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Frequency Response Data-Based LPV Controller Synthesis
Applied to a Control Moment Gyroscope

Tom Bloemers , Graduate Student Member, IEEE, Tom Oomen , Senior Member, IEEE,
and Roland Tóth , Senior Member, IEEE

Abstract— Control of systems with operating condition-
dependent dynamics, including control moment gyroscopes
(CMGs), often requires operating condition-dependent con-
trollers to achieve high control performance. The aim of this brief
is to develop a frequency response data-driven linear parameter-
varying (LPV) control design approach for single-input single-
output (SISO) systems, which allows improved performance for a
CMG. A stability theory using a closed-loop frequency response
function (FRF) data is developed, which is subsequently used
in a synthesis procedure that guarantees local stability and
performance. Experimental results on a CMG demonstrate the
performance improvements.

Index Terms— Control design, control moment gyroscope,
data-driven control, frequency-domain, linear parameter-varying
systems.

I. INTRODUCTION

CONTROL of systems with operating condition-dependent
dynamics, including control moment gyroscopes

(CMGs), often requires operating condition-dependent
controllers to achieve high control performance. CMGs are
attitude control devices used, for example, to control the
attitude of spacecraft [1]. A CMG [see Fig. 1(a)] consists of
a rotating disk, which, when spinning, generates an angular
momentum. The disk is mounted in a gimbal assembly, which
can rotate around multiple axes. Changing the direction
of the angular momentum vector, through actuation of the
gimbals, generates a gyroscopic torque [2]. This torque can
be used to, for example, change the attitude of a spacecraft.
The associated dynamics are nonlinear and characterized by
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coupled behavior and challenging rotational dynamics that
change based on the operating conditions of the system.
Locally, these behaviors manifest in terms of operating
condition-dependent resonant dynamics, also commonly
encountered in mechatronic systems [3]. Flexible phenomena
introduce severe practical limitations on the achievable
performance, which become even more severe in the case
of operating condition-dependent dynamics. Achieving
stability and high performance for these systems requires
operating-condition-dependent controllers [4], [5].

The paradigm of linear parameter-varying (LPV) systems
has been established to provide a systematic framework
to efficiently handle operating condition-dependent nonlin-
ear dynamics. LPV systems are characterized by a linear
input–output (IO) map, whose dynamics depend on an exoge-
nous time-varying signal. This scheduling variable p can be
used to capture the nonlinear or operating condition-dependent
dynamics of a system. Typically, a priori information on the
scheduling variable is known, such as the range of variation.
LPV systems are supported by a well-developed model-based
control and identification framework, with many successful
applications (see [3], [6]). Model-based control techniques
require an accurate parameter-dependent parametric model of
the system suitable for LPV control design. In fact, obtaining
such a high accuracy model is a challenging task, even for
linear time-invariant (LTI) systems [7].

Frequency response function (FRF) measurements enable
systematic design of controllers directly from measurement
data and are commonly employed in the industry [7]. An FRF
estimate provides an accurate nonparametric description of the
system that is relatively fast and inexpensive to obtain [8]. Also
the nonparametric identification of local FRF measurements
for LPV systems has been investigated in [9], assuming that
the underlying behavior is a smooth function of the scheduling
variable. For the CMG, FRFs of the local dynamics can be
accurately captured at a set of operating points. FRFs enable
the use of classical techniques such as loop-shaping, alongside
graphical tools including the Bode diagram or Nyquist plot,
to design controllers [10]. These controllers often have a
proportional-integral-derivative (PID) structure in addition to
higher-order filters to compensate parasitic dynamics. These
methods have in common that the design procedure can be
difficult as they are based on design rules, insights, and
experience.

Data-driven control design based on FRF measurements
provides systematic approaches to design and synthesize LTI
controllers. From a modeling perspective, data-driven control
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synthesis provides an alternative to control-oriented identifi-
cation [11]. At first, the development of these methods have
been along the lines of the classical control theory to tune
PID controllers [12]. Later, these methods have been tailored
toward more general control structures that focus on H∞
performance [13]. The incorporation of model uncertainties
into the control design enables the synthesis of stabilizing
controllers that achieve sufficient robustness to account for the
variations in the plant [14], [15]. Robust control methods are
attractive to accommodate the operating condition-dependent
resonant behaviors encountered in CMGs. A major drawback
is a tradeoff between robustness and performance.

Including operating condition-dependent behavior in the
data-driven control design framework is promising to over-
come the tradeoff between robustness and performance.
In [16], a time-domain approach is employed to identify an
LPV controller such that the closed-loop mimics an ideal
behavior. In [17]–[19], frequency-domain control synthesis
approaches are investigated. Common drawbacks are their
limitations to stable systems only, conservative stability and
performance constraints and the controller parameterization
only allows for shaping of the zeros and not the poles.

