% 59s 36s 23s
M2 (K-NN) 63% 100% 37s 35s 2s
M3 (MSVM) || - - >30m - -
M4 (DA) 75% 100% 37s 34s 3s
M5 (DT) 1% 96% 33s 30s 3s

Table 5.10: Table of results for the Raw Data case of setting S4

The current scheme involves the classification of the gyroscope data utilizing the spatial and spectral
features (setting S5). In this case we can observe a minimal misclassification rate only for the error
of misinterpretation of some passes as a shot, while the two turns have a slightly better prediction
rate judging by the Figure 5.11. The performance of NB method (M1) approximates the highest test
accuracy at 97% between the models as indicated by the Table 5.11. In this case the MSVM method (M3)
is also skipped, since the running time was extremely long. The running of the code was terminated
after a period of 30 minutes.

S5
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 97% 100% 54s 32s 22s
M2 (K-NN) 66% 100% 38s 35s 3s
M3 (MSVM) || - - >30m - -
M4 (DA) 82% 100% 38s 34s 4s
M5 (DT) 83% 98% 37s 34s 3s

Table 5.11: Table of results for the Raw Data case of setting S5

In this case we use the acceleration and gyroscope data with the spatial and spectral features
(setting S6). The phenomenon of confusion between the two turns can be observed in this setting as
in the previous ones. Additionally a very small amount of misclassification is seen, as some passes
were misinterpreted as a shot based on Figure 5.12. The observations made for this scheme agree with
the distribution of misclassifications of the previous ones. The highest test accuracy rate between the
models reaches 92% for the NB method (M1) as indicated in Table 5.12. For this case, the MSVM method
(M3) is also omitted since the computational time was very long. As in the previous cases, the running
of the script was stopped approximately after a period of 30 minutes.
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S6
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 92% 96% 57s 35s 22s
M2 (K-NN) 59% 100% 37s 35s 2s
M3 (MSVM) || - - >30m - -
M4 (DA) 79% 100% 38s 34s 4s
M5 (DT) 70% 96% 37s 34s 3s

Table 5.12: Table of results for the Raw Data case of setting S6
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5.2.2. Graphs
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Figure 5.7: Confusion Matrix of M1 for the setting S1 with predictive accuracy of 94% for the Raw Data case.
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Figure 5.8: Confusion Matrix of M3 for the setting S2 with predictive accuracy of 99% for the Raw Data case.
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5.3. Comparison between the Euclidean Norm case and the raw
data case

First of all we compare the most important information of the relative tables and figures for the
setting S1. We can observe that the maximum test accuracy is achieved by the method M4 (DA) being
92% for the Euclidean Norm case with total computational time of 34s. For the raw data case the highest
percentage is produced by the method M1 (NB) and reaches 94% with total computational time of 46s.
We observe that the test accuracy is improved by a small fraction of 2% for the raw data case, since
the three dimensional form of the acceleration signals can provide increased information and therefore
can help the model to capture the patterns of the data for each activity. A similar pattern we observe
for the two confusion matrices of Figures 5.1 and 5.7, having a similar distribution of misclassifications.
Because of the larger amount of processing for the raw data, the model is 12s slower.

In this case we have the comparison for the setting S2. The largest test accuracy is achieved by the
method M3 (MSVM) and reaches 92% with total computational time of 40s for the Euclidean Norm
case. For the raw data case the perfect test accuracy is produced again by the method M3 (MSVM)
reaching 99% with a total computational time of 40s. We observe that the model behaves more precisely
for the raw data providing an extra test accuracy of 7% having almost no misclassifications, while the
Euclidean Norm case reaches a lower but still very high percentage of accuracy as inferred by Figures 5.2
and 5.8. This can be explained again by the fact that the raw data provide some additional information
for the identification of the classes by the model.

Now we compare the differences between the two cases for the setting S3. For the Euclidean Norm
case we obtain the largest test accuracy by the method M4 (DA) with a percentage of 89% and total
computational time of 35s. The raw data case scores the maximum test accuracy at 93% with the
method M1 (NB) with total computational time of 53s. We have an additional accuracy of 4% for the
raw data case. A similar distribution of misclassifications can be observed on the two relative confusion
matrices of Figures 5.3 and 5.9, as the resemblance in the performance of the two turns is the source of
small confusion in the identification of classes by the models. Also the normal increase in time duration
(18s) for the model of the raw data is observed, due to the increased processing time.



50 5. Evaluation of results

Here follows the comparison for the setting S4. The highest test accuracy of 92% is achieved by the
model M4 (DA) for the Euclidean data case with total computational time of 31s. The maximum test
accuracy for the raw data case is 94% and it is obtained by the model M1 (NB) with total computational
time of 59s. The extra accuracy for the raw data is 2% for this case. We observe a similar distribution
of misclassifications because of the similarity between the two turns based on the relative confusion
matrices of Figures 5.4 and 5.10. We also see the difference in computational times, having the raw
data case slower by 28s due to the nature of the raw data.

The next comparison concerns the setting S5. The biggest test accuracy obtained is 89% by the
method M1 (NB) for the Euclidean data case with total computational time of 37s. The relative test
accuracy of the raw data case is 97% and is achieved by the method M1 (NB) with total computational
time of 54s. The added accuracy of 8% is observed in favor of the raw data. We can explain the small
prediction error in the Figures 5.5 and 5.11, since most of the confusion happened between the two
similar turns and also between the two similar ball kicking activities. As far as the raw data case,
the prediction is almost perfect having mainly a small number of misinterpretations between the two
ball kicking activities. The success of the raw data case can be attributed to the increased amount of
information by the three dimensional form of the data. Moreover the difference in computational time
is 17s more for the raw data case since it deals with more descriptive data.

Regarding the setting S6 we have the largest test accuracy of 88% by the method M4 (DA) with
a total computational time of 34s for the Euclidean data case. For the raw data case we obtain the
highest test accuracy with the method M1 (NB) having 92% with 57s of total running time. The
improvement of prediction is 4% for the raw data case. We can infer in this case also, that the more
detailed information by the raw data contributed to a better precision but with the cost of 23s of time
duration. Furthermore, based on the Figures 5.6 and 5.12 we see the same pattern of misclassifications
compared to the previous cases, meaning that the two turns are more likely to be confused by the
relative model.
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5.4. General discussion of settings for all cases

