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Abstract

In the implementation of device-independent (DI) quantum key distribution (QKD) we are interested
in maximizing the key rate, i.e. the number of key bits that can be obtained per signal, for a fixed
security parameter. In the finite size regime, we furthermore also care about the minimum number of
signals required before key can be obtained at all. Here, we perform a fully finite size analysis of device
independent protocols using the CHSH inequality both for collective and coherent attacks. For
coherent attacks, we sharpen the results recently derived in Arnon-Friedman et al (2018 Nat.
Commun. 9 459), to reduce the minimum number of signals before key can be obtained. In the regime
of collective attacks, where the devices are restricted to have no memory, we employ two different
techniques that exploit this restriction to further reduce the number of signals. We then discuss
experimental platforms in which DIQKD may be implemented. We analyse Bell violations and
expected QBER achieved in previous Bell tests with distant setups and situate these parameters in the
security analysis. Moreover, focusing on one of the experimental platforms, namely nitrogen-vacancy
based systems, we describe experimental improvements that can lead to a DI QKD implementation in
the near future.

1. Introduction

1.1. Quantum key distribution (QKD)
QKD[1, 2]is aremarkable example of the advantages that quantum systems bring to accomplishing classical
tasks. All the classical crypto-systems used for key exchange are based on computational assumptions and,
therefore, are susceptible to retroactive attacks. Indeed, if an adversary keeps track of the public information
exchanged during the communication of an encrypted message and, in a later future, a more efficient algorithm
or faster machines become available, then the messages exchanged in the past can be decrypted. The novelties
brought by quantum systems allow two parties to establish a common key that is information-theoretically
secure and, therefore, can be used to achieve perfect secure communication with a one-time pad encryption.

QKD schemes explore intrinsic properties of quantum systems, such as no-cloning [3, 4] and monogamy of
entanglement [5], in order to achieve security even against an all powerful adversary who has unlimited
computational power. The well known QKD scheme BB84 [1] can tolerate a reasonable amount of noise and
decent rates’ can be achieved with current technology, see for example the analyses of [6—8]. BB84-based QKD
has been successfully implemented over long distances, see for example [9, 10], and even satellite-based secure
quantum communication was established [11].

A successful implementation of the BB84 protocol is, however, highly dependent on a good characterisation
of the underlying quantum system and the measurement devices. For example, the protocol can easily be broken

Due to finite size effects a minimal number of rounds is required in order to guarantee security. For the BB84 protocol this minimal
number of rounds required is ~10*. Moreover, a quantum bit error rate (QBER) of up to 20% can be tolerated [12, 13] for large enough
number of rounds.

© 2019 IOP Publishing Ltd
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if the devices are performing measurements in four dimensional systems instead of qubits, see discussions in
[14, 15]. Furthermore, hacking of existent implementations that exploit experimental imperfections were
presented (see e.g. [16—19]).

A good characterization of the experimental setup is a strong assumption. What is more, when quantum
technologies become commercially available, we might often buy devices from a provider which is not entirely
trustworthy. Fortunately, quantum properties allow us to overcome this problem: by exploring the strong
correlations that arise in quantum systems, one can prove security of QKD even in the very adversarial scenario
where Alice and Bob do not have complete knowledge of the internal working of their measurement devices or
the underlying quantum system that they are measuring [15, 20, 21-34]. This is the device-independent (DI)
model.

1.2. The DI scenario

The DI scenario models the underlying system and measurement devices as black boxes where the only relevant
information is the statistics of inputs and outputs. Therefore, no assumptions on the dimension of the quantum
systems or the particular measurements performed by the devices are required. This represents a significant
relaxation of the assumptions present in an implementation of the BB84 protocol. However, it is important to
remark which assumptions remain present in any implementation of a DI protocol.

Assumptions 1 (Device-independent model). In the DI model we assume:

(i) Isolated labs: no information is leaked from or enters Alice’s and Bob’s labs, apart from the state distribution
before the measurements and the public classical information dictated by the protocol.

(ii) Isolated source: the preparation of states is independent of the measurements.

(iii) Trusted classical post-processing: all the public classical communication is performed using an
authenticated channel and the local classical computations are trusted.

(iv) Trusted Random Number Generators: Alice and Bob possess independent and trusted random number
generators.

A bit of thought can make one conclude that completely removing any of these assumptions leads to a
strategy where the key is leaked to the adversary. However, we remark that partial relaxation of these
assumptions can still be considered. In [35], QKD is proved to achieve everlasting security by relaxing
assumption 1(iii) to a computationally secure authenticated channel, but assuming the eavesdropper to be
computationally bounded during the execution of the protocol. In many device independent protocols, instead
of assumption 1(ii), it is assumed that all the # systems are prepared before the measurement phase starts, so that
no information other than the classical public communication is exchanged during the protocol. However, this
would require quantum memory from Alice and Bob in order to store the quantum states along the protocol. In
an implementation where the quantum states are generated round by round, and therefore in which no long
term quantum memory is required, assumption 1(ii) is necessary to avoid that the state prepared by the source
leaks the raw bits generated by Alice’s device in the previous round. Indeed, if the source is arbitrarily correlated
with the measurement devices the state prepared can contain an additional degree of freedom that encodes the
string of bits generated in the previous rounds (this strategy is detailed in [36], appendix C). We remark that, in
experimental platforms, the preparation of states and the measurements are either performed within the same
systems or optically connected ones, and therefore one needs to assume that the process of generating a quantum
state is not correlated with the previously performed measurements. This assumption is, however, often well
justified based on a description of the setup. Reference [37] addresses the problem of hidden memory in the
devices. The authors show that a malicious eavesdropper can programme the measurement devices in such a
way that information about a previously generated key may be leaked through the public communication of a
subsequent run of the key generation protocol, if the devices are re-used. Reference [38] proposes an alternative
to overcome memory attacks and covert channels in general, as well as the need to assume that all the classical
post-processing is trusted. By introducing protocols based on secure multi-party computation distributed
among more devices, Ref. [38] relaxes the black-box model to reliability of only one of the quantum devices.
Moreover, the classical post-processing can tolerate up to a third of malicious classical devices.

Another assumption that is often used in security proofs is that the rounds of the experiment are independent
and identically distributed (IID). This, in particular, implies that the measurement devices are memoryless and
the state shared by Alice and Bob is the same for every round on the protocol. The IID assumption can be
justified, for example, in experimental setups where Alice and Bob control to some extent the source and
measurement devices, but do not have a full characterization of their working.
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Assumptions 2 (IID assumption). An IID implementation assumes:

+ IID devices: the devices behave independently and in the same way in every round of the protocol.

* IID states: The state distributed is the same for every round of the protocol. In summary, the state of the n
rounds can be writtenas p ypnp = -

The eavesdropper attacks in QKD are classified in three types: Individual attacks, where the eavesdropper has
no memory and therefore is restricted to attack individually each round of the protocol; Collective attacks: where
in every round the systems of Alice and Bob, as well as the measurement devices, are prepared identically but the
eavesdropper is allowed to make arbitrary global operations on her quantum side information; and Coherent
attacks: additionally to the global operations the eavesdropper can perform in her quantum side information, the
states shared by Alice and Bob in each round can be arbitrarily correlated, as well as the measurement devices in
the DI scenario can have memory and operate according to the results of previous rounds, i.e. do not satisfy the
IID assumption. The IID assumption, stated in assumptions 2, corresponds to the scenario where the
eavesdropper is restricted to collective attacks. In what follows we focus on two types of adversarial attacks:
collective attacks and coherent attacks.

