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ABSTRACT
Code review is the manual assessment of source code by humans,
mainly intended to identify defects and quality problems. Modern
Code Review (MCR), a lightweight variant of the code inspections
investigated since the 1970s, prevails today both in industry and
open-source software (OSS) systems. The objective of this paper is
to increase our understanding of the practical benefits that the MCR
process produces on reviewed source code. To that end, we empiri-
cally explore the problems fixed through MCR in OSS systems. We
manually classified over 1,400 changes taking place in reviewed
code from two OSS projects into a validated categorization scheme.
Surprisingly, results show that the types of changes due to the MCR
process in OSS are strikingly similar to those in the industry and
academic systems from literature, featuring the similar 75:25 ratio
of maintainability-related to functional problems. We also reveal
that 7–35% of review comments are discarded and that 10–22%
of the changes are not triggered by an explicit review comment.
Patterns emerged in the review data; we investigated them revealing
the technical factors that influence the number of changes due to the
MCR process. We found that bug-fixing tasks lead to fewer changes
and tasks with more altered files and a higher code churn have more
changes. Contrary to intuition, the person of the reviewer had no
impact on the number of changes.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Code inspections and walk-
throughs

General Terms
Human Factors, Experimentation, Measurement, Verification

Keywords
Code Review, Open Source Software, Defects
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1. INTRODUCTION
Code review is a widely agreed-on best practice in Software

Engineering [11], consisting in the manual assessment of source
code by human reviewers. It is mainly intended to identify defects
and quality problems in the source code before its deployment in a
live environment. We differentiate Formal Inspections from Modern
Code Review (MCR, [5]): Inspections are heavyweight processes
mandating a waterfall-like procedure, including an expert panel, a
distinguished group meeting, and other formal requirements [19];
MCR is a lightweight process involving fewer formal requirements,
a shorter time to a finished review, and often review tool support [22,
23, 29, 41]. Today, MCR dominates in practice [30], and is found
both in industrial and OSS projects.

Due to the time-consuming nature of code reviews, researchers
investigated their benefits and influencing factors [7, 36, 50]. While
a variety of studies focused on inspections, research on MCR is in
the early stages. Only two studies analysed the outcome of MCR:
(1) Bacchelli and Bird investigated motivations and outcomes of
MCR at Microsoft [5], and (2) Mäntylä and Lassenius classified the
types of defects found in review on university and three industrial
software systems [32].

Both studies investigate the defects that the MCR process finds,
by analysing the comments written by reviewers. The analysis of
the review comments, however, does not allow one to evaluate the
problems that MCR fixes. In fact, comments might be disregarded,
not clear in their target, or lead to unexpected changes; moreover,
changes might not be triggered by comments, but by the authors
themselves, or by an oral discussion. A precise evaluation of the
problems that code reviews fix requires an in-depth investigation of
the actual code changes that occur between the code submitted to
review and the code eventually accepted. In this paper, we present
such a study, investigating what kind of issues are fixed in MCR.

To test how previous findings from industrial and academic con-
texts apply, and to grant the replicability of our experiment, we
focused on OSS systems for our investigation. We examined over 30
mature OSS systems claiming to do mandatory, continuous code re-
view as possible study candidates. Unexpectedly, only two projects
adhered to their claim. For these two systems, we manually clas-
sified more than 1,400 review changes into a defect categorisation,
which we validated in an interrater-reliability study including two
developers of those systems. We classified each change manually
with the help of an Eclipse plug-in that we developed. Using the
same setup, in a second step, we classified the trigger for the change.

Surprisingly, we found that the distributions of change types from
our studies are strikingly similar to the defect distributions from the
two prior studies: The reported 75:25 distribution of maintainability
versus functional changes holds in our OSS systems, too. Similar
to Mäntylä’s results [32], the dominant change categories are code



comments (20%) and identifiers (10%). However, our study shows
that 7–35% of review comments are discarded, and that a substantial
10–22% of the total changes are not triggered by review suggestions;
this is not considered in prior studies.

While classifying changes, we noticed patterns in the meta-data
(e.g., bug-fixing tasks often had fewer changes than tasks implement-
ing new functionality). We built a regression model on the technical
influences of the review process to detect what could influence the
number of changes made in reviews. We show that bug-fixing tasks
lead indeed to fewer changes and that tasks with more altered files
and a higher code churn have more changes on average. Interest-
ingly, the reviewer has no impact on the number of changes. In
interviews, developers confirmed our results match their intuition.
Structure of the paper: Section 2 introduces a common nomen-
clature on code reviews and provides an overview of the related
work. Section 3 details our methodology: It introduces our initial
research questions, the subject systems and the steps we took to
conduct our investigation; subsequently, it details another research
question, which emerged from our manual classification, and the
steps to answer it. Section 4 presents the results for our research
questions. We discuss the findings in Section 5 and conclude in
Section 6.

2. BACKGROUND
We define a common nomenclature on abbreviations we use:

TMS (Task Management System): A software system to collect
and administer coherent modifications in the form of task,
such as Bugzilla1 and Redmine.2

Task: The entity in which change requests are stored in a TMS.
Synonyms are Issue or Ticket.

VCS (Version Control System): A software system where typi-
cally source code is stored in a repository with a retrievable
history, e.g., SVN3 or Git.4

In the remainder of the section, we present the MCR process and
give an overview over related work.

