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A B S T R A C T

This study introduces a novel artificial neural network (ANN)-based control strategy for pressure-swing distil
lation (PSD) systems, integrating heat pump-assisted distillation (HPAD) and self-heat recuperation technology 
(SHRT) to transition from thermally-driven to electrically-driven processes. While previous research has vali
dated the dynamics and controllability of conventional PSD (PSD-CONV), PSD-HPAD, and PSD-SHRT for sepa
rating a maximum-boiling acetone/chloroform azeotrope, this work specifically focuses on enhancing product 
purity control through composition-temperature cascade control (CC-TC). Although similar control strategies 
have been proposed, our approach uniquely predicts temperature set points using easily measurable process 
variables, effectively bypassing the inaccuracies of composition measurements. Simulation results demonstrate 
that this ANN-based strategy significantly improves dynamic performance and adaptability in controlling 
product purity without requiring a composition analyzer. By leveraging the strengths of traditional Proportional- 
Integral-Derivative (PID) control alongside data-driven methods, this research highlights a critical advancement 
in the control of electrified PSD applications, paving the way for more efficient and reliable distillation processes.

1. Introduction

Distillation remains the leading method used in various industries for 
the separation and purification of condensable mixtures. However, its 
thermal inefficiency leads to significant energy consumption and carbon 
dioxide emissions from fossil fuels. To address this, electrification is 
increasingly favored to reduce carbon emissions by using electricity 
from renewable resources [1–3]. As the chemical industry evolves, there 
is growing demand for advancements in distillation technology, driven 
by the need for high product quality and the complexities introduced by 
azeotropes. This has led to the development of specialized techniques 
like pressure swing distillation (PSD) [4–6], extractive distillation (ED) 
[7–9], and heterogeneous azeotropic distillation (HAD) [10,11]. Azeo
tropes are mixtures in which the liquid and vapor phases have identical 
compositions [12]. They can generally be classified into minimum- 
boiling and maximum-boiling types, although some exhibit unique 
minimum–maximum boiling behaviors as pressure varies [13]. Certain 
pressure-sensitive azeotropes can be separated using PSD, allowing 
high-purity product extraction from one end of the column while recy
cling streams close to the azeotropic point from the other. PSD has 
gained attention for its solvent-free operation and energy-saving 

potential, utilizing pressure differences to facilitate heat pump assis
tance and integration [14–17]. However, depending on boiling point 
differences, electrification via mechanical vapor recompression may 
offer greater energy savings than heat integration [18–20].

Most studies focused on transitioning from thermally-driven to 
electrically-driven PSD processes emphasize steady-state design. How
ever, effective control strategies are essential for practical applications, 
facing two main challenges: first, the complex dynamics introduced by 
electrification [21]; second, the intermittency of renewable energy 
sources. For the former, integrating heat pumps complicates process 
design and may require additional measures like extra reboilers for 
stability [22]. The latter challenge involves managing the intermittency 
and fluctuations inherent in renewable energy sources, which can be 
addressed through energy storage or by implementing integrated 
scheduling and control strategies enhanced by predictive analytics and 
machine learning [1]. An effective control strategy should ideally 
address several key aspects, including minimizing system fluctuations, 
deviations in product composition, and control costs [23]. For 
thermally-driven PSD processes, Luyben and Chien [12] proposed 
several practical control strategies that include basic PI (Proportional- 
Integral) controllers—such as those for flow rate, pressure, liquid level, 
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and temperature—which provide robust control suitable for industrial 
applications [24]. Building upon these control schemes, additional PI- 
based strategies—such as composition-temperature cascade control, 
pressure-compensated temperature control, and fixed reflux ratio (RR) 
schemes—are essential for maintaining stability in electrically-driven 
PSD processes [25,26]. Furthermore, insights from these studies sug
gest that current temperature controls struggle with precise composition 
management due to their nonlinear relationships, and online composi
tion analyzers are costly and complex to maintain. This makes compo
sition control challenging, limiting the broader implementation of 
electrically-driven PSD processes, an area that remains underexplored 
in research. Developing intelligent composition controllers that elimi
nate the need for expensive composition analyzers is crucial for 
advancing these systems. Artificial neural networks (ANNs) are 
increasingly recognized as a powerful data-driven approach for effi
ciently managing complex, high-dimensional, and nonlinear data 
[27,28]. Due to these capabilities, ANNs have been successfully applied 
across a wide range of fields, including autonomous driving, natural 
language processing, and medical image analysis [29–31]. In chemical 
processes, ANNs also offer effective solutions for addressing the chal
lenge of unmeasurable variables in the control of distillation processes 
[23]. For instance, a soft sensor utilizing a recurrent neural network has 
been employed for real-time monitoring and precise control of n-butyl 
acetate production in a reactive distillation column, achieving high ac
curacy and low prediction error [32]. Shan et al. [33] developed a novel 
soft sensor model predictive control (MPC) based on time-delayed 
neural networks for HAD, which achieved superior product purity 
control without direct composition measurements compared to con
ventional PID (Proportional-Integral-Derivative) and MPC methods. In 
the context of ANN applications in PSD processes, Li et al. [10] devel
oped a dynamic optimization control model based on ANNs for the 
separation of a minimum-boiling azeotrope isoamyl-alcohol/toluene in 
PSD processes, both with and without heat integration. By predicting 
optimal operating parameters in the dynamic simulations, the model 
effectively reduced economic costs and energy consumption. However, 
this work did not address the elimination of costly composition ana
lyzers. Sun et al. [23] proposed an intelligent control strategy based on a 
backpropagation (BP) neural network, validating it in two typical 
thermally-driven triple-column PSD systems: one with minimum-boiling 
azeotrope (ethanol/tetrahydrofuran/water) and one with maximum- 
boiling azeotrope (acetonitrile/isopropanol/water). Their results 
demonstrated that this strategy provides excellent dynamic performance 
under ± 20 % feed throughput and composition disturbances, enabling 
effective composition control without the need for composition ana
lyzers. In our previous work [25], we compared the dynamic behaviors 
of thermally-driven (using conventional reboiler steam) and electrically- 
driven (heat pump assisted distillation (HPAD) and self-heat recupera
tion technology (SHRT)) PSD processes using a maximum-boiling 
acetone/chloroform case. The results indicated that the controllability 
of the more complex electrically-driven processes is comparable to that 
of the conventional sequence, with PSD-CONV exhibiting even higher 
oscillation amplitudes than PSD-HPAD and PSD-SHRT. Nonetheless, the 
dynamic results suggest that there is still room for improvement in the 
purity of the acetone and chloroform products. Additionally, literature 
surveys reveal that few studies have focused on the ANN-based control 
strategy for electrified PSD processes, with most research predominantly 
addressing minimum-boiling azeotropes and thermally-driven PSD 
processes.

