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Executive summary

Oil and gas are a vital part of the worldwide economy and will most likely keep an important role
for the upcoming decades. Delivery of crude oil as well as high inflammable fuels to petrol stations
are a very valuable business. Transportation is one of the things that could be improved to cut costs
and decrease the impact on the environment.

This research explores the possibilities to improve order allocation for petrol delivery, with the aim
to lower the travel distances. With this information, the following research question has been for-
mulated:

"How can the current order pairing strategy be improved and what impact does this have on the total
kilometers driven and the carbon footprint?"

The aim of this research is to design a model that can test different order pairing strategies for fuel
delivery to petrol stations. By comparing the characteristics of a case study with the problems de-
scribed in the literature a research gap was found. The problem was categorized as a Petrol Station
Replenishment Problem (PSRP). These problems have vehicles with a limited carrying capacity for
the goods that have to be delivered, which are tried to be solved to optimality. The specific combina-
tion of station restrictions, time windows, vehicle schedules and a heterogeneous limited fleet have
not been implemented until this research. Furthermore most PSRP are only looking at a single–day
period, whereas the research in this thesis is aiming to look for a longer time–horizon.

This knowledge gap has led to the implementation of a simulation model, which is the result of the
interaction between two sub models. The first one is the order generation model, which makes or-
ders by forecasting the levels for all tanks at a station, aiming at equal depletion times.

The second model uses the output of the first model. This order pairing optimization model is an
extension to the petrol station replenishment problem with the objective to minimize travel times.
The Multi–Period Split Compartment Vehicle Routing Problem with Time Windows and Vehicle Re-
strictions (MP-SCVRPTWVR) has been compared and validated using an test instance from Coelho
and Laporte (2015).

The model could reach optimality for up to 20 stations. However, having 20 or more stations be-
came more challenging for the model to solve. A proposition was suggested by going from an unsplit
model towards a split model, which in fact are two separate optimization models. The first part of
the split model assigns routes to vehicles, aiming at minimizing travel times. The second model will
use these routes to define the amounts that have to be loaded into the vehicle compartments. The
split model showed to be a very promising alternative for the unsplit model, as the route assignment
model returned equal outcomes. Furthermore the calculation times were greatly reduced and it was
possible to solve larger instances, reaching optimal solutions in two hours for runs with 25 stations.

With the split models integrated in the simulation model, four different strategies have been tested.
One of the conclusions that can be drawn is that the user should not focus on making as much
paired orders as possible. In all strategies this turned out to increase the travel distances, while the

iii



iv Preface

aim is to minimize them. Furthermore it can be concluded that it might be rewarding to try group-
ing stations on certain aspects. This turned out to be one of the most promising outcomes while
testing strategies in this research. The second option is to look at the way orders are allocated in the
trucks. This could be in different sequences, for example starting with half of the order amount for
all stations, or start with full order amounts for the station with high consumption. There are a lot
of different combinations possible which need future research.

In conclusion, the model presented is applicable for sample sizes of up to 50 to 55 stations if the
order allocation is equally divided over the time period. This gives enough options to test different
strategies using this simulation model. For one day runs the order pairing optimization model can
handle up to 26–27 stations per day if the split model is used. When the unsplit model is used, this
falls back to 19–20 stations.
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1, If route r is in work schedule W of vehicle k.

0, otherwise.
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1
Introduction to the petrol station delivery

problem

Oil and gas are a vital part of the worldwide economy and will most likely keep an important role
for the upcoming decades. As oil gets more and more valuable due to increasing demand and a
decreasing amount of sources, it is inevitable that prices will increase throughout the years. To be
able to control the price increases, petroleum companies are looking for ways to decrease costs.
One of the options is to improve the supply chain, where the Logistics are an important factor. This
definitely is the case for the petroleum industry, where transportation of crude oil as well as high
inflammable fuels to petrol stations are a very valuable business. This leads to high logistics costs,
making it an important factor to look at when trying to improve the supply chain (Varma, Wadhwa,
& Deshmukh, 2008).

Transportation is one of the things that could be improved to cut costs and prices at the petrol sta-
tions. While it has obvious economical benefits for society to cut transportation costs, the petroleum
companies themselves have benefits from it as well. Since 2014 fuel prices have seen a sharp decline
due to overproduction and the aftereffects of the 2008 global financial crisis. This has led private
companies such as Shell and BP to heavily cut their costs in exploration and other investments
(Rogoff, 2016). Transportation is something that is difficult to change, as a certain amount of orders
need to be handled regardless of the oil prices. In fact, the global oil consumption increases every
year independent of prices. This will lead to increased size and amount of orders, thus more trans-
portation is needed which gives another reason to try and optimize the petrol deliveries.

Costs are not the only incentive for the petroleum industry to be looking for improvement. The
petrol industry is gaining more and more pressure from the public opinion, which demands more
responsibility from the companies to protect the environment. As transportation has a large impact
on the carbon footprint of a company, one way to decrease the impact on the environment is by
improving distribution efficiency and environmental safety (Transvision, 2014).

AMCS group, a company specializing in routing and planning solutions, provides software to busi-
nesses that can create real–time planning and scheduling. They aim to keep their status as being
one of the leading providers of planning en scheduling software, which makes it important to con-
stantly improve their software. Mostly focusing on the waste and recycling branch, oil companies
are also among the customers making use of their services and AMCS has an algorithm running in
their software specifically focusing on petrol delivery.

3
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Since the transport is a costly part in the supply chain and the petroleum industry is emphasizing
more on improving the transport efficiency, optimization of petrol order allocation is an interesting
subject to which AMCS is looking for improvement. More specific, they would like to look for pos-
sible improvements in their order pairing algorithm. This part of the model uses the input from the
incoming orders to look for orders that can be paired based on similarities in time windows, loca-
tions and amounts. They stated that their current order pairing strategy is working and has led to
improvements for their customers, but the model has never been further tested with different strate-
gies. Using different strategies could lead to better solutions and lower calculation times, since the
order pairing is one of the hardest parts and computing times can get very large when the amount
of orders is increasing. Furthermore a significant part is still controlled by human interaction, who
make decisions on how many orders are allowed to be paired per truck and if certain combinations
of stations on a route is allowed.

This thesis will look into the possibilities for testing new order pairing strategies to get a more ef-
ficient planning for the fuel delivery to petrol stations. The report is structured into three separate
parts. The first part will give an analysis of the problem of AMCS in the current system. By analyzing
the current order strategy and comparing this to the literature it is possible to see where improve-
ments are possible and how to further approach the problem. The second part will be focusing on
the model design that is used to test the different strategies. This includes verification and valida-
tion of the model. The last part will test several strategies in the model and present the outcomes.
Finally conclusions and recommendations are drawn.

1.1. Problem context
Leading from the introduction it becomes clear that the underlying problem is initiated by the
petroleum industry to decrease the transportation costs and impact on the environment. AMCS
wants to contribute to this by exploring the possibilities to improve their current order allocation
strategy for petrol delivery. This research will be an exploration to learn about possible improve-
ments for the current order pairing strategy, with the aim to decrease the amount of kilometers
driven. Travelled distances do have a large impact on the transportation costs, but it is also worth to
take notice of the so-called lean and green award. This is a green certification given to a company
when it manages to emit 20% less CO2 (Connekt, n.d.). While this is not the main objective, it would
be nice to compare different strategies on their capability to reduce emissions and if this could lead
to a lean and green certificate if adapted in real life.

The current algorithm behind the order pairing of AMCS makes pairs by looking at orders that have
the same delivery times. Furthermore the algorithm determines which pairs are "allowed" through
the input it gets from the human user. Some of the parameters are partly controlled by parameters
and others are controlled by human interaction. The user determines constraints involving proxim-
ity between stations, cut down percentages, maximum detour distances, maximum orders allowed
in one order pairing, grouping of stations and priority stations. This means a lot of the current plan-
ning is actually controlled by the planners. To be able to form good order pairings it means that the
user needs to know each scenario by large details. This will become more difficult when a larger and
more heterogeneous area is involved. The amount of uncertainties make it very difficult for the user
to have a good overview of the total system and this might lead to unnecessary losses of time and
money.

While it does not mean that the current strategy is particularly good or bad, AMCS wants to look
for possible improvements by trying out new ways to handle orders. It is known that the current
strategy can make good schedules for one day periods, but it is not known how that works out over
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a longer time span. It could well be the case that over a simulation period of a few weeks, another
strategy performs better than the current one, while this would not be the case when looking at a
single day. The various parameters involved could greatly influence the effectiveness of different
order pairing strategies. AMCS wants to explore the possibilities for improvement of the current
algorithm used for order pairing. With the aim to lower the travel distances, the following research
question has been formulated:

"How can the current order pairing strategy be improved and what impact does this have on the total
kilometers driven and the carbon footprint?"

1.2. Research questions and research objective
With the main question defined, the research objective is to design a model that can test different
order pairing strategies for fuel delivery to petrol stations. Before getting to the point of the actual
model design and trying out new strategies to give an answer to the main question, there are a few
other factors that have to be determined. Therefore several sub questions have been defined which
should be answered in a step wise approach, which help to analyze the system and derive a suitable
model to be used for testing. Eventually the answers on the sub questions will be used to answer the
main question. The sub questions are defined as follows:

a. How does the case data provided by AMCS look like and how can it be used in the model?

b. How does the current order pairing algorithm of AMCS look like?

c. What comparable characteristics and models are available in the literature?

c. What KPIs are relevant for measuring the effects of different order pairing strategies and how
are they measured?

d. How should the structure and mathematical representation of the model design look like?

e. What strategy improvements could lead to a performance increase compared to the current
situation and what are the results?

1.3. Scope of the order pairing problem
Before going further into details, it is necessary to look at the scope of this research. This includes
defining clear boundaries on what factors should be accounted for and which can dropped. This re-
search will only focus on the specific case given by AMCS. According to the data, around 60 stations
are served from one depot. Thus the boundaries of the model itself are limited by the given data as
the depot at one side and the stations at the other side. The number of depots is limited to one, so
one depot has to provide fuel to a certain amount of stations.

Since it must be tested if the total mileage and carbon footprint are getting lower with certain strate-
gies, doing so is only possible when you test under the same circumstances. It cannot be the case
that some stations are just omitted or vehicles are made up in one strategy while this is not the case
for other strategies. Furthermore unexpected factors like traffic jams are not taken into account. The
data has provided a travel time matrix, a distance matrix and coordinates using Euclidean space as
well as geocoded coordinates. For this research only the two matrices will be used. Using the loca-
tions of the stations and depot on a real map and implementing this on a real road network by using
geo-coding takes a lot of extra time and does not have much added value in this research, since the
matrices provided by AMCS are actually based on their own interpretation of the coordinates.
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This research will not specifically take into account usability for the end–user, the clients of AMCS.
For the customer of AMCS usability obviously is considered important by them when making a plan-
ning. When the order plans are made they must make sense to the end–user. The planner as well as
the driver in the vehicle should be able to grasp why certain routes are made. If the planner (or the
model) makes a certain order plan it must intuitively feel right to the driver as it can really influence
his view on efficiency. Cold hard numbers are logical to the planner maybe, but it can lose its logic in
the feeling of the driver. Although this may be important to the customer of AMCS, it is considered
out of scope in this research since the focus is put upon improving the order pairing strategies for
AMCS itself, creating a tool for them with which they can test certain strategies. Furthermore it is
required to keep calculation times as low as possible, which also will be included as one of the fac-
tors that can be tested with this model. For example, some strategy might be having less desirable
outcomes in terms of travel distances, but when calculation is twice as fast compared to another
strategy, it might eventually turn out better cost-wise.

1.4. Research framework
To answer the research question a framework has been made which is shown in figure 1.1. This
framework is closely related to the ’engineering design’ methodology as described in Dym, Little,
and Orwin (2014). The structure of the report can be divided into three separate parts. Part one:
problem analysis, will first analyze the problem from AMCS’s point of view, which has already been
done in the previous section. The next step (chapter 2) will analyze the case data provided by AMCS
and see how their current implemented algorithm looks like. This helps to categorize the problem
and compare it to relevant literature, finding possible research gaps, which is done in chapter 3.

Based on the research gap, the methodology in Part two: methodology, shall further explain the
model design, starting with a conceptual design in chapter 4. Chapter 5 will explain more about the
mathematical functions used in the order pairing optimization model. Furthermore a route selec-
tion procedure is constructed. After that the model will be tested, doing several verification runs
and a comparison with another model from the literature for validation. After that the usability and
efficiency of the model is tested. Chapter 6 will describe the simulation model, integrating the opti-
mization model together with an order generation model. Furthermore an adaption to the original
optimization model is proposed. The simulation model will then be tested and compared with sim-
ulation results from AMCS. Lastly a sensitivity analysis is performed on the target amounts.

Part three: Strategies, results and conclusions, the concluding part of this thesis, defines four strate-
gies to be tested in the model. Based on the results in chapter 7, chapter 8 will give conclusions and
recommendations, where the main question is answered and implications in both models will be
discussed.
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Figure 1.1: Framework used in this research.





2
Current order pairing strategy of AMCS

This chapter will analyze the current petrol station replenishment model used in the software of
AMCS. Knowing more about the strategy that is used right now can help to understand the decision
logic and identify what models from the literature have comparable features. As an introduction
to this chapter, section 2.1 will describe the data that is used for their model, which is based on a
specific case provided by AMCS. This same data will also be used in this thesis research. The strategy
of AMCS actually uses two distinctive models, where the first one uses the input from the data it gets
to generate orders which contain tank amounts and a delivery time window. This will be explained
in section 2.2. The second model uses the output of the first model to try pairing orders in a single
vehicle and assign routes to the vehicles, which will be explained in section 2.3.

2.1. Case study: data analysis
Before further going into detail about the order generation model, it is necessary to have an overview
of the data that is used by AMCS as an input. The first part will give a general overview of the data,
while sub–section two and three will go deeper into this by scaling the data down into stations and
tanks and vehicles and compartments respectively. The last part will look into the variables that can
be tweaked and the possible impacts of these variables on the model when changed.

2.1.1. The big picture
This section will give an overall picture of the data that is provided by AMCS. The data is derived
from real–time measurements and therefore represents a real–life case. For this research the data
will be anonymized. In total there are 59 stations served by one depot, with a fleet consisting out of
4 vehicles.

Two of the vehicles are semitrailer trucks (see figure 2.1), while the other two are rigid trucks which
have the ability to take an extra trailer, also indicated as a drawbar trailer (see figure 2.2). The latter
vehicle configuration allows for changes in the length of the vehicle, because the drawbar can be
decoupled. This leaves the rigid truck which is smaller than the semi–trailer, leaving open the op-
tion to visit stations which only allow smaller trucks, for example in a city.

The stations allowing only certain vehicles have a qualification parameter matching the type of ve-
hicle. Most stations are open 24 hours a day, 7 days per week. This allows flexible time windows and
only the work schedules of the vehicles are of large influence. Another important feature following
from the data is the presence of flow meters on the vehicles. This is not very common which already
became clear while reviewing the literature. Knowing the vehicles are equipped with flow meters
gives a lot more opportunities in the order pairing strategy.

9
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Figure 2.1: Example semitrailer truck (HMK Bilcon,
2016a).

Figure 2.2: Example rigid truck with drawbar trailer (HMK
Bilcon, 2016b).

The last thing that can be noticed in the data is that the start date of the measurements has started
on a Saturday, Because of this the model will also have its start date fixed to a Saturday. The vehicles
have different work schedules during the week and the weekend, which is something that has to be
taken into account. The consumption rates are measured once a day, deriving an expected average
consumption rate per tank from these values. The time interval for this in the data is from 00:00 till
23:59. This is not very important for the model, but it is something to be mentioned.

Now that an big picture is given on the data, the following sections will dive deeper into the data,
analyzing which variables are given for the vehicles, stations, tanks and trips.

2.1.2. Stations and tanks
As mentioned before there are 59 station to be served in total. This will be done from one depot,
so in total there are 60 locations for the vehicles to go. The locations from the data have a name
and city, an ID number and longitudinal and latitudinal coordinates. The longitudinal and and lat-
itudinal coordinates also have an X and Y coordinate respectively. None of these are required in
the model, because AMCS has also handed travel time and distance matrices. Since these are de-
termined directly from their own geocoding and measured average travel times, it is useless to do
double work.

Furthermore the data contains information about the opening hours of the stations and the vehicles
that are qualified to visit the stations. The depot is open 24/7, so vehicles can depart and arrive at
any moment. The stations also have a certain amount of tanks. Mostly three to four, with different
capacities and consumption rates. They all have their own ID, which is similar to the station ID, plus
an additional number simply indicating tank 1, 2, 3, etc. Furthermore it is given what type of fuel is
dedicated to a specific tank. The data gives six different products for delivery to the stations. While
there are actually three types of fuel, namely petrol 92, 95 and regular diesel, there are two different
brands for sale. Every station has their own ’preference’, so the different brands cannot be freely
exchanged for one another.

There are also restrictions towards the minimum amount that has to be delivered in one order,
which in this case is the same with 1000 liters for every tank. An empty level is given, indicating
the lowest level that a tank may have. Getting below this level is not allowed, as this would result in
a late delivery. Derived from the capacity and minimum level a minimum and maximum stock level
are determined by AMCS. The maximum stock level is 96% of the total capacity of a tank, which is
determined by keeping in mind that the goal is to have stock levels at customers as low as possi-
ble. The minimum stock level is the level at which an order must be executed and is a chosen value
based on two parameters:
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- The first one is the consumption rate of a tank. With one tank having a faster depletion rate
than the other, it is required to anticipate to this by having a larger minimum stock level. If for
example two tanks at one station have the same size but different consumption rates, the tank
with the faster consumption rate does have a shorter lead time. This can be compensated by
giving it a higher minimum stock level.

- The second parameter influencing the height of the minimum stock level is the distance of a
station to the depot. It is not hard to imagine that a station nearby can have a higher minimum
stock level at which an order has to be executed. After all, the lead times are much shorter than
a station that is located farther away.

One of the most important variables from the data are the estimated consumption rates for every
tank per 24 hours. This data is collected over the course of one week, which can help to make an
forecast over a longer time period. This can be done by taking the same consumption rates for
every day over multiple weeks. This can help the model to determine when an order can or must be
executed. The variables derived from the AMCS data, that can be used for the model in this project
are listed in figure 2.3.

Figure 2.3: Important input parameters and relations between stations, tanks and fuel.

2.1.3. Vehicles and compartments
As stated in the first section of this chapter there are two types of vehicles: Rigid plus an potential
extra trailer (rigid plus drawbar) and the semitrailer truck. All trucks have their own ID and the cor-
responding trailers have the same ID number, indicating that one trailer can only be used by one
truck. Interesting is the fact that all trucks are equipped with a flow meter, which makes it possible
to have different orders in one compartment.

In total four vehicles are available, serving all 59 stations. Two vehicles are semitrailer trucks with six
compartments, having different capacities per trailer. The other two vehicles are rigid trucks with
drawbar trailers, which have four compartments for both the rigid and drawbar respectively, thus
eight compartments in total. The rigid truck and its drawbar have the same capacities for both vehi-
cles. The data from the vehicles and trailers that have important characteristics for the model input
are displayed in table 2.1 and table 2.2.

Table 2.1: Useful data about truck layout.

Trucks ID Total volume cap (l) # of compartments Compartment volumes (l)
Tractor 3706 0 0 NA
Tractor 3920 0 0 NA
Rigid 3921 33000 4 7000, 5000, 7000, 7000
Rigid 3923 33000 4 7000, 5000, 7000, 7000
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Table 2.2: Useful data about trailer layout.

Trailers ID Total volume cap (l) # of compartments Compartment volumes (l)
Semi 3706 45000 6 10000, 10000, 7000, 5000, 6000, 7000
Semi 3920 53000 6 10000, 12000, 5000, 6000, 7000, 13000
Drawbar 3921 26000 4 7000, 5000, 7000, 7000
Drawbar 3923 26000 4 7000, 5000, 7000, 7000

Each vehicle has their own unique work schedule, which mostly depends on the day of the week.
During a normal workday all vehicles are available for most of the time. During the weekend some
of them are used less or not at all. This is due to the fact that most traffic is visiting station during
workdays, due to people commuting between home and work. In the weekend commuting traffic is
much less, leading to fewer orders during that time. The work schedules are shown in 2.3.

Table 2.3: Work schedules for the different trucks.