Although frequency-domain data-driven controller synthesis
enables powerful and systematic design approaches in the LTI
framework, methods within the LPV framework are limited
and conservative. The aim of this brief is to develop a
data-driven LPV control design method that allows both for
stable and unstable systems, applicable to an experimental
CMG setup. Key steps are: 1) a global LPV controller para-
meterization, which allows tuning of both the zeros and poles
based on local information and 2) developing necessary and
sufficient stability and performance analysis conditions.

The main contributions of this brief are as follows.

C1) A procedure to synthesize LPV controllers for (possibly)
unstable single-input single-output (SISO) plants from
frequency-domain measurement data, with local internal
stability and H∞-performance guarantees.

C2) Highlighting the advantages of using an LPV controller
through application to an experimental CMG setup.

This is achieved by the following sub-contributions.

C3) Developing a local LPV frequency-domain stability
condition.

C4) Developing a local LPV frequency-domain
H∞-performance condition, generalizing the results
in [15] and providing new proofs that clarify the
connection to robust control theory and the Bézout
identity.

Contributions C3) and C4) are generalizations to the results
presented in [15] and [20]. Specifically, when both the plant
and controller are LTI, the results in [15] are recovered. Addi-
tionally, the results in [20] are recovered for stable systems.
A global LPV controller parameterization in combination with
C3) and C4) constitutes to I. Application of the developed
procedures on an experimental CMG constitutes to C2).

Notation: Let R denote the set of real numbers and C the
set of complex numbers. Let C0 denote the imaginary axis
and C+ the open right half-plane. The real part of a complex

Fig. 1. (a) Laboratory-scale CMG by Quanser; and (b) schematic overview
of the 3-DOF gyroscope.

number z ∈ C is denoted by �{z}. The set of proper, stable,
and real-rational transfer functions is denoted by RH∞.

Remark 1: Although the theory in this brief is presented
in continuous-time (CT), a discrete-time equivalent is con-
ceptually straightforward. Simply replace the variables s with
z, iω with eiω and evaluate the frequencies along the unit
circle instead of the imaginary axis, that is, for the set
� := {ω | 0 ≤ ω < 2π}.

II. PROBLEM FORMULATION

A. Control Moment Gyroscope

Fig. 1(a) depicts the considered three-degrees-of-freedom
(DOF) CMG. It is comprised of a disk, D, which is mounted
in a gimbal assembly consisting of three gimbals C, B , and A,
corresponding to the schematic overview in Fig. 1(b). The disk
D rotates with velocity q̇1, generating an angular momentum
proportional to q̇1. Angle q2 of gimbal C is controlled through
input torque τ2. Gimbal B is assumed to be fixed in place such
that q3 ≡ 0, as depicted in Fig. 1. Angle q4 of gimbal A is
controlled through a gyroscopic torque, generated by changing
angle q2. As the disk tilts, a change in angular momentum
causes gyroscopic torque, which is used to position gimbal A.

The equations of motions are of the form

M(q(t))q̈(t)+ C(q(t), q̇(t))q̇(t) = τ2(t) (1)

where q� = [
q1 q2 q4

]
are the angular positions, τ2 is the

input torque, and M and C are the inertia and Coriolis
matrices.

In the used configuration of the CMG, the goal is to control
the position of gimbal A by actuating gimbal C through
input torque τ2. The driving factor in this setting is the
velocity of the disk D, which directly relates to the amount of
gyroscopic torque that can be exerted on gimbal A. In [4], it is
shown that local linear approximations describe the nonlinear
dynamics accurately. The aggregated collection of these local
approximations is described by the following representation:

ẋ(t) = A(q̇1(t))x(t)+ Bu(t) (2a)

y(t) = q4(t) (2b)

where x� = [
q4 q̇2 q̇4

]
is the state, u = τ2 the input, and

y = q4 the output. The A matrix depends on the velocity of
the disk, which can range anywhere in q̇1 ∈ [30, 50] rad/s.
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The local description of the behavior is in line with the
availability of measurement data and the considered control
synthesis techniques in the sequel. Furthermore, the depen-
dence of the system on the disk velocity makes the LPV
framework a suitable choice for modeling and control.

B. LPV Systems

Consider an SISO, CT LPV system. The LPV state-space
representation

G p :
{

ẋ(t) = A(p(t))x(t)+ B(p(t))u(t)

y(t) = C(p(t))x(t)+ D(p(t))u(t)
(3)

is adopted to represent the system (see also [21]). Here, x :R →
X ⊆ Rnx denotes the state variable, u:R → U ⊆ R is the input
signal, y:R → Y ⊆ R is the output signal, and p:R → P ⊆
Rn p the scheduling variable.