2.1 The Modern Code Review Process
From a black box perspective on Figure 1, a review is a process

that takes as input original source code (i.e., the first unreviewed
change attempt, Step 1), and outputs accepted source code (2).
The author is the person responsible for the implementation of the
assigned task as source code. The reviewer(s) assure the implemen-
tation meets the quality standards. The original source code is a
work that stemmed solely from the author, whereas in the accepted
source code the author incorporated the reviewers’ suggestions so
that everybody is satisfied with the result.

The grey area in Figure 1 reveals the inner workings of the review
process from a white box perspective: Once source code is submit-
ted for review, the reviewers decide whether they accept it (3) or not
(4). Their decision is normally based on the project’s quality accep-
tance criteria, reviewing checklists, and guide lines. If they do not
accept the code, reviewers annotate it with their suggestions (4) and
send the reviewed source code back to the author. Addressing the
reviewers’ suggestions, the author makes alterations to the code and
sends it back for further review (5). A review round comprises the
1http://www.bugzilla.org
2http://www.redmine.org
3http://subversion.apache.org
4http://git-scm.com

two steps ‘source code submitted for review’ (1 or 5) and its actual,
technical review (3 or 4). Therefore, a piece of code can minimally
have one review round, if (3) is executed directly, or potentially
infinitely many rounds, if the reviewers are never satisfied.
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Figure 1: The review process detailed.

2.2 Related Work
Code reviews became subject to scientific examination with Fa-

gan’s 1976 paper on formal inspections [19]. Kollanus and Koskinen
give an overview over the past and the status quo of research on
reviews [30]. Overall, they note an evident lack of empirical knowl-
edge on code reviews, and suggest more studies to be conducted to
measure the effects of different review processes. With this paper,
we strive to expand the current evidence-based knowledge on MCR.

There are two principal categories of code reviews: Formal,
heavyweight review processes, called inspections (e.g., the Fagan
Inspection [19]), and lightweight code reviews with an emphasis on
efficiency, referred to as modern code reviews [5, 30].
Formal Inspection. Despite their initial success, Fagan inspections
have several disadvantages that hinder their continuous and wide-
spread use across organizations: They mandate a number of formal
requirements that do not adapt well to agile development methods,
most notably a fixed, formal, waterfall process [33]. Several studies
have shown that review meetings do not improve defect finding [10,
36, 45, 50]. Only one study reported contrary results [17].

Consequently, researchers and practitioners developed more light-
weight, ad hoc code reviewing processes to better suit environments
with test-driven and iterative development [6, 9, 34, 37, 47].
Modern Code Review. MCR is characterized by fewer formal
requirements, a tendency to include tool support, and a strive to
make reviews more efficient and less time-consuming. These fea-
tures allowed many organizations to switch from an occasional to
a mandatory, continuous employment of reviews [5]. MCRs often
leave out the team meeting, and reduce the number of people in-
volved in the review process to two. Adversely, Wood et al. found
that the optimal number of reviewers should be two [54].
Review Effectiveness and Efficiency. Most research comparing
inspection with testing and pair programming considers only func-
tional defects [4,28,30,44]. Given a reported 75% of non-functional
defects in MCR [32], it stands to question whether the results from
prior studies apply to modern review.

Sauer et al. [46] argue that individual expertise is the key factor
in review effectiveness. Hatton [27] supports it: He found stark
differences in defect finding capabilities among reviewers.

The ability to understand source code and perform reviews is
called “software reading” [14]. The idea for this came from Porter
and Votta [42], who advocated scenario-based reading, instead of
generic checklists. Several code reading techniques such as defect-
based reading and use-based reading have been suggested to educate
code readers [14,53]. El Emam and Wieczorek depict a code review
process based on classic checklists [18].

http://www.bugzilla.org
http://www.redmine.org
http://subversion.apache.org
http://git-scm.com


Supporting Tools. MCR is often supported by tools, preferably
integrated into the development environment (IDE) [12]. Bernhart
et al. introduced one such tool for the Eclipse IDE, ReviewClipse [9],
now Mylyn Reviews [39]. ReviewClipse automatically creates a new
‘review process,’ assigns a fitting reviewer, and opens a compare
viewer for this commit. Reviewers perform reviews on the changed
file in the IDE after it has been pushed into the VCS.

A popular review tool is the OSS Gerrit [22], offering web-based
reviewing for projects using Git. It integrates the changes into the
VCS only after the reviewer expressed consent to it [35].

A number of other review tools exist: Mondrian, a tool that
Google uses for its closed-source projects [29]. Phabricator is Face-
book’s open-sourced tool [41]. Github’s review system works with
pull requests, comprising the code, a referenced task and possibly
review comments [23]. Microsoft develops and uses CodeFlow [5].

3. METHODOLOGY
In this section we define the research questions, describe our case

study objects, and outline our research method. More technical
details can be found in the master’s thesis origin of this work [8].

3.1 Research Questions
Our overall research goal is to gain an in-depth, analytical un-

derstanding of the outcome of the Modern Code Review process in
OSS. This led to formulating the first two research questions. While
working on them, we noted obtrusive patterns in the meta-data of
our changes (e.g., bug-fixing tasks had fewer changes than tasks
implementing new functionality) that led to research question 3.

RQ1: Which changes occur in code under review?

RQ2: What triggered the changes occurring in code under review?

RQ3: What influences the number of changes in code under review?

3.2 Subject Systems
To answer our research questions empirically, we need suitable

study objects. In this section, we motivate the choice of our two
study objects and demonstrate their heterogeneity.