Vehicle
ID

Saturday Sunday Monday Tuesday Wednesday Thursday Friday

3706
06:00 -
18:00

06:00 -
18:00

06:00 - 18:00
18:00 - 04:00

06:00 - 18:00
18:00 - 04:00

06:00 - 18:00
18:00 - 04:00

06:00 - 18:00
18:00 - 04:00

06:00 - 18:00
18:00 - 04:00

3920
17:00 -
02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

3921
05:00 -
15:30

17:00 -
02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

3923
05:00 -
15:30

17:00 -
02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

05:00 - 15:30
17:00 - 02:30

2.1.4. Possible impact of variables
Looking back at the data in the previous sections, there are several variables in this specific case that
are fixed, while others are subject to changes. Obvious fixed variables are the station locations, the
number of trucks and the size of the compartments of these trucks.

The variables that can be changed are mostly influenced by the decisions of the depot and the
clients, whether or not influenced by laws and rules imposed by (local) governments. This is for
example the case for the the opening hours of the petrol stations. While most of them are in oper-
ation full-time, some do have specific opening hours. This is probably contributed due to factors
such as the location (rural versus urban) and the restrictions forced by municipalities in certain
neighbourhoods.

The impact of opening hours largely depends on the amount of stations which actually have limits
on this. If only two or three stations have restrictions the impact would be low, since it is easy to
plan around these stations. But if a larger percentage of the total stations is having delivery hour
restrictions, the planning would also have to deal with more conflicting orders. The combination of
conflicting order times and the need for on-time delivery could lead to the necessity of more deliv-
ery trucks or broader schedules.

Another station related variable is the vehicle qualification. This is a restriction on the kind of vehi-
cle that is allowed to visit a station and is mostly due to constraints in the truck size. A good example
is a station in the middle of the city, which has less space for vehicles to maneuver. It would intro-
duce a new kind of handling: decoupling of trucks. If only a rigid truck is allowed, it would mean that
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its semitrailer has to be left at the depot (or somewhere at a point along the route). This means that
less capacity is available for that specific trip. So if more stations have those restrictions it will also
increase the difficulty to assign vehicles and lower the overall daily capacity that can be transported.

As said before the impact of the opening hours and vehicle qualifications depends on the amount
of stations that have these restrictions. If it is only a very small portion, it will probably have almost
no impact at all. In this case it should be considered to be kept out of the model.

Other things that can be varied are the minimum and maximum stock levels of the station tanks.
It has already been explained before how these boundaries are chosen. But since these boundaries
are chosen on a safe margin to avoid depletion, it could be the case that the boundaries are actually
to high. If this is the case, it could be a possibility to tweak this and see the impacts of these vari-
ables. Making the boundaries less restrictive could give extra options, although it must be kept in
mind that distance and consumption rates have already been taken into account by AMCS, when
they specified minimums and maximums.

Furthermore a valid order requires to have a minimum amount. This is kept the same for every
station and is determined by the planner. This minimum constraint is necessary to create feasi-
ble orders. Falling below a certain amount will only lead to unnecessary high costs, because small
amounts lead to more deliveries and thus more trips.

One thing that could possibly play a rather significant role is the fact that the depot has the ability to
delivery three types of fuel from two different brands. Every station has its own brand and although
both brands have the same specifications, it is not allowed to blend them for obvious reasons. This
restricts the use of multiple orders per compartment, making it more difficult to use order pairing.
This is an important consideration for the used model and it might be considered to use three types
of fuel instead, without looking at the brand or only allow order pairing for stations with the same
fuel brand.

The last variable is the work schedule of the vehicles. This is another factor which has a large in-
fluence on the system. Ideally a vehicle is available 24/7, since orders can be planned whenever
the vehicle is available. however, this is not realistic when looking at factors like working hours of
drivers and maintenance. In this specific case the out of service hours are at most four hours during
a normal weekday. During the weekend the work schedules are shorter and one vehicle is not used
at all on Saturday. If all vehicles are operational 24 hours per day, it is easy to place routes in the
schedule as only the time windows of orders have influence on where they are placed within the
schedule. But when the schedules are split in a morning and afternoon schedule, the model has to
search in both these slots and still has to take into account the time windows of the orders. This
gives a lot more difficulties and can increase calculation times.

2.1.5. Conclusions on the data
This first section gave answer to the the first sub question: "How does the case data provided by
AMCS look like and how can it be used in the model?"

The given case contains 59 stations that are served by one depot, which uses four heterogeneous
trucks. Within the system there are two important types of objects available: stations and trucks.
The station (and depot) locations determine distances and travel times, while they also hold the in-
formation about stock levels of tanks, which in turn lead to the generation of orders. The trucks are
the objects moving orders from the depot to one or more stations, and their size and configuration
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determines which order they can handle. Because every tank at a station has their own unique char-
acteristics (e.g. consumption rate, volume, etc.), tanks at stations can be seen as separate objects.
Because of this tanks are seen as separate bodies within the stations. Table 2.4 gives an overview of
the different objects with their input variables necessary to use in the model.

Table 2.4: Overview of input variables for the model.

Classification Input variables
Stations Tanks; opening hours; coordinate; vehicle qualification.
Tanks Fuel type; daily consumption; min/max stock level; current stock level.
Trucks Truck type; work schedules; number of compartments; compartment volumes.

The variables that are expected to have the most impact on the output are the work schedules of
vehicles and the amount of different fuels available. The first one determines how much hours a
truck is available during the day and has a big influence on the amount of orders that one vehicle
can deliver during the day. The latter input, the variety of fuels available, can have a large impact
when different orders are combined in the same compartment. The opening hours and vehicle
qualifications of stations will have an increasing impact when more stations do have restrictions
on this. The minimum and maximums of stock levels and order volumes can also have a fairly large
impact when changed. They could influence the amount of orders, the amount of kilometers driven
and the way that orders are paired.

2.2. Current order generation strategy of AMCS
This section will elaborate on the way that orders are generated in the current situation. The first
subsection will describe the inputs that are used for making new orders and the second part will
explain how orders are generated based on these inputs.

2.2.1. Inputs used in the model
Orders have certain information stored into them which is taken from the data explained in the pre-
vious section. This includes the station which needs a delivery, the amounts per tank of that same
station and the time window in which delivery should take place. Orders in turn need certain infor-
mation to be able to actually make them. It starts with adding the information about the vehicles,
stations and its corresponding tanks to the model. These three types of ’objects’ have the following
predefined characteristics:

Stations – For the stations it has to be known which vehicles are allowed to visit them. Some sta-
tions have restrictions due to lack of space, making it impossible for some larger vehicles to access
the station. Furthermore some stations have specific opening hours. While nowadays it is quite
normal for most stations to be open 24/7, some may have restrictions on the hours that deliveries
can take place. Finally the travel times and distances between the stations (and depot) have to be
known, since this helps to determine if certain combinations of stations on a route are feasible.

Tanks – The stations have multiple underground tanks to store fuel. The tanks have their own set
of unique parameters such that they are approached as separate entities within the stations. Obvi-
ously every tank has their own unique fuel type, which cannot change. All tanks have a minimum
and maximum stock level. The maximum is determined as a percentage of the capacity of a tank.
The minimum stock level is determined as a certain amount above the empty level. The empty level
is the amount for which a tank is specified as depleted. The minimum stock level is the threshold to
place an order in the system, to have enough time for a delivery to take place.
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Vehicles – Trucks are of a specific type, semitrailer or rigid/drawbar, all having their own com-
partment configuration. This can mean a different amount of compartments as well as different
volumes per compartment. This means the fleet of vehicles is of heterogeneous composition. Fur-
thermore the trucks have their own work schedules. This weekly schedule is giving the daily time
slots at which the vehicle is allowed to be used. For example, a vehicle on a normal working day can
have a schedule from 05:00 until 15:30 and then from 17:00 until 2:30, having four hours in total in
which the vehicle is on a ’break’ and thus cannot be deployed.

Apart from the constants given above the model needs to have input about the actual tank levels.
The stock levels of every tank are measured once per day at 00:00 hour. Based on this information
orders are generated when one of the tanks reaches the predetermined minimum stock level. This
means that new orders are not issued by the stations, but the depot itself decides when an order
needs to be made and executed. When orders are made at the beginning of the day, the algorithm
does assume there are no other orders planned in the future. This means that if an order was already
assigned the previous day, but did not take place yet, it will be seen as if it was never created.

2.2.2. Generating orders and time windows in the current situation
With the inputs received by the model, the order generation done by AMCS is divided into three
steps as follows:

1. When measuring the stock level at midnight it is determined which tanks have reached min-
imum stock level. The corresponding station to that tank then gets labeled with an expected
depletion time similar to that of the specific tank. To put it in short: the earliest expected de-
pletion time of a certain station depends on the first tank at that station to be empty. It is not
allowed to deliver orders later than the earliest expected depletion time of a station. For every
station the latest possible delivery time is set based on the first tank that gets depleted. The
actual delivery time is then derived by finding one that is both feasible as well as practical.
This is again restricted by certain rules:

a. The delivery time should be as close to the latest possible opening hour of the station as
possible, but always stay before the earliest expected depletion time of that same station.

b. The order should fit on at least one compatible vehicle and the delivery time should fit
in the vehicle’s operating hours.

c. Since there is some service time at the stations, e.g. the time it takes to transfer fuel from
the truck to the station the delivery time should have a clear margin to deliver the order
before depletion time.

d. The time window should not be to short. If the expected depletion time is happening
2 minutes into the opening hours of a station, the time window would be to narrow to
use this delivery time. If this is the case the delivery time should be shifted towards the
previous opening period instead.

e. Taking the above into account, the differences in operating hours of vehicles, opening
hours of stations and depletion times should be wide enough to allow a vehicle to have
enough margin on the driving time to get from the depot to a station and back to the
depot. If this time window is to small, the order should be delivered in the previous
period instead.

f. If all of the above is taken into account but it is still impossible to find a feasible time
window, the last resort is to look at opening hours later than depletion time. This last
resort rule means depletion will happen and thereforee should be avoided at all costs.
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2. An order must be fully delivered by one vehicle and cannot be split over several trucks. More-
over the orders are made per station, because it is not allowed to have more than one vehicle
per day visiting a station. This means that an order has an amount for every tank at the cor-
responding station. The size of every order is determined by looking at the expected tank
levels at a station at delivery time. When having a heterogeneous vehicle fleet it is impossible
to fix orders to compartments right away, because a vehicle with the right size is not always
available. thereforee order generation is working with target amounts and optional amounts,
which is decided through the following rules:

a. A target amount is the amount for every tank at a station which will push the depletion
time ahead to a new desirable time. Considering the one order per station rule, the or-
der for one station contains the target amounts of every different tank located at that
station. It is tried to reach target amounts that would ideally lead to a situation where all
tanks reach depletion at the same time (e.g. simultaneous dry run). The target amounts
are then defined as the smallest amounts that would push the stations expected time
of depletion as far as possible into the future if delivered at the latest possible delivery
time. This could also mean that some low consumption tanks might not need anything
delivered at all because they can survive for much longer with what they already have.

b. The optional amounts are maximum volumes on top of the target amount that would
not lead to overflow of the station’s tanks.

c. The target amounts cannot be higher than the carrying capacity of the largest truck in
the fleet.

d. Optional amounts are only limited by the individual tank’s capacity.

e. There are also minimum amounts possible. This is possible with a cut down on the target
amount defined as the maximum percentage for which an order may deviate from the
intended amount. This cut down is typically between 10 or 20 percent.

3. At last an actual time window is generated. This time window is found by looking at the lat-
est opening time of the station and set the window to this. If it would end after the latest
delivery time in this situation, it is set back to this time instead. In the case that a time win-
dow begins while the minimum amount would violate the tank capacities, the time window
is shifted towards the earliest time that is feasible towards the tank capacities. Furthermore
the time window can be extended by moving its starting or ending time if this is necessary to
fit the minimum duration of an order. Generating a time window is further restricted by the
following rules:

a. Obviously the time window cannot take place in the past and should not start earlier
than time–now.

b. The time window is large enough to be able to fit travel times and service times into it.

c. A vehicle just returning from a trip needs some preparation for the next trip, so the first
few hours after time–now do not count towards the lower limit of the time window.

d. Multiple time windows should be considered.

e. The time window does take into account the opening hours and operating hours of the
stations and trucks respectively.

2.2.3. Summarizing the order generation algorithm
To briefly summarize the above, the following steps are necessary to generate an order:
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1. Measure the stock levels at the beginning of each day. When one of the tanks at a station
reached minimums, an expected depletion time is made and a first delivery time window for
that specific tank is made.

2. Because it is not allowed to have more than one vehicle per day visiting a station and an order
must be fully delivered by that one vehicle, an order has an amount for every tank at the corre-
sponding station. The size of every order is determined by looking at the expected tank levels
at a station at delivery time, with the goal to push next depletion as far as possible. This are
target amounts for every tank. If allowed by the compartments and tank capacities additional
amounts can be added. Next to that it is possible to have minimum amounts if a wider time
window is needed.

3. The last step is to make the actual time window. Which should be large enough to take into
account travel times and service times at the station, while it should also respect the opening
hour of stations and the working schedules of trucks. Furthermore it must also be taken into
account that the vehicle should always start and end at the depot.

After this an order is generated for a station, with the following information:

• Station ID.

• The time window [Ta ,Tb] in which delivery can take place.

• Ta is the latest possible delivery time based on the tank that is depleted first.

• Tb is based on the minimum amounts that do not violate tank capacities.

• minimum, target and optional amounts for every tank at the station. Where the amounts are
varying based on the final delivery time that gets chosen.

2.3. Combining orders in the current situation
With the information about the generated orders it can be considered to pair certain orders. This is
done by considering the orders with matching time windows and taking the the involved stations as
one order. Then the new order amounts are generated and taken as one order with a two new time
windows. The delivery times do not have to be the same, because a truck cannot be on two places
at the same time.

To help the algorithm in the order pairing, certain help is handed to the software. AMCS has used
station grouping where orders of the same group are allowed to be paired, but no pairing is allowed
between different groups of stations. Furthermore only orders that are not considered full are taken
into account, where all orders above 90% of the truck capacity are labeled as full. So the algorithm
is asked to look at non–full orders in the same station group.

All the non–full orders are then paired based on the earliest delivery times. This results in an order
that most often is full, but some order pairs could even use a third or fourth order. This depends on
the upper limit of orders that is specified by the user to the program. An example would be to have
two orders per pairing, where the first two would have the earliest delivery times, the second order
would have the third and fourth earliest delivery times, etc.

The ’slow stations’, which have low consumption rates, do not have to have as much deliveries as sta-
tions with high consumption rates. But since the algorithm sees paired orders as one, it would only
anticipate to have one depletion time for both stations next time. This means that both stations
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will be depleting at the same moment leading to the same paired order next time. The problem
with the slow stations is that they can probably be visited a lot less than by just giving them the
target amounts specified. thereforee the slow stations are labeled as ’prioritized’ meaning that they
should always have their target amounts when paired with another order.

The opposite of prioritized stations is also possible. These stations, labeled ’leftover stations’, have
less priority and take up any volumes that might be left in the trucks. The spare volumes going to
these leftover stations do not replace the original order and it is possible that several deliveries take
place to the leftover station. Most of the times this involves larger stations that have high consump-
tion making it easy to deliver spare volumes of the vehicles to this station. Furthermore this station
does not have to belong to a certain group of stations when paired.

When the order is planned it has to be assigned to the compartments of a truck. When orders are
divided over compartments it will first assign the minimum amount. While trying this for as much
orders as possible to get more order pairs. After that the algorithm will try to increase the volume of
the tank with the highest priority and if all tanks have reached target amounts, it can finally try to
add optional amounts to fill up the vehicle.

2.4. Overview of the AMCS models and problem categorization
Section 2.2 and 2.3 answered the sub question "How does the current order pairing algorithm of
AMCS look like?".

It became clear that the model can actually be divided into two sub models: An order generation
model and a model that tries to pair orders and assign them to vehicles, as shown in figure 2.4. More
detailed information about the inputs shown in the figure are given in table 2.5 This structure is
used as a reference for the design of the model in this research.

Figure 2.4: Overview of the order generation and order pairing model, with the flow of input and outputs.

Table 2.5: Inputs for the order generation model.

Model inputs
Station information: opening hours, coordinates, vehicle restrictions
Tank information: current stock, daily consumption, minimum levels allowed, fuel types
Vehicle information: working schedules, compartment sizes, type

Because the order generation model is an algorithm that can create orders based on certain ele-
ments like forecasting, it is rather simple to construct. The order pairing model is a lot more com-
plex and can be categorized as a Petrol Station Replenishment Problem (PSRP), which is a special
case of the the conventional vehicle routing problem (VRP) and could also be identified as a capac-
itated vehicle routing problem (CVRP) or inventory routing problem (IRP) (Popović et al., 2011; Li et
al., 2014). These problems have vehicles with a limited carrying capacity for the goods that have to
be delivered. This has led to the combination of two traditionally separated areas, concerning the
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routes of vehicles and the loading of the goods on those vehicles (Iori & Martello, 2010). With both
separated problems considered NP–hard, combining these areas increases the difficulty of solving
them (Iori & Martello, 2010). Solving large scale problems by using exact methods are quickly be-
coming impossible due to large computing times. With a few dozen stations all having their own
tanks and consumption rates, many solutions are possible and finding a solution can take up a lot
of calculation time.

Table 2.6 gives a short overview of the distinctive characteristics that belong to the specific PSRP of
AMCS:

Table 2.6: Overview of the order pairing model characteristics of AMCS.

Model characteristics
Objective: Minimize travel distance and stock at stations
One depot
Limited heterogeneous fleet
Station vehicle restrictions
Consumption rates measured once per day
Vehicle working schedules
Station opening hours
Time windows
Minimum, target and optional amounts.

The next chapter will look into the literature relevant to the PSRP problem and compare this to the
current order generation strategy of AMCS.
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Research in vehicle routing problems (VRP) has sharply risen since the beginning of the informa-
tion age. Dating back from the first algorithm introduced in 1959 by Dantzig and Ramser the ever
increasing power of computers has led to the development of hundreds of algorithms and mod-
els (Barman, Lindroth, & Strömberg, 2015). This chapter will look into the literature involved with
the delivery of fuel to petrol stations using trucks and try to find similarities with the order pairing
strategy of AMCS.

3.1. Literature on the petrol station replenishment problem
A special case of the VRP is known to be the capacitated vehicle routing problem (CVRP). A system-
atic overview of the different kind of problems involving CVRP which have been researched are given
by Iori and Martello (2010). One of those variants on the CVRP is the petrol station replenishment
problem (PSRP). This routing problem aims to optimize the delivery of petroleum products from a
depot to several petrol stations over a certain planning horizon, minimizing travel costs (Cornillier,
Boctor, Laporte, & Renaud, 2008a). In this specific problem not only the routing of vehicles is im-
portant, but also the optimal filling of the goods inside the vehicles. This is especially the case when
having a heterogeneous fleet of trucks with varying carrying capacity. On top of that it is possible to
have a different setup of compartments on vehicles with similar carrying capacity (for reference see
figure 3.1).

Figure 3.1: Typical tanker truck with different sized compartments. Adapted from Shandong Liangshan Tongya Automo-
bile Co., Ltd. (2016).

For example, two trucks with an identical carrying capacity of 40.000 liters can differ in tank setup
such that one has four tanks of 10.000 liters, while the other has five tanks of 8.000 liters. Other de-
viations from a classical VRP are that the compartments can carry only one specific fluid and the
trucks are lacking flow meters, making it impossible to divide the volume of one compartment over

21
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multiple stations (Toth & Vigo, 2002).

When considering a heterogeneous tanker fleet with different tank capacities and having multiple
orders to take care of, the delivering company must choose the right vehicle for the right destina-
tion. It is undesirable to send the truck with the largest capacity to a gas station that only requires
20% of the volume this truck can carry. Although this is considered undesirable, it is not unlikely
that it will occur once in a while. One of the findings from a study carried out by Avella, Boccia, and
Sforza (2004) concluded that the placing of orders depends on many factors, such as climate and
season. Because of these uncertainties the frequency of orders can heavily vary over time. therefore
it is impossible to have a fixed delivery schedule to clients and, since most delivery companies have
a policy to deliver withing 24 hours, it is sometimes necessary to dispatch a vehicle which normally
would not be used for that particular order.

In the model of (Avella et al., 2004) it is assumed that the different compartments of truck will either
be empty or full; a specific fuel of a particular order cannot be split over multiple compartments;
and the content of one compartment will be delivered to one client. The allocation of orders to the
vehicles is based on Best Fit Decreasing (BFD) (Simchi-Levi, 1994; Clarke & Wright, 1964).