With a slight abuse of notation introduce

G p =
(

A(p) B(p)
C(p) D(p)

)
(4)

representing the LPV system with state-space form (3).
If D−1(p) is well defined for all p ∈ P, then the LPV system
G p has an inverse operator

G−1
p =

(
A(p)+ B(p)D−1(p)C(p) B(p)D−1(p)

D−1(p)C(p) D−1(p)

)
(5)

such that G pG−1
p = G−1

p G p = 1 for all p ∈ P.
If the scheduling signal p(t) ≡ p is constant, the

scheduling-dependent matrices in (4) become time-invariant,
that is,

Gp =
(

A(p) B(p)
C(p) D(p)

)
(6)

represents an LTI system for constant scheduling. For a given
p ∈ P, (6) describes the local behavior of (3). Hence, (6) is
referred to as the frozen behavior of (3). Taking the Laplace
transform of (6) with zero initial conditions results in

ŷ(s) = (
C(p)(s I − A(p))−1 B(p)+ D(p)

)
û(s) (7)

where G p(s) = C(p)(s I − A(p))−1 B(p) + D(p) and s is
the Laplace variable. The frozen behavior (6) also has a
corresponding Fourier transform

Y (iω) = G p(iω)U(iω) (8)

where i is the complex unit, ω ∈ R is the frequency,
and G p(iω) represents the frozen frequency response func-
tion (fFRF) of (3) for every constant p(t) ≡ p ∈ P [22].

C. Problem Statement

The problem addressed in this brief is to design an LPV
controller directly from fFRF measurement data obtained
from the considered CMG. We denote the data DN,pτ =
{G p(iωk), pτ }N

k=1, obtained at the set of operating points P =
{pτ }Nloc

τ=1 ⊂ P. We assume that the frequencies are sufficiently
dense such that it suffices to check a finite number of discrete
points to draw conclusions on the underlying continuous

Fig. 2. Typical one DOF feedback interconnection, including four-block
shaping problems, depending on the scheduling signal.

curve. Consider the feedback interconnection in Fig. 2. The
objective is to design a controller K p such that the following
requirements are satisfied.

R1) The closed-loop system in Fig. 2 is internally stable in
the local sense for all p(t) ≡ p ∈ P .

R2) The performance channels of the closed-loop system are
bounded in the local H∞-norm sense for all p ∈ P .

In the next section, a rational controller parameterization is
introduced that allows for a specific formulation of internal
stability. This forms the basis to develop analysis conditions
for internal stability and H∞-performance. The theory is first
formulated for p ∈ P for the sake of generality. This also
ensures R1) and R2) for p ∈ P .

III. STABILITY AND PERFORMANCE ANALYSIS

In this section, we develop local LPV stability and per-
formance conditions that form the basis for a data-driven
synthesis procedure. First, a continuous frequency spectrum
� = {R ∪ {∞}} is considered, which will be restricted later
to a finite grid �N = {ωk}N

k=1 corresponding to DN,pτ .

A. Stability

The selection of IO pairs in Fig. 2 corresponds to the
problem of internal stability [23, Ch. 3]. For a fixed p ∈ P,
we define the IO map T (G p, K p) : (r,−d) �→ (e, u) in Fig. 2
by

T (G p, K p) =
[

Sp SpG p

K p Sp Tp

]
(9)

with Sp = (1+G p K p)
−1 and Tp = 1−Sp. If G p, K p ∈ RH∞,

then T (G p, K p) is internally stable if all elements in the IO
map T (G p, K p), defined by (9), are stable. This is implied by
Sp ∈ RH∞ [23, Ch. 3]. If T (G p, K p) ∈ RH∞ holds for all
p ∈ P, then the closed-loop LPV system is called locally
internally stable. Internal stability is important to prevent
hidden pole-zero cancellations. To assess internal stability for
unstable G p or K p, introduce the factorization

G p = NG p D−1
G p

{NG p , DG p } ∈ RH∞. (10)

The two transfer functions {NG p , DG p } are a coprime factor-
ization over RH∞ if there exist two other transfer functions
{X p,Yp} ∈ RH∞ such that they satisfy the Bézout identity

NG p X p + DG p Yp = 1. (11)

Consequently, {X p Q,Yp Q} are coprime iff Q, Q−1 ∈ RH∞.
Correspondingly, K p admits the coprime factorization

K p = NK p D−1
K p

{NK p , DK p } ∈ RH∞. (12)
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Using these representations, (9) can be written as

T
(
G p, K p

) = D−1
p

[
DG p DK p NG p DK p

DG p NK p NG p NK p

]
(13)

with characteristic equation

Dp = DG p DK p + NG p NK p . (14)

The feedback system is internally stable if and only if D−1
p ∈

RH∞. If we set NK p = X p and DK p = Yp, then the
characteristic equation (14) equals the Bézout identity (11),
thus the feedback system is internally stable as D−1

p = 1 and
the rest of the terms are stable by design in (13). Similarly,
the closed-loop LPV system is called locally internally stable
if these conditions hold for all p ∈ P.

