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Layman’s Summary

How do opinions spread in a group of people? What happens if everyone occasionally changes their mind by
copying a neighbor? Will the group eventually agree, or will different opinions persist? These are the kinds of
questions the voter model helps us explore.

The voter model is a simple mathematical model where individuals are placed on a grid and randomly adopt
the opinion of a neighbor. Despite its simplicity, the model captures essential features of real-world systems,
from how diseases spread to how people form opinions in social networks. It belongs to a broader class of
models known as interacting particle systems, which are used to study how local interactions can lead to
complex global behavior.

In the voter model, each site can be in one of two states, often interpreted as two competing opinions. At ran-
dom times, a site updates its state by copying the state of a randomly chosen neighbor. This rule is symmetric
and neutral: no opinion is favored, and the dynamics are entirely driven by local imitation. Yet, the long-term
behavior of the system depends crucially on the dimension of the space in which it evolves.

This thesis investigates the long-term behavior of the voter model, with a particular focus on the dichotomy
between clustering and coexistence. In low-dimensional settings (such as a line or a plane), the system tends
to reach consensus: eventually, all sites agree on the same opinion. In higher dimensions (such as a 3D grid),
different opinions can coexist indefinitely, with no single opinion taking over the entire system.

To understand this phenomenon, the thesis develops a mathematical framework based on probability the-
ory. Key tools include continuous-time Markov processes, random walks, and harmonic functions. A central
concept is duality: a technique that allows us to study the evolution of the system by tracing the ancestry of
opinions backward in time. This duality connects the voter model to coalescing random walks, which are
easier to analyze and provide deep insights into the system’s behavior.

The thesis also explores the structure of invariant measures, probability distributions that remain unchanged
over time. In low dimensions, the only invariant measures are those corresponding to full consensus. In
higher dimensions, however, there exists a whole family of invariant measures that represent stable mixtures
of opinions. These measures are closely related to harmonic functions of the underlying random walk.

Finally, the thesis discusses several extensions of the model. These include the threshold voter model, where
a site changes its state only if a sufficient number of neighbors disagree. These variations introduce asymme-
try or nonlinearity into the dynamics and lead to qualitatively different outcomes, such as phase transitions
or persistent coexistence even in low dimensions.

In summary, the voter model provides a powerful and elegant framework for understanding how simple local
rules can give rise to rich and varied global behavior. Its analysis combines ideas from probability, statistical
physics, and dynamical systems, and its insights are relevant to a wide range of applications in science and
society.
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Abstract
This thesis provides a rigorous and self-contained study of the linear voter model, a fundamental example of
an interacting particle system. The model describes the evolution of binary states on a lattice, where each
site updates its state by imitating a randomly chosen neighbor. Despite its simplicity, the model exhibits a
rich dichotomy in long-term behavior: in low dimensions, the system clusters and reaches consensus, while
in higher dimensions, it allows for coexistence of different states.

To analyze this behavior, we develop the necessary probabilistic and analytic framework, including continuous-
time Markov processes, random walks, and potential theory. A central role is played by the duality between
the voter model and coalescing random walks, which enables a detailed understanding of the system’s dy-
namics. We also examine the classification of invariant measures and their connection to harmonic functions
and martingale properties.

The thesis concludes with a discussion of extensions such as biased and threshold voter models, and outlines
directions for further research. The results highlight the interplay between local interaction rules, spatial
structure, and emergent global behavior in stochastic systems.



1
Introduction

Many phenomena in physics, biology, and the social sciences — such as the spread of diseases, opinion dy-
namics in social networks, or the behavior of magnetic materials — can be modeled as systems of simple,
locally interacting agents. These systems are studied within the framework of interacting particle systems
(IPS), a class of stochastic processes that includes models like the contact process, the exclusion process, and
the voter model. Each of these models captures how local interaction rules can give rise to complex macro-
scopic behavior, such as phase transitions, clustering, or coexistence.

Among these, the voter model stands out for its simplicity and analytical tractability. In this model, each site
on a lattice updates its state by imitating a randomly chosen neighbor. Despite this minimal rule, the model
exhibits a rich dichotomy of behaviors: in low dimensions, it tends to cluster and reach consensus, while
in higher dimensions, it allows for long-term coexistence of different states. One of the key reasons the voter
model is so well understood is its duality with coalescing random walks, which enables powerful probabilistic
techniques to analyze its long-term behavior. Additionally, the model conserves the average density of states
and connects naturally to potential theory and harmonic functions.

In this thesis, we aim to provide a rigorous and self-contained analysis of the voter model, with a particular
focus on its long-term behavior and invariant measures. We begin by developing the necessary mathematical
background, including continuous-time Markov processes, random walks, and potential theory. We then de-
fine the voter model formally, explore its duality structure, and analyze its behavior in both finite and infinite
settings. Special attention is given to the role of spatial dimension in determining whether the system clusters
or coexists, and we conclude by discussing extensions such as biased and threshold voter models.

Chapter 2 introduces the framework of continuous-time Markov processes and interacting particle systems.
We define generators, semigroups and invariant measures, and explain how spin-flip systems can be con-
structed using Harris’ graphical representation. This chapter lays the probabilistic foundation for everything
that follows.

Chapter 3 turns to random walks and potential theory. We discuss recurrence and transience of random
walks, introduce Green’s functions and harmonic functions, and explain the role of the Liouville property.
These tools form the analytic backbone for the study of clustering and coexistence in the voter model.

Chapter 4 gives a detailed introduction of the voter model itself. We define the nearest-neighbor and k-th
nearest-neighbor versions, and show how duality with coalescing random walks provides a powerful method
of analysis. The chapter develops the central results on clustering in low dimensions and coexistence in high
dimensions.

Chapter 5 investigates invariant measures and long-term behavior. We connect martingale properties and
harmonic functions to the classification of extremal invariant measures, and describe convergence to equi-
librium. This leads to a complete understanding of the stationary distributions of the voter model.

1



2 1. Introduction

Finally, Chapter 6 summarizes the main conclusions and offers a discussion of possible extensions. These
include perturbations such as biased or threshold voter models, as well as scaling limits that connect the
voter model to measure-valued diffusions and super processes.



2
Markov Processes and Interacting Particle

Systems

This chapter lays the probabilistic groundwork for the analysis of the voter model. We begin by introducing
the general theory of continuous-time Markov processes, including their generators, semigroups, and sta-
tionary distributions. These concepts are essential for describing the time evolution of stochastic systems
and form the basis for interacting particle systems (IPS), which model the collective behavior of locally inter-
acting agents on a lattice.

We then focus on spin-flip systems, a class of IPS where each site updates its state based on the configuration
of its neighbors. The voter model is a prominent example of such a system. To rigorously construct and ana-
lyze these models, we introduce the Harris graphical construction [Harris, 1972], which provides a visual and
probabilistic representation of the system’s evolution. This construction is particularly useful for coupling
arguments and for establishing properties like attractiveness and monotonicity.

The chapter concludes with the concept of duality, a powerful analytical tool that allows us to relate the dy-
namics of the voter model to coalescing random walks. This duality simplifies the analysis of long-term be-
havior and is central to many of the results in later chapters.

The material in this chapter draws primarily from Liggett’s texts on interacting particle systems [Liggett, 1985;
Liggett, 1999], as well as Durrett’s treatment of Markov processes and stochastic modeling [Durrett, 2019], and
the original construction by Harris [1972].