1.3. DIQKD protocols

The firstideas of DI QKD arose in the E91 protocol [2], which uses a test of the CHSH inequality [39] in order to
certify that Alice and Bob share a maximally entangled state. This idea of self-testing quantum devices was
further explored in [14]. Indeed, DI QKD relies on the violation of a Bell inequality in order to certify the security
of the generated key. The simplest DIQKD protocol uses the CHSH inequality for the security test:

B = (AoBo) + (AoB1) + (AiBo) — (AiBy) < 2, (1)

where (AB,) = p(a = blxy) — p(a = b|xy) represents the correlation of the outputs a, b of Alice and Bob
when they perform the measurement labelled by x, y respectively. The CHSH inequality can be phrased asa
game [40] in which Alice and Bob receive x and y, respectively, as inputs and the winning condition is that their
outputssatisfy a + b = x - y, with the operations +, - taken modulo 2. The winning probability w of the CHSH
game relates to the violation 3by

4+ 8

s @)

w =
For DIQKD based on the CHSH inequality, we consider protocols where Alice possesses a device with two
possibleinputs X € {0, 1} and Bob has a device with three possible inputs Y € {0, 1, 2}. Theinputs
X € {0, 1}and Y € {0, 1} are used to test for the CHSH inequality, and the inputs X = 0and Y = 2 are used
for the other rounds, often called key generation rounds, where maximal correlation of the outputs is expected.
The parameters of interest are the Bell violation 3, or winning probability w, achieved in the test rounds and the
QBER Q of the key generation rounds. We consider that an implementation of the protocol is expected to have n
rounds and a portion ~yn of these rounds is used for testing of the CHSH condition.
A DIQKD protocol can be divided in three phases:

+ Aninitial phase where Alice and Bob use their respective devices to measure the quantum systems and,
according to the obtained outputs, generate the n-bit strings AT and By’

+ Asecond phase where Alice and Bob publicly exchange classical information in order to perform error
correction, to correct their respective strings generating the raw keys; and parameter estimation, to estimate the
parameters of interest (Bell violation, 3, and QBER, Q). At the end of this phase Alice and Bob are supposed to
share equal n-bit strings and have an estimate of how much knowledge an eavesdropper might have about
their raw key.

+ Inthe final phase, Alice and Bob perform privacy amplification, where the not fully secure n-bit strings are
mapped into smaller strings K4 and K, which represents the final keys of Alice and Bob respectively.

The specific protocols we consider for our analyses are detailed in section 2, (see protocols 1 and 2).

In order to define security of a DIQKD protocol, we follow [20, 41] and adopt the security definition that is
universally composable for standard QKD protocols [42]. Universal composability is the statement that a
protocol remains secure even if it is used arbitrarily in composition with other protocols. It is important to
remark that, for the DI case, attacks proposed in [37] show that composability is not achieved if the same devices
are re-used for generation of a subsequent key. Indeed, in [37], the authors have shown that a malicious
eavesdropper can program the measurement devices in such a way that information about a previously

3
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generated key may be leaked through the public communication of a subsequent run of the key generation
protocol, if the devices are re-used. It is still an open problem what is the minimum set of assumptions that can
lead to universal composability of DIQKD (e.g. the attacks of [37] can be avoided if we assume that Alice and Bob
have sufficient control over the existing internal memory of their devices, so that they can re-set it after an
execution of the protocol).

Let K, and K denote the final key held by Alice and Bob, respectively, after they perform a DIQKD protocol.
A DIQKD protocol is secure if it is correct and secret. Correctness is the statement that Alice and Bob share the
same key at the end of the protocol, i.e. K4 = Kjp. Secrecy is the statement that the eavesdropper is totally
ignorant about the final key.

Definition 1 (Correctness). A DIQKD protocol is €., -correct if the probability that the final key of Alice, Ky,
differs from the final key of Bob, Kj, is smaller than ¢y, 1.€.

P(KA = KB) < €corr- (3)

Definition 2 (Secrecy). Let €2 denote the event of not aborting in a DIQKD protocol and p(£2) be the probability
of the event (2. The protocol is €,.-secret if, for every initial state p, . it holds that

1
P(Q) . EHPKAEm — Tk, ® pE||1 < €seos 4)

L

¥ lel k) (k|4 is the maximally mixed state in the space of strings K4, and ||-||; is the trace norm.
A

where 7, =

Ifaprotocol is corr-correct and €q-secret, then it is € 1 xp-correct-and-secret for any
EDIQKD 2 €corr T €sec- See section 4.2 for a more detailed definition of security of a DIQKD protocol.

Given an DIQKD protocol that has # rounds and generates a final correct-and-secret key of I bits, then the
secret key rate is defined as

r=—. Q)

Our goal is to derive the secret key rate as a function of the parameters of interest, 3 and Q, that Alice and Bob can
estimate during the execution of the protocol.

1.4. Security proof of DIQKD

Even though the BB84 QKD scheme dates back to 1984 [1], the formal security proof in the asymptotic regime
only came out more than a decade later, see e.g. [43—46]. Security in the composable paradigm in the finite
regime against general coherent attacks was only formalized in 2005 [47—49]. Moreover, a finite key analysis
without the IID assumption over the state preparation and with parameters compatible with current technology
only came in 2012 [6, 7].

In the DI scenario, security against a quantum eavesdropper” restricted to collective attacks was first proved
in[15,27]. A proof against general attacks assuming memoryless devices was presented in [28, 29]. The problem
of extending the security proofs to coherent attacks in the DI scenario remained open for along time. One of the
main difficulties is that de Finetti techniques [48, 50], used to extend security proofs against collective attacks to
general coherent attacks in standard QKD, are not applicable in the DI scenario. A series of recent works [31-34]
culminated in the Entropy Accumulation Theorem (EAT) [20] (see [41, 51] for extended versions). The EAT
allows one to extend the analysis against collective attacks to the fully DI scenario, resulting in asymptotically
tight security proofs and high rates in the finite size regime.

1.5. Experimental DIQKD

Protocols for DIQKD rely on a Bell test between two distant parties [15]. In order to certify security, this Bell test
should be free of loopholes that could be exploited by an adversary. While closing the detection loophole is
crucial for a DIQKD implementation, the spacelike separation required for loophole-free Bell tests can be
relaxed. In a DIQKD experiment, no-communication between the devices does not have to be guaranteed by
spacelike separation, since the assumption of isolated labs, Assumption 1(i), is already needed to ensure that the
generated key is not leaked to the eavesdropper at any point in time. We are thus interested in considering Bell
violations between distant—albeit not necessarily spacelike separated—setups in which the detection-loophole
is closed [53—60]. The recent performance of fully loophole-free Bell tests [53—56] mark technological progress

4 . . . . . . c e
A discussion on earlier security proofs that do not restrict the eavesdropper to the quantum formalism can be found in [52].
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towards Bell tests without detection loophole over increasingly distant setups, as needed for practically useful
DIQKD.

Despite the experimental progress, a DIQKD protocol has not yet been performed. The reason for this is that
a Bell violation alone is not enough to guarantee security in a DIQKD protocol. One also needs to account for the
amount of information leaked during the error correction, when Alice and Bob correct their string of bits in
order to achieve a perfectly correlated raw key. The amount of information required for error correction is
determined by the QBER. With a finite QBER, as in practical systems, a large Bell violation is needed to achieve a
positive key rate. Moreover, a high minimal number of rounds is required for security due to finite-size effects.
The large number of necessary rounds requires a significantly high entangling rate. Altogether, DIQKD
demands alow QBER, high Bell violation and high entangling rates. Even though some systems satisfy parts of
these requirements, e.g. a high Bell violation [53, 56, 59, 60] or high entangling rate [54, 55, 57, 58], so far there
are no systems that combine all requirements. In section 2.3 we describe the potential platforms for an
experimental implementation of DIQKD in detail.

2. Results

We now present our results. In section 2.1, we establish the key rates for DIQKD protocols based on the CHSH
inequality, both for coherent and collective attacks in the finite size regime. As a benchmark, in section 2.2, we
compare the key rates that can be achieved in the finite regime for the two adversarial scenarios (collective and
coherent attacks) using an implementation with depolarizing noise. In section 2.3, we discuss the state of the art of
experimental implementations. We estimate the parameters of interest for previously performed Bell experiments
and situate them in the security proofs. Additionally, focusing on Nitrogen-vacancy (NV) based systems we indicate
experimental improvements that can lead to an implementation of DIQKD in the near future. Throughout this
manuscript we use Log, , to denote logarithm to base 10 and log to denote logarithm to base 2.

2.1. Key rates

In the following, we derive the key rates in the finite size regime for DIQKD protocols where the CHSH
inequality is used for certifying security. For coherent attacks we sharpen the results recently derived in [20]. For
collective attacks we perform the analysis by employing two techniques: the finite version of the asymptotic
equipartition property (AEP) [61] and the additivity of the 2-Rényi entropy.

2.1.1. Key rates for coherent attacks
In order to analyse the key rates against general coherent attacks we use the recently developed EAT [20, 41, 51]

and consider the following protocol.

Protocol 1. DIQKD protocol for coherent attacks [41]

1: for Foreveryblock j € [m]do

2: Seti=0andC; = L.

3: whilei < sy do

4 Seti=1i+ 1.

5: Alice and Bob choose arandom bit T; € {0, 1} suchthat P(T; = 1) = ~.

