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SUMMARY

Over vegetation-covered areas, C-band SAR signals, including backscattering
coefficients(σ0) and interferometric coherence, are highly varied in both spatial
and temporal extents owing to the dynamics in vegetation growth and soil hydraulic
characteristics[1]. Having a good understanding of the relationship between them is
very useful in many aspects, including agriculture management, hydrology, climate
change, etc.

Acquiring adequate vegetation biophysical and soil variables is a challenge, due to
it is costly and time-consuming to establish regional frameworks. The crop models,
showing notable forecast skills for enlarged time and space scale crop prediction, are
employed.

The specific crop model that drives this research is Decision Support System for
Agrotechnology Transfer (DSSAT)[2]. DSSAT, a software package that accounts for
the interactions between weather, soil and crop management options, is widely used
to help users select and compare different options and predict crop-related results.
In this paper, the crop simulation is carried out over all the sugarbeet fields in
Noord-Brabant, Netherlands. The examination of applying the DSSAT sugarbeet crop
model to the study area in the Netherlands is conducted. With the required input
data, including daily weather observations, soil profiles, management practices and
genotype information(cultivar), the model can automatically simulate and visualize
the crop growth and soil variables. Our analysis indicates that the estimates from the
current CSM-CERES-Beet model match the general sugarbeet cultivation situations in
the Netherlands.

Although crop models can simulate the crop growth process and forecast crop yields,
significant uncertainties can result from the unreliability of initial input data and model
design. Some external environmental forcing mechanisms, including climate change
and human disturbance, would derive unpredictable shifts in crop system responses.
Thus, the SAR data begin to be assimilated to detect the anomalies from this step.
Abundant available C-band SAR data from Sentinel-1 show a good potential to provide
the relative true conditions of surface parameters, such as soil moisture, ground biomass
and canopy geometry. Therefore, it opens an innovative perspective for monitoring
regional crop conditions by comparing the crop growth estimates and Sentinel-1 C-band
SAR observations.

The relation between the crop and soil variables and SAR signals is settled by the
random forest regression model, which aims at investigating the correlation between
vegetation biophysical variables and the C-band SAR patterns, as well as examining the
effect of different feature combinations.
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LIST OF ABBREVIATIONS AND

SYMBOLS

Table 1: Acronym List

Acronym Full Name
SM Soil Moisture
SAR Synthetic-aperture radar

DSSAT Decision Support System for Agrotechnology Transfer
CSM Cropping System Model
LAI Leaf Area Index

CWAD Tops weight
SW1D Soil water content of the top layer(0-5cm)
SW3D Soil water content of the third layer(15-30cm)

BRP Basisregistratie Gewaspercelen
RF Random Forest

PAR Photosynthetically active radiation (PAR)
VWC vegetation water content
NDVI Normalized Difference Vegetation Index
RUE radiation-use-efficiency
CV Cross Validation

MSE Mean Squared Error
ASCAT Advanced SCATterometers
SMOS Soil Moisture and Ocean Salinity
SMAP Soil Moisture Active Passive

IW Interferometric Wide swath
ASC Ascending pass

DESC Descending pass

Table 2: Symbols List

Symbols Full Name
σ0 Backscattering coefficients
σ0

V H Backscattering coefficient VH
σ0

V V Backscattering coefficient VV
R2 R-squared
ρ Spearman correlation coefficient
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1
INTRODUCTION

This chapter introduces the background to this research and the research questions that
this thesis aims to address. The last section describes the general structure of this report.

1.1. BACKGROUND
Monitoring crop growth and yield is essential for farmers and government to make
reasonable crop management decisions and quick responses to climatic shifts. In this
context, there is a widespread demand for agricultural monitoring. The surveying of
crop biophysical variables plays a significant role in agricultural scheduling and yield
forecasting. Some key variables consist of Leaf Area Index (LAI), Tops weight(CWAD)
and also soil water content which control energy and water circulation. LAI and CWAD
are direct descriptors of vegetation features, while soil moisture is crucial for crop water
detection and for irrigation decisions.

This research aims at linking radar observables with the states of crop and soil
moisture. However, because the amount of available ground data is insufficient, we
will be using crop model simulations as a proxy for ground data. Crop models are
expected to be sensitive to climate and crop management changes and adjust their
behaviors according to specific given conditions. The crop models provide us with a
more systematic and quick way to understand the crop production process. Establishing
a real agricultural framework and waiting for crop growth cycles are expensive and
time-consuming. And sometimes particular regional-scale case is limited to assist in
making agricultural strategies. With the implementation of crop models, it becomes
efficient to collect crop biophysical variables. Researchers and farmers can gain a
comprehensive understanding of each variable’s influence and importance on the crop
growth process by just modifying model parameters with fingertips. Moreover, under
the guidance of model simulations, farmers can make adaptations in advance to achieve
maximum yield or avoid crop losses derived from climate changes.

DSSAT (Decision Support System for Agrotechnology Transfer) is a software suite that
comprises crop simulation models for over 42 crop types[2]. In this research, DSSAT was
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performed for sugarbeet in the region of Noord-Brabant for the year 2017 due to that
widely-covered sugarbeet can provide enough data for the regression analysis and can
be handled with the DSSAT model. Management data generated from the previous field
experiments were used to calibrate and evaluate the cropping system model of DSSAT.
This guarantees the accuracy of crop simulations the model develops. There are lots
of remote sensing approaches allowing to test the simulation performance of the crop
model. Here, calculated LAI data from Sentinel-2 satellite are used as an assessment tool
to test the validity of the sugarbeet simulations.

Besides using crop models to simulate crop growth, microwave remote sensing
signals can be employed to assist in tracking these crop coefficients on a range of scales
in the real world. We are interested in linking crop-growth-related parameters to radar
observations as they are complementary from an information content point of view to
the field and optical observations, and since they are all-weather and all-time available.
Several studies suggest that radar data at C-band, which with a high spatial resolution,
can reflect the attributes of the soil and vegetation conditions. Mostly, the measured
time series of backscattering coefficients σ0 (VV and VH) are used as an effective tool for
crop monitoring due to their already exploited sensitivity to crop biophysical variables.

However, lots of studies[3] these days found that the time series of the coherence
reflects in part the temporal evolution of the crop phenology: initial high coherence
meets the condition of highly exposed soil, then the lower temporal values coincide with
the progressive vegetation growth stage, and the subsequent increase matches the crop
maturation. Hence, coherence will also be considered in this correlation examination.

The aim of this study is to gain a better understanding of the relationship between
C-band radar observables and vegetation biophysical variables. The analysis was based
on C-band backscattering coefficients and coherence data during an entire growing
season of sugarbeet in 2017. By using the random forest regression tool, correlation
analyses should be conducted between these radar observables and the vegetation
features. Since different features have different predictive abilities, the selection of the
features will have a significant impact on the regression results. Four relevant vegetation
features, tops weight(CWAD), Leaf Area Index (LAI), the soil water content of the top
layer(SW1D) and the soil water content of the root zone(SW3D) of the sugarbeet plant,
are first selected to develop the regression model, followed by some feature importance
analysis to provide suggestions on the further refinement of the selection.

1.2. PROBLEM STATEMENT
This graduation thesis focuses on providing an understanding on the work of detecting
the correlation between the C-band SAR backscatter and coherence signals and
sugarbeet-related variables in the Noord Brabant, the Netherlands.

To achieve this research goal, multiple sub-questions should be answered. DSSAT
CSM-CERES-Beet model required data of an entire sugarbeet-growth period in 2017.
The applicability of the model in the study area in the Netherlands will be validated. After
the running process, the evaluation of the accuracy of the DSSAT model will be analyzed.
Besides this crop model simulation, the performance of modeling radar observables
by using the random forest regression model will be investigated as well, followed by
discussions about feature importance. Therefore, the following sub-questions will be
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answered in this master thesis:

1. Evaluating DSSAT CSM-CERES-Beet model performance.

• What is the CSM-CERES-Beet model accuracy of simulating the sugarbeet
growing process in the study area in the Netherlands?

2. Evaluating the correlation performance.

• How can the accuracy of the random forest model be increased?

• How well does crop biophysical variables correlate with the backscattering
coefficients(VH and VV)?

• How well does crop biophysical variables correlate with the VV polarized
interferometric coherence?

• How does feature selection affect the prediction accuracy of SAR signals?

1.3. OVERALL STRUCTURE
Chapter 2 goes through the existing studies about the DSSAT crop model and the utility
of Sentinel-1 SAR data for crop growth detection. Chapter 3 presents the methodology
used in this study. Chapter 4 discusses the results and answers the main research
questions stated in the previous section. The conclusions and concerns about further
studies of this research are given in Chapter 5.