We can observe that in the Euclidean Norm case the method M4 (DA) holds the highest percentages
for almost all the settings (51,53,54,55,56) with the exception of setting S2 for which the method M3
(MSVM) achieves the highest test accuracy. The differentiation of the features with the addition of the
spectral ones seem to not make a significant difference in the highest test accuracies for the settings
of the Euclidean Norm case. For the raw data case the method M1 (NB) obtained the largest test
accuracies for five settings (S1,53,54,55,56) while the most precise method for the setting S2 was the
M3 (MSVM) which consists a strong common trait of the two cases discussed. For the raw data case the
test accuracies are significantly higher compared to the ones for the Euclidean Norm case because of the
additional information that the true three dimensional form of data possess. This additional accuracy
comes with a cost of higher computational time because of the larger processing time by the methods
as extensively explained in Section 5.3. The differentiation of the accuracy because of the addition of
the spectral features is still very small similar to the Euclidean data case. Another observation that can
be made for the Euclidean data case, is that with the addition of spectral features to the spatial ones
(54,55,56), the test accuracy of method M4 (DA) reaches the highest percentage for settings S4 and S6
while the M1 method (NB) follows with a similar rate while it reaches the maximal accuracy for the
setting S5. This fact consists a characteristic shared by the raw data case where we have the largest
accuracies for the settings with the mixed features (S4,55,56) with the method M1 (NB). The method
M1 (NB) seems to have a significant strength of prediction when it comes to cases that included spectral
domain features, while the method M3 (MSVM) seem to establish the most fitting option when it comes
to classifying data that include spatial features like the ones utilized in this research. As mentioned
before the overall accuracy achieved by the raw data with spatial and spectral features (54,55,56) is
higher compared to the same settings of the Euclidean data case. The most effective settings to use
are the S1 and S2 for the Euclidean Norm case and the S2 and S5 for the raw data case, based on the
experience from the previous results.
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5.5. Euclidean Norm case for the classification of all seven activi-
ties

This analysis involves the classification of seven activities which are the short pass, the shot, the long
pass, the 90 degree turn, the 180 degree turn, the jump and the running. The processing of data
was done using the Euclidean Norm of the raw acceleration and gyroscope signals. The next section
involves some comparisons and observations regarding the quality and behavior of the methods using the
graphs of Section Graphs. The models that were taken into account are the M1:Naive Bayes (NB),
M2 :K-nearest neighbors (K-NN),M3:Multiclass Support Vector Machines (MSVM),
M4:Discriminant Analysis (DA), M5:Decision Trees (DT). Similar to the previous cases
the classification is done in the following six different settings but focusing on the method with the
highest accuracy which is selected for each setting.

e S1: Euclidean Norm of the acceleration data of the sensors using only
spatial domain features

e S2: Euclidean Norm of the gyroscope data of the sensors using only
spatial domain features

e S3: Euclidean Norm of the mixed acceleration and gyroscope data of the
sensors using only spatial domain features

e S4: Euclidean Norm of the acceleration data of the sensors using spatial
and spectral domain features

e S5: FEuclidean Norm of the gyroscope data of the sensors using spatial
and spectral domain features

e S6: Euclidean Norm of the mixed acceleration and gyroscope data of the
sensors using spatial and spectral domain features
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5.5.1. Evaluation

For this case we considered a data set consisting of 40 subsets of each action (pass, shot, long pass,
90 degree turn, 180 degree turn, jump, running). The same procedure of the previous case with the four
classes was followed meaning that for the training of the methods we used 70% of the data and 30% for
the validation or testing. In order to reduce the error, each classification scheme was evaluated 100 times
and only the sums of confusion matrices are shown for each scheme in the Section Graphs. Also, in the
confusion matrices of the Section Graphs, we include the percentages of correctly predicted observations
for each class in blue color, and the percentage of misclassifications in pink, again for the specific class.
The accuracies presented in the descriptions of this section are the highest average accuracies achieved
between the models for the test data over the 100 times evaluated schemes. We focus our comments and
comparisons mainly on the average test accuracy because this is the precision of prediction on the test
data for which we trained the model, as mentioned before. For this section also, under every evaluation
of a setting, we include a table with additional information including the average percentage of the
accuracy for the test data and also for the training data, along with the computational time for every
method in seconds. The computational time is given in three different numbers, the total time, the
time for the training of the method and the time for the testing or validation. We mention that both
the test times and train times are based on 100 runs, scoring an improved rate for the test accuracy
and also for the train accuracy.

Based on the Table 5.13 we infer that the highest test accuracy for the setting S1 is achieved
by the method M4 (DA) being 81%. Also by observing the Figure 5.13 we see a small amount of
misclassification between the two turns due to the similarity of the two activities and also some confusion
in the prediction of the three ball kicking activities, meaning the shot, the long pass and the regular
pass. The error for the last three activities is also a natural observation since the movements completed
for the ball kicking are also very similar.

S1
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 74% 81% 38s 26s 12s
M2 (K-NN) 7% 100% 30s 28s 2s
M3 (MSVM) || 80% 100% o1s 31s 20s
M4 (DA) 81% 93% 31s 28s 3s
M5 (DT) 62% 93% 33s 30s 3s

Table 5.13: Table of results for the Euclidean Norm case of setting S1
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The largest test accuracy for the setting S2 is 85% as seen by the Table 5.14 and it is obtained by
the method M3 (MSVM). Comparing the Figure 5.14 with the Figure 5.13 we can see a very similar
distribution of misclassifications with the only important difference that in the S2 case we have a smaller
amount of wrongly predicted activities. The fact that the two turns and the ball kicking activities can
cause the existing error can be observed in this case also. The reason why the setting S2 performs
more accurately compared to S1 and S3 (Table 5.13 and Table 5.15) could be that the gyroscope data
contain patterns more recognizable that for example the mixed data setting S3 do not contain due to
the combination of signals. This is still an issue that requires further analysis.

S2
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 78% 87% 39s 27s 12s
M2 (K-NN) 80% 100% 30s 28s 2s
M3 (MSVM) || 85% 99% 68s 37s 31s
M4 (DA) 80% 95% 31s 28s 3s
M5 (DT) 64% 92% 30s 28s 2s

Table 5.14: Table of results for the Euclidean Norm case of setting S2

For the setting S3 we obtain the largest test accuracy of 80% by the method M4 (DA) as inferred
by the Table 5.15. From Figure 5.15 it is clear that the main source of confusion for the predictions of
the model are the movements that share the same characteristics. The trait that is common between
our current figure and the previous ones is the misinterpretation of the two turns and the ball kicking
movements. Generally the model behaves in an efficiently accurate way, since apart from the small
amount of misclassified observations, we see a high percentage of prediction for each individual activity

on average.

S3
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 73% 81% 41s 28s 13s
M2 (K-NN) 73% 100% 30s 28s 2s
M3 (MSVM) || 78% 100% 558 31s 24s
M4 (DA) 80% 93% 31s 28s 3s
M5 (DT) 64% 93% 36s 33s 3s

Table 5.15: Table of results for the Euclidean Norm case of setting S3




5.5. Euclidean Norm case for the classification of all seven activities 55

For the setting S4 we obtain the highest test accuracy of 86% which is also the largest among all the
settings for the Euclidean data case if we observe the Table 5.16. This percentage is achieved by the
method M4 (DA). Again we can see from Figure 5.16 a small amount of misinterpretations regarding
the shots, the passes and the long passes, but we also see a reduction of misclassifications between the
two turns. This can be caused due to the addition of spectral features to the specific setting. The
method M3 is not filled in the table due to the extreme amount of running time. The process was
terminated after 40 minutes of running. An additional observation that needs further examination is
that the performance of method M2 (K-NN) decreases when the spectral domain features are added.