6: if T; = 0 then Alice and Bob choose inputs (X;, Y;) = (0, 2).

7 else they choose X;, Y; € {0, 1} (the observables for the CHSH test).

8 endif

9: Alice and Bob use their devices with the respective inputs and record their outputs, A; and B; respectively.

10: If T; = 1theyset i = spax + 1.

11:  endwhile

12: end for

13: Error Correction: Alice and Bob apply the error correction protocol EC, communicating script Ogc in the process. If EC aborts they
abort the protocol, else they obtain raw keys A," and B,

14: Parameter estimation: Using B and Eln, Bob sets

1, 1fT,:1andAl@B,:X,Y,
Ci=10, f T=1andA;® B; = X;- Y. 6)
1, if =0
He aborts if
Z C] <m X (Wexp - 665()(1 - (1 - ’Y)Smax))
j

i.e. if they do not achieve the expected violation.
15: Privacy Amplification: Alice and Bob apply the privacy amplification protocol PA and obtain the final keys K, and K of length .
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Table 1. Explicit form of the terms that appear in theorem 1. For a detailed derivation see appendix B.3.

S o 1
(D) <z+4ﬁ[Fmin(P, ) — ﬁ”z]

1—(1—)$max

a2 ) = 8 #) | o)+ (g(ﬁ,) Gt | -p,(l))
o) = 5[1 . h(; S [p—TR (THY 3)]
. 2(10g(1 42 2ma3) [ﬁg(ﬁ) H]m

v = 2(log7 + [%])\/ﬁlogfs

In protocol 1, the total number of rounds is not fixed in advance, however for anumber of blocks 11 large
enough the number of rounds will correspond, with high probability, to the expected value . Thisisa
technicality introduced in [20, 41] in order to obtain better rates in the finite regime. A more detailed
explanation can be found in [41], appendix B. Improvements on the second order term of the EAT, that do not
rely on the introduction of blocks, were recently obtained in [62]. Following the techniques of [20, 41], we derive
theorem 1.

Theorem 1 (Key rates for coherent attacks). Either protocol 1 aborts with probability higher than
1 — (ega + €gc), oritgeneratesa 2egc + €pa + €)-correct-and-secret key of length

n n
Mopt — Eh(wexp — Oest) — \/;1/1 — leakgc

2
1
—3logl1 — ,[1 — (L) + 210g( ), 7)
4(epa + €rc) 2epa

where leakgc is the leakage due to error correction step and the functions 3, Topt> V1 and v, are specified in table 1.
Theorem 1 sharpens the original analysis [20, 41] and has slightly improved key rates in the finite regime.

This results in a reduction of the minimum number of rounds (signals) required for positive rates by about a

factor of two, as illustrated in figure 1. A detailed derivation of theorem 1 can be found in appendix B.3.

2.1.2. Key rates for collective attacks

For collective attacks, we derive the finite key rates by employing two techniques: the finite version of the
asymptotic equipartition property (AEP) and the additivity property of the conditional a-Rényi entropies. To
deal with collective attacks we can use a simplified version of protocol 1, where the number of rounds is fixed.

Protocol 2. DIQKD protocol for collective attacks

1: fori = 1tondo

2:  State Alice and Bob choose arandom bit T; € {0, 1} suchthat P(T; = 1) = ~.

3:  if T; = 0 then Alice and Bob choose inputs (X;, ;) = (0, 2).

4: elsetheychoose X;, Y; € {0, 1} (the observables for the CHSH test).

5:  endif

6:  Alice and Bob use their devices with the respective inputs and record the outputs, A;and B; respectively.

7: end for

8: Error correction: Alice and Bob apply the error correction protocol EC, communicating Ogc in the process. If EC aborts they abort the
protocol, else they obtain raw keys A," and B;".

9: Parameter estimation: Using B} and B/", Bob sets for the first test rounds

C =

{1, ifA; ®B =X Y, ®)

0, ifA;® B; = X;-Y;
For the remaining rounds he sets C; = L.

He aborts if

Z Cj <n X (chp - 5051)7
j

i.e. if they do not achieve the expected violation.
10: Privacy Amplification: Alice and Bob apply the privacy amplification protocol PA and obtain the final keys K, and K of length .
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101
0.8
Coherent attacks improved analysis Q=0.5%
% o /S e - Coherent attacks original EAT Q=0.5%
:>>~. Coherent attacks improved analysis Q=2.5%
x 04f Coherent attacks original EAT Q=2.5%
0.2k Coherent attacks improved analysis Q=5%
Coherent attacks original EAT Q=5%
0.0 ! ! ; ! '
4 6 8 10 12 14

Logo(number of rounds)

Figure 1. Key rate r versus logarithm of the number of rounds n. Comparison of the improvements in the key rate, for an
implementation where the maximally entangled state is subjected to depolarizing noise and therefore 3 = 2+/2 (1 — 2Q), for QBER
Q = {0.5%, 2.5%, 5%}. The dashed curves correspond to the key rates derived in the original analysis [20, 41], the solid lines
represent the key rates derived in theorem 1. Similarly to [20], we take efqxp = 1072 and efyqp = 107°.

In the following theorem we state the length of a secure key that can be derived using the AEP, which is
formally stated in theorem 7.

Theorem 2. Either protocol 2 aborts with probability higher than 1 — (é.on + €gc), 07 it generates a
(2€pc + € + €pp)-correct-and-secret key of length:

1 1
12 n[l - h(g + E\/16(wexp - 5est - 6c0n)((wexp - 6est - 6con) - 1) + 3)

- (1 - V)h(Q) - 'yh(wexp):l

2 8
_ﬁ&wﬁ+%#h+w%ﬂ)
€ €'EC

S

8 2 1 1
— log( 72 + —/) — log(—) — 210g( ) (9)
€ EC 2 — EEC €EC ZEPA

A detailed derivation of theorem 2 can be found in appendix B.1.

Using a different technique, namely bounding the key rate by the conditional collision entropy, we derive the
following result.

Theorem 3. Either protocol 2 aborts with probability higher than 1 — (€.on + €gc), 07 it generates a
(2egc + €pa)-correct-and-secret key of length:

1 1
1> n[_log(g + 5\/16(Wexp — Oest — Ocon) (1 — (wexp — Oest — Ocon)) — 2)

-1 =71h(Q — Vh(wexp)]

—ﬁ@wﬁ+ng]
€ EC

—lo 8 + 2
8 €'ic 2 — €xc

— log(L) — 210g( ! ) — ZIOg(—1 ) (10)
€EC 2¢€pa €con T €x8C

An important step in the proof of theorem 3 is to derive a lower bound on the collision entropy as a function of
the CHSH violation 3. A tight lower bound is proved in theorem 9. The detailed proof of theorem 3 is presented
in appendix B.2.The rates presented in theorem 2 are asymptotically tight, while theorem 3 achieves strictly
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Figure 2. Key rates versus logarithm of the number of rounds # for protocol 2 (collective attacks). The blue curve represent the key rate
using theorem 2 and the yellow curve shows the key rate using theorem 3. It is considered an implementation with depolarizing noise
and QBER Q = 0.01%. The inset graph shows a zoom in the region of low number of rounds. Similarly to [20], we take

€biqrp = 1072 and efyqp = 107°.

Table 2. Parameters of the considered DIQKD protocols, protocols 1 and 2.

n expected number of rounds

1 final key length

5 fraction of test rounds

Q quantum bit error rate

Jo) CHSH violation

Wexp expected winning probability on the CHSH game in an
honest implementation

est width of the statistical interval for the Bell test

Ocon confidence interval for the Bell test in protocol 2

€s smoothing parameter

€EC» €hic error probabilities of the error correction protocol

€EA error probability of Bell violation estimation in protocol 1

€con error probability of Bell violation estimation in protocol 2

€pa error probability of the privacy amplification protocol

leakgc leakage in the error correction protocol

smaller asymptotic rates. However, one can note that in theorem 3 the term proportional to /7 has a smaller
pre-factor. This can potentially lead to an advantage for the minimum number of rounds required for security.
For protocol 2, an advantage can only be observed for very low noise regime, as illustrated in figure 2. We
remark, however, that for protocols based on other Bell inequalities the techniques used for deriving theorem 3
can present significant advantage for the collective attack analysis. This is further discussed in section 4.3.2.

In table 2, we list the parameters of the DIQKD protocols in consideration.

