
Improving Enumerative Program Synthesis Performance by Extending
Grammar from Solutions to Simpler Synthesis Problems

How can such approach be implemented in a synthesis system that cannot benefit from
in-advance refinement of the synthesis algorithm parameters

Mert Bora İnevi 1

Supervisor(s): Sebastijan Dumančić1, Reuben Gardos Reid1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Mert Bora İnevi
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Reuben Gardos Reid, Soham Chakraborty

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Program synthesis is an important problem in com-
puter science. One method often employed is enumer-
ative program synthesis, which produces a sequence of
programs in the target language until one solves the re-
quired input-output examples. This can yield undesir-
able runtimes for some problems that require complex
programs to solve them. This research is about how
simpler problem solutions can be used to build a library
of useful helper functions and to use it for further syn-
thesis in order to reduce the depth of the enumerative
search for more complex problems. Drawing inspira-
tion from the work by Ellis et al on DreamCoder, this
research describes ways of obtaining simpler programs,
and extending the grammar using parts of the solu-
tions. Experiments have been performed on the pro-
posed synthesis algorithm, which is implemented using
the Herb.jl framework, and results for each part of the
synthesis algorithm being replaced by different strate-
gies are provided. Allowing holes in the new gram-
mar substitutions and using smaller size or frequency
as their utility has proven superior. There needs to be
more work done about the conciseness of the produced
programs.

Introduction
Program synthesis is the process of producing a com-
puter program that satisfies a given list of requirements
provided in non-program form. It is considered the
holy grail of computer science since it helps automate
the creation of computer programs [3]. Current meth-
ods include using large language models or evaluating
and comparing different programs strategically gener-
ated based on the programming language’s grammar.
This research project involves the latter, analysing each
step of program composition including the choice of
code snippets, how they are combined, and how it is
tested that the resulting program satisfies all the re-
quirements.

Program synthesis within the context of this research
requires iteration over the possible programs. Thus,
having a good strategy to make the process fast and
resulting programs concise and of high quality is im-
portant.

The Herb.jl framework, maintained by the supervi-
sors of this research, is one such project where the de-
velopers are looking for good approaches to grammar-
based program generation. This research aims to col-
laborate with them in developing and testing an algo-
rithm that can learn common parts between the pro-
grams it generates and introduces them into further
synthesis in order to improve efficiency. This was in-
spired by the work of Ellis, et al [2], which estimates
probabilities for different symbols based on solutions to
randomly generated problems, where the probabilities
can be used to build a grammar extension out of com-
mon parts of solutions to random problems.

The research tries to answer the following questions,
or improve upon the existing literature about them:
• How to pick useful components out of a program?

• How to evaluate the equivalence and similarity of
different program snippets and detect replaceable
parts?

• How to use common subprograms in further synthe-
sis in order to improve the performance of enumera-
tive program synthesis.
In section 2, there is a discussion of each step a pro-

gram synthesis approach involves, and considerations to
take when implementing the synthesis algorithm with
possibility of extending the grammar. Sections 3 in-
cludes the description of the experimental setup and
extensive testing data for different strategies of pro-
gram synthesis. Section 4 discusses the implications of
the results. Section 5 elaborates on the ethical implica-
tions and the reproducibility of this research. Sections
6 reflects on how the new approach compares in perfor-
mance and resulting code quality to the one by Ellis et
al.

Background and Methodology
Program synthesis involves a few steps which can be
optimised separately. Roughly, these are the receiving
of the specification, processing it in order to feed it to
the synthesizer, synthesizing a program, evaluating the
program against the specification and applying positive
or negative feedback to the synthesizer appropriately,
converting the synthesised program to an usable format
as necessary, and finally outputting it.