2
LITERATURE REVIEW

This study uses DSSAT(Decision Support System for Agrotechnology Transfer) crop
model to simulate dynamic crop growth for sugarbeet. DSSAT is a software developed
by integrating the knowledge about genotype specific parameters of variable crop types
to simulate options for crop management over time and spatial series[4]. And the
Sentinel-1 backscattering coefficient( VH and VV) and coherence VV are SAR signals
need to be predicted.

2.1. DSSAT

2.1.1. DSSAT STRUCTURE

There is a large volume of published studies describing that the available ground data
is not sufficient to satisfy the increasing demand for agricultural decisions. The DSSAT
crop model was derived to integrate knowledge about soil, weather and management for
making better system behavior prediction under different conditions [5].

Figure 2.1 provides a diagram of the DSSAT general architecture for versions up to 3.5.
In these versions, one main potential limitation is that different crop models have their
own soil models, resulting in inconsistency and less efficient incorporation of different
sets of programming code. Thus, DSSAT has been re-designed these years. Now, the
DSSAT is a collection of independent crop simulation models for over 42 crops (as of
Version 4.8) and tools to promote efficient operation of the models. The tools comprise
compatible database programs describing weather, soil, management and experimental
data, software, and application programs.

5
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Figure 2.1: Diagram of database, support software and applications for DSSATv3.5.[4]

2.1.2. DSSAT CROPPING SYSTEM MODEL(CSM)
At the heart of the revised DSSAT version is a cropping system model (CSM), which is
restructured as a modular format.

DSSAT now integrates all crop models into CSM as modules using a common soil
module and a common weather module based on one single set of codes. This reversion
of CSM is introduced in Irmak, A. et al.[6].

The CSM simulates expected growth and development of a crop normally in daily
or hourly time steps, as well as the soil moisture, nutrient dynamics and management
practices, so processes that occur under the cropping system such as organic matter
consumption, evaporation and runoff are also taken into consideration. The main
components of CSM are shown in Fig 2.2 and include:

1. Main program:
Controls the timing of simulations.

2. Land Unit module:
Controls all the simulation processing work and data transfer between primary
modules.

3. Primary modules:
Simulates the diverse processes independently. Primary modules are comprised
of weather, management, soil-plant-atmosphere, soil, and plant submodules.

The required CSM input dataset contains daily weather data, soil data, and
management data about detailed characteristics of variable genotypes (e.g.row spacing,
seeding population, irrigation application). The minimum datasets for DSSAT-CSM
operation are listed in Table 2.1.

2.2. SENTINEL-1 SAR DATA
Several studies have examined the capabilities of using microwave sensors, such as
Advanced SCATterometers (ASCAT), ESA’s Soil Moisture and Ocean Salinity (SMOS)
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Input dataset components

Weather
Daily total incoming solar radiation (M J/ms −d ay),
Maximum and minimum daily air temperature (◦C ),

and Daily precipitation (mm).

Soil

Upper and lower horizon depths (cm),
sand, silt, and clay percentage ,

bulk density(kg /m3), organic carbon density(kgC ar bon/m2),
pH, and root growth information.

Management

Cultivar type,
planting date, density(pl ant s/m2) and depth(cm),

row spacing(cm) and direction,
irrigation and fertilizer dates, methods and amount,

harvest dates and methods

Table 2.1: Contents of minimum datasets for DSSAT-CSM operation.[7]

mission and NASA’s Soil Moisture Active Passive (SMAP), for monitoring vegetation
signals[8]. They are unaffected by weather conditions and provide coverage over large
areas. However, the spatial resolution of these observations is not high enough for many
applications. For example, in this research, the vegetation growth should be monitored
within many separate small fields. If we use the SMOS satellite with a coarse spatial
resolution of 40 km, the sensor can not account for the spatial dynamics of each field.
The launch of SAR satellites break through the limits of temporal and spatial resolutions,
and is making unprecedented opportunities for monitoring and optimizing agricultural
management, especially the Sentinel-1 satellites. Sentinel-1 can provide systematic
observations with a quite short revisit time, and the promise of continuity which allows
developing monitoring tools and services.

The Sentinel-1 Mission (Sentinel-1A and 1B) from the Europe’s Copernicus
programme was launched in 2014 and 2016, respectively. The satellites carry
C-band Synthetic Aperture Radar(SAR) at 5.405 GHz. The default acquisition mode
over(non-polar) land is the Interferometric Wide swath (IW) mode serving both co- and
cross-polarized(VV and VH) data over a 250 km swath at a 20 m spatial resolution. Each
satellite has a temporal revisit time of 12 days, and the revisit frequency is 1-4 days in
Europe when integrating ascending (ASC) and descending (DESC) pass directions from
both Sentinel-1 satellites.

2.2.1. MICROWAVE INDICES FROM SENTINEL-1
Both C-band co-polarized and cross-polarized backscattering coefficients σ0 yield
valuable information about crop structure and type changes, as well as moisture
differences. Additionally, the crop biomass, vegetation water content (VWC) and LAI
are associated with SAR σ0. Many studies[8][9] suggest that the co-polarized(HH and
VV) data was usually used for soil monitoring, while the cross-polarized (VH and HV)
backscattering coefficients have a high correlation with vegetation conditions.

Many previous papers[8][10] indicate that the amount of energy backscattered over
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Figure 2.2: DSSAT Cropping System Model schematic.[7]

a vegetated region does not only contain direct scattering from the vegetation itself,
but also the sum of the attenuated backscatter producing from the underlying surface
and the vegetation-soil interaction(Fig 2.3). The figure suggests that the scattering or
attenuation of radar signals will differ in accordance with the dielectric properties and
physical geometry of the vegetation. Therefore, analysing the radar backscatter under
natural vegetation-covered conditions can be complicated.

Figure 2.3: Conceptual illustration of the incident radar signal across a vegetated surface[10].

The temporal behaviors of σ0 over crop cultivated area can reflect important
information, such as crop dynamics and management, as well as environmental
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conditions. Thus it is necessary to interpret them. Considering the impact of
polarization, backscatter responses from direct ground and canopy have a significant
contribution to VV polarization, while VH scattering is dominated by the trunk-ground
double bounce and by volume scattering[9].

Figure 2.4 shows the C-band Sentinel-1 backscatter data of sugarbeet as an example.
The time series of backscatter signals exhibit an explicit seasonal cycle and the temporal
variations in both VV and VH channels are quite similar. After sowing in March and
April, a downward trend of backscatter VV is derived by stem elongation periods, during
which time the direct soil contribution is attenuated by the developing sugarbeet. At this
time, an increase in volume scattering is counteracted by a decline of the stem-ground
double bounce contribution, leading to the decrease in VH. From mid-May to mid-June,
the backscatter values start to increase, as a result of the significant increase in volume
scattering associated with sugarbeet leaf development. Afterwards, relatively constant
backscatter values are attained due to the completion of above-ground vegetation
coverage. During other time intervals without planted sugarbeet, the backscattering
coefficients are mainly in response to the soil contribution.

Figure 2.4: Time series of Sentinel-1 orbit 88 backscatter data for all sugar beet parcels in the Noord-Brabant;
(top) VV; (bottom) VH.

Aside from backscattering coefficients derived from single images, interferometric
processing of pairs of images provide additional observables. In particular, the
interferometric coherence reveals the magnitude of similarity between the two
associated radar acquisitions[11]. The coherence values always fluctuate from zero
to one. Loss of coherence is known as decorrelation. The related factors that cause
decorrelation can be categorized as thermal decorrelation, spatial decorrelation, and
temporal decorrelation[12]. Thermal decorrelation is used to describe system noises.
Spatial decorrelation refers to the effect of viewing geometry of the radar system.
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Apart from the system noises and motion of platforms, the loss of coherence can be
caused by the temporal target changes. On the issue of agricultural crop monitoring,
crop growth detection is based on the outcome, which integrates the consistent high
coherence from the soil layer and the temporal decorrelation owing to the crop layer.
The correlations between coherence and crop height as well as canopy cover have been
developed by several studies.([13], [14]). Consequently, coherence is a suitable statistic
that can be used to explore the volume scattering differences over crop fields due to
distinct altered crop phenological stages.

Therefore, in this research, coherence is used as an additional information source,
complimentary to the backscatter-based crop monitoring technique.

2.2.2. AGRICULTURAL SANDBOXNL
We have established that Sentinel-1 temporal backscatter and interferometric coherence
data at C-band seem to be well-suited for surface changes. However, the lack of
straightforward access to interpreting SAR data is an obstacle that hinders further
studies. To break down this barrier, a parcel-level database called SandboxNL for the
Netherlands has been built[15]. The division of crop parcels is based on Basisregistratie
Gewaspercelen (BRP), which contains the parcel locations and the crop type linked to
them[16].