2.2. Comparison of key rates for depolarizing noise model
We now compare the key rates achieved in the finite regime under the assumption of collective attacks (IID

scenario) and against general coherent attacks (fully DI scenario). As a benchmark, we focus on an honest
implementation where the maximally entangled state is prepared and subjected to depolarizing noise™:

p == NI (0] + 7. (1)

In this case, the parameters of interest—the value of the CHSH inequality § and the QBER Q—relate to the noise
parameter v by

Qz%andﬁzZﬁ(l—u) ~ B=2v21 - 20Q). (12)

In figure 3 we compare the key rates achievable under the IID assumption, given by theorem 1, and in the
fully DI scenario, theorem 2, for an honest implementation with depolarizing noise.

This noise model can also be seen as the case where each individual qubit suffers a depolarization with parameter v/, where v = 21/ — v/2.
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Figure 3. Key rates versus logarithm of the number of rounds for collective attacks (dashed lines) and coherent attacks (solid lines).

The different curves represent different values of QBER Q = (0.5%, 2.5%.5%) considering an implementation where the maximally
entangled state is subjected to depolarizing noise (see relation (12)). The security parameters are taken as € fyqp = 10~ and

—10-5
€bigkp = 107°.

Figure 3 shows that the key rates approach the same asymptotic values, however the minimum number of
rounds required to guarantee security is significantly higher for general coherent attacks. Indeed, by adding the
assumption that the eavesdropper is restricted to collective attacks, the minimum number of signals required to
have a positive key rate drops by about two orders of magnitude. However, even for collective attacks, this
minimum number of required rounds is considerably large given the current entanglement generation rates.
This is one of the big challenges to be overcome for a DIQKD implementation. In the next section we are going
to discuss the state of the art of experiments, and situate the current achievable parameters (Bell violation, QBER
and entanglement generation rate) in the security proofs.

2.3. The state-of-the-art experimental DIQKD

In the following, we discuss experimental platforms in which DIQKD may be implemented. We analyse Bell
violations and expected QBER achieved in previous Bell tests with distant setups and situate these parameters in
the context of the key rates derived in theorems 1 and 2. A summary of the findings is presented in table 4 and
figures 5 and 6.

In experimental setups, distant entanglement is typically generated using photons to establish the
connection. We distinguish two approaches based on the role of the photonic qubits: (i) All-photonic schemes:
Approaches in which the entangled state is encoded in the photonic state directly. In this case, measurements
of the photonic states on two remote setups enable to infer their entanglement. (ii) Heralded schemes: In this case,
the entangled state is typically created in a long-lived system and the photons are used as a means of establishing
the entanglement between two distant systems.

In this section we provide a discussion of the parameters in each of these schemes and the related challenges
towards an implementation of DIQKD. We provide a more detailed discussion of one of the systems, namely NV
centres in diamonds, and describe improvements in experimental parameters that can lead to a DIQKD
implementation in the near future.

2.3.1. DIQKD with all-photonic entanglement

Since in all-photonic schemes the entangled state is directly encoded on the photonic state, photon losses limit the
entangled state detection efficiency. Closing the detection loophole in a Bell test thus requires very efficient entangled-
photon sources and photon detectors. Recent technological advances enabled all-photonic Bell tests that close the
detection-loophole [57, 58], later combined with spacelike separation in loophole-free Bell tests [54, 55].

In photonic systems the detection efficiency also impacts the entangled state fidelity. We thus may expect
that Bell violations are low in photonic systems. To avoid having to deal with undetected events, photonic Bell
tests typically employ the CH-Eberhard inequality [63, 64]. The CHSH and CH-Eberhard inequalities are
equivalent’, such that we can estimate the CHSH violation achieved in photonic experiments. Table 4 presents
the corresponding value for the CHSH inequality achieved in the experiments of [54, 55, 57, 58]. One can note
that the violations achieved are indeed low, ranging from 2.000 04 to 2.02. Combined with a finite QBER (>2%),
this poses a significant challenge for the implementation of a DIQKD protocol in photonic systems.

6 . c . ¢ . . .
One can see that by replacing non-detected events by the deterministic classical strategy ‘output 1’ in a test of the CHSH inequality.
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However, if these systems would enter the regime of positive key rates, the entanglement generation rate can
be very high (~10° Hz), such that they could easily reach the asymptotic key rate values.

In order to overcome photon losses, several proposals for implementing heralding schemes in all-photonic
systems were presented. In this case, the entangled state is created between photons and, also, this entanglement
is heralded by the interference of other photons. In particular, in [65] the authors propose a scheme based on a
qubitamplifier that combines single photon sources and linear optics. This proposal was further explored in
[66]. Schemes based on entanglement swapping by quantum relay were also considered [67—69]. Reference [67]
makes a comparison of the performance of the two types of schemes. Analyses in [65, 67—-69] make assumptions
on the possible attacks performed by the eavesdropper. New protocols based on single photon sources were
recently proposed in [70]. The proposed schemes use a combination of spontaneous parametric down
conversion sources and single-photon sources in order to achieve a setup where a heralding process could
overcome transmission photon losses. The security analysis presented in [70] does not restrict the eavesdropper
attacks. These setups are a promising proposal to bring the parameters of all-photonic systems to the region of
positive asymptotic key rates (see figures 5 and 6). However single-photon sources still lack the required
performance for an implementation of these schemes.

2.3.2. DIQKD with heralded entanglement

Due to the nature of heralded entangling schemes, photon losses do not influence the entangled state detection
efficiency or fidelity. Heralded schemes have been used to entangle distant atomic ensembles [71, 72], trapped
ions [73], atoms [74], NV centres [75], quantum dots [76], and mechanical oscillators [77]. So far, entangled
state fidelities sufficiently high to violate Bell’s inequalities have only been reached with trapped ions [59, 60],
atoms [56, 74], and with NV centres [53, 78]. The Bell violations observed in [53, 56, 59, 60, 78] are in the range
(=2.22to 3= 2.41, with alower bound on the QBER, estimated from detection efficiencies alone, around 0.04
(see table 4 for a full overview). Apart from the results reported in [60], these parameters are not in the region of
positive key rate (see figures 5 and 6). However, all of them are in the proximity of this region, such that setup
improvements may enable to reach it.

The challenge for these implementations is however their low entangling rate, induced by photon losses.
Current rates range from (min) ' [56, 59, 60, 74] to (h) ' [53, 78]. A significant speed-up in the entanglement
generation rate is thus needed in order to achieve the minimum number of rounds required for DIQKD. Higher
entangling rates in heralded schemes were recently achieved with trapped ions [79] and NV centres [80, 81],
although with lower state fidelities, and no Bell violations are reported. Even though in [81] the state fidelity is
just high enough to be able to violate Bell inequalities, the expected Bell violation would be low. Enhancement in
entangling rates, e.g. with optical cavities to improve light-matter coupling efficiency [82] is therefore crucial to
achieving an implementation of DIQKD with heralded schemes.

2.3.3. NV centre-based networks

In this section, we focus on heralded entanglement generation between NV centres in diamond for DIQKD. NV
centres are defect centres in the diamond lattice. They contain an electronic spin with good coherence properties
and spin-selective optical transitions that can be used for intialization, readout and entanglement generation
[75,83]. Next to the electronic spin, nearby weakly coupled nuclear spins can serve as long-lived memories

[84, 85]. These properties make the NV centre a promising quantum network node.

Entanglement between distant NV centres can be generated using an heralded scheme. Typically, local
entanglement is first generated between the NV electronic spin and a photon mode. And subsequently,
entanglement between distant NV centres is achieved through entanglement swapping by interfering the two
photon modes from distant setups [86]. As discussed above for heralded protocols, photon attenuation does not
influence the fidelity of the generated entangled state or the detection efficiency. The detection of the spin states
has near-unit efficiency [87].

DIQKD parameters. In aloophole-free Bell test with NV centres [53, 78],a CHSH violation § = 2.38 + 0.14
was observed between systems separated by 1.3 km. Taking into account the entangled state fidelity and
detection efficiency, we estimate that the corresponding QBER would be Q = 0.06 £ 0.03. The Bell violation
achieved in [53, 78] is considerably high, especially if compared to loophole-free Bell test experiments in
photonic systems [54, 55]. However, these parameters are not good enough to generate a secure key. Indeed,
using theorems 1 and 2, one concludes that it is not possible to achieve positive key rate with these parameters
(see figures 5 and 6).

In the following, we suggest two near-term experimental improvements to enhance these parameters.