S4
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 76% 84% 42s 28s 14s
M2 (K-NN) 63% 100% 30s 28s 2s
M3 (MSVM) || - - >40m - -
M4 (DA) 86% 96% 30s 27s 3s
M5 (DT) 67% 93% 31s 28s 3s

Table 5.16: Table of results for the Euclidean Norm case of setting S4

The setting S5 has the maximal test accuracy of 83% produced by the method M4 (DA) of the Table
5.17. The distribution of wrong predictions are shared especially between the ball kicking activities,
having also a small amount of error between the two turns as inferred by the Figure 5.17. The previous
observation is a pattern that can be seen in the previous figures of the other settings. The results of
method M3 are missing due to the very long amount of running time. The computations were stopped

after the approximate time of 40 minutes.

S5
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 79% 88% 42s 28s 14s
M2 (K-NN) 59% 100% 31s 29s 2s
M3 (MSVM) || - - >40m - -
M4 (DA) 83% 96% 33s 29s 4s
M5 (DT) 66% 93% 31s 28s 3s

Table 5.17: Table of results for the Euclidean Norm case of setting S5
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For the setting S6 we receive a test accuracy reaching the 85% by the method M4 (DA), based on
Table 5.18. On Figure 5.18 we see the amount of misinterpreted activities spread out mainly to the
ball kicking activities and the turns, a pattern observed multiple times in our previous descriptions and
figures. We can infer that our models for the six settings behaved satisfyingly for the distinction of
completely different activities like the jump and the ball kicking activities, but had some small difficulties
in the recognition of the classes of similar nature. The small decrease in the error of predictions for the
last three settings can be attributed to the addition of the spectral features in our analysis. In this last
case the method M3 is also omitted because of the large amount of computational time. Similar to the
previous cases the running of the code was terminated when exceeded the duration of 40 minutes.

S6
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 76% 83% 43s 29s 14s
M2 (K-NN) 58% 100% 30s 28s 2s
M3 (MSVM) || - - >40m - -
M4 (DA) 85% 96% 31s 28s 3s
M5 (DT) 64% 93% 31s 28s 3s

Table 5.18: Table of results for the Euclidean Norm case of setting S6
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5.5.2. Graphs
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Figure 5.13: Confusion Matrix of M4 (DA) for the setting S1 with predictive accuracy of 81% for the Euclidean Norm

case.
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Figure 5.14: Confusion Matrix of M3 (MSVM) for the setting S2 with predictive accuracy of 85% for the Euclidean Norm

case.
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Figure 5.15: Confusion Matrix of M4 (DA) for the setting S3 with predictive accuracy of 80% for the Euclidean Norm

case.
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Figure 5.16: Confusion Matrix of M4 (DA) for the setting S4 with predictive accuracy of 86% for the Euclidean Norm
case.
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Figure 5.17: Confusion Matrix of M4 (DA) for the setting S5 with predictive accuracy of 83% for the Euclidean Norm
case.
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Figure 5.18: Confusion Matrix of M4 (DA) for the setting S6 with predictive accuracy of 85% for the Euclidean Norm
case.
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5.6. Raw data case for the classification of all seven activities

This case involves the classification of seven activities which are the short pass, the shot, the long pass,
the 90 degree turn, the 180 degree turn, the jump and the running. The data were used in their raw
form which means that we had the acceleration and gyroscope signals in the form of three dimensional
axis (X,Y,Z). The next section involves some comparisons and observations regarding the quality and
behavior of the methods using the graphs of Section Graphs. The models that were taken into account
are the M1 :Naive Bayes (NB),M2:K-nearest neighbors (K-NN),M3:Multiclass Support
Vector Machines (MSVM),M4:Discriminant Analysis (DA),M5:Decision Trees (DT).
The classification is done in the following six different settings but we focus on the method with the
highest accuracy which is selected for each setting.

e S1: Raw acceleration data of the sensors using only spatial domain
features

e S2: Raw gyroscope data of the sensors using only spatial domain features

e S3: Raw mixed acceleration and gyroscope data of the sensors using only
spatial domain features

e S4: Raw acceleration data of the sensors using spatial and spectral
domain features

e S5: Raw gyroscope data of the sensors using spatial and spectral domain
features

e S6: Raw mixed acceleration and gyroscope data of the sensors using
spatial and spectral domain features
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5.6.1. Evaluation

For this case we considered a data set consisting of 40 subsets of each action (pass, shot, long pass,
90 degree turn, 180 degree turn, jump, running). The same procedure of the previous case with the four
classes was followed meaning that for the training of the methods we used 70% of the data and 30% for
the validation or testing. In order to reduce the error, each classification scheme was evaluated 100 times
and only the sums of confusion matrices are shown for each scheme in the Section Graphs. Also, in the
confusion matrices of the Section Graphs, we include the percentages of correctly predicted observations
for each class in blue color, and the percentage of misclassifications in pink, again for the specific class.
The accuracies presented in the descriptions of this section are the highest average accuracies achieved
between the models for the test data over the 100 times evaluated schemes. We focus our comments and
comparisons mainly on the average test accuracy because this is the precision of prediction on the test
data for which we trained the model, as mentioned before. For this section also, under every evaluation
of a setting, we include a table with additional information including the average percentage of the
accuracy for the test data and also for the training data, along with the computational time for every
method in seconds. The computational time is given in three different numbers, the total time, the
time for the training of the method and the time for the testing or validation. We clarify that both the
test times and train times are based on 100 runs, obtaining an improved precision for the test accuracy
and also for the train accuracy.

In the setting S1 we observe the highest test accuracy between the methods at 87% obtained by the
model M3 (MSVM) as seen by the Table 5.19. In Figure 5.19 we can see a higher rate of misclassifications
for the activities of similar nature, meaning the two turns and the three ball kicking activities. Apart
from that we can see a significantly smaller amount of misclassifications between the other classes that
are not similar, as the long pass and the 180 degrees turn for example.

S1
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 86% 92% 58s 31s 27s
M2 (K-NN) 84% 100% 32s 30s 2s
M3 (MSVM) || 87% 100% 53s 33s 20s
M4 (DA) 83% 100% 34s 30s 4s
M5 (DT) 63% 93% 33s 29s 4s

Table 5.19: Table of results for the Raw Data case of setting S1
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Regarding the setting S2 we see the highest test accuracy achieved by the method M3 (MSVM)
reaching 92% as inferred by the Table 5.20. This is the maximal percentage reached between all the six
settings of our current case of raw data analysis for all the activities. Based on Figure 5.20 we see a very
high prediction rate between non similar activities but we see an increased number of misinterpretations
for the ball kicking activities. A trait that is not observed in this setting but shared by most of the
cases is the large amount of confusion between the two turns. The error of prediction for the non similar
activities remains at a very low level, a characteristic that is shown in our previous setting, as well as
in most of the comparisons of this project. We observe that the setting S2 achieves higher precision
compared to S1 and S3 (Table 5.19 and Table 5.21) probably because the gyroscope data contain highly
identifiable patterns that the mixed data setting S3 lacks due to the combination of signals. Further
examination of the issue is required to achieve better clarification.