Guided by insights from previous studies, this work aims to develop 
an intelligent composition controller to replace the traditional PI 
composition control in electrified PSD configurations (PSD-HPAD and 
PSD-SHRT). A maximum-boiling azeotrope of acetone/chloroform is 
selected as a case study, where the minimal pressure-induced shift 
presents a greater challenge compared to more pressure-sensitive spe
cies. The significance of this work lies in achieving high-precision 
product purity control in energy-efficient electrified PSD processes 

while avoiding the use of composition measurement instruments.

2. Methodology

2.1. Steady-state process description

The normal boiling points of acetone and chloroform are 56.5 ◦C and 
61.2 ◦C, respectively. Under 1 atm pressure, they form a maximum- 
boiling azeotrope with a composition of 34.09 mol% acetone at 
64.4 ◦C. The feedstock is saturated liquid at 100 kmol/h with an equi
molar composition. Both product streams are required to have a purity 
of 99.5 mol%. The Wilson thermodynamic model is used with binary 
interaction parameters provided in previous work [5]. The T-x-y and x-y 
diagrams under 10 and 0.77 bar in Fig. S1 highlight the close-boiling 
characteristics of the two species and the minimal composition shifts 
induced by pressure. Luyben’s comparative study on ED and PSD 
showed that ED is more favorable in terms of capital investment and 
energy efficiency [35]. However, ED requires an additional entrainer, a 
drawback that PSD addresses, albeit with the trade-offs of more stages, a 
higher reflux ratio, and a significant recycle flowrate.

The steady-state processes for PSD-CONV, PSD-HPAD, and PSD- 
SHRT are given in Fig. 1. Energy recovered from the bottom effluents 
is used to preheat the feed streams via feed-effluent heat exchangers. In 
the PSD-CONV process, the reboilers of high-pressure column (HPC) and 
low-pressure column (LPC) are powered by middle-pressure steam 
(MPS) and low-pressure steam (LPS), respectively. In the PSD-HPAD 
process, the reboilers are powered by the pressured streams from the 
overhead vapor. However, a small amount of MPS and LPS is still 
necessary to preheat the compressor inlet stream, preventing the for
mation of liquid droplets in the compressors. In the PSD-SHRT process, 
full electrification is possible. Economically, the implementation of 
electrification could reduce total annual cost (TAC) by 50 % compared 
to the conventional stream-driven process. Environmentally, CO2 
emissions could be reduced by 85 % even when using electricity derived 
from fossil fuels [5]. The use of low-carbon electricity generated from 
renewable energy could further support industrial decarbonization 
efforts.

2.2. Artificial neural network

ANN underpins the intelligent control mechanisms explored in this 
study. As illustrated in Fig. 2, the ANN employed is a multilayer feed
forward network, which is trained using the BP algorithm. This algo
rithm, rooted in the gradient descent method, employs gradient search 
techniques to minimize the mean squared error (MSE) between the 
network’s actual output and the desired output values [36]. The deri
vation of the BP algorithm proceeds as follows:

Consider an input layer with n variables, denoted as X = {x1, x2, xi, 
…, xn}, where each xi represents a distinct process variable in the 
electrified PSD process. The output layer variables are represented as Y 
= {y1, y2, yk, …, yn}, which correspond to the neural network’s output 
variables, such as product composition or the temperature controller set 
point in this context.