2.1. Probability spaces and configuration space
To describe the voter model rigorously, we begin by defining the underlying configuration space and asso-
ciated probability space. The voter model is an example of a spin system on the lattice Zd , where each site
carries a spin taking values in the set S = {0,1}. A configuration is a function η : Zd → S, assigning a spin to
each site. The full configuration space is then

Ω= SZ
d

,

equipped with the product topology and the corresponding product σ-algebra. This σ-algebra is generated
by cylinder sets, which are events that depend only on the values of finitely many coordinates. For example, a
cylinder set might specify the spin values at a finite subset of sites, while leaving the rest unspecified.

To turn this into a probability space, we often equip Ω with a product measure, such as the Bernoulli prod-
uct measure νρ , where each site independently takes value 1 with probability ρ ∈ [0,1]. This defines the full
probability space (Ω,F ,νρ), where F is the product σ-algebra.

A function f :Ω→ R is called a local observable if it depends only on the configuration at finitely many sites.
These functions are important because they serve as natural test functions for the generator of the Markov

3



4 2. Markov Processes and Interacting Particle Systems

process: they allow us to probe the infinitesimal behavior of the system in a mathematically controlled way.
Since the dynamics of spin systems are local it is natural to study their effect on local observables.

2.2. Continuous-time Markov processes
The voter model is a special case of a continuous-time Markov process on a large configuration space. To
study it rigorously, we first introduce the general theory of Markov processes, which provides the probabilis-
tic framework for interacting particle systems.

A Markov process models the evolution of a system in which the future depends only on the present state,
not on the past history. This memoryless property makes Markov processes both tractable and natural for
modeling local interactions. In the context of the voter model, this means that once we know the current
configuration of spins, the probabilities of future updates depend only on that configuration, not on how it
was reached.

Before we define the continuous-time case, we briefly illustrate the idea with a simple example.Imagine a
simple model of the weather. Each day, the weather can be either sunny or rainy. Suppose that:

• If today is sunny, there is a 90% chance that tomorrow will also be sunny, and a 10% chance it will be
rainy.

• If today is rainy, there is a 50% chance that tomorrow will be sunny, and a 50% chance it will remain
rainy.

This is a Markov process, because the probability of tomorrow’s weather depends only on today’s weather and
not on how long it has been sunny or rainy before.

2.2.1. Basic definitions
We now formalize the notion of a Markov process in continuous time. These processes are central to the study
of interacting particle systems, as they model systems whose future evolution depends only on the current
state, not on the past history.

Definition 2.2.1 (Markov Process). Let (X t )t≥0 be a stochastic process taking values in a measurable state space
(E ,E ). We say that (X t ) is a Markov process if for all t , s ≥ 0, x ∈ E, and A ∈ E ,

Px (X t+s ∈ A |Ft ) = Px (X t+s ∈ A | X t ),

where Px denotes the probability measure under which X0 = x, and Ft = σ(Xu : 0 ≤ u ≤ t ) is the natural
filtration of the process.

The notation Px refers to the law of the process starting from X0 = x, and Ex denotes the corresponding
expectation. The natural filtration (Ft )t≥0 captures all information generated by the process up to time t .

Definition 2.2.2 (Transition Semigroup). Let (X t ) be a Markov process with state space E. The family of oper-
ators (Pt )t≥0 defined by

Pt f (x) = Ex [ f (X t )] =
∫

E
f (y)Pt (x,d y),

for all bounded measurable functions f : E →R, is called the transition semigroup of the process.

This semigroup satisfies the Chapman–Kolmogorov equations:

Pt+s = Pt Ps .

This identity expresses the consistency of the process over time: the probability of transitioning from state
x to a set A in time t + s is the same as first transitioning from x to an intermediate state y in time t , and
then from y to A in time s, averaged over all possible intermediate states y . This equation must hold because
it reflects the Markov property itself. The Chapman–Kolmogorov equations ensure that the transition prob-
abilities are consistent across different time intervals and that the process can be built incrementally over
time.
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Definition 2.2.3 (Strong Markov Property). Let (X t )t≥0 be a Markov process with natural filtration (Ft )t≥0,
and let τ be a stopping time, meaning that for every t ≥ 0, the event {τ ≤ t } is measurable with respect to Ft .
Then (X t ) satisfies the strong Markov property if for all bounded measurable functions f : E →R and all s ≥ 0,

Ex [ f (Xτ+s ) |Fτ] = EXτ [ f (Xs )].

This property strengthens the usual Markov property by allowing the process to “restart” not just at fixed
times, but also at random times τ that are determined by the evolution of the process itself.

The strong Markov property is essential when analyzing events such as hitting times (the first time the process
enters a given set) or return times, which are random by nature. We will use this property later when studying
recurrence and transience of random walks in Chapter 3, and when analyzing dual processes in the voter
model.

2.2.2. Feller Processes
In the context of continuous-time Markov processes, it is useful to distinguish a class of processes that behave
well analytically. These are known as Feller processes.

Definition 2.2.4 (Feller Process). A Markov process (X t )t≥0 with state space E is called a Feller process if its
associated semigroup (Pt )t≥0 satisfies:

• For each t ≥ 0, Pt maps Cb(E) (bounded continuous functions on E) into itself.

• For each f ∈Cb(E), Pt f → f uniformly as t → 0.

Feller processes preserve continuity and allow the generator to be defined via pointwise limits. They form an
important analytical foundation for the study of interacting particle systems such as the voter model.

2.2.3. Generators
In continuous-time Markov processes, the evolution of the system is governed by infinitesimal changes.
These changes are captured by the generator of the process, which plays a role analogous to a derivative
in calculus.

Definition 2.2.5 (Generators). Let (X t )t≥0 be a Markov process with transition semigroup (Pt )t≥0. The gener-
ator L is defined by:

L f (x) = lim
t→0

Pt f (x)− f (x)

t

for all functions f for which this limit exists. The set of such functions is called the domain of L.

Intuitively, L f (x) describes the instantaneous rate of change of the expected value of f (X t ) starting from state
x.

This leads us to a fundamental result in stochastic analysis:

Definition 2.2.6 (Martingale). A stochastic process (Mt )t≥0 is called a martingale with respect to a filtration
(Ft ) if for all s ≤ t :

• Ms is Fs -measurable,

• E[|Mt |] <∞,

• E[Mt |Fs ] = Ms .

Martingales model their expected future value, given current information, is equal to their present value.

Theorem 2.2.1 (Dynkin’s Formula). Let f be a function in the domain of L. Then the process

M f
t := f (X t )− f (X0)−

∫ t

0
L f (Xs )d s

is a martingale with respect to the natural filtration of (X t ).
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Proof. We define the transition semigroup (Pt )t≥0 by Pt f (x) = Ex [ f (X t )]. The generator L is given by:

L f (x) = lim
h→0

Ph f (x)− f (x)

h
.

Let f be in the domain of L. For small h > 0, we approximate the change in f (X t ) over time by:

f (X t+h)− f (X t ) ≈ h ·L f (X t ).

Summing over small increments and taking expectations, we obtain:

Ex [ f (X t )]− f (x) = Ex

(
n−1∑
k=0

(
f (X tk+1 )− f (X tk )

))≈ Ex

(
n−1∑
k=0

h ·L f (X tk )

)
.