Firstly, the frequency stability of the laser used to excite NV centres during the entanglement protocols can
be increased using an external cavity. The instability of the laser can influence the indistinguishability of photons
emitted by the distant NV centres. The indistinguishability is crucial for photon interference, which can be
quantified by the visibility of the two-photon quantum interference (TPQI). We expect that compared to

10



I0OP Publishing Quantum Sci. Technol. 4(2019) 035011 G Murta et al

0.20r
0.15¢
2
o
> 0.10r Coherent attacks 8=2.47, Q=0.051
x L/ e Collective attacks =2.47, Q=0.051
0.05] ;
14
1
1
I
000 L /] L L L L
4 6 8 10 12 14

Log g(number of rounds)

Figure 4. Key rates versus logarithm of the number of rounds # for parameters that are readily-implementable in NV centres setups
(CHSH violation 3 = 2.47 and QBER Q = 0.051). The red line shows the key rates obtained against general coherent attacks, and the
blue dashed line shows the key rates under the assumption of collective attacks. The security parameters are chosen to be

€bigrp = 1072 and efyqp = 107°.

Table 3. The CHSH violation fand QBER Qin NV centre-based implementations are strongly
dependent on the TPQI visibility and the readout fidelity. The resulting values are shown for
parameters achieved in a loophole-free Bell test, and for expected values from several readily-
implementable improvements.

References [53, 78] Expected
DIQKD parameters
setup A B A B
average readout fidelity 0.974 0.969 0.985 0.985
TPQI visibility 0.88 0.90
I} 2.38 £+ 0.14 247
Q 0.06 £ 0.03 0.051

previous implementation [53], the improved laser frequency stability can lead to an improvement in TPQI
visibility from 0.88 to 0.90.

Secondly, both the CHSH violation 3and the QBER Q are impacted by the NV electronic spin state readout.
The readout can be performed using resonant excitation of a spin-selective optical transition [87].
Improvements to the detection efficiency can be obtained by storing the spin state in the nearby nitrogen spin
state, and performing repeated readout [88]. We estimate that the repeated readout can lead to an average
readout fidelity of ~0.985, compared to an initial 0.97 [897".

Other improvements can be envisioned, such as enhancement of the detection efficiency by improving the
photon collection efficiency through the use of parabolic reflectors [90] or optical cavities [91]. In the following
discussion we limit ourselves to the two advances listed above and summarized in table 3.

Taking into account these improvements, the expected DIQKD parameters are 3 ~ 2.47 and Q ~ 0.051.In
figure 4 we illustrate the rates achievable for these parameters against general coherent attacks and under the
assumption that the eavesdropper is restricted to collective attacks. We see that the required minimum number
of rounds is of order 10® for general attacks, and about 5 x 106 for collective attacks.

Entangling rate. Although the improved parameters lead to a positive key rate, this does not mean that
DIQKD with NV centres is readily achievable. The system faces another challenge: the probabilistic nature of the
heralded entanglement scheme limits the entanglement generation rate.

In the heralded entanglement generation protocol used in [53, 75] the photonic qubit is time-bin encoded
and entanglement is heralded with the detection of a photon in each of two time-bins [86]. Since two photons
have to be detected, the rate of the protocol is proportional to the square of the photon losses. For the spacelike
separated setups in [53] the total emission and detection efficiency per photon is ~210~*, leading to a total success
probability of 221073, Since the repetition rate, limited by the spin-state reset time, is of the order of ~ s,
generating a raw key of length 10° bits would take ~10° days. It is clear that a speed-up of entanglement
generation rate is required to use NV centres in a DIQKD protocol. We describe two approaches toward this.

We note that this readout method increases the readout duration, which compromises spacelike setup-separation. However, security in a
DIQKD implementation does not require spacelike separation since it is superfluous with the assumption of isolated labs in place (see
assumptions 1). Therefore, an increased readout time does not present a problem for security.
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Table 4. Summary of the estimated parameters of interest for DIQKD. (1), (2) are Bell tests with trapped ions, (3)—(5) are all-photonic
experiments, (7) uses NV centres and (8) trapped atoms. (9) Reports on near-term achievable parameters with NV centres as described in
section 2.3.3. In all experiments the detection loophole is closed; (5)—(8) additionally close the locality loophole. The CHSH violations for
neutral atoms (8), trapped ions (1), (2) and NV centres (7) are as reported in the corresponding experiments. For (3)—(5), in which the value
of the CH-Eberhard inequality Jis reported, we make use of the relation 3 = 4] + 2 between the CHSH value and the CH-Eberhard value.
This relation is found if one attributes ‘output 1’ to undetected events in a CHSH inequality test. For (6) the CHSH violation was estimated
directly from the reported data. For the estimation of the QBER (Q), in (1), (2) and (8) we assume perfect classical correlation in the
generated state and find alower bound for the QBER from reported detection efficiencies (0.979 £ 0.002 [92] for (1) and (2), and

0.982 + 0.002 [93] for (8)). For NV centres (7), we additionally account for imperfections in the entangled state based on the reported
density matrix. For all-photonic systems (3—6), the QBER is estimated by taking into account the detection efficiency and using the reported
estimated state and the measurements performed by Alice, optimizing over measurements for Bob.

B Q
(1) Matsukevich et al [59] 2.22 4+ 0.07 0.041 =+ 0.003
(2) Pironio etal [60] 2.414 + 0.058 0.041 + 0.003
(3) Giustinaetal [57] 2.020 96 + 0.000 32 0.0297 + 0.0003
(4) Christensen et al [58] 2.000 22 % 0.000 03 0.0244 =+ 0.0009
(5) Giustina et al [54] 2.000 030 £ 0.000 002 0.0379 4 0.0002
(6) Shalm et al [55] 2.000 04 + 0.000 01 0.0292 4+ 0.0002
(7)Hensen et al [53] 2.38 £ 0.14 0.06 £ 0.03
(8) Rosenfeld et al [56] 2.221 + 0.033 0.035 + 0.003
(9) Expected improvements in NV systems 2.47 0.051

Firstly, this could be achieved by adapting the entanglement generation protocol. A linear dependency of the
rate on photon losses can be achieved by employing an extreme-photon-loss (EPL) protocol [94] or single-
photon (SP) protocol [95]. Demonstrated implementations of these protocols with NV centres indeed provide a
speed-up in entanglement rate of three orders of magnitude [80, 81]. However, these implementations do not
yet provide the entangled state fidelities leading to Bell violations that allow for DIQKD (the entangled state
fidelities are Fgpy = 0.65 %+ 0.03 and Fsp = 0.81 + 0.02, leading to no Bell violation for the EPL protocol and a
small violation Bgp = 2.1 for the single photon protocol). Better parameters may be achieved with
improvements of the robustness of the nuclear-spin memories [85] and with an improved photon detection
versus dark-count rate [95].

Secondly, an increase in the entanglement rate can be achieved by a reduction of the photon losses per
round. These losses consist of three parts: alow coherent-photon emission probability, a non-unit collection
efficiency and fibre attenuation. The photon attenuation during transmission over fibres is ~8 dB for the NV
emission wavelength (637 nm). To maintain high entangling rates for distant setups, this should be reduced.
This can be achieved by frequency downconversion of the photons at a wavelength of 637 nm emitted by the NV
centres to telecom frequencies [96, 97]. The emission probability of coherent photons, ~23%, and subsequent
collection efficiency (=10%, [75]) together limit the best achievable entangling rates. They can be addressed
simultaneously by embedding the NV centre in an optical cavity to enhance coherent-photon emission and the
collection efficiency [91]. A promising approach employs NV centres in diamond membranes in Fabry—Perot
microcavities [98—100]. In such a design NV centres remain far away from the optical interface, retaining bulk-
like optical coherence properties. These cavities are expected to provide three orders of magnitude enhancement
in entangling rate for a two-click protocol [99]. Together with the improved DIQKD parameters described
above, this makes a demonstration of DIQKD with NV centres experimentally feasible.

3. Discussion

Detection-loophole-free Bell tests between separated setups mark an important step towards the
implementation of DIQKD. Progress towards extending Bell experiments to larger distances were also achieved,
in particular by the Bell tests additionally closing the locality loophole. However a DIQKD protocol has not yet
been implemented.

