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1. Introduction 

Kinematic wave theory consists of two main equations: the conservation of vehicles and the 

equilibrium flow-density relationship. Assuming that each traffic state along a road at each point in 

time is an equilibrium state, these combine into a single partial differential equation for the 

propagation of traffic along a network link. Newell (1993) proposed a solution scheme using 

cumulative numbers of vehicles as the primary variable, which later led to the development of the 

Link Transmission Model (Yperman, 2007). Daganzo (2005) implicitly shows that for triangular 

fundamental diagrams, this model indeed leads to the correct solution. 

However, the requirement of triangular fundamental diagrams is rather restrictive. Firstly, it imposes 

the speed in subcritical traffic to be constant instead of more realistically, depending on the traffic 

density. Secondly, it impedes any discontinuity between the free-flow capacity and the queue 

discharge rate, i.e. a capacity drop. In this extended abstract, we therefore extend the Link 

Transmission Model to handle arbitrary concave fundamental diagrams, optionally including capacity 

drops. The resulting model, which converges to kinematic wave theory if there is no capacity drop, 

can be used in a network simulation and features both standing queues, with a head fixed at the 

bottleneck, and moving jams, including stop-and-go waves. 

2. Continuous concave fundamental diagram 

We start by defining a link model for the case of a continuous concave fundamental diagram  Q k , 

i.e. without capacity drop. Alternatively, this diagram can be written as two functions  K q  and 

 K q , describing the free-flow branch and the congested branch respectively. We define sets of 

relevant wave speeds  inf im / ,supim /Z dq dK dq dK  and  inf im / ,supim /Z dq dK dq dK    

respectively. The fundamental diagram is required to satisfy 

   min ,max ,min ,m , ,x 0aZ Z Z Z      . An example fundamental diagram is depicted in Figure 

1a. Note that we omit link indices on all variables for brevity. 

The theoretical basis for traffic propagation along the link is formed by kinematic wave theory. The 

sending and receiving flows will be solved in terms of cumulative numbers of vehicles. More 

precisely, our algorithm relies on finding the maximum possible  , xN x t t  at the considered end of 

the link  0 , Lx x x  at the end of the time step under consideration, so that    , ,xN x t t N x t   is the 

maximum number of vehicles exiting or entering the link during the time step, which simply are the 

sending flow  S t  and the receiving flow  R t  respectively. 

We thus rephrased the traffic propagation problem into finding the maximum possible value of 

 , xN x t t  for  0 , Lx x x . To do so, we apply the variational theory developed by Daganzo (2005). 
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The boundary condition for this application is formed by the values of the cumulative curves in 

previous time steps at both link ends. We build a solution network that indicates how each boundary 

point may constrain the cumulative number of vehicles at our solution point  , xP x t t  . After each 

time step, the boundary condition is extended with the newly found solution and the solution network 

is shifted to compute the next time step. 

  

Figure 1: (a) Example fundamental diagram. (b) Example solution network for determining the 

sending flow, highlighting the relevant parts of the boundary and the corresponding paths to the 

solution point. 

Building upon the proofs in Daganzo (2005), we can derive a finite set of space-time paths that form 

an exact solution network, as illustrated in Figure 1b. This solution method is more general than those 

proposed by Yperman (2007) for piecewise-linear diagrams and Gentile (2010) for continuously-

differentiable diagrams and better at reproducing acceleration fans or rarefaction waves. 

3. Fundamental diagram with capacity drop 

We then extend the model so that we can include a capacity drop. A breakdown of traffic, activating a 

capacity drop, must occur at a node, i.e. a discontinuity in the road infrastructure. The capacity drop 

will be active on the downstream end of a link if and only if its sending flow is not fully accepted by 

the downstream node model, i.e. if the node model triggers a queue on the link. By applying a node 

model without memory effects and using inverted-lambda style fundamental diagrams like Figure 2a, 

we permit the head of a queue to move upstream. Additionally, we model another capacity drop on 

the upstream end of an outgoing link if too much traffic is trying to enter it. This ensures that the 

queue discharge rates before and after a discontinuity in an inhomogeneous road are both taken into 

account. 

If the node model triggers congestion, we first reduce the sending flows to the queue discharge rates 

on the relevant incoming links, if applicable, due to their capacity drops being enabled. To do so, we 

need to define a transitional traffic state on the incoming link that serves as a transition from the 

(possibly varying) inflow state to the queue discharge state. Hence we create a stop-and-go wave with 

traffic state  ,S Sk q  as depicted in the fundamental diagram in Figure 2a, which is some predefined 

point on the congested branch of the fundamental diagram satisfying S Ck k . This requires that the 

congested branch is linear for 
Sk k . Next, if these reduced sending flows are still too large for the 

node to accept, we also reduce the receiving flows to their queue discharge rates on the relevant 

outgoing links, if applicable. This results in standing queues in front of the node, preceded by the 

previously mentioned transitional traffic state if necessary. If the congested traffic after the transition 

has a higher density than 
Sk , the transitional traffic state is adjusted to match that. 

The transitional traffic state effectively originates from a single point  ,Lx T , and its physical length 

increases or decreases depending on whether the inflow is higher or lower than the queue discharge 
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rate. According to shockwave analysis, the finite maximum shockwave speed of the tail of the 

transitional traffic state is    /S C S C Sw q q k k   . Figure 2b illustrates such a transition. 

  

Figure 2: (a) Example fundamental diagram including a capacity drop. (b) Unrelated example 

transition from free-flow states I with flows higher than the queue discharge rate, to congested states 

III, via transitional congested state II. State II will not get a lower density than the first state III. 