In the limit as h → 0, this becomes the identity:

Ex [ f (X t )]− f (x) = Ex

(∫ t

0
L f (Xs )d s

)
,

which expresses the expected change in f (X t ) in terms of the generator L.
Now, define the process:

M f
t := f (X t )− f (X0)−

∫ t

0
L f (Xs )d s.

To show that M f
t is a martingale, we compute its conditional expectation given Fs :

E[M f
t |Fs ] = E

[
f (X t )− f (X0)−

∫ t

0
L f (Xr )dr |Fs

]
.

We split this into:

M f
s +E

[
f (X t )− f (Xs )−

∫ t

s
L f (Xr )dr |Fs

]
.

By the Markov property, the future evolution of the process depends only on the current state Xs , so:

E[ f (X t ) |Fs ] = Pt−s f (Xs ),

and similarly, Using the Markov property and the fact that we can interchange expectation and integration,
since L f (Xr ) is integrable:

E

[∫ t

s
L f (Xr )dr |Fs

]
=

∫ t

s
E[L f (Xr ) |Fs ]dr =

∫ t−s

0
PuL f (Xs )du.

Therefore:

E[M f
t |Fs ] = M f

s +Pt−s f (Xs )− f (Xs )−
∫ t−s

0
PuL f (Xs )du.

The last two terms cancel due to the definition of the generator:

Pt−s f (Xs )− f (Xs ) =
∫ t−s

0
PuL f (Xs )du,

which follows from integrating the generator over time.
Hence:

E[M f
t |Fs ] = M f

s ,

which confirms that M f
t is a martingale.

Dynkin’s formula is a powerful tool: it allows us to translate generator calculations into martingale properties.
In the context of the voter model, applying this formula to local observables shows that the density of 1’s
evolves as a martingale — a key fact used in Chapter 5 to analyze invariant measures and long-term behavior.
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2.2.4. Stationary distributions
Definition 2.2.7 (Stationary distribution). A probability measure µ on E is called stationary if

µPt =µ, ∀t ≥ 0.

That is, if X0 ∼µ then X t ∼µ for all t ≥ 0.

A stationary distribution describes a state of balance: if the system starts in this distribution, it will look
statistically the same at all future times. In other words, the probabilities of being in different states do not
change over time. For the voter model, this means that the overall pattern of opinions remains stable, even
though individual sites may continue to update. In Chapters 4 and 5, the invariant measures of the voter
model are precisely its stationary distributions.

2.3. Interacting particle systems
Interacting particle systems (IPS) are a class of stochastic processes that model the collective behavior of lo-
cally interacting agents on a lattice. Each site carries a state (often called a spin), and the system evolves
over time according to local update rules. These models describe phenomena such as the spread of diseases,
opinion dynamics, and phase transitions.

A central subclass of IPS is the spin-flip systems, where each site updates its state by flipping its spin based on
the configuration of its neighbors. The voter model is a prominent example of such a system, but other im-
portant models include the contact process, which models infection and recovery, and the Ising model, which
describes ferromagnetic interactions.

Definition 2.3.1 (Spin-flip system). A spin-flip system is a continuous-time Markov process on the configura-

tion spaceΩ= {0,1}Z
d

with generator

L f (η) = ∑
x∈Zd

c(x,η)
[

f (ηx )− f (η)
]

,

where ηx denotes the configuration η with the spin at site x flipped, and c(x,η) ≥ 0 is the flip rate at site x given
configuration η.

The flip rate c(x,η) is assumed to be:

• local: it depends only on the values of η in a finite neighborhood of x,

• uniformly bounded: there exists C <∞ such that c(x,η) ≤C for all x and η.

A spin-flip system models a collection of agents (or spins) that update their state based on local interactions.
Each site on the lattice decides whether to flip its state depending on the configuration of its neighbors. The
generator encodes these dynamics by specifying the rate at which each site flips. The term f (ηx )− f (η) mea-
sures the effect of flipping the spin at x on the observable f .

The generator L acts on functions f :Ω→R, typically assumed to be local observables, meaning they depend
only on finitely many coordinates. These functions serve as test functions to probe the infinitesimal behavior
of the system.

A common choice for the flip rate is based on a symmetric, finite-range probability kernel p(x, y), which
describes the interaction structure. For example, in the voter model, the flip rate is:

c(x,η) =∑
y

p(x, y) ·1{η(x) ̸= η(y)},

meaning that site x copies the state of a randomly chosen neighbor y at rate p(x, y).

Example 2.3.1 (Contact Process). In the contact process, each site can be either infected (1) or healthy (0). The
flip rates are:

• Infection: c(x,η) =λ∑
y p(x, y) ·η(y) if η(x) = 0,
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• Recovery: c(x,η) = 1 if η(x) = 1.

Here, λ is the infection rate, and p(x, y) defines the neighborhood. This model captures the spread of infection
through local contact.

Example 2.3.2 (Ising Model Dynamics). In Glauber dynamics for the Ising model, spins flip based on energy
considerations. The flip rate depends on the sum of neighboring spins and a temperature parameter, modeling
thermal fluctuations. This model is used to study phase transitions and magnetization.

These examples illustrate the diversity of IPS: while the voter model is neutral and symmetric, the contact
process introduces asymmetry (infection vs. recovery), and the Ising model incorporates energy-based inter-
actions

2.3.1. Kolmogorov’s Theorems
To rigorously define interacting particle systems such as the voter model, we need to construct stochastic
processes on infinite product spaces. Kolmogorov’s theorems provide the formal foundation for this.

Theorem 2.3.1 (Kolmogorov Consistency Theorem). Let {Pt1,...,tn } be a family of probability measures on E n

for all finite sequences t1 < ·· · < tn in [0,∞), where E is a Polish space. Suppose this family is consistent in the
sense that:

• Permutation invariance: Pt1,...,tn is invariant under permutations of indices.

• Marginalization: For any t1 < ·· · < tn and k < n, the marginal of Pt1,...,tn on the first k coordinates equals
Pt1,...,tk .

Then there exists a probability measure P on the product space E [0,∞) such that for all finite sets of times, the
finite-dimensional distributions of the coordinate projections agree with {Pt1,...,tn }.

Theorem 2.3.2 (Kolmogorov Extension Theorem). Let {Pt1,...,tn } be a consistent family of finite-dimensional
distributions on a Polish space E. Then there exists a stochastic process (X t )t≥0 with state space E such that for
all finite sets of times t1 < ·· · < tn , the joint distribution of (X t1 , . . . , X tn ) is Pt1,...,tn .

Proof. Let E be a Polish space (i.e., a complete separable metric space), and let {Pt1,...,tn } be a family of finite-
dimensional distributions indexed by finite increasing time tuples t1 < ·· · < tn .

Assume that this family is consistent, meaning:

• (Symmetry) Pt1,...,tn is invariant under permutations of indices.

• (Marginalization) For any t1 < ·· · < tn and any k < n, the marginal of Pt1,...,tn on the first k coordinates
equals Pt1,...,tk .

By Kolmogorov’s consistency theorem, there exists a unique probability measure P on the product space
E [0,∞) (equipped with the product σ-algebra) such that for every finite set of times t1 < ·· · < tn , the marginal
distribution of (X t1 , . . . , X tn ) under P is Pt1,...,tn .

This measure P defines a stochastic process (X t )t≥0 with state space E and the desired finite-dimensional
distributions. The process is measurable and satisfies the required consistency conditions.

These two theorems are closely related but serve distinct purposes:

• The Consistency Theorem ensures that a family of finite-dimensional distributions is compatible. That
is, they can be stitched together without contradiction.

• The Extension Theorem guarantees that such a consistent family actually defines a stochastic process
on the infinite product space.