The network’s architecture includes a hidden layer H = {h1, h2, hj, …, 
hp}, with weights ωij

(1) and ωjk
(2) representing the connections between the 

input and hidden layers, and between the hidden and output layers, 
respectively. Each neuron’s activation function is denoted by f. Conse
quently, the signal propagation through the network according to the BP 
algorithm is expressed by the following equations: 

hj = f

(
∑n

i=1
ω(1)

ij xi + b(1)
j

)

, j = 1,2, ..., p (1) 

yk = f

(
∑p

i=1
ω(2)

jk hj + b(2)
k

)

, k = 1,2, ...,m (2) 
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where, bj
(1) and bk

(2) are bias terms. As these terms are constants, their 
derivation is straightforward and thus omitted in the subsequent pro
cedures to streamline the derivation process.

2.3. Evaluation measures

2.3.1. Predicted performance evaluation indexes
To assess the predictive performance of the neural network models, 

we utilize two key metrics: MSE and the coefficient of determination 
(R2). MSE is a widely adopted criterion for quantifying the deviation 

Fig. 1. Processes studied: (a) PSD-CONV, (b) PSD-HPAD, and (c) PSD-SHRT.
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between predicted and observed values [37]. It is defined as the average 
of the squared differences between each pair of predicted and actual 
values, as described in Eq. (3): 

MSE =
1
m
∑m

k=1
(yk − yl)

2 (3) 

where yk denotes the actual value, yl represents the predicted value, and 
m is the sample size. The smaller the value of MSE, the higher the ac
curacy. Conversely, R2 serves as an indicator of the correlation between 

the predicted outcomes and the actual target values [38], as described in 
Eq. (4): 

R2 = 1 −

∑n
t=1
(
Sta − Stp

)

∑n
t=1
(
Sta − Stp

) (4) 

Sta represents the actual target values, Stp denotes the predicted values 
generated by the model, Stp is the mean of the actual observed values, n 
is the number of observations. An R2 value approaching 1 signifies a 
higher level of performance efficiency and accuracy in the predictive 

Fig. 1. (continued).

Fig. 2. The prediction principle based on ANN.

D. Yang et al.                                                                                                                                                                                                                                    Separation and Puriϧcation Technology 360 (2025) 130991 

4 



model.

2.3.2. Dynamic performance evaluation indexes
The integral of the squared error (ISE) measures the degree of 

excellence of dynamic control system performance when there is a 
disturbance in the process. It is a type of comprehensive indicator. The 
smaller the ISE, the better the performance of the dynamic control [39]. 
The ISE is defined as follows: 

ISE =

∫T

t0

(y − ysp)
2dt (5) 

where t0 represents the initial time of the dynamic process. y and ysp are 
the actual product purity the during disturbance process and the purity 
of the set product.

2.4. Principle of intelligent control

Recent studies on the distillation control [25,26,33,34,40,41] have 
highlighted a crucial conclusion: to ensure that product purity meets 
production requirements under varying feed conditions, temperature 
controllers must adjust to a new set point rather than maintaining the 
initial one. In conventional temperature control loops, the temperature 
set point (TSP) is either fixed or adjusted manually based on operator 
judgment. Conversely, in CC-TC systems, the TSP automatically adapts 
to changes in product purity, resulting in improved control performance. 
However, achieving the dynamic simulations accuracy in product 
composition measurements can pose practical challenges.

The dynamic optimization control model, as detailed in Fig. 3, 
comprises three primary components: the ANN modules, the Aspen 
Dynamic Modeler block, and the output signal display modules. The 
Neural NETwork model (NNET) is a trained neural network that has 
been integrated into the Simulink model for system simulation and 
analysis. Unlike traditional cascade control systems, which directly use 
product composition as the controlled variable, the intelligent control 
strategy employs an ANN to train on a comprehensive range of process 

variables to effectively manage disturbances. In this model, the ANN 
recalculates the temperature set points of temperature-sensitive stage in 
HPC and LPC (TSP1 and TSP2) dynamically, based on the dynamic 
simulation state of the system, adjusting these TSPs continuously in 
response to changes in feed conditions. This approach ensures that 
product quality is consistently maintained at the desired level.