SandboxNL includes continuous annual data for each province, starting from 2017.
The database contains information of Sentinel-1A/B SAR data as well as Sentinel 2
data. For Sentinel-1A/B SAR data, the SandboxNL is composed of parcel-level spatially
averaged backscattering coefficients(VV, VH), the parcel-averaged cross-polarization
ratio (VH/VV), as well as their corresponding standard deviation[15]. Each parcel has
its unique OBJECTID, and some attribute features, such as pixel counts, azimuth angle,
etc. Moreover, all the data are separately stored for each relative orbit. Recently, as the
value of interferometric coherence data has been widely discovered, SandboxNL also
provides interferometric coherence dataset.

All of the data above is stored together with static information in pickle files.
Figure 2.5 shows the list of variables and descriptions in the SandboxNL.

In the presence of SandboxNL, the time series patterns of Sentinel-1 data are
increasingly intended to be encompassed in agricultural applications at field scale.
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Figure 2.5: List of variables and descriptions in the SandboxNL[15].





3
METHODOLOGY AND DATA

3.1. STUDY AREA AND CROP

3.1.1. STUDY AREA

The study site is located in Noord-Brabant, which is relatively flat and mostly above sea
level. A great number of lands in the province have been cultivated into agricultural land
and forest. The location of the Noord-Brabant in the Netherlands is shown in Fig 3.2,
along with the spatial distribution of the four main grown crops. Crop types and parcel
boundaries are based on the Basisregistratie Gewaspercelen (BRP)[17].

Figure 3.1 shows that the soil at the surface in the north and lower northwest of the
province is loam and clay, while the rest parts are sand. The general features of land
use in Noord-Brabant are associated with its soil type distribution. As shown in Fig 3.2,
maize is farmed on the sandy regions while the cultivations of sugar beet, wheat, and
potatoes present densely in northwest marine clay area[18].

In Noord-Brabant, the average daytime temperature during winter is around 6◦C ,
while the average maximum temperature in the summertime can reach 25◦C [19].

3.1.2. CROP SELECTION

The crop type selected for this research is sugarbeet. The selected crop type is supposed
to satisfy some conditions. Firstly, in order to get sufficient simulation results in
subsequent steps, the number of the agricultural parcels of the crop type in the study
area should be at least thousands; secondly, the crop is expected to have a relatively high
coherence time series; and, thirdly, the crop type can be modeled in DSSAT.

The coverage of sugarbeet in Noord-Brabant is shown in Fig 3.3. Sugarbeet is a root
crop, cultivated as one of the main sources of sugar production worldwide. Sugarbeet
thrives in temperate climates with a growing season of about 170–200 days. Planting
usually starts in late March or early April for summer crops and harvesting is carried
out promptly in late September or early October so that it is completed before the soil
freezes[20].

13
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Figure 3.1: Map of soil classes in Noord-Brabant in 2017.

Figure 3.2: Map of the location of the study area and main crop types in Noord-Brabant in 2017.
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Figure 3.4 shows the Sentinel-1 parcel-averaged coherence data(VV and VH) from
January 2017 to January 2018 for 2437 sugarbeet parcels in the Noord-Brabant. The
plotted curves represent the mean coherence values for the corresponding acquisition
dates, while the shadows represent the corresponding standard deviation. The general
sowing date is at the end of March, and the usual harvest period is from late September.
Temporal patterns show that during March and April, the fluctuating sowing conditions
lead to high standard deviation over the parcels. After that, the coherence VV keeps at a
high level(>=0.5) until June, this period is assumed to link with the stages of sugarbeet
leaf development.

Then the coherence is constant below 0.4, indicating all parcels are covered in
vegetation leaves. Here, we need to pay attention to a bias resulting from the coherence.
The coherence is biased for low coherence values, thus these low values are higher
than their actual values[12]. In this fully-covered period, since we know that the actual
coherence can be very low, even close to zero, thus the coherence in our study is about
0.2-0.3.

Coherence and standard deviation across parcels generally increase since late
September, suggesting the start of harvesting activities.

3.2. DATA

3.2.1. DSSAT INPUT DATA
The CSM-CERES-Beet model considers the sugarbeet as an annual crop and requires
standard DSSAT input data, including weather data, soil features data, and crop
management data.

METEOROLOGICAL DATA

Daily weather data (solar radiation, minimum, and maximum temperature) for
CSM-CERES-Beet model were collected from all 54 KNMI local weather stations in
Netherlands[21]. While the daily precipitation data in the Netherlands are measured
on +- 300 locations and calculated as gridded files[22]. The averaged temperature values
are at a daily step while the precipitation data are summed up to acquire daily volumes.

SOIL DATA

The soil data comes from the SoilGrid portal, a system for mapping the spatial
distribution of soil profiles to a global extent. The experimental soil properties
containing clay content, bulk density, PH, etc for 6 standard soil depth intervals[23].

MANAGEMENT DATA

The principal field management data consists of sugarbeet cultivar, planting date,
planting depth, irrigation applications dates, harvesting date, etc. All the collected
management data refers to the general sugarbeet cultivation information in the
Netherlands. Field management data for 2017, 2018, and 2019 are provided in Table 3.1.

A cultivar is a genetically distinct variety of crop plants, generally adapted to a
specific region[24]. Thus, in DSSAT, cultivar selection is vital to reflect the genetic
background and agronomic characteristics of a crop’s genetic diversity[25]. Some
coefficients are needed to define a cultivar. The cultivar genetic coefficients for the



3

16 3. METHODOLOGY AND DATA

Figure 3.3: All sugar beet parcels in the Noord-Brabant in 2017.

parameter 2017 2018 2019

Planting date March 31 April 20 April 11
Row spacing(cm) 50 50 50

Planting depth(cm) 3 3 3
Plant population at seeding(plants/m2) 10 10 10

Harvesting September 21 October 1 September 9

Table 3.1: Field management for sugarbeet experimental plots in the Netherlands.
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Figure 3.4: Time series of Sentinel-1 orbit number 37 coherence data for all sugar beet parcels in the
Noord-Brabant; (top) VV ; (bottom) VH. The orange and green vertical line line indicate the general planting

and harvest dates across all sugar beet parcels in the domain, separately.

CSM-CERES-Beet model contain P1, P2, P5, G2, G3, and PHINT[26]. Their definitions
and units are listed in Table 3.2.

It is demanding to derive and calibrate a new cultivar for the Netherlands as the
magnitude of each genetic coefficient required for the model, some of which are not
readily available, is supposed to agree with the gathered sugarbeet growth information.
A new German sugar beet cultivar BTS940(Table 3.2) was calibrated by the management
data located 30 km from Stuttgart and has been updated in the newly released DSSAT4.8
version. Since the location is adjacent to the study area, a comparison experiment
of crop management practices and meteorological conditions between the two study
sites in Germany and the Netherlands is set up to examine whether this cultivar can be
adopted in this research.

The comparison consists of 2 aspects mainly:

1. Crop management data

The collected sugarbeet management data for the experiment conducted in
Germany is from 2016 to 2018. Table 3.3 illustrates that the entire seasonal growing
period and cultivation management of sugarbeet are very similar in the two study
sites.

2. Meteorological data

Temperature and precipitation will exert a significant influence on crop
emergence, root yield, and quality, as well as some characteristics of sugarbeet
canopies. Article[26] reported the time series of daily minimum temperature and
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parameter Definition Units BTS940

P1

Growing Degree Days from
the seedling emergence

to the end of the
juvenile phase (juvenile group of leaves,

depending on the cultivar up to 15–20 leaves)

◦C −d 760.0

P2 Photo period sensitivity hr−1 0.0

P5
Thermal time from leaf growth to

physiological maturity
◦C −d 700.0

G2 Leaf expansion rate during leaf growth stage cm2cm−2d−1 420.0
G3 Maximum root growth rate g m−2d−1 27.5

PHINT
Phyllochron interval,

the interval in thermal time
between successive leaf tip appearances

◦C −d 43.0

Table 3.2: Sugar beet cultivar(BTS940) genetic coefficients for CSM-CERES-Beet model[26].

Planting date
Harvest days
after planting

Planting
depth
(cm)

Plant
population
at seeding

(plants/m2)
2016 2017 2018 2019 2016 2017 2018 2019

NL - 3.31 4.20 4.11 - 174 164 151 3 10.0
DE 4.29 4.4 4.18 - 177 184 169 - 2 10.7

Table 3.3: Comparison of sugarbeet management data between study areas in Netherlands and Germany(NL:
Netherlands, DE: Germany.
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cumulative rain (2016-2018) of the study area in Germany, thus these two factors
are used for comparing meteorological conditions between the two study sites in
Netherlands and Germany. If the magnitudes of the meteorological conditions are
also similar, then we can adopt the cultivar BTS940 in our research.