Together, they provide the rigorous foundation for constructing processes on infinite lattices, such as the
voter model and its dual. The consistency condition is a prerequisite for the extension result, and both are
essential when working with interacting particle systems defined via local rules but evolving globally.
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2.4. The Harris graphical construction
To analyze interacting particle systems such as the voter model and the contact process, it is often useful to
have a concrete, visual representation of the system’s evolution. One powerful method for this is the Harris
graphical construction, introduced by T.E. Harris in the 1970s. This construction provides a probabilistic
coupling of the process across all initial configurations and allows us to visualize the ancestry and influence
structure of the system.

Definition 2.4.1 (Graphical representation of the voter model). For each ordered pair (x, y) with p(x, y) > 0,
let N x,y be a Poisson process of rate p(x, y). At each event time of N x,y , draw an arrow y → x. The evolution
is defined by: whenever an arrow y → x occurs, set η(x) ← η(y). The resulting process is the voter model with
kernel p.

Example 2.4.1 (Nearest-neighbor voter model). Let p(x, y) = 1
2d if x and y are nearest neighbors in Zd , and

0 otherwise. Then Nx,y is a Poisson process with rate 1
2d , and the graphical construction consists of arrows

between neighboring sites. At each arrow time, site x copies the state of its neighbor y.

Figure 2.1: Graphical representation of the nearest-neighbor voter model. Nodes are colored red or blue to indicate their state, and green
arrows represent update events where a site copies the state of a neighbor.

This construction is particularly well-suited for the voter model, where each site updates by imitating a ran-
domly chosen neighbor. The graphical representation makes the dynamics explicit and provides a natural
way to couple multiple processes starting from different initial configurations.

The arrows in the graphical construction encode the ancestry of each site: by tracing arrows backward in
time, one can determine which sites influenced the current state. This ancestry structure is crucial for under-
standing duality and long-term behavior.

Proposition 2.4.1 (Consistency). The Harris construction produces a well-defined Markov process with gener-
ator

L f (η) = ∑
x∈Zd

∑
y∈Zd

p(x, y) ·1{η(x) ̸= η(y)} · [ f (ηx )− f (η)
]

,

simultaneously for all initial configurations η. The arrows are locally finite in time, ensuring that the evolution
is well-defined.

The Harris construction enables powerful coupling arguments. It allows us to compare processes with differ-
ent initial states, prove monotonicity and attractiveness, and construct dual processes. These properties are
essential for analyzing convergence, invariant measures, and phase transitions.
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2.5. Duality
Duality is a fundamental concept in the theory of Markov processes and interacting particle systems. It
provides a powerful method for analyzing complex stochastic systems by relating them to simpler or more
tractable dual processes. In many cases, duality allows us to reduce infinite-dimensional problems to finite
ones, or to relate long-time behavior to short-time computations.

Suppose we are interested in the behavior of a Markov process (ηt )t≥0 on a state space E . If we can find
another process (ξt )t≥0 on a possibly different state space F , and a function H : E × F → R such that the
expected value of H under one process equals the expected value under the other (with time reversed), then
we can often transfer results between the two processes.

Definition 2.5.1 (Duality). Let (ηt ) and (ξt ) be Markov processes with state spaces E and F , and generators L
and L†, respectively. We say that (ηt ) and (ξt ) are dual with respect to a function H : E ×F → R if for all η ∈ E,
ξ ∈ F , and t ≥ 0,

Eη[H(ηt ,ξ)] = Eξ[H(η,ξt )].

The function H is called the duality function. It often has a product structure or indicator form, depending
on the processes involved.



3
Random Walks and Potential Theory

This chapter introduces the analytic tools needed to study spatial stochastic processes, focusing on random
walks and potential theory. These concepts are central to understanding recurrence, transience, and long-
term behavior in lattice-based systems.

We begin by defining discrete and continuous-time random walks and their generators. We then explore
recurrence and transience, Green’s functions, harmonic functions, and ergodic theory on Zd . These results
will be essential in Chapter 4, where we apply them to analyze the voter model.

3.1. Continuous-time random walks
Random walks are fundamental stochastic processes that model the movement of a particle through space.
In this section, we define both discrete-time and continuous-time versions on the lattice Zd , and describe
their generators. These walks will later serve as the dual objects to the voter model, but for now we focus on
their intrinsic properties.

Definition 3.1.1 (Discrete-time random walk). Let p :Zd ×Zd → [0,1] be a transition kernel with
∑

y p(x, y) =
1. A discrete-time random walk (Sn)n≥0 on Zd is a Markov chain with transition probabilities

P(Sn+1 = y |Sn = x) = p(x, y).

In continuous time, the particle waits a random amount of time before jumping. Specifically, the waiting
times are exponentially distributed with mean 1.

Definition 3.1.2 (Continuous-time random walk). Given a kernel p(x, y) as above, a continuous-time random
walk (CTRW) (X t )t≥0 is a process that waits an exponential(1) time between jumps and then moves according
to p. Equivalently, X t = SNt where (Nt ) is a rate-1 Poisson process and (Sn) is the discrete-time walk.

We use X t to denote the position of the particle at time t , and Sn to denote its position after n jumps. The
Poisson process Nt counts the number of jumps up to time t .

The infinitesimal behavior of a continuous-time Markov process is described by its generator.

Proposition 3.1.1 (Generator of CTRW). The generator of (X t ) acts on bounded functions f :Zd →R as

(LRW f )(x) =∑
y

p(x, y)( f (y)− f (x)).

To make this concrete, consider the following example:

Example 3.1.1 (Nearest-Neighbor CTRW). Let p(x, y) = 1
2d if ∥x − y∥1 = 1 and p(x, y) = 0 otherwise. Here ∥·∥1

denotes the ℓ1-norm, i.e., the sum of absolute coordinate differences. Then (X t ) jumps at rate 1 to each of its 2d
nearest neighbors with equal probability. This is the simple symmetric nearest-neighbor walk on Zd .

11
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3.2. Recurrence and transience
In this section, we study the long-term behavior of random walks on the lattice Zd . A central question is
whether a random walk tends to return to its starting point repeatedly (recurrence), or whether it eventually
escapes and never comes back (transience).

Definition 3.2.1 (Recurrence and transience). A discrete-time random walk (Sn) is recurrent if

P0(Sn = 0 i.o.) = 1,

i.e. it returns to the origin infinitely often with probability 1. Otherwise it is transient. The same definitions
apply to CTRWs via their jump chains.

To understand recurrence and transience, we analyze the probability pn(0) that the walk is at the origin after
n steps. For the simple symmetric random walk, this is given by the Fourier transform of the step distribution.

Theorem 3.2.1 (Classical dichotomy). Let (Sn)n≥0 be a simple symmetric random walk on Zd . Then:

• The walk is recurrent for d = 1,2,

• The walk is transient for d ≥ 3.

Proof. We analyze this using the Fourier transform of the transition kernel.

The characteristic function of a probability distribution is the Fourier transform of its probability measure.
For a random variable X taking values in Zd , the characteristic function φ(θ) is defined as

φ(θ) = E[e iθ·X ], θ ∈ [−π,π]d .

In the case of the simple symmetric random walk, this becomes

φ(θ) = 1

d

d∑
j=1

cos(θ j ).

Then, the probability that the walk returns to the origin after n steps is

pn(0) = 1

(2π)d

∫
[−π,π]d

[
φ(θ)

]n dθ.