In total, as candidates for our case study, we examined over 30
OSS projects, which had some kind of claim to do code reviews.
We found these projects by a Google search with the terms ‘open
source’ and ‘review’, by harvesting Gerrit’s show case projects,5

and by posting in mailing lists and forums.
We discovered that many well-known OSS projects (e.g., Libre-

Office6) mostly review only code written by new developers. While
they often seemingly employ code review tools, an examination of
most projects’ code review databases reveals that they are empty.
For example, although Eclipse is listed as one of the show cases for
Gerrit, none of the Eclipse projects enforce its usage. Tycho7 is an
Eclipse sub-project One of Tycho’s main committers told us that
“if there is no functional change, there is no need to have an entry
[in Gerrit]” and “we don’t require a review – only that committers
offer the chance for review. This is typically done by proposing a
change in Gerrit and by waiting three days before submitting it.”
Consequently, a top Eclipse developer publicly admitted that he
“feels scared” when committing without a review [49].

Since we want to examine the effects of continuously applied
code reviews, we had to discard the majority of inspected study can-
didates. We finally chose ConQAT and GROMACS, which have a
5https://code.google.com/p/gerrit/wiki/ShowCases
6http://www.libreoffice.org
7http://projects.eclipse.org/projects/technology.tycho

documented history of mandatory code reviews for every committed
code change. Table 1 summarizes their main characteristics.

Table 1: Comparison of ConQAT and GROMACS.

ConQAT8 GROMACS9

Access to Code Public releases Public VCS
Access to TMS On request On the website

Development time ≥ 8 years ≥ 18 years
# of Developers 12 active, ∼50 total ∼16 active, ∼44 total
# of Reviewers 5 active 13 active
Language Java C (mostly)
SLOC 260,465 1,449,440
# of Tasks ∼2,500 ∼1,200

Code Reviews since 2007 2011
Review mandatory Yes Yes
Review tool None (Eclipse) Gerrit
# of Reviewers/Task 1 ≥ 2
# of Review Rounds [1;∞[ [1;∞[

Samples ConQAT-rand, ConQAT-100 GROMACS-rand

ConQAT. ConQAT is “an integrated toolkit for creating quality
dashboards that allow to continuously monitor quality characteris-
tics of software systems.”10 Reviewers adopt a review-after-commit
workflow: The reworked and reviewed source code versions are com-
mitted directly to the main development line in the VCS; reviewers
use Eclipse to assess the source code and denote their suggestions as
code comments. An important benefit of ConQAT is that we could
establish a contact with its developers, thus we could approach the
person responsible for any review change we were analysing
GROMACS. GROMACS is “a versatile package to perform molec-
ular dynamics, i.e., simulate the Newtonian equations of motion for
systems with hundreds to millions of particles.”11 Different from
ConQAT, GROMACS uses Gerrit, so only the accepted source code
is merged with the main development line. Reviewers enter their
suggestions via a web-based user interface. We could not obtain
direct access to the developer team.

3.3 Research Method – RQ1 and RQ2
Having selected the study subjects, we continued our investigation

to answer RQ1 and RQ2. In the following, we detail the research
method we adopted.
Change Classification. To understand which types of problems are
fixed in the MCR process, we classify the changes that happen to
code under review. We found that defect classifications in the liter-
ature are well-suited to characterize these code changes, although
we use a broader definition (‘change’ instead of ‘defect’). Due
to the human-centric nature of code review, the term ‘change’ is
more accurate than ‘fix’ or ‘defect’, as an improvement in the re-
viewed version might not be recognized as such by other reviewers.
However, we used these terms because (1) they demonstrate the dif-
ference between review comments and review fixes clearly, (2) they
are established and (3) they indeed fix problems according to the
reviewer’s perception. As a first step, we surveyed existing defect
classifications. Researchers have produced an abundance of defect
classifications [51], leading to an IEEE standard in 1993 [1]. The
standard was the basis for two classifications by IBM and HP [13].
Wagner et al. [52] and Duraes and Madeira [16] evaluated these
classifications and found them too general; consequently, El Emam
and Wieczorek refined them [18]. Mäntylä and Lassenius based their

10http://www.conqat.org
11http://www.gromacs.org

https://code.google.com/p/gerrit/wiki/ShowCases
http://www.libreoffice.org
http://projects.eclipse.org/projects/technology.tycho
http://www.conqat.org
http://www.gromacs.org
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Figure 2: Research method applied to classify changes of code under review.

topology on this empirically validated classification scheme [32].
They analysed code review comments and extrapolated the types of
defects found, reporting a 75:25 ratio between maintainability and
functional defects. We found their classification to be applicable to
the changes we observed – and not only to review comments. Our
classification builds upon their work with small adaptations.
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Figure 3: The taxonomy of changes of code under review.

According to our classification in Figure 3, a change can have
implications in the form of a functional alteration in the software
system, in which case it is a functional change. If it has none, it is
a non-functional evolvability or maintainability change. We refine
each of the two top-level categorizations into sub-groups.12 Struc-
ture changes address problems that alter the compilation result of
the code. They represent a category difficult to fix, as they require
a deep understanding of the system under review. Visual Represen-
tation changes contain code-formattings without an effect on the

12A more detailed description of the subgroups is given in http://
figshare.com/articles/Code_Review_Defects/689805. El Emam
et al. describe sub-categories of functional defects [18].

compilation result. Documentation means documentary deficiencies
(e.g., comments and names) in the program text.

