<]
TUDelft

Delft University of Technology

Intelligent control strategy for electrified pressure-swing distillation processes using
artificial neural networks-based composition controllers

Yang, Daye; Wang, Jingcheng; Cai, Huihuang; Rao, Jun; Cui, Chengtian

DOI
10.1016/j.seppur.2024.130991

Publication date
2025

Document Version
Final published version

Published in
Separation and Purification Technology

Citation (APA)

Yang, D., Wang, J., Cai, H., Rao, J., & Cui, C. (2025). Intelligent control strategy for electrified pressure-
swing distillation processes using artificial neural networks-based composition controllers. Separation and
Purification Technology, 360, Article 130991. https://doi.org/10.1016/j.seppur.2024.130991

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.seppur.2024.130991
https://doi.org/10.1016/j.seppur.2024.130991

Separation and Purification Technology 360 (2025) 130991

Contents lists available at ScienceDirect

Separation and
Purification
Technology

Separation and Purification Technology

journal homepage: www.elsevier.com/locate/seppur

ELSEVIER

Intelligent control strategy for electrified pressure-swing distillation
processes using artificial neural networks-based composition controllers

a,”

Daye Yang®, Jingcheng Wang *, Huihuang Cai®, Jun Rao?, Chengtian Cui "

@ Department of Automation, Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, PR China
b Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands

ARTICLE INFO ABSTRACT

Editor: Dr. B. Van der Bruggen This study introduces a novel artificial neural network (ANN)-based control strategy for pressure-swing distil-
lation (PSD) systems, integrating heat pump-assisted distillation (HPAD) and self-heat recuperation technology
(SHRT) to transition from thermally-driven to electrically-driven processes. While previous research has vali-
dated the dynamics and controllability of conventional PSD (PSD-CONV), PSD-HPAD, and PSD-SHRT for sepa-
rating a maximum-boiling acetone/chloroform azeotrope, this work specifically focuses on enhancing product
purity control through composition-temperature cascade control (CC-TC). Although similar control strategies
have been proposed, our approach uniquely predicts temperature set points using easily measurable process
variables, effectively bypassing the inaccuracies of composition measurements. Simulation results demonstrate
that this ANN-based strategy significantly improves dynamic performance and adaptability in controlling
product purity without requiring a composition analyzer. By leveraging the strengths of traditional Proportional-
Integral-Derivative (PID) control alongside data-driven methods, this research highlights a critical advancement
in the control of electrified PSD applications, paving the way for more efficient and reliable distillation processes.
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1. Introduction

Distillation remains the leading method used in various industries for
the separation and purification of condensable mixtures. However, its
thermal inefficiency leads to significant energy consumption and carbon
dioxide emissions from fossil fuels. To address this, electrification is
increasingly favored to reduce carbon emissions by using electricity
from renewable resources [1-3]. As the chemical industry evolves, there
is growing demand for advancements in distillation technology, driven
by the need for high product quality and the complexities introduced by
azeotropes. This has led to the development of specialized techniques
like pressure swing distillation (PSD) [4-6], extractive distillation (ED)
[7-9], and heterogeneous azeotropic distillation (HAD) [10,11]. Azeo-
tropes are mixtures in which the liquid and vapor phases have identical
compositions [12]. They can generally be classified into minimum-
boiling and maximum-boiling types, although some exhibit unique
minimum-maximum boiling behaviors as pressure varies [13]. Certain
pressure-sensitive azeotropes can be separated using PSD, allowing
high-purity product extraction from one end of the column while recy-
cling streams close to the azeotropic point from the other. PSD has
gained attention for its solvent-free operation and energy-saving
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potential, utilizing pressure differences to facilitate heat pump assis-
tance and integration [14-17]. However, depending on boiling point
differences, electrification via mechanical vapor recompression may
offer greater energy savings than heat integration [18-20].