Summing over n, we get the expected number of returns:

∞∑
n=0

pn(0) = 1

(2π)d

∫
[−π,π]d

∞∑
n=0

[
φ(θ)

]n dθ = 1

(2π)d

∫
[−π,π]d

1

1−φ(θ)
dθ.

Now we analyze the convergence of this integral:

• For d = 1,2, the integrand 1
1−φ(θ) has a non-integrable singularity at θ = 0, and the integral diverges.

• For d ≥ 3, the singularity is integrable, and the integral converges.

The divergence of the integral for d = 1,2 reflects the fact that the random walk tends to revisit its starting
point frequently. In low dimensions, the walker "gets trapped" in its local neighborhood due to the limited
number of directions it can escape to. In contrast, in higher dimensions (d ≥ 3), the walker has more "room"
to move, and the probability of returning to the origin decreases rapidly enough for the total expected number
of returns to remain finite.
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3.3. Green’s functions and potential kernel
A useful tool to analyze recurrence and correlations is the Green’s function.
Let (X t )t≥0 be a continuous-time random walk (CTRW) on Zd with transition kernel p(x, y). The Green’s
function is defined as:

G(x, y) =
∫ ∞

0
Px (X t = y)d t .

For the discrete-time random walk (Sn), the Green’s function is:

G(x, y) =
∞∑

n=0
Px (Sn = y).

Proposition 3.3.1 (Characterization of Recurrence). The walk is recurrent if and only if G(0,0) =∞, and tran-
sient if and only if G(0,0) <∞.

Proof. The quantity G(0,0) represents the expected number of visits to the origin:

G(0,0) =
∞∑

n=0
P0(Sn = 0).

If this sum diverges, the walk returns to the origin infinitely often with probability 1, hence it is recurrent. If
the sum converges, the expected number of returns is finite, and the walk is transient.

Theorem 3.3.1. For the simple symmetric random walk on Zd with d ≥ 3, there exists a constant cd > 0 such
that:

G(0, x) ∼ cd |x|2−d , as |x|→∞.

This asymptotic behavior shows that the Green’s function decays algebraically in high dimensions. In the
context of the voter model, this implies that correlations between spins at sites 0 and x decay like |x|2−d ,
reflecting the critical nature of the model.

3.4. Harmonic functions and the Liouville theorem
In this section, we introduce harmonic functions, which play a central role in the classification of invariant
measures for the voter model.

Definition 3.4.1 (Harmonic function). Let p be a transition kernel on Zd . A function h : Zd → R is called
harmonic (with respect to p) if

h(x) = ∑
y∈Zd

p(x, y)h(y), for all x ∈Zd .

This means that h(x) is the expected value of h after one step of the random walk starting at x. Harmonic
functions are precisely the fixed points of the averaging operator induced by p.

Proposition 3.4.1 (Maximum principle). Let h be a bounded harmonic function on Zd . Then for every finite
subsetΛ⊂Zd ,

min
x∈∂Λ

h(x) ≤ h(y) ≤ max
x∈∂Λ

h(x), for all y ∈Λ.

Proof. Since h(y) is the average of its neighbors, it cannot exceed the maximum or be less than the minimum
of them.

We now turn to a fundamental result known as the Liouville theorem, which characterizes harmonic func-
tions in low dimensions.

Theorem 3.4.1 (Liouville property). Let p be a symmetric finite-range kernel on Zd . If d ≤ 2, then every
bounded harmonic function is constant.

Proof. Fix y ∈ Zd and consider the hitting time τy of y for a simple symmetric random walk (Xn). Since the
walk is recurrent for d ≤ 2, we have

Px (τy <∞) = 1 for all x ∈Zd .
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Now consider the process (h(Xn)) and apply the optional stopping theorem to the stopping time τy ∧n, which
is the minimum of τy and n. This theorem states that if (Mn) is a martingale and τ is a bounded stopping
time, then

Ex [Mτ] = M0.

In our case, (h(Xn)) is a bounded martingale because h is harmonic and bounded. Therefore,

h(x) = Ex [h(Xτy∧n)].

Taking the limit n →∞ and using the recurrence of the walk, we get

h(x) = Ex [h(Xτy )] = h(y),

since Xτy = y almost surely. As x and y were arbitrary, it follows that h is constant.

This result has direct consequences for the voter model. In dimensions d ≤ 2, the recurrence of random walks
forces all bounded harmonic functions to be constant.
In contrast, for d ≥ 3, the random walk is transient, and nontrivial bounded harmonic functions exist. For
example, the function

h(x) =Px (the walk never returns to 0)

is bounded between 0 and 1, nonconstant, and harmonic. This reflects the richer structure of invariant mea-
sures in high dimensions, where coexistence is possible.

3.5. Ergodic theory onZd

We conclude this chapter with some results of ergodic theory, which allows us to understand the long-term
behavior of translation-invariant measures in spin systems.

Definition 3.5.1 (Translation invariance and ergodicity). A probability measure µ on Ω is called translation-
invariant if

µ◦τ−1
x =µ for all x ∈Zd ,

where the shift operator τx acts on configurations by (τxη)(y) = η(y +x).
The measure µ is called ergodic if every translation-invariant event has probability 0 or 1 under µ.

Ergodicity ensures that spatial averages converge to expectations underµ, which allows us to interpretµ[η(0)]
as the density of 1’s in the system.

Theorem 3.5.1 (Birkhoff’s ergodic theorem for Zd ). Let µ be a translation-invariant probability measure on
Ω, and let f :Ω→R be a local function with

∫ | f |dµ<∞. Then

1

|Bn |
∑

x∈Bn

f (τxη)
µ-a.s.−−−−→
n→∞

∫
f dµ,

where Bn = [−n,n]d is the box of side length 2n +1 centered at the origin.

Corollary 3.5.1 (Spin averages). Let µ be translation-invariant. Then

1

|Bn |
∑

x∈Bn

η(x)
µ-a.s.−−−−→
n→∞ µ[η(0)].

This result justifies interpreting µ[η(0)] as the average density of 1’s in the system. In Chapter 5, we need this
for the extremal invariant measures νρ , which are parameterized by this density.



4
The Voter Model

In this chapter we introduce the linear voter model carefully. We start by defining the model with general
interaction kernels, with emphasis on the k-nearest-neighbour (k-NN) version as an illustrative example.
We then establish basic properties such as attractiveness and conservation of density. Next, we develop the
graphical construction and the duality with coalescing random walks. Equipped with this, we can prove the
central dichotomy: clustering in dimensions d ≤ 2 and coexistence in d ≥ 3. Along the way, examples and
intuition will clarify why these results matter. We also discuss finite systems and preview nonlinear variants
for the next chapter.

This chapter is based primarily on the foundational works of Liggett [1985, Ch. V] and Durrett [2008, Ch. 1],
which provide a comprehensive treatment of the voter model and its probabilistic structure.

4.1. Definition
A voter model is nothing more than a Markov process ηt on {0,1}Z d

whose generator has the form of

Ω f (η) =∑
x

c(x,η)
[

f (ηx )− f (η)
]

,

where the rate function c(x,η) has the following properties:

(a) c(x,η) = 0 for every x ∈Zd if η≡ 0 or if η≡ 1,

(b) c(x,η) = c(x,ζ) for every x ∈Zd if η(y)+ζ(y) = 1 for all y ∈Zd ,

(c) c(x,η) ≤ c(x,ζ) if η≤ ζ and η(x) = ζ(x) = 0, and

(d) c(x,η) is invariant under shifts in Zd .