Our adaptations to the original classification are few: We included
clarifications for Java-specific language constructs like ‘assert’ state-
ments (often Debug Info) and the ‘abstract’ modifier (Visibility) so
that others could understand these categories. We removed all sub-
categories in the resource category because these changes were rare.
Most important, we removed the false positive category. Within the
scope of our study, we find it an orthogonal concept to the type of
a change: Per definition, either a change happened, and then we
can categorize it in the appropriate category, or no code change
happened, but then it is also not a false positive.
Motivation Classification. The motivation to do a change can be
either (1) triggered by a review comment (as in Figure 4), or it can
be (2) undocumented. If undocumented, the motivation can come
from the author himself, the reviewers (e.g., given orally), or from
other sources.
Classification Process. Figure 2 depicts our classification approach,
where we started at the level of tasks in the TMS (Step 1). By ob-
serving all code changes related to a task, we gain an understanding
of the effects of code review on self-contained units of changes
in the system. If we had just randomly selected unrelated code
reviews from the code review population in the system, we would
not have captured this relationship. Additionally, we could not have
answered RQ3 with the traditional approach of entirely random
review selection.
Task Sampling. ConQAT and GROMACS have too many tasks in
the TMS to rate them all manually (see Table 1), thus we resorted
to representative samples (Step 2). From ConQAT, we built two
samples: A stratified random sample consisting of 120 tasks which
aims to be a representative extract of all the ConQAT tasks, ConQAT-
rand. Additionally, we inspected the 100 most-recently closed tasks
to be able to unveil recent trends in code reviews as deviations from
our representative sample ConQAT-rand, called ConQAT-100. Since
GROMACS had fewer tasks with code reviews, we could extract
only one sample: GROMACS-rand.13

Scope of Changes. Having selected the tasks to categorize, we
performed a lookup to find the corresponding review rounds (Step 3)
in either Gerrit (for GROMACS) or a pre-release of Teamscale.14

Teamscale provided us with a consistent SVN history of ConQAT, in

13A second sample (i.e., GROMACS-100) would have 80% overlap with
GROMACS-rand, rendering it of little additional value.

14http://www.teamscale.org

http://figshare.com/articles/Code_Review_Defects/689805
http://figshare.com/articles/Code_Review_Defects/689805
http://www.teamscale.org


Figure 4: A review-triggered code change.

which we could query all commits made to a specific task. Similar
to Gerrit, this allowed us to infer all review rounds for each task
individually (Step 4). Once we identified the review rounds, we
could compare the reworked source code to the reviewed source
code of the prior round (Step 5). In practice, we did a file-by-file
comparison of all files touched in the review process. We used our
own Eclipse plugin and Gerrit’s web-compare view for this. With
these tools, we identified the scope of all modifications, i.e., which
textual differences comprised one logical, cohesive change in the
sense of our categorisation from Figure 3 (Step 6). This was trivial
as long as the change was triggered by a review comment. However,
for undocumented changes, it was sometimes harder to decide the
scope, and thus the adequate change category. In these cases we
asked ConQAT’s developers to help us in defining the scope and
categorisation (Steps 6 and 7). In the few cases where developers
could not make sense of the modifications, or the original developer
was not available, we invalidated the task. For GROMACS, we
immediately invalidated the task.
Change Classification. Once we had separated all changes in
Step 6, we performed two independent ratings for each change
in Step 7.

For RQ1, we rated the type of one code change in exactly one
category, supported by our change classification definition. If we
considered more than one defect category suitable, we used the most
precise fitting, i.e., the one which explained best why a change was
conducted. While we tried to rate modifications as fine-granular and
precise as possible, we preferred to rate bigger changes with a rec-
ognizable functional modification as one larger functional change.
If we could rate a change as either evolvable or functional, we pre-
ferred the latter, in accordance with Mäntylä and Lassenius [32]: We
consider functional implications more severe, and most functional
changes inevitably have maintainability implications.

For RQ2, we assessed the motivation to do the change, either as
a review comment or as undocumented. Furthermore, we denoted
in Step 6 if a review comment did not lead to a change because the
author and reviewer decided to abandon it.
Databases. In the last step (Step 8), we stored each categoriza-
tion together and the meta-data about review round and task, in a
database. In an effort to stimulate replication and further research
on MCR, we make these databases publicly available.

3.4 Subject System for RQ3
While classifying review changes for RQ1 and RQ2, we noted

some patterns in ConQAT’s data. For example, tasks categorised
in the TMS as bug fix had fewer changes under review than tasks
categorised as new feature implementation. This left us wondering
which factors influence the number of changes in ConQAT (RQ3).

In our answer to RQ3 we did not want to be limited to a purely
quantitative study, but wanted to qualitatively interpret the observed
coefficients. Therefore, we selected only ConQAT as study subject.
Interviews with developers and architects would help us link quanti-
tative and qualitative information to gain a deeper understanding of
the influences leading to more or fewer changes.

3.5 Research Method – RQ3
Intuitively, we assume that the amount of changes under review

depends on the person of the reviewer and author, the type of task,
how extensive the alterations to the systems were, and other influ-
ences. To capture possibly all relationships, we performed inter-
views with ConQAT developers and reviewed the influences pro-
posed in literature (e.g., [7]). These are the explanatory variables in
the model, and their possible influence on the number of changes:

Code Churn (discrete count, d.s.) ∈ [0;∞[
Code churn is a metric of how many textual changes occurred
between two versions [38]. The larger the code churn in the
original file, the more there is to review and therefore, the
more changes could follow.