For the transfer w �→ z, with w ∈ {r, d} and z ∈ {e, u}, let

Tz,w(G p, K p) = Np D−1
p (15)

with {Np, Dp} ∈ RH∞ and Tz,w(G p, K p) ∈ RH∞, defines
the corresponding SISO element of (13). For example,
Tr,e(G p, K p) = Np D−1

p with Np = DG p DK p defines the
sensitivity Sp in (9) and (13).

The next theorem presents analysis conditions to verify
internal stability of the closed-loop system locally. As a special
case, [20, Th. 1] is recovered. Here, coprime factorization over
RH∞ is used to allow for unstable plants or controllers, while
also extending the result to the class of LPV systems.

Theorem 1: Let G p and K p be as defined in (10) and (12),
respectively, and let Dp ∈ RH∞ be as defined in (14). Then
the following conditions are equivalent. For all p ∈ P.

1a) D−1
p ∈ RH∞.

1b) Dp(s) 
= 0, ∀s ∈ C+ ∪ C0 ∪ {∞}.
1c) There exists a multiplier αp ∈ RH∞ such that

�{Dp(iω)αp(iω)} > 0 ∀ω ∈ �.
Proof: For a proof of equivalence between 1a) and 1b),

see [23, Ch. 3]. Regarding the equivalence between 1a) and
1c) for all p ∈ P, note the following reasoning.
(⇒) Assume 1a) and let Q = D−1

p . This implies that
the Bézout identity (11) is satisfied for X p = NK p Q and
Yp = DK p Q. Hence, 1 is satisfied by setting αp = Q because
�{NG p X p + DG p Yp} = 1 for all ω ∈ �.
(⇐) Assume 1c) and let V = Dpαp. Note that V , V −1 ∈

RH∞ because 1c) implies that Dpαp is bi-proper and has
no right half-plane (RHP) zeros. Then Dp = Vα−1

p sat-
isfies the Bézout identity (11), therefore D−1

p ∈ RH∞.
Thus, 1 implies 1a) and consequently 1b). This completes the
proof. �

Remark 2: A direct result of Theorem 1 is that α−1
p ∈

RH∞. This is easy to prove because:
i) There does not exist a strictly proper αp ∈ RH∞ such

that 1c) holds. Indeed 1c) is violated at ω = ∞;
ii) There does not exist an αp ∈ RH∞ with α−1

p /∈ RH∞
such that 1c) holds. This can be seen as α−1

p /∈ RH∞
implies that there exists some RHP zero s0 such that
αp(s0) = 0. Consequently, there exists some frequency
ω0 such that �{Dp(iω0)αp(iω0)} < 0 and 1 is violated.

Fig. 3. (a) Generalized LPV plant; and (b) performance of the SISO
closed-loop map w �→ z.

Theorem 1 gives an analysis condition that provides a local
stability result for the closed-loop system if instead of a
parametric model, NG p and DG p are only given in terms of
local frequency-domain data. The next section presents the
extension toward a performance analysis condition.

B. Performance

In this section, analysis conditions to assess locally the H∞
performance of an LPV system, given the plant and controller
only, are presented. This constitutes contribution I. To derive
performance analysis conditions, the main loop theorem is of
importance and is presented first.

Consider the transfer function Tz,w(G p, K p) ∈ RH∞ of
interest in Fig. 3(a), such that w �→ z : Tz,w(G p, K p), and let
�̂ ∈ B�̂, with

B�̂ := {
�̂ ∈ RH∞

∣∣ |�̂(iω)| < 1 ∀ω ∈ �}
(16)

a fictitious uncertainty, represent the H∞-performance crite-
rion. Then, the H∞-performance of the system in Fig. 3(a)
is equivalent to Fig. 3(b) [24, Th. 8.7]. This is stated in
terms of the following theorem, where the weighting filter
WT is introduced to specify the frequency-dependent design
requirements on the map w �→ z.

Theorem 2 (Main loop theorem): Let WT ∈ RH∞ and
Tz,w(G p, K p) be defined as in (15). The following statements
are equivalent. For all p ∈ P.

2a) sup
ω∈�

|WT (iω)Tz,w(G p, K p)(iω)| ≤ γ .

2b) 1 − γ−1WT (iω)Tz,w(G p, K p)(iω)�̂(iω) 
= 0,

∀ω ∈ � ∀�̂ ∈ B�̂.
Theorem 2 is a special case of [25, Th. 11.7].
Remark 3: By Theorem 2, nominal performance can be

seen as a special case of robust stability, where a ficti-
tious uncertainty is connected to the performance channel
[see Fig. 3(b)].

