
 
 

Delft University of Technology

Massive Terrains in CityGML

Kumar, Kavisha

Publication date
2016
Document Version
Final published version
Citation (APA)
Kumar, K. (2016). Massive Terrains in CityGML. Geonovum.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Report: Massive Terrains in CityGML

Geonovum & 3D Geoinformation, TU Delft

Date: 11-11-2016
Version: 1.0

3D geoinformation
Department of Urbanism

Faculty of Architecture and the Built Environment
Delft University of Technology

Jantien Stoter
Kavisha Kumar



Contents

1 Storing & visualizing massive terrains 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Terrains in CityGML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 TINs in CityGML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Grids in CityGML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Problems in storing massive terrains in CityGML . . . . . . . . . . . . . . . . . . . . . 10
1.4 Visualization of massive terrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 X3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 KML/COLLADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Virtual globes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Proposed solution 13
2.1 For storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 For visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Imagery services with Cesium 17
3.1 WMS (Web Map Service) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 TMS (Tile Map Service) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 WMTS (Web Map Tile Service) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1 Report: Massive Terrains in CityGML



List of Figures

1.1 Snapshot of an area of 3DTOP10NL in CityGML. Notice that the terrain, roads, wa-
ter courses are all triangulated, forming one large triangulation for the whole of the
Netherlands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Digital Terrain Model in CityGML (Groger et al., 2012) . . . . . . . . . . . . . . . . . 7
1.3 TIN + Grid combination in CityGML. TIN vertices may lie anywhere on the grid and

not necessarily at the centre of each grid pixel. (Kumar et al., 2016) . . . . . . . . . . 7
1.4 OGC Simple Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Geometry of Rectified Grid (Portele, 2012) . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 TINs in CityGML and ISO 19107:2003 Spatial schema (Kumar et al., 2016) . . . . . . 9
1.7 CityGML LOD concept for a terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Cesium web globe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Framework for proposed solution. CityGML/GML are extented to store terrain geom-
etry and semantics as proposed.(Kumar, 2015) . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Snapshot of the new geometry types in GML for the TINTerrain type (Kumar, 2015) 15
2.3 Cesium glTF pathway (Mathew Amato, 2015) . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 TIN terrain as quantised mesh (Kumar, 2015) . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 TOP100Raster WMS over Cesium webglobe . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 TOP100Raster TMS over Cesium webglobe . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 brtachtergrondkaartWMTS over Cesium webglobe. Query parameters: service:WMTS

version:1.0.0, request:GetTile, tilematrix:EPSG:28992:4, layer:brtachtergrondkaart, style:default,
tilerow:5, tilecol:10, tilematrixset:EPSG:28992, format:image/png . . . . . . . . . . . . 23

3.4 brtachtergrondkaartWMTS over Cesium webglobe. Query parameters: service:WMTS,
version:1.0.0, request:GetTile, tilematrix:EPSG:28992:4, layer:brtachtergrondkaart, style:default,
tilerow:5, tilecol:6, tilematrixset:EPSG:28992, format:image/png . . . . . . . . . . . . 24

2 Report: Massive Terrains in CityGML



List of Tables

3.1 WebMapServiceImageryProvider options . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 createTileMapServiceImageryProvider options . . . . . . . . . . . . . . . . . . . . 20
3.3 WebMapTileServiceImageryProvider options . . . . . . . . . . . . . . . . . . . . . . . 22

3 Report: Massive Terrains in CityGML



Abbreviations

ADE Application Domain Extension.

AHN2 Actueel Hoogtebestand Nederland (version 2).

CityGML City Geography Markup Language.

COLLADA COLLAborative Design Activity.

CZML Cesium Language.

DTM Digital Terrain Model.

GIS Geographic Information System.

glTF GL Transmission Format.

GML Geography Markup Language.

KML Keyhole Markup Language.

TIFF Tagged Image File Format.

TIN Triangulated Irregular Network.

TMS Tile Map Service.

VRML Virtual Reality Modelling Language.

W3DS Web 3D Service.

WMS Web Map Service.

WMTS Web Map Tile Service.

XML eXtensible Markup Language.

4 Report: Massive Terrains in CityGML



Chapter 1

Storing & visualizing massive terrains

1.1 Introduction
A 3D city model is a digital representation of the geographical objects within a city (Stadler and
Kolbe, 2007). At first, 3D city models were mainly used for visualization but with the advancements in
geoinformation technologies, they have gained importance in different applications like urban planning
(Döllner et al., 2006; Kolbe et al., 2015), 3D cadastre (Stoter et al., 2013; Çağdaş, 2013; Guo et al.,
2013), building rooftop solar irradiation estimation (Biljecki et al., 2015a; Eicker et al., 2014), building
energy demand estimation (Kaden and Kolbe, 2014; Krüger and Kolbe, 2012), noise mapping (Stoter
et al., 2008), population estimation (Biljecki et al., 2016), etc.; see Biljecki et al. (2015b) for an
overview. It should be noticed that so far in practice, the applications of 3D city modelling are
mostly centred around the buildings; other features, e.g. terrain/relief, vegetation, roads, water bodies,
bridges, are often ignored. Here, the main focus is on the storage and dissemination of massive terrains
in the context of 3D city models. Generally grids and TINs (Triangulated Irregular Networks) are
considered as the basic GIS structures for the representation of terrains. We focus here on TINs.