Number of Changed Files (d.s.) ∈ [0;∞[
The more wide-spread a change is across files, the more con-
cepts it touches in a system. It is difficult to master all these
concepts, and this could make more rework necessary.

Author (categorial, c.) ∈ {bader, beller, besenreu, deissenb, ...}
The author of the original code. We suppose certain authors
to need more changes during review than others.

Task Type (c.) ∈ {uncategorized, adaptive, corrective, ...}
The task type describes the kind of work that is expected to
occur in a task [26]. Corrective tasks are bug fixes. Perfective
are tasks that implement new functionality. Preventive tasks
shall simplify future modifications; adaptive tasks adapt the
system to changes in the execution environment; ConQAT
developers had a common understanding of corrective and
perfective tasks, but preventive and adaptive were less clear,
and also less used [43]. Uncategorised is the default, and also
used for tasks that do not fit in any of the other categories.
Developers set the type for each task manually in the TMS.

Package (c.) ∈ {edu.tum.cs.conqat.ada, ...}
ConQAT is internally structured into more than 30 different
top-level packages. Review on parts of the ConQAT engine is
believed to be rigorous, while review in the IDE parts might
be laxer. This variable reports the main building site of a task.

Reviewer (c.) ∈ {heinemann, hummel, juergens, ...}
We presume that the reviewer has one of the largest influences,
since the review suggestions are his work. We could imagine
some reviewers to be more strict than others.

Dependent Variable. The dependent variable for our model is the
number of changes due to code review. It is far more fine-grained
than the number of review rounds.
Data Sampling. Based on the above description of the characteristic
features of these variables, we developed algorithms to automatically
gather the data. In contrast to RQ1 and RQ2, we could analyse the
complete ITS this way. In total, we analysed 2,880 changes under
review in 973 tasks from ConQAT.



Application of Regression Analysis. To analyse the impact of
the aforementioned influences, we use a generalised linear model
(GLM). Mixed models or GLMs are a common methodology in
Software Engineering research [4]. Such a regression model applies
because it describes characteristics of a dependent variable – number
of changes – in terms of explanatory variables X1...Xn in retrospect,
which is the case for our data. In contrast to linear models, GLMs
can handle both cardinal and discrete count variables, which makes
them ideal for the analysis of our model.

We evaluated the GLM with the help of the statistics software
R. For the evaluation, we first determined a distribution that best
fits our dependant variable. The histogram for the distribution of
the changes is similar to a Poisson distribution, but is zero-inflated
and skewed to the left. A GLM is the preferred approach for such
non-normal distributions of the dependent variable [55]. Following
this advice, we modelled the number of changes with a negative
binomial distribution [31]. The theory of GLM dictates that no
strong or trivial relationship in-between the explanatory variables
should exist. We calculated Pearson’s r as an estimator of the
relationship between explanatory variables that are likely correlated
and found a weak correlation between code churn and number of
changed files (r = 0.33 at a 0.95 confidence interval), which does
not impede the applicability of GLM [20].

4. RESULTS
In this section, we report the results of our case studies to RQ1–3.

4.1 Types of Changes in Reviewed Code
In RQ1, we researched which types of problems are fixed in MCR.

We give an overview of the findings, and then focus on the results for
maintainability versus functional changes, and the detailed results
from manual classification.

Table 2: Task and review change distribution in RQ1 and RQ2.

Metric ConQAT-rand ConQAT-100 GROMACS

# of valid Tasks 100 89 60

# of Changes 892 361 216
Average 8.81 4.00 3.24
Median 2 0 0
Max. #Changes/Task 208 110 93

Number of Changes. Even after normalising the number of tasks to
100 (see Table 2), we note a discrepancy in the number of changes
in our three samples: There were relatively fewer changes dur-
ing review in ConQAT-100 and GROMACS than in ConQAT-rand.
We would have expected similar results from ConQAT-rand and
ConQAT-100, but we found a stark difference: 892 changes in the
former and 361 in the latter. In GROMACS we found only 216
changes. A related characteristic is the number of changes per task.
As Table 2 shows, the distribution is skewed towards a small number
of changes, with few extreme outliers.
Evolvability vs. Functional Changes. Figure 5 presents the ratio
of evolvability and functional changes in our three data sets, and puts
it in context with the values reported by Mäntylä and Lassenius [32].
The ratios among the four systems are similar, floating around 75:25,
within a range of ten percentage points.

In ConQAT-rand we found more evolvability fixes than in all other
samples, 6% points above 75%. ConQAT-100 hits the 75:25 ratio
almost exactly. GROMACS has a slightly lower amount of evolv-
ability changes at 69%. The uniformity of the result is surprising,
because ConQAT and GROMACS are written in different program-
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Figure 5: Evolvability vs. functional changes (RQ1).