As shown in Fig 3.5 and Fig 3.6, the extents and trends of minimum temperature
and cumulative rain between the two sites are comparable. Even some small
fluctuations are corresponding, such as the unusual drop in temperature, which
even below 0◦C after sugarbeet had been planted in 2017, occurs in both sites.

The idea of this cultivar selection is to find the modeled growth profile that is most
similar to the Dutch one. In the comparisons above, it is found that the sugarbeet
cultivation conditions in these two experimental sites are similar, suggesting that this
new German cultivar BTS940 is suitable for this research in Noord-Brabant.

3.2.2. SENTINEL-1 DATA
For sugarbeet, whose plant density and vegetation cover are relatively high, coherence
VV is generally more correlated with the growing stages. Therefore, we use three SAR
signal channels involved in the sentinel-1 data collection for this research: VV and VH
polarized backscatter, and VV polarized coherence. The Netherlands is covered by 6
Sentinel-1 satellite tracks. As shown in Fig 3.7, tracks 15, 161, 139, and 110 are not
considered since they only cover part of the Noord-Brabant which is labeled in red.
Agricultural SandboxNL is applied to examine the number of missing observations for
sugarbeet parcels in tracks 88 and 37, respectively(Table 3.4).

As introduced in section 3.1.2, the total sugarbeet parcels in Noord-Brabant is 2437.
In this case, the advantage of selecting orbit 37 is to maintain a sufficient and relatively
complete sugarbeet pattern of the whole province.

Based on the discussion above, the mean parcel-leveled backscatter VV and VH and
coherence VV of orbit 37 with a temporal resolution of six days between 1 April 2017 to
10 September 2017, corresponding to the growth period of sugarbeet, is collected as the
radar dataset for this research.

orbit
Number of parcels

backscatter
Number of parcels

coherence

88 2401 1626
37 2436 2407

Table 3.4: Number of 2017 sugarbeet parcels in SandboxNL dataset for orbit37 and 88 in the study area.
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Figure 3.5: Time series of the daily minimum temperature of study areas in the Netherlands and Germany;
(top) Netherlands ; (bottom) Germany[26].
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Figure 3.6: Time series of cumulative precipitation data of study areas in the Netherlands and Germany; (top)
Netherlands ; (bottom) Germany[26].
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Figure 3.7: Sentinel-1 coverage over the Netherlands based on six relative orbits. The orange polygons show
descending orbits(139,110,37) and the blue show ascending orbits(161,88,15), Noord-Brabant province is

labeled in red[15].
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3.3. METHODOLOGY
This study is about examining whether the Sentinel-1 C-band radar observables and the
simulated plant and soil moisture coefficients from the DSSAT CSM-CERES-Beet model
can correlate in a close manner in the sugarbeet-covered region. Efforts are made to
answer the research questions proposed in Problem Statement . Figure 3.8 shows the
workflow of the methodology followed in this study. The methodology used is described
in the next subsections.

Figure 3.8: Workflow of the methodology, including two models which are labeled in khaki, and multiple
required data sets which are labeled in blue.

3.3.1. SUGARBEET GROWTH SIMULATION
Firstly, the sugarbeet simulation is conducted by DSSAT. The simulation is from planting
to harvesting in 2017 over a total of 2437 parcels in Noord-Brabant. Then the further
evaluation of the model was conducted with the help of calculated temporal LAI data
from Sentinel-2 satellite.

DSSAT SIMULATION SETUP

The SM and plant growth variables can be automatically generated after related
simulation options are set. Some parameter settings are needed to be taken care to avoid
model crashing or the model simulating inadequately[27]. Figure 3.9 shows an overview
of inputs and outputs in DSSAT CSM-CERES-Beet model.

In every experiment file, each sugarbeet parcel is defined as a field factor level and
assigned a level number, afterwards the treatments are constructed. The treatment
schemes in one experiment file can only be two-digit format. Therefore, there are 25
sugar beet experiment files named from SBAL1799 to SBYL1761 over 2437 parcels for
2017 in total. The amount of treatments for SBAL1799 to SBXL1799 experiment files is
99, ranging from 1701 to 1799, while SBYL is formed with the remaining 61 field levels.
In this research, the different management approaches are based on that every level has
its own corresponding weather and soil management factors.

Here, experiment file SBAL1799 is taken as an example, 99 treatments are required to
be set up in the way as following defined:
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Figure 3.9: Overview of inputs and outputs used by sugarbeet crop models.
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• 1 planting factor level.

• 99 field factor levels

• 1 cultivar factor level

• 1 harvest factor level

The developed structure of treatments is shown in Table3.5

level FieldID
Soil

factor level
Weather

factor level
Cultivar

factor level
Planting

factor level
Harvest

factor level

1 SBAL1701 1 1 1 1 1
2 SBAL1702 2 2 1 1 1
3 SBAL1703 3 3 1 1 1
4 SBAL1704 4 4 1 1 1
5 SBAL1705 5 5 1 1 1
... ... ... ... 1 1 1
99 SBAL1799 99 99 1 1 1

Table 3.5: The treatment construction in an experiment file in the DSSAT CSM-CERES-Beet model(using an
experiment file SBAL1799 as an example).

DSSAT CSM-CERES-BEET MODEL SIMULATION OUTPUTS

The DSSAT CSM-CERES-Beet model produces sugarbeet-specific outputs. Variables
correlated with plant growth information and soil water content can be obtained from
different output files.

To investigate the soil moisture profile in the root zone of sugarbeet plants, a general
understanding of how deep the roots can reach when fully grown is necessary. Normally,
the farmers plough into soil for about 22-25(cm) while harvesting the sugarbeet.
Accordingly, SW3D(Soil water content of the third layer(15-30cm)) is the most suitable
variable for analyzing the soil moisture in the root zone.

DSSAT CSM-CERES-BEET MODEL EVALUATION

In general, temporal LAI is tightly correlated with the evolution of vegetation biomass.
Therefore, LAI can be used to evaluate the accuracy of the model simulation. The
evaluation dataset comprised estimated LAI from Sentinel-2 Normalized Difference
Vegetation Index(NDVI) observations. NDVI is commonly used as a direct vegetation
descriptor, since NDVI and LAI display similar seasonal curves with almost equivalent
peak times. Model performances were assessed by comparing the simulated LAI data
and calculated LAI data from NDVI observations of the sugarbeet.

3.3.2. MACHINE LEARNING MODEL FOR REGRESSION ANALYSIS
The next step is to relate the observed radar signals with the simulated plant and SM
variables. Here we use machine learning approach to settle this question. Machine
learning approaches can be employed to solve tricky correlations in data sets, especially
when the specific shape of the distribution of the data can not be identified properly[28].
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For this study, statistical models are not considered. The reason is that for statistical
methods, it first needs to select a befitting model referring to some initial assumptions
about the correlation between the data sets[28]. We have 4 features in this study, thus it is
difficult to propose a model hypothesis by visualizing the data sets. Moreover, what we
need is to derive the pattern for radar signals from the vegetation biophysical features
instead of getting a specific formula between them. Therefore, the machine learning
regression method is suitable to achieve the main goal of this research.

The random forest regression model is a well established approach that has already
been used in many studies. Random forest is a supervised learning algorithm that
contains multiple independent decision trees. The final regression result is the average
prediction of all the trees. This structure can avoid over-fitting due to the subsets and
the randomly selected features at each split node. It can handle messy and real datasets
and is easy to set up. The random forest model also has the advantage of measuring the
feature importance. Thus, it is settled as the machine learning technique for this paper.
The regression analysis is going to be developed based on its good efficiency in finding
interactions automatically. For the implementation of the random forest we used the
scikit-learn Python package, an open-source machine learning library[29].

MODEL INPUT DATA

Using the random forest regression model we aim at establishing a relationship
between the SAR observables (the dependent variable) and plant and SM variables (the
independent variables), which is one of the main objectives of this work.