The 3D GIS standard CityGML (City Geography Markup Language) allows to store terrains as
TINs and grids (Groger et al., 2012). The storage as grids in CityGML is simple and is based on GML.
The grids can be stored either inline as a finite number of geometric locations (x,y) with elevation
values or as a hyperlink to an external file (say a TIFF file) containing the geodata (x,y,elevation).
CityGML follows the OGC Simple Feature structure for the storage of TIN geometry (Figure 1.6).
Although we see OGC Simple Feature as the current acceptable solution for storing 3D city objects,
we say that it is not suitable to efficiently store massive TINs. Firstly, with massive TINs, the datasets
become very large, which greatly hinders exchange and dissemination. Secondly, there is very little
topological information stored, which prevents us from using the triangles for analysis. The cause
of these two problems is that triangles are represented as linear rings, which stores each triangle
independently, and moreover repeats several vertices (Figure 1.6). The rest of the limitations of the
current solution are discussed in Section 1.3.

As an example, let’s consider 3DTOP10NL, the 3D city model of Netherlands (Kadaster, 2015),
which covers the whole country, including buildings, terrain, roads, canals, etc. (see Figure 1.1). It
is constructed by adding the third dimension from the AHN2 point cloud, obtained from airborne
laser-scanners, to the objects in the 2D topographic map TOP10NL (Elberink et al., 2013). Its terrain
is a constrained TIN with more than 1 billion triangles (1,156,641,666 to be exact). Storing it with
the current solution of CityGML requires around 686 GB of storage space for the terrain geometry.
One can imagine that if all the elevation points from the point cloud are used (around 640 billions,
thus around 1.3 trillion triangles), then the file size would clearly prevents us from using the dataset
in practice. With the increasing size (in terabytes) of these datasets, the biggest challenge lies in their
storage, management and dissemination.

5 Report: Massive Terrains in CityGML



Figure 1.1: Snapshot of an area of 3DTOP10NL in CityGML. Notice that the terrain, roads, water
courses are all triangulated, forming one large triangulation for the whole of the Netherlands.

1.2 Terrains in CityGML
CityGML is an XML based data model for the storage and exchange of virtual 3D city models (Groger
et al., 2012). It is implemented as an application schema of GML3 (Geography Markup Language ver-
sion 3.1.1) and models 3D geometry along with semantics. The data model of CityGML comprises of
a core module and several thematic extension modules like Building, Relief, Bridge, LandUse,
Transportation, Vegetation, WaterBody, etc. (Groger et al., 2012). The terrain/relief is an
integral part of a 3D city model. CityGML allows to store terrains as TINs and Grids. In CityGML,
the DTM is provided by the thematic module Relief. The terrain can be represented either as a TIN
(TINReflief), or as a Grid (RasterRelief), or as masspoints (MasspointRelief), or as breaklines
(BreaklineRelief) (Figure 1.2). The corresponding GML3 classes are: gml:RectifiedGridCoverage
for grids, gml:MultiCurve for break lines, gml:MultiPoint for mass points and gml:Triangulated-
Surface or gml:Tin for TINs (Groger et al., 2012). It is also possible to represent a terrain with a
combination of different terrain types within a single dataset. For instance, terrain can be modelled
by a coarse grid with some areas depicted by detailed TIN (Figure 1.3) or as a TIN with break lines
to depict a constrained triangulation, etc. The validity of each terrain type is limited to a certain area
defined by the validity_extent_polygon.

6 Report: Massive Terrains in CityGML



Figure 1.2: Digital Terrain Model in CityGML (Groger et al., 2012)

TIN Relief

Grid Coverage
validity polygon

Figure 1.3: TIN + Grid combination in CityGML. TIN vertices may lie anywhere on the grid and not
necessarily at the centre of each grid pixel. (Kumar et al., 2016)

7 Report: Massive Terrains in CityGML



1.2.1 TINs in CityGML

The class TINRelief describes a terrain as a triangulated surface (i.e. a TIN) embedded in 3D space.
Its geometry is specified by the GML class gml:TriangulatedSurface which is a collection of triangles
with gml:Triangle geometry (Figure 1.6). The triangles are stored as per the Simple Feaure structure
(Figure 1.4) i.e. as a closed linear ring of vertices with the repetition of first vertex as the last vertex
of the ring. Within its subclass gml:Tin, only the points (with 3D coordinates) are represented, along
with optional breaklines (which acts as constraints in the triangulation (Shewchuk, 1997)), control
points, etc. The support for TINs in GML3 as Linear Rings is consistent with OGC Geometry Abstract
Specifications, ISO 19107:2003 Spatial schema and OGC Simple Feature Common Architecture (OGC,
2011).