Most studies focused on transitioning from thermally-driven to
electrically-driven PSD processes emphasize steady-state design. How-
ever, effective control strategies are essential for practical applications,
facing two main challenges: first, the complex dynamics introduced by
electrification [21]; second, the intermittency of renewable energy
sources. For the former, integrating heat pumps complicates process
design and may require additional measures like extra reboilers for
stability [22]. The latter challenge involves managing the intermittency
and fluctuations inherent in renewable energy sources, which can be
addressed through energy storage or by implementing integrated
scheduling and control strategies enhanced by predictive analytics and
machine learning [1]. An effective control strategy should ideally
address several key aspects, including minimizing system fluctuations,
deviations in product composition, and control costs [23]. For
thermally-driven PSD processes, Luyben and Chien [12] proposed
several practical control strategies that include basic PI (Proportional-
Integral) controllers—such as those for flow rate, pressure, liquid level,
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and temperature—which provide robust control suitable for industrial
applications [24]. Building upon these control schemes, additional PI-
based strategies—such as composition-temperature cascade control,
pressure-compensated temperature control, and fixed reflux ratio (RR)
schemes—are essential for maintaining stability in electrically-driven
PSD processes [25,26]. Furthermore, insights from these studies sug-
gest that current temperature controls struggle with precise composition
management due to their nonlinear relationships, and online composi-
tion analyzers are costly and complex to maintain. This makes compo-
sition control challenging, limiting the broader implementation of
electrically-driven PSD processes, an area that remains underexplored
in research. Developing intelligent composition controllers that elimi-
nate the need for expensive composition analyzers is crucial for
advancing these systems. Artificial neural networks (ANNs) are
increasingly recognized as a powerful data-driven approach for effi-
ciently managing complex, high-dimensional, and nonlinear data
[27,28]. Due to these capabilities, ANNs have been successfully applied
across a wide range of fields, including autonomous driving, natural
language processing, and medical image analysis [29-31]. In chemical
processes, ANNs also offer effective solutions for addressing the chal-
lenge of unmeasurable variables in the control of distillation processes
[23]. For instance, a soft sensor utilizing a recurrent neural network has
been employed for real-time monitoring and precise control of n-butyl
acetate production in a reactive distillation column, achieving high ac-
curacy and low prediction error [32]. Shan et al. [33] developed a novel
soft sensor model predictive control (MPC) based on time-delayed
neural networks for HAD, which achieved superior product purity
control without direct composition measurements compared to con-
ventional PID (Proportional-Integral-Derivative) and MPC methods. In
the context of ANN applications in PSD processes, Li et al. [10] devel-
oped a dynamic optimization control model based on ANNs for the
separation of a minimum-boiling azeotrope isoamyl-alcohol/toluene in
PSD processes, both with and without heat integration. By predicting
optimal operating parameters in the dynamic simulations, the model
effectively reduced economic costs and energy consumption. However,
this work did not address the elimination of costly composition ana-
lyzers. Sun et al. [23] proposed an intelligent control strategy based on a
backpropagation (BP) neural network, validating it in two typical
thermally-driven triple-column PSD systems: one with minimum-boiling
azeotrope (ethanol/tetrahydrofuran/water) and one with maximum-
boiling azeotrope (acetonitrile/isopropanol/water). Their results
demonstrated that this strategy provides excellent dynamic performance
under + 20 % feed throughput and composition disturbances, enabling
effective composition control without the need for composition ana-
lyzers. In our previous work [25], we compared the dynamic behaviors
of thermally-driven (using conventional reboiler steam) and electrically-
driven (heat pump assisted distillation (HPAD) and self-heat recupera-
tion technology (SHRT)) PSD processes using a maximum-boiling
acetone/chloroform case. The results indicated that the controllability
of the more complex electrically-driven processes is comparable to that
of the conventional sequence, with PSD-CONV exhibiting even higher
oscillation amplitudes than PSD-HPAD and PSD-SHRT. Nonetheless, the
dynamic results suggest that there is still room for improvement in the
purity of the acetone and chloroform products. Additionally, literature
surveys reveal that few studies have focused on the ANN-based control
strategy for electrified PSD processes, with most research predominantly
addressing minimum-boiling azeotropes and thermally-driven PSD
processes.

Guided by insights from previous studies, this work aims to develop
an intelligent composition controller to replace the traditional PI
composition control in electrified PSD configurations (PSD-HPAD and
PSD-SHRT). A maximum-boiling azeotrope of acetone/chloroform is
selected as a case study, where the minimal pressure-induced shift
presents a greater challenge compared to more pressure-sensitive spe-
cies. The significance of this work lies in achieving high-precision
product purity control in energy-efficient electrified PSD processes
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while avoiding the use of composition measurement instruments.
2. Methodology
2.1. Steady-state process description

The normal boiling points of acetone and chloroform are 56.5 °C and
61.2 °C, respectively. Under 1 atm pressure, they form a maximum-
boiling azeotrope with a composition of 34.09 mol% acetone at
64.4 °C. The feedstock is saturated liquid at 100 kmol/h with an equi-
molar composition. Both product streams are required to have a purity
of 99.5 mol%. The Wilson thermodynamic model is used with binary
interaction parameters provided in previous work [5]. The T-x-y and x-y
diagrams under 10 and 0.77 bar in Fig. S1 highlight the close-boiling
characteristics of the two species and the minimal composition shifts
induced by pressure. Luyben’s comparative study on ED and PSD
showed that ED is more favorable in terms of capital investment and
energy efficiency [35]. However, ED requires an additional entrainer, a
drawback that PSD addresses, albeit with the trade-offs of more stages, a
higher reflux ratio, and a significant recycle flowrate.