In order to shed light on the experimental performance needed for DIQKD, we have derived the key rates in
the finite size regime as a function of the experimental parameters: CHSH violation $and QBER Q. For
comparison of the key rates obtained in the finite regime for coherent and collective attacks, we have used as a
benchmark an implementation where the maximally entangled state is subjected to depolarizing noise.
Although the asymptotic key rates against collective attacks and general coherent attacks coincide, it is known
that this is not the case in the finite regime. We find that, with the currently available tools, security against
coherent attacks requires a minimum number of rounds about two orders of magnitude higher than what is
necessary for security against collective attacks for realistic near-term parameters.
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Figure 5. Region of positive key rates for coherent attacks: the red area is the region of values of QBER (Q) and CHSH violation () for
which a positive key rate cannot be reached with any number of rounds. In the green area, the dashed curves represents the minimum
number of rounds required to get positive key rate. For parameters above each curve, a key rate can be extracted if the number of
rounds is higher than specified in the curve. The points show the Bell violation and estimated QBER achieved by previous experiments
(see table 4). They, however, do not reflect the corresponding entanglement generation rates. Similarly to [20], we take ¢ {,qxp = 1072
and € fqxp = 107°.

Here, we have focused on DIQKD protocols that use the CHSH inequality. So far the CHSH inequality is the
one which leads to the best performance for a DIQKD protocol. The challenge in using other Bell inequalities is
that, up to date, only non-tight lower bounds on the secure key rates can be derived. Therefore, it is still an open
question whether any other Bell inequality can outperform the CHSH, either in terms of maximum tolerable
QBER, higher rates or lower minimum number of rounds required.

Towards exploring the potential of different experimental platforms to implement DIQKD, we have
analysed the Bell violation and expected QBER of previously performed Bell tests and situated these parameters
in the context of the derived key rates. Figures 5 and 6 summarize this analysis.

For photonic systems, a DIQKD implementation is currently barred by the very low CHSH violation. To
overcome this, a strong reduction of photon losses is required.

Detection-loophole free Bell tests based on heralded entanglement schemes approach the allowed region,
with the Bell test of [60], performed with trapped ions separated by 1 meter, even exhibiting parameters in the
allowed region. These heralded schemes however suffer from low entangling rates resulting from photon losses.
An increase in the entangling rates is expected to be achieved by improving collection efficiencies, e.g. by
employing optical cavities. Moreover, with frequency downconversion these results can be extended to long >
1 km) distances. We illustrate that with near-term experimental improvements for NV centres, in combination
with optical cavities for enhancing entangling rate, described in section 2.3.3, a demonstration of DIQKD is
achievable.

4. Methods

We now present the theoretical tools that allows us to derive the key rates for the DI QKD protocols, protocol 1
and protocol 2. We start by defining some quantities that are going to play an important role in the security proof
and state in more details the security definition for DI QKD.

4.1. Notation and definitions
In cryptographic tasks, we are often interested in estimating what is the maximum probability with which an
adversary can guess the value of a classical variable A°. This is defined as the guessing probability Pguess- I the

¥In QKD, for example, the classical variable is the string of bits that Alice holds after measuring her quantum systems.
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and € qxp = 107°.

general case where the adversary might have access to a quantum side information E, and therefore the state of
interest is a cq-state (classical-quantum state) p, ., the guessing probability is defined as:

pguess(AIE)p = sup ZP(A = a)P Tr(Mng|A:a)’ (13)
(Mg} a
where the supremum is taken over all POVMs { Mg} that can be performed on the system E. The min-entropy of
the classical variable A conditioned on the quantum side information E is then given by [101]
Husin (A|E), = —10g pyy e, (AIE),. (14

A smoothed version of the min-entropy can also be defined.

Definition 3 (Smooth min-entropy). For a quantum state p,, and € € [0, 1)
H;in (AlE)p = sup  Hpin (AlE)[n (15)
Prp€B(pyp)

where the supremum is taken over positive sub-normalized operators that are e-close to p, ; in the purifying
distance [102].

The smoothing parameter € allows us to restrict attention to typical events (the ones that occur with
probability higher than 1 — 6 (¢), where 6 (¢) is a function of the smoothing parameter). As a consequence, the
smoothed min- and max-entropies (see appendix A for definition) have many nice properties and find an
operational interpretation in many applications [102, 103].

Other quantities of interest that will appear along the text are the conditional von-Neumann entropy,

H (A|E),, and the conditional collision entropy H, (A|E),. They are particular cases of the one-parameter family
of entropies called sandwiched conditional Réyni entropies, first defined in [104].

Definition 4. For any density operator p, . and for o € [%, 1) U (1, oo) the sandwiched a-Réyni entropy of A
conditioned on E is defined as
1

-«

Ho(AIE), s= ——log (Tr [(pﬁmwﬁ)“]), (16)

1-a | . 1-a
where pg* isashort notation for [, ® pg* .

14



10P Publishing

Quantum Sci. Technol. 4(2019) 035011 G Murta et al

A variant can also be defined as

H!(A|E), := sup
oges 1 — &

1-a 1-a
log (Tr [(GEZ“ PO )a]), 17)
where S denotes the set of quantum states and the supremum is taken over density operators og.

The min- and max-entropy correspond to the extremal cases of definition (17) for &« = cocand a = %
respectively. For &« — 1, definition (16) and (17) coincide and one recover the standard conditional von-
Neumann entropy. Properties of the conditional a-Réyni entropies are presented in appendix A.

4.2. Security of DIQKD
In order to determine what it means for a DIQKD protocol to be secure, we adopt the security definition used in
[41]. This security definition follows the universally composable security definition for standard QKD protocols
[42]. However it is important to note that for the DI case composability was never proved and attacks proposed
in [37] show that composability is not achieved if the same devices are re-used for generation of a
subsequent key.

In the composably secure paradigm, the security of a protocol is defined in terms of its distance to an ideal
protocol [42, 105]. Following this definition, given a protocol described by the completely positive and trace
preserving (CPTP) map diqgkd . ;, we say that the protocol is e jgp-secure for any e pyxp > € if:

1, .. .
€= 5 ||d1qkdreal - dlqkdidealHO (18)

=sup % (|diqkd ey (pppe) — digkd;gea(Pape)lh- (19)
PABE

Expression (19) can be split into two terms that reflect independently the correctness and the secrecy of the
protocol (see [42]), given by definitions 1 and 2. Correctness is the statement that Alice and Bob share equal
strings of bits at the end of the protocol. And secrecy states how much information the eavesdropper can have
about their shared key.

Another requirement for a good DIQKD protocol is that there exist a realistic implementation that do not
lead the protocol to abort almost all the time, i.e. the protocol should have some robustness. This is captured by
the concept of completeness.

Definition 5 (Security). A DIQKD protocol is (¢ piqp» € prqkp» 1)-secure if

(i) (Soundness) For any implementation of the protocol, either it aborts with probability greater than
1 — epiqrp OF an € piggp-correct-and-secret key of length /is obtained.

(ii) (Completeness) There exists an honest implementation of the protocol such that the probability of not
aborting, p(€2),is greater than1 — € p1qkp-

The correctness of the final key is ensured by the error correction step. During error correction, Alice sends
to Bob a sufficient amount of information so that he can correct his raw key. If Alice and Bob do not abort in this
step, then the probability that they end up with different raw keys is guaranteed to be very small. For the secrecy
of the protocol, according to definition 2, one needs to estimate how far the final state describing Alice’s key and
the eavesdropper system is from a state where the eavesdropper is totally ignorant about Alice’s key, see
equation (4). The formal security proof of QKD became possible due to the quantum Leftover Hashing lemma
[49, 106] that quantifies the secrecy of a protocol as a function of a conditional entropy of the state before privacy
amplification and the length of the final key.

Theorem 4 (Leftover Hashing lemma ([49], theorem 5.5.1)). Let p 4 be a classical-quantum state and let H be a
2-universal family of hash functions, from {0, 1}" to {0, 1}, that maps the classical n-bit string A" into Ky. Then

lpx,me — Tka @ prplh < 2 sHIANIE), =D, (20)

For the proof of the Leftover Hashing lemma we refer to [49]. In [49], it was shown that the Leftover Hashing
lemma can also be formulated in terms of the smooth min-entropy, and the price to pay is only a linear term in
the security parameterg.

’In [49], the leftover hash lemma was formulated with the smooth min-entropy defined as a supremum over states that are e-close to pin the
trace norm. The proof of theorem 5, with the smooth min-entropy defined according to definition 3, can be found in [8].
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Theorem 5 (Leftover Hashing lemma with smooth min-entropy [8, 49)). Let p ., be a classical-quantum state

and let H be a 2-universal family of hash functions, from {0, 1}" to {0, 1}, that maps the classical n-bit string A"
into K. Then

ok, mE — Tka ® ppli < 272 @ ATIEL=D 4 2¢, 1)

Given the Leftover Hash Lemma, stated in theorems 4 and 5, and the definition of secrecy, definition 2, we can
now express the length of a secure key as a function of the entropy of Alice’s raw key conditioned on Eve’s
information before privacy amplification.