In the context of enumerative program synthesis, the
negative feedback constitutes keeping producing new
programs that are the valid in the programming lan-
guage until a correct implementation is found [3, p. 58].
Each program is composed from small program parts.
The parts available to produce a program in a given
programming language come in the form of a context-
sensitive grammar. A context-sensitive grammar in-
cludes a start symbol, and consists of mappings which
can be used to substitute a symbol with a more concrete
code segment. It should also include terminating sym-
bols for which the meaning is implicitly known so the
code interpreter can directly evaluate them to a value
and/or state change. A top-down program enumerator,
which is used for this research, will simply start from the
start symbol, and replace it according to the suitable
mappings in order to produce new programs, continu-
ing recursively as new substitution symbols are added to
the current program [3]. Different strategies can be fol-
lowed to substitute and order the resulting programs for
evaluation, however, all methods are common in that
each substitution can add only a fixed amount of code,
and more substitutions are necessary to produce more
complex programs.

A way to produce more code with fewer substitutions
is to have larger, more problem domain-specific substi-
tutions. Automated grammar extension aims to find
such larger substitutions that are composed of the ex-
isting ones, and add them to the grammar. This is akin
to library functions found in a domain-specific program-

ming language which abstract low-level steps needed to
perform common tasks, and allows the reuse of func-
tionality with less cognitive overload i. e. less enumer-
ation steps during enumerative synthesis.

For this research it is proposed that extending the
grammar before top-down program synthesis can im-
prove the search performance by reducing the number
of enumeration steps to reach a program of specific com-
plexity.

Obtaining Simpler Problems for Training
The grammar extension is based on solutions to a set of
problems, which can be obtained using various methods
like taking them as input or splitting the input prob-
lem specification into smaller parts. Such methods of
enhancing program synthesis using subsets of the prob-
lem domain have been proven successful by various re-
search such as with the work of Shrivastava, et al and
Ellis, et al [5][2].

The user can be asked for simpler problems similar to
the input problem to extend the grammar with. Even if
it may be challenging to apply to the real world solely
because of the lack of extra problems in many situ-
ations, there is plenty of testing data in the form of
benchmarks made of a set of similar problems. Dream-
Coder, for example, dreams of new problems by ran-
domly creating programs using the posterior probabil-
ities of grammar substitutions, and runs them to form
their output in the input output examples [2]. This, and
obtaining different problems from the benchmarks, can
provide the grammar extension algorithm with novel
problems with little risk of overfitting to the original
problem and enable finding more versatile subprograms
that can be used to solve a wider range of problems.

Another problem is how to solve the simpler prob-
lems. A common convention is to use a program enu-
merator to iterate over all possible programs in the
search space, evaluating them on the input, and re-
turning the best performing one. It might sound like
an inefficient way of solving the problem, however it
works well if the number of tested programs are small
(small search space) and the number of examples are
small (the odds of the search returning a perfect result
early on are higher), which is the motivation behind
starting with solving simpler problems which will not
require complex solutions. Furthermore, a time limit
or number of enumerations limit can be applied while
solving the simpler problems, since a good enough solu-
tion can still provide useful programs to learn from and
exact solutions are not necessary as they do not face
the user.

Grammar Extension Selection
DreamCoder utilises an algorithm which finds the prob-
ability for each grammar substitution, attempts to solve
a set of input problems with timeout, and then adjusts
the probabilities accordingly and finds common subpro-
grams to extend the grammar with [2]. The resulting
grammar is highly specialized to the domain of input

problems, and the training process for each problem
domain can take days. This causes a problem since
the synthesis program this research is aiming to create
should work for synthesising programs for various do-
mains and programming languages. Thus, this research
considers a more naive algorithm, as described below.

After solving each simple problem using naive enu-
merative search with timeout, the proposed algorithm
looks for equivalent parts between them. The most di-
rect approach to do this is to compare each subtree of
the syntax tree of two programs, and testing if they ex-
actly match. For problems very similar in nature, this
can yield common parts at least a few nodes in size,
for instance something like the isEven function if the
original language doesn’t have a built-in function for it.
Consider the following two solutions to two hypotheti-
cal problems, for example. They both involve checking
if some number is even.

if length(input) mod 2 == 0 then
"even length"

else
"odd length"

if (input * 7) mod 2 == 0 then
"even"

else
"odd"

--> no common part is found.