Before proceeding with the model, the data needs to be pre-processed. The
pre-processing consists of three parts mainly:

Invalid data removal: The time series of DSSAT outputs are continuous from the
sugarbeet planting date. However, the temporal resolution of orbit 37 is six days,
thus this study uses 28 dates from 1 April 2017 to 16 September 2017 to cover the
sugarbeet growth period as much as possible. Moreover, the valid parcels should
not only be measured by Sentinel-1 but also can be simulated by the DSSAT model.
Before performing the regression model, the removal of invalid data should be
done on account of the dates and parcels.

variables flattening: Besides invalid data removal, another essential step of data
pre-processing is to flatten all the variables. The data of each variable are assumed
to be one column. First, the data are sorted by the IDs of the parcels. Then for each
parcel, the data are in time sequence. This way, the data are ready to be split by
the model. More importantly, coherence data are generated from interferometric
pairs combined by two SAR images with temporal separation,thus it represents
a characteristic of difference. Then the prepared X variables, which are going
to prescribe coherence, should adapt their structures to develop field temporal
difference.

X variables normalization: For random forest regression tasks, the model will be more
affected by the high-end values without data normalization[30]. Therefore, the
variables normalization is first performed before prediction to avoid misleading
the model. Min-max normalization is a linear transformation[31]. The minimum
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and maximum values from the original dataset are fetched and each value is
recalculated by using the formula below:

x ′ = x −min(X )

max(X )−min(X )
(3.1)

where X is the original X variables dataset, max(X) and min(X) are the maximum
and minimum values of X respectively, and x ′ and x are the new and old values of
each data respectively.

VARIABLES SELECTION

To obtain better prediction results, instead of using all the DSSAT simulation outputs
directly, it is necessary to delineate dominant simulated variables prior to training a
random forest model[10].

The two used vegetation variables are LAI and CWAD. Significant correspondence
exists between these two parameters and canopy structure, biomass, yield and water
and carbon balance. LAI is a portion of the leaf surface area per unit of ground surface,
defined as

LAI = leaf area

ground area
(3.2)

and has been applied as an efficient indicator of vegetation health and nutrition
states[32]. CWAD represents above-ground biomass with regard to intercepted solar
radiation and radiation-use-efficiency (RUE)[33], therefore impacting crop growth and
yield. The forecast of CWAD is based on intercepted shortwave radiation, temperature,
and the amounts of N uptake[34].

The two used soil water content variables are SW1D and SW3D. The shallow surface
soil moisture (to 5 cm) pattern can reflect the surface energy balance between soil,
vegetation and atmosphere. However, the plant root-zone soil moisture content should
also be exploited to estimate the surface evaporation processes and groundwater
recharge, since it manages plant transpiration[35].

Finally, these four variables are first defined as the regression model features.

MODEL OPTIMIZATION APPROACH

Different combinations of hyperparameters can control the learning behavior of the
model, and afterwards, bring out significantly different results. Therefore, optimizing
hyperparameters for random forest models is a crucial step in making more accurate
predictions.

Cross validation(CV) should be assimilated to avoid overfitting and test data leakage.
The existing approach called k-fold CV splits the training dataset into k smaller folds. K −
1 folds are taken as training dataset to fit the model, then the remaining fold, considered
as test dataset, takes the responsibility for evaluating the model (see Fig 3.10).
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Figure 3.10: The principles of k-fold cross-validation(k=3)[36].

Subsequently, different hyperparameter combinations of the random forest model
were evaluated, premised on the dictionary of the candidate hyperparameter values. The
following four hyperparameters are adjusted:

1. N _est i mator s .
The number of decision trees in the forest.

2. Mi n_samples_spl i t .
The minimum number of samples required for splitting. The split fails if the
number of samples in the node is less than min_sample_split .

3. Mi n_samples_lea f .
The minimum number of samples demanded to be a leaf node. If one of the
leaf nodes contains less than min_samples_leaf samples, the corresponding split
would be abandoned[37].

4. M ax_depth.
The maximum depth of the tree.

After defining the optimal set of hyperparameters, the performance of the random
forest model will be maximized .

ACCURACY ESTIMATION APPROACH

Random forest regression model is practised to quantify the connection between
predictor variables and response variable. The predictive capability of the regression
model can be assessed in various ways without a standard methodology[38]. Here, three
metrics are used to evaluate the degree of fitness between the test dataset of the predictor
variables and the predicted dataset of the response variable:
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1. Mean squared error(MSE) .
The mean squared error (MSE) between predicted values and actual values in the
test dataset. The lower the MSE, the better the regression model fits the dataset.
Here is the formula:

MSE =
∑

i (yi − fi )2

n
(3.3)

where yi is the observed value and fi is the predicted value.

2. R-squared(R2).
The proportion of the variance in the response variable that is predictable from
the predictor variables[39]. This coefficient normally ranges from 0 to 1. The
higher the value, the better the model predictions fit the data. For example, if
R2 = 0.85, this means the predictor variables can explain 85% of the response
variable’s variance. The formula of the R-squared is defined as

R2 = 1−
∑

i (yi − fi )2∑
i (yi − y)2

(3.4)

in which yi represents the observed value, ȳ is the mean of the observed data and
fi is the predicted value.

3. Out-of-Bag(OOB) Score.
Besides the one main training data set, each tree contains a set of sub-samples
that are made by randomly selecting data points from the main set with
replacement[40]. This means after each selection, the selected data points are put
back into the main set. Thus some data points are not selected in this sampling
process, which is formed as out-of-bag sample[41].

OOB score, calculated as the proportion of accurately predicted rows from the
out-of-bag sample, is used particularly for the Random Forest model[42].

FEATURE IMPORTANCE

The trained regression model should not only be accurate but also interpretable. Besides
knowing the prediction results, we are also interested in which variables have the most
significant impact on the forecast. Identifying which variables are important to the
tree decisions can help us in feature selection. Thus, the model can be simplified by
concentrating on the most relevant variables[43].

There are multiple methods to determine the feature importance for random forest
regression models. Here we listed two kinds of methods[44].

• Random forest built-in method

Accuracy-based importance One method is based on the mean decrease of
accuracy across all trees. As we discussed in section 3.3.2, each tree has its
own out-of-bag sample that was not selected during the sampling process.
Firstly, we use this kind of sample to calculate the prediction accuracy(the
OOB score). Then, we permute the values of the feature in the out-of-bag
sample to measure the increase or decrease in prediction accuracy. Finally,
the mean change of the prediction accuracy across all trees is calculated[45].
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Gini-based importance Another method is based on the mean decrease of
impurity across all trees. Figure 3.11 shows the structure of a set of decision
trees in a random forest. At each split in each tree, the split criterion is
regarding the calculation of how much impurity of the node each feature
can reduce. The feature with the highest reduction value is selected as the
splitting feature[44]. And this reduction is accumulated across all the trees
in the forest independently for each variable. The higher the value, the more
important the corresponding predictor is.

• Permutation-based method
This method permutes the values of a feature then calculate the change of the
prediction accuracy. The larger the change, the more importance the feature.

The accuracy-based method is not available in scikit-learn package. However, the
permutation-based method uses a similar way to measure the feature importance
as the accuracy-based method. Therefore, we generally compared the measured
feature importance results between the Gini-based method and the permutation-based
method.

By applying these two methods, Fig 3.12 shows an example of the measured feature
importance of VH backscatter. The results of these two methods show a vague parallel.
Due to the theory behind the Gini-based method, the Gini-based importance is already
derived during the training process. Thus, the Gini-based method performs in a
less computationally expensive way[44]. Moreover, the appearance of the correlated
features is also a potential issue when measuring the feature importance. The study of
Nicodemus and Shugart[46] showed that the permutation-based method is less reliable
when measuring the importance of correlated features. Cause if the information is not
only carried by one feature but also by its correlated features, then the accuracy of the
model will not change significantly when one of these features is permuted.

This study uses the Gini-based importance method to measure the feature
importance.



3.3. METHODOLOGY

3

31

Figure 3.11: The structure of the decision tree in the random forest.

Figure 3.12: The comparison of measured feature importance results between the Gini-based method and
permutation-based method for VH backscatter.





4
RESULTS AND DISCUSSION

In this chapter, both the results from the DSSAT model as well as the random forest
regression analysis will be discussed. In section 4.1 a description of the outputs acquired
with the DSSAT crop model is presented. In section 4.2, some characteristic properties
of the regression results are discussed.

4.1. EVALUATION OF THE DSSAT MODEL
This section discusses the DSSAT CSM-CERES-Beet model outputs. To evaluate the
performance of the model, the simulated LAI and the measured LAI are compared.

Figure 4.2 shows the LAI, CWAD, SW1D, and SW3D predicted by the DSSAT
CSM-CERES-Beet model for the fields considered in the period of sugarbeet growth
in 2017. The simulations of LAI and CWAD start from the planting date, while the
soil moisture content variables are from the beginning of the year. The modeled
development of the crop is largely controlled by weather variables. The Fig 4.3 shows
the mean precipitation and the mean maximum temperature across the study area. And
the Fig 4.1 shows a detailed description of the sugarbeet growth stages. Both of these two
plots can assist in the interpretation of DSSAT outputs.