Theorem 6 (Keylength). Let p(S2) be the probability that the DIQKD protocol does not abort for a particular
implementation. If the length of the key generated after privacy amplification is given by

I = H(A/|B),,, ~ ZIOg( ) (22)

26pA

then the DIQKD protocol is epy -secret.
We can also express the key length in terms of the smooth min-entropy, where if | satisfies

- Hfs/p(Q) (AlnlE)mQ — 210g(‘12)(—m) (23)

min
€PA

>H§;‘,<1P(Q) (A1"|E)Pm — zlog( ), (24)

25PA

then the DIQKD protocolis (eps + €;)-secret.

We see that the leftover hashing lemma expressed in terms of smooth min-entropy only leads to an extra ¢;
term in the security parameter. However, the smooth min-entropy can be much larger than the 2-Rényi entropy
Hj and, therefore, it is advantageous to lower bound the key by the smooth min-entropy.

4.3. Security analysis

In the previous section we have seen that in order to determine the length of a secret key generated by a particular
protocol one needs to estimate the (smooth-min or 2-Rényi) entropy of Alice’s string conditioned on all the
information available to the eavesdropper before privacy amplification. Now, in order to estimate this quantity
for a DIQKD protocol one faces two main challenges:

+ How to evaluate the entropy of a very long string of bits?

+ How to evaluate the one-round entropy in the DI scenario?

In section 4.3.1 we present the theoretical tools that allow to reduce the problem of evaluating the entropy of
astring of bits to the evaluation of a single round. Moreover, in the DI scenario we do not want to make any
assumptions over the underlying quantum state and measurement devices. In section 4.3.2 we present a tight
bound derived in [15, 27] for the one round conditional von Neumann entropy of protocols where Alice and
Bob test the CHSH inequality. We then explore further this bound to prove a tight bound on the single round
conditional collision entropy as a function of the CHSH violation.

4.3.1. Reducing the problem to the estimation of one round

We now present the techniques that allow to reduce the evaluation of the entropy Hrf;iff @ (A'|E) to the
estimation of the conditional von Neumann entropy of a single round for the two adversarial scenarios under
consideration, collective attacks and coherent attacks. Moreover, for the IID scenario, i.e. when the
eavesdropper is assumed to be restricted to collective attacks, we show how to break the analysis of the entropy
HJ (A/"|E) into single rounds evaluation.

The IID scenario (collective attacks). When we restrict the eavesdropper to collective attacks, we are assuming
that, even though she can perform an arbitrary operation in her quantum side information, the state distributed
by the source and the behaviour of Alice’s and Bob’s devices are the same in every round of the protocol. This
implies that after n rounds, the state shared by Alice, Bob and Eve s p APBIE = p%E. In this case, the quantum
AEP [61] allows to break the conditional smooth min-entropy of state o7 into 7 times the conditional von
Neumann entropy of the state p, ..
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Theorem 7 (Asymptotic equipartition property [61]). Let p = p7: bean i.i.d. state. Then for n > g log %

o (AVE) o0 > nH(AIE),,,, — 7 8(c. 1) (25)
and similarly

Hs (AT|E!) o0 < nH(AIE),,, + 7 6(c, ), (26)

where § (¢, ) = 4logn log% andn = N2~ Hnn @B 4 \[2Hna AlB)y; 4 1,

The quantum AEP is a generalization to quantum systems of the classical statement that, in the limit of many
repetitions of a random experiment, the output sequence is one from the typical set. Therefore, under the
assumption of collective attacks, the quantum AEP reduces the problem of estimating the key rate of a string of n
bits to the problem of bounding the one-round conditional von Neumann entropy. We remark that the AEP
implies an additional term, proportional to /71, which is significant for the finite regime analyses.

In section 4.2, we have seen that the left-over hashing lemma can also be stated in the terms of the 2-Réyni
conditional entropy Hj (A|E )p- A useful property of the conditional H, | entropies is additivity [102] (see
appendix A property 1(ii)), which implies the following lemma.

Lemma 1. Let p = p'}} bean i.i.d. state. Then

HI(A/E) o0 = nH](A|E),,, > nHh(A|E),,,, @7)

where H,(A|E),, . is denoted collision entropy.

Validity of lemma 1 can be seen from the following: equality in (27) follows from the additivity property of
H] entropies, property 1(ii) in appendix A, and the inequality follows from the definition of a-Rényi entropies,
definition 4.

Therefore, for collective attacks one can break the analysis into the evaluation of a single-round entropy by
using both, the formulation of the left-over hashing lemma in terms of the smooth-min entropy, theorem 5, and
in terms of the 2-Rényi entropy, theorem 4. The possible advantage of usinglemma 1 over the AEP, theorem 7, is
that no extra overhead term O(</%) is gained due to the additive property of the 2-Réyni conditional entropy
H) (A|E )o- However, in general the von Neumann entropy can be much larger than the collision entropy, and
this trade-off has to be taken into account. We remark that, for protocols based on other Bell inequalities, the
techniques used for deriving theorem 3 can be advantageous for collective attack analysis. This is due to the fact
that for other Bell inequalities there is no known technique to directly bound the conditional von-neumann
entropy and a good bound on the min-entropy can be found using semidefinite-programming techniques (see
section 4.3.2).

The fully DI scenario (coherent attacks). In the fully DI scenario the eavesdropper can perform a general
coherent attack, and the state shared by the parties may not be of the form pifg ;- Therefore, the tools presented in
the previous section are not applicable in this scenario. In standard QKD, de Finetti techniques [48—50] allow
one to extend the proofs against collective attacks to coherent attacks for protocols that present some symmetry.
The price to pay is an overhead term O(~/n) whose pre-factor depends on the dimension of the underlying
system. However, in the DI scenario, we do not want to make assumptions on the dimension of the underlying
system. Moreover, symmetry of the protocol is not guaranteed, as we do not know the behaviour of the
measurement devices. Therefore, de Finetti techniques cannot be used to straightforwardly extend the security
proofs against collective attacks to coherent attacks in the DI scenario.

Recently, this problem was overcome by the EAT [20, 51]. In this section, we state the EAT, which allows to
break the entropy HS/?(
collective attacks to coherent attacks.

An important ingredient in the formulation of the EAT is the concept of min-/max-tradeoff function of a
channel.

(A'|E),,, into the entropy of single rounds and therefore extends proofs against

Definition 6. Let \; be a CPTP map that maps R;_; to A;B;C;R;, where A;, B;and C; are classical registers and
the value of C; can be inferred from A; and B;. Let § denote a probability distribution on the possible values the
random variable C; can assume. The min- and max-tradeoff functions for the channel N are defined as:

foin(@ < inf H(A;|BiR),, (28)
062,@)

foae @ = sup H(A;|BiR),, (29)
UEEi(q)
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where
%i(@) = {ocasrr = N @ R)(Wr,_p)loc, = 7}, (30)
and the infimum and supremum are set to 400, — o0, respectively, if the set ¥;(q) is empty.

Definition 6 states that the min-(max- )tradeoff function is a lower (upper) bound on the conditional von
Neumann entropy H (A;|B;iR), of a final state 0c,A,BR;R> for all states that result from the action of the channel
N; onan arbitrary initial state and exhibit a particular distribution g over the classical variable C;, where Ris a
side information. In particular, for a DIQKD protocol, where we are testing the CHSH inequality, the variable A,-
can be the outputs of Alice and Bob in round 7, A = {A,;, B;}. Thevariable B; can be the inputs of Alice and Bob
together with the variable that determines whether the round is a test round or a key generation round,

B; = {X;, Y;, T;}. And R can represent any quantum side information E that the eavesdropper holds. We will
then be interested in defining a variable C; that assumes value 1 if the condition of the CHSH game is satisfied
(i.e. if the outputs of Alice and Bob satisfy A; + B; = X; - Y;), 0ifitis not satisfied and we attribute the value
L ifthe inequality was not tested in that round (i.e. if T; = 0, the key generations rounds). Now the distributions
q = (q(0), q(1), q(_L)) of interest are the ones that achieve a winning probability w for the CHSH game, i.e.

q(1)
1—q()
X, Y; randomly and independently, and then generate the outcomes A; and B;. Finally, the set of states X;(7) of
interest are all the states resulting from the action of this channel in an arbitrary state and exhibiting a violation
0 = 8w — 4 for the CHSH inequality. For a more detailed description of the EAT channel associated to protocol
1, we refer the reader to [20, 41].