This is the case because the two programs do not
share any common part which are equal down to the ter-
minating symbols. In these cases, it may be desirable to
support finding subprograms with holes in them, mean-
ing the part will be left as a symbol for which substitu-
tions exist in the input grammar, so the synthesizer can
create new grammar rules where these holes are filled
by the required replacement symbol during enumera-
tion. The common subprogram boolean = int % 2
== 0 can be extracted from the two programs above,
for example, where boolean and int would be a sym-
bol with available substitutions in the input grammar.
The outermost rule used to construct this code segment
is a substitution of symbol boolean so the same is used
for the new grammar substitution rule. The proposed
grammar finds such extensions from a pair of programs
by iterating over each syntax subtree of two programs
and recurses from the roots of the two subtrees, check-
ing if two nodes are exactly the same at current level
or the next level is a substitution to the same symbol
in the input grammar. In the latter case, the common
part is yielded with the different part replaced by the
common symbol.

Lastly, the strategy to choose extensions can vary.
Likely, there will be a lot of subprograms common be-
tween at least two solutions, the number increasing with
the number of solved simpler problems. A utility func-
tion can be used to rank possible extensions and only
pick the top few of them. For example, DreamCoder

uses the posterior probability of each subprogram’s con-
stituents, along with the subprogram’s size in order to
rank them [2]. Based on this, a utility function that
maximizes or minimizes either the frequency of, the size
of, or the number of holes in the chosen subprograms is
possible.

Experimental Setup and Results
A few implementations of a program synthesizer that
use the grammar extension method have been tested,
and their performance have been compared among each
other and to the naive implementation which just uses
regular enumerative synthesis on the main problem
specification. In figure 1, one can see the synthesizer
program structure and different replacement options for
each part. To make the measurements scientific, perfor-
mance comparisons will be based on the iteration counts
of loops in the synthesis program instead of wall-clock
runtime or similar.

Source code and Usage Summary to Aid
Reproduction of Results
The algorithm had been implemented using the Herb.jl
framework and made into a Julia package1. The pack-
age contains some examples which are meant to be run
using the REPL. Each example loads in a test bench-
mark, and maybe other simpler-to-solve benchmarks,
runs the sub-problem solving step, then the common
subprogram extraction step, and finally attempts to
synthesize either one of the sub-problems again us-
ing the extended grammar or tackle the main hard-to-
solve program. During running, the program prints out
how long and how many enumeration steps each sub-
problem took, and also for each problem solved after
grammar extension. It also prints out each grammar
extension rule, and their frequency in the sub-problem
solutions.

Benchmarks and problems from the 2018 and 2019
SyGuS (Syntax Guided Synthesis) competition have
been used for benchmarking. [4].

Effect of Allowing or Disallowing Holes in
the New Substitutions on the Quality of
Extensions
For the testing of extensions with and without holes,
a common grammar to solve 8 of the SyGuS 2019
string manipulation problems has been extended on
these problems, and the extended grammar was used to
solve the same problems. The results can be seen in ta-
ble 1. With holes being allowed, all the problems seem
to require fewer enumerations after the grammar exten-
sion. Meanwhile, the number of enumeration steps has
increased for most problems when holes are not allowed
in the extensions.

The case without holes especially shows that if the
extension finder algorithm fails to find generally useful

1Source code can be found at
https://github.com/boraini/HerbAutomaticAbstraction

extension, it will just increase the number of enumera-
tions needed for problems which can’t make use of such
abstractions. Also, considering replaceable parts of sub-
programs, which are replaced by "holes" when adding
to the grammar, proves to be beneficial in providing
more opportunities for function library building.

Effect of Utility Function on the Quality of
Extensions
For the tests with utility functions, the problems from
the bitvector (BV) track of the 2018 SyGuS com-
petition have been used. The problems have been
split randomly into a training and test set of equal
sizes, and after extending the grammar using the
training set with a maximum of 100 000 breadth-first
(BFS) program enumerations, it was used to solve
the problems in the test set with a maximum of
1 000 000 BFS enumerations. In the following figure
one can see the number of training and test prob-
lems solved out of the total of 468 problems available.

Frequency Number of Holes Shorter Better
0

10

20

30

Test
Training

of Enumerations

From these graphs, little difference between the per-
formances of the utility functions can be seen.