Cornillier et al. (2008a) has analysed the same sort of problem, only differing in the conception that
compartments and order sizes do not have to match completely, such that orders can be split over
multiple compartments if necessary. The only constraint is that a compartment must be completely
empty before it is filled for another order, making it impossible to combine orders in one compart-
ment. Another constraint that was implemented involved a maximum amount of two destinations
per trip, as it is expected by Cornillier et al. that the destinations per truck rarely exceed two per trip
due to the capacity of one truck being to small to serve more. The model also involved an heuristic
algorithm to have procedures for anticipation or postponement of orders.

The research by Cornillier et al. (2008a) was further extended over the following years. Additionally
Boctor, Renaud, and Cornillier (2011) did research towards the trip selection procedure, which arose
as a sub–problem from the first model. Contrary to the first model, which used an unlimited amount
of heterogeneous vehicles, the other problems did have a limited heterogeneous fleet. Additions to
the model included multi–period analysis on a real–world case (Cornillier, Boctor, Laporte, & Re-
naud, 2008b), using time windows (Cornillier, Laporte, Boctor, & Renaud, 2009) and having multiple
fuel depots instead of only one (Cornillier, Boctor, & Renaud, 2012).

For the latter two problems the model was extended to be able to determine trips with three or four
stations instead of the earlier two station constraint. According to Cornillier et al. (2009) most ve-
hicles have four to six separate compartments, while stations require at most two or three different
products. Considering that for one kind of fuel at most two compartments will be delivered to the
same station, there is a possibility that trucks can visit more than two stations. A remark made by
Cornillier et al. (2012) concerning the multi–depot problem was that it is hard to solve, taking a lot of
computational time and even can become impossible. This is why they used a trip selection model,
which selects a trip subset out of a candidate trip set with the aim to maximize the net daily revenue.

Popović et al. (2011) adds inventory management in which the supplier determines how much and
when fuel is delivered to customers, instead of customers randomly sending order themselves. This
way the objective is not only to focus on lowering the vehicle routing costs, but also lowering inven-
tory costs for the oil company. Popović, Vidović, and Radivojević (2012) state that fuel consump-
tion is a stochastic process instead of a deterministic one. This is why they introduced a simula-
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tion approach with a deterministic IRP and a stochastic fuel consumption. Furthermore Popović
et al. (2011) makes use of Variable Neighborhood Search (VNS), first introduced by Mladenović and
Hansen (1997). Differing from the common Tabu search (Glover, 1989), this search algorithm uses
the current most optimal solution and searches in the neighborhood for better solutions, increasing
the distance of neighborhoods when no better solution is found. If a better solution is found how-
ever, the algorithm will use this as the new best optimal solution, repeating the search process. This
method ensures that certain favorable characteristics of a solution are kept and used to find better
optimal solutions (Mladenović & Hansen, 1997).

Elaborating on the same problem (Popović et al., 2012) introduced two other approaches for solving
it. The MIP model looks for stations to assign to certain routes taking into account (daily) inventory
costs. An additional heuristic introduced a relaxed MIP making a first initial solution, after which
the heuristic will search for possible deliveries that could be delivered in an earlier time slot and
look if other stations can be added to the current route.

Li et al. (2014) mentioned that out of stock avoidance is sometimes more important than lowering
transportation costs. Taking this into account, their research puts focus on minimizing the maxi-
mum route travel time rather than aiming for lower costs. The can do and must do orders are de-
cided by specifying lower and upper bounds for the delivery times, where the latest time for delivery
is out of stock time and the earliest delivery time is depending on a minimum stated delivery quan-
tity to maintain an adequate utilization of the transportation resources (Campbell & Savelsbergh,
2004).
More recent research on the PSRP mostly elaborate on the earlier implied meta heuristics and has
been focused on real–life problems, giving them their own set of properties and constraints for that
problem. Benantar et al. (2016) looks at a comparable problem to Cornillier et al. (2009) but adds a
constraint that some petrol stations cannot be visited by certain trucks (in their case private owned
vehicles cannot visit army fuel stations).

Coelho and Laporte (2015) give four classifications for the delivery of fuel orders, which depend on
two things: order splitting over multiple compartments and order splitting over multiple vehicles.
Coelho and Laporte rightfully state that most problems in the literature are using the unsplit–unsplit
classification. Most research is conducted using this classification due to two reasons mentioned
before in this literature study: 1) Traditionally trucks are not equipped with flow meters, making it
impossible to split a compartment and 2) Splitting an order over multiple vehicles is not desirable
because of time windows given by customers.

Coelho and Laporte are questioning these reasons stating that flow meters can be installed if nec-
essary. Also, the decision to deliver an order with multiple vehicles is a purely economical consider-
ation if customers allow multiple trucks in a certain time window. They modeled multiple routing
problems covering all four classifications. The success of the models were mostly depending on the
use of a single– or multi–period instances, where multi–period proved far more challenging to solve.
The latter has been confirmed by Triki and Al-Hinai (2015) who has done additional research to an
extended planning horizon (larger than one day) and states that while a longer planning horizon
could lead to more cost–saving, it also "increases the complexity in the underlying optimization
problems to be solved" (Triki & Al-Hinai, 2015). In other words, stretching the planning horizon
gives more decision variables to take in to account, which makes it more complex to solve and will
significantly increase calculation times.
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3.2. Conclusions on the literature
while the order pairing strategies for the PSRP differ per paper, most do not allow a vehicle com-
partment to hold multiple orders on one trip because they assume trucks do not have flow meters,
making it impossible to have multiple orders in one compartment. With this assumption most ve-
hicles have enough compartments to supply two stations on one trip, but three or more stations
get significantly more difficult, since most trucks do not have more than 6 to 8 compartments. An-
other reason for the one–order–per–compartment rule is that it significantly increases computa-
tional times, since it gives much more possibilities for bin packing. The order pairing algorithms
in most models are using greedy heuristics like first fit and best fit decreasing. Additionally to the
compartment constraint, most models have the constraint that an order from one station should
always be delivered by one vehicle. This means it is not allowed to have split orders over multiple
vehicles, introduced because of the idea that a station is only allowed to be visited by one truck per
day.

The objective functions used in the papers are mostly about keeping costs as low as possible. The
way this is done does vary a lot, where some papers only induce costs on travel time or distances,
while others have a more detailed picture, like including inventory costs and penalties when a cer-
tain vehicle is visiting a specific station with vehicle type restrictions. Most articles define that petrol
stations should always have enough fuel to serve its customers, so when the level of one of their
products is getting low these should be refilled before depletion. For some models this is a hard
constraint, while others give penalty costs when a tank reaches minimums.

3.3. Relations between the literature and order pairing model of AMCS
To aswer the third sub question, "What comparable characteristics and models are available in the
literature?", this section will look for comparisons in the algorithm of AMCS and the available liter-
ature. The order generation algorithm of AMCS has certain specific characteristics. First of all, time
windows are made based on the depletion times, truck working schedules and opening hours of the
stations. If no feasible time window is found to be available near depletion time, the algorithm will
look for an time window in an earlier period. Since it is not allowed to have depleted tanks, the latest
delivery time of an order is determined by the tank that will first go empty.

The literature that includes time windows is limited to three recent studies: Cornillier et al. (2009),Li
et al. (2014), Benantar et al. (2016). Cornillier et al. uses time windows based on working hours of
employees, with possible overtimes. They do not take into account opening hours. Both Li et al. and
Benantar et al. do use working hours of vehicles without overtime and no opening hours are consid-
ered. The latter two specify the earliest possible delivery time as a minimum amount that has to be
delivered to make an order. For the latest delivery time all three problems specify the depletion of
the most critical tank. None of the found literature is basing its time windows on the opening hours
of stations.

Furthermore AMCS uses minimum, target and optional amounts. Just like in this research, most
literature uses deterministic consumption rates taken from historical data. Amounts are specified
by using forecasting to see when tanks will go empty. If no feasible time window can be found when
using target amounts, the model can choose to go to minimum amounts instead. The same sort of
algorithm is used by Benantar et al.. Li et al. uses the same sort of rule, but it is limited because tanks
at stations should always be filled to the maximum capacity at delivery time. Both studies are not
working with optional amounts, but this might be added as a new rule being an ’in between’ option
of both studies.
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AMCS also states that one order should be fully delivered by one truck, but a truck can deliver multi-
ple orders on one trip. If the trucks have flow meters, they have the possibility to take multiple orders
in one compartment, as long as it is the same fuel type. While most literature uses the one order one
truck constraint and restricts to have one compartment only holding the order of one tank, Coelho
and Laporte looked into flow meters, making it possible to allow use split compartments.

The fact that the current problem has some stations with limitations to the kind of trucks that are al-
lowed is fairly unique in this field. The only study doing a similar kind of thing comes from Benantar
et al., which makes distinction between depot owned and private owned trucks. Penalties are in-
duced when a private owned vehicle has to be hired. So this is tried to be avoided at all costs. Next
to that only army vehicles are allowed to visit army fuel depots. In the case of AMCS some stations
do not have space for larger trucks with a trailer. So this is something that can partly be imple-
mented from Benantar et al..

When looking at the objectives of the model, avoiding depletion of tanks and trying to minimize the
mileage, only Triki (2013), Li et al. (2014) and Vidović, Popović, and Ratković (2014) have comparable
objectives. Most literature focuses on costs rather than driven kilometers. However, the difference
between distances and costs are based on the data provided. Since AMCS has not provided data
about costs, it is impossible to aim for minimized costs.

3.4. Time period and planning horizon
In the problem description it was stated that AMCS wants to look over a longer time horizon than
one day, because extended periods could have a large impact on the way orders are paired, whereas
the algorithm could delay or advance certain orders in time when it will lead to improvement to the
overall schedule and lead to delivery savings. This is backed by multiple studies such as Benantar et
al. (2016), Coelho and Laporte (2015), Vidović et al. (2014), Triki (2013), Popović et al. (2012), Popović
et al. (2011) and Cornillier et al. (2008b).

Most research took a time period of one day with multiple periods behind each other. This means
the algorithm plans the specific day it is currently starting, while not taking into account tank levels
for future days. This leads to less effective planning, because most stations do not have to have a
delivery every day. Making the time period larger, for example three days, would give more space
to form better order pairs. Currently the only problem that analyzed a time period longer than one
day is Cornillier et al. (2008b) and since the problem was to complicated to use optimal solutions, it
implemented an heuristic which has found to be promising enough to be used for other cases.

Another more recent algorithm and four corresponding heuristics have been proposed by Triki. In-
stead of making routes and order first, the idea was to look when stations have feasible slots and
how these can be combined with delivery windows of other stations. So first all deliveries per day
are made over the whole time horizon, after which routes are chosen. Two of the heuristics showed
promising results, but still are unusable when looking for a longer time period than a week.

3.5. Research gap found in literature
Together with the previous chapter which analyzed the current algorithm of AMCS, this chapter has
identified which models in the papers have similar characteristics as the one AMCS is using.

By comparing the characteristics of the AMCS model with the cases described in the literature some
important conclusions can be drawn. AMCS has used combinations in their algorithm that have
not been done by any literature in the same way. The closest examples are Cornillier et al. (2008b),
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Cornillier et al. (2009), Triki (2013), Li et al. (2014) and Benantar et al. (2016). However, most of
these studies have done only one or two aspects that are found in the AMCS algorithm, but never
the specific combination of station restrictions, time windows, vehicle working schedules and a
heterogeneous limited fleet. Furthermore most literature is only focusing on optimizing the PSRP
problem for a single–day period, whereas the research in this thesis is aiming to look for a longer
time–horizon. This shows that there is a research gap found between the available literature and
this specific case problem.

The models from Benantar et al. and Coelho and Laporte seem to be the most promising, since
these have good comparisons with the AMCS model. This could be a good basis to start from when
assessing the mathematical model. The other models mentioned before are possibly good additions
to the two other models.

3.6. Scientific and societal relevance
This research is relevant from a social as well as an academic perspective. The academical relevance
of this research focuses on the knowledge gap that is apparent. The social relevance focuses on the
contribution of this project to society. Both will be briefly discussed in this section.

3.6.1. Academic relevance of this research
As mentioned in the introduction the call for more efficient transport has led to an increasing at-
tention towards planning and routing optimization for this problem. While the routing and packing
problem has been around for several decades, the PSRP is still fairly new and the improvements are
mostly from the last 8 to 10 years.

The literature has addressed some combinations and issues already, but never the specific combi-
nation of station restrictions, time windows and a heterogeneous limited fleet. This research will
aim to do just that. Generate new strategies by using the elements from the literature in a unique
combination. It will implement and test the strategies on real–life data. Furthermore it will differ
from most literature in the sense that travel distances and on-time delivery are the most impor-
tant factors, whereas most research only aims to reduce costs. Due to the unique combination, the
results of this research could potentially lead to new insights on how to approach the PSRP.

3.6.2. Economic and societal relevance of this research
As has been outlined in the introduction, transport is an important factor within the supply chain
of a petroleum company. While oil gets more and more valuable due to increasing demand and a
decreasing amount of sources, it is inevitable that prices will increase throughout the years. Trans-
portation is one of the things that could be improved to cut costs and prices at the petrol stations.
With transportation costs representing up to 25% of the final product costs (Avella et al., 2004), re-
search and development of VRPs have proven to be relevant for the transportation sector and have
had success in terms of saving costs, ranging between 5% and 25% of the total travel costs (Ballou,
2004; Avella et al., 2004).

It is also a relevant topic because of the increasing attention towards efficient transport from gov-
ernments and environmental organizations, as well as the transport companies themselves. If im-
provements to the order pairing strategy lead to less driven kilometers as a whole, this will naturally
lead to less carbon–dioxide emissions, lowering the carbon footprint. This is an important incentive
for AMCS to deliver more efficient software.

The model introduced in this thesis can be a first tool to try and generate new strategies in the order
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pairing. Tests that lead to promising results could possibly be implemented in their software. The
next chapter will look at the goals of AMCS, which helps to define the most important KPIs. After that
the model requirements, objectives and constraints are specified, from which a conceptual model
is proposed.
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4
Conceptual model

The literature study and the overview of the current order pairing strategy in the previous chapters
have led to a clear research gap. The design of a model having the unique combination of time win-
dows, vehicle restrictions, a heterogeneous limited fleet and a multi–period simulation has not been
done before. This chapter will explore how the conceptual design of the model should look like. The
first part of this chapter will explore the goals and key performance indicators (KPIs) important for
AMCS, which will serve as the most important output of the model. The first section will look into
the goals of AMCS, as to why they want to improve their order pairing strategy. The second sec-
tion will further define the chosen KPIs and their respective units of measurement. After that some
supporting output variables will be defined, which serve as an aid to check if the model is behaving
as intended. Section 4.5 will elaborate on the fundamentals taken from the AMCS case which will
also be integrated into this model. After that the requirements, objectives and constraints for the
model are stated in section 4.6. The last part will give a formal description of the model and state
the assumptions used.

4.1. Defining the goals of AMCS
As stated in the problem description AMCS want to improve their planning software with the goal to
provide petroleum companies with a tool that will lead to more efficient and environmental friendly
transport. With this in mind as a reference, while consulting AMCS it became clear that the following
factors could be defined in decreasing order of importance:

• on–time delivery (before a tank at a station gets depleted).

• Avoiding stock buildup at the petrol stations.

• Reducing mileage.

• reduce CO2 footprint.

The first goal is the most important because it is a certainty you provide as a petroleum company
towards your clients, the owners of the petrol stations. It is usually not acceptable that deliveries
are too late, since that would lead to serious problems in the fuel supply to road traffic. This in turn
could have economical consequences for society, of which the recent fuel strikes in France are a
good example (The Local France, 2016). Most petrol stations have demanded a contractual liability
if a late delivery might happen. Late deliveries would thus harm the petroleum company in reputa-
tion and financially.

31
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The second goal, avoiding stock buildup, is desirable because having (almost) fully filled tanks at the
stations means that valuable volumes of excess fuel essentially become wasted assets that cannot
be invested elsewhere. To put it simply, excess fuel in tanks could potentially have been allocated to
an extra station, increasing the total sales.

The third goal is important for the petrol company itself and has to do with cost reduction. Not
only could lowering the costs potentially lead to more profit, it could also lead to a more competi-
tive business where delivery prices can be lowered, indirectly improving the relationship with cus-
tomers. Not taking into account fixed costs, the operation costs of trucks are depending on their
utilization. It is desirable to keep the this as low as possible, while still being able to deliver to all sta-
tions. Sometimes having a truck making multiple stops on a route is feasible, while at other times it
is not. This depends on the amounts of fuel delivered, as well as the additional travel time required
for an extra stop and the size of the truck that is used. However, when referring back to the on–time
delivery constraint, if a certain route is not deemed feasible it does not mean it should be skipped if
that would lead to a late delivery otherwise.

On the other hand it might be thinkable to deliver a bigger or extra order to several stations if excess
truck capacity allows to do so. This could be wanted when an extra order improves the order alloca-
tion for the next day(s). But it must be kept in mind that in most cases it is more viable to have two
trucks on full capacity to visit one station each, rather than visiting two stations per truck, as this
would lead to an extra trip between two separate stations.

The first three goals together with the chosen strategy can have a great impact on the utilization of
trucks. Compartments for example can be filled with multiple orders when flow meters are used.
This could lead to higher utilization of compartments, which possibly leads to less trips. AMCS
mentioned that they did their own simulations, which sometimes generated orders that had the
largest truck going to the furthest station with only 20% of compartments filled. Naturally this is
undesirable and should be avoided when possible, even though it is probably impossible to avoid
this for every situation.

The last goal is to limit the CO2 emissions by trying to have more efficient transport. This could
include lowering the amount of driven kilometers or have more efficient vehicles. The latter one is
not falling inside the scope of this research and will not be highlighted any further. Lowering the
amount of driven kilometers is a means to lower the CO2 emissions and has a linear relation.

Based on the information given above, the on–time delivery is considered so important that this will
not be approached as a key Performance Indicator, but it will be translated into a a hard constraint of
the model. Thus the model is constrained to make orders that will always lead to on–time delivery.
The other three goals can be translated into KPIs, which will be discussed in the next section.

4.2. Key Performance Indicators related to goals
To evaluate the performance of alternative order pairing strategies it is required to have some in-
dicators that translate the goals of AMCS into measurable components. This section will discuss
the KPIs that are important for AMCS. With the main goal discussed in the introduction and having
defined which sub goals are important for AMCS, it is possible to scale this down into measurable
variables. Figure 4.1 gives an overview of the goals and the criteria belonging to these goals. All KPIs
will now be shortly described in separate subsections.
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Figure 4.1: Goal tree of AMCS, including units of measurement.

4.2.1. Total mileage and CO2 emissions
One of the goals is to decrease the travel time costs. This can be translated into the total mileage that
is driven by all vehicles in the system. Keeping in mind that the paths between different locations
are a given and cannot change because of this, it is in fact the total mileage that will change when
assessing different strategies for order generation. After all, if the total amount of trips change, there
is a change that this also has an impact on the kilometers driven. The best strategy would be the
one that keeps this as low as possible for a given amount of orders. Another KPI directly connected
to the mileage are of course the CO2 emissions, as one of the goals is to lower the carbon footprint
of transport. The mileage has a direct influence on the emissions because a vehicle emits a certain
amount of CO2 per kilometer.

4.2.2. Total delivered amount
The next KPI that is necessary does have a direct relation with the goal to keep the stock levels at
petrol stations as low as possible. As has already been explained in the problem description, the
choice for a certain stock level can greatly influence the size of orders, thus leading to differences
in vehicle and compartment utilization. Filling all tanks at a station to its maximum capacity will
cause less frequent visits to that station over a specific time period, but it also means that less orders
can be handled during one day, such that less stations can be handled from one depot. The ideal
situation would be to deliver as little as possible, while still avoiding depletion. By looking at the
total delivered amount of fuel over a certain period and compare this to the total travel distances, it
is possible to see how efficient a certain strategy is in terms of amount/distance.

4.3. Supporting indicators
Some performance indicators are not important for the final outcomes, but are necessary to analyze
if the model is behaving as expected. This section will briefly discuss the supporting variables.

4.3.1. Total number of trips and number of trips with x stops
Since the essence of this research is to look into different order pairing strategies, it is wise to have
some kind of indicator that directly measures the changes between different order pairing strategies.
This is done by checking the number of trips made by every vehicle, while also counting the amount
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of stops that are added to these trips. In general most vehicles will make one or two stops per trip,
with an outlier of three stops when the situation allows this. When having the same type of orders
for different strategies, a different amount of stops can also have a big influence on the total number
of trips. Eventually this will have its impact on the total mileage and it is interesting to look how this
the travel distances are impacted by the different trip sizes.

4.3.2. Utilization of vehicles
Another parameter is the Utilization of vehicles. It gives an indication how the different vehicles are
utilized compared to each other, as well as the total utilization. This can give information on how
well a certain strategy is performing, while it also indicates if the model is behaving as expected. If
one of the vehicles is used much less than others, this could mean there is something wrong in the
model. The utilization of all vehicles together give information on how well a certain order strategy
is performing. Lower utilization will probably also lead to a lower mileage, given that the same
amount of stations have to be served for every strategy.