Property (a) just implies that if we are in a constant configuration, η ≡ 0 or if η ≡ 1, than the flip rate of an
individual voter is 0. The second property states that if we interchange the roles of 0 and 1 the system will
evolve the same way. Property (c) makes the process attractive. The last property states that if we shift in
space the process is invariant.

Definition 4.1.1 (Attractiveness). A process is attractive or monotone if it satisfies the following equivalent
conditions.

f increasing implies S(t ) f increasing for all t ≥ 0

and

µ1 ≤µ2 implies µ1S(t ) ≤µ2S(t ) for all t ≥ 0.

This is useful because it allows for coupling arguments and comparison between configurations. In attractive
systems, larger initial configurations tend to remain larger over time.

15
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Definition 4.1.2. In the linear voter model are the flip rates given by

c(x,η) =


∑
y p(x, y)η(y), if η(x) = 0,∑
y p(x, y) [1−η(y)], if η(x) = 1,

(4.1)

where η ∈ {0,1}Z
d

is a configuration and p(x, y) is a probability kernel satisfying

p(x, y) ≥ 0,
∑

y
p(x, y) = 1 for all

This definition indeed satisfies the structural properties listed at the beginning of this subsection. These
properties are directly implied by the form of c(x,η) above, and they make the model analytically tractable.
This formulation defines the specific version of the voter model we will analyze throughout the chapter.

4.2. Basic Properties of the Voter Model
Having defined the voter model via its flip rates c(x,η), we now turn to its most fundamental structural prop-
erties. These properties explain why the model is central to the theory of interacting particle systems and why
it serves as a prototype for more general spin systems.

4.2.1. Duality
The voter model exhibits a powerful duality with coalescing random walks. This duality allows us to analyze
infinite systems by studying finite ones, and is closely tied to the monotonicity of the process.

Theorem 4.2.1 (Duality and monotonicity, adapted from Liggett). Let (ηt )t≥0 be a Feller process on {0,1}Z
d

such that {1} is an absorbing state and Pt [ηt = 1] = 0 for all t > 0. Then there exists a Feller process (ξt )t≥0

which is dual to (ηt ) with respect to the function H(η,ξ) = ηξ if and only if (ηt ) is monotone.

Proof. (⇒) Suppose a dual process (ξt ) exists with respect to H(η,ξ) = ηξ. Then for all t ≥ 0,

Eη[ηξt ] = Eξ[ηξt ].

Fix ξ and consider the function η 7→ Eη[ηξt ]. Since η 7→ ηξ is increasing in η for fixed ξ, and the expectation
preserves monotonicity, it follows that η 7→ Eη[ηξt ] is increasing. Hence, (ηt ) must be monotone.
(⇐) Suppose (ηt ) is monotone. We want to construct a dual process (ξt ) such that

Eη[ηξt ] = Eξ[ηξt ]

for all η, ξ, and t ≥ 0. For each fixed ξ, define the function

Fη(t ) := Eη[ηξt ].

Because η 7→ ηξ is increasing and (ηt ) is monotone, the function η 7→ Fη(t ) is increasing for all t . This family
of functions defines a consistent set of finite-dimensional distributions for (ξt ) via the relation

Eη[ηξt ] := Eξ[ηξt ].

By Kolmogorov’s extension theorem, this defines a stochastic process (ξt ) with the desired duality property.
The Feller property follows from the continuity of the semigroup and the monotonicity of the process.

4.2.2. Clustering and Coexistence
A central question in the analysis of the voter model is whether the system converges to consensus or allows
for long-term coexistence of different opinions. The answer depends critically on the dimension d and the
properties of the associated random walk.

Theorem 4.2.2 (Clustering vs. Coexistence). Let the voter model be defined with a symmetric, finite-range
interaction kernel p(x, y).

• If d ≤ 2, the model clusters: with probability 1, all sites eventually agree, and the system converges to one
of the absorbing states δ0 or δ1.
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• If d ≥ 3, the model coexists: there exists a nontrivial stationary distribution in which both opinions
persist indefinitely.

This result applies specifically to the nearest-neighbor voter model, where p(x, y) assigns equal probability
to adjacent sites. For more general kernels, the outcome depends on whether the associated random walk is
recurrent or transient. In low dimensions, recurrence ensures that ancestral lineages meet almost surely, forc-
ing consensus. In higher dimensions, transience allows lineages to escape each other, enabling coexistence.

It is important to note that this dichotomy relies on the symmetry of the kernel. If p(x, y) is not symmetric, the
associated random walk may behave differently, and the clustering/coexistence behavior may change. Thus,
the long-term behavior of the voter model is determined by the probabilistic properties of the dual random
walk, which in turn depend on the structure of p.

4.2.3. Examples: Nearest-Neighbor and k-th Neighbor Voter Models
So far, we have considered a general kernel p(x, y). Let us now study concrete examples.

Let S =Zd and

p(x, y) = 1

2d
1{|x−y |=1},

i.e. each site updates by imitating one of its 2d nearest neighbors with equal probability. This is the standard
voter model considered in most of the literature. By Theorem 4.2.2, it clusters in dimensions d ≤ 2 and coex-
ists in dimensions d ≥ 3.

Fix k ≥ 1. Define

p(x, y) = 1

Nk
1{|x−y |=k},

where Nk is the number of sites at distance k from x. Here each site copies uniformly from its k-th nearest
neighbors.

This model illustrates how the range of interactions affects clustering and coexistence:

• In one dimension, using only second- or third-nearest neighbors does not change recurrence of ran-
dom walks, the model still clusters.

• In higher dimensions, the larger interaction range makes the coalescing random walks even more tran-
sient. Intuitively, when each site can copy from more distant neighbors, the paths of the dual random
walks spread out faster and are less likely to intersect. This reduces the chance that different lineages
coalesce, allowing distinct opinions to survive longer and increasing the likelihood of coexistence.

The duality theorem gives us the mathematical tool to understand long-term behavior, while the clustering vs.
coexistence dichotomy shows the dramatic dependence on dimension. The examples above help us visualize
how the choice of kernel p(x, y) influences outcomes. Together, these results form the conceptual foundation
of voter model theory.

4.3. Absorbing States and Invariant Measures
Having established the duality and the clustering–coexistence dichotomy, we now turn to the possible long-
term states of the voter model. These are described by the invariant measures of the process.

Definition 4.3.1. The configurations 0 (all sites in state 0) and 1 (all sites in state 1) are called the absorbing
states of the voter model.

Once the system reaches 0 or 1 it never leaves, since no updates can change any site. In finite systems, these
are the only possible limiting states. In infinite systems, the situation is richer.

Definition 4.3.2 (Invariant measure). A probability measure µ on {0,1}Z
d

is called an invariant measure for
the voter model if µPt =µ for all t ≥ 0, where Pt is the transition semigroup of the process.

Theorem 4.3.1 (Extremal invariant measures). • For d ≤ 2, the only extremal invariant measures are δ0

and δ1.
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• For d ≥ 3, there exists a one-parameter family {νρ : ρ ∈ [0,1]} of translation-invariant ergodic invariant
measures, where νρ(η(0) = 1) = ρ.

In low dimensions, the only “equilibria” are the absorbing states, reflecting the inevitability of consensus. In
high dimensions, a whole family of nontrivial equilibria exists, parameterized by the density ρ of 1’s. These
measures represent coexistence of opinions at all densities.