(x1, y1, z1)

(x2, y2, z2) (x3, y3, z3)

< gml : triangle >
< gml : exterior >
< gml : LinearRing >
< gml : posList > x1 y1 z1 x2 y2 z2 x3 y3 z3 x1 y1 z1 < /gml : posList >

< gml : LinearRing >
< gml : exterior >

< gml : triangle >

Figure 1.4: OGC Simple Feature

1.2.2 Grids in CityGML

The class RasterRelief defines the storage of a terrain as a grid coverage in CityGML. It’s features
are defined by the GML class gml:RectifiedGridCoverage. The rectified grid coverage is a discrete
point coverage in which the grid points are geometrically referenced (Portele, 2012). It has a domain
which is a rectified grid comprising of a finite number of geometric locations. The range of the coverage
has a finite number of attribute values associated with the point locations. The range can also have
a hyperlink to an external file (say a GeoTIFF file) containing the geodata (x, y, elevation). The
geometry of a rectified grid is shown in Figure 1.5. A point location is defined as the grid origin (O)
and the offset vectors (u, v) specifies the position of the next point locations.

O
u

v

grid

O − Grid Origin
u, v − Offset vectors

Figure 1.5: Geometry of Rectified Grid (Portele, 2012)

8 Report: Massive Terrains in CityGML



Figure 1.6: TINs in CityGML and ISO 19107:2003 Spatial schema (Kumar et al., 2016)

9 Report: Massive Terrains in CityGML



1.3 Problems in storing massive terrains in CityGML
Nowadays 3D data acquisition and processing techniques such as airborne laser scanning and multi-
beam echosounding generate billions of 3D points for simply an area of few square kilometers. The
TIN generated from these points could be massive in size even for a small city like Delft. Kumar
et al. (2016) enlists several problems associated with the storage of these massive triangulations with
current CityGML Simple Feature storage solution. Some of them are:

1. Huge data volumes : Since every triangle is stored as a linear ring of vertices in Simple Feature
structure (Figure 1.4), the size of the CityGML files is increased considerably with the repeated
storage of vertex information.

2. No referencing of triangles and their vertices : There is no referencing scheme for the vertices of
a triangle in Simple Feature structure. Each of the triangle is specified with the coordinates of
its vertices in full which takes more space (Figure 1.4). This is also the main cause of large size
of CityGML datasets, as mentioned in problem 1.

3. No topology : There is no storage of topological information of TIN in Simple Feature and
triangle structure. The triangles are stored individually irrespective of their neighbours. This
hinders spatial analysis greatly.

4. No specifications for terrain LODs : There is no distinction between different LODs of a terrain
in CityGML at geometrical and semantic level. The CityGML 3.0 provides extended LODs for
the Building module only and the LOD specifications of other modules like Relief, etc. are
left out as unessential features (Löwner et al., 2013; Gröger and Löwner, 2016). Giving only a
gml:lod does not solve the issue if we cannot identify the difference between LODs (Figure 1.7).

Figure 1.7: CityGML LOD concept for a terrain

5. Vertical triangles are not handled : 3DTOP10NL models urban objects like buildings, roads, etc.
integrated in the terrain. In a way it is not completely 2.5D but a 2.75D model with vertical
walls. A 2.75D models is a 2-manifold surface embedded in a 3D space (Gröger and Plümer,
2005). When a 2.75D model is projected on a 2D surface, the vertical surfaces flatten out which
distorts the geometry of the model. There is no mechanism in CityGML to mark out these
vertical surfaces so as to remove them while transforming from 3D to 2D.

10 Report: Massive Terrains in CityGML



1.4 Visualization of massive terrains
Visualization is an important and complex issue in the context of 3D city models. A large number
of software have been developed for the offline visualization of CityGML data such as FZK Viewer,
CityGML SpiderViewer, Autodesk LandXplorer, FME Data Inspector, etc. However, these software
are required to be installed on the user machine in order to work with CityGML files. The visualization
of 3D city models represented with CityGML on web is still a challenging area. CityGML is designed
for the storage and exchange of 3D city models and not for visualizing them. Visualizing CityGML
over web requires to follow another pathway of separating the geometric information from semantic
part in the commonly used 3D graphics formats and using them to visualize the model. With the
increasing size of datasets, CityGML files become too large and cannot be rendered directly over
the web browser. Also, sometimes the 3D data cannot be visualized as the user did not install the
right browser plugins. In order to visualize CityGML data over a web browser, several 3D graphical
standards like X3D1, KML2/COLLADA3, etc. are used.

Terrain rendering has been an open problem for quite a long time. Many different applications
require visualizing the 3D city models at different LODs. There is no distinction (geometric and se-
mantic) between the LODs of a terrain in the CityGML. The enormous amount of data to be fetched,
the heterogeneity of data sources, the complexity of rendering are only a few parts of this challenge.
The crucial thing for rendering terrains is the geometry. This answers two questions:

• What is the elevation of the points in terrain?
• What is the representation used for surface geometry? A heightmap or a triangle mesh?

Lindstrom et al. (1996) first proposed the quadtree structure for rendering height maps which has
been adopted by closed source systems like Nokia maps, Apple maps, etc. for creating virtual earths
and map applications. Popular application Google Earth rely on KML (Keyhole Markup Language)
for rendering the 3D city models. The open source community has good examples like World Wind
(Bell et al., 2007), Cesium JS 4, OpenWebGlobe 5 or WebGLEarth 6. With terrain datasets crossing
the billion mark in the count of triangle geometries, the common bottleneck of web visualization is
the rate at which these triangles can be rendered over the graphics engine.