S2
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 87% 94% 58s 31s 27s
M2 (K-NN) 86% 100% 32s 30s 2s
M3 (MSVM) || 92% 100% 54s 34s 20s
M4 (DA) 86% 100% 39s 30s 34s
M5 (DT) 76% 96% 34s 30s 4s

Table 5.20: Table of results for the Raw Data case of setting S2

The setting S3 presents the maximal test accuracy between the methods as 87% achieved by the
method M1 (NB) from Table 5.21. The Figure 5.21 shows a distribution of misclassifications very
similar to our previous settings, having the largest part of the error explained by the very high similarity
between the two turns and between the ball kicking activities, since the legs of the players behave almost
identically when performing the relative moves.

S3
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 87% 93% 58s 31s 27s
M2 (K-NN) 83% 100% 32s 30s 2s
M3 (MSVM) || 84% 100% 55s 33s 22s
M4 (DA) 85% 99% 34s 30s 4s
M5 (DT) 65% 94% 34s 30s 4s

Table 5.21: Table of results for the Raw Data case of setting S3



5.6. Raw data case for the classification of all seven activities 63

In the setting S4 the optimal test accuracy is obtained by the method M1 (NB) in the Table 5.22,
being 85%. Figure 5.22 provides information of a pattern similar to the previous cases, having the
largest amount of error attributed to the ball kicking activities and the turns. A lighter distribution
of misclassifications can be seen between the activities of different kind of performance by the players.
The results of method M3 are skipped due to the extremely long running time. The running process
of the code was stopped after 40 minutes duration. At this point we see again that the method M2
(K-NN) gives a low accuracy when spectral features are added, a matter that can be discussed further
in future research.

S4
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 85% 93% 67s 33s 34s
M2 (K-NN) 56% 100% 34s 31s 3s
M3 (MSVM) || - - >40m - -
M4 (DA) 81% 100% 36s 32s 4s
M5 (DT) 64% 93% 35s 31s 4s

Table 5.22: Table of results for the Raw Data case of setting S4

For the setting S5 the largest test accuracy is achieved by the model M1 (NB) reaching 89% as seen
by the Table 5.23. In Figure 5.23 we have a stronger confusion on the distinction of the ball kicking
activities and an almost perfect prediction on the identification of the two turns. Furthermore, a very
low number of misclassified observations can be seen for the classes of different nature. The model
M3 is omitted in this case because of the extreme computational time. The running of the code was
terminated after exceeded the duration of 40 minutes.

S5
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 89% 95% 66s 32s 34s
M2 (K-NN) 57% 100% 33s 31s 2s
M3 (MSVM) || - - >40m - -
M4 (DA) 82% 100% 35s 31s 4s
M5 (DT) 75% 96% 35s 31s 4s

Table 5.23: Table of results for the Raw Data case of setting S5
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The largest test accuracy of 85% is achieved by the method M1 (NB) for the setting S6 based on
Table 5.24. We can infer from Figure 5.24 a distribution of correctly and wrongly classified observations
similar to most of the previous cases, having a high error for the two turns and the ball kicking activities
and an improved prediction between the other classes. The model M3 is missing because of the extreme
running time. As in the previous cases, the running of the code was stopped after 40 minutes duration.

S6
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 85% 93% 75s 39s 36s
M2 (K-NN) 52% 100% 33s 31s 2s
M3 (MSVM) || - - >40m - -
M4 (DA) 81% 100% 36s 31s 5s
M5 (DT) 65% 93% 37s 32s 5s

Table 5.24: Table of results for the Raw Data case of setting S6




5.6. Raw data case for the classification of all seven activities 65

5.6.2. Graphs
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Figure 5.19: Confusion Matrix of M3 (MSVM) for the setting S1 with predictive accuracy of 87% for the Raw Data case.
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Figure 5.20: Confusion Matrix of M3 (MSVM) for the setting S2 with predictive accuracy of 92% for the Raw Data case.
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Figure 5.21: Confusion Matrix of M1 (NB) for the setting S3 with predictive accuracy of 87% for the Raw Data case.
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Figure 5.22: Confusion Matrix of M1 (NB) for the setting S4 with predictive accuracy of 85% for the Raw Data case.
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Figure 5.23: Confusion Matrix of M1 (NB) for the setting S5 with predictive accuracy of 89% for the Raw Data case.
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Figure 5.24: Confusion Matrix of M1 (NB) for the setting S6 with predictive accuracy of 85% for the Raw Data case.
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5.7. Comparison between the Euclidean Norm case and the raw
data case

In this section we discuss the most important information we obtained for each setting and we
compare the Euclidean data case with the raw data case of the same setting. We begin with the setting
S1 for which we observe the maximal test accuracy of 81%, obtained by model M4 (DA) with total
computational time of 31s. For the raw data case we see an increased maximal test accuracy of 87% by
the model M3 (MSVM) with total running time of 53s. The increase in maximal accuracy is 6% in favor
of the raw data case. We can infer that the increased test accuracy for the raw data case is explained
due to the detailed information provided by the true three dimensional form of our data. The difference
of 22s in total computational time can be explained by the fact that the model of the raw data case
has way more information to process. The distribution of misclassifications is very similar between the
Figures 5.13 and 5.19, having an increased error of prediction between the similar activities, meaning
the ones related to the ball kicking and the two turns.

The setting S2 has the largest test accuracy at 85%, achieved by the model M3 (MSVM) with total
computational time of 68s for the Euclidean data case. For the raw data we observe the largest test
accuracy at 92% by the model M3 (MSVM) with total computational time of 54s. The difference in
maximal accuracy is therefore 7% for the raw data. As in the previous setting we see an increased
test accuracy by the raw data case that can be well explained by the more descriptive form of data
that consist the input of our model. The difference in total running time is 14s more for the Euclidean
Norm case. The Figures 5.14 and 5.20 show a similar spreading of the misclassified observations mainly
between the ball kicking activities. One important difference between the two Figures is that in the
raw data case we see a significantly lower amount of misclassifications between the two turns.