The steady-state processes for PSD-CONV, PSD-HPAD, and PSD-
SHRT are given in Fig. 1. Energy recovered from the bottom effluents
is used to preheat the feed streams via feed-effluent heat exchangers. In
the PSD-CONV process, the reboilers of high-pressure column (HPC) and
low-pressure column (LPC) are powered by middle-pressure steam
(MPS) and low-pressure steam (LPS), respectively. In the PSD-HPAD
process, the reboilers are powered by the pressured streams from the
overhead vapor. However, a small amount of MPS and LPS is still
necessary to preheat the compressor inlet stream, preventing the for-
mation of liquid droplets in the compressors. In the PSD-SHRT process,
full electrification is possible. Economically, the implementation of
electrification could reduce total annual cost (TAC) by 50 % compared
to the conventional stream-driven process. Environmentally, CO,
emissions could be reduced by 85 % even when using electricity derived
from fossil fuels [5]. The use of low-carbon electricity generated from
renewable energy could further support industrial decarbonization
efforts.

2.2. Artificial neural network

ANN underpins the intelligent control mechanisms explored in this
study. As illustrated in Fig. 2, the ANN employed is a multilayer feed-
forward network, which is trained using the BP algorithm. This algo-
rithm, rooted in the gradient descent method, employs gradient search
techniques to minimize the mean squared error (MSE) between the
network’s actual output and the desired output values [36]. The deri-
vation of the BP algorithm proceeds as follows:

Consider an input layer with n variables, denoted as X = {x1, X2, X;
..., Xp}, where each x; represents a distinct process variable in the
electrified PSD process. The output layer variables are represented as Y
=4{Y1, ¥2 Yk --- Yn}, which correspond to the neural network’s output
variables, such as product composition or the temperature controller set
point in this context.

The network’s architecture includes a hidden layer H = {hy, hy, hj, ...,
hy}, with weights a)fjl) and w](;f) representing the connections between the
input and hidden layers, and between the hidden and output layers,
respectively. Each neuron’s activation function is denoted by f. Conse-
quently, the signal propagation through the network according to the BP
algorithm is expressed by the following equations:

hy —f(Zwé-”xi + b}”) J=1.2,..p 6
i=1
p

Y —f( oy by +b£2)>,k— 1,2,..m @
i=1
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where, b]a) and b£2) are bias terms. As these terms are constants, their
derivation is straightforward and thus omitted in the subsequent pro-

(b)

Fig. 1. Processes studied: (a) PSD-CONV, (b) PSD-HPAD, and (c) PSD-SHRT.

cedures to streamline the derivation process.

2.3. Evaluation measures

2.3.1. Predicted performance evaluation indexes

To assess the predictive performance of the neural network models,
we utilize two key metrics: MSE and the coefficient of determination
(R?). MSE is a widely adopted criterion for quantifying the deviation
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Fig. 1. (continued).

Error back propagation

:
Variables

Signal forward propagation

Fig. 2. The prediction principle based on ANN.

between predicted and observed values [37]. It is defined as the average
of the squared differences between each pair of predicted and actual
values, as described in Eq. (3):

1 m
MSE =% (e =)’ 3
k=1

where yi denotes the actual value, y; represents the predicted value, and
m is the sample size. The smaller the value of MSE, the higher the ac-
curacy. Conversely, RZ serves as an indicator of the correlation between

the predicted outcomes and the actual target values [38], as described in
Eq. (4):

21 (Sa = Sp)

RP=1- )
>ot1 (S — Sp)

@
Siq represents the actual target values, S, denotes the predicted values
generated by the model, S;, is the mean of the actual observed values, n

is the number of observations. An R? value approaching 1 signifies a
higher level of performance efficiency and accuracy in the predictive
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model.

2.3.2. Dynamic performance evaluation indexes

The integral of the squared error (ISE) measures the degree of
excellence of dynamic control system performance when there is a
disturbance in the process. It is a type of comprehensive indicator. The
smaller the ISE, the better the performance of the dynamic control [39].
The ISE is defined as follows:

T
ISE = / (y — y?)%dt )

where ty represents the initial time of the dynamic process. y and y* are
the actual product purity the during disturbance process and the purity
of the set product.

2.4. Principle of intelligent control

Recent studies on the distillation control [25,26,33,34,40,41] have
highlighted a crucial conclusion: to ensure that product purity meets
production requirements under varying feed conditions, temperature
controllers must adjust to a new set point rather than maintaining the
initial one. In conventional temperature control loops, the temperature
set point (TSP) is either fixed or adjusted manually based on operator
judgment. Conversely, in CC-TC systems, the TSP automatically adapts
to changes in product purity, resulting in improved control performance.
However, achieving the dynamic simulations accuracy in product
composition measurements can pose practical challenges.