1.4.1 X3D

X3D is an XML based, open 3D data format and is used for representing 3D scenes in web envi-
ronment. It is the successor of VRML (Virtual Reality Modelling Language)7. Several studies have
been conducted to visualize CityGML data over the web browser using X3D. Mao and Ban (2011)
developed a framework for the online visualization of CityGML models. According to the research,
3D scenes are generated from the CityGML data based on the geometric and semantic information,
which are then viewed in the web browser using X3DOM. Supporting the importance of X3D, Prieto
et al. (2012) introduced a framework for the visualization of CityGML data over web (without any
dependency over plugins) using X3D and W3DS (Web 3D Service).

1.4.2 KML/COLLADA

KML (Keyhole Markup Language) is a file format used to display geographic data in an Earth browser
such as Google Earth. KML Version 2.2 has been adopted as an OGC implementation standard. KML

1http://www.web3d.org/x3d/what-x3d
2https://developers.google.com/kml/
3https://www.khronos.org/collada/
4http://cesiumjs.org/
5http://www.openwebglobe.org
6http://www.webglearth.org/
7http://gun.teipir.gr/VRML-amgem/spec/index.html

11 Report: Massive Terrains in CityGML



focuses on geographic visualisation, including annotation of maps and images. Although KML is not
designed for 3D visualisation, it uses COLLADA for 3D modelling. COLLADA (COLLAborative De-
sign Activity) is an XML based open standard for the representation and exchange of 3D assets between
the applications. It focuses on the exchange of geometric data and 3D scenery. KML/COLLADA is
designed for Earth browser, while X3D is a better choice to present online 3D city models for its
compatibility with the HTML and wide support from popular browsers such as Firefox or Chrome.

1.4.3 Virtual globes

With the advancements in the development of 3D web based applications, virtual globes have emerged
as a new medium for visualizing and interacting with the geodata. They provides the user ability
to freely move around in the virtual environment by changing the viewing angle and position. To
develop cross-platform and cross-browser applications, several WebGL based virtual globes have been
developed like Cesium, OpenWebGlobe, WebGLEarth, etc.. The virtual globe worth mentioning is
Cesium. Cesium is an open-source JavaScript library to create 3D virtual globes as well as 2D maps
on a web browser Figure 1.8. The main features of Cesium are:

• a 3D globe, 2D map, and Columbus view (2.5D) with the same API.
• support for visualizing 3D models in industry standard formats like KML, glTF (GL Transmis-
sion Format), GeoJSON, TopJSON, CZML (Cesium Language), etc.

• support for high resolution terrain visualization.
• layer imagery from multiple sources, including WMS, TMS, WMTS, Bing Maps, Mapbox, Google
Earth Enterprise, OpenStreetMap, ArcGIS MapServer, standard image files, and custom tiling
schemes.

• includes extensive libraries which support 2D as well as 3D geometries. The user can draw
polyline, polygon, ellipsoid, sphere, labels, billboards and sensors.

• includes handlers to control mouse/keyboard events, camera movements and zoom and pan the
virtual globe.

Figure 1.8: Cesium web globe

12 Report: Massive Terrains in CityGML



Chapter 2

Proposed solution

Based on the weaknesses of the current storage solution (as highlighted in Section 1.3), a solution has
been proposed (Kumar, 2015) for:

• developing a robust schema for the compact storage of terrains (TINs) in CityGML and
• visualizing and disseminating the CityGML terrains.

Figure 2.1: Framework for proposed solution. CityGML/GML are extented to store terrain geometry
and semantics as proposed.(Kumar, 2015)

2.1 For storage
The proposal is to develop an alternative representation for terrain (TINs), Terrains@CityGML as an
extension to CityGML by adding new geometry encoding schemes for TINs in the CityGML and GML
schema. CityGML has the concept of ADE (Application Domain Extension) to extend the schema with
new classes/attributes which are not explicitly modelled in CityGML. ADEs are increasingly being
used in creating application-specific extensions like for energy modelling (Nouvel et al., 2015), BIM-IFC
integration with CityGML (de Laat and Van Berlo, 2011), IMGeo for modelling Dutch topographic
data in CityGML (Brink et al., 2013), indoor modelling (Kim et al., 2014), noise modelling (Groger
et al., 2012), etc. Similarly, there are many specialized versions of GML. For instance, FieldGML is
GML based implementation for the representation of geofields in 2D and 3D (Ledoux, 2008). Another
GML based implementation is NcML-GML which provides for storing the metadata of netCDF files
in GML (Nativi et al., 2005). Others include CSML (Woolf et al., 2006), GeoSciML (Sen and Duffy,
2005), etc.

13 Report: Massive Terrains in CityGML



The ADE will cover all the four aspects of modelling a terrain in CityGML: geometry, semantics,
texture and LOD. New geometry types for indexing vertices and triangles will be introduced in the
GML schema. They can be:

1. a set of vertices/points in 2D or 3D space.
2. a set of connected triangles and their vertices in 2D or 3D space.
3. a set of connected triangles, their vertices and additional constraints (breaklines) in 2D or 3D

space.
4. a set of vertex stars.