The Aspen Dynamic Modeler block serves as bridge between Aspen 
Dynamics and Simulink, allowing the dynamic simulation data retrieval 
from the PSD dynamic model and facilitating immediate process 
adjustment. After 0.5 h of dynamic operation, disturbance signals are 
introduced into the process, and the resulting output data are recorded, 
such as the actual pressure of the HPC (P1), reflux ratio (RR), and brake 
horsepower (Bpower). To systematically explore the system’s response 
to varying conditions, we initially modify the feed conditions, incre
menting by 4 % each time (±4 %, ±8 %, ±12 %, etc.), after allowing the 
system to stabilize for one hour following each adjustment. This incre
mental approach helps us to observe how the system behaves as we push 
the limits of throughput and composition changes. The maximum ex
tents of these adjustments are set at ± 20 % throughput and ± 10 % 
acetone composition, relative to their initial conditions. This range en
sures that we cover a broad spectrum of operational scenarios that the 
system might encounter. To ensure accuracy and detail in our data 
collection, we sample the system’s state every 0.01 h, providing a high- 
resolution view of the system’s dynamic behavior. Ultimately, our 
dataset is derived from four distinct operational conditions, specifically 
targeting ± 20 % throughput and ± 10 % acetone composition distur
bances. This comprehensive dataset allows us to train and validate our 
models effectively, ensuring that they are robust and adaptable to the 
real-world fluctuations in the PSD process. This feedback loop is crucial 
for predicting the optimal TSP, which is then applied to the PSD dynamic 
model within Aspen Dynamics, facilitating the process optimization and 
control. The simulation system operates within Simulink over a runtime 
of 30 h, allowing for extensive testing and validation of the control 
strategy. The process is outlined as follows: 

Fig. 3. Flowchart of the dynamic optimization control model based on ANNs.
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1. Data Acquisition: Our previous work [25] demonstrated that single 
temperature control structures are effective in handling distur
bances. However, to optimize TSPs, we require an extensive dataset 
that enables our model to determine the most appropriate TSPs 
effectively. Therefore, the training, validation, and testing datasets, 
which include all directly measurable process variables, are derived 
from the CC-TC system designed in this study. Essentially, the model 
simulates the behavior of the CC controller within this system, 
learning from the system’s response to various disturbances.

2. Variable Selection: Incorporating too many process variables from 
the electrified PSD to predict the TSPs can lead to increased 
computational complexity. To enhance the efficiency of the predic
tion model, this study focuses on selecting process variables that 
exhibit a strong correlation with the TSPs, as determined through 
correlation analysis.

3. ANN Model Development: ANN model is trained, validated, and 
tested, with the objective of minimizing the error below a specified 
target threshold. Once the error meets this criterion, the trained ANN 
model—developed using the gensim function—is integrated into the 
PSD system via the AMsimulation module.

4. System Testing: The PSD process control system is evaluated by 
varying feed conditions within the Aspen Dynamics environment. 
The effectiveness of the intelligent control strategy is assessed by its 
ability to improve upon the single temperature control strategy and 
meet product specifications. If the control performance is found to be 
unsatisfactory, the process should return to step 1 for dataset 
regeneration and further refinement.

The intelligent control strategy for electrified PSD of acetone/chlo
roform azeotropes is designed to achieve precise product control while 
minimizing reliance on costly online composition detection instruments. 
Moreover, this approach can be extended to practical control structures 
in factories with varying degrees of automation, providing further 
validation of the feasibility of electrified distillation.

3. Dynamics and control

3.1. CC-TC control for PSD-CONV (CS1)

The PSD-CONV features independent reboilers and condensers, giv
ing more control degrees of freedom and thus relatively easy to control. 
Our previous work [25] identified an effective temperature control 
structure (CS) that allowed product composition to return close to the set 
value under ± 20 % throughput variations and ± 10 % feed composition 
fluctuations. While this CS successfully mitigated disturbances, there 
remains potentials for further improvement in product purity. To 
address this, an enhanced control structure CS1 with CC-TC is devel
oped, as demonstrated in Fig. 4(a). In this configuration, both XD1, ACE 
and XD2, CHL are controlled by manipulating the set points of the relevant 
cascaded temperature controllers. All other control loops and parame
ters remain consistent with the second CS developed for PSD-CONV in 
the previous work [25]. Table S1 shows the tuning parameters for the 
corresponding composition controllers.

After achieving stable operation of the closed-loop system for 0.5 h, 
disturbances of ± 20 % throughput and ± 10 % in acetone composition 
were introduced, with the test concluding at the 30 h. The effectiveness 
of control structure CS1 in managing these disturbances is shown in 
Fig. S2. The CS1 can maintain stable regulatory control with the CC-TC 
approach, restoring both product compositions to their original steady- 
state design specifications.

3.2. ANN-based dynamic control for PSD-CONV (CS2)

In this section, the ANN-based control strategy, which is built upon 
the CS1, is implemented. In the PI control strategy, variables such as 
flow rate, liquid level, pressure, reflux ratio, and temperature are more 

easily measurable compared to composition, and these readily measur
able variables are listed in Table S2. Given the ease of obtaining these 
variables, they are selected as the input variables for the ANN. Inspired 
by the CC-TC control, there are two possible output variables for the 
ANN. One option is the product composition, where the ANN’s output 
serves as the input for the PI composition controller. Alternatively, the 
ANN could output the set point of the temperature controller, thereby 
replacing the composition controller and functioning as the composition 
controller. The final output variable is selected based on its relevance to 
the input variables. In addition to selecting the output variables, the 
input variables must be selected carefully. Training, validating, and 
testing all potential variables involve additional computational effort, 
and including irrelevant input variables in the training process could 
negatively impact the accuracy of the predictions.