The dynamic optimization control model, as detailed in Fig. 3,
comprises three primary components: the ANN modules, the Aspen
Dynamic Modeler block, and the output signal display modules. The
Neural NETwork model (NNET) is a trained neural network that has
been integrated into the Simulink model for system simulation and
analysis. Unlike traditional cascade control systems, which directly use
product composition as the controlled variable, the intelligent control
strategy employs an ANN to train on a comprehensive range of process
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variables to effectively manage disturbances. In this model, the ANN
recalculates the temperature set points of temperature-sensitive stage in
HPC and LPC (TSP1 and TSP2) dynamically, based on the dynamic
simulation state of the system, adjusting these TSPs continuously in
response to changes in feed conditions. This approach ensures that
product quality is consistently maintained at the desired level.

The Aspen Dynamic Modeler block serves as bridge between Aspen
Dynamics and Simulink, allowing the dynamic simulation data retrieval
from the PSD dynamic model and facilitating immediate process
adjustment. After 0.5 h of dynamic operation, disturbance signals are
introduced into the process, and the resulting output data are recorded,
such as the actual pressure of the HPC (P1), reflux ratio (RR), and brake
horsepower (Bpower). To systematically explore the system’s response
to varying conditions, we initially modify the feed conditions, incre-
menting by 4 % each time (4 %, +8 %, +12 %, etc.), after allowing the
system to stabilize for one hour following each adjustment. This incre-
mental approach helps us to observe how the system behaves as we push
the limits of throughput and composition changes. The maximum ex-
tents of these adjustments are set at + 20 % throughput and + 10 %
acetone composition, relative to their initial conditions. This range en-
sures that we cover a broad spectrum of operational scenarios that the
system might encounter. To ensure accuracy and detail in our data
collection, we sample the system’s state every 0.01 h, providing a high-
resolution view of the system’s dynamic behavior. Ultimately, our
dataset is derived from four distinct operational conditions, specifically
targeting + 20 % throughput and + 10 % acetone composition distur-
bances. This comprehensive dataset allows us to train and validate our
models effectively, ensuring that they are robust and adaptable to the
real-world fluctuations in the PSD process. This feedback loop is crucial
for predicting the optimal TSP, which is then applied to the PSD dynamic
model within Aspen Dynamics, facilitating the process optimization and
control. The simulation system operates within Simulink over a runtime
of 30 h, allowing for extensive testing and validation of the control
strategy. The process is outlined as follows:

Output NNET Input )

Function Fitting Neural Network1

Aspen Dynamic Modeler Block

A\ 4

Scopel

Output NNET Input

Scope2

Function Fitting Neural Network2

Fig. 3. Flowchart of the dynamic optimization control model based on ANNs.
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1. Data Acquisition: Our previous work [25] demonstrated that single
temperature control structures are effective in handling distur-
bances. However, to optimize TSPs, we require an extensive dataset
that enables our model to determine the most appropriate TSPs
effectively. Therefore, the training, validation, and testing datasets,
which include all directly measurable process variables, are derived
from the CC-TC system designed in this study. Essentially, the model
simulates the behavior of the CC controller within this system,
learning from the system’s response to various disturbances.

2. Variable Selection: Incorporating too many process variables from
the electrified PSD to predict the TSPs can lead to increased
computational complexity. To enhance the efficiency of the predic-
tion model, this study focuses on selecting process variables that
exhibit a strong correlation with the TSPs, as determined through
correlation analysis.

3. ANN Model Development: ANN model is trained, validated, and
tested, with the objective of minimizing the error below a specified
target threshold. Once the error meets this criterion, the trained ANN
model—developed using the gensim function—is integrated into the
PSD system via the AMsimulation module.

4. System Testing: The PSD process control system is evaluated by
varying feed conditions within the Aspen Dynamics environment.
The effectiveness of the intelligent control strategy is assessed by its
ability to improve upon the single temperature control strategy and
meet product specifications. If the control performance is found to be
unsatisfactory, the process should return to step 1 for dataset
regeneration and further refinement.

The intelligent control strategy for electrified PSD of acetone/chlo-
roform azeotropes is designed to achieve precise product control while
minimizing reliance on costly online composition detection instruments.
Moreover, this approach can be extended to practical control structures
in factories with varying degrees of automation, providing further
validation of the feasibility of electrified distillation.

3. Dynamics and control
3.1. CC-TC control for PSD-CONV (CS1)

The PSD-CONYV features independent reboilers and condensers, giv-
ing more control degrees of freedom and thus relatively easy to control.
Our previous work [25] identified an effective temperature control
structure (CS) that allowed product composition to return close to the set
value under + 20 % throughput variations and + 10 % feed composition
fluctuations. While this CS successfully mitigated disturbances, there
remains potentials for further improvement in product purity. To
address this, an enhanced control structure CS1 with CC-TC is devel-
oped, as demonstrated in Fig. 4(a). In this configuration, both Xp; ack
and Xpy, cyy are controlled by manipulating the set points of the relevant
cascaded temperature controllers. All other control loops and parame-
ters remain consistent with the second CS developed for PSD-CONV in
the previous work [25]. Table S1 shows the tuning parameters for the
corresponding composition controllers.