In the data-driven setting, the absence of a parametric model
of Tz,w(G p, K p) makes it difficult to turn 2b) into a convex
constraint as it is generally done in LPV synthesis approaches
for gain-scheduling [6]. Hence, in that case, 2b) is needed to
be evaluated for an infinite set of realizations of the fictitious
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uncertainty �̂, for example, as in [26]. The contribution in this
brief is to utilize Theorem 1 together with Theorem 2 to derive
a single condition to analyze both stability and performance
without the need to sample �̂.

Theorem 3: Let WT ∈ RH∞ and Tz,w(G p, K p) be defined
as in (15). Requirements R1) and R2) are satisfied if and only
if there exists a multiplier αp ∈ RH∞ such that

�{(Dp(iω)αp(iω)− γ−1|WT (iω)Np(iω)αp(iω)|)} > 0

∀ω ∈ � ∀p ∈ P. (17)

Proof: Requirement R2) can be equivalently stated using
Theorem 2, Condition 2b), that is,

1 − γ−1WT (iω)Tz,w(G p, K p)(iω)�̂(iω) 
= 0

∀ω ∈ � ∀p ∈ P ∀�̂ ∈ B�̂. (18)

As Dp ∈ RH∞, Dp(iω) 
= 0, ∀ω ∈ � and by multiplying
(18) with it, the resulting non-singularity condition is

Dp(iω)− γ−1WT (iω)Np(iω)�̂(iω) 
= 0

∀ω ∈ � ∀p ∈ P ∀�̂ ∈ B�̂. (19)

Based on a homotopy argument, (19) corresponds to Condition
1b) in Theorem 1, which through 1c) is equivalent with

�{(Dp(iω)− γ−1WT (iω)Np(iω)�̂(iω))αp(iω)}>0

∀ω ∈ � ∀p ∈ P, �̂ ∈ B�̂. (20)

Rearranging the terms in (20) yields

�{(Dp(iω)αp(iω)− γ−1WT (iω)Np(iω)αp(iω)�̂(iω))}>0

∀ω ∈ � ∀p ∈ P, �̂ ∈ B�̂. (21)

When �̂ = 0 ∈ B�̂, (21) reduces to �{Dp(iω)αp(iω)} > 0,
which is the same as Condition 1 in Theorem 1, hence (21)
implies requirement R1).

Let 1 ≥ ε > 0 and consider (21) on

Bε�̂ := {
�̂ ∈ RH∞

∣∣ |�̂(iω)| ≤ 1 − ε ∀ω ∈ �}
(22)

which is the scaled closed uncertainty ball contained in B�̂.
Since any �̂ ∈ Bε�̂ represents a rotation and contraction in
the complex plane, it is necessary and sufficient to check (21)
on the boundary only, that is, for �̂ ∈ ∂Bε�̂, with |�̂(iω)| =
1 − ε, ∀ω ∈ �. Note that, in (21), WT (iω)Np(iω)αp(iω) only
represents complex scaling of this ball which is centered at
Dp(iω). Hence, (21) restricted on Bε�̂ is equivalent with

�{Dp(iω)αp(iω)− γ−1(1 − ε)|WT (iω)Np(iω)αp(iω)|} > 0

∀ω ∈ � ∀p ∈ P. (23)

This means that if (23) holds, then violation of (21) can only
happen in B�̂ \ Bε�̂. As (23) is continuous in ε, by taking
the limit ε → 0, B�̂ \ Bε�̂ → ∅ and we obtain that (17) is
equivalent with (21). �

Theorem 3 states that the performance condition 2a) is
satisfied if and only if for each frequency ω ∈ � and
scheduling value p ∈ P the disks with radius γ−1|WT Np|,
centered at Dp, do not include the origin. This holds if there
exists αp ∈ RH∞, representing for each frequency a line
passing through the origin, that does not intersect with the

Fig. 4. Illustration of stability and H∞ performance. The transfer function
αp represents, for each frequency, a line passing through the origin. If this line
does not intersect with the disks Dp − γ−1|WT Np |, then the disks exclude
the origin and (18) must hold.

disks (see Fig. 4). The analysis condition is especially useful
as it provides a local stability and performance result given a
controller and the data DN,pτ .

If the fFRFs are subject to model uncertainty, robust stability
and performance have to be taken into account [15].

C. Synthesis

It turns out that it is possible to give an equivalent formu-
lation of Theorem 3 which enables controller synthesis.

Theorem 4: Given G p = NG p D−1
G p

, with {NG p , DG p } ∈
RH∞ coprime, as defined in (10), and a weighting filter
WT ∈ RH∞, the following statements are equivalent.

4a) There exists a proper rational controller K p that achieves
internal stability and performance as defined in require-
ments R1) and R2), respectively.