Regarding the setting S3 we have the largest test accuracy at 80% by the method M4 (DA) with
total computational time of 31s for the Euclidean data case. The maximal test accuracy for the raw
data case is 87% by the method M1 (NB) with total computational time of 58s. The improvement for
the test accuracy is 7% for the raw data case. We also observe for this setting the increase in accuracy
for the raw data which can be explained by the difference in the handling of data, presenting them in
their natural three dimensional structure. The additional running time of 27s for the raw data model is
attributed to the larger amount of input data for processing. The information of Figures 5.15 and 5.21
is very close in comparison, having the largest amount of error shared between the predictions of the
ball kicking activities and also between the two turns, seeing a lighter distribution of misinterpretations
for the other classes.
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The maximal test accuracy achieved for the setting S4 of the Euclidean data case is 86% by the
method M4 (DA) with total computational time of 30s. The highest test accuracy for the raw data
case is 85% achieved by the method M1 (NB) with a total computational time of 67s. The accuracy is
reduced by 1% for the raw data. The test accuracy of the two cases is almost identical and the increase
in total computational time for the raw data case (37s) is due to the larger amount of input information
for the running of the model. Based on the Figures 5.16 and 5.22 we see a very close rate of prediction
between the two settings, retaining a higher error for the activities of similar nature.

The setting S5 shows a maximal test accuracy at 83% by the model M4 (DA) with total compu-
tational time of 33s for the Euclidean data case. The largest test accuracy of 89% is obtained by the
model M1 (NB) for the raw data case with total computational time of 66s. We observe an increase in
accuracy for the raw data case by 6% and also an addition of 33s to the total running time of the model
as observed in most of the previous descriptions. The main observation with respect to the Figure 5.23
is the very high distinction between the two turns as opposed to the Figure 5.17. Again the higher
misclassification rate for the ball kicking activities of both figures, still holds.

The largest test accuracy for the setting S6 is 85% and it is obtained by the method M4 (DA) for the
Euclidean data case with total computational time of 31s. For the raw data case we have the maximal
percentage also at 85% achieved by the model M1 (NB) with total computational time of 75s. Here we
observe an identical prediction rate, having again a larger total computational time by 44s for the raw
data case. The Figures 5.18 and 5.24 show a distribution of misinterpreted observations very similar
to the previous cases, indicating the lower rate of prediction of the models for activities that contain
movements and performance of similar nature.
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5.8. General discussion for all settings

In this paragraph we present the most important characteristics and observations concerning a
general discussion between all of the settings of the Euclidean and raw data cases. The classification
of all seven activities using the Euclidean Norm receives most of the maximal percentages of accuracy
by the method M4 (DA) for the settings S1,53,54,5S5,56. The only exemption is the setting S2 which
reaches the largest test accuracy with the method M3 (MSVM). The addition of spectral features to the
analysis seems to raise the highest prediction rates for the settings S4,56 compared to the respective
cases with only spatial features (S1,S3), while the percentage of S5 has a slight decrease compared to
the respective setting S2 containing only spatial features. Regarding the raw data case we obtain the
highest test accuracies for the settings S3,54,55,56 from the method M1 (NB) while the settings S1 and
S2 achieve their maximal accuracy through the method M3 (MSVM). This is a characteristic similar to
the Euclidean data case, since the M3 (MSVM) also achieves the highest test accuracy for the setting
S2 and also for the setting S1 the M3 (MSVM) is almost identical to the largest percentage of M4
(DA). We can observe a significant increase in the overall accuracies of the raw data case compared
to the Euclidean Norm case, since the input information of our models is a lot more extensive and
representative of the data pattern of each class or activity. The additional precision comes with a
raised computational cost as extensively discussed in Section 5.7. For the raw data case, the addition
of spectral features to the analysis seems to cause a small decrease in accuracy for the settings S4,55,56
compared to the respective settings S1,52,S3 without the spectral features. A trait shared by the
Euclidean Norm case and the raw data case is that the method M3 (MSVM) scores a sufficient rate
of prediction for the spatial feature cases S1,52. The difference between the two cases is that for the
Euclidean data the method M4 (DA) has the highest prediction rates for the mixed feature settings
(54,55,56), while the raw data case achieves the best predictions through the method M1 (NB) for the
same mixed feature settings. Based on all the previous observations we can infer that the method M3
(MSVM) counsist a very strong and robust classifier when it comes to recognition of data that contain
spatial features, and this observation seems to exist for both the Euclidean and raw data cases. Another
important observation is the strong predictive accuracy of the method M4 (DA) and M1 (NB) for the
classification of mixed feature based data of the Euclidean Norm and raw data cases respectively. Based
on our experience, the setting S2 is recommended as the most effective choice for the extended raw data
case, while for the Euclidean Norm case the setting S4 is preferred.
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5.9. Connection to literature

In this Section we present the comparisons and observations between the results of our classification
and the reviews of Chapter 2. The possible similar patterns and behavior of the models discussed, can
prove to clarify and shed light on the way of handling problems of classification in sports. Furthermore,
the comparison can help future researchers create a fundamental basis that will assist them in the
achievement of the desired high accuracy of their motion recognition and prediction.
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5.9.1. Comparison of current research and literature

In this paragraph we present a brief comparison of our study and the projects of Section 2.1. The
research [7] achieved a high accuracy of 90% using the Naive Bayes classifier, while we achieved the
second highest prediction rate for the same classifier at 97% for the setting S2 for the four activity
case of the raw data. Regarding the research [2] we see the highest prediction rate at 88.9% using the
k-Nearest Neighbors. In our project the K-Nearest Neighbors achieved the optimal accuracy at 94% for
the setting S2 for the four activity classification of the raw data case. The study [6] achieved the largest
accuracy by the SVM classifier at 96.7%, as mentioned by the researchers of the project[6]. In our case
the MSVM achieved the optimal percentage at 99% for the setting S2 of the four activity classification
of the raw data. In the next paragraphs we provide some detailed comparisons between our work and
studies of Section 2.3.

Classification in football and Skateboarding

The first significant similarity between our research and the skateboarding classification[10] is the
use of time windows in order to isolate the specific activities and movements relative to the experiment,
to obtain data that provide information with the least amount of noise. Additionally we utilized some
spatial features used by the researchers of the skateboarding analysis[10]. Moreover the skateboarding
analysis[10] utilized the raw data as well as norms of the described features, a plan that was also
followed in this research. The most significant common trait of our analysis and the skateboarding
classification[10] is the use of the Naive Bayes and Support Vector Machines classifiers. Both methods
scored a very high prediction rate of 97.8% for [10] as seen in Chapter 2. These methods also achieved
a very high accuracy in our research having the maximal percentage of 92% (setting S2) between all
the settings(S1,52,53,54,55,56) obtained by method M3 (MSVM) for the Euclidean Norm case for the
four activities (pass,shot,90 degree turn,180 degree turn). The same method achieved 85% accuracy
(setting S2) as the maximal percentage between all settings(S1,52,53,54,55,56) for the classification
using the Euclidean Norm for the case of all seven activities (pass,shot,long pass,90 degree turn,180
degree turn,jump,running). Regarding the classification of four activities using raw data we obtained
the highest result of the whole analysis at 99%, achieved by the method M3 (MSVM) for the setting
S2. For the classification of all seven activities using raw data we receive the highest percentage (92%)
between all the settings, achieved by the method M3 (MSVM) for the setting S2. It is important to
mention that for the case of four activities using raw data the method M1 (NB) achieved 97% accuracy
for the setting S5 which also is the highest score observed from the specific classifier in this project. We
can infer that the Support Vector Machines and the Naive Bayes methods consist very strong candidates
when it comes to classification in sports judging by the results of our analysis and also from [10].
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Classification in football and human physical activity