After achieving stable operation of the closed-loop system for 0.5 h,
disturbances of + 20 % throughput and + 10 % in acetone composition
were introduced, with the test concluding at the 30 h. The effectiveness
of control structure CS1 in managing these disturbances is shown in
Fig. S2. The CS1 can maintain stable regulatory control with the CC-TC
approach, restoring both product compositions to their original steady-
state design specifications.

3.2. ANN-based dynamic control for PSD-CONV (CS2)
In this section, the ANN-based control strategy, which is built upon

the CS1, is implemented. In the PI control strategy, variables such as
flow rate, liquid level, pressure, reflux ratio, and temperature are more

Separation and Purification Technology 360 (2025) 130991

easily measurable compared to composition, and these readily measur-
able variables are listed in Table S2. Given the ease of obtaining these
variables, they are selected as the input variables for the ANN. Inspired
by the CC-TC control, there are two possible output variables for the
ANN. One option is the product composition, where the ANN’s output
serves as the input for the PI composition controller. Alternatively, the
ANN could output the set point of the temperature controller, thereby
replacing the composition controller and functioning as the composition
controller. The final output variable is selected based on its relevance to
the input variables. In addition to selecting the output variables, the
input variables must be selected carefully. Training, validating, and
testing all potential variables involve additional computational effort,
and including irrelevant input variables in the training process could
negatively impact the accuracy of the predictions.

The selection of input and output variables is based on their corre-
lation. The formula for calculating the correlation coefficient is as fol-
lows:

Pxy = o) (6)

where X and Y are variables, E represents mathematical expectation, ¢°
indicates variance, and p denotes the correlation coefficient. Retaining
variables with high correlations and excluding those with low correla-
tions is extremely meaningful for the training of neural networks [34].
Consequently, a threshold of 0.6 was established for correlation coeffi-
cient screening.

When the absolute value of the correlation coefficient between two
variables is greater than or equal to 0.6, the correlation is considered as
strong; otherwise, it is deemed weak. As shown in Fig. S3(a), the cor-
relation between the variables and the product compositions (Xpi,ace,
Xpa,cur) is generally weak. Only three basic variables (4, 9, 11) for Xp;,
ace and two (9, 11) for Xpy cur, have absolute correlation coefficients
greater than 0.6. However, when TSPs are used as output variables, two-
thirds of the basic variables exhibit absolute correlation coefficients
greater than 0.6, as depicted in Fig. S3(b). Therefore, TSPs are selected
as the output variables for the ANN, and variables with correlation co-
efficients greater than 0.6 are chosen as the input variables. These final
selected input variables have been bolded and underlined in Table S2 for
clarity. The same approach has been applied to highlight the selected
input variables in the subsequent PSD-HPAD and PSD-SHRT process
variable tables. It can be observed that the selection of input variables
remains the same regardless of whether TSP1 or TSP2 is chosen as the
output. Consequently, the two ANN models can be effectively merged,
which not only conserves computational resources but also enhances the
accuracy and efficiency of the model.

In this section, we utilize a two-layer feed-forward network
comprising hidden neurons with a Sigmoid activation function and
output neurons with a linear activation function. The network structure,
which consists of an input layer, a single hidden layer with 15 neurons,
an output layer, and the final output, was determined through extensive
training and testing to ensure optimal performance. The research data,
generated from the anti-disturbance processes for + 20 % throughput
and + 10 % acetone composition disturbances under PI control strategy,
is divided into training data (70 %), validation data (15 %), and
completely independent test data (15 %). The optimal ANN model is
identified when the error is reduced to below the target threshold. To
evaluate the performance of the developed model, we calculated the
MSE and R? for the ANN. The MSE values being close to 0 and R? values
being close to 1 demonstrate the accuracy of the ANNs. The MSE and R?
for the training, validation, and test data are illustrated in Table. S3.
Additionally, the error histogram shown in Fig. S4 visually displays the
error between the predicted TSP and target TSP. The ordinate indicates
the number of instances with corresponding errors. The errors are
relatively small, mostly ranging between — 0.00206 and 0.00214,
indicating that the predicted TSP closely matches the observed TSP. This
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result confirms that the ANN structure is capable of accurately fore-
casting the output variables based on the input variables. It also vali-
dates the appropriateness of the selected variables and confirms the
comprehensiveness of the dataset. These factors are crucial for designing
an effective intelligent composition controller.

Fig. 4(b) illustrates the strategy for intelligent composition control
(ICC) in the PSD-CONV process (CS2). The ICC-TC strategy shares the
same objective as the CC-TC method, which is to automatically adjust
the TSP to achieve precise control over the purity of the acetone/chlo-
roform product. However, the underlying principles of the two methods
are quite different. The ICC-TC uses easily measurable process variables
as inputs, whereas the composition controller relies on composition
values, which are challenging to measure online. The ICC-TC strategy
considers two key perspectives. Economically, it eliminates the need for
expensive component detection equipment. From a control standpoint,
it effectively addresses the issue of delayed measurements.