The selection of input and output variables is based on their corre
lation. The formula for calculating the correlation coefficient is as fol
lows: 

ρX,Y =
E[(X − E(X))(Y − E(Y))]

̅̅̅̅̅̅̅̅̅̅
σ2

Xσ2
Y

√ (6) 

where X and Y are variables, E represents mathematical expectation, σ2 

indicates variance, and ρ denotes the correlation coefficient. Retaining 
variables with high correlations and excluding those with low correla
tions is extremely meaningful for the training of neural networks [34]. 
Consequently, a threshold of 0.6 was established for correlation coeffi
cient screening.

When the absolute value of the correlation coefficient between two 
variables is greater than or equal to 0.6, the correlation is considered as 
strong; otherwise, it is deemed weak. As shown in Fig. S3(a), the cor
relation between the variables and the product compositions (XD1,ACE, 
XD2,CHL) is generally weak. Only three basic variables (4, 9, 11) for XD1, 

ACE and two (9, 11) for XD2,CHL have absolute correlation coefficients 
greater than 0.6. However, when TSPs are used as output variables, two- 
thirds of the basic variables exhibit absolute correlation coefficients 
greater than 0.6, as depicted in Fig. S3(b). Therefore, TSPs are selected 
as the output variables for the ANN, and variables with correlation co
efficients greater than 0.6 are chosen as the input variables. These final 
selected input variables have been bolded and underlined in Table S2 for 
clarity. The same approach has been applied to highlight the selected 
input variables in the subsequent PSD-HPAD and PSD-SHRT process 
variable tables. It can be observed that the selection of input variables 
remains the same regardless of whether TSP1 or TSP2 is chosen as the 
output. Consequently, the two ANN models can be effectively merged, 
which not only conserves computational resources but also enhances the 
accuracy and efficiency of the model.

In this section, we utilize a two-layer feed-forward network 
comprising hidden neurons with a Sigmoid activation function and 
output neurons with a linear activation function. The network structure, 
which consists of an input layer, a single hidden layer with 15 neurons, 
an output layer, and the final output, was determined through extensive 
training and testing to ensure optimal performance. The research data, 
generated from the anti-disturbance processes for ± 20 % throughput 
and ± 10 % acetone composition disturbances under PI control strategy, 
is divided into training data (70 %), validation data (15 %), and 
completely independent test data (15 %). The optimal ANN model is 
identified when the error is reduced to below the target threshold. To 
evaluate the performance of the developed model, we calculated the 
MSE and R2 for the ANN. The MSE values being close to 0 and R2 values 
being close to 1 demonstrate the accuracy of the ANNs. The MSE and R2 

for the training, validation, and test data are illustrated in Table. S3. 
Additionally, the error histogram shown in Fig. S4 visually displays the 
error between the predicted TSP and target TSP. The ordinate indicates 
the number of instances with corresponding errors. The errors are 
relatively small, mostly ranging between − 0.00206 and 0.00214, 
indicating that the predicted TSP closely matches the observed TSP. This 
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Fig. 4. CS for PSD-CONV: (a) CS1 with CC-TC, (b) CS2 with ICC-TC.
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result confirms that the ANN structure is capable of accurately fore
casting the output variables based on the input variables. It also vali
dates the appropriateness of the selected variables and confirms the 
comprehensiveness of the dataset. These factors are crucial for designing 
an effective intelligent composition controller.

Fig. 4(b) illustrates the strategy for intelligent composition control 
(ICC) in the PSD-CONV process (CS2). The ICC-TC strategy shares the 
same objective as the CC-TC method, which is to automatically adjust 
the TSP to achieve precise control over the purity of the acetone/chlo
roform product. However, the underlying principles of the two methods 
are quite different. The ICC-TC uses easily measurable process variables 
as inputs, whereas the composition controller relies on composition 
values, which are challenging to measure online. The ICC-TC strategy 
considers two key perspectives. Economically, it eliminates the need for 
expensive component detection equipment. From a control standpoint, 
it effectively addresses the issue of delayed measurements.

In the CS1, ± 20 % throughput and ± 10 % acetone composition 
disturbances are applied to evaluate the performance, and the same 
disturbances are also test the CS2. Fig. 5 shows the anti-disturbance 
response curves under the ICC-TC. When comparing throughput dis
turbances to composition disturbances, the latter exhibits a smaller 
overshoot. Overall, the ICC-TC effectively bring the product composition 
back to the steady-state design specifications within a relatively short 
period of 15 h, highlighting their efficient performance.

3.3. CC-TC control for PSD-HPAD (CS3)

Building on our previous work [25], the control performance of the 
PSD-HPAD process has proven to be superior to that of the PSD-CONV 
process. Its dynamic controllability remains strong, despite the advan
tages of its steady-state design. However, similar to the dynamics and 
control outcomes of the PSD-CONV, there remains potential for further 
improvement in the product purities.