Comparing the research [13] with our analysis we observe the common approach of window segmen-
tation to utilize data relevant to the specific activities and to reduce noise and prediction error. The
Euclidean Norm of the signals is also utilized as a way of refining the data. Based on the results of
Chapter 2 for the relevant research [13], we see almost identical prediction rates for the Naive Bayes
and Support Vector Machines having 97.4% and 97.8% respectively. It is obvious that these results are
very similar to the results of the research [10]. We mention here also that for our research the most
effective methods was the M3 (MSVM) and M1 (NB). The highest percentage of M3 (MSVM) was 99%
for the setting S2 for the case of classification of four activities using the raw data. The largest accuracy
achieved by method M1 (NB) was 97% for the setting S5 for the approach of four activities using raw
data.
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Classification in football and Tennis

Regarding the research [12] we observe that the window based approach was applied by the researcher
in order to isolate and distinguish the useful data that concern the activities from the noise. The
Euclidean Norm is also used to handle the multidimensional form of the signals (X,Y,Z) for the 3D
space. The main classification method utilized for the research [12] is the Support Vector Machines, a
method that is also applied very often in our research while achieving very high prediction rates. We
mention that the author of [12] achieved 79% as the highest percentage of accuracy with the Support
Vector Machines while the same method of classification achieved the highest prediction accuracy for
our research, meaning 99% for the setting S2 for the case of classification of four activities using the raw
data. Regarding the classification of all seven activities the method M3 (MSVM) scored the highest
predictive precision of 92% for the setting S2 using the raw form of our data.

At this point we also need to include the most effective results of the method M3 (MSVM) for
our Euclidean Norm cases, since this consists the main feature utilized by the author of [12]. For the
classification of four activities, we achieved the percentage of 92% for setting S2, while we obtained the
accuracy of 85% for the recognition of all seven activities for the setting S2.
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Classification in football and Classification during a soccer match

Comparing the research [18] with our project we see the common use of the window segmentation
to obtain refined data relevant to the specific activities. Moreover, our analysis included some spatial
domain features utilized also in [18] meaning mean, variance, skewness and kurtosis. Some of the most
significant results of [18] are the ones obtained by SVM (99.9%) and NB (98.5%). In our case, we have
the method M3 (MSVM) and M1 (NB) which are very commonly used in our project, achieving also
the highest prediction accuracies of 99% (S2) for the four activity case of the raw data and 97% (S5)
for the same case. We mention that these are the maximal accuracies achieved in this research. For the
seven activity case the MSVM produced the largest accuracy of 92% (S2) for the raw data, while the
NB followed with 89% (S5) for the same case.
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5.10. Summary of classification of four and seven activities

At this section we present some summaries for the most important results of the analysis based on
the classification of four activities and also on the classification of seven activities. The descriptions
and Figures that follow are focused on the test accuracies for every method and for every setting. For
the Euclidean Norm case we present the percentages of the accuracies in bold when they exceed 79%.
For the raw data case we give the percentages that are above 85% in bold for a better distinction.

5.10.1. Summary of classification of four activities

Euclidean Norm

In Figure 5.25 we see that for the settings S1,52,S3 the accuracies are larger on average compared to
the settings that include also spectral domain features (S4,55,56). The reason for that can be that the
added spectral features introduce information less representative of each activity by giving numbers that
are similar to all the actions, reducing the identifiable patterns of each action. We can also see that the
highest percentages were achieved mainly for the settings S1 and S2, were we used the acceleration and
gyroscope data separately. This can be explained by the fact that each of the separate signals contain
a distribution that can be well identified by the methods, while by merging the data, the information
of the new signal present a pattern different and less unique for each activity of a specific class. We
mention that the most effective classifications were obtained by the method M4 (DA) (92%) for the
setting S1 and by the M3 (MSVM) for the setting S2 (92%). We also present the computational times
for the best three results, having 34s for the M4 (DA) of S1 (92%), 40s for the M3 (MSVM) of S2
(92%) and 31s for the M4 (DA) of S4 (92%). An observation that can be made is that the method
M3 (MSVM), while it has a high accuracy for the spatial feature settings, it gives significantly lower
percentages when spectral features are added.
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Figure 5.25: Summary of results for the Euclidean Norm approach of four activities
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Raw data

For the Figure 5.26 we observe that the methods that preserved a very high accuracy are the M1
(NB), M2 (KNN) and M3 (MSVM). We can see that most of the mentioned methods scored a high
prediction, mainly for the settings that include only spatial features (S1, S2, S3) with the exception
of M1 (NB) which scored a large precision for the settings with spectral features also. The drop in
accuracy for classifiers like the M2 (KNN), can be explained by the addition of the spectral features
that can confuse the method due to giving observations that are not representative of each action and
making the data of each activity similar with each other. The observation that the settings S1 and S2
establish an input of a high rate of identification can be made in this case also, having 99% accuracy
for the M3 (MSVM) (S2) and 94% for the M1 (NB) (S1). We also provide the computational costs for
the best three results, having 40s for the M3 (MSVM) of S2 (99%), 52s for the M1 (NB) of S2 (97%)
and 54s for the M1 (NB) of S5 (97%). A remark similar with the one of the previous paragraph is the
reduced performance of the method M2 (KNN) when spectral features are added to the analysis. An
issue that can be solved through additional future discussion.
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Figure 5.26: Summary of results for the raw data approach of four activities
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5.10.2. Summary of classification of seven activities

Euclidean Norm

For the classification of seven activities using the Euclidean Norm we see that the highest prediction
rates are obtained by M2 (KNN), M3 (MSVM) and M4 (DA). It is obvious that we have a lower accuracy
in general, due to the increased number of activities and the confusion induced to the methods. We
infer that the method M4 (DA) had the most effective predictions for the specific case, having most of
the percentages exceeding 80% and reaching the peak at 86% for setting S4 as inferred by Figure 5.27.
The methods M2 (KNN) and M3 (MSVM) behaved reasonably for the settings S1 and S2 which consist
a strong input for the classification in this approach also. Additionally we present the computational
costs for the best three cases, having 30s for the M4 (DA) of S4 (86%), 31s for the M4 (DA) of S6 (85%)
and 68s for the M3 (MSVM) of S2 (85%).
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Figure 5.27: Summary of results for the Euclidean Norm approach of seven activities
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Raw data

For the raw data case we can see that the methods behave with increased precision when it comes to
settings with spatial features (S1,52,S3), having a small decline with the addition of spectral features as
observed in Figure 5.28. Furthermore, the largest percentage is obtained by the method M3 (MSVM)
for setting S2 (92%). We also observe that the method M1 (NB) proves to be very effective when it
comes to the addition of spectral features. Moreover, we indicate the computational costs for the best
three results, having 54s for the M3 (MSVM) of S2 (92%), 66s for the M1 (NB) of S5 (89%) and 53s
for the M3 (MSVM) of S1 (87%).
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Figure 5.28: Summary of results for the raw data approach of seven activities
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5.11. Classification for the three sensor case

5.11.1. Evaluation

In this section we present some classification settings (S1,52,54,S5) for the case of only three sensors
(right thigh, left thigh, pelvis) for all the seven activities for the Euclidean Norm case. We give the
results and relative discussions as supplemental information, to be able to obtain an idea of how the
efficiency of prediction is retained if we decrease the amount of information from the movements that
the subjects perform.