In the CS1, + 20 % throughput and + 10 % acetone composition
disturbances are applied to evaluate the performance, and the same
disturbances are also test the CS2. Fig. 5 shows the anti-disturbance
response curves under the ICC-TC. When comparing throughput dis-
turbances to composition disturbances, the latter exhibits a smaller
overshoot. Overall, the ICC-TC effectively bring the product composition
back to the steady-state design specifications within a relatively short
period of 15 h, highlighting their efficient performance.

3.3. CC-TC control for PSD-HPAD (CS3)

Building on our previous work [25], the control performance of the
PSD-HPAD process has proven to be superior to that of the PSD-CONV
process. Its dynamic controllability remains strong, despite the advan-
tages of its steady-state design. However, similar to the dynamics and
control outcomes of the PSD-CONV, there remains potential for further
improvement in the product purities.

The control structure CS3 with CC-TC for PSD-HPAD is shown in
Fig. 6(a). Xp1,ace and Xpy cur are controlled by manipulating the set
points of the associated cascaded temperature controllers. All other
control loops and controller parameters remain identical to the third CS
developed for PSD-HPAD in our previous work [25]. Table S4 gives the
composition controller tuning parameters of CS3.

Fig. S5 presents the dynamic response results for large disturbances.
The findings indicate that when dealing with disturbances of + 20 %
throughput and + 10 mol% acetone composition, the compositions of
the two distillates return to values closer to their steady-state design
specifications. Compared to the dynamic performance of CS1, the range
of product purity fluctuations for CS3 is more constrained, particularly
when managing disturbances of + 20 % throughput. Additionally, PSD-
HPAD is a design that reduces costs and minimizes energy consumption.
Therefore, improvements in the dynamic performance of product purity
in PSD-HPAD are of significant importance.

3.4. ANN-based dynamic control for PSD-HPAD (CS4)

Table S5 and Fig. S6 present the process variables and the correla-
tions among these variables for PSD-HPAD, respectively. As depicted in
Fig. S6(a), the product compositions of HPC and LPC have correlation
coefficients below 0.6 with other process variables, and Xp; acr exhibits
weak correlations with all process variables. In Fig. S6(b), it is evident
that the TSPs of temperature-sensitive stages are generally have strong
correlations with other process variables, although some differences
exist. Notably, fewer process variables show strong correlations with
TSP1 temperature-sensitive stage of the HPC. Consequently, it is more
appropriate to use TSP as the output variable of the ANN. However, the
selected process input variables differ, requiring the development of two
separate ANN models for using TSP1 and the TSP2 as output variables.
For PSD-HPAD, the same network structure used in PSD-CONV has been
applied. Similarly, data from the resistance of the PI control strategy to
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feed disturbances were collected for training, validation, and testing the
ANN model, with a sampling time of 0.01 h. The MSE and R for training,
validation, and testing are displayed in Table S6, and the close match
between observed and predicted values in Fig. S7 confirms the accuracy
of the ANN model’s predictions. CS4 represents the intelligent compo-
sition control strategy for PSD-HPAD, and two ICCs have been designed
as illustrated in Fig. 6(b).

Fig. 7 shows the disturbance resistance test results for CS4, where the
fluctuations in product composition are minimal. All values stabilize
within a very narrow range close to the set point after 15 h, demon-
strating that the ICC-TC strategy meets production requirements.

3.5. CC-TC control for PSD-SHRT (CS5)

Unlike PSD-HPAD, the PSD-SHRT involves more heat exchangers
and offers fewer control degrees of freedom [5]. As highlighted in our
previous work [25], the control structure of PSD-SHRT integrates fea-
tures from both PSD-CONV and PSD-HPAD, which have demonstrated
promising stability. However, there is still potential for improving the
purity of both acetone and chloroform products. In this section, CC-TC is
proposed to further enhance Xp; ace and Xp2 cur. The CS5 with CC-TC
for PSD-SHRT is shown in Fig. 8(a). All other control loops and
controller parameters remain the same as those in the sixth CS devel-
oped for PSD-SHRT in previous work [25]. Table S7 provides the tuning
parameters for the composition controllers in CS5.

Fig. S8 presents the dynamic response results for large disturbances.
The results show that the compositions of the two distillates return to
their steady-state design specifications when subjected to disturbances
of + 20 % throughput. Although the system did not fully return to its
steady-state design specifications when dealing with disturbances of +
10 % acetone composition, there has been a significant improvement
compared to the previous single temperature control strategy.