For LAI, an increase is observed from mid-May, reaching its maximum value around
mid-July. At first, the increase is slow with two or three leaves emerging every week since
the low surrounding temperature[47]. In this early growth stage, the photosynthetic
efficiency is low. Then after about three weeks, at the beginning of June, the growth
rate rapidly increases due to more true leaves having been developed. The peak of LAI
represents an effect for densely vegetated areas at which point it reached saturation.

CWAD shows a simultaneous increase with LAI but continues to increase until the
end of August due to the continuous dry biomass production. At first, it shows a rapid
increase due to most of the produced dry matter from photosynthesis being distributed
to fulfill the demand of developing new leaves and canopy. Then the growth rate
decreases from mid-June due to the canopy closure[47]. From now, more and more dry
matter is going to be stored in the root. We can also use the LAI plot to identify this

33
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Figure 4.1: The detailed description of the development of sugar beet[47].

phenomenon, which is corresponding to LAI = 3. After staying stable for about three
weeks, this above-ground biomass starts to decrease due to the wilting of old leaves.

For SW1D and SW3D, the values are constantly high before the planting date. At
this time, the fluctuations in both SW1D and SW3D variables are dominated by the
swift change of bare soil properties while sugarbeet fraction cover is still low. Then, the
time series shows a decreasing trend until July because of the warm and dry weather
conditions(Fig 4.3). Later, during the summer season, more rain events lead to overall
increases in soil moisture content. In addition, the surface soil moisture curve shows
more fluctuations, which are closely linked to rainfall events, than that of the root
zone layer. Both SW1D and SW3D values were found to be highly sensitive to weather
conditions. The soil moisture parameters are sensitive to a systematic mechanism:
canopy interception and soil infiltration[35], which is considered in DSSAT, thus the
particular behavior of soil moisture is captured by the model.
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Figure 4.2: Model-simulated values of (a) leaf area index (LAI), (b) CWAD(Tops weight), (c) SW1D(soil water
content of top layer), and (d) SW3D(soil water content of the third layer) for sugarbeet in Noord-Brabant 2017.

Notes: Single simulated values are plotted in grey lines, and the averaged values across all parcels are in red
lines.

Figure 4.3: (a)Daily mean precipitation data (b)daily mean maximum temperature data across sugarbeet
parcels in Noord-Brabant from the beginning of 2017 till the sugarbeet harvest.

Figure 4.4 shows the comparison between the simulated LAI values and the
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Sentinel-2 observed LAI values. The general trend of both curves is similar. These two
curves reached their peak LAI values almost at the same time and same magnitude,
which can fit the sugarbeet phenology stages well. Therefore, DSSAT performs realistic
simulations of the sugarbeet growth in the study area.

Figure 4.4: LAI comparison. The red line represents LAI values from the DSSAT simulation, and the blue line
is from Sentinel-2 LAI calculation .

4.2. EVALUATION OF THE MACHINE LEARNING MODEL
In this section, the correlation between SAR signals and vegetation biophysical
coefficients are going to be discussed.

4.2.1. THE FEATURE IMPORTANCE
Here, Fig 4.5 provides the partial dependence plots of the variable importance for
backscatter VV and VH and coherence VV.

In Fig 4.5, both polarizations of the C-band σ0 exhibit a strong correlation with
CWAD. Moreover, LAI comes to the second most important factor, especially for σ0

V H .
This distribution of variable importance can be explained by the fact that σ0

V H is more
related to vegetation elements than σ0

V V . However, lower variable importances with σ0

are reported at soil moisture features, regardless of polarization and soil layer.
Figure 4.6 indicates that for VV coherence, LAI made the most contribution to the

final prediction, while all the rest variables have a similar level of importance.
The main difference between the variable importance of backscatter and coherence

is that LAI is much more important for coherence, whereas CWAD dominates the
backscatter. Figure 4.2 shows that the temporal trend of LAI is more correlated with
the crop growth steps than CWAD. And the coherence data is highly sensitive to the
vegetation phenology. As a result, LAI becomes the top important variable when
predicting coherence. However, the LAI and CWAD of crops are correlated, thus there
is indeed a lot of information in common between the two predictors. The correlation
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Figure 4.5: Visualization of the variable importance for backscatter VH and VV of the random forest regression
model.

between them will be discussed in the later section 4.2.3.

4.2.2. ACCURACY OF THE MACHINE LEARNING MODEL
Figure 4.7 and 4.8 provide a comparison of the radar observables predicted by the
random forest model and the values retrieved from Sentinel-1 acquisitions. To help the
visual interpretation, the time series of backscattering coefficients and coherence are
interpolated to the dates for better continuity.

The variable importance in a random forest regression model is measured by
how much the variable decreases the error, which is valued as the variance of the
difference between the measured and predicted values. Therefore, based on the variable
importance test, besides the original ’full’ model which contains all four features, a
’reduced’ model which contains only LAI and CWAD, the two most important features,
was also developed to examine the changes in the model accuracy metrics(Table 4.1).

In general, the seasonal evolution of the backscattering coefficients data is well
predicted. Obviously, the correlations are scattered, more poorly in some time stages.
April is inside the period of sugarbeet sowing, thus the standard deviation of the original
backscatter data for both VV and VH polarizations is high. This large variance makes it
harder to predict accurately.

The green curves in the figures represent the difference values, which are the
absolute difference value between the means of predicted and actual values. The
difference peaks at around mid-May which is induced by a sudden appearance of
leaves. In addition, during April and May, the sugarbeet is not fully covering the soil,
so the vegetation and soil contributions are combined, which are the factors that creates
uncertainties. There are also some fluctuations during July, which can be explained by
some abrupt summer precipitation(Fig 4.3).

When compared (a)(b) plots in Fig 4.7,σ0
V H generally shows a better correlation than

σ0
V V . In fact, sugarbeet with taller plants, along with randomly oriented stems, causes

higher volume scattering profiles and lower attenuation of the signal from the ground.
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Figure 4.6: Visualization of the variable importance for coherence VV of the random forest regression model.

And the density of sugarbeet stems is high, which also leads to a weak surface scattering
from the soil. Consequently, backscatter VH is more correlated with the selected features
over the sugarbeet-covered area.

Then an inspection of (c)(d) plots in Fig 4.7 reveals that for the regression
model using LAI and CWAD out of all four vegetation-related features, backscattering
coefficients’ features present different correlations. This shift can be reflected by a
slightly larger range in difference values between mean prediction data and actual test
data. As listed in Table 4.1, the variation between ’full’ and ’reduced’ regression models
is also statistically significant.

The reason for this is that the model variance is driven by variable selection. As
calculated previously, CWAD and LAI with higher variable importance lead to bigger
information gains. But SW1D and SW3D are also information carriers, especially when
the vegetation cover is not that dense. Thus the decorrelation, which is attributable
to the impact of the soil moisture, can be observed in April and May when the soil
is almost bare after first sowing. Moreover, the CERES-Beet model defined that the
germination process which happened in this period is a function of soil moisture
content[48]. Therefore, without the information from soil moisture features, the
predicted courses even perform in a flat way without fluctuations. As a result, the
correlation between observations and prediction deteriorates. Then when sugarbeet
grows, a lower sensitivity of the σ0 to soil contribution resulted, thus the prediction
shows a better-fit behavior.

In a process analogous to the σ0 analysis, the regression results for coherence
VV channel have been built. The Fig 4.8 shows the prediction results. As for the
difference curves analysis, some fluctuations that occur during April and May coincide
with the increasing temporal decorrelation due to the induced movement caused by
quick-growing sugarbeet. The loss of model performance is associated with sugarbeet
growth in this period.

Interestingly, the ’reduced’ model for coherence VV also performs well. Indeed, it
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provides comparable accuracy to the ’full’ model. Thus if only LAI and CWAD features
are considered, results are similar to those obtained from the ’full’ model. This means
that the main influential issue to the coherence VV signal is related to the development of
the sugarbeet plants in this field and the soil contribution becomes marginal. Therefore,
the variation of sugarbeet growth phenology conditions would affect the performance of
the coherence VV substantially.

Table 4.1 shows the statistical accuracy metrics of the predictions. Both the ’full’
and ’reduced’ models of σ0

V H prediction yielded the maximum agreement index(R2 and
OOB_scor e) about 0.84 − 0.87 with the RMSE of 2 − 2.5dB . The RMSE is relatively
low when compared to the variable scale. Relatively low correlation coefficients were
observed at the σ0

V V forecasts. The R2 and OOB_scor e of the σ0
V V forecasts were

about 0.65 − 0.70 with an RMSE of 2.3 − 2.7dB . These varied results suggest that
σ0

V H has a higher sensitivity than σ0
V V to vegetation-covered surfaces. Moreover, the

vegetation biophysical variables also showed significant forecast skill for the coherence
VV prediction. The coherence prediction also had high agreement indexes and low
RMSE. And the difference between its ’full’ and ’reduced’ models is the lowest among
these three SAR signals.