For the link model, this means we effectively add a new path to the solution network for the receiving 

flow to create the transitional traffic state once downstream congestion occurs. On the other hand we 

must remove backward paths when the downstream link end is uncongested, so that flows above the 

discharge rate can be sustained. For both, a set   must be maintained for each downstream link end, 

containing the times it is congested, not including the queue discharge state. Special attention is also 

needed for the dissolution of congestion. If congestion resolves at the downstream link end at time  , 

then the link outflow will be constrained to 
Dq  until some later time  , which is assumed   until it 

is set to a finite value by a queue dissolution procedure as it detects all congestion on the link has 

dissolved. The latter procedure, which must be invoked for the link at the start of every upstream 

and/or downstream time step, also reduces   to prevent dissolved queues from affecting the upstream 

link end. 

4. Resulting link model algorithms 

The algorithms shown on the next page implement our extended link model, supporting arbitrary 

concave fundamental diagrams, optionally with a capacity drop, subject to the restriction that in case 

of a capacity drop the congested branch is linear for 
Sk k . To complete the network loading model, 

these have to be supplemented with an extended node model, which must decide whether or not the 

capacity drop occurs on each of its incoming links. In the full study, we also provide the detailed 

proofs and derivations of our algorithms, present a suitable node model supporting capacity drops and 

investigate numerical examples. 
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Sending flow algorithm: 

➢ 1 : / min
Lxt t t L Z   . 

➢      0 1, : , min
LL xN x t t N x t Z L   . 

➢ 
0

2 1:
xt

t t


    . 

➢ Loop: 

➢  
02 2: min , / max

Lx xt t t t t L Z    . 

➢ If 1 2t t : 

➢ Exit the loop. 

➢    0 2 0 1

2 1

, ,
:

N x t N x t

t tq


 . 

➢ If 
   1 2min maxL

L L
xV q V q

t t t t     : 

➢        0 1 1, : ,
L LL x xN x t t N x t q t t t K q L      . 

➢      
20 2, : ,

L xL

L
L x t t t

N x t t N x t L
 

   . 

➢ 1 2:t t . 

➢ If 
Lxt t  : 

➢      , : ,
L LL x L D xN x t t N x q t t      . 

➢      : , ,
LL x LS t N x t t N x t   . 

Receiving flow algorithm: 

➢    
0 00 0, : ,x C xN x t t N x t q t    . 

➢ 
01 : / maxxt t t L Z    . 

➢  1: t   . 

➢ If  : 

➢      
00 1, : , maxx LN x t t N x t Z L     . 

➢ Else: 

➢ 
2 1:

xL
t

t t


    . 

➢ Loop: 

➢ 2 2:
Lxt t t  . 

➢ If 2 / maxt t L Z  : 

➢ Exit the loop. 

➢ If 2t  : 

➢        
00 2 1 2, : , maxx L DN x t t N x t Z L q t t       . 

➢ Exit the loop. 

➢ 
2 1:

xL
t

t t


    . 

➢ Loop: 

➢  
02 2: min , / min

Lx xt t t t t L Z     . 

➢ If 1 2t t : 

➢ Exit the loop. 

➢ If  1 2,t t  : 

➢    2 1

2 1

, ,
: L LN x t N x t

t tq



  . 

➢ If 
   01 2max min

L L
xV q V q

t t t t
   

     : 

➢        
0 00 1 1, : ,x L xN x t t N x t q t t t K q L         . 

➢ If 2t  : 

➢ If  : 

➢      
0 2 0

0 2, : ,
x

L
x L t t t

N x t t N x t L
 

    . 

➢ Else: 

➢ 
    2 2, ,

: min ,
L x LL

xL

N x t t N x t

Stq q
 


  . 

➢ If  
2 0

min
x

L
t t t V q 

  : 

➢        
0 00 2 2, : ,x L xN x t t N x t q t t t K q L         . 

➢ Else: 

➢      
0 2 0

0 2, : ,
x

L
x L t t t

N x t t N x t L
 

    . 

➢ : true  . 

➢ 1 2:t t . 

➢ If  : 

➢ 
2 2:

xL
t

t t


    . 

➢ Loop: 

➢ 2 2:
Lxt t t  . 

➢ If 
02 /xt t t L w   : 

➢ Exit the loop. 

➢ If 2t  : 

➢ 
    2 2, ,

: min ,
L x LL

xL

N x t t N x t

Stq q
 


    

➢        
0 00 2 2, : ,x L xN x t t N x t q t t t K q L         . 

➢ Exit the loop. 

➢      
00 0: , ,xR t N x t t N x t   . 

Congestion dissolution algorithm: 

➢ If   : 

➢ Loop: 

➢ : min
LL xt t  . 

➢   0
0

0 0 min
: max ,

D
x

L
L xV q

t
t t t t



        
. 

➢ If 0t t : 

➢ Exit the loop. 

➢ If      0 0 0, ,D L L D LN x t k L N x t q t t    : 

➢  : ,Lt   . 

➢ If   : 

➢ 
 0 min

:
D

L
V q

t   . 

➢ Exit the loop. 

➢ Else: 

➢ 
00 0: xt t t  . 

Notes: The values of  ,   and 0t  persist over time steps, with 

initial values : 0   and 0 :t   . The compound assignment 

operation :a b  is short for  : min ,a a b . The floor-to-multiple-of 

operator 
b

a    means /a b b    and the ceil-to-multiple-of operator 

b
a    means /a b b   . The following functions are used: 

           

           

min

max

q q

v v
q domK

q q

v v
q domK

v K q V q v Z v K q

v K q V q v Z v K q

 

 



 

 
 

     

                
  