4.3.3. Average utilization of compartments
By measuring the levels of fuel in the compartments it can be seen how much the compartments
are actually used. If for example a few compartments are always less full than the others, it could tell
something about mistakes in the decision rules. When compartments are always half full, it means
that the truck could possibly have visited more station on one trip. Thus the utilization can help to
interpret how well a certain strategy is performing.

4.3.4. Amount of executed orders (or total stops)
to check if the proposed model is behaving as it should be, the amount of executed orders is needed
for reference. As mentioned before, travel times are influenced by a few uncertain factors and will
have an impact the total amount of orders that can be delivered. If the travel times change for differ-
ent scenarios, it will ultimately have its impact on the amount of orders that can be delivered during
one day. This makes the total amount of executed orders an measurement for reviewing the impact
of different strategies and understanding the proposed solutions. Having fewer or more orders are
not necessarily good or bad with respect to each other. For example, if less processed orders lead to
less trips to the most remote stations, while giving them the same amount of a product, it is not bad
to have fewer orders.

4.4. Overview of KPIs and supporting indicators
The first part of this chapter has answered the question: "What KPIs are relevant for measuring the
effects of different order generation strategies and how are they measured?".

With the consultation of AMCS it became clear that there are four specific goals: on–time delivery,
Avoiding stock buildup at the petrol stations, reducing transport costs and reduce the CO2 foot-
print. These goals in turn have been translated into three KPIs to measure the performance of dif-
ferent strategies. Furthermore four supporting variables have been defined. All KPIs and supporting
variables are listed in table 4.1.
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Table 4.1: Overview of relevant KPIs and supporting variables with their corresponding units.

KPI Units
Total mileage kilometers
CO2 emissions gram/kilometer
Total delivered amount liters
Supporting Variable Units
Number of trips with x stops trips/month
Average utilization compartments liters
Utilization of vehicles % of time
Amount of executed orders orders/month

4.5. Fundamentals integrated from the AMCS case
With the exploration of the AMCS case data, algorithm and goals, it is possible to make a list of ele-
ments from the AMCS model that also form the basis of the model in this research. These elements
will be discussed in this section.

4.5.1. Consumption rates

For this research the stock flows of tanks at the stations are chosen to be deterministic. One week
of data about the consumption rates is given. This means that the flows in one tank will always
follow the same weekly trend over the whole simulation period. In this way the situation will always
be the same for every tested strategy. Obviously the consumption rates can vary between tanks
and stations, since there are stations that will have more customers than others on an average day,
leading to higher consumption rates. In reality fluctuations over the day can happen, like peak vs.
off–peak hours, but since the tank levels will only be measured at the beginning of each day, hourly
changes will not be taken into account. Knowing this, the daily differences between the data points
are assumed to have a linear consumption.

4.5.2. Minimum stock levels and empty levels

The second characteristic is that tanks at stations have a certain capacity ranging from zero to sev-
eral thousand liters. However, the actual level defined as empty is not equal to zero, because there
should be a margin to overcome the problem of depletion if a late delivery were bound to happen.
This way there is always a margin when a delay in the delivery takes place, for example when a truck
is facing traffic jams. While this is accounted for in the real–life, in the scope it was stated that dis-
ruptions are not taken into consideration. Still the minimums defined by the AMCS data are taken
into account, because it is always necessary to stay above this limit to avoid depletion and therefore
the model will always aim for a delivery before the minimums are reached.

4.5.3. Minimum, target and additional amounts

Furthermore AMCS works with minimum, target and additional amounts. Minimum and target
amounts will also be used in this model. This helps to give the optimization model some room to
play with the final amounts that are loaded into a vehicle when assigning a route. The minimum
amount is always 80% of the target amount. Changing the lower and upper bounds of the target
amounts can lead to different results when looking at the distances. Delivering less will lead to more
frequent trips, but there is a higher possibility that multiple stations can be visited on one route.
Additional amounts are an option in the model, but it should be noted that additional amounts are
only possible when all orders loaded on a vehicle have first reached target amounts.
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4.5.4. Vehicle working schedules, station opening hours and vehicle restrictions
The model will take into account working schedules and station opening hours. This means that
apart from a latest possible delivery time, defined as the time that a tank reaches depletion, the time
windows are also restricted by the schedules and opening hours. Furthermore vehicle restrictions
can limit the type of vehicle that is allowed to visit certain stations.

4.5.5. Time period and simulation horizon
The time period is an important factor in the research of the PSRP. Several papers have emphasized
on the possible impact of multi–period instances, where the delivery of orders is optimized over
several days. This can have a significant impact on the costs because the model will look for the
best solution over multiple days instead of just optimizing one day of deliveries. The downside of a
multi–period is found in the computing times, since multiple days mean more stations, routes and
vehicles to assign.

AMCS has stated that they think the considered period can have a large impact and would like too
look at a multi–period simulation of the problem. More specifically they asked to look over a horizon
of 3 to 4 weeks. The data contains consumption rates for a week, so it would be possible to have a
multi–period spanning several days and repeat this for four weeks, while repeating the consumption
rates for every week. However, because it would probably not be achievable to do so considering the
time for this project, the proposed method is to optimize order deliveries per day, but looking over
a time span of 3 to 4 weeks. This can still lead to significant results, since the order pairing strategy
will directly influence the impact on the order amounts, travel times and stock levels.

4.6. Requirements, objectives and constraints for the model
Based on the information provided in the previous sections, this section will give the requirements,
objective and constraints for the model design.

4.6.1. Requirements
The model requirements are defined such that it is able to test different order pairing strategies over
an extended period of time. It must handle all orders from one single depot towards all its client
stations. The model is able to read the input data handed in a certain format and give the right
outputs based on this data. Some variables have to handle manual changes, such that different
outcomes are possible.

4.6.2. Objectives
The goals of AMCS, reducing transport costs and CO2 emissions, can be reached by lowering the
amount of kilometers driven. It seems logical that the objective of the order pairing optimization
model is to keep the mileage as low as possible. However, because the model works with time re-
lated variables like time schedules, station opening hours and service times, it is more logical to
work with travel times. AMCS provides both an travel time and distance matrix and since the travel
times and distances are normally closely related, both can be used. Eventually the outcome of the
model will measure the distances of the routes as well, making it possible to compare different al-
ternatives on their total distances. therefore the objective of the order pairing optimization model
will be to minimize the total travel time of petrol deliveries.

Furthermore one should imagine the situation where one tank at a station is reaching lower limits,
while another tank still has a lot of its product left. This means that the latter tank could have re-
ceived less product during the last delivery. The fuel still left in the station tank when a new delivery
arrives, could have been used somewhere else, which is a waste of resources. In the ideal situa-
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tion every tank should have similar depletion times. therefore the objective for the order generation
model is to aim at similar depletion times for the tanks located at the same station.

4.6.3. Constraints
One of the goals of AMCS is to provide on–time delivery to every station. This factor is considered
such an important constraint for AMCS that it must always be fulfilled. As told before, on–time
delivery is a certainty you provide as a petroleum company towards your clients. It is usually not
acceptable that deliveries are too late, since this would lead to serious problems in the fuel supply
to road traffic. therefore the model should have a hard constraint to have on time deliveries at
all times. Another hard constraint is that the orders always have to be delivered in a feasible time
window. This means it has to take into account station opening hours and vehicle schedules, when
assigning a route during a certain time on a specific vehicle. Next to that it is not allowed for a
vehicle to visit a station with restrictions on that vehicle type.

4.6.4. Overview of requirements, objectives and constraints
An overview of the specifications are given in table 4.2:

Table 4.2: Overview of model requirements, objectives and constraints.

Model requirements
Test different order pairing strategies over an extended time period.
Objectives
Order generation model: Similar depletion times for the tanks located at the same station.
Order pairing optimization model: Minimize travel times of petrol delivery to stations.
Constraints
On–time delivery to every station.
Delivery only possible in feasible time windows.
Vehicle can only visit allowed stations.

4.7. Model description and assumptions
This contains a description of the basic elements and assumptions of the model, which regards the
inputs from the previous sections.

4.7.1. Overall model structure
It has become clear that the model of AMCS actually can be split into two separate models. An
overview of the proposed structure of the model is visualized in figure 4.2. The model structure can
be defined as simulation period with a time step of one day, where one day is split into two sepa-
rate algorithms. The first model is the order generation, which checks the stock levels of all tanks
at the beginning of each day, compares this with the minimum stock level allowed and makes an
order for a station if one of its tanks has reached minimums. Subsequently the algorithm adjusts
the amounts for all tanks at a station aiming at equal depletion times. This is the less complex part
of the algorithm.

The second model does the actual order pairing, where orders are assigned to a vehicle based on
amounts, locations and time windows. This second part of the algorithm actually is the most com-
plex part, where orders have to be paired and routes need to be calculated to optimality.
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Figure 4.2: The model structure, with order generation and order pairing specified as sub models.
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4.7.2. Formal description of the models and its assumptions
A network is considered where 59 stations are supplied by one depot. The Multi–Period Split Com-
partment Vehicle Routing Problem with Time Windows and Vehicle Restrictions (MP-SCVRPTWVR)
can then be defined as follows: G = (V ,E) is a connected undirected graph defined as having a ver-
tex set V = {0,1,2, ...,n} with a set of edges E = {(i , j ) ∈ V ×V ;0 ≤ i , j ≤ n, i 6= j }. In this case the
connected graph means that each vertex is connected with all other vertices through at least one
edge. Vertex zero is representing the depot, while vertices 1 through n represent the stations. All
tanker trucks start and end their trip at the depot and the route can consist multiple stations.

The model works with routes, which are feasible chains of visits to a subset of stations. A route r
visits all stations of the subset Vr ⊆ V , where the stations i are indexed according to the order in
which they are visited. There are three different fuel types from two unique oil brands, which are
delivered to the stations by a fleet of heterogeneous vehicles all having flow meters. The maximum
inventory level for each station tank is determined as a percentage of the total volume of the tank.
Furthermore all initial stock levels are known. Next to that the following assumptions are made:

• The oil depot has an infinite supply.

• A station is only allowed to be visited once per day.

• In line with the above, one order has to be delivered in total, such that it is not allowed to split
an order over multiple vehicles.

• The vehicle compartment capacities cannot be exceeded.

• The inventory level of a tank can never exceed its maximum capacity. To overcome problems
with depletion a safety stock level is used, which depends on the capacity and consumption
of a tank.

• The stock levels of tanks are measured once at the start of each planning day and orders are
generated based on this information.

• Each order has a minimum and target amount for each tank at the station corresponding to
the order, which is derived from initial stock levels, expected consumption, and the maximum
inventory levels of the tanks. The target amounts are derived from the maximum allowed in-
ventory level, to push depletion as far ahead as possible, without having too much pile up at
the stations. The minimum amounts are a cut down which are specified to give more possi-
bilities for paired orders.

• The assumption above leads to an earliest delivery time. However, it is not allowed to have
late deliveries that lead to stock out at the stations. Since the order should be delivered before
reaching tank minimums, the depletion time is automatically the latest delivery time. This
means that every station has a time window in which deliveries can take place.

• Average travel times are the same for all trucks and derived from a travel time matrix.

• Service times at the depot are 15 minutes of turnaround time and a refill time which is based
on the minimum amounts that are delivered on one route, while service times at the stations
are based on 10 minutes turnaround time per station plus 30 minutes unloading time for the
total amount in a vehicle.

• Vehicles have regular working schedules and no overtime is allowed.

• Some vehicles may not visit certain stations. Thus some stations have vehicle restrictions.
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• Since the vehicles feature flow meters, it is possible to have more than one order per compart-
ment as long as it is the same fuel type and brand.

• With the number of compartments per vehicle it is highly unlikely that a vehicle can visit more
than 3 stations. As such, one route is limited to visit up to three stations.

• During a route it is not allowed to wait at a station until the next one opens. As such only
routes which can be taken in one continuous chain of travel and service times are allowed.

Just like the model of AMCS the aim for the order generation model is to push depletion times as
far ahead as possible, without having to much stock pileup at the stations. This means it needs to
forecast the expected depletion times. The order pairing optimization model will then use the out-
put provided by the order generation model to find the lowest travel distances to deliver all orders.
Each edge (i , j ) has a specific length which is given by a distance matrix. The average travel times
per link (i , j ) have an important role in the routes that can be created, since the trucks have work
schedules and can have multiple routes per day. The travel times are defined in a travel time ma-
trix provided by AMCS, which is the same for every vehicle. While the travel time matrix is given
in seconds, all time units are rounded to minutes. This is done since it does not make a significant
difference when a route is a few seconds longer or shorter. Calculating everything in seconds would
only increase calculation times, since the algorithm has to check everything by the second instead
of every minute.

4.8. Overview of model assumption and implementation method
Table 4.3 gives a short overview of the assumptions that are being use in this research:

Table 4.3: Overview of model assumptions.

Model assumptions
One depot with unlimited supply
Limited heterogeneous fleet
One station visit per time period
Vehicle restrictions for certain stations
Fixed travel times and service times
Deterministic consumption rates using historical data
Station opening hours
Work schedules
Time windows based on work schedules and opening hours
No waiting times at stations allowed
Flow meters

Like stated before, the simulation model is actually a combination of two separate models. Since
they use each others input and outputs they have to be able to interact with one another. This is only
possible by constructing the full model using programming software. Both models are programmed
using Python. The order pairing optimization model is implemented using Gurobi optimization
software, which can easily be integrated with Python. As the order pairing optimization model is
the complex part of the simulation model, it needs to be well structured and tested thoroughly.
The next chapter will provide the mathematical model of the order pairing model and run several
verification and validation tests to check if the mathematical formulation is correctly applied on
paper as well as the model itself. Chapter 6 will further elaborate on the simulation model, where
the order generation model is explained in more detail and the way this model interacts with the
order pairing optimization model.
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Order pairing optimization model

This chapter will give a mathematical description the order pairing optimization model. The first
section will give an overview of all parameters and decision variables that are involved. Section
5.2 will further elaborate on the mathematical model defining the objective function and give the
model constraints. Since the model will work with routes, a route selection procedure is applied to
find feasible routes prior to starting the optimization model, which is described in section 5.3. After
that section 5.4 and 5.5 will run verification and validation tests on the model. Section (5.6) will
show the computational results of the model while testing several different instances with varying
amount of stations, vehicles and fuel types. To make the model more efficient when handling a
larger amount of orders, a modification to the current model is proposed in section 5.7. Finally, the
last section will draw conclusions of this chapter.

5.1. Parameters and decision variables
Most of the mathematical model stated in this chapter uses elements from other studies done by
Benantar et al. (2016), Coelho and Laporte (2015), Macedo, Alves, Valério de Carvalho, Clautiaux,
and Hanafi (2011) and Li et al. (2014). Before further defining the mathematical model, the following
indices and parameters are presented:
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Index of a gas station i , belonging to set V = {0,1, ...,n} with the depot having index 0.

Index of route r , belonging to feasible routes set R = {0,1, ...,r } where r is a subset Vr ⊆V .

Index of the vehicle k, belonging to set K1 ∪K2 = {1,2, ...,k}.

Index of the compartment c, belonging to set C1 ∪C2 ∪C
′
2 = {1,2, ...,c}, where C

′
2 ⊂C2.

Index of station fuel tank p, belonging to set P = {1,2, ..., p}.

Capacity of compartment c of vehicle k.

Stock level of tank p of station i at the end period t .

Initial stock level of tank p of station i .

Consumption rate of tank p of station i at period t .

The earliest time at which delivery of vehicle k at station i can take place.

The latest time at which delivery of vehicle k at station i can take place.
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Minimum delivery amount for tank p of station i .

Maximum delivery amount for tank p of station i .

The earliest departure time for route r .

The latest departure time for route r .

Maximum capacity of tank p of station i .

Minimum capacity of tank p of station i .

The delivery time window of station i .

Start time of the work schedule W of vehicle k at time period t .

End time of the work schedule W of vehicle k at time period t .

Opening hours of station i at time period t .

The delivery rate, which indicates the replenishment time when a vehicle arrived at a station.

Travel time from station i to station j .

Arbitrary large value.

To further elaborate on the variables indicated above, route r is a sequence of station visits with
starting and ending at the depot. Two types of tanker trucks are defined: a semitrailer and a rigid
plus drawbar combination, denoted with K1 and K2 respectively. Each vehicle k has a correspond-
ing set of compartments, where K1 belongs to compartment C1 and K2 belongs to compartment set
C2 or C

′
2. C2 refers to the vehicle where the full combination rigid plus drawbar is in use. C

′
2 denotes

that only the rigid compartments are used (e.g. the drawbar is detached from the vehicle), where
C

′
2 ⊂ C2. Each compartment c has a known capacity Qck . Compartments are not dedicated to a

specific fuel type such that each compartment can hold every type of fuel. Each station i ∈ N has
several tanks p from the set P = {1,2, ..., p}, where every tank has its own fuel type. Every tank has
an (initial) stock level Lpt

i , a consumption rate upt
i , a maximum capacity C p

i and a minimum stock
level C p

mi n,i . C p
mi n,i is the minimum level that may be reached before a tank is marked as depleted.

Furthermore every tank has their own minimal delivery quantity defined as v p
mi n,i .

Time windows are defined as [t a
i , t b

i ], where t b
i is the latest possible delivery time equal to the deple-

tion time defined as the current inventory level divided by the consumption rate over consecutive
periods 1,2, ..., t : Lpt

i /upt
i . The earliest delivery time is depending on the capacity of tanks and the

minimum delivery allowed: t a
i = M ax(0, (v p

mi n,i −(C p
i −Lpt

i ))/upt
i ). The time window should always

respect the opening hours of stations H t
i and the work schedules of vehicles W kt , which have a

morning and evening schedule on most days.

Next to the parameters defined, the optimization model has the following decision variables:
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The time vehicle k departs from the depot at the start of route r .

Amount a of fuel type p delivered to station i .

Integer value being zero if one route is assigned to vehicle k and receives +1 for every

additional route on the same vehicle. If a vehicle is not used this variable becomes −∞.
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The quantity of product p delivered to station i of route r in compartment c of truck k.

=
{

1, if vehicle k is using route r.

0, otherwise.

=
{

1, if vehicle k is allowed to visit station i .

0, otherwise.

=
{

1, if station i receives product p from compartment c of vehicle k on route r.

0, otherwise.

=
{

1, if route s follows route r for vehicle k.

0, otherwise.

=
{

1, if station i is visited by vehicle k on route r.

0, otherwise.

=
{

1, if product p is loaded in compartment c of vehicle k on route r.

0, otherwise.

=
{

1, If route r is in work schedule W of vehicle k.

0, otherwise.

Now that the parameters and decision variables are known, the next section will further elaborate
on the mathematical formulation of the order pairing optimization model.

5.2. Mathematical model
This section will provide the mathematical overview for the order pairing optimization model. While
the objective of the whole model is to keep the travel distances as low as possible, the optimization
model has the aim to minimize the total travel time. This is decided due to the nature of the model,
where working schedules and opening times of stations are used, which makes it easier to work
with (average) travel times. Because the model has the objective to minimize, this would also work
through to the amounts delivered. As the model is working with minimum and target amounts, it
would normally use the lowest possible delivery quantities. To overcome this problem, a penalty G
is invoked for every delivered liter less than the specified target amounts. The value of G can be kept
very low, as it only has the intention to penalize the deviation from its target amount. therefore the
objective function and its constraints can be formulated as follows:
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In this formulation, the objective function (1) is to minimize the total travel time for visiting all sta-
tions, while the total amount delivered should be as high as possible. Constraint (2) makes sure that
certain vehicles cannot visit some stations. Constraints (3) makes sure that every station is visited
once and constraint (4) indicates that all stations dedicated to a route are indeed visited when this
route is used. Constraint (5) and (6) limit a route combination to be used only once by any vehi-
cle. Constraint (7) counts the amount of followup routes done by vehicle k, while (8) forces the the
number of route combinations r s to be equal to the amount of followup routes in a specific vehicle.
Constraint (9) limits the use of a route combination to one and only to go one way. Constraint (10)
makes sure that the departure time of one route start after the arrival time of the previous route,
where parameter M is an arbitrary large value. With constraints (11) and (12) it is made sure that
vehicle working schedules are respected. All routes used must have a slot in one of the working
schedules, meaning that the amount of slots l must equal the amount of utilized routes, specified
by constraint (13).