For the setting S1 we achieve the highest test accuracy by the method M4 (DA) being 75% as seen
in the Table 5.25. An important observation is that the same method scored the highest percentage
also for the S1 of the five sensor case but with a higher accuracy due to the increased information
utilized by the additional right shank and left shank sensors. The five sensor case (81%) had 6% better
precision compared to our current three sensor case (75%). Also the running time for the S1 of the
five sensor case is 31s while we have the same total time for our three sensor case. By observing the
relative confusion matrix of Figure 5.29 of Section Graphs, we see a distribution of misclassifications
very similar to the five sensor case, having a lot of wrong predictions between similar actions, meaning
the shot, pass, long pass and also between the two turns (180 degree and 90 degree).

S1
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 70% 76% 453 35s 10s
M2 (K-NN) 72% 100% 30s 28s 2s
M3 (MSVM) || 72% 96% 97s 32s 25s
M4 (DA) 75% 85% 31s 28s 3s
M5 (DT) 62% 85% 31s 28s 3s

Table 5.25: Table of results for the Euclidean Norm case of setting S1

The setting S2 has the largest test accuracy by the method M3 (MSVM) being 69% as seen in
the Table 5.26. The specific method gave us the highest test accuracy also for the S2 of the five sensor
case but with a larger test accuracy due to the increased input information acquired by the right and
left shank sensors. The five sensor case (85%) had 16% better precision compared to our current three
sensor case (69%). The computational time for the S2 for the five sensor case is 68s while we have a
total time smaller by 17s for the three sensor case (51s). From Figure 5.30 we see a distribution of
misclassifications very comparable to the five sensor case, as for the setting S1.



5.11. Classification for the three sensor case

81

S2
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 64% 73% 37s 28s 9s
M2 (K-NN) 67% 100% 30s 28s 2s
M3 (MSVM) || 69% 87% 51s 31s 20s
M4 (DA) 65% 80% 31s 28s 3s
M5 (DT) 57% 90% 30s 28s 2s

Table 5.26: Table of results for the Euclidean Norm case of setting S2

We obtained the highest test accuracy for the setting S4 by the method M4 (DA) at 80% as
taken from Table 5.27. This method provided us with the maximal test accuracy (86%) also for the S4
of the five sensor case with an increase in test accuracy by 6% because of the extra input data. The
computational time for the S4 for the five sensor case is 30s while we have an almost identical total
time for the three sensor case (31s). From Figure 5.31 we see a a confusion matrix very similar to the
previous cases. The results of method M3 are omitted due to the extremely long running time. The
running process of the code was stopped after 30 minutes duration.

S4
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 74% 82% 37s 26s 11s
M2 (K-NN) 57% 100% 31s 29s 2s
M3 (MSVM) || - - >30m - -
M4 (DA) 80% 90% 31s 28s 3s
M5 (DT) 65% 92% 30s 28s 2s

Table 5.27: Table of results for the Euclidean Norm case of setting S4

The largest percentage for the setting S5 is 75% by the method M4 (DA) as seen in Table
5.28. This method has the optimal test accuracy (83%) also for the five sensor case for the setting S5.
The difference is 8% in favor of the five sensor case due the addition of the two lower leg sensors. The
computational time for the S5 for the five sensor case is 33s, being almost the same with the three sensor
case. The Figure 5.32 indicates a pattern very similar to the previous settings showing a weakness in
the recognition of similar activities especially in this case with a reduced amount of input. The results
of method M3 are skipped because of the extended running time. The running process of the code was
stopped after 40 minutes duration.

S5
Method Test accuracy Train accuracy Total time | Test time Train time
M1 (NB) 74% 81% 40s 29s 11s
M2 (K-NN) 52% 100% 31s 29s 2s
M3 (MSVM) || - - >40m - -
M4 (DA) 5% 100% 31s 28s 3s
M5 (DT) 65% 88% 30s 28s 2s

Table 5.28: Table of results for the Euclidean Norm case of setting S5
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5.11.2. Graphs
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Figure 5.29: Confusion Matrix of M4 (DA) for the setting S1 with predictive accuracy of 75% for the Euclidean Norm
case.
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Figure 5.30: Confusion Matrix of M3 (MSVM) for the setting S2 with predictive accuracy of 69% for the Euclidean Norm

case.
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Figure 5.31: Confusion Matrix of M4 (DA) for the setting S4 with predictive accuracy of 80% for the Euclidean Norm

case.
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Figure 5.32: Confusion Matrix of M4 (DA) for the setting S5 with predictive accuracy of 75% for the Euclidean Norm

case.
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5.11.3. General discussion

From the previous analysis we infer that the most effective classifier is the M4 (DA) for the setting
S4 with an accuracy of 80% and computational time of 31s. Regarding the setting S1 that includes only
spatial features, we reach the maximal test accuracy at 75% by M4 (DA) with 31s of computational
time, while the relative setting with added spectral features (S4) achieves the largest prediction rate at
80% again by M4 (DA) with an identical time cost. The setting S2 reaches the highest precision at 69%
by M3 (MSVM) with a running time of 51s and the relative setting equipped with spectral features
(S5) achieves the percentage of 75% by M4 (DA) with 31s. We notice an increase in accuracy when
spectral features are added and a slight raise in computational time. As a final observation we can see
that the method M4 (DA) seems to work well for the three sensor case.



Conclusion and future improvements

Here we present the answering of the research questions which were formulated in Section 1.4 of
Chapter 1. These research questions indicate the main points of interest that led the whole research
and finally shed light on the most vital findings that were derived from the whole effort. Initially we
restate the questions and the clarifications follow immediately as conclusive remarks. In the last section
of this report we provide ideas for possible future improvements and recommendations based on the
experience from the whole procedure and evaluation.

1.

Should we focus on the analysis of raw three dimensional data or should we consider the Eu-
clidean Norm also? Do we save a significant amount of time by analysing only the norm of the
data?

Is it more effective to use all of the five sensors or three sensors (pelvis, right thigh, left thigh)
are enough? How much loss in accuracy there is for the simplified version of the sensor shorts?

Do we need the settings S2 (gyroscope and spatial domain features) and S5 (gyroscope with
spatial and spectral domain features) for the raw data case or the settings S1 (acceleration with

spatial features) and S4 (acceleration with spatial and spectral features) also?