The CityGML schema will be extended to include the new geometry types and semantics for the
buildings, water bodies, terrain/relief, roads, etc.. The ADE will have two main terrain representation
types TINTerrain and StarTerrain capable of storing TINs as a collection of triangles (VTP, 2012)
and as a collection of stars (Ledoux, 2015), respectively. A bucketing or a tiling scheme will be
introduced for managing the massive TINs. Figure 2.2 depicts a snapshot of the preliminary ADE
schema for the TINTerrain type. The experimental results of prototype implementation to convert
TINs to the proposed CityGML ADE structure shows that it is possible to compress the data size up
to a factor of 25 with massive real-world terrains (more than 1 billion triangles) (Kumar et al., 2016).

2.2 For visualization
For visualizing, the proposed framework is based on using Cesium 3D webglobe for rendering terrains
over web. Cesium has two terrain formats: heightmaps1 and quantized mesh2. The heightmaps can
be considered as a uniform grid of point-height values organized in tiles. Each tile overlaps with its
neighbours at the edges so as to have a seamless terrain. The quantized mesh format has similar tile
structure as the heightmaps, but here each tile is optimised for rendering terrains at a large scale. An
irregular mesh of triangles is pre rendered for each of the tiles. It provides a better representation of
terrains with less details in flat areas and more details for a steep terrain. It is more memory efficient
and is rendered fast.

Both these formats require converting the terrain data to Cesium specific format glTF (GL Trans-
mission Format 3) before rendering over Cesium Figure 2.3. As per the research requirements, the
input for rendering should be a well formed Terrain@CityGML ADE instance. The plan is to use Ce-
sium quantized mesh format for rendering massive terrains without following the conversion to Cesium
specific glTF. The Terrain@CityGML is already an indexed based structure and can be easily inte-
grated in the Cesium API. The open source Cesium API will be extended to include readers/writers
for Terrain@CityGML data. Cesium Terrain Builder4, a C++ library, will be used to create the
terrain tiles. A Cesium Terrain server5 will be setup to host our tile-set over web. Figure 2.4 depicts
the process of generating tiles for the Terrain@CityGML data. The dissemination products will be
in CityGML, OBJ and 3D SHP formats. The export functionality for these formats will be added to
the 3DCityDB Exporter tool and an open source transformation tool for the file based outputs will
be developed.

1http://cesiumjs.org/data-and-assets/terrain/formats/heightmap-1.0.html
2https://cesiumjs.org/data-and-assets/terrain/formats/quantized-mesh-1.0.html
3https://github.com/KhronosGroup/glTF
4https://github.com/geo-data/cesium-terrain-builder
5https://github.com/geo-data/cesium-terrain-server

14 Report: Massive Terrains in CityGML



Figure 2.2: Snapshot of the new geometry types in GML for the TINTerrain type (Kumar, 2015)

15 Report: Massive Terrains in CityGML



Figure 2.3: Cesium glTF pathway (Mathew Amato, 2015)

Figure 2.4: TIN terrain as quantised mesh (Kumar, 2015)

16 Report: Massive Terrains in CityGML



Chapter 3

Imagery services with Cesium

Cesium provides support for rendering high resolution imagery from different standard data services.
Several different layers can be ordered and blended together. A particular advantage of using these data
services is that the data remains at the source and is not physically delivered. This makes it possible
to guarantee the timeliness, reliability and availability of data. Cesium has support for different data
services like WMS, WMTS, TMS, Open Street Maps, Bing Maps, ESRI ArcGIS MapServer,Google
Earth Enterprise, etc.

3.1 WMS (Web Map Service)
The OpenGIS WMS1 provides a simple HTTP interface for requesting georeferenced map images from
distributed geospatial databases. A WMS request defines the geographic layer(s) and area of interest
to be processed. The response to the request is one or more georeferenced map images. A map is not
the data itself but is usually an image (in JPEG, PNG, etc. format) which can be displayed in web
applications.

In Cesium, WebMapServiceImageryProvider is used to display the image maps hosted by a WMS
server. It has different options2 to specify the properties of the imagery to be fetched from the server.
Table 3.1 lists the options utilised in the implementation. Given below is a code snippet for WMS in
Cesium. The map layer used is the TOP100Raster3(EPSG:28992) of Netherlands.

The Cesium output is shown in Figure 3.2

var rect = new Cesium.Rectangle(
Cesium.Math.toRadians(3.3700),
Cesium.Math.toRadians(50.7500),
Cesium.Math.toRadians(7.2100),
Cesium.Math.toRadians(53.4700));

var provider = new Cesium.WebMapServiceImageryProvider({
url: ’https://geodata.nationaalgeoregister.nl/top100raster/wms?”,
layers: ’top100raster’
tilingScheme : new Cesium.GeographicTilingScheme(
{ rectangle: rect, }
),
tileWidth:256,
tileHeight:256

})

1http://www.opengeospatial.org/standards/wms
2https://cesiumjs.org/Cesium/Build/Documentation/WebMapServiceImageryProvider.html
3https://www.pdok.nl/nl/service/wms-top100raster