Constraint (14) limits the maximum amount that can be delivered on a certain point in time. Start-
ing from t = 0 with the minimum delivery amount, the extra amount that can be taken is propor-
tional to the consumption over a specific time, up until the target amount is reached. The final
amount that is chosen for delivery is decided on departure time with the travel time to the first sta-
tion indicating the limit for the amount to be taken. With constraint (15) it is made sure that the
quantities brought in all compartments is the same as the delivery amount of a specific tank. Con-
straint (16) only allows a quantity for a station’s tank assigned to a compartment if that compartment
is actually visiting the corresponding station. Constraint (17) restricts the delivery quantity in one
compartment to be at most the maximum volume of that compartment. Constraint (18) sets the
compartment capacity of the drawbar to zero on a specific route, if that route has a station which
only allows a rigid vehicle. Constraint (19) makes sure that only one product type is assigned to one
compartment. Constraints (20) and (21) allow deliveries from any compartments only if the vehicle
visits a station. Constraint (22) enforces non-negative conditions on the variables.
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5.3. Route selection procedure
The model described in the previous section works with predetermined routes rather than indi-
vidual stations. The reason for this is the complexity of the problem, where even a small amount of
stations can lead to significantly large calculation times. By constructing routes upfront it is possible
to already filter out those which contain infeasible station combinations. As stated in the previous
chapter, a vehicle can visit up to three stations during one route. Using permutations, all possible
combinations of one, two or three stations on a route are constructed and, knowing that a vehicle
always has to start and end its trip at the depot, the depot is added as a node at the beginning and
end of a route. After this all routes are checked for feasible time windows between stations and if a
route fits within a vehicle working schedule.

5.3.1. Arc feasibility check
The first check to lower the amount of routes is by deleting those that have infeasible station combi-
nations, based on opening hours and delivery time windows defined in the order generation model.
First the time windows of every order are adjusted to fit with the opening hours of the corresponding
station. Figure 5.1 gives three examples of adjusting the time windows. The grey areas are the final
time windows. The first one has a end time (T b1) which is positioned within the station’s opening
times, but the beginning Ta1 of the time window starts before the station opens. The new window
then has the opening time of the station as its lower bound, while the upper bound stays the origi-
nal T b1. The second example can fit the whole period that station i is opened into its time window.
The new window will then be adjusted to have the station’s opening and closure times as the new
boundaries. The last example is the opposite of the previous one. Here the time window completely
fits into the opening hours of the station. The time window therefore does not need any adjustments
and its bounds are kept the same.

Figure 5.1: Three examples of time window adjustments with station opening hours.

After adjusting the time windows to the station opening times, the windows of different stations in
a route are compared with each other for overlap. Note that it is not allowed to have waiting times
at stations and the vehicle’s travel time is the sum of travel times between nodes and the service
times at stations. When a route is feasible, it will be provided with a departure window, which gives
a lower bound αr and an upper bound βr for the departure of a vehicle on a certain route. This
departure window takes into account the travel time to the first station to be visited for which the
delivery would still be in time. As stated before in subsection 4.7.2 of chapter 4, the service times are
based on an average of 60 minutes per station. For the depot there is a fixed turnaround time of 15
minutes, with an additional time based on the minimum amount a vehicle has to carry on a route
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divided by a filling rate of 1800 liter per minute.

Figures 5.2 to 5.5 give some examples of different situations where routes can be labelled feasible or
infeasible. One situation can be that the time windows of two consecutive stations do not have over-
lap even while respecting the travel times between them, as shown in figure 5.2. The figure shows
the first two stations in the route to share a common window while the third station is to far apart to
complete this route without waiting times. This automatically leads to an infeasible route because
of the waiting time restriction. As shown in figure 5.3 some of the routes can have an ordering of sta-
tions where the time window of the last station to be visited actually ends before the time window
of the first station. While this specific order is infeasible, a different order could make this combina-
tion feasible which is shown in figure 5.4. The station windows are exactly the same, although this
time station 3 and 1 are switched around. Because of this switch, a possible time window turns up,
making this route feasible. The departure window is marked as the grey area between αr and βr . In
figure 5.5 station 1 and three have just enough overlap to make a narrow but feasible window. The
latest departure time would just be in time to reach the window’s end of station 1 while the earliest
departure time is exactly enough to fall within the window of station 3.

Figure 5.2: Infeasible route where station 1 and 2 have
no overlap with station 3.

Figure 5.3: Infeasible route where the window of sta-
tion 3 ends earlier than the start window of station 1.

Figure 5.4: Same windows as figure 5.3 but different
visiting order, making the route feasible.

Figure 5.5: All stations have overlap making this a fea-
sible route.

Routes with an identical subset of stations, but visited in a different order are deleted using the
Pareto efficiency principle. With the knowledge that at least the minimum amounts have to be de-
livered to stations it becomes clear that a different order of visits will have minimal effect on the
utilization of a vehicle’s compartments. Additionally the amounts brought to the stations are deter-
mined on the departure time and the travel time to the first station, which would mean amounts
are still equal for every station provided that both routes have the same departure time. There will
only be a marginal difference in quantities if departure times are different, so overall the amounts
will not change drastically when having a different order of visits. With the objective to minimize



48 5. Order pairing optimization model

the travel times, the route with the shortest travel time will be retained, while other routes with the
same subset of stations will be deleted.

5.3.2. Vehicle feasibility check
With the arc feasibility check finished, infeasible routes have been deleted and the feasible routes
are assigned an earliest and latest departure time. If a vehicle is able to drive a certain route de-
pends on two things. The first one is the restriction of certain vehicle qualifications to visit certain
stations. For example when a station has little space it could be impossible for a truck with a trailer
to maneuver on the terrain. The vehicle restrictions were already implemented in the optimization
model itself using constraint (2). However, deleting infeasible station–vehicle combinations before
starting the optimization can save a lot of time, since the model cannot assign them anyway.

An addition to the vehicle restrictions had to be made for orders which only can be delivered with a
rigid vehicle. While the order generation model will always make target amounts where at least on
of the tanks receives a full amount, these quantities can be too large to even fit the predetermined
minimum amounts. Since the model only allows one visit per station per day some exception had
to be constructed for stations with a "rigid–only" restriction. To overcome this problem, when an
order can only be delivered by a rigid vehicle, the order quantity per fuel type is limited to have a tar-
get amount of 20.000 liter. If the initial amount was less than this amount, the algorithm will choose
the lowest amount. Having a maximum of 20.000 liter will at most fill three tanks with the same fuel.
This could still be to much when the 20% cut down is maintained, as an minimum of 16.000 liter
still needs a minimum of three tanks. This would make it impossible to deliver three different fuel
types if, which is very common for a station to have. therefore the maximum allowed cut down for
these orders is 65%. This makes it possible to fill at most one tank with one fuel type if necessary.
Basically the orders restricted to a rigid–only vehicle are given some extra breathing space to assign
their orders onto the vehicle.

Furthermore it is possible to delete route–vehicle combinations based on the vehicle working sched-
ules. If the actual departure time of a route plus the time to complete that same route do not fit in a
vehicle schedule, it is an infeasible combination. An example is shown in figure 5.6, where a certain
vehicle has a morning and evening schedule. The route that is compared has an earliest and latest
departure time which are both starting after the morning schedule. So the route cannot be done
during the morning schedule. However, for the afternoon schedule there is a possible window to fit
the route into the schedule. This means that the vehicle–route combination is a feasible one.

Figure 5.6: Situation where route r can be done in the
afternoon schedule, but does not fit in the morning
schedule. Grey area indicates departure window.

Figure 5.7: Route r fits in both the morning and after-
noon schedule. Grey area indicates departure window.

The second example in figure 5.7 shows a feasible vehicle–route combination, where the departure
window of the route fits in both the morning and evening schedule. Obviously if the departure win-
dow lies before the morning or behind the afternoon schedule as shown in figure 5.8 it is impossible
to fit the route in the specific vehicle for that day and the this vehicle–route combination will be
deleted.
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Figure 5.8: Situation where the route departure window lies completely outside of a vehicle schedule, making the route–
vehicle combination impossible.

5.3.3. Vehicle compartment quantity feasibility check
A last addition to the vehicle–route feasibility can be made by looking at orders which are considered
to large to be paired with other orders. AMCS uses their own constraint for this, where they assume
an order to be full when the target amount is at least 90% of the vehicle capacity. In this model the
same assumption will be made, because the change that the remaining 10% will fit another order
is significantly small, and as a result all multi–stop routes with this station as a node can be removed.

As stated before every station must at least receive their minimum order amounts. When 2 or 3
orders are combined on one route the vehicle used for the route should have enough capacity to
carry the minimums of every individual order. If the capacity of a specific vehicle is not enough
to do so, this vehicle–route combination is not feasible and can be removed from the set of routes
before starting the optimization. The algorithm for this quantity feasibility check can be formulated
as follows:

Minimize
∑

c∈{C1∪C2∪C
′
2}

∑
p∈P

∑
k∈{K1∪K2}

q pck (23)
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′
2}
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∑
p∈P
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′
2} (25)

∑
p∈P

w pck≤ 1 k∈{K1∪K2}, c∈{C1∪C2∪C
′
2} (26)

The objective function (23) will try to minimize the amounts assigned to the compartments. Ba-
sically this could also have been a maximization function, since the input is the minimum order
quantity ap which is one value that always has to be respected, which is checked with constraint
(24). Constraint (25) makes sure that the compartment capacities are respected, while constraint
(26) only allows one product type to be assigned on one compartment. If the compartment quan-
tity check returns an infeasible outcome, the route–vehicle combination is discarded.
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5.4. Verification of the order pairing optimization model
This section will perform some tests to see if the optimization model is showing behaviour as in-
tended. This will help to verify if the mathematical model on paper is correct and if this is imple-
mented correctly in the algorithm. By making predictions on how the model will behave, it can be
analyzed if the implemented model has the similar outcomes and behaviour. During this process,
small portions of the model will be tested separately, while the final check will engage the full model.

The model is programmed in Python using Gurobi solver and will be tested with a small data set
of eight stations. The experiments are using three different objective functions: lowest travel time,
highest travel time and maximizing delivery quantities. The behaviour of the sub(models) will be
analyzed for these functions separately, where they will be subjected to several different experi-
ments. The abbreviations for specific parts of the model are indicated in table 5.1.

Table 5.1: Abbreviations for models constraints and restrictions.

Model Abbreviation
Route constraints RC
Schedule constraints SC
Vehicle restrictions VR
Quantity and compartments restrictions QC

RC is indicating that all route constraints are active, which actually is the only one always active,
since it is the most basic model. Schedule constraints (SC) mean that the model must respect
working schedules when assigning routes to vehicles. When vehicle restrictions (VR) are active,
the model has to take into account the stations that can only be visited by a specific type of vehicle.
When quantity and compartment restrictions are active, the model has to respect capacities and
order quantity constraints when filling the compartments of vehicles.

5.4.1. Objective: shortest path to visit all stations
The simple version of this problem is a normal traveling salesman problem without taking into ac-
count delivery amounts. Using one vehicle and eight stations, this problem has been solved using
brute–force, giving an optimal solution of 944 minutes as an comparison. The model uses weekend
schedules, which means every vehicle only has a morning or afternoon schedule, but never both.
The total maximum order amount for all stations is 255.687 liter. The different configurations and
outcomes are seen in table 5.2.

The first two experiments should have comparable results. The first one finds the shortest route
when all routes combinations are available, while the second experiment only keeps the identical
routes with the shortest travel times. The third experiment adds schedule constraints while still
having 1 vehicle. The expected behaviour is to get an unsolvable model because the schedule is not
big enough to fit visits to all eight stations. Adding a second vehicle creates enough time to visit all
stations and still creates the shortest possible route.

When adding vehicle restrictions and having two vehicles (instance 5) it is expected that at least
three stations will use the rigid/drawbar vehicle. This is due to the fact that 3 out of 8 stations only
allow the rigid vehicle. The result showed that four stations eventually used the rigid vehicle, where
the order of one station without restrictions was combined with an order of a rigid station. The next
two instances only allow one route per schedule, with the first one having 2 vehicles and the sec-
ond one having 4 vehicles. Knowing that on this test day there are four working schedules in total,
e.g. one for each vehicle, it is still possible to create routes that can fit all stations when having four
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Table 5.2: Outcomes of models with lowest travel time objective function.

Instance Description Expected Result OK
1 RC keep all routes, 1 vehicle Ti j = 944 Ti j = 944 Pass
2 RC keep shortest, 1 vehicle Ti j = 944 Ti j = 944 Pass
3 RC+SC keep shortest, 1 vehicle Infeasible Infeasible Pass
4 RC+SC keep shortest, 2 vehicles Ti j = 944 Ti j = 944 Pass

5 RC+SC+VR
keep shortest, 1 rigid/drawbar,
1 semi

#i rigid ≥ 3 #i rigid = 4 Pass

6 RC+SC+VR
keep shortest, <3 veh.,
1 route per sched.

infeasible infeasible Pass

7 RC+SC+VR
keep shortest, >3 veh.,
1 route per sched.

feasible feasible Pass

8 RC+QC+SC+VR keep shortest, 4 vehicles Ti j > 944 Ti j = 1260 Pass
9 RC+QC+SC keep shortest, 4 vehicles Ti j ≤ 1260 Ti j = 1152 Pass

10 RC+QC+SC+VR

keep shortest, 4 vehicles,
compartment size x10,
no quantity delivery time
restriction

vtot al = 255687 vtot al = 255687 Pass

11 RC+QC+SC+VR
keep shortest, 4 vehicles,
demand/10, no quantity
delivery time restriction

vtot al = 25568 vtot al = 25568 Pass

vehicles (see instance 7). However, as expected when only having two vehicles, the model becomes
unsolvable because there are only two schedules and thus two routes. Since there is a maximum of
three routes per station, at most 6 stations can be fitted into this period, while 8 stations need to be
visited (see instance 6).

Using vehicle restrictions also has its impact on the shortest route. In this case some route com-
binations become impossible. Some stations only allow rigid vehicles and because of the quantity
those vehicles can take, some routes are just visiting one station to still fulfill the minimum deliv-
ery amount constraint (see instance 8). If the vehicle restrictions get removed (instance 9) but the
quantity constraints are still in place, it will lead to less travel time, although it will still be higher as
the shortest possible route due to the minimum amounts that have to be delivered. More capacity
is needed, thus the vehicles have to make more rounds.

When the compartments are 10 times as big the carrying capacity is large enough to take the total
order amounts to the stations, while still being able to take the shortest possible routes. When look-
ing back at the experiments and its outcomes, it becomes clear that the model behaves as intended
when the objective is to minimize travel time.

5.4.2. Objective: longest path to visit all stations
Following from the outcomes of the shortest route analysis it becomes clear that the model is pro-
ducing the outcomes that should be expected. When aiming for the longest travel time and using
one vehicle without a working schedule, the travel time will be longest when every station is visited
in a single route. In this case with 10 stations the total travel time is 1319 minutes, which is around
22 hours. When choosing 2 vehicles with quantity and schedule constraints enabled, it is expected
that there will be at least one route with 2 or more stations (see instance 14). This is not so much
because of the delivery constraints, where it is actually easier to deliver minimum quantities when
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less station are visited per route. However, the schedules of both vehicles are not large enough to
just choose the routes with only one station visit. Lack of time is playing its part here, and the model
has to choose at least one route with 2 or more station visits. Since the objective is still aimed on
the highest travel time, the outcome in this case is one route with 2 station visits. Again the model
is behaving as expected. Results are shown in table 5.3.

Table 5.3: Outcomes of models with highest travel time objective function.

Instance Description Expected Result OK
12 RC Keep shortest, 1 vehicle Ti j = 1319 Ti j = 1319 Pass
13 RC Keep shortest, 1 vehicle max i per route = 1 max i per route = 1 Pass
14 RC+QC+SC Keep shortest, 2 vehicles routes(i ≥ 2)≥ 1 routes(i ≥ 2) = 1 Pass

5.4.3. Objective: Maximize quantities brought to stations.
For the quantity maximization objective another approach has been used to test if the model is be-
having the right way. Because the quantities are depending on the compartment capacities on one
hand and the tank capacities on the other hand, it is necessary to test if both these constraints are
respected. Furthermore the used product can have an impact on the compartment filling. Results
are shown in table 5.4.

The first experiment is the normal model with all constraints and restrictions (Instance 15). The
delivered amount has to be at least the minimum amount, which is 211.758 liter. Eventually the the
solution yielded 218.058 liter. When no time restrictions are applied, like with instance 16, delivery is
not depending on the consumption anymore such that more quantity can be delivered, even when
the delivery times would be the same. In reality this would not be realistic, since it would mean that
station tanks are overflowing.

Table 5.4: Outcomes of models with maximum quantity objective function.

Instance Description Expected Result OK
15 RC+QC+SC+VR Normal quantities vtot al ≥ 211758 vtot al = 218058 Pass

16 RC+QC+SC+VR
Normal quantities,
no quantity
time restriction

218058 ≤ vtot al

≤ 264702
vtot al = 255687 Pass

17 RC+QC+SC+VR
Huge orders 10x,
no quantity
time restriction

q pck
i r = Qck Qck = 100% Pass

18a RC+QC+SC+VR
Small orders /10,
no quantity
time restriction

vtot al = 25568 vtot al = 25568 Pass

18b RC+QC+SC+VR
Small orders /10,
no quantity
time restriction

#routes with 1
station ≤ 2

#routes with 1
station = 0

Pass

19 RC+QC+SC Same product
Filling per comp.
or equally divided
until ap

i reached

Compartments
filled in order

Pass

If the orders would be increased to ten times the normal amount (instance 17), it is expected that
the delivery amounts are so large that all compartments are fully filled. Indeed when conducting
the experiment, all compartments were utilized for 100%. If the total amounts are divided by ten it
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obviously lead to almost empty compartments because it is easy to accommodate all the demanded
order amounts (see instance 18a). Because the order amounts are so small, it is easier for vehicles to
visit multiple stations. therefore it is expected that there are almost no routes with only one station.
The model can easily find solutions where three stations are on one route and still be able to deliver
the full amounts. This is confirmed by the results of instance 18b where no single station routes are
used.

Interesting was to see what happens when all fuel types are the same. One of the following two
things should happen; 1) the amounts are equally divided over the compartments or 2) the com-
partments are filled one by one until all amounts are in. None of both is wrong, but at least one
should be the case when the model is implemented correctly. In this case the compartments were
filled one by one. Also the vehicles were able to take larger order amounts, since the fuel types do
not have to be separated. All in all the model seems to show the correct behaviour, just like with the
experiments done with the other two objective functions.

5.5. Validation: comparing a test instance from literature
Since there is no current study performed which has the same characteristics as this model it is dif-
ficult to compare and validate. however, the model in this study has some identical elements with
the one used by Coelho and Laporte (2015) who coincidentally provided a set of random generated
instances online which they used to test their own model. One of these instances is used for vali-
dating this model. As already explained in the literature, the paper of Coelho and Laporte compares
four different delivery methods to the stations, of which the split–unsplit case closely relates to this
study. The differences between both models are as follows:

• in this study multiple trips per vehicle are allowed as long as they fit the vehicle’s schedule. In
Coelho and Laporte a vehicle is only allowed to make one route.

• This study uses vehicle restrictions and predefined routes. Coelho and Laporte uses separate
stations and lets the optimization model create the routes.

• Coelho and Laporte do not use service times, while this model does.

To compare this model with the one of Coelho and Laporte the elements listed above will be filtered
out to create identical circumstances. The only difference that is kept in this model will be the route
generation. Creating all possible routes up front should not have any effect on the outcomes, since
the only difference is that in this model routes are generated before, while the reference model of
Coelho and Laporte does this during the optimization itself. Under normal circumstances travel
times for the predefined routes will not differ in any way. Next to that the route pre-selection proce-
dures will be turned off to make sure that the model can have the same route combinations as the
model of Coelho and Laporte. An overview of the data used for this test instance is given in appendix
A. The outcomes of both models are shown in table 5.5:

Table 5.5: Comparison of solutions between Coelho and Laporte and the model used in this study.

Coelho
Solution Optimization gap (percentage) Time (seconds)
5443.75 0.00 14

Current
Solution Optimization gap (percentage) Time (seconds)
5443.75 0.00 275
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As can be seen the outcomes of both models are exactly the same. The only significant difference is
the calculation time between them. While the model of Coelho and Laporte only needs 14 seconds
to come to an optimal solution, the model used in this study needs almost 300 seconds to calculate
a solution. The difference in time can be explained by the fact that Coelho and Laporte focused on
certain algorithms to make the calculations quicker, which are not added in the model of this study.
This is due to the different focus of both models, where Coelho and Laporte specifically looked for
faster exact algorithms, while this study is aiming to look for improvements in the order pairing
strategy to lower the travel distances.