4.3.1. Connection with duality
These invariant measures can be constructed directly from the dual random walks. For d ≥ 3, duality implies
that for initial product measure νρ , the distribution at time t is given by

Eνρ

[ ∏
x∈A

ηt (x)

]
= E[

ρ|At |] ,

where At is the set of coalescing random walks started from A at time 0.

The set At evolves as a stochastic process: each particle in A performs an independent random walk and
coalesces with others upon meeting. Thus, At tracks the positions of the remaining (non-coalesced) particles
at time t , and its distribution determines the structure of the invariant measure νρ via the duality relation.

4.4. Convergence to Equilibrium
Having identified the invariant measures of the voter model, we now ask: does the system converge to one of
these measures as t →∞? The answer again depends on the dimension d .

Theorem 4.4.1 (Convergence to equilibrium). • If d ≤ 2, the process (ηt ) converges weakly to a mixture of
the absorbing states δ0 and δ1. That is, the limiting distribution is a convex combinationαδ0+(1−α)δ1,
where α depends on the initial density of 1’s.

• If d ≥ 3 and η0 ∼ νρ , then ηt converges weakly to νρ as t →∞.

Proof. We use duality with coalescing random walks. Fix a finite set A ⊂Zd . By duality, we have

Eη0

[ ∏
x∈A

ηt (x)

]
= E

[ ∏
x∈At

η0(x)

]
,

where At is the set of coalescing random walks started from A at time 0.

In dimensions d ≤ 2, the random walk is recurrent, so all walks in At eventually coalesce into a single site.
Thus, the product

∏
x∈At η0(x) becomes either 0 or 1, depending on the value at the coalesced site. This

implies that the system converges to either δ0 or δ1, and the limiting distribution is a convex combination
αδ0 + (1−α)δ1, where α= E[η0(x)] is the initial density of 1’s.

In dimensions d ≥ 3, the random walk is transient, so the number of distinct particles in At remains positive
with high probability. If η0 ∼ νρ , then each η0(x) is an independent Bernoulli variable with mean ρ, and

E

[ ∏
x∈At

η0(x)

]
= E[

ρ|At |] .

Since the law of At does not depend on η0, and νρ is invariant, it follows that ηt ∼ νρ for all t , and hence ηt

converges weakly to νρ .

In low dimensions, clustering forces the system into one of the absorbing states. The mixture αδ0 + (1−α)δ1

reflects the probability that the system ends up in consensus state 0 or 1, depending on the initial configu-
ration. This mixture is not an evolving distribution but a fixed convex combination determined by the initial
density.

In high dimensions, the invariant measures νρ are translation-invariant and ergodic. Since they are station-
ary, starting the process in νρ means the distribution does not change over time. The point of the second
bullet is that ρ represents the density of 1’s, and since ρ can be strictly between 0 and 1, the system exhibits
genuine coexistence.
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4.4.1. Consensus times in finite systems
On finite graphs, the system almost surely reaches consensus. Duality again gives estimates for the consensus
time.

Proposition 4.4.1 (Consensus time on the torus). On the d-dimensional torus with nd sites, the expected time
to consensus is of order 

n2, d = 1,

n2 logn, d = 2,

nd , d ≥ 3.

This result follows from the time it takes for nd coalescing random walks to merge into one. In one dimension,
this is diffusive (n2). In two dimensions, the recurrence of random walks produces a logarithmic correction.
In higher dimensions, walks are less likely to meet, so the time is of order the system volume nd .

4.5. Extensions of the Voter Model
The linear voter model is neutral: it treats both opinions symmetrically. Many variations modify the update
rules to model different types of interactions.

4.5.1. Biased voter model
In the biased voter model, one opinion has an advantage. Formally, the flip rates are

cα(x,η) =
{

(1−α)
∑

y p(x, y)η(y), η(x) = 0,

α
∑

y p(x, y)(1−η(y)), η(x) = 1,

where α ∈ [0,1] is a bias parameter. For α < 1/2, opinion 0 is favored; for α > 1/2, opinion 1 is favored. This
destroys coexistence: eventually the favored opinion wins out. You can think about this bias as a stubborn
friend. Who will not change his mind no matter the arguments.

4.5.2. Threshold voter model
Another variation is the threshold voter model, where a site changes state only if sufficiently many neighbors
disagree. For example, in the majority rule version, a site flips if more than half of its neighbors are in the
opposite state. These models show very different behavior: coexistence can occur even in one and two di-
mensions.

For example, in the majority rule version, a site flips if more than half of its neighbors are in the opposite state.
This corresponds to a flip rate

c(x,η) = 1

{ ∑
y∼x

1{η(y) ̸= η(x)} > 1

2
deg(x)

}
,

where the sum is over neighbors y of x, and deg(x) is the number of neighbors. Unlike the linear voter model,
this rate is not linear in η and introduces a nonlinearity that can lead to very different behavior, including
phase transitions and coexistence even in low dimensions.





5
Invariant Measures and Long-Term

Behavior

In Chapter 4 we described the voter model, its duality with coalescing random walks, and the clustering–
coexistence dichotomy. We saw that the long-term behavior of the system is captured by its invariant mea-
sures: in low dimensions the absorbing states are the only invariants, while in higher dimensions a contin-
uum of nontrivial invariant measures arises.

In this chapter we deepen the analysis. We first introduce the connection between invariant measures and
harmonic functions. We then state and prove theorems about extremal invariant measures. Finally, we use
ergodic theorems to describe convergence of the system towards equilibrium, both in infinite and finite sys-
tems.

The results presented here are based on foundational work by Liggett and Durrett, whose treatments of inter-
acting particle systems and stochastic processes provided the theoretical backbone for our approach.

5.1. Harmonic Functions and Martingales
We begin by asking a fundamental question: if the voter model evolves for a long time, what kind of equilibria
can it reach? These equilibria are precisely the invariant measures of the process. But how can we characterize
them?

One of the most powerful methods is to relate invariant measures of spin systems to harmonic functions of
the underlying random walk. This connection emerges naturally from the generator of the voter model, and
it can be sharpened by martingale arguments. In this section we develop this link in detail, starting from
definitions, then proving properties, and finally building up to classification results.

5.1.1. Harmonic Functions

Definition 5.1.1 (Harmonic function). Let (X t ) be a random walk on Zd with transition kernel p(x, y). A
function h :Zd →R is called harmonic if

h(x) =∑
y

p(x, y)h(y), ∀x ∈Zd .

The meaning of this definition is that h(x) is the expected value of h after one step of the random walk. In
other words, harmonic functions are precisely the fixed points of the averaging operator induced by p.

Harmonic functions are not just abstract objects: they encode equilibrium behavior of Markov processes. To
see why they matter here, we connect them to invariant measures of the voter model.
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5.1.2. Invariant Measures and Harmonic Functions
Proposition 5.1.1 (Harmonic functions from invariant measures). If µ is a translation-invariant invariant
measure for the voter model. Define η∼µ as a random configuration drawn from µ. Then the function

h(x) =µ[η(x)]

is harmonic for p.

Proof. Let η ∼ µ be a random configuration drawn from the invariant measure µ. Since µ is invariant, the
distribution of ηt remains equal to µ for all t ≥ 0. This means that for any site x,

d

d t
Eµ[ηt (x)] = 0.

On the other hand, the generator L of the voter model acts on the spin at site x as

Lη(x) =∑
y

p(x, y)
(
η(y)−η(x)

)
.