17 Report: Massive Terrains in CityGML



Name Type Description

url String URL of the WMS service
layers String Names of the layers to be dis-

played
tileWidth Number (optional) Width of each tile in

pixels
tileHeight Number (optional) Height of each tile in

pixels
tilingScheme TilingScheme (optional) The tiling scheme cor-

responding to the organization
of the tiles in the TileMatrixSet

rectangle Rectangle (optional) The rectangle covered
by the layer

minimumLevel Number (optional) The minimum level-
of-detail supported by the im-
agery provider

maximumLevel Number (optional) The maximum level-
of-detail supported by the im-
agery provider, or undefined if
there is no limit

Table 3.1: WebMapServiceImageryProvider options

Figure 3.1: TOP100Raster WMS over Cesium webglobe

18 Report: Massive Terrains in CityGML



3.2 TMS (Tile Map Service)
OSGeo TMS4 delivers map tiles of georeferenced data at fixed scales. TMS is pure RESTful implemen-
tation build from scratch. Cesium has createTileMapServiceImageryProvider to deliver the tiled
imagery served by TMS compliant servers. For instance, the GDAL2Tiles5 is an open-source project
which allows to create TMS compatible map tiles. It has different options6 to specify the properties of
the imagery to be fetched from the server. Table 3.2 lists the options utilised in the implementation.
Given below is a code snippet for TMS in Cesium. The map layer used is the TOP100Raster7 of
Netherlands. The Cesium output is shown in Figure 3.2.

var rect = new Cesium.Rectangle(
Cesium.Math.toRadians(3.3700),
Cesium.Math.toRadians(50.7500),
Cesium.Math.toRadians(7.2100),
Cesium.Math.toRadians(53.4700));

var provider = Cesium.createTileMapServiceImageryProvider({
url : ’https://geodata.nationaalgeoregister.nl/tms/1.0.0/
top100raster@EPSG:28992@png’,
fileExtension: ’png’,

tab tilingScheme : new Cesium.GeographicTilingScheme(
{ rectangle: rect }
),
tileWidth: 256,
tileHeight: 256,
maximumLevel: 14

});

4http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
5http://www.klokan.cz/projects/gdal2tiles/
6https://cesiumjs.org/Cesium/Build/Documentation/createTileMapServiceImageryProvider.html
7https://www.pdok.nl/nl/service/wms-top100raster

19 Report: Massive Terrains in CityGML



Name Type Description

url String Path to image tiles on the server
fileExtension String File extension for the images on

the server
tileWidth Number (optional) Width of each tile in

pixels
tileHeight Number (optional) Height of each tile in

pixels
tilingScheme TilingScheme (optional) The tiling scheme cor-

responding to the organization
of the tiles in the TileMatrixSet

rectangle Rectangle (optional) The rectangle covered
by the layer

minimumLevel Number (optional) The minimum level-
of-detail supported by the im-
agery provider

maximumLevel Number (optional) The maximum level-
of-detail supported by the im-
agery provider, or undefined if
there is no limit

Table 3.2: createTileMapServiceImageryProvider options

Figure 3.2: TOP100Raster TMS over Cesium webglobe

20 Report: Massive Terrains in CityGML



3.3 WMTS (Web Map Tile Service)
The OpenGIS WMTS8 delivers map tiles (mostly 256x256 pixel size) of georeferenced data using tile
images with predefined content, extent, and resolution. The advantage of tiles is that they can be
pre-renderd on the server side, and cached on the client side. This will reduce waiting time for the
data and bandwith. WMTS is inspired by the OSGeo TMS.

Cesium has WebMapTileServiceImageryProvider to deliver the tiled imagery served by WMTS
1.0.0 compliant servers. It has different options9 to specify the properties of the imagery to be fetched
from the server. Table 3.3 lists the options utilised in the implementation. Given below is a code
snippet for WMTS in Cesium. The map layer used is the brtachtergrondkaart10(Background map)
of Netherlands. The Cesium output is shown in Figure 3.3 and Figure 3.4. Figure 3.3 depicts the tile
layer (5,6) and Figure 3.4 depicts the tile layer (5,10).

var rect = new Cesium.Rectangle(
Cesium.Math.toRadians(3.3700),
Cesium.Math.toRadians(50.7500),
Cesium.Math.toRadians(7.2100),
Cesium.Math.toRadians(53.4700));

var provider = new Cesium.WebMapTileServiceImageryProvider({
url : ’https://geodata.nationaalgeoregister.nl/
tiles/service/wmts/brtachtergrondkaart?request=GetCapabilities’,
layer : ’brtachtergrondkaart’,
style : ’default’,
format : ’image/png’,
tileMatrixSetID : ’EPSG:28992’,
tileMatrixLabels : [’EPSG:28992:0’,’EPSG:28992:1’,’EPSG:28992:2’,
’EPSG:28992:3’,’EPSG:28992:4’,’EPSG:28992:5’,’EPSG:28992:6’,
’EPSG:28992:7’,’EPSG:28992:8’,’EPSG:28992:9’,’EPSG:28992:10’,
’EPSG:28992:11’,’EPSG:28992:12’,’EPSG:28992:13’,’EPSG:28992:14’],
tilingScheme : new Cesium.GeographicTilingScheme(
{ rectangle: rect }
),
tileWidth: 256,
tileHeight: 256,
maximumLevel: 14

})