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

support

larger defect

logic

interface

check

resource

structure

visual
representation

documentation

ConQAT-rand ConQAT-100 GROMACS-rand

evolvability changes

functional changes

Figure 6: Change distribution profiles (RQ1).

ming languages and development models by different people with
diverging review processes.
Detailed Change Profiles. Figure 6 depicts the detailed study re-
sults: It lists the frequencies of each change category from Sec-
tion 3.3.15

Following the trend from the top-level groups, the normalised dis-
tribution profiles of ConQAT-rand, ConQAT-100, and GROMACS-
rand, look comparable. For example, we find changes in code
comments to be the single highest change category across all the
profiles, followed by identifier renamings in ConQAT, and ‘other’
functional changes, and then renamings in GROMACS (categories
‘documentation’ and ‘logic’). In GROMACS no changes from the
‘documentation-language’ subcategory were fixed, because GRO-
MACS is a C system, and C does not support the object-orientated
concepts specific to this subgroup. In ConQAT, few changes stem
from the ‘visual representation’ subgroup, as developers use Eclipse’s
auto-formatter to fix these problems.

15The fine-grained, absolute distribution profiles are available on
http://dx.doi.org/10.6084/m9.figshare.915389.

http://dx.doi.org/10.6084/m9.figshare.915389


4.2 Triggers of Code Changes
RQ2 regards what triggers a change in reviewed code. Addition-

ally, this includes how many review comments are realised, and how
many are discarded.
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22%
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14%
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ConQAT-rand
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Figure 7: Distribution of the triggers for code changes (RQ2).

Figure 7 illustrates the results. ConQAT-rand, ConQAT-100, and
GROMACS show two uniting features: Most changes under re-
view come from review suggestions (78–90%). Yet, undocumented
changes, which have not been captured in prior research, represent
more than 10% of all changes (10–22%). Interviewed ConQAT
developers explained that undocumented changes are almost exclu-
sively self-motivated: During a review the author autonomously
decides to do a change that was not requested by any reviewer.

The acceptance of review comments is diverging: In the ConQAT
samples, more than 90% of review suggestions lead to a change
(93% for ConQAT-rand and 91% for ConQAT-100). In GROMACS,
only 65% of review suggestions are realised, while the remainder is
discarded in unison by the author and the reviewer.

We noticed a relationship between the presence of review-triggered
and undocumented changes: Whenever there were undocumented
changes in a task, at least one review-triggered change happened,
too.

We explored a relationship that links the type of changes and their
motivation, combining RQ1 and RQ2. In both ConQAT samples a
strong correlation is present between review-triggered changes and
comment type changes (ρConQAT−rand = 0.74, ρConQAT−100 = 0.71),
which is weaker for undocumented changes (ρConQAT−rand = 0.43,
ρConQAT−100 = 0.35 at a 0.95 confidence interval). The correlation
is moderate in GROMACS, as no such evident difference exists
between review-triggered and undocumented comment changes
(ρGROMACS = 0.56 for the first, ρGROMACS = 0.51 for the latter).

4.3 Influences on the Number of Changes
The regression analysis yields a set of coefficient values for each

of the explanatory variables in our model. We report on how we
evaluated the model and the results with the 973 sampled tasks from
ConQAT.
First Model Fit. Our first model fit reported a θ = 0.4124, a
standard error of 0.0328 changes and a log-likelihood of –1,487.5.
The benefit of the standard error is that – in contrast to R2 – it tells us
how strong the observed values differ on average from the regression
model in the unit of the dependent variable [20]. In comparison to
the unit-less R2, this provides us with an intuitive understanding of
the model accuracy: On average, the calculated number of changes
is off by 0.03.

The detailed coefficient results showed that we did not have one
reviewer or author instantiation for the variable ‘reviewer’ and ‘au-
thor’ with a statistically significant value [2]. Therefore, we question
whether the ‘reviewer’ or ‘author’ parameter as a whole have an
overall significant impact on the dependent variable ‘number of
changes’.

To test for this, we performed a 14 degrees of freedom χ2-test [24],
in which we compared the model with and without the explanatory
variable ‘reviewer’. At Pr(χ) = 0.23, the χ2-test implied that the
‘reviewer’ is a statistically insignificant predictor of the number of
changes, because it is larger than the significance level of 0.05. As a
result, we refined our model to exclude the ‘reviewer’. The variables
‘author’ and ‘package’ have a significant influence, confirmed by
the according χ2-tests.
Second Model Fit. Our second model fit reported θ = 0.4001, a
standard error of 0.0317 changes and a log-likelihood of –1,496,512.
Equation 1 expresses the refined influence model (without ‘re-
viewer’), where i is the task number.

log(Number of Changesi) = ε + β1 · Code Churni +

+ β2 · Number of Changed Filesi +

+ β3 · Packagei + β4 · Task Typei + β5 · Authori (1)

We report ε and the β coefficients along with their significance in
Table 3. As we have an underlying logarithmic relationship, the
effects of small parameter alterations (e.g., number of changed files)
can have greater effects than a simple linear function, part of the
reason why some coefficients are relatively small (e.g., β1).

Table 3: Calculated model coefficients for RQ3 (see [8]).
Coefficient Value Significance Level

Error Term ε (Intercept) -34.0042 1.0000

Code Churn β1 0.0026 2.34 · 10−16 **

Changed Files β2 0.0483 < 2 · 10−16 **

Package β3
org.conqat.engine.blocklib -36.9484 1.0000
org.conqat.engine.commons 0.7152 0.4649
org.conqat.ide.editor 0.1793 0.8633
org.conqat.ide.index.dev -39.3108 1.0000
...

Task Type β4
adaptive 0.5277 0.1283
corrective -0.6508 0.0496 *
perfective 0.7015 0.0138 *
preventive -0.7289 0.1118

Author β5
deissenb 32.4496 1.0000
juergens 32.7963 1.0000
...
Significance codes: ** = 0.001, * = 0.05

5. DISCUSSION
In this section, we discuss our results and show how we mitigated

the threats that endanger them.