4b) There exists a controller K p = NK p D−1
K p

, with
{NK p , DK p } ∈ RH∞, as defined in (12), such that

�{Dp(iω)} > γ−1|WT (iω)Np(iω)|∀ω ∈ � ∀p ∈ P.

(24)

Proof: (⇒) Assume K p = ÑK p D̃−1
K p

satisfies 4. Then,
by Theorem 3, there exists an αp ∈ RH∞ such that (17)
holds. Choosing NK p = ÑK pαp, DK p = D̃K pαp results in
K p = NK p D−1

K p
= ÑK p D̃−1

K p
and consequently 4 holds.

(⇐) Assume 4b) holds. Because Dp ∈ RH∞ and Dp(iω)
is positive for all ω ∈ �, {NK p , DK p } form Bézout factors
for {NG p , DG p }. Thus, by Theorem 1, D−1

p ∈ RH∞ and
K p internally stabilizes G p and R1) holds. By Theorem 3,
requirement R2) holds. This completes the proof. �

Theorem 4 presents a local H∞-optimal controller synthesis
condition given only data DN,pτ . This is further developed in
Section IV, where an optimization problem is formulated and
the controller parameterization is discussed.

Remark 4: Theorem 4 shows that the multiplier αp can be
absorbed into the controller as γ−1|WT (iω)Np(iω)αp(iω)| ⇒
�{γ−1|WT (iω)Np(iω)|αp(iω)}. Note that the absorbed mul-
tiplier changes the considered Np and Dp, but αp cancels out
when K p = NK p D−1

K p
is computed. The price to be paid for

this absorption is the increased order of NK p and DK p .
Remark 5: [15, Th. 1] is recovered in the special case when

the plant and the controller are LTI.

IV. CONTROLLER SYNTHESIS

In this section, we build upon the stability and performance
analysis and synthesis conditions derived in Section III by
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developing a procedure to synthesize LPV controllers. This
forms Contribution C1). First, an optimization problem is set
up in Section IV-A that characterizes the synthesis problem
based on Theorem 4. This is followed by a discussion on the
controller parameterization in Section IV-B and implementa-
tion aspects in Section IV-C.

A. Controller Synthesis

Given the data DN,pτ and a controller parameterization
K p = NK p D−1

K p
, given in the Section IV-B, an opti-

mization problem is formulated satisfying requirements
Sections II-C and II-C

min
θ,γ

γ

s.t. γ�{Dp(iω, θ)} > |WT (iω)Np(iω, θ)|
∀ω ∈ �, p ∈ P (25)

where θ are the controller parameters.
The optimization problem (25) is in general non-convex.

However, through a linear parameterization of the controller,
(25) becomes a quasi-convex optimization problem in the
controller parameters θ and the performance indicator γ .
To solve the quasi-convex program, a bisection algorithm over
γ is utilized. This results in an iterative approach, where for
every fixed value of γ, a second-order cone program is solved.

To provide stability and performance guarantees, the con-
straints in (25) need to be satisfied for all ω ∈ �, which is an
infinite set, leading to a semi-infinite program. One solution is
to solve (25) for a finite set of frequencies�N = {ωk}N

k=1 ⊂ �.
The frequency set can be chosen randomly, according to the
scenario approach [27]. This allows for the computation of
confidence bounds on the constraints. In the data-driven setting
this choice is spared from the user as the data is only available
at a pre-specified set of frequency points. Either of these
methods result in a quasi-convex second-order cone program
and can be solved as described above.

B. Controller Parameterization

An orthonormal basis function (OBF)-based representa-
tion [21] is a natural choice to parameterize the controller
factors

NK p (s) = ∑nN
i=0 wi(p)φi(s) (26a)

DK p(s) = ∑nD
i=0 vi(p)ϕi(s). (26b)

Here, {φi}nN
i=0 and {ϕi}nD

i=0 with φ0 = ϕ0 = 1 and nD ≥ nN are
the sequence of basis functions, with coefficient functions

wi(p) = ∑m
�=1 w̆

�
i ψ�(p) vi (p) = ∑m

�=1 v̆
�
i ψ�(p). (27)

Here, the coefficient functions are formed through a cho-
sen functional dependence, for example, affine, polynomial,
or rational, characterized by the basis functions {ψ�}m

�=1.
See [21, Ch. 9.2] for an overview of OBF-based LPV model
structures. The OBF controller parameterization enables tuning
of both the poles and zeros of the controller, in contrast
to previous data-driven frequency-domain LPV tuning meth-
ods [17]–[19]. Additional controller requirements are dis-
cussed in [28].

Fig. 5. Input–output graph of the Wiener LPV OBF structure.