8http://www.opengeospatial.org/standards/wmts
9https://cesiumjs.org/Cesium/Build/Documentation/WebMapTileServiceImageryProvider.html

10https://www.pdok.nl/nl/service/wmts-brt-achtergrondkaart

21 Report: Massive Terrains in CityGML



Name Type Description

url String The base URL for the WMTS-
GetTile operation

format String Mime type for the image to be
fetched from the server

layer String Name of the layer to be dis-
played

rectangle Rectangle (optional) The rectangle covered
by the layer

tileMatrixSetID String The identifier of the TileMa-
trixSet to use for WMTS re-
quests

tileMatrixLabels Array (optional) A list of identifiers in
the TileMatrix to use for WMTS
requests, one per TileMatrix
level

tileWidth Number (optional) Width of each tile in
pixels

tileHeight Number (optional) Height of each tile in
pixels

tilingScheme TilingScheme (optional) The tiling scheme cor-
responding to the organization
of the tiles in the TileMatrixSet

Table 3.3: WebMapTileServiceImageryProvider options

22 Report: Massive Terrains in CityGML



Figure 3.3: brtachtergrondkaart WMTS over Cesium webglobe. Query parameters: service:WMTS
version:1.0.0, request:GetTile, tilematrix:EPSG:28992:4, layer:brtachtergrondkaart, style:default,
tilerow:5, tilecol:10, tilematrixset:EPSG:28992, format:image/png

23 Report: Massive Terrains in CityGML



Figure 3.4: brtachtergrondkaartWMTS over Cesium webglobe. Query parameters: service:WMTS,
version:1.0.0, request:GetTile, tilematrix:EPSG:28992:4, layer:brtachtergrondkaart, style:default,
tilerow:5, tilecol:6, tilematrixset:EPSG:28992, format:image/png

24 Report: Massive Terrains in CityGML



References

Bell, D. G., Kuehnel, F., Maxwell, C., Kim, R., Kasraie, K., Gaskins, T., Hogan, P., and Coughlan,
J. (2007). NASA World Wind: Opensource GIS for mission operations. In 2007 IEEE Aerospace
Conference, pages 1–9. IEEE.

Biljecki, F., Heuvelink, G. B., Ledoux, H., and Stoter, J. (2015a). Propagation of positional error in
3D GIS: estimation of the solar irradiation of building roofs. International Journal of Geographical
Information Science, 29(12):2269–2294.

Biljecki, F., Ohori, K. A., Ledoux, H., Peters, R., and Stoter, J. (2016). Population estimation using
a 3D city model: A multi-scale country-wide study in the netherlands. PloS one, 11(6):e0156808.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015b). Applications of 3D city
models: State of the art review. ISPRS International Journal of Geo-Information, 4(4):2842–2889.

Brink, L., Stoter, J., and Zlatanova, S. (2013). UML-based approach to developing a CityGML
Application Domain Extension. Transactions in GIS, 17(6):920–942.

Çağdaş, V. (2013). An Application Domain Extension to CityGML for immovable property taxation:
A Turkish case study. International Journal of Applied Earth Observation and Geoinformation,
21:545–555.

de Laat, R. and Van Berlo, L. (2011). Integration of BIM and GIS: The development of the CityGML
GeoBIM extension. In Advances in 3D geo-information sciences, pages 211–225. Springer.

Döllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., Teichmann, K., et al. (2006). The virtual 3D
city model of berlin-managing, integrating, and communicating complex urban information. In
Proceedings of the 25th Urban Data Management Symposium UDMS, volume 2006, pages 15–17.

Eicker, U., Nouvel, R., Duminil, E., and Coors, V. (2014). Assessing passive and active solar energy
resources in cities using 3D city models. Energy Procedia, 57:896–905.

Elberink, S. O., Stoter, J., Ledoux, H., and Commandeur, T. (2013). Generation and dissemination of
a national virtual 3D city and landscape model for the Netherlands. Photogrammetric engineering
& remote sensing, 79(2):147–158.

Groger, G., Kolbe, T. H., Nagel, C., and Häfele, K.-H. (2012). OGC City Geography Markup Language
(CityGML) Encoding Standard version 2.0.0.

Gröger, G. and Löwner, M.-O. (2016). Proposal for a new LoD concept for CityGML 3.0. Technical
report, CityGML OGC Work Package 03.

Gröger, G. and Plümer, L. (2005). How to get 3-D for the price of 2-D? topology and consistency of
3-D urban GIS. Geoinformatica, 9(2):139–158.

Guo, R., Li, L., Ying, S., Luo, P., He, B., and Jiang, R. (2013). Developing a 3D cadastre for the
administration of urban land use: A case study of Shenzhen, China. Computers, Environment and
Urban Systems, 40:46–55.

Kadaster (2015). 3DTOP10NL. http://arcg.is/1GKYy7E. (Last accessed: April 15, 2016).

25 Report: Massive Terrains in CityGML

http://arcg.is/1GKYy7E


Kaden, R. and Kolbe, T. H. (2014). Simulation-Based Total Energy Demand Estimation of Buildings
using Semantic 3D City Models. International Journal of 3-D Information Modeling, 3(2):35–53.