5.1 Types of Code Changes
In RQ1, we asked: Which types of changes occur in code review?

Our results reveal that most changes are related to the evolvability of
the system (75%), and only 25% to its functionality (see Figure 3).
Change Types. Prior research reported similar ratios for industrial
and academic systems [5, 32]. Therefore, the MCR process seems
to be generally more valuable for improving maintainability, than
for fixing defects. Development teams should be well-informed
about this particular outcome, to better decide how to include MCR
in their process. For example, MCR might be recommended for
software systems that require high maintainability, such as long-
lived software systems.



Code Review vs. Testing. Prior research compared the benefits of
code review to testing by considering only their respective effec-
tiveness in discovering functional defects [28]. Our study reveal
that the other types of problems that are fixed with code reviews
dominate over functional fixes (75% vs. 25%), thus an approach that
considers only the functional fixes might lead to drawing wrong con-
clusions about the usefulness of the MCR process in general. Our
results are backed-up by similar change type distributions reported
by Mäntylä and Lassenius for industrial and academic reviews [32]
(see Figure 1), further questioning the value of the partial compari-
son between code review and testing.
Number of Changes. Apart from the types of changes, we also
observed some trends in the number of changes: Considering in
order ConQAT-rand, ConQAT-100, and GROMACS, the normalised
number of changes decreases. Developers’ explanation for ConQAT-
100 is that in this observation period many tasks stemmed from a
well-rehearsed team of two developers, leading to fewer changes
in reviews. For GROMACS, we attribute the fewer changes in
review to not as-strict and detail-oriented reviews in comparison
with ConQAT. Interestingly, this did not affect the distribution of
change types in Figure 6.
Splitting Large Tasks. We observed that in GROMACS-rand and
ConQAT-100 more than 50% of tasks pass review directly (median
of 0, Table 1). Few tasks have an extraordinary amount of changes.
As the variance is great it is hard for reviewers to estimate in advance
how long and how difficult a review will be. We would expect
that this problem could be solved by generating a more uniform
distribution of review comments with the splitting of larger tasks
into smaller sub-tasks. However, by analysing the tasks with many
review changes (> 30), we found that the exact opposite happens
in practice. Large tasks with many changes included the review
of additional satellite tasks. In other words, related tasks started
out small and separated (as we would have suggested initially), but
were then merged during development or during review. From an
economical point of view, it makes sense for one reviewer to also
review related tasks. Still, reviewers would probably benefit from
separated, smaller, and more manageable review chunks. Further
analysis on this revealed that a technical reason is also preventing
this chunking: The review process in ConQAT is file-based and
related tasks often perform cross-cutting changes in the same files.
At least parts of such tasks must be reviewed together (in ConQAT,
this is determined via communication in the TMS), thus increasing
the number of changes in one of the tasks. This is less frequent in
GROMACS, where changes can be reviewed independently. This
underlines the advantage of specialised tool support for the MCR
process and the advantage of change-based over file-based reviews.

5.2 Triggers for a Code Change
In RQ2, we asked: What triggered the changes that occurred

in code under review? We showed that in 78–90% the trigger are
review comments. The remaining 10–22% are ‘undocumented.’
Self-Motivated Changes. In developer interviews for ConQAT,
we revealed that almost all undocumented changes are in fact self-
motivated changes, i.e., they are made by the author without an
explicit request from the reviewer. This is because ConQAT’s review
process demands that every oral review suggestion be at least also
textually documented. As the GROMACS team is physically more
spread-out, such out-of-the-band communication through mailing
lists, group chats, fora or private communication is a concern we
could not fully exclude [25]. However, we did not notice a lack of
documentation for actions taken in Gerrit.
Triggering Self-Motivated Changes. We discovered that in each
case where a self-motivated change is present, there needs to be

at least one review-triggered change. In other words, we found
that self-motivated changes are only made when the reviewer does
not directly accept the modifications in the task, but includes some
comments. We did not investigate this finding further, but studies
can be designed and carried out to determine if and how other
reviewers’ comments give rise to autonomous reflection on the code
under review and improved effectiveness of the MCR process.
Changes in Comments. While correlation is not causation, we
assume that reviewers notice outdated and ill-fitting comments more
readily than developers themselves. This could be an explanation for
the increased correlation for comment changes in review-triggered
changes vs. comment changes in self-motivated changes.