The control structure CS3 with CC-TC for PSD-HPAD is shown in 
Fig. 6(a). XD1,ACE and XD2,CHL are controlled by manipulating the set 
points of the associated cascaded temperature controllers. All other 
control loops and controller parameters remain identical to the third CS 
developed for PSD-HPAD in our previous work [25]. Table S4 gives the 
composition controller tuning parameters of CS3.

Fig. S5 presents the dynamic response results for large disturbances. 
The findings indicate that when dealing with disturbances of ± 20 % 
throughput and ± 10 mol% acetone composition, the compositions of 
the two distillates return to values closer to their steady-state design 
specifications. Compared to the dynamic performance of CS1, the range 
of product purity fluctuations for CS3 is more constrained, particularly 
when managing disturbances of ± 20 % throughput. Additionally, PSD- 
HPAD is a design that reduces costs and minimizes energy consumption. 
Therefore, improvements in the dynamic performance of product purity 
in PSD-HPAD are of significant importance.

3.4. ANN-based dynamic control for PSD-HPAD (CS4)

Table S5 and Fig. S6 present the process variables and the correla
tions among these variables for PSD-HPAD, respectively. As depicted in 
Fig. S6(a), the product compositions of HPC and LPC have correlation 
coefficients below 0.6 with other process variables, and XD1,ACE exhibits 
weak correlations with all process variables. In Fig. S6(b), it is evident 
that the TSPs of temperature-sensitive stages are generally have strong 
correlations with other process variables, although some differences 
exist. Notably, fewer process variables show strong correlations with 
TSP1 temperature-sensitive stage of the HPC. Consequently, it is more 
appropriate to use TSP as the output variable of the ANN. However, the 
selected process input variables differ, requiring the development of two 
separate ANN models for using TSP1 and the TSP2 as output variables. 
For PSD-HPAD, the same network structure used in PSD-CONV has been 
applied. Similarly, data from the resistance of the PI control strategy to 

feed disturbances were collected for training, validation, and testing the 
ANN model, with a sampling time of 0.01 h. The MSE and R2 for training, 
validation, and testing are displayed in Table S6, and the close match 
between observed and predicted values in Fig. S7 confirms the accuracy 
of the ANN model’s predictions. CS4 represents the intelligent compo
sition control strategy for PSD-HPAD, and two ICCs have been designed 
as illustrated in Fig. 6(b).

Fig. 7 shows the disturbance resistance test results for CS4, where the 
fluctuations in product composition are minimal. All values stabilize 
within a very narrow range close to the set point after 15 h, demon
strating that the ICC-TC strategy meets production requirements.

3.5. CC-TC control for PSD-SHRT (CS5)

Unlike PSD-HPAD, the PSD-SHRT involves more heat exchangers 
and offers fewer control degrees of freedom [5]. As highlighted in our 
previous work [25], the control structure of PSD-SHRT integrates fea
tures from both PSD-CONV and PSD-HPAD, which have demonstrated 
promising stability. However, there is still potential for improving the 
purity of both acetone and chloroform products. In this section, CC-TC is 
proposed to further enhance XD1,ACE and XD2,CHL. The CS5 with CC-TC 
for PSD-SHRT is shown in Fig. 8(a). All other control loops and 
controller parameters remain the same as those in the sixth CS devel
oped for PSD-SHRT in previous work [25]. Table S7 provides the tuning 
parameters for the composition controllers in CS5.

Fig. S8 presents the dynamic response results for large disturbances. 
The results show that the compositions of the two distillates return to 
their steady-state design specifications when subjected to disturbances 
of ± 20 % throughput. Although the system did not fully return to its 
steady-state design specifications when dealing with disturbances of ±
10 % acetone composition, there has been a significant improvement 
compared to the previous single temperature control strategy.

3.6. ANN-based dynamic control for PSD-SHRT (CS6)

Table S8 and Fig. S9 present the process variables of PSD-SHRT and 
the correlation between these variables. Similar to the correlations 
observed in the PSD-HPAD process, as shown in Fig. S9(a), the product 
composition of HPC and LPC have correlation coefficients of less than 
0.6 with other process variables, indicating relatively weak correlations. 
In Fig. S9(b), it is evident that the TSPs of temperature-sensitive stages 
generally have strong correlations with other process variables, 
although differences exist between them. Notably, fewer process vari
ables show strong correlations with TSP1 in the HPC. As a result, it is 
more appropriate to use TSP as the output variable of the ANN, which is 
consistent with the variable correlation analysis seen in the PSD-HPAD 
process. However, since the selected process input variables differ for 
TSP1 and TSP2 as output variables, two separated ANN models must be 
established.