Although the calculations times are significantly longer, the model does produce equal outcomes.
So it can be assumed that the current model without schedules and vehicle restrictions behaves as
intended.

5.6. Computational results for the order pairing optimization model
The model used in this research is unique in its combination of constraints. This makes it important
to check what the added value is compared to the excising models in the literature. To explore the
effectiveness of the model some tests have been conducted to see how well the model performs in
terms of calculation times and solvability in general. These test were applied to the full functioning
model.

Several runs will be done for one full simulation day, with a varying amount of stations, vehicles
and fuel types. For example, CF–10–3–2 describes an instance with 10 stations, 3 fuel types and 2
vehicles. For every run the time limit is set to 7200 seconds. All test instances are calculated on
the same computer using windows 8 operating system, with an Intel(R) Core(TM) i7–4770K 3.5GHz
processor and 32GB of RAM, using two threads. The results of the different instances are shown
in table 5.6. The different instances used a pre–selected set of stations with amounts based on day
three from the AMCS data (which is a normal working day). More details about the stations and the
order amounts of the different test instances can be found in appendix A.

The instances are chosen on feasibility, which is why the 10 station instances have 2 or 4 vehicles
for example, while the 15 station instances have at least 3 vehicles. This minimum number of ve-
hicles is the consequence of the vehicle schedules and restrictions, where too many stations for a
certain type of vehicle cannot fit within the schedule of that same vehicle. All instances with 10 to 15
stations were easy to solve where all cases reached optimal solutions in minimal calculation times.
The longest calculation time is around 23 seconds for the case with 15 stations, 6 fuel types and 4
vehicles. The shortest calculation times took less than a second which was the case in two of the
instances with 10 stations.

The instances with 17 orders are all solvable within a reasonable amount of time, of which the one
with 6 types of fuel and 3 vehicles took the longest, taking around 1.6 minutes (96 seconds) to solve.
When having more than 17 stations to serve, the calculations times quickly increase and the algo-
rithm could not find any feasible solution within 2 hours for instances with more than 19 stations.
Interesting to notice is the fact that the runs with 3 instead of 6 types of fuel took longer for the
model to calculate. The 20 station instance almost reached an optimum, but still showed a small
gap of less than a percent, while the 21 station instance did not find any solution at all within the
given time.

It was found that the combination of time schedule constraints and the range between the mini-
mum and target amounts have a big influence on the solvability of the model, since every minute
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Table 5.6: Summary of results on different test instances.

Instance Solution
Gap
(Percent)

Time
(seconds)

CF–10–3–2 1825.5 0.00 0
CF–10–3–4 1712.5 0.00 1
CF–10–6–2 1821.8 0.00 0
CF–10–6–4 1712.5 0.00 2
CF–15–3–3 2388.3 0.00 16
CF–15–3–4 2387.7 0.00 23
CF–15–6–3 2389.5 0.00 10
CF–15–6–4 2389.0 0.00 13
CF–17–3–3 2890.5 0.00 96
CF–17–3–4 2889.9 0.00 84
CF–17–6–4 2889.9 0.00 37
CF–18–3–4 3066.5 0.00 401
CF–18–6–4 3101.5 0.00 93
CF–19–3–4 3229.1 0.00 520
CF–19–6–4 3264.5 0.00 98
CF–20–3–4 3384.6 0.21 7201
CF–20–6–4 3392.4 0.26 7201
CF–21–3–4 – – 7201
CF–21–6–4 – – 7202

difference in the departure time of a route also has a slight difference on the amount that can be de-
livered to one station. Indeed, when turning off the time schedule constraints and use a fixed value
for every delivery amount the model gives feasible results for the same instances within a two hour
window. In table 5.7 results are shown for the instances which were infeasible when all constraints
were active. It shows that the model easily can give outcomes for the same instances in a relatively
short calculation time. Note that the solutions of the 20 station instances do differ a little bit, while
the routes are the same. This is due to the fact that the schedules are not a constraint anymore. It
means that the model will always try to reach the latest possible departure time for every route. In
other words, it will always try to get as close to the βr of a routes departure window as possible, as
long as it does not overlap with another route. This leads to less penalties for the amounts taken
and thus a lower solution value.

Table 5.7: Test instances with 20 plus orders with schedule constraints turned off.

Instance Solution
Gap
(Percent)

Time
(seconds)

CF–20–3–4 3251.6 0.00 170
CF–20–6–4 3260.4 0.00 37
CF–21–3–4 3399.0 0.00 864
CF–21–6–4 3408.1 0.00 276

5.7. Proposition: modification for the order pairing optimization model
This section will propose a modification to the order pairing optimization model. From the previous
section it became clear that the scheduling constraints and ranges between target and minimum
amounts caused rapidly increasing calculation times when more stations had to be served. When
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turning of the scheduling constraints or give one fixed amount for every order, the model was able
to run much larger instances.

This observation has led to the assumption that splitting the model into two separate models could
potentially lead to a more efficient model. The proposed model is actually a split model: The first
one will assign routes, while the second one will fill the compartments. The first model basically is
the original one with schedule constraints, but using a fixed amount for every order. Whether this
are minimum or target amounts depends on the the strategy tested. So in this new model there
is no range of amounts from which the model has to choose. The objective function to find the
shortest travel time is kept the same, while it only can choose routes respecting the fixed amounts.
The second model will then have the routes and their departure times as an input and determines
how much extra fuel can be added to the minimum amounts from the previous model.

5.7.1. Mathematical changes in the split model
Since the model is split in two, there are some changes to the objective functions and constraints.
In subsection 5.3.3 it was already stated that the compartment quantity check only allowed routes
that could at least fit the minimum amounts. This means the route assignment model only gets
routes that are already feasible with respect to the compartment capacities. therefore it is possible to
drop all the compartment related constraints in the route assignment model, while all route related
constraints are retained. The objective function is adapted such that the model will still look for the
shortest possible travel times, but it also receives a penalty for every minute that the departure time
deviates from the latest possible departure time of a specific route. The new objective function is
formulated as follows:

Minimize
∑
r∈R

∑
k∈{K1∪K2}

tr xk
r + G( βr − d k

r ) (30)

The outputs of the route assignment model are the chosen routes and its determined departure
times. This is used as an input for the compartment filling model, which will determine the final
amount loaded into the compartments. The minimum amounts are the same as the fixed amounts
of the route assignment model and can be added up with target amounts and optional amounts,
which are the delivery amounts determined when a tank would be filled to maximum capacity. The
objective function for the compartment filling model is as follows:

Maximize
∑
p∈P

∑
i∈N

ap
i (31)

Opposite to the route assignment model which kept its route constraints and discarded the com-
partment constraints, the compartment filling model will only keep its compartment related con-
straints. Most route constraints are discarded, except one. In the route assignment model this con-
straint would make sure that all station are visited once and only once. For the compartment filling
model this constraint is also important, because it makes sure that the model assigns amounts for
all stations on a route. The only adjustment is that the model does not have to check every route,
but only the subset of routes that were chosen from the route assignment model:∑

i∈N

yk
i r =

∑
i∈r

i k∈{K1∪K2}, r∈R ′⊆R (32)
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5.7.2. Outcomes and differences between the unsplit and split model
Some small instances of 7, 10 and 15 stations have been tested and compared for both the unsplit
model and the split model. The results in table 5.8 show that the travel times of both models are
exactly the same.

Table 5.8: Comparison of travel times and delivered amounts unsplit vs. split model.

Instance
Travel time
(minutes)

Travel time s.
(minutes)

Diff.
(Percent)

Amount
(liter)

Amount s.
(liter)

Diff.
(Percent)

CF–7–6–4 1285.9 1285.9 0.0 239561 237558 0.8
CF–10–6–4 1696.8 1696.8 0.0 292018 286485 1.9
CF–15–6–4 2207.7 2207.7 0.0 414597 399586 3.6

This is as expected since both models will always try to find the shortest set of routes, while still re-
specting minimum amounts. However, the total amounts delivered by both models do differ a bit.
The outcomes have a difference in favor of the unsplit model ranging from less than 1 percent up
till 4 percent. It seems that with increasing amount of orders the gap between the amounts slowly
increase. These differences can be explained because the unsplit model is more efficient at deciding
the route order to get the maximum amounts for every station, since it has information about both
the schedules and amounts. The route assignment model in the split model does not use informa-
tion about the amounts to decide which routes should be done first or last. It only tries to put the
routes in order to get the latest possible departure times for every route, with the aim to minimize
the penalty. Note that it is also beneficial for the unsplit model to let all routes depart as late as
possible, since more is consumed at the stations. However, it can decide to shuffle a bit and switch
some routes around to get just that little bit of extra fuel to the stations.

Overall it can be concluded that the split model is an acceptable alternative for the unsplit model.
The outcomes for the travel times are the same in both models and with the knowledge that the
differences in the amounts are relatively small, it is not expected to have a big impact on the sim-
ulation runs. Especially when keeping in mind that all different simulations will eventually use the
same model.

5.7.3. Split model computational results
The split model has been tested for instances with up to 27 stations. The 18, 19 and 20 station in-
stances were used to compare both models on the differences in solutions. The solution of the split
model in table 5.9 represents the outcome of the route assignment model. Note that the penalties for
both models are different: the unsplit model penalizes deviation from the target amounts, whereas
the split model penalizes deviations between the departure times and latest departure window. This
explains the slight differences between the solutions and does not have to do with the chosen routes
and their travel times. For the split route assignment model the 27 station instance was the only one
which could not get to optimality within 2 hours. After termination of the run there was still a gap of
0.08 percent left. Eventually it would reach convergence in at most a few hours more, meaning that
the split model can come to a solution in a reasonable amount of time for an instance with at least
26 stations, compared to a maximum of 20 stations in the unsplit model. This is 25% more overall.
It must be noted that the compartment filling model could always reach optimal solutions within
seconds.

Looking at the calculation times there are generally large differences between both models as well.
The 18 station instance has a calculation time which is already 6 times as long for the unsplit model.
When taking the 20 station instance this difference already increased to 15 times as long, where the
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unsplit model took 2 hours to get to an non–optimized solution with a gap of 0.26%, while the split
model needed only 8 minutes to come to a solution.

Table 5.9: Summary of results on different test instances.

Instance Solution
Gap
(Percent)

Time
(seconds)

Solution split
Gap split
(Percent)

Time split
(seconds)

CF–18–6–4 3101.5 0.00 1681 2904.0 0.00 295
CF–19–6–4 3264.5 0.00 3196 3062.2 0.00 375
CF–20–6–4 3392.4 0.26 7201 3206.4 0.00 479
CF–21–6–4 – – 7202 3245.5 0.00 583
CF–25–6–4 – – 7201 4050.4 0.00 3874
CF–27–6–4 – – 7201 4380.2 0.08 7200

5.8. Conclusions and discussion on the order pairing optimization model
The mathematical model used elements from other papers like Benantar et al. (2016), Coelho and
Laporte (2015), Macedo et al. (2011) and Li et al. (2014). Especially Coelho and Laporte (2015) has
been an valuable reference. Their paper had a reference to some test instances used in their re-
search, of which one has also been used in this model to validate the model. However, to have
identical circumstances it was necessary to turn of schedules and vehicle restrictions in this model.
The test instance had exactly the same outcome as the model from Coelho and Laporte (2015).
therefore it can be concluded that the model without schedules and restrictions is showing the right
behaviour.

The effectiveness of the model is limited in the amount of stations that can be served. When having
20 stations or more to serve during one day, the model calculation times increase rapidly and no
feasible solutions are found within a two hour time window. Making longer runs obviously could
increase the changes of getting a feasible model, but it showed that the 21 stations instance was
even unsolvable in a 4 day window. The bottleneck causing the rapidly increasing calculation times
have been contributed to the vehicle working schedule constraints and range between amounts.
When turned off the model actually got to a optimized solution for the 20 and 21 station instances
in a fairly short calculation time.

An alternative approach for the order pairing optimization model was proposed, to let it handle
more orders. Going from an unsplit model towards a split model, the new model first assign routes
to the vehicles. If routes are assigned the compartment filling model will define the amounts that
have to be loaded onto the vehicles. The split model showed to be a very promising alternative for
the unsplit model, as the calculation times were greatly reduced. Next to that it is possible to get
optimized solutions for instances with a higher number of stations. The split model route assign-
ment model reached optimal solutions in two hours for runs with 25 stations. In the unsplit model
this was not possible when more than 19 stations had to receive a delivery. It must be noted that the
compartment filling model could always reach optimal solutions within seconds.

The next chapter will elaborate on the simulation model, explaining the functioning of the order
generation model and how this is connected to the order pairing optimization model.
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Simulation model

With the mathematical formulation, verification and validation of the order pairing optimization
model being done in the previous chapter, it has to be integrated and combined with the order
generation model to be able to run simulations. This chapter will first give a description about the
basics, rules and assumptions of the order generation model. The next section will compare a 14
day simulation run with outcomes of a simulation provided by AMCS. In the last part a sensitivity
analysis will be performed on the target amount percentage.

6.1. The order generation model
The order generation model will serve as the input for the order pairing optimization model and
receives information from this same model as input. Apart from the already known variables like
stations and tank configurations, it uses the consumption rates of the tanks as its main input. At the
beginning of every day (00.00 hours) all the tank levels are measured and compared to the prede-
fined minimum stock levels of those tanks. If the current stock level is equal or below the minimum
stock level it will make a new order for the station corresponding to that specific tank. The order
has an amount for every tank at that station, such that all tanks will be resupplied at the same time.
Before further elaborating on the structure of the model the next section will briefly describe the
assumptions and rules that are used in the algorithm.

6.1.1. Rules of the order generation model
To make sure that the order generation model returns orders to the optimization model that are
feasible for that day, it is necessary to have some additional checks and assumptions. When the
stock levels are measured at the start of each day, the model will check if one of the stock levels have
reached minimum stock. The problem with this is that it can occur that a minimum stock level is
reached only a few hours into the next day. This sometimes makes it impossible to assign an order
to a vehicle in time. Since out–of–stock is not allowed the first check that the model performs is to
look one day ahead in time. It will forecast the tank levels for the next day and check if a tank will
reach minimum or empty level during that time. Then it will be determined if the minimums are
reached within 32 hours. Depending on the vehicle schedule this is 2 to 3 hours into the morning
schedule, which gives enough space to still plan the order on that day.

If reaching minimums takes more than 32 hours two things can happen: The order is deleted and
the corresponding tank will be checked again on the next measurement point or the order is ac-
cepted based on station opening hour limitations. The latter situation occurs when an order has a
delivery window plus additional travel time which ends before a station is open for delivery. next to
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that the end of the delivery window should not be to close to the opening times as this might lead
to a time window which is to short to fulfill the order due to service times. Derived from the travel
time matrix, the longest travel time is around 4 hours, and adding a safe margin of one hour, the
model checks if βr < (Hi ,st ar t +5) is true. In this case the order is shifted to the current day, as it is
impossible to shift the order one day ahead due to the out–of–stock restriction.

The minimum amount for an order is a cut-down of the target amounts, which is specified to be 80%
of the target amount. Next to that the minimum amount must be large enough to actually be viable
to deliver. This minimum delivery requirement is the actual lower bound of an order and can differ
per tank. If it turns out that the target amount was already less than the minimum specified, the
minimum amount will automatically be set to zero as well. If the cut-down percentage leads to an
minimum amount that is lower than 1000, but the target amount is higher than this, the minimum
will be set to 1000 liters. Based on these two things a minimum amount and the earliest delivery t a

i
of the time window is generated.

6.1.2. Order generation algorithm
Figure 6.1 gives the flowchart of the order generation algorithm.

Figure 6.1: algorithm flow chart of the order generation model.

Following from the flow chart, the model starts with calculating the new stock levels. If one of the
tanks at a station reaches minimum stock level, it will estimate the depletion time of that tank,
which at the same time will be the latest delivery time t b

i . Then the corresponding station of that
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tank is determined, where all the other tanks of that same station are receiving a target amount
which is based on the maximum capacity of that tank, minus the current stock. By forecasting the
consumption up until the point when one of the tanks depletes again, target amounts are adjusted
to that day, aiming for similar depletion times for the next period when an order has to be made.
If one of the tanks has an target amount less than the minimum delivery requirement, the order
amount for that tank will be set to zero. This means that the specific tank will be eligible for a
new delivery during the next time the station is visited. The following functions are necessary for
defining new orders:

Lpt
i = Lp,t−1

i +
∑

c∈{C1∪C2,3}

∑
k∈{K1∪K2,3}

q pckt
i − upt

i i∈N , p∈P, t∈T (27)

C p
mi n,i ≤ Lpt

i ≤ C p
i i∈N , p∈P, t∈T (28)

∑
c∈{C1∪C2,3}

∑
k∈{K1∪K2,3}

q pckt
i ≤ C p

i − Lp,t−1
i i∈N , p∈P, t∈T (29)

Function (27) defines the inventory level of a specific fuel type at station i , where the level of a tank is
determined by the tank level in the previous period minus the consumption during the time period.
If a delivery takes place, this will be added to the current tank level. Constraint (28) makes sure that
the inventory level is never negative or bigger than the actual capacity of a tank. Constraint (29)
restricts the amount that can be delivered to a station, which can never be greater than the capacity
of a tank. The latter two constraints are important for determining the amounts in an order. It
makes sure that the maximum stock level can never be bigger than the tank capacity. The algorithm
as implemented in the model is shown in table 6.1.



62 6. Simulation model

Table 6.1: Pseudo code of order generation algorithm as implemented in the program.

Algorithm Pseudo code of the order generation algorithm.
1: Decide day of week

2: For all tanks: subtract consumption of current day from current stock level

3: If tank reaches minimum stock level or depletion level in during current day or next day. then

4: Make order for corresponding station

5: Else

6: do nothing.

7: If other tank at same station is reaching minimums earlier, then

8: Set new latest delivery time for station.

9: Else

10: Keep current end delivery time.

11: If reaching minimums takes more than 32 hours and window day ahead does not fit station

ha opening hours, then

12: Shift order to current day.

13: Else

14: remove order.

15: For all orders.

16: Add maximum and minimum amounts and earliest delivery time.

17: Forecast which tank will reach minimums first.

18: Adjust target amounts of other tanks to this day.

19: Start order pairing optimization model.

If all criteria are met, an order is created for station i , with a time window [t a
i , t b

i ] and the minimum
and target amount bound to the earliest and latest time of the time window. This information will
serve as the input of the order pairing optimization model. To prepare the optimization model for
the simulation, an alternative model structure is suggested. This will be elaborated in the upcoming
section.

6.2. Validation: comparison to simulation runs of AMCS
AMCS has ran its own experiments with the data they provided. Comparing the outcomes of this
model with their results will help to validate if the model has comparable behaviour as theirs. The
database of AMCS used data containing simulated orders for two weeks, from the 1st till the 15th of
November, of which the first was a start up day. The AMCS simulation run has used similar charac-
teristics as the model in this research. They also used the one visit per station per day constraint,
as well as the restriction with the rigid/drawbar combination. Which means that just like the model
used in this thesis the drawbar cannot be dropped off and picked up again anywhere during a route.
The outcomes of the AMCS simulation run are shown in table 6.2.

Before showing the results it is necessary to know that there are some deviations in the data, because
two stations have been removed from the data set. During the first simulation runs of the model in
this research these stations, with number 10368 and 10459, caused constant errors both during the
optimization runs as well as in the order generation model. They have been deleted, since it was not
really known why they gave errors. Only for station 10368 can be said that it probably has to do with
the rather high consumption at this station paired with the fact that the station can only receive the
small rigid vehicle. This might cause problems when the vehicle cannot deliver enough fuel to keep
up with the consumption. It should be possible, but in this case it might have something to do with
the underlying model in this research, which cannot be fixed at the moment due to time constraints.



6.2. Validation: comparison to simulation runs of AMCS 63

Table 6.2: Outcome of the 14 day simulation ran by AMCS.

Outcomes AMCS simulation (14 days).
Driving distance 12,398
Trips 159
Stops 276
Delivered volume L 7,680,394
Volume per trip L 48,304
Avg. capacity utilization 97.8%
Stops/Trip 1.74
Dry runs 2

Trying to change their behaviour, by altering the empty levels or maximum capacity of the tanks did
not change the faulty behaviour of these stations. Therefore it has been decided to leave them out
of the model.

Even with the two stations removed a comparison with the AMCS run has been made. The reference
run used a target amount set to 100%, which means that it will make orders aiming at fully loaded
tanks at the stations. With the algorithm in this model it means that the tank which is expected
to deplete first (by using forecasting) will receive a target amount that would fully fill the tank.The
other tanks at the same station will have their target amounts adjusted to the same day. It should be
kept in mind that without the two stations between 300.000 and 400.000 less fuel will be delivered
in total (calculated from the consumption over this period). Next to that the amount of kilometers
driven will be lower. Considering that on average a station will be refilled 2 to 3 times per 14 days
the distances will differ between 400 and 700 kilometers.