5.3 Influences on the Number of Changes
In RQ3, we asked: What influences the number of changes in code

under review? We found that the reviewer did not have an influence
on the number of changes, and that code churn, number of changed
files and task type are the most important factors influencing the
number of changes. In this section, we underline these numerical
findings from Table 3 with qualitative explanations from developer
interviews.
Reviewer Insignificant. Confronted with our observations, two
ConQAT developers answered that it fits their experience and in-
tuition that they do the same amount of rework for every reviewer.
One developer answered that “the amount is about the same, with
some giving slightly more [review comments] than others.” One
developer answered that he does not have a gut feeling for this re-
lationship. In his opinion, the lack of a feeling for this could be
because he does not think about the reviewer when incorporating
changes. All ConQAT developers speculate that the reason behind
this finding is the long term collaboration between the developers –
some developers have been working together for more than 8 years.
One developer said that he was “convinced that our review process
creates a very common understanding of the way we code.”
Size and Task Type Significant. We asked developers about the
observations that (1) bug-fixing tasks lead to fewer changes than
tasks which implement new functionality, and (2) tasks with more
altered files and a higher code churn have more changes. One
developer answered that he thinks “the number of review comments
correlates with the amount of [altered] code. This explains both
observations.” The answer implies that bug fixes affect fewer lines
of code than tasks that implement new functionality. Osman et
al. have shown that, indeed, most bug fixes concern only one line
of code [40]. It is intuitive that a single line of code change cannot
cause as many review objections as the development of a full-blown
new feature.
Package. While the package where a review took place played a
role, we have no significant data to support the assumption that there
are generally more review changes in critical parts of ConQAT.
Author. A similar explanation as for the package is true for the
author. The main reason for the lack of confidence in the calculated
coefficients is the high variability in the amount of changes per
author and task. Although the values are not significant, all main
ConQAT developers have a similar coefficient. This would support
the gut feeling of developers that all authors have the same amount
of rework during review.

5.4 Threats to Validity
Both internal and external threats endanger the validity of our

results. In this section, we show how we mitigated them.
Internal Threats. Internal threats concern the validity of our mea-
surements. As such, the Hawthorne Effect refers to the phenomenon
that participants of case studies perform above average because of



the knowledge that they are observed [3]. We could rule out this ef-
fect since we started our studies a-posteriori: Neither the authors nor
reviewers from ConQAT or GROMACS knew we would undertake
this study.

Due to stratified randomized sampling, we captured a represen-
tative sample of ten tasks per regular author. This way, no single
author has an over-proportional impact on the result, and thus we
avoid biased sampling. This way, we also exclude inexperienced
authors from the study.
External Threats. External threats concern the generalisability of
our results. While we assume ConQAT and GROMACS prototypical
of current OSS projects that employ continuous reviews, the analysis
of only two systems does not allow us to draw conclusions about
OSS in general. We need a larger case study on more projects for
this. However, with over 1,400 categorized review changes our study
is, to the best of our knowledge, the largest manual assessment on
reviews thus far.

The categorization process for RQ1 and RQ2 is subjective. The
results are only generalisable if interrater reliability is given. We
addressed this problem with a study that measured agreement be-
tween the four study participants and our own reference estimation
with the κ measure [15] on 100 randomly-selected changes (at least
2 changes per change category). While we are aware of the limita-
tions of the κ-measure and its interpretation [48], it is the default
procedure for measuring interrater reliability. For RQ 1, we received
κ values from 0.5 to 0.6 (i.e., a “fair to good agreement” [21]) when
considering the detailed change classification, and values from 0.5
to 0.8 when only differentiating evolvability and functional changes
(i.e., a “fair to excellent agreement”). For RQ 2, we received κs
between 0.8 and 1.0 (complete agreement), excluding the threat that
our classification is too subjective.

In RQ3, algorithms performed all measurements. Therefore, there
might be the danger of a systematic bias. We used the manually
extracted ConQAT data from RQ1 and RQ2 – a subset of the data for
RQ3 – as a gold-standard to determine the quality. The comparison
showed that the algorithms were accurate for categorial variables;
they slightly underestimated numerical values, rendering our model
parameters in Table 3 a safe lower boundary.

6. CONCLUSION
In this paper, we have shown that prior research on code reviews

did not consider the entire outcome of MCR on reviewed code. Prior
research has failed to capture up to 23% of the changes applied after
review. Moreover, our investigation leads to the insight that 10–35%
of review suggestions have not lead to changes in the code.

Despite this bias in previous studies, our change type distributions
for two OSS systems show a strong similarity to the defect type
distributions of prior industrial and academic reviews. We confirm
a 75:25 ratio between evolvability and functional changes, which
strengthens the case for code review in long-lived software systems
that require high maintainability.

Moreover, we have found that the number of changes in reviews
is independent of the reviewer in ConQAT. This unintuitive finding
indicates that reviews, though people-driven, could be more people-
independent than originally assumed. Instead, factors influencing
how many changes need to be made in review comprise the type and
the volume of the task: Bug-fixing tasks tend to have fewer changes
than tasks that implement new functionality. The more code churn
or the higher the number of touched files in a task, the more changes
do we expect during review on average.

We have discovered a central shortcoming in the analysis of the
actual benefits of modern code review and propose a methodology
to overcome it. In addition, we have built and evaluated a model of

the influences on the code review process. Our vision is that one day,
code reviewers can input the amount of time they want to spend on
review, and a tool will suggest the best-fitting task for them to review.

Contributions. In this paper, we made the following contributions:
Change Classification. A validated change classification for current
Java and C projects to better understand the actual effects of code
reviews on the software.
Case Study on Two OSS. A case study with two OSS that manually
analyses the type of over 1,400 changes done in reviews: 75% of
changes in reviews are maintainability related, only 25% concern
functionality.
Motivation for Review Changes. A case study researching the moti-
vation for the changes in review: The majority of changes in reviews
is driven by reviewers’ comments. But there is also a substantial
amount of undocumented changes (10–18%), which prior research
has neglected. Moreover, up to 35% of review comments are dis-
carded.
Model on Code Review Influences. A model on code review in-
fluences: Reviewing homogeneously leads to the same number of
changes independent of the reviewer, whereas the type of the task,
the code churn and the number of touched files have a significant
influence on how many changes are performed in a code review.
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