Should we utilize only spatial domain features or mixed features (Spatial together with spectral
domain features)?

Which of the six settings works best and which one gives the lowest accuracy?

Does the classification accuracy increase or decrease if seven instead of four actions are consid-
ered and why?
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6. Conclusion and future improvements

6.1. Conclusive remarks

1.

In case we need to make a choice between the Euclidean Norm and the raw data we can choose
the raw data. The reason being that for the four activities the prediction rates for the Euclidean
Norm are high but we have an average test accuracy of 4.5% points more for the raw data. Also
for the raw data case the additional average computational time compared to the Euclidean data
is only 20s which is a very low cost for the added accuracy. For the seven activity case we have
an average accuracy increase by 5% points for the raw data and 25s additional time cost. For
this case also we have a satisfying trade-off. We mention that for the four activity case the most
effective classifier for the raw data was the M3 (MSVM) with an accuracy of 99% for the setting
S2 (Gyroscope data with spatial features). For the raw data of the seven activity case the best
classifier was again the M3 (MSVM) with a precision of 92% for S2.

The five sensor case is the most effective approach compared to the three sensor case, since
the increased information from the extra sensors provide enhanced classification accuracy. The
classification of the three sensors was based on the Euclidean Norm of the seven activities for
the settings S1,52,54,S5. The relative five sensor case provide an additional average accuracy of
9% points when comparing to the relative settings (S1,52,54,S5) of the three sensor case. The
computational time is almost identical to both cases. The most effective classifier for the five sensor
case is the M4 (DA) (86%) for the S4 (Acceleration data with spatial and spectral features). For
the three sensor case the highest accuracy is achieved again by M4 (DA) but with 80% accuracy
for the setting S4.

It is preferable to use the raw gyroscopic data compared to the acceleration data. If we examine
the four activity case we observe an average accuracy increase for the setting S2 (Gyroscope
data with spatial features) by 5% points compared to setting S1 (Acceleration data with spatial
features). Also for the settings relative to the spatial and spectral features (S4,S5) we observe
an increase in average accuracy also by 5% points for the S5 which includes gyroscope data. For
the seven activity case we have an increase by 5% points in average accuracy in favor of S2 if we
compare it with the S1. The increase is at 3% points in favor of S5 if we compare it with S4.

It could be more preferable if we focus on analysis that includes only spatial features compared
to an analysis with spatial and spectral features. It can be observed through the tables discussed
in Chapter 5 and especially in Section 5.10 that the settings relative to only spatial features
(51,52,S3) have higher prediction rates on average compared to the settings with mixed features
(54,55,56). The highest percentage for the raw data between the gyroscope settings (S2,55) for
the four activity case is 99% by M3 (MSVM) (S2). The highest score between the acceleration
settings (S1,54) is 94% by the M1 (NB) (S1,54). The largest percentage for the raw data between
the gyroscope settings (S2,55) for the seven activity case is 92% by the M3 (MSVM)(S2). The
highest score between the acceleration settings (S1,54) is 87% by the M3 (MSVM) (S1). We
mention one more time that for the four activity classication, the highest percentage is achieved
by M3 (MSVM) at 99%, and this rate belongs to the setting S2 that does not include spectral
features. The same holds for the maximal rate of the seven activities, achieved by M3 (MSVM)
at 92% for the setting S2. The above observations can be an insightful indication that we may
omit the spectral domain features.
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5.

The setting that achieved the best results is the S2. If we compare the relative tables of Section
5.10 we clearly infer that S2 has the highest prediction rates on average. We mention that the best
scores of the classification were achieved for S2 having 92% for the Euclidean Norm case of the
four activities by M3 (MSVM) and 99% for the raw data case again by M3 (MSVM). Regarding
the seven activities, the S2 had the second highest percentage of 85% by the M3 (MSVM) for the
Fuclidean Norm case. The largest percentage is achieved by the setting S4 for the method M4
(DA)(86%) in the same case. For the raw data case the S2 achieved once more the maximal rate
at 92% (MSVM). We also get an important indication of the effectiveness of setting S2, due to
the easily recognizable pattern from the gyroscope signal. We can observe that the setting S6 has
the worst efficiency on average compared to the other settings. The reason being that S6 contains
the mixed signals (Acceleration and Gyroscope). It might be the case that the separate signals
include a unique distribution that can be effectively distinguished by the methods, while by fusing
the data, the information of the new signal represent a pattern different and many times similar
to the activities of the different classes. Another issue can be that the addition of spectral features
may create extra similarities in the observations relative to each class. This is still a matter that
may need further investigation in the future and we also incorporate that in our recommendations
of Section 6.2.

We can clearly see that the classification accuracy decreases when we have seven instead of
four classes. The reason being that the three additional classes (long pass, jump, running) cause
increased confusion to the methods. As mentioned many times before in Chapter 5 there is a big
similarity between the two kinds of turns (90 degree turn, 180 degree turn) and also between the
two ball kicking activities (pass, shot). When we add another ball kicking activity (long pass) we
receive increased false predictions since now we have three actions of similar data pattern, as we
see in Figure 4.2 of Section 4.1. Also the running can also be confused with the two turns because
by definition when the subject performs the turns, running is included from beginning to end.
Regarding the jump, we clearly observe by the confusion matrices presented on Chapter 5 that it
retains the highest distinction between the methods, so the specific activity does not contribute
to the additional misclassification errors.
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6.2. Future improvements and recommendations

Now that the interpretation of all the details of the project reached the end, we provide some ideas
for future modifications and applications since there is always room for improvement. One plan that can
prove to affect the classification in a positive way, is to increase the percentage of the training data of
our methods so that the models can be adapted even more properly. Through this change the methods
will raise their prediction accuracy on the test data, since the enhanced information they receive, will
enable them to identify the patterns of the data that are derived from the activities more effectively. In
order to establish this idea we may need to enlarge our data set so that we avoid having a decrease of
the test data size by increasing the training set, which brings us to the next proposition. An approach
of similar nature is the augmentation of the size of our input data, by including even more actions
for the same amount of classes. The adjustment of the methods will assist the improved distinction
of classes by strongly establishing the characteristics of the classes through the enlarged number of
activities. A phenomenon that can cover further research is the very slow convergence of the method
M3 (MSVM), as observed in the tables of results of Chapter 5, mainly for settings that include spectral
features (S4,55,56). The recommendations that follow can provide additional assistance in order to shed
light on the matter that arose in Chapter 5 regarding cases of low performance of classifiers like the
M2 (K-NN), M3 (MSVM) and M4 (DA) when spectral domain features are involved. A supplemental
study can be accomplished in order to identify which features are the most discriminative, especially
between the spectral domain features. A testing of different spectral features can be held in order to
shed light on their links with physical phenomena, as the shaking of muscles during the performance of
the actions by the subjects. The dominance of frequency can be examined further to comprehend the
productive utilization of spectral features.
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