The outcomes, given in table 6.3, do show some differences. First of all, with 11,136 km was driven,
the simulation run did have a better outcome compared to the AMCS simulation with a difference
of 11 percent. Even if the two stations were kept in the model, it could still be lower. This can be
explained by the amount of trips that have been completed. The AMCS model did a few more trips
and also had a lot more stops per trip. This means that the AMCS run had more trips of with bigger
distances on average.

Interesting to see is that the average amount per trip is much higher in the AMCS model. The model
run from this research had almost 8500 liter less per trip on average. The fact that some stations can
only receive rigid vehicles, which can carry a maximum of 26,000 liter, does definitely contribute to
this. Therefore it is surprising that AMCS was able to get such a high utilization, while applying the
same rules considering rigid vehicles.

Furthermore the higher volume per trip also results in a total delivered volume which is 20 per-
cent higher. So the amounts delivered are way lower in the model of this research. This is probably
partly contributed by the two stations with high consumption which have been deleted. Another
reason for the differences can be contributed to the choices for minimum and target amounts. This
might differ a lot, since it is not exactly known how AMCS uses this in its algorithm. Changing these
amounts can have different effects since smaller amounts could lead to more station order pairings
and might even lead to higher volumes per trip because the amounts can add up easier. This could
partly explain the high volume per trip of the AMCS simulation.

As already stated, the AMCS model also visits significantly more stations in general, which leads to
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Table 6.3: Outcome of the 14 day simulation in this research(% change between brackets).

Outcomes simulation in this research (14 days).
Driving distance 11,136 (–11%)
Trips 150 (–5.6%)
Stops 187 (–32.2%)
Delivered volume L 6,013,515 (–21.7%)
Volume per trip L 40,090 (–17%)
Avg. capacity utilization 88%
Stops/Trip 1.25 (–28.2%)
Dry runs 0

the suspicion that their minimum and target amounts might have different boundaries before an
order is created for a station. A lot of other factors are depending on the target amount. It would
be interesting to see how the model outcomes get impacted when this variable is changed. The
next section will perform a sensitivity analysis on the target amount to see what the impact of this
variable is on the final model run.

6.3. Sensitivity analysis on the target amount
It is assumed that the target amount can have a large influence on the model outcomes. If the target
amounts are aiming for tanks that are fully filled for example, it can mean that more trips with only
one order are created, since higher target amounts means bigger orders, such that pairing becomes
impossible. On the other hand, having lower target amounts aiming at 70% filling of the tanks for
example, will cause smaller orders where more options become available to have paired orders.

This section will test the sensitivity of this variable by using different percentages for the target
amounts. The used percentage are 100, 85 and 70 percent. A 60% run has been tried, but the target
amounts for some stations were becoming too low to be able to keep up with demand. After a few
simulation days this would lead to an infeasible model.

The outcomes of the simulation runs are shown in tables 6.4. The first run in the table has exactly
the same outcomes as the run used to compare the AMCS run and is used as a reference model.

Table 6.4: Outcomes for simulation runs with target amount set to 100, 85 and 70 percent.

Target amount 100% Target amount 85% Target amount 70%
Driving distance 11,136 12,429 12,647
Trips 150 145 146
Stops 187 213 228
Delivered volume L 6,013,515 5,837,961 5,821,484
Volume per trip L 40,090 40,261 39,873
Avg. capacity utilization 88% 84% 79%
Stops/Trip 1.25 1.47 1.57
Avg. station tank utilization 61% 55% 53%

When comparing the other runs at 70 and 85 percent with the reference model, it quickly shows that
the driving distances increase quite a lot. The 85% run already shows a difference of 1300 kilometer,
while the differences with the 70% model is 200 kilometer more than that. It is interesting to see
that the amount of trips in all models is around the same number. The biggest difference, between
the 85% model and the reference model, is only 5 trips. Thereby the average stops per trip are much



6.4. Conclusions and discussion on the simulation model 65

higher, which shows that more stops actually does not particularly lead to lower travel distances or
even less trips overall.

The volumes delivered are not changing very much, although there is something interesting to no-
tice. Lower target amounts cause less fuel to be delivered, since it is a cut down on the capacity of
a tank. So obviously 100% target amount is giving higher order amounts than 85%. However the
differences between 100 and 85 percent on one hand and 85 and 70 percent on the other, it shows
that the decreases in delivered volumes are much lower for the latter one. The reason for this is that
the model always avoids depletion. Clearly this is what is happening here, the model should always
deliver a certain minimum amount to avoid depletion. This probably lies somewhere close to 5.8
million liter. And indeed, when testing for a 60% target amount it gave an infeasible model, because
it could not deliver enough to keep up with consumption. This in turn leads do depleted tanks.

When referring back to the AMCS model the reference model might not actually give the best solu-
tion. The 85% run does show very promising results, where on average 1.5 orders are taken on one
trip. This is a nice average and the driving distances come close to the one of AMCS. Furthermore
a 100% target amount could lead to situations where the vehicles actually take to much fuel. After
all, the consumption in reality is not linear as is assumed in this model. Because of this it is actually
more realistic to have a safe margin of between 10 and 15 percent.

6.4. Conclusions and discussion on the simulation model
In this chapter the simulation model has been presented. It explained the functioning of the order
generation model and did a validation test with a simulation case of AMCS.

When comparing the model to a simulation run of AMCS, not taking into account deleted stations,
it turned out that there are quite some differences. Overall the AMCS model seems to perform quite
well in terms of utilization and driven kilometers. This does not mean that the model in this re-
search is performing worse. When for example looking at the delivered amounts, it turned out that
this model scores better in having lower stock levels at stations. After all, this model delivered 1.6
million less fuel and still had no dry runs at any station, whereas the AMCS run had 2 dry runs.
There are many factors that can cause the differences between both models. After all, it could just
be a case of differences in assumptions and modelling constraints given by the user. Furthermore
the differences are not significant enough to conclude that one of both models is better or worse.

From the sensitivity analysis follows that making more stops per trip does not particularly means
less kilometers. While the model with 70 percent target amount had most stops per trip, it also had
the largest travel distances. So lowering the target amounts causes less delivered volumes, but it
also means more orders have to be created to keep up with the consumption. Otherwise it will lead
to depleted tanks, which is not allowed. So on one hand lower target amounts cause more stops per
trip, because it is easier to form order pairs. But that also means that more visits have to be made in
general.

The results of the simulation model are different from the AMCS run, but together with the sensitiv-
ity analysis it seems that the model does not show behaviour that cannot be explained. This leads
to the conclusion that the model in this research is good enough to be accepted for testing other
strategies.
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7
Strategies, results and analysis

The proposed simulation model defined in chapter 6 has been employed to test certain strategies
for the case given by AMCS. This will give answer to sub question [e]: What strategy improvements
could lead to a performance increase compared to the current situation and what are the results?. First
an overview of the configuration for the simulation run will be given in section 7.1. This includes
some adjustments in the data as well as some tweaks in the algorithms. After that several strategies
will be proposed, which are divided into two separate subjects. Three of the strategies are aiming
at lowering the calculation times of the model, while one strategy will be aiming at lower travel
distances.

7.1. Simulation configuration
This section will provide an overview of the configurations in the models and the data. The first part
will elaborate on the chosen simulation period and run time constraints, after which the second
part of this section will explain the data modifications necessary to get a feasible simulation run.

7.1.1. Simulation time period and optimization run time
The previous chapter already tested some basic runs for a period of 14 days. For the simulation a 14
day run might be to short to see the full effects of different strategies. A longer period is necessary
which is extended from 14 days towards 22 days, where the first day is a start up day, while the other
21 days are used for the analysis. Every simulation day going through the optimization model is
restricted to a maximum running time of three hours. After that it will terminate and if the model is
still infeasible, it will stop the whole simulation. To give the optimization model some more space,
the solution is acceptable if a 0.8% gap has been reached after 3 hours or if 0.5% is reached after 2
hours. This means it could return a non optimized solution, although we can consider it being very
close to the optimum.

7.1.2. Reference run
The reference run is a simulation run of 21 days with target amounts set to 85% capacity of a tank.
The other model runs will also use this 85% target amount. Although the model can never have
overflowing tanks due to the constraints defined in the model this could be different in a real–life
case. therefore the target amount has been set to create a safe margin. The rules of the model are
the same as the ones used during the validation of the simulation model. The model will try to pair
order based on minimum amounts and add up more when possible.

During the 14 day simulation runs there were already some modifications in the data by deleting
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several stations which were giving constant errors. By doing some exploratory runs for 22 days, it
was found that the amount of orders on some days caused problems. The model had some runs
where it could not find a solution in three hours and therefore terminated the simulation. This was
due to the fact that some simulation days, depending on the configuration used, had more than 28
orders. This was too much for the model to give a solution within the three hour window. In none
of the cases with this order size it came even close to a feasible solution.

7.1.3. Adjustments in the data
To overcome problems with stations some have been removed from the final simulation runs. Dur-
ing the first simulation runs an infeasible day popped up at some point. Apart from the already
deleted stations in the 14 day simulation, some additional stations have been removed because of
this. By closely looking at the data provided by the model at the terminated day, it could be decided
what to do with the stations causing problems.

Eventually it turned out that four stations caused problems during the simulation. Every time a sim-
ulation day with 28 or more orders popped up, at least 3 of these stations were also in the order list.
By tweaking the minimum stock levels, maximum stock levels or changing the initial tank levels, 2 of
the 4 stations could be kept in the model, because the order generation for these stations changed
to other simulation days. Two stations had to be removed because their high consumption could
cause orders being generated almost every other day. While it could also be an option to just lower
their consumption, this does not really solve the problem but only creates the change that their
will be too much orders during another day. Endless changes to the levels, amounts and consump-
tion rates could eventually even lead to a simulation run where every station of the original data is
present, but this consumes a lot of time, while skipping a few stations does not affect the testing of
strategies. In principle this could also be done with half of the stations. Due to time constraints it
has been decided to delete the two stations from the simulation run.

Furthermore it turned out that a weekend schedule for the vehicles also leads to infeasible runs. The
vehicles have a shorter working schedule during the weekend and therefore can handle less orders
than on a normal weekday. Sometimes the amount of orders was to big during the weekend. The
model itself only looks ahead one day, which is limiting the abilities to foresee the amount of orders
further in the future. If it is a Thursday for example, it might happen that there are only a few orders
for that day, while the Saturday (without knowing up front) does have a large amount of orders.
If this was known by the model it could shift back some orders to get a feasible routing schedule
during the weekend. Unfortunately the model does not have this feature due to time constraints
in the model building. therefore the decision has been made to give all vehicles the same schedule
during the weekend, as they would have on a normal weekday.

7.2. Strategies and results
There are numerous different strategies that can be tried when looking for possible improvements.
With the almost endless pool of possibilities there are too many options to consider them all. there-
fore four different strategies have been chosen for testing. The first one will be aiming for minimiz-
ing the travel distance. The other strategies are created to try reducing calculation times. This will
be tested and compared on both the reference run as well as the outcome of strategy one.

7.2.1. Strategy 1: Target amount for largest order in a pairing
In the reference run all pairings are based on minimum amounts. While this increases the possi-
bility of having feasible multi–stop routes, it does not mean that it is more efficient when looking
at the delivered volumes and travel distances. The proposed strategy will only allow order pairings
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where the station with the largest order amounts takes the target amount as a minimum. The route
is deleted if the specific order combination does not fit in a vehicle when the largest order uses tar-
get amount as a minimum. For the other orders on the route it only needs to reach the minimum
order amounts.

The outcomes are shown in table 7.1. The first column gives the reference run of 21 days with target
amounts set to 85%. When forcing the largest order on a route to have target amounts it leads to a
decrease in driven kilometers of 2%. While this is not much, it shows that there is a potential benefit
in using target amounts for some stations. However it does also increase the average stock levels
at stations with 5 percent, which is unwanted because you want to have the station tank utilization
as low as possible. The larger stations will have to be visited more frequently on average, especially
when taking less amounts. It does not seem to be rewarding to aim for more order pairings when
larger stations are involved. Indeed there are 5% less stops in the target order run while the amount
of trips has increased with 2.5 percent.

Table 7.1: Comparison of reference run and a run using target amounts for the largest order.

Strategy: Reference run Strategy 1 run Change (%)
Distance (km) 18996 18605 –2
Amount (l) 9257671 9398135 +1.5
Avg. station stock level (%) 56 59 +5
Avg. volume per trip (l) 39394 39258 –0.3
Avg. Capacity utilization (%) 86 87 +1
Avg. Vehicle utilization (%) 48.5 47.0 –1.5
Trips 235 241 +2.5
Stops 333 315 –5.4
stops/trip 1.4 1.3 –7
Sim. run time (s.) 4619 5205 +12.6

The volumes delivered are 2 percent higher in the target order run. This leads to a minor increase
of the average utilization of compartment capacity. This compartment capacity utilization is deter-
mined by summing up the capacity of every compartment when it is used on a route. If it is used
in two routes, it would mean the capacity times 2. By dividing this number with the actual loaded
amount of a compartment on all routes, it gives the utilization. The average volume per trip are
almost the same for both models, although slightly lower for strategy 1 run. This might be the result
of having less space to pair orders in this model.

It is interesting to see that the calculation times for the target amount run are actually bigger than
the reference run. Also note that the amount of stops is equal to the amount of orders over the sim-
ulation period. This means that using target amount creates less orders. There were 18 less orders
made during the simulation. This potentially is a full day of deliveries. The upcoming three strate-
gies are not only looking at the effects on the travel distances, but will also look at the calculation
times. They will be tested on both the reference model and the one defined in this strategy.

7.2.2. Strategy 2: Fuel brand restrictions on routes
This strategy involves deleting every route where more than three fuel types have to be delivered on
one route. With the knowledge that there are two different brands with three fuel types each, the
idea behind this strategy is to only allow order pairing with stations receiving identical fuel brands.
This will be a way to reduce routes and at the same time might increase the utilization of vehicles,
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since it is easier to combine orders.

The fuel type restriction has been tested on both the reference model and the model from strategy
one. Compared to the reference run (table 7.2) the fuel type restriction does not have much impact
on the reference run. Some parameters slightly increased while others have seen small decreases.
The distance has increased less than a percent, while the amounts delivered also slightly went up
with a small margin of 1.5%. It shows that some routes have been deleted which would otherwise
have been chosen by the model. This had its impact on the calculation time, which decreased with
4.6 percent.

Table 7.2: Comparison of the reference run without and with fuel type restriction.

Strategy: Reference run Fuel type restriction Change (%)
Distance (km) 18996 19122 +0.7
Amount (l) 9257671 9398564 +1.5
Avg. station stock level (%) 56 57 +1.8
Avg. volume per trip (l) 39394 39160 –0.6
Avg. Capacity utilization (%) 86 85 –1.0
Avg. Vehicle utilization (%) 48.5 49 +0.5
Trips 235 240 +2.0
Stops 333 336 +0.9
stops/trip 1.42 1.4 –1.4
Sim. run time (s.) 4619 4408 -4.6

Referring to table 7.3, when fuel restrictions are added to the strategy 1 run, the driven distance
increases slightly, but still stays under the distance of the reference run. The calculation times are
20 percent less in the strategy 1 run, which is a large decrease.

Table 7.3: Comparison of the strategy 1 run without and with fuel type restriction.

Strategy: Strategy 1 run Fuel type restriction Change (%)
Distance (km) 18605 18822 +1.1
Amount (l) 9398135 9567632 +1.8
Avg. station stock level (%) 59 59 0
Avg. volume per trip (l) 39258 38735 –1.3
Avg. Capacity utilization (%) 87 86 +1
Avg. Vehicle utilization (%) 47.0 47.0 0
Trips 241 247 +2.4
Stops 315 314 –0.3
stops/trip 1.3 1.27 –2.3
Sim. run time (s.) 5205 4176 -19.7

Interesting to see is that the time is even less than the runs of the reference model, which means
that the fuel type restriction in combination with the tactic used in strategy 1 does show some big
improvements in terms of calculation time and even slightly decreases the travel distances. The
strategy 1 run with fuel restrictions does lead to a slight increase of trips, while there is one stop
less. On average there are less stops per trip for the fuel restriction run. This means that in the run
without fuel restrictions there are still some routes chosen where all 6 fuel types were combined,
even while the target amount restriction greatly limits this possibility.
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7.2.3. Strategy 3: Emphasize on three stations routes

The focus on three stop routes is an interesting option. This strategy deletes all routes with two
stops on a specific vehicle if and only if all two stations on that route are also both in a feasible three
stop route on the same vehicle. This leads to a lot less two stop routes and therefore gives a higher
probability that the model will choose for routes with three stops.

Table 7.4 shows the results of the three route emphasis run compared to the reference run. The
distances increase with 2.2 percent in this situation. The amount of trips decreased with one trip,
while the amount of stops/orders increased with seven. Thus enforcing three stop routes does lead
to more stops. However, just like already stated during the testing of strategy 1 it does not lead to
less kilometers driven. Furthermore the total amount of delivered fuel did increase with almost 1
percent, which might be the result of three orders having better possibilities to fill a vehicle. No huge
differences are found in the calculation times of both runs.

Table 7.4: Comparison of the reference run without and with three route emphasis.

Strategy: Reference run Three route emphasis Change (%)
Distance (km) 18996 19414 +2.2
Amount (l) 9257671 9388720 +1.4
Avg. station stock level (%) 56 56 0
Avg. volume per trip (l) 39394 40123 +1.8
Avg. Capacity utilization (%) 86 85 –1
Trips 235 234 –0.4
Stops 333 340 +2.1
stops/trip 1.42 1.45 0
Sim. run time (s.) 4619 4748 +2.7

Table 7.5: Comparison of strategy 1 run without and with three route emphasis.

Strategy: Strategy 1 run Three route emphasis Change (%)
Distance (km) 18605 18681 +0.4
Amount (l) 9398135 9474682 +0.8
Avg. station stock level (%) 59 59 0
Avg. volume per trip (l) 39258 39314 +0.1
Avg. Capacity utilization (%) 87 88 +1
Trips 241 241 0
Stops 315 317 +0.6
stops/trip 1.3 1.31 +0.8
Sim. run time (s.) 5205 4711 -9.5

The three route emphasis had little to no differences with the strategy 1 model as is shown in table
7.5. The only big difference are the calculation times between the two which is almost 10 percent.
However this is only half of the run with the fuel restrictions. Which result is better depends on the
most important aspect in the model. The fuel restriction run can save almost 10 to 15 minutes in
calculation time, but has lead to a bigger increase of travel distances.
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7.2.4. Strategy 4: Station vicinity rule
The station vicinity rule will delete a route if certain stations in that route combination are to far
apart from each other. This value is predefined by the user and given in kilometers. This strategy is
a very basic way to group certain stations based on geographical location. While this option could
lead to a further reduction of routes, potentially improving calculation times, it might also lead to a
solution which deviates a lot from the reference solution.

When applying restrictions on the distances between stations, there are lots of possibilities. In this
case the distances have simply been chosen by summing up all distances and divide them by the
sum of nodes, which is 59 stations plus the depot. The average came down to 42 kilometer. This is
used as the boundary in the station vicinity rule. A more extreme case with a boundary of 21 kilo-
meter has been added as well, to test if the outcomes are showing the right behaviour. It is expected
that restrictions with smaller distances will lead to less paired routes. Note that in this case only the
run of strategy one is used for comparison.

The results in table 7.6 and 7.7 show some interesting results.

Table 7.6: Comparison of strategy 1 run without and with station vicinity rule(21 kilometer restriction).

Strategy: Strategy 1 run station vicinity rule (21 km) Change (%)
Distance (km) 18605 18864 +1.3
Amount (l) 9398135 9646445 +2.6
Avg. station stock level (%) 59 60 +1
Avg. volume per trip (l) 39258 35994 –8.3
Avg. Capacity utilization (%) 87 85 –2
Avg. Vehicle utilization (%) 47 42.0 –8.5
Trips 241 268 +10
Stops 315 310 –1.6
stops/trip 1.3 1.14 –12.3
Sim. run time (s.) 5205 3228 –36.1

Table 7.7: Comparison of strategy 1 run without and with station vicinity rule(42 kilometer restriction).