Algorithm 1 Basis Function Selection

Local aspects of (26a)–(26b) can be preserved by consid-
ering a time-domain Wiener LPV OBF realization

yNK p
(t) = ∑nN

i=0 wi(p(t))yφ(t) (28a)

yDK p
(t) = ∑nD

i=0 vi (p(t))yφ(t) (28b)

with yφ = �u. The parameterization of NK p and DK p can be
viewed as a bank of OBFs, whose output is weighted with
parameter-dependent coefficient functions (see Fig. 5).

Equations (28a) and (28b) reveal that requirements (i)–(iv)
are satisfied. Requirement (v) is satisfied, w.l.o.g. by {v̆�i }�i=0 =
{1, 0, . . . , 0}. Because the set of bases is complete w.r.t. H2,
hence any solution including the optimal solution of (25) can
be found via parameterizations (26a), (26b) [15].

Remark 6: Note that (28a) and (28b) depend on the time-
varying p and characterize the global behavior of the factors
NK p and DK p . The concept in this brief is to tune the
parameter-dependent coefficient functions based on their local
behavior, that is, (26a) and (26b) for constant p, in-line with
the data DN,pτ .

Algorithm 1 presents the selection of optimal OBFs, based
on the Kolmogorov n-width theory. Given a desired number
of poles, an optimal set of OBFs is selected based on Fuzzy
Kolmogorov c-Max (FKcM) clustering of the poles, such that
the decay rate of the OBFs is minimized [21, Ch. 8].

C. Controller Implementation

The OBF parameterizations admit a linear fractional rep-
resentation (LFR). In this representation, the dependency on
the scheduling variable p is extracted by formulating (28a)
and (28b) in terms of LTI systems, denoted N and D, such
that NK p = Fu(N ,�N (p)), and D−1

K p
= Fu(D−1,�D(p)),

respectively, where Fu is the upper linear fractional trans-
formation [25] [see Fig. 6(a)]. The inverse D−1 is obtained
through partial inversion of the IO map, for example, [25, Ch.
10]. The controller is formed through the series connection
of the LFRs N and D−1, resulting in the LFR K such that
K p = Fu(K, diag(�N ,�D)) [see Fig. 6(b)].
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Fig. 6. Controller realization through the (a) series connection of the LFRs
NK p = Fu(N ,�N (p)) and DK p = Fu(D−1,�D(p)) and (b) K p =
Fu(K,�K), with �K = diag(�N ,�D).

V. CONTROL DESIGN FOR THE CMG

In this section, a controller is designed and implemented on
the CMG. Although the theory in this brief is presented in CT,
with this example, we show that a discrete-time application is
possible. The system identification and controller design are
performed at a sampling rate of 200 Hz.

A. Frequency-Domain Measurements

As described in Section II, the dynamics of the CMG are
dependent on the velocity of the disk. It is therefore natural
to consider the velocity q̇1(t) = p(t) as a scheduling variable.
The disk velocity operates in the range P = [30, 50] rad/s.
To identify the local behavior at different disk velocities,
an equidistant grid P = {30, 40, 50} is chosen. As the
gyroscope is inherently an unstable system, the measurements
are performed in closed-loop using a stabilizing LTI controller.

The coprime factors NG p (iω) and DG p(iω) can be calcu-
lated from the estimates of the process sensitivity SpG p and
Sp, respectively [15]. This is achieved by estimating the fFRF
of the mappings d �→ y and d �→ uG , respectively, in Fig. 2.
During a closed-loop experiment, the system is excited by
a white-noise disturbance signal d . The position of gimbal
A is measured with an optical encoder. Data records with a
length of 2 40 000 samples are collected for each operating
point p ∈ P .

The obtained fFRFs are estimated using the empirical trans-
fer function estimate, using a Hanning window, and contain
1000 frequency points per operating point. Fig. 7 shows the
estimated fFRFs G p. The figure highlights that the system is
subject to a relatively high noise level, which has a significant
effect at higher frequencies. The scheduling dependency is
also clear to see, which manifests in terms of a shift in the
resonance frequencies and the low-frequency gain.

B. Data-Driven Controller Synthesis

The goal is to control the position q4 of gimbal A by actu-
ating gimbal C through torque τ2. To highlight the parameter
dependence, the objective is to track a reference signal subject
to variations in the disk velocity. To specify this objective in
terms of control design, consider the full four-block shaping
problem in Fig. 2. Based on the fFRFs in Fig. 7, the first
resonance occurs at 1.7 Hz. The shaping filters are designed
such that a bandwidth of 0.75 Hz is achieved. The sensitivity is
shaped to provide a lower bound on the bandwidth and to limit

Fig. 7. Bode plot of the estimated fFRFs of G p for the three grid points
p ∈ P = {30, 40, 50} in blue, orange, and yellow, respectively. The shaded
regions show the 99% confidence bounds. A parameter-varying shift in
resonance frequencies and low-frequency gain is observed. High-frequency
noise is dominant above 10 Hz.

the overshoot by providing an upper bound of 6 dB for higher
frequencies. Integral action is desired to achieve zero steady-
state error. To suppress the effects of measurement noise while
also limiting high-frequent control actions, a high-frequent
roll-off is enforced into the controller by shaping the control
and complementary sensitivities. Shaping the complementary
sensitivity also provides an upper bound on the achieved
bandwidth. The process sensitivity is restricted to lie below
0 dB to limit the amplification of disturbances.