3.6. ANN-based dynamic control for PSD-SHRT (CS6)

Table S8 and Fig. SO present the process variables of PSD-SHRT and
the correlation between these variables. Similar to the correlations
observed in the PSD-HPAD process, as shown in Fig. S9(a), the product
composition of HPC and LPC have correlation coefficients of less than
0.6 with other process variables, indicating relatively weak correlations.
In Fig. S9(b), it is evident that the TSPs of temperature-sensitive stages
generally have strong correlations with other process variables,
although differences exist between them. Notably, fewer process vari-
ables show strong correlations with TSP1 in the HPC. As a result, it is
more appropriate to use TSP as the output variable of the ANN, which is
consistent with the variable correlation analysis seen in the PSD-HPAD
process. However, since the selected process input variables differ for
TSP1 and TSP2 as output variables, two separated ANN models must be
established.

As discussed in CS4 regarding the ANN modeling effects, a lower
number of variables does not necessarily lead to lower model accuracy;
this can be adjusted by modifying the number of neurons and hidden
layers. For PSD-SHRT, testing ultimately determined that the network
structure should consist of an input layer, three hidden layers, an output
layer, and the final output. The single hidden layer network specifically
includes 25 neurons. Similarly, data on the resistance of the PI control
strategy to feed disturbances were collected for training, validation, and
testing of the ANN model, with a sampling time of 0.01 h. The MSE and
R? values for training, validation, and testing are provided in Table S9,
and the close match between observed and predicted values in Fig. S10
indicates the accuracy of the ANN model’s predictions.

Fig. 8(b) shows ICC-TC strategy for PSD-SHRT (CS6). Fig. 9 shows
the results of the anti-disturbance tests of intelligent control. The fluc-
tuations in product composition are small, and they can all stabilize
within a small range near the set value after 10 h, indicating that the
ICC-TC strategy can meet production requirements.
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Fig. 5. Anti-disturbance results for CS2 with ICCs:(a) + 20 % throughput and (b) + 10 mol% acetone composition.
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(b)
Fig. 6. CS for PSD-HPAD: (a) CS3 with CC-TC, (b) CS4 with ICC-TC.
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4. Control performance comparisons

In this section, a comprehensive dynamic comparison of control
structures is conducted to evaluate the performance of ICCs, encom-
passing CS1 and CS2 for PSD-CONV, CS3 and CS4 for PSD-HPAD, and
CS5 and CS6 for PSD-SHRT. As depicted in Fig. 10, under + 20 %
throughput disturbances, the dynamic responses of CC-TC and ICC-TC
for PSD-HPAD and PSD-SHRT are similar, with an anticipated tran-
sient time of 5 h for the controlled variables. In contrast, PSD-CONV

Separation and Purification Technology 360 (2025) 130991
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(b)

Fig. 8. CS for PSD-SHRT: (a) CS5 with CC-TC, (b) CS6 with ICC-TC.
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exhibits a relatively longer transient time of approximately 15 h
compared to PSD-HPAD and PSD-SHRT. Nevertheless, for + 10 %
acetone composition disturbances, the overshoot of the systems is
minimal, and all products eventually stabilized within approximately
15 h. Furthermore, the dynamic response of ICCs for PSD-CONV is not
superior to that of PSD-HPAD and PSD-SHRT. Regarding oscillation
amplitude, PSD-CONV even show a higher amplitude than PSD-HPAD
and PSD-SHRT.

The ISE values of the CSs have been meticulously calculated, and a
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Fig. 10. Dynamic response performance comparisons of control structures for + 20 % feed flowrate (a) and + 10 % acetone composition (b) disturbances.

thorough analysis of the final steady-state results has been compiled. To
provide a comprehensive assessment of their performance, we have
compared these results with those obtained from the traditional single PI
temperature control strategy. As shown in Tables 1 and 2, the perfor-
mance of ICC-TC and CC-TC is very similar, maintaining comparable
results for PSD-HPAD and PSD-SHRT. Notably, ICC-TC significantly

outperformed the single temperature control strategy, indicating a
substantial improvement in system robustness with minimal cost im-
plications. Although the dynamic performance of ICC-TC in PSD-CONV
is slightly weaker compared to CC-TC and the traditional TC strategy in
terms of ISE, the overall dynamic performance of electrified distillation
is generally good, making it a viable choice for industrial applications.

14



D. Yang et al. Separation and Purification Technology 360 (2025) 130991
Table 1 Table 2
ISE values for the different control structures. Comparison of closed-loop responses in product compositions.