Strategy: Strategy 1 run station vicinity rule (42 km) Change (%)
Distance (km) 18605 18749 +0.8
Amount (l) 9398135 9568717 +1.7
Avg. station stock level (%) 59 60 +1
Avg. volume per trip (l) 39258 37088 –5.5
Avg. Capacity utilization (%) 87 86 –1
Avg. Vehicle utilization (%) 47 43.0 –8.5
Trips 241 258 +6.6
Stops 315 312 –1
stops/trip 1.3 1.2 –7.7
Sim. run time (s.) 5205 3388 –34.9

One of the consequences of having restrictions on the distances is that routes with multiple orders
become a lot more scarce when the restriction is made smaller. In the extreme case with a maximum
of 21 kilometers the stops per trip decreased with more than 12 percent, coming close to a one stop
per trip average. The total delivered amounts did slightly increase in both runs, with around 2 per-
cent more delivered fuel. However the volume per trip did go down quite a lot. Especially with the
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21 km restriction run, where it went down with more than 8 percent.

The most interesting outcomes of this strategy are the calculation times, which went down with a
significant percentage. For both the 21 and 42 km restriction it took more than one third less of the
time compared to the base run. This is more than half an hour, while the travel distances do not
increase a lot. While the 21 kilometer run is a little extreme, the 42 kilometer restriction does show
some promising results.

7.3. Discussion
This section will discuss the results and the models used. The first subsection will reflect on the
outcomes and if those are according to expectations. The second subsection will discuss the opti-
mization and simulation model.

7.3.1. Conclusions and reflection on the results
The outcomes of the simulation runs have shown varying results. Most results did not have any huge
impact, as most variables only changed a few percent at most. Because the changes are so small it
is difficult to make any hard conclusions about the outcomes. However there is some behaviour
visible on all tested strategies, which might be worth looking further into when undertaking a more
detailed study towards the strategies.

One of the first conclusions that can be drawn from the model is that it does not reward to actively
seek for order pairing possibilities. The reference run used minimum amounts to see if certain or-
ders could be paired. When comparing this to the run of strategy 1, where the largest order should
at least have its target amount loaded, on the long run it led to less orders. This was also reflected
in the amount of stops, which became 5 percent less. Eventually this resulted in almost 400 km
less. The outcomes of strategy 3 does back up the finding that the focus should not be on making as
much paired orders as possible. Emphasizing on the three orders per route, skipping the two order
routes, caused an increase of 2 percent in the total distance traveled.

While strategy 1 seems to be a good alternative for lower travel distances, it does have the downside
that the tank stock levels at stations are higher on average. The question is which one is more costly,
having to more fuel stored at the stations, or driving less kilometers. Since this research does not
work with costs, this is something for the user to decide.
While the main focus for strategy 1 was to lower the travel distances, the other strategies were aim-
ing at decreasing the running times of the simulation run. Strategy 3 with the three route emphasis
scored the worst of all strategies. It had the least decrease in calculation times with the strategy 1
run, and even saw an increase of almost 3 percent compared with the reference run. Next to that it
was already stated that it did cause the largest increase in travel distances.

Strategy 2 with the fuel brand restrictions did show a decrease in calculation times, with the com-
bined strategy 1–fuel restriction run needing almost 20 percent less time compared to the strategy 1
base run. This is very interesting since the driven kilometers only increased slightly and even in this
situation were less than that of the reference run. Furthermore it took the combined strategy 1–fuel
restriction run less time to finish the simulation. This makes the combined run of strategy 1 and 2
very efficient compared to the reference model.

Strategy 4 using station vicinity checks, is a very promising alternative for order pairing. While only
a very basic version has been tested, the that the calculation times were around 30 minutes lower
compared to the strategy 1 base run. The distances increased a bit, but this is not a lot when calcu-
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lation times are becoming more important. This is for the client to choose. When someone wants
to run a simulation within one hour, it might be rewarding to go for sub–optimized runs by adding
some constraints as with strategy 2 or 4. After all, looking at the total distances over those 21 days,
between 200 or 400 kilometer less travel distance is not that much. Thus it depends on the focus for
the user which is more important.

One of the other things to look at was the effect of the different strategies on the carbon footprint.
Only in strategy 1 the travel distances have decreased compared to the reference run. To be pre-
cise the total amount of kilometers went down with 2 percent, or 391 km. When using an average
consumption of 26.5 liters per 100 km (Volvo, n.d.) and knowing that one liter of fuel combustion
produces 2.6 kilograms of CO2 (Volvo, n.d.), this leads to a reduction of 269 kg. Needless to say the
reduction is far from getting near the 20% reduction to qualify for a green certification which was
mentioned in the introduction chapter.

It must be noted that there was one particularly strange outcome. This was the calculation time for
simulating strategy 1. It turned out to be quite high compared to the other simulations. It might be
explained by the amount of order on a certain day. When the routes are selected up front, it leads
to less routes with the target amount run. This is because there are less possibilities to pair orders,
since there is less freedom to play with amounts. However, the simulation run is a loop which runs
the split model 22 times (e.g. 22 simulation days). It might be the case that changes in the amount
of orders caused some days to suddenly have a few more orders to process, where the optimization
model took a while to come to a solution.

7.3.2. Reflection on the models
The starting point of this thesis was to come up with new strategies to improve the order pairing.
While reviewing the case of AMCS and the literature it became clear that the model was twofold:
An optimization model integrated into a simulation model. The specific requirements of the opti-
mization model proposed in this thesis, with vehicle schedules and time windows, turned out to be
too complex to handle more than 20 orders. Multiple recent problems in the papers also using time
windows do acknowledge this difficulty like Cornillier et al. (2009),Li et al. (2014) and Benantar et al.
(2016).

By splitting the model in two parts, the model could handle up to 28 orders in a reasonable amount
of time, while not giving large differences in the outcomes compared to the unsplit model. While
28 stations are a decent amount for one run, it turned out that the data sample provided by AMCS
was to large when used in a simulation run. The order generation model, controlling the amount of
orders created on one day, has a lot of aspects to take into account and some of them need further
improvement to really make the most out of the simulations.

There were some aspects where the behaviour of the order generation model caused the optimiza-
tion model to return infeasible outcomes. The first one had to do with stations which have a high
consumption. The order generation model calculates the target amounts based on the first tank to
go empty again in the future. However, if this order was then send to the optimization model, it
sometimes led to an order amount being to large to get even minimum amounts to fit in one ve-
hicle. This obviously gave an infeasible outcome. A quick solution was made in the optimization
model by cutting order amounts until it would fit the vehicle. The downside for this solution was
that it sometimes caused the situation where the final allocated amounts were lower than the con-
sumption, thus creating a dry run. But since the model was constrained not to have a dry run, the
order generation model returned the same order the next day, but with a time window that should
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have been handled the day before. This caused an error in the optimization model, which could not
place the order in any current day schedule. This is why some stations were deleted from the data.





8
Conclusions and recommendations

This final chapter will present the main findings and conclusions. The first section will answer the
remaining sub questions and the main question. Furthermore the scientific contribution of this
thesis will be highlighted, while the last part will provide recommendations.

8.1. Conclusions
This section will answer the remaining sub questions and the main question. The objective of this
research was to design a model that can test different order pairing strategies for fuel delivery to
petrol stations. One of the questions was: "What KPIs are relevant for measuring the effects of differ-
ent order pairing strategies and how are they measured?".

For AMCS the following goals are considered important: on–time delivery, avoiding stock buildup
at the petrol stations, reducing transport distances and reduce the CO2 footprint. The first goal was
added as a constraint in the model rather than a KPI. Depletion of tanks is not allowed and therefore
is a hard boundary which may not be crossed. The second has been copied one on one as KPI in
the model. The third goal is to decrease transport distances. This goal has been translated into an
objective for the model. Because of this it is one of the most important KPIs to review the effective-
ness of different strategies. The last goal, reduction of the CO2 footprint is directly depending on
the travel distances.

The second sub question that still needs to be answered is: "How should the structure and mathe-
matical representation of the model design look like?"

To test the strategies a simulation model will be used. The simulation model is divided into two sub
models. The first one is the order generation model, which checks the stock levels of all tanks at the
beginning of each day. It then compares this with the minimum stock level allowed and makes an
order for a station if one of its tanks has reached minimums. Subsequently the algorithm adjusts
the amounts for all tanks at a station aiming at equal depletion times.

The output of this model is used by the order pairing optimization model. This optimization model,
aiming at minimizing travel times, is an extension to the petrol station replenishment problem. The
literature, like Benantar et al. (2016), Coelho and Laporte (2015), Macedo et al. (2011) and Li et al.
(2014) have addressed different combinations, but never the specific combination of station restric-
tions, time windows and a heterogeneous limited fleet with vehicle schedules.
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The model has been validated using an test instance from Coelho and Laporte (2015) and compar-
ing this with the results from their research. Schedule and vehicle restriction constraints had to be
turned off to be similar to the model of Coelho and Laporte (2015). The test instance had exactly the
same outcome in both models. therefore it can be concluded that the model without schedules and
restrictions is showing the right behaviour.

While testing multiple different instances varying the number of vehicles, stations and product
types, the model could reach optimality for up to 19 stations. However, having 20 or more sta-
tions became more challenging for the model to solve and showed that the 21 stations instance was
even unsolvable after 4 days of running time. The bottleneck causing the rapidly increasing calcu-
lation times have been contributed to the vehicle working schedule constraints and range between
amounts.

A proposition has been suggested in this research by going from an unsplit model towards a split
model, which in fact are two separate optimization models. The first model assign routes to vehi-
cles, still aiming at minimizing travel times. The second model will use these routes to define the
amounts that have to be loaded onto the vehicles, with the aim to maximize delivery amounts. The
split model showed to be a very promising alternative, as the outcomes for the travel times were
equal to those of the unsplit model. Furthermore calculation times were greatly reduced. Next to
that it is possible to get optimized solutions for instances with a higher number of stations, reaching
optimal solutions in two hours for runs with 25 stations. In the unsplit model this was not possible
when more than 19 stations had to receive a delivery.

The split model and generation model have been integrated to form a simulation model. The sim-
ulation model was validated and accepted by comparing the outcomes of a test run from the AMCS
model. It turned out that there are some differences, like the delivered volume which was 20 percent
lower. Also the amount of stops per trip was 30 percent lower. However, the model in this research
did have a 11 percent lower travel distance. This has been contributed to different assumptions in
both models and the results from the simulation run did not show any odd outcomes that might
cause problems during a simulation run. It is concluded that the model in this research is good
enough to be accepted and used for testing new order pairing strategies.

The last sub question, "What strategy improvements could lead to a performance increase compared
to the current situation and what are the results?" is an extension of the main question. In this re-
search four different strategies have been tested using the simulation model:

1 Target amount for largest order in a pairing.

2 Restriction of one fuel brand per route.

3 Emphasize on three stop routes.

4 Station vicinity rule.

This leads us to the answer of the main research question:

"How can the current order pairing strategy be improved and what impact does this have on the total
kilometers driven and the carbon footprint?"

It is difficult to give one concise answer to this question. The four strategies presented were just a
few of many options that could be tested. Furthermore, the results from the simulation runs did not
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show huge differences between alternatives.

One of the conclusions that can be drawn is that the user should not focus on making as much
paired orders as possible. In all strategies this turned out to increase the travel distances, while the
aim is to minimize them. In fact, strategy 1 seems to be a good alternative for lowering the total
travel distances, by forcing the biggest order on a route to have target amounts delivered. This is an
interesting finding and might lead to good solutions for other possible strategies using priority rules
in the loading of order amounts.

Strategy 4 using station vicinity rules also showed promising results. While only a very basic ver-
sion has been tested, it turned out that the calculation times greatly decreased with up to half an
hour. The distances increased a bit, but only marginally. It depends on the goals of the user if this
calculation time reduction is worth the small increase in travel distances.

8.2. Scientific contribution
The unsplit model, also referred as the Multi–Period Split Compartment Vehicle Routing Problem
with Time Windows and Vehicle Restrictions (MP-SCVRPTWVR), can be categorized as a Petrol Sta-
tion Replenishment Problem (PSRP). The literature has addressed some combinations, but never
the specific combination of station restrictions, time windows, vehicle schedules and a heteroge-
neous limited fleet. To all knowledge the model constructed in this research is the first in its kind
and has never been applied in a similar problem. This makes the model a contribution to the field
and might prove useful for other research analyzing similar problems. Further research could be
done to improve the current MP-SCVRPTWVR making it more efficient for larger sample sizes.

8.3. Recommendations for AMCS
Overall it can be concluded that more strategy testing is required to get better results out of the sim-
ulation model. Strategy 1 and 4 show the most promising results and form a good starting point to
focus on. Allowing certain stations to be paired with each other based on distances is only a small
example on what could be achieved with similar strategies. It might be rewarding to try grouping
stations on other aspects. For example small versus large stations or stations that have the same
consumption rates. This might produce certain recurring pairs that will always be paired together.
This creates certainties in the order pairing, which in turn might lead to faster and better solutions.

The second option is to look at the way orders are allocated in the trucks. This could be in different
sequences, for example starting with target orders for all station in a pair, or begin filling a vehicle
until additional amounts of the first order. There are a lot of different combinations possible in this
regard.

It is not advisable to AMCS to use the current model for a large case. The one provided for this
research already proved to be too large to be analyzed in the simulation. However, the model can be
used for smaller samples of up to 50 to 55 stations. This is still enough to test strategies, since those
do not only depend on the amount of stations, but many other factors as well.

8.4. Recommendations on the model design
While doing some first exploratory simulation runs it was found that the amount of orders on some
days caused problems. The model had some runs where it could not find a solution in three hours
and therefore terminated the simulation. This was due to the fact that some simulation days, de-
pending on the configuration used, had more than 28 orders. This was too much for the model to
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give a solution within the three hour window.

To make the model more robust, a few things can be done. The order generation model should be
able to look farther ahead in time. This way the simulation model can predict how much orders will
be generated on a given day and respond to this by shifting orders to another day. By doing so it
is also possible to respond to weekend or holiday schedules of the vehicles. With forecasting it can
also be predicted when a station needs a delivery that can still fit a vehicle. This means it will not
only make an order when minimums are about the get reached, but it will also plan ahead by taking
into regard the vehicle capacities.

Furthermore it might prove to be useful to give the order pairing optimization model more breath-
ing space in allocating orders by allowing it to go under the minimum amounts. This could be done
by penalizing this, such that it will at least try to fit the minimum amounts, but is not restricted to it.
A similar thing should be done for the order generation model, as it might prove profitable to allow
a dry run every now and then. This will stop the time window error, which generated an order for
the dry run station, with a time window of the previous day.

Other options should be focusing on making the models faster, because it turned out to take a lot of
time to calculate solutions for larger instances. This was one of the bottlenecks when trying differ-
ent strategies. When one is defined, and depending on the circumstances, the model can take quite
some time to run the whole simulation. If it is wanted that the strategy is tested under different cir-
cumstances, the adjustments and reruns can take up a lot of time. If calculation times are reduced,
it is possible to test different strategies in a short amount of time.

Finally it must be noted that the split model used in the simulation is a model that provides sub–
optimal solutions. It is divided in two separate models, thus not making full potential op the op-
timization process. It is recommended to improve the unsplit model, trying to make it usable for
more than 20 stations and making the split model unnecessary.
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A
Overview of test instances used in the order

optimization model.

A.1. Values of validation instance

Table A.1: Overview of the values used for the validation instance.

Station Coords (x,y) Current stock t. 1 Current stock t. 2 Demand t.1 Demand t.2
Terminal (47,407) – – – –
1 (421,472) 10265 1653 8346 1225
2 (145,472) 6240 6456 4226 6725
3 (325,42) 7025 8261 5446 8883
4 (267,294) 2858 8627 2216 6344
5 (332,376) 1952 7074 2013 7860
6 (107,241) 10762 6257 8279 4635
7 (83,300) 7630 9349 6937 7540
8 (235,304) 3457 12177 3492 9440
9 (251,30) 9478 8665 9873 9523
10 (79,91) 7838 7347 8339 7986
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A.2. Data input for computations of unsplit and split model.
A.2.1. Stations and travel time matrix

Table A.2: Travel time matrix (part one).

From/To Depot 10171 10195 10208 10432 10435 10443 10444 10445 10450 10456
Depot 0 53 88 19 86 65 38 30 76 29 63
10171 53 0 60 47 64 68 28 33 68 43 18
10195 89 61 0 82 23 46 72 63 119 76 47
10208 20 47 82 0 79 59 31 23 72 23 56
10432 86 65 23 79 0 31 72 60 119 74 48
10435 65 69 46 58 31 0 54 39 99 53 52
10443 38 29 72 31 72 52 0 17 58 27 32
10444 29 34 63 22 60 39 18 0 64 17 37
10445 76 68 119 72 119 99 59 63 0 73 76
10450 29 43 77 22 75 54 27 19 72 0 52
10456 63 18 47 56 48 52 31 37 76 50 0
10459 48 37 44 41 44 41 31 22 77 36 20
10464 56 11 66 50 71 71 31 36 65 46 24
10466 51 42 93 47 94 73 33 38 33 48 50
10468 65 57 107 61 108 87 47 52 20 62 64
10486 48 6 59 43 62 64 23 28 63 38 16
10881 90 59 1 83 25 47 73 64 120 78 49
10924 54 2 61 48 65 69 28 33 69 44 18
10943 57 12 54 51 64 71 32 37 72 47 20
10951 33 39 85 29 85 64 24 29 53 39 50
10955 26 42 76 19 74 53 26 18 71 14 51
10972 24 41 79 10 76 56 26 20 65 26 52

Table A.3: Travel time matrix (part two).

From/To 10459 10464 10466 10468 10486 10881 10924 10943 10951 10955 10972
Depot 48 56 50 65 48 90 54 56 33 26 24
10171 36 11 42 57 5 59 2 11 39 43 40
10195 44 66 93 108 59 1 61 54 84 76 80
10208 41 50 46 61 43 83 48 51 29 19 10
10432 44 71 93 108 63 25 65 64 85 73 77
10435 41 73 73 88 66 47 70 71 64 53 56
10443 30 32 32 47 25 73 30 33 23 27 24
10444 22 37 37 52 30 64 35 38 29 17 21
10445 77 64 33 20 64 120 69 72 53 73 67
10450 37 46 46 61 39 79 44 47 37 13 26
10456 20 24 50 64 16 48 19 20 50 50 51
10459 0 42 50 65 33 45 37 39 42 36 38
10464 42 0 38 53 9 65 12 17 42 46 43
10466 51 37 0 22 37 94 43 46 27 48 42
10468 65 52 22 0 52 109 57 60 41 62 56
10486 33 9 37 52 0 58 7 10 34 38 35
10881 45 65 94 109 57 0 60 53 85 78 81
10924 37 12 42 57 6 60 0 11 40 44 41
10943 39 17 46 61 9 53 12 0 43 47 44
10951 42 42 26 41 35 86 40 43 0 39 26
10955 36 45 45 60 38 78 43 46 36 0 23
10972 38 43 39 54 36 80 41 44 26 23 0
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A.2.2. Delivery windows

Table A.4: Station delivery time windows (year, month, day, hours ,minutes).

Station Start time window End time window
10171 2014, 11, 3, 0, 0 2014, 11, 3, 10, 12
10195 2014, 11, 3, 0, 0 2014, 11, 4, 5, 48
10208 2014, 11, 3, 0, 0 2014, 11, 4, 8, 31
10432 2014, 11, 3, 0, 0 2014, 11, 4, 5, 1
10435 2014, 11, 3, 0, 0 2014, 11, 3, 11, 38
10443 2014, 11, 3, 0, 0 2014, 11, 3, 15, 59
10444 2014, 11, 3, 0, 0 2014, 11, 3, 15, 42
10445 2014, 11, 3, 0, 0 2014, 11, 4, 20, 46
10450 2014, 11, 3, 0, 0 2014, 11, 3, 16, 5
10456 2014, 11, 3, 0, 0 2014, 11, 3, 23, 38
10459 2014, 11, 3, 0, 0 2014, 11, 4, 0, 18
10464 2014, 11, 3, 0, 0 2014, 11, 3, 20, 59
10466 2014, 11, 3, 0, 0 2014, 11, 3, 22, 11
10468 2014, 11, 3, 0, 0 2014, 11, 3, 21, 37
10486 2014, 11, 3, 0, 0 2014, 11, 3, 22, 42
10881 2014, 11, 3, 0, 0 2014, 11, 4, 0, 20
10924 2014, 11, 3, 0, 0 2014, 11, 4, 0, 40
10943 2014, 11, 3, 0, 0 2014, 11, 3, 17, 16
10951 2014, 11, 3, 0, 0 2014, 11, 3, 16, 24
10955 2014, 11, 3, 0, 0 2014, 11, 4, 4, 33
10972 2014, 11, 3, 0, 0 2014, 11, 3, 20, 55

A.2.3. Order amounts
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