Taking expectations under µ and using linearity, we get

d

d t
Eµ[ηt (x)] =∑

y
p(x, y)

(
Eµ[ηt (y)]−Eµ[ηt (x)]

)
.

Since the left-hand side is zero (by invariance), this implies∑
y

p(x, y)
(
h(y)−h(x)

)= 0,

where h(x) := Eµ[η(x)]. Rearranging gives

h(x) =∑
y

p(x, y)h(y),

which is precisely the definition of harmonicity. So the invariance of µ ensures that the expected spin value
at each site satisfies the harmonic condition.

Invariant measures correspond to harmonic functions. Thus the classification of invariant measures reduces
to the classification of bounded harmonic functions of the kernel p.

5.1.3. Martingale Properties
A second way to see this connection is through martingale methods. Martingales naturally arise in interacting
particle systems when we look at averages of conserved quantities. For the voter model, the relevant quantity
is the density of 1’s.

Proposition 5.1.2 (Density martingale). Let ηt be the voter model. Define the empirical density of 1’s in a finite
box Bn = [−n,n]d by

M (n)
t = 1

|Bn |
∑

x∈Bn

ηt (x).

Then (M (n)
t )t≥0 is a martingale with respect to the natural filtration, and in particular

E[M (n)
t ] = E[M (n)

0 ], ∀t ≥ 0.

In the infinite-volume limit, the global density ρt = E[ηt (0)] satisfies ρt = ρ0 for all t .

Proof. Fix n and consider Mn(t ). The generator of the voter model acts on η(x) as

Lη(x) =∑
y

p(x, y)
(
η(y)−η(x)

)
.

Taking expectations and differentiating in time gives

d

d t
E[Mn(t )] = 1

|Bn |
∑

x∈Bn

∑
y

p(x, y)
(
E[ηt (y)]−E[ηt (x)]

)
.
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Interchanging the sums and using symmetry of p(x, y), the double sum cancels:∑
x,y

p(x, y)
(
E[ηt (y)]−E[ηt (x)]

)= 0.

Hence, E[Mn(t )] is constant in t . To conclude that Mn(t ) is a martingale, we note that it is adapted to the
natural filtration, has bounded increments, and satisfies

E[Mn(t ) |Fs ] = Mn(s) for s ≤ t ,

by the Markov property and linearity of expectation.
For the global density, translation invariance of the measure implies that the expected value of ηt (x) is the
same for all x. Therefore,

ρt := E[ηt (x)] = E[ηt (0)] for all x,

and since the expectation is constant in time, we have ρt = ρ0.

This proposition formalizes the neutrality of the voter model: the expected density of 1’s never changes. In
fact, the martingale convergence theorem implies that densities converge almost surely, a fact that will be
crucial in later sections.

5.1.4. The Liouville Property
We now return to harmonic functions. The key question is: what harmonic functions exist? The answer
depends dramatically on the dimension of the underlying lattice.

Theorem 5.1.1 (Liouville property). If d ≤ 2, the only bounded harmonic functions for simple random walk
are constants.

Proof. Let h be a bounded harmonic function, i.e.,

h(x) =∑
y

p(x, y)h(y) for all x ∈Zd .

This condition implies that the process (h(Xn))n≥0, where Xn is a simple symmetric random walk, is a bounded
martingale. Indeed, the harmonicity ensures that

E[h(Xn+1) | Xn] = h(Xn),

which is the defining property of a martingale.
Now fix y ∈Zd and let τy be the hitting time of y . Since the walk is recurrent for d ≤ 2, we have

Px (τy <∞) = 1 for all x.

Apply the optional stopping theorem to the bounded martingale h(Xn) and the stopping time τy ∧n:

h(x) = Ex [h(Xτy∧n)].

Taking the limit as n →∞ and using recurrence, we get

h(x) = Ex [h(Xτy )] = h(y),

since Xτy = y almost surely. As x and y were arbitrary, it follows that h is constant.

Corollary 5.1.1 (Trivial invariant measures in low dimensions). For d ≤ 2, the only translation-invariant in-
variant measures of the voter model are δ0 and δ1, or their convex mixtures.

This result reveals the first major dichotomy: in low dimensions, recurrence of random walks forces all har-
monic functions to be trivial, and therefore the only possible equilibria of the voter model are consensus
states.





6
Conclusion

In this thesis, we have developed a rigorous and self-contained analysis of the linear voter model, a funda-
mental example of an interacting particle system. Our primary goal was to understand the long-term behav-
ior of the model, particularly the dichotomy between clustering and coexistence, and to explore the role of
duality in deriving these results.

Chapter 2 laid the probabilistic foundation by introducing continuous-time Markov processes and the frame-
work of interacting particle systems. We defined key concepts such as generators, semigroups, and invariant
measures, and discussed the Harris graphical construction as a tool for visualizing the evolution of spin sys-
tems.

In Chapter 3, we turned to random walks and potential theory. We studied recurrence and transience, Green’s
functions, and harmonic functions, culminating in the Liouville property. These results provided the analytic
tools necessary to understand the dual behavior of the voter model in different dimensions.

Chapter 4 introduced the voter model itself. We defined the model formally, discussed its basic properties,
and established its duality with coalescing random walks. Using this duality, we proved the central result: the
model clusters in dimensions d ≤ 2 and coexists in dimensions d ≥ 3. We also examined absorbing states,
invariant measures, and convergence to equilibrium, and briefly discussed extensions such as the biased and
threshold voter models.

Finally, Chapter 5 connected invariant measures to harmonic functions and martingale properties. We showed
how the classification of extremal invariant measures reduces to the classification of bounded harmonic
functions, and how the Liouville property explains the absence of nontrivial invariant measures in low di-
mensions.

Overall, this thesis demonstrates how probabilistic and analytic techniques can be combined to yield a com-
prehensive understanding of the voter model. The interplay between duality, dimension, and long-term be-
havior highlights the richness of interacting particle systems and their connections to classical probability
theory.
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7
Discussion and Further Research

While this thesis provides a comprehensive analysis of the linear voter model, several aspects remain open
for further exploration and refinement.

Chapter 2 introduced the probabilistic framework underlying interacting particle systems. Although the gen-
eral theory was presented clearly, some definitions could benefit from additional motivation or illustrative
examples.

In Chapter 3, we developed the analytic tools necessary to study the voter model, including recurrence, tran-
sience, and harmonic functions. While the connection between recurrence and clustering was established,
the derivation of Green’s functions and their asymptotic behavior could be expanded on.

Chapter 4 presented the core results on the voter model, including its duality with coalescing random walks.
There could be more elaboration on the connection to coalescing random walks. A more explicit construc-
tion of the dual process would clarify this relationship.

The discussion of invariant measures in Chapter 5 highlighted the connection between harmonic functions
and long-term behavior. While the classification of extremal invariant measures was outlined, the construc-
tion of the family {νρ}ρ∈[0,1] in high dimensions could be made more concrete.

Future research directions include:

• Extending the analysis to nonlinear variants of the voter model, such as the biased or threshold models,
and studying their phase transitions.

• Investigating the scaling limits of the voter model and its connection to measure-valued diffusions or
superprocesses.

• Exploring numerical simulations to visualize clustering, coexistence, and consensus times in finite sys-
tems.

• Developing a more detailed treatment of duality, including explicit constructions and applications to
other interacting particle systems.

These directions offer promising avenues for deepening our understanding of the voter model and its role in
the broader theory.
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