Kim, Y., Kang, H., and Lee, J. (2014). Developing CityGML indoor ADE to manage indoor facilities.
In Innovations in 3D Geo-information sciences, pages 243–265. Springer.

Kolbe, T. H., Burger, B., and Cantzler, B. (2015). CityGML goes to broadway. In Photogrammetric
Week, volume 15, pages 343–356.

Krüger, A. and Kolbe, T. (2012). Building analysis for urban energy planning using key indicators
on virtual 3d city models?the energy atlas of berlin. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 39(B2):145–150.

Kumar, K. (2015). Storage, maintenance and dissemination of massive 3D city models. PhD Proposal,
3D Geoinformation Group, Delft University of Technology, The Netherlands.

Kumar, K., Ledoux, H., and Stoter, J. (2016). A citygml extension for handling very large tins. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W1:137–143.

Ledoux, H. (2008). FieldGML: An alternative representation for fields. In Headway in Spatial Data
Handling, pages 385–400. Springer.

Ledoux, H. (2015). Storing and analysing massive TINs in a DBMS with a star-based data structure.
Technical Report 2015.01, 3D geoinformation, Delft University of Technology, Delft, the Nether-
lands.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F., Faust, N., and Turner, G. A. (1996). Real-time,
continuous level of detail rendering of height fields. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 109–118. ACM.

Löwner, M.-O., Benner, J., Gröger, G., and Häfele, K.-H. (2013). New concepts for structuring 3D
city models - An extended level of detail concept for CityGML buildings. In Computational Science
and Its Applications–ICCSA 2013, pages 466–480. Springer.

Mao, B. and Ban, Y. (2011). Online visualization of 3d city model using citygml and x3dom. Carto-
graphica: The International Journal for Geographic Information and Geovisualization, 46(2):109–
114.

Mathew Amato (2015). Cesium and the future of 3D geospatial standards. http://cesiumjs.org/
presentations/Cesium-and-the-Future-of-3D-Geospatial-Standards.pdf. JS Geo, Philadel-
phia. (Last accessed: July 10, 2016).

Nativi, S., Caron, J., Davis, E., and Domenico, B. (2005). Design and implementation of netCDF
markup language (NcML) and its GML-based extension (NcML-GML). Computers & Geosciences,
31(9):1104–1118.

Nouvel, R., Bahu, J.-M., Kaden, R., Kaempf, J., Cipriano, P., Lauster, M., and Casper, E. (2015).
Development of the CityGML Application Domain Extension energy for urban energy simulation.
Proceedings of Building Simulation 2015.

OGC (2011). Opengis R© implementation specification for geographic information-simple feature access-
part 1: Common architecture. OGC document version 06-103r4.

Portele, C. (2012). OGC Geography Markup Language ( GML ) Extended schemas and encoding
rules GML Version 3.3 Doc. No. 10-129r1.

Prieto, I., Izkara, J. L., and del Hoyo, F. J. D. (2012). Efficient visualization of the geometric infor-
mation of citygml: application for the documentation of built heritage. In International Conference
on Computational Science and Its Applications, pages 529–544. Springer.

Sen, M. and Duffy, T. (2005). GeoSciML: development of a generic geoscience markup language.
Computers & Geosciences, 31(9):1095–1103.

26 Report: Massive Terrains in CityGML

http://cesiumjs.org/presentations/Cesium-and-the-Future-of-3D-Geospatial-Standards.pdf
http://cesiumjs.org/presentations/Cesium-and-the-Future-of-3D-Geospatial-Standards.pdf


Shewchuk, J. R. (1997). Delaunay Refinement Mesh Generation. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburg, USA.

Stadler, A. and Kolbe, T. H. (2007). Spatio-semantic coherence in the integration of 3D city models.
In Proceedings of the 5th International Symposium on Spatial Data Quality, Enschede.

Stoter, J., De Kluijver, H., and Kurakula, V. (2008). 3D noise mapping in urban areas. International
Journal of Geographical Information Science, 22(8):907–924.

Stoter, J., Ploeger, H., and van Oosterom, P. (2013). 3D cadastre in the netherlands: Developments
and international applicability. Computers, Environment and Urban Systems, 40:56–67.

VTP (2012). ITF Format - Virtual Terrain Project. http://vterrain.org/Implementation/
Formats/ITF.html. (Last accessed: July 25, 2016).

Woolf, A., Lawrence, B., Lowry, R., Kleese van Dam, K., Cramer, R., Gutierrez, M., Kondapalli, S.,
Latham, S., Lowe, D., O’Neill, K., et al. (2006). Data integration with the climate science modelling
language. Advances in Geosciences, 8(8):83–90.

27 Report: Massive Terrains in CityGML

http://vterrain.org/Implementation/Formats/ITF.html
http://vterrain.org/Implementation/Formats/ITF.html

	Storing & visualizing massive terrains
	Introduction
	Terrains in CityGML
	TINs in CityGML
	Grids in CityGML

	Problems in storing massive terrains in CityGML
	Visualization of massive terrains
	X3D
	KML/COLLADA
	Virtual globes


	Proposed solution
	For storage
	For visualization

	Imagery services with Cesium
	WMS (Web Map Service)
	TMS (Tile Map Service)
	WMTS (Web Map Tile Service)