As discussed in CS4 regarding the ANN modeling effects, a lower 
number of variables does not necessarily lead to lower model accuracy; 
this can be adjusted by modifying the number of neurons and hidden 
layers. For PSD-SHRT, testing ultimately determined that the network 
structure should consist of an input layer, three hidden layers, an output 
layer, and the final output. The single hidden layer network specifically 
includes 25 neurons. Similarly, data on the resistance of the PI control 
strategy to feed disturbances were collected for training, validation, and 
testing of the ANN model, with a sampling time of 0.01 h. The MSE and 
R2 values for training, validation, and testing are provided in Table S9, 
and the close match between observed and predicted values in Fig. S10
indicates the accuracy of the ANN model’s predictions.

Fig. 8(b) shows ICC-TC strategy for PSD-SHRT (CS6). Fig. 9 shows 
the results of the anti-disturbance tests of intelligent control. The fluc
tuations in product composition are small, and they can all stabilize 
within a small range near the set value after 10 h, indicating that the 
ICC-TC strategy can meet production requirements.
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Fig. 5. Anti-disturbance results for CS2 with ICCs:(a) ± 20 % throughput and (b) ± 10 mol% acetone composition.
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Fig. 6. CS for PSD-HPAD: (a) CS3 with CC-TC, (b) CS4 with ICC-TC.
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Fig. 7. Anti-disturbance results for CS4 with ICCs:(a) ± 20 % throughput and (b) ± 10 mol% acetone composition.

D. Yang et al.                                                                                                                                                                                                                                    Separation and Puriϧcation Technology 360 (2025) 130991 

11 



4. Control performance comparisons

In this section, a comprehensive dynamic comparison of control 
structures is conducted to evaluate the performance of ICCs, encom
passing CS1 and CS2 for PSD-CONV, CS3 and CS4 for PSD-HPAD, and 
CS5 and CS6 for PSD-SHRT. As depicted in Fig. 10, under ± 20 % 
throughput disturbances, the dynamic responses of CC-TC and ICC-TC 
for PSD-HPAD and PSD-SHRT are similar, with an anticipated tran
sient time of 5 h for the controlled variables. In contrast, PSD-CONV 

exhibits a relatively longer transient time of approximately 15 h 
compared to PSD-HPAD and PSD-SHRT. Nevertheless, for ± 10 % 
acetone composition disturbances, the overshoot of the systems is 
minimal, and all products eventually stabilized within approximately 
15 h. Furthermore, the dynamic response of ICCs for PSD-CONV is not 
superior to that of PSD-HPAD and PSD-SHRT. Regarding oscillation 
amplitude, PSD-CONV even show a higher amplitude than PSD-HPAD 
and PSD-SHRT.

The ISE values of the CSs have been meticulously calculated, and a 

Fig. 8. CS for PSD-SHRT: (a) CS5 with CC-TC, (b) CS6 with ICC-TC.
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Fig. 9. Anti-disturbance results for CS6 with ICCs:(a) ± 20 % throughput and (b) ± 10 mol% acetone composition.
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thorough analysis of the final steady-state results has been compiled. To 
provide a comprehensive assessment of their performance, we have 
compared these results with those obtained from the traditional single PI 
temperature control strategy. As shown in Tables 1 and 2, the perfor
mance of ICC-TC and CC-TC is very similar, maintaining comparable 
results for PSD-HPAD and PSD-SHRT. Notably, ICC-TC significantly 

outperformed the single temperature control strategy, indicating a 
substantial improvement in system robustness with minimal cost im
plications. Although the dynamic performance of ICC-TC in PSD-CONV 
is slightly weaker compared to CC-TC and the traditional TC strategy in 
terms of ISE, the overall dynamic performance of electrified distillation 
is generally good, making it a viable choice for industrial applications.

Fig. 10. Dynamic response performance comparisons of control structures for ± 20 % feed flowrate (a) and ± 10 % acetone composition (b) disturbances.
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Overall, ICCs effectively return product composition to the set values 
within a short period. Despite slightly larger system fluctuations under 
intelligent control compared to CC-TC control, the key advantage is the 
elimination of the need for online product composition measurement. 
Furthermore, under intelligent composition control strategies, the 
controllability of electrified distillation—offering enhanced energy 
efficiency—generally surpassed that of traditional methods, empha
sizing its suitability for industrial applications.

5. Conclusions

This work presents a novel approach to control the electrified PSD of 
a maximum-boiling acetone/chloroform azeotrope, focusing on the 
development of an ICC based on ANNs. While prior studies have 
investigated the separation of this azeotrope, our research distinguishes 
itself by introducing an innovative control structure that effectively 
eliminates the need for online composition measurements, a significant 
limitation in existing methods. The ANN model is developed using easily 
measurable process variables identified through correlation analysis, 
enhancing practicality in real-world applications. We successfully inte
grated the ICC with traditional PID controllers to form a cascade control 
structure, referred to as ICC-TC. A notable advantage of this structure is 
its flexibility feature, allowing the system to continue operating reliably 

with a PI temperature controller in the event of ICC failure. Further
more, under conditions of substantial throughput and composition dis
turbances, ICC-TC demonstrated the capability to maintain product 
purity levels comparable to those achieved by conventional cascade 
control methods. This research underscores the potential of electrified 
distillation in promoting economic and environmental sustainability. 
Future studies will aim to leverage advanced neural networks and so
phisticated control algorithms to further enhance control performance 
and efficiency in electrified PSD applications, highlighting the signifi
cance of our contributions to the field.
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Table 1 
ISE values for the different control structures.