Using the approach presented in this brief, an LPV and
LTI controller are synthesized, for which the results are given
in Figs. 8 and 9. Both controllers are parameterized by
discrete-time Laguerre bases of orders nK = nD = 5 with pole
z = 0.7. The LPV controller has affine scheduling dependence,
and the LTI controller is scheduling-independent. The achieved
performance levels are γLPV = 1.2097 and γLTI = 3.1792. The
LTI controller does not meet the performance criteria for all
operating points and therefore has to sacrifice performance
in order to achieve robust performance. The LPV controller
achieves good performance for the considered operating space
by compensating for the parameter-dependent low-frequency
gain and resonance behavior.

C. Results

First, the tracking performance is evaluated locally, when
the scheduling variable operates at constant velocities P =
{30, 40, 50} rad/s. Fig. 10 shows the measured step responses
using the designed LPV and LTI controllers. The main differ-
ences are observed for p = 30 and p = 50 rad/s. At p =
30 rad/s, the step response shows a significant oscillation when
using the LTI controller. This oscillation corresponds to the
resonance frequency at 1.7 Hz in Fig. 8 and it is significantly
larger compared to the LPV case. For p = 50 rad/s, a slightly
higher bandwidth is achieved when using the LPV controller,
which corresponds to a faster rise and settling time. Finally, the
responses when using the LPV controller are very consistent,
with only a small variation in settling time.

Next, the performance is evaluated for a time-varying
scheduling variable. A square wave reference signals, filtered
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Fig. 8. Magnitude plots of the fFRFs of the four-block (9). The LPV and
LTI designs are shown in blue and orange, respectively. The inverse of the
weighting filters are shown in black. The LTI controller design does not meet
the performance specifications.

Fig. 9. Magnitude and phase plots of the LPV controller for frozen
scheduling values P = {30, 40, 50} in blue orange and yellow, respectively.
The LPV controller compensates the parameter-varying low-frequency gain
and resonance behavior observed in Fig. 7.

with a third-order low-pass filter with a cut-off frequency
of 0.7 Hz, are used to challenge the system. The amplitude
of the reference is 15◦. The scheduling variable, that is,
the disk velocity, tracks a similar, but faster square wave
trajectory in the range P = [30, 50] rad/s. Implementation
of the controller is done according to the LFR representation
described in Section IV-C, where the controller is scheduled
at each sampling interval.

Fig. 11 shows the reference signal, tracking performance,
scheduling variation, and control effort for the designed LPV
and LTI controllers. The results indicate that the LPV con-
troller performs significantly better than the LTI controller.
A reduction in overshoot and settling time are observed. More
specifically, we obtain a 39% and 33% decrease between the
�2 and �∞ norms of the error signals, respectively. These
results experimentally validate the capabilities of the pro-
posed control methodology, including the benefit of using
an LPV controller over an LTI controller for the CMG.
However, it is imperative to note that the stability and
performance guarantees are provided only locally. Hence, the
stability and performance of the nonlinear system can only be

Fig. 10. Measured local step responses of the CMG for constant scheduling
variables P = {30, 40, 50} rad/s, from top to bottom, respectively. The angle
of gimbal A is shown in blue and orange when using the LPV and LTI
controller, respectively. The LTI design loses performance for p ∈ {30,
50} rad/s, whereas the LPV design displays consistent results for the con-
sidered operating points.

Fig. 11. Experimental results of the CMG. The top figure shows the
reference (black) and the angle of gimbal A when using the LPV and LTI
controllers in blue and orange, respectively. The other figures show the error,
scheduling, and input signals. The LPV design significantly improves the
performance by decreasing the overshoot.

guaranteed for sufficiently slow variations of the scheduling
variable.

VI. CONCLUSION

The LPV controller synthesis approach in this brief
enables the design of operating condition-dependent con-
trollers directly from the frequency-domain data. Experimental
demonstrations on a CMG show that significant increase in
performance can be achieved via the proposed approach for
operating condition-dependent systems. Compared to existing
methods in the literature, this approach enables the design
of rational LPV controllers, for which local stability and
performance analysis certificates are provided. Future research
aims at global stability and performance guarantees.
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