Control +20 % F —20% F +10 % —10 % Control Target +20 % F —20% F +10 % —10 %

structure acetone acetone structure acetone acetone

CS (TC) CONV CS (TC)

ISEace 4.8186e- 0.00049918 9.1103e-05 3.6902e-05 CONV

ISEcur, 05 5.0845e-05 6.4588e-05 6.985e-06 Xp1,ACE 0.995000 0.995929 0.994175 0.993194 0.995451
1.3703e- Xp2,cHL 0.995000  0.994295  0.995719  0.996046 0.994518
05 CS1 (CC-

CS1(CC-TC) TC)

ISEAce 1.2416e- 0.00022037 2.1431e-07 1.6066e-07 Xp1,ACE 0.995000 0.994997 0.994999 0.995003 0.994999
ISEchr, 06 1.3509e-06 2.0497e-08 1.4931e-08 Xp2,cHL 0.995000 0.995001 0.995000 0.995000 0.995000
1.3869e- CS2 (ICC-
06 TC)

CS2(ICC-TC) Xp1,ACE 0.995000 0.994838 0.995167 0.994911 0.995094
ISEace 8.3097e- 0.00084526 3.6371e-06 8.7034e-05 Xp2,cHL 0.995000 0.994997 0.994777 0.994988 0.995069
ISEcmL 05 6.0477e-05 8.1264e-06 4.3056e-06 CS (TC)

1.5911e- HPAD
05 Xp1,ACE 0.995000 0.995126 0.995960 0.994915 0.994140

CS(TC) HPAD Xp2,cHL 0.995000 0.994888 0.993942 0.995084 0.996000

ISEace 1.3609- 1.4734e-06  2.5445e-07 2.6556e-07 CS3(CC-TC)
ISEchL 06 1.9897e-05 1.6709e-05 1.8994e-05 Xp1,ACE 0.995000 0.995004 0.994991 0.995000 0.995000
1.87e-05 Xp2,cHL 0.995000 0.995000 0.994998 0.995000 0.995004
CS3(CC-TC) CS4(ICC-
ISEace 5.2826e- 4.0584e-07 9.2617e-09 9.1666e-09 TC)
ISEcur, 07 2.1067e-07 6.2781e-08 8.2649¢-08 Xp1,ACE 0.995000 0.995017 0.995015 0.994994 0.994990
1.5371e- Xp2,cHL 0.995000 0.995073 0.994855 0.995030 0.995018
07 CS (TC)

CS4(ICC-TC) SHRT
ISEace 9.3371e- 7.5666e-07 4.0537e-08 9.5596e-09 Xp1,ACE 0.995000 0.995169 0.995852 0.994434 0.993969
ISEcur 07 8.6027e-07  8.206e-07 6.3232e-08 Xp2,cHL 0.995000  0.994842  0.993996  0.995428 0.995871

7.2315e- CS5(CC-TC)
07 Xp1,ACE 0.995000 0.995000 0.995000 0.995003 0.995000

CS(TC) SHRT Xp2,cHL 0.995000 0.995000 0.995000 0.994990 0.995000
ISEace 2.4135e- 4.1229e-05  9.8493e-06 7.0683e-06 CS6(ICC-

ISEcur, 06 2.7628e-05 2.8931e-05 2.023e-05 TC)
2.0188e- Xp1,ACE 0.995000 0.995019 0.995004 0.995001 0.994998
05 Xp2,cHL 0.995000  0.995051  0.994976  0.994993 0.994975
CS5(CC-TC)
ISEace 6.7809e- 2.019e-05 7.6591e-08 7.3455e-08
ISEchL 07 3.8639¢-08  1.2029e-09 4.3548e-10 with a PI temperature controller in the event of ICC failure. Further-
7.5666e- more, under conditions of substantial throughput and composition dis-

CS6(ICC-TC) 9 turbances, ICC-TC demonstrated the capability to maintain product
ISEack 8.0728e- 3.2406e-05  7.1602e-07 8.3825¢-07 purity levels comparable to those achieved by conventional cascade
ISEciL 07 8.4868¢-07  9.618e-08 7.4955e-08 control methods. This research underscores the potential of electrified

3-881056' distillation in promoting economic and environmental sustainability.

Overall, ICCs effectively return product composition to the set values
within a short period. Despite slightly larger system fluctuations under
intelligent control compared to CC-TC control, the key advantage is the
elimination of the need for online product composition measurement.
Furthermore, under intelligent composition control strategies, the
controllability of electrified distillation—offering enhanced energy
efficiency—generally surpassed that of traditional methods, empha-
sizing its suitability for industrial applications.

5. Conclusions

This work presents a novel approach to control the electrified PSD of
a maximum-boiling acetone/chloroform azeotrope, focusing on the
development of an ICC based on ANNs. While prior studies have
investigated the separation of this azeotrope, our research distinguishes
itself by introducing an innovative control structure that effectively
eliminates the need for online composition measurements, a significant
limitation in existing methods. The ANN model is developed using easily
measurable process variables identified through correlation analysis,
enhancing practicality in real-world applications. We successfully inte-
grated the ICC with traditional PID controllers to form a cascade control
structure, referred to as ICC-TC. A notable advantage of this structure is
its flexibility feature, allowing the system to continue operating reliably
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Future studies will aim to leverage advanced neural networks and so-
phisticated control algorithms to further enhance control performance
and efficiency in electrified PSD applications, highlighting the signifi-
cance of our contributions to the field.
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