Control 
structure

+20 % F − 20 % F +10 % 
acetone

− 10 % 
acetone

CS (TC) CONV 
ISEACE 

ISECHL

4.8186e- 
05 
1.3703e- 
05

0.00049918 
5.0845e-05

9.1103e-05 
6.4588e-05

3.6902e-05 
6.985e-06

CS1(CC-TC) 
ISEACE 

ISECHL

1.2416e- 
06 
1.3869e- 
06

0.00022037 
1.3509e-06

2.1431e-07 
2.0497e-08

1.6066e-07 
1.4931e-08

CS2(ICC-TC) 
ISEACE 

ISECHL

8.3097e- 
05 
1.5911e- 
05

0.00084526 
6.0477e-05

3.6371e-06 
8.1264e-06

8.7034e-05 
4.3056e-06

CS(TC) HPAD 
ISEACE 

ISECHL

1.3609e- 
06 
1.87e-05

1.4734e-06 
1.9897e-05

2.5445e-07 
1.6709e-05

2.6556e-07 
1.8994e-05

CS3(CC-TC) 
ISEACE 

ISECHL

5.2826e- 
07 
1.5371e- 
07

4.0584e-07 
2.1067e-07

9.2617e-09 
6.2781e-08

9.1666e-09 
8.2649e-08

CS4(ICC-TC) 
ISEACE 

ISECHL

9.3371e- 
07 
7.2315e- 
07

7.5666e-07 
8.6027e-07

4.0537e-08 
8.206e-07

9.5596e-09 
6.3232e-08

CS(TC) SHRT 
ISEACE 

ISECHL

2.4135e- 
06 
2.0188e- 
05

4.1229e-05 
2.7628e-05

9.8493e-06 
2.8931e-05

7.0683e-06 
2.023e-05

CS5(CC-TC) 
ISEACE 

ISECHL

6.7809e- 
07 
7.5666e- 
09

2.019e-05 
3.8639e-08

7.6591e-08 
1.2029e-09

7.3455e-08 
4.3548e-10

CS6(ICC-TC) 
ISEACE 

ISECHL

8.0728e- 
07 
8.8105e- 
08

3.2406e-05 
8.4868e-07

7.1602e-07 
9.618e-08

8.3825e-07 
7.4955e-08

Table 2 
Comparison of closed-loop responses in product compositions.

Control 
structure

Target +20 % F − 20 % F +10 % 
acetone

− 10 % 
acetone

CS (TC) 
CONV

​ ​ ​ ​ ​

XD1,ACE 0.995000 0.995929 0.994175 0.993194 0.995451
XD2,CHL 0.995000 0.994295 0.995719 0.996046 0.994518
CS1 (CC- 

TC)
​ ​ ​ ​ ​

XD1,ACE 0.995000 0.994997 0.994999 0.995003 0.994999
XD2,CHL 0.995000 0.995001 0.995000 0.995000 0.995000
CS2 (ICC- 

TC)
​ ​ ​ ​ ​

XD1,ACE 0.995000 0.994838 0.995167 0.994911 0.995094
XD2,CHL 0.995000 0.994997 0.994777 0.994988 0.995069
CS (TC) 

HPAD
​ ​ ​ ​ ​

XD1,ACE 0.995000 0.995126 0.995960 0.994915 0.994140
XD2,CHL 0.995000 0.994888 0.993942 0.995084 0.996000
CS3(CC-TC) ​ ​ ​ ​ ​
XD1,ACE 0.995000 0.995004 0.994991 0.995000 0.995000
XD2,CHL 0.995000 0.995000 0.994998 0.995000 0.995004
CS4(ICC- 

TC)
​ ​ ​ ​ ​

XD1,ACE 0.995000 0.995017 0.995015 0.994994 0.994990
XD2,CHL 0.995000 0.995073 0.994855 0.995030 0.995018
CS (TC) 

SHRT
​ ​ ​ ​ ​

XD1,ACE 0.995000 0.995169 0.995852 0.994434 0.993969
XD2,CHL 0.995000 0.994842 0.993996 0.995428 0.995871
CS5(CC-TC) ​ ​ ​ ​ ​
XD1,ACE 0.995000 0.995000 0.995000 0.995003 0.995000
XD2,CHL 0.995000 0.995000 0.995000 0.994990 0.995000
CS6(ICC- 

TC)
​ ​ ​ ​ ​

XD1,ACE 0.995000 0.995019 0.995004 0.995001 0.994998
XD2,CHL 0.995000 0.995051 0.994976 0.994993 0.994975
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