Furthermore, according to Table 4.1, the accuracy metrics values decrease by
approximately 3.5% and 7.2% for backscatter VH and VV channels, respectively. This
suggests that the VV channel has been affected more. After running the model
several times, this phenomenon can be primarily explained by the fact that the
total variable importance of LAI and CWAD for the backscatter VH channel is stable
at around 0.94-0.96, which is larger than that of the VV channel(0.87-0.89). VV
polarization achieves a higher sensitivity to soil contribution (soil moisture in this
research). Therefore, both backscattering coefficients are obviously affected by the
feature selection modification, and the impact on VV is even greater.

4.2.3. THE ISSUE ABOUT THE CORRELATED PREDICTORS

The feature selection can be harder when the predictors are highly correlated. Archer
and Kimes[49] have found that both the Gini-based and permutation-based methods
become less able to determine the most important features when the correlation
between the features increases. Our predictors are four biophysical variables of
sugarbeet and they can be interrelated. For example, tops weight(CWAD) is about
the above-ground biomass, associated with the sugarbeet cover. Therefore, LAI and
CWAD can be largely relevant to each other. This section provides the evaluation of the
correlation between the features and their influence on the final prediction results.

We use Agglomerative Hierarchical Clustering on Spearman rank correlation to
group our features into clusters based on hierarchy[50].

The Spearman rank correlation represents the rank correlation between two
variables[51]. Eq 4.1[52] shows the full version of the Spearman correlation formula.
The coefficient ρ ranges from -1 to 1, in which +1 and −1 represent the perfect positive
and negative correlation between the variables, respectively, and 0 means variables are
uncorrelated.



4

40 4. RESULTS AND DISCUSSION

Figure 4.7: Comparison of SAR backscattering coefficients between random forest simulated and Sentinel-1
observations.(a) and (b) are the results by using all four variables while the bottom plot (c) and (d) by only

using LAI and CWAD. Mean prediction and actual values are represented by solid blue lines and orange
dashed lines, respectively. Standard deviations are shown by the filled areas surrounding the curves. The time
series of differences between prediction and test values are plotted in green dashed lines. The later coherence

plots can also refer to this interpretation.

Figure 4.8: Comparison of SAR coherence VV signal between random forest simulated and Sentinel-1
observations. (a) is the results by using all four variables while the left plot (b) Only uses LAI and CWAD

variables.
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ρ = Sx y

Sx Sy

=
1
n

∑n
i=1(R(xi )− ¯R(x))× (R(yi )− ¯R(y))√

( 1
n

∑n
i=1(R(xi )− ¯R(x))2)× ( 1

n

∑n
i=1(R(yi )− ¯R(y))2)

(4.1)

With:

• ρ: the Spearman correlation coefficient

• xi , yi : the original raw data of the two variables, respectively;

• R(xi ), R(yi ): the ranks of the original raw data;

• ¯R(x), ¯R(y): the mean ranks of each variable;

In the clustering process, we first develop a cluster for each feature, then
consecutively merge the most similar clusters until only one cluster is left. The method
used to measure the similarity between the clusters is Ward’s Method. Instead of
calculating the direct distance between the clusters, Ward’s Method is about minimizing
the variance when combining new clusters[53]. This kind of variance is quantified by a
metric called E (sum of squares)[53]. Eq 4.2[50] shows a complete statistical description
of E.

△(A,B) = ∑
i∈A∪B

∥ x⃗i − ⃗mA∪B ∥2 − ∑
i∈A

∥ x⃗i −m⃗A ∥2 − ∑
i∈B

∥ x⃗i −m⃗B ∥2

= nAnB

nA +nB
∥ m⃗A −m⃗B ∥2

(4.2)

With:

• A, B: two clusters that are going to merge;

• m j : the center of the cluster j;

• xi : every data point in the defined data set;

• n j : the number of data points in the cluster;

We applied clustering to the features of our study. Figure 4.9 shows the result of
Agglomerative Hierarchical Clustering which is represented by a dendrogram. The y-axis
indicates the variance cost when merging the two clusters. It can be observed that the
correlation between LAI and CWAD is the highest. SW1D is closer to the combined
cluster of LAI and CWAD than SW3D. SW3D shows the weakest connection to the other
features.

Figure 4.10 is a heatmap showing the correlated features. The data value in each cell
is the calculated Spearman correlation coefficient ρ. It can be observed that for CWAD
and LAI, the value is 0.92, very close to 1, indicating that the correlation between CWAD
and LAI is very high, and the positive value suggests that the larger the CWAD the higher
the LAI. The coefficient of SW3D with CWAD and LAI is -0.0054 and -0.046, respectively.
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The values are close to zero showing that the correlations between SW3D and these two
features are very low, and the negative values suggest that the SW3D tends to decrease
when CWAD and LAI increase. Moreover, there is a positive correlation with a more
moderate degree between SW1D and the other three features.

The relationship between features can be explained by the calculation mechanism
of the CERES-Beet model. CWAD is related to the above-ground dry matter yield.
Firstly, the daily total amount of sugarbeet dry matter is converted from the intercepted
photosynthetically active radiation (PAR), which is calculated as a function of LAI[48].
Then depending on the growing stages of the sugarbeet, the generated dry matter will
be allocated to different parts of the plant. The above-ground dry matter demand is
measured by the potential leaf area growth, which is also highly associated with LAI.
Based on these simulation structures, LAI and CWAD are the most relevant among all
features. Then the soil moisture content is a part of the factors that can influence the
efficiency of dry matter production in photosynthesis and also the subsequent allocation
issues. Moreover, the surface soil moisture is more relevant with CWAD and LAI since
the surface layer contains more coarse roots which can improve the efficiency of plant
growth using soil water[54].

Since the estimation of correlation between features shows that CWAD and LAI are
highly correlated, we ran the random forest regression model again with the removal of
features. Based on the measured feature importance results in section4.2.1, we removed
CWAD and LAI for backscatter and coherence regression models, respectively. In order
to validate the changes in the prediction accuracy when the most important feature is
dropped but the second most important variable is still there, and is highly correlated
with the most important one.

Table 4.2 shows the statistical accuracy metrics of the regression model with
correlated feature removal. It can be clearly observed that when the model contained
only one predictor of CWAD or LAI, the accuracy of the predictions did not decrease
significantly. This indicates these two predictors do carry a lot of similar information.
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SAR signals X variables MSE R2_score OOB_score

Amplitude VH
All variables 1.966 0.876 0.875
LAI&CWAD 2.459 0.845 0.844

Amplitude VV
All variables 2.305 0.698 0.694
LAI&CWAD 2.661 0.648 0.640

Coherence VV
All variables 0.0054 0.734 0.739
LAI&CWAD 0.0052 0.734 0.737

Table 4.1: The accuracy of the random forest regression model with different combinations of SAR signals and
sugarbeet growth variables.

Figure 4.9: The dendrogram by performing the hierarchical clustering method.

SAR signals X variables MSE R2_score OOB_score

Amplitude VH
All variables 1.966 0.876 0.875

without CWAD 2.077 0.867 0.871

Amplitude VV
All variables 2.305 0.698 0.694

without CWAD 2.422 0.682 0.688

Coherence VV
All variables 0.0054 0.734 0.739
without LAI 0.0052 0.734 0.738

Table 4.2: The accuracy of the random forest regression model with highly correlated features removal.



4

44 4. RESULTS AND DISCUSSION

Figure 4.10: The heatmap of the correlation between features, and the data value in each cell is the result of
Spearman correlations .



5
CONCLUSIONS AND

RECOMMENDATIONS

5.1. CONCLUSIONS
In this research, the relationships between Sentinel-1 C-band SAR signals and several
DSSAT simulated sugarbeet growth and soil moisture descriptors have been explored
through regression analysis. LAI, CWAD, SW1D, and SW3D are picked as the features
to help predict the backscattering coefficients(VH and VV) and coherence VV over the
sugarbeet-covered region over time. The changes in predicted SAR patterns due to
various feature combinations are also analyzed. Answers are organized in corresponding
to the research questions proposed in section1.2.