BFS enumeration with the original grammar alone
can solve 32 problems with the input grammar alone
using 1 000 000. The hampering of performance after
grammar extension can be attributed to that found sub-
programs are not useful for a lot of the problems, thus
they make the enumeration take very long and cause
solutions to be missed with a limited number of enu-
merations.

If a similar experiment is run on the string trans-
formation benchmarks of the SyGuS 2019 competition,
after extending the grammar using all 100 problems
in 1 000 000, 11 problems are solved when frequency
is used, 14 problems are solved when shorter program
length is used, and only 5 problems are solved when the
number of holes is used as utility, by doing 10 000 000
BFS enumerations for each. Naive BFS enumeration
solves 11 problems in 1 000 000 enumerations with the
original grammar. This might indicate that the pro-
gram length is the best utility to use among the three,
but again the difference is small.

Subproblems Subproblem Solving Common Subprograms

OutputInput

Supplementary
Simpler Problems

Use Simpler
Problems

Subproblem
Solver

timeout / limited
search depth

Utility Function
- Program Length
- Frequency
- Number of Holes

Equivalence
- Subtree only
- Subtree with holes

Extended
Grammar

Figure 1: Synthesizer Block Diagram showing Different Options to Test for Each Part

Extension with Holes in Common Subprograms, Frequency as Utility, Use of Provided Simpler Problems
Before Extension After Extension

Problem Enumerations Program Length Enumerations Program Length
phone 5 short 2475 10 36 6

get first name from name 2699 10 167 6
get first word 2699 10 167 6

remove file extension from filename 2715 10 175 6
34801680 24267 11 647 7
exceljet3 24267 11 647 7

stackoverflow6 24267 11 647 7
28627624 1 45420 12 4515 8

Extensions found:
// add some number to the index of some delimiter string
ntInt = indexof(arg1, ntStringDelim, ntInt) + -1
ntInt = indexof(arg1, ntStringDelim, 0) + ntInt

Extension without Holes in Common Subprograms, Frequency as Utility, Use of Provided Simpler Problems
Before Extension After Extension

Problem Enumerations Program Length Enumerations Program Length
phone 5 short 2475 10 5197 9

get first name from name 2699 10 4009 9
get first word 2699 10 4009 9

remove file extension from filename 2715 10 4059 9
34801680 24267 11 817 7
exceljet3 24267 11 817 7

stackoverflow6 24267 11 817 7
28627624 1 45420 12 340544 11

Extensions found:
// take from three characters after =
ntString = substr(arg1, indexof(arg1, "= ", 0) + 2, len(arg1))

Table 1: Extension with and without holes, Frequency as Utility, Use of Provided Simpler Problems

Discussion
From the available results the best approach for the
program synthesis method that is the subject of this
research can be derived.

For simpler problem obtaining, it is demonstrated
that having problems of similar tasks is beneficial (such
as taking the rest of a character string after a delimiting
character) in finding common subprograms. For some
classes of problems, for example for the string trans-
formation problems found in the SyGuS 2019 competi-
tion, extending the grammar can provide the enumer-
ator with shortcuts to solve the problems with fewer
enumeration steps. However, for some problems like
the ones found in SyGuS 2018 competition, it might
hamper performance instead.

When finding common subprograms, replaceable
parts of the subprograms should be considered in order
to find more useful common subprograms i. e. holes
should be allowed in the common subprograms used to
extend the grammar.

A concerning thing about the produced programs af-
ter grammar extension is that they can get very long
due to combining long extensions into a subprogram,
where a shorter program would do. For example, in the
utility function experiment, the solution for the "re-
move the file extension from file name" problem was
substr(arg1, 1, -1 + indexof(arg1, ".", 1))

with the input grammar and
substr(arg1, 1,

indexof(substr(arg1, 2,
indexof(arg1, ".", 0)

), ".", 1
))

with the grammar extended using frequency as utility.
Both programs do the same thing, but the second one
is more verbose due to the grammar extension used not
being the best choice for the role it takes in the expres-
sion. There are possible solutions for this in literature,
some of them having been described in the conclusion.

Responsible Research
The experiments have been designed to be reproducible
with minimal alterations of the benchmarks, and by
having every test’s code separately on the code repos-
itory. Anyone who runs a standard Julia interpreter
should be able to reproduce the results. The only thing
that would be hard to reproduce would be the wall-
clock runtimes, which depend on the operating system
status, processor speed etc.

One limitation is that the top-down enumeration,
which is used for enumerative solving of the simpler
problems, is a complex algorithm which there are many
ways to implement. Some of the results that were ob-
tained might only be able to be reproducible using the
implementation found in Herb.jl.

Since the research does not involve any subjects other
than the researchers, there should not be any ethical

implication of the research to be concerned about. The
source for the testing data has been provided, therefore
other researchers can judge how reliable the results on
this paper are given the sources.

Conclusions and Future Work
Program synthesis using enumeration has its uses in
being simple to implement and the problems it pro-
duces being exactly evaluated with perfect information
of the environment. For small sets of problems, this re-
search has proven that extension of the grammar from
solutions to simpler problems can speed up synthesis,
but the main input problem needs to be similar to
the simpler training problems, otherwise there will only
be more enumeration steps needed using the extended
grammar compared to the initial grammar. Possibly
with further refinement of the algorithm, the synthesis
system proposed in this paper can become useful for a
wider range of problem domains.

Furthermore, there is future work done regarding
keeping the solutions of the extended grammar concise
and of high quality. The proposed algorithm only deals
with extending the grammar, but afterwards the same
breadth-first (BFS) enumeration algorithm is used to
synthesize with the new extended grammar. To the
BFS algorithm, the sizes of each substitution in the
grammar is insignificant, therefore it can consider pro-
grams of high complexity to be relatively simpler pro-
grams because they require only a few substitutions to
reach with the extended grammar. This should not
be mitigated by considering programs containing the
new substitutions to be as deep as the substitutions
out of the original grammar they consist of. It would
remove the advantages of using large chunks of useful
subprograms early on to reach solutions faster, by caus-
ing the BFS algorithm to take the same number of steps
as before, before considering the new substitutions. A
smarter synthesis method with the extended grammar
is necessary to both make use of the extended grammar
and to produce concise programs out of it.

There are some methods to achieve this in literature,
and in the future the people behind this research are
planning to implement one into the produced grammar-
extending synthesis system. A refactoring system simi-
lar to the equivalence graph used in DreamCoder can be
used to increase the number of common subprograms
found between simpler program solutions [2]. This in-
volves the use of equivalence graphs, as described by
Detlefs et al [1, p. 58], to keep track of different refac-
torings of a program that do the same thing, and utilize
it to produce simple problem solutions that use some
canonical version of each of its parts which are concise
in themselves.

Finally, the proposed algorithm could also be made
into a program iterator which includes some sort of self-
refinement, thus it can accept multiple problems in se-
quence while also attempting to solve them, forming
an interactive system that learns better grammar with
each set of problems solved.

References
[1] David Detlefs, Greg Nelson, and James Saxe. Sim-

plify: A theorem prover for program checking. Jour-
nal of the ACM, 52, 09 2003.

[2] Kevin Ellis, Catherine Wong, Maxwell Nye, Math-
ias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B.
Tenenbaum. Dreamcoder: Bootstrapping inductive
program synthesis with wake-sleep library learning.
pages 835–850, 2021.

[3] Sumit Gulwani, Oleksandr Polozov, and Rishabh
Singh. Program synthesis. Foundations and Trends
in Programming Languages, 4(1-2):1–119, 2017.

[4] Saswat Padhi, Udupa Abhishek, Andi Fu, Eliz-
abeth Polgreen, and Andrew Reynolds. Bench-
marks for sygus competition. https://github.
com/SyGuS-Org/benchmarks, 2019.

[5] Disha Shrivastava, Hugo Larochelle, and Daniel
Tarlow. Learning to combine per-example solutions
for neural program synthesis. Advances in Neu-
ral Information Processing Systems, 34:6102–6114,
2021.