EVALUATING DSSAT CSM-CERES-BEET MODEL PERFORMANCE

• What is the CSM-CERES-Beet model accuracy of simulating the sugarbeet
growing process in the Netherlands? The DSSAT crop model aims to capture
how plant biophysical variables vary with the growth stages. We evaluated
the simulated LAI values analytically with the estimated LAI values from NDVI
observation. As we expected, both simulated and observed LAI values are between
0-5 over the sugarbeet-covered area. And the measured LAI temporal patterns
resemble the modeled LAI patterns simulated by DSSAT. The performance of the
CSM-CERES-Beet model is sufficiently robust.

EVALUATING THE CORRELATION PERFORMANCE.
• How to increase the accuracy of the predictions made by random forest model?

Hyperparameters are key settings controlling the performance of the random
forest model fitness. The hyperparameters including the number of trees, the
minimum number of samples to split the nodes, the minimum number of samples
to be a leaf node, and the maximum depth of the tree can be optimized to fine-tune
the random forest algorithm. An example of optimal combinations is listed in
Table 5.1,

45
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SAR signals X variables
n

_estimator
min_samples

_split
min_samples

_leaf
max

_depth

σ0
V H

All variables 137 20 24 93
LAI&CWAD 162 12 17 24

σ0
V V

All variables 189 7 25 71
LAI&CWAD 181 3 28 69

Coherence
VV

All variables 174 32 5 16
LAI&CWAD 163 30 19 12

Table 5.1: The optimal hyperparameters for a random forest regression model with different combinations of
SAR signals and sugarbeet growth variables.

• How well does crop biophysical variables correlate with the backscattering
coefficient(VH and VV)? The performance is evaluated by statistical parameters.
Backscattering coefficient profiles are in good agreement with the simulated
vegetation and soil features. The high R2 values around 0.85-0.87 and 0.65-0.70 for
VH and VV channels, respectively, indicate that the predictors actually predict the
observed values. Both two polarization channels of the backscatter keep a clear
sensitivity to crop growth.

• How well does crop biophysical variables correlate with coherence VV? A good
model fit was achieved for coherence VV, with coefficients of determination (R2 )
reaching around 0.73, and a low RMSE here suggests that the residuals are tight
around 0. Coherence is sensitive to canopy development and soil preparation.

• How does feature selection affect the prediction accuracy of SAR signals? The
top two features with the highest importance for the backscattering coefficients
are LAI and CWAD, while for coherence LAI comes to the top. However, the
’reduced’ model with only the most important features did not gain a better
prediction accuracy. By contrast, backscatter data is widely linked to changes in
soil moisture during the first growth stages when vegetation coverage remains
moderate. The ’reduced’ edition model indicates that it is not adequate to express
the interaction of SAR signals with a complicated vegetation-over-soil field by
only using crop growth variables. Although LAI and CWAD are considered as the
two main prediction drivers for σ0 patterns, the weaker contributions from soil
moisture variables are by no means negligible.

5.2. RECOMMENDATIONS

This section provides recommendations and is divided into two sections. Firstly, the
discussion about the practical use of C-band radar observables regarding the regression
results(section 5.2.1), followed by suggestions for future studies(section 5.2.2).
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5.2.1. PRACTICAL USE OF THE RESULTS
The regression results show that both the backscatter and coherence data are closely
correlated with the periodic crop growth and soil moisture features. Moreover, the
backscatter and coherence data contain complementary information and therefore, the
use of both data sources is beneficial in the observation of field dynamics.

This approach facilitates the potential adoption of assimilating C-band radar signals
into the improvement of crop model simulations. We can use the radar observables to
improve the initial crop model settings and identify some boundary conditions. When
the crop model completes the simulations, radar observables can also be employed to
estimate the performance of the model and provide some advice on calibrating.

Moreover, this study demonstrates the high sensitivity of radar observables to
crop biophysical variables, especially for CWAD. Thus, radar signals can provide
opportunities to track and predict these kinds of closely correlated variables directly.
Then the farmers and governments can get timely information about the growing
stages of crops, and as a result, could help with the fertilization and irrigation
decisions. Furthermore, the health conditions of crops can be assessed according to
the appearance of anomalies in radar observations. For example, the yield of sugarbeet
can be highly influenced by the Cercospora leaf spot disease. And the infection with
this disease can be reflected in the daily losses of leaf area and biomass. Radar signals
can report such unusual reduction and provide early detection of the disease, then some
chemical measures can be taken suitably.

.

5.2.2. SUGGESTIONS FOR FURTHER STUDIES

MORE MACHINE LEARNING METHOD

For this study, the correlations between the vegetation biophysical variables and C-band
radar signals are analyzed by random forest and therefore the performances of other
machine learning regression methods are not considered. Therefore, the potential of
other methods can be further exploited.

Random forest is one of the ensemble learning models whose final prediction
is obtained by training multiple machine learning models and using some logic to
combine their prediction results[55]. Based on this general design strategy, this kind
of model can reduce the influence of outliers more than a single model. Here, we prefer
to select from other ensemble learning methods besides the random forest.

There are mainly three classes of ensemble learning methods:

1. Bagging
Develop a set of same machine learning models, then train each model with a
varied sub-sample of the one main training dataset[55]. For regression problems,
the final prediction result is the averaged results across all the individual models.
Random forest used in this study is a typical bagging method.

2. Boosting
Figure 5.1 shows the design idea of the boosting method. It uses the same
training data set, but the sample points have different weights in the new ensemble
members to optimize the performance of prior added ensemble members. Then
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the final prediction result is a weighted average of predictions across all the
models.

3. Stacking
Use a uniform training dataset and a set of different machine learning models.
Then an additional machine learning model is developed to learn the best way of
combining the predictions from various models.

Figure 5.2 shows these three main approaches and their related algorithms. Based on
the discussion above, we can try some techniques derived from Boosting and Stacking
approaches in the future.

ADDITIONAL CALCULATION OF COHERENCE BIAS

As mentioned in section 3.1.2, the coherence has a bias for low values. In this study, we
did a preliminary estimate of the bias based on agricultural experience. However, if one
needs to capture the subtle coherence changes associated with plant growth, this bias
requires careful measurement. Figure 5.3 shows an example of the biased and unbiased
temporal coherence data of sunflower. We can observe that when the value of coherence
drops to 0.4, the bias will start to appear and gradually increase as the coherence value
decreases.

ADDITIONAL DATASET OF POLARIZATION RATIO VH/VV
Many studies[9][56] indicate that the backscatter polarization ratio VH/VV is a good
indicator of the fresh biomass and vegetation water content(VWC), and is in good
agreement with the crop phenology.

Moreover, Veloso et al.[56] demonstrate that the ratio VH/VV is able to reduce the
double-bounce effect from the soil. And it has been observed that heavy precipitation
events have little effect on the change in the ratio. This means that the ratio is less
sensitive to soil moisture changes. When compared to VH and VV backscatter, this
characteristic makes the ratio a more reliable metric when encountering some crop
monitoring cases where soil contributions need to be marginalized.

Consequently, the ratio VH/VV could assist in the future crop biophysical parameters
retrieval work.
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Figure 5.1: The structure of the boosting ensemble learning method[55].

Figure 5.2: The three main ensemble learning types and their related algorithms.
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Figure 5.3: Example of the time series for biased and unbiased coherence at both polarimetric channel for
sunflower[12].
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APPENDIX

A.1. ADDITIONAL FIGURES

A.1.1. ADDITIONAL FEATURE IMPORTANCE FIGURES
This section provides some additional measured feature importance figures.

1. Measured feature importance of two methods
Figure. A.1 shows the measured feature importance by using both Gini-based and
permutation-based methods for VV backscatter and VV coherence.

2. The measured feature importance for VV backscatter and VV coherence when
two features are highly relevant and one of them is removed from the model.
Figure. A.2 shows the measured results.

A.1.2. ADDITIONAL PREDICTION RESULTS
In this section, additional figures of the prediction results of section 4.2.3 are provided.
CWAD was removed for the regression model of both polarization channels of
backscatter and LAI for the coherence VV model. The figure. A.3 visualizes how the
prediction accuracy changed.
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Figure A.1: The comparison of measured feature importance results between the Gini-based method and
permutation-based method for VV backscatter and VV coherence.
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Figure A.2: The measured feature importance results with features that the correlation between them is not
strong. CWAD is removed for amplitude VH and VV, and LAI related features are removed for coherence VV
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Figure A.3: Comparison of radar observables between random forest predictions and Sentinel-1 observations
by applying the random forest model with the most important feature removal. (a) and (b) are the results ofσ0

VH and VV. (c) is the result of coherence VV. Mean prediction and actual values are represented by solid blue
lines and orange dashed lines, respectively. Standard deviations are shown by the filled areas surrounding the

curves. The time series of differences between prediction and test values are plotted in green dashed lines.
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