We now state the EAT.

= w. The EAT channel N represents local maps that, according to the value of T}, generate the variables

Theorem 8 (The entropy accumulation theorem (EAT) [51]). For an event (2 that happens with probability
p(&Y), andfort suchthat f_. (freq(c")) > tforall ¢ € Q, it holds that

Hpin (A'|B'E), > nt — v/n (31)
and similarly, for t’ such that f__(freq(¢")) < t'forall ¢ € Q,
Ho (AIBYE),, < nt' + vii (32)

with

v =2(log(1 + 2dy) + [[[Vflk Y1 — 2log(e: - p(2)) (33)
for f equalsto f, . and f___respectively.

Analogous to the AEP, the EAT allows us to break the entropy of the string of bits into the entropy of a single
round. Note, however, that this single-round entropy does not refer to the real entropy of each round of the
protocol, but is evaluated over the hypothetical states that would achieve the observed violation. It is important
to remark that a crucial assumption in the EAT [20, 51] is that some of the variables of interested satisfy what is
called the Markov condition. This is the case for QKD protocols performed sequentially. For definition and
discussion of the implications of the Markov condition, see [51].

4.3.2. Estimating the one-round entropy

Now that we have reduced the evaluation of the secret key length to the estimation of the conditional

von Neumann entropy of a single round, we are ready to face the next challenge: how to estimate the
single round entropy without any assumptions on the quantum states and behaviour of the measurement
devices.

The CHSH scenario: The CHSH scenario [39], where Alice and Bob each perform one among two possible
binary measurements, is significantly simpler than other Bell scenarios. Due to the fact that the CHSH
inequality has only two binary inputs per party, a strong result [107, 108] states that the description of any
realization of a CHSH experiment can be decomposed into subspaces of dimension two, where projective
measurements are performed in each subspace. This allows one to restrict the analysis to qubits, which
significantly simplifies the problem. Exploring these nice properties, a tight bound on the von Neumann
entropy of Alice’s outcome conditioned on Eve’s information, as a function of the CHSH violation, was
derivedin[15,27].
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Lemma 2. Given that Alice and Bob share a state p, 5, that achieves a violation (3 for the CHSH inequality, it holds
that

H(A|E) >1—hl—&-l (E)Z—l (34)

" 2 2\2 '

In section 4.3.1 we have seen that for collective attacks the key rate can also be estimated by the single round
collision entropy. And due to the additivity property of H), no overhead /7 term is present. Therefore, this
analysis can potentially lead to an advantage with respect to the minimum number of rounds required for
positive key rate. The conditional collision entropy satisfies the following relation [102, corollary 5.3]

Hy(A|E), = Hmin (A|E),. (35)
And alower bound for the conditional min-entropy as a function of the Bell violation was derived in [ 109]:
1 1 3
Hpyin (A|IE), > —log| — + —,[2 — — |. 36
(AlE), g [ > t3 2 ) (36)

Therefore expression (36) can be used to bound the conditional collision entropy as a function of the
violation 3. We now prove that this bound is actually tight.

Theorem 9. There exist a state pj  and measurements for Alice and Bob such that, pf‘ p achieves violation (3 and the
collision entropy of Alice’s output A conditioned on Eve’s quantum information E is

Hy(A[E) » = —log[% + % la - %] (37)

The proof of theorem 9 is presented in appendix C. Theorem 9 together with relations (35) and (36) imply a tight
lower bound for the conditional collision entropy as a function of the CHSH violation 3. In figure 4.3.2 we plot
H (A|E) and H,(A|E) as a function of the violation 3. One can see that the points of maximum and minimum
entropy (corresponding to maximal violation 5 = 2+/2 and no violation, respectively) coincide, but for
intermediate values of 3 the conditional collision entropy is smaller than the conditional von Neumann entropy.

Other Bell inequalities and the min-entropy estimation: The use of different Bell inequalities has proved to be
advantageous in different taks. For example, a tilted CHSH inequality was used to certify maximal randomness
in states arbitrarily close to separable [110], and inequalities with more inputs and outputs have shown to exhibit
higher noise robustness [111]. Therefore it is natural to ask whether other Bell inequalities can also bring
advantage to the task of DI QKD.

By considering an arbitrary Bell inequality, one faces the problem that the techniques used to bound the
conditional von Neumann entropy as a function of the CHSH violation do not apply. Indeed, the proof of
lemma 2 is highly based on the fact that one can reduce the analysis to qubits. In fact, very few results are known
on tight bounds for the conditional von Neumann entropy as a function of the Bell violation for other
inequalities. In [112] abound was derived for a family of inequalities denoted measurement-device-dependent
inequalities [113], which are very suitable for the task of randomness amplification. In [114] a tight bound was
derived as a function of the violation of the multipartite MABK inequality [115—117]. However in these two cases
the proofis based on a reduction to the CHSH inequality.

In general, the conditional von Neumann entropy can be lower bounded by the conditional min-entropy

H(AlE)p = Hmin (AlE)p- (38)

The advantage of looking at the conditional min-entropy is that it can be computed as a function of the Bell
violation by a semi-definite programming [109]. The idea is that in order to estimate the min-entropy one can
upper bound the guessing probability, Pauess (see equation (13)), of the eavesdropper. This problem can then be
expressed as an optimization over probability distributions, which is exactly the information available in the DI
scenario. As shown in [109], for any Bell inequality, an upper bound on the p, . canbe obtained by a
semidefinite programming making use of the NPA-hierarchy[118, 119].

Lower bounding the conditional von-Neumann entropy by the min-entropy might be far from optimal. For
example, for the CHSH inequality we have that the conditional von Neumann entropy as a function of the
violation is much larger than the conditional min-entropy, as illustrated in figure 7 (recall that, in theorem 9,
Hpin (A|E), was shown to be a tight bound on H, (A|E), as a function of the CHSH violation). By making use of
the tight bound on the conditional von Neumann entropy, equation (34), one can prove security for DIQKD up
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Figure 7. Graph illustrating the difference of the conditional von Neumann entropy H (A|E) and the conditional collision entropy
H,(A|E) as a function of the CHSH violation .

to 7.1% of QBER [15], whereas using the min-entropy, equation (36), security can only be guaranteed up to a
QBER of 5.2% [109].

Itis still an open problem whether any other Bell inequality can lead to better performance for DIQKD than
the CHSH inequality. Recently, an extensive analysis of the performance of different Bell inequalities for the task

of randomness expansion was presented in [120].

4.3.3. Key rates
The techniques presented in sections 4.3.1 and 4.3.2 allows us to establish the length of a secure key that can be

extracted as a function of the CHSH violation 3and QBER Q.

For coherent attacks, the EAT (theorem 8) and the tight lower bound on the conditional von Neumann
entropy (lemma 2) are the key tools to establish theorem 1. The complete proof of theorem 1 includes several
intermediate steps, and is presented in details in appendix B.3.

For collective attacks, the key ingredients to derive theorem 2 are the AEP (theorem 7) and lemma 2. A
detailed proof of theorem 2 is presented in appendix B.1. We have also presented a different technique of
breaking the entropy of Alice’s string into the entropy of single rounds in the IID scenario, namely by making use
use of the additivity of 2-Réyni entropy, lemma 1. This technique, together with theorem 9 leads to theorem 3. A
detailed proof of theorem 3 can be found in appendix B.2.
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Appendix A. Definitions

In this appendix we present some properties of the conditional sandwiched a-Réyni entropies [104], definition
4, and the smoothed entropies that are used for the security proof.

Properties 1. The conditional a-Rényi entropies satisfy:

(i) Data processing ([102] corollary5.1): Let Tapr = I4 @ Eg(p, ), where g isa CPTP (B, B’) channel, then

H,(A|B), < H,(A|B"), and H\(A|B), < H}(A|B),. (A.1)
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(ii) Additivity ([102]corollary5.2): For p,5 ® Taspitholds that
H(AA'|BB'),2, = HL(AIB), + HL(A'|B)-. (A2)

(iii) Entropy of classical information ([102]lemma 5.3): For p,, classicalin X

H.(XA|B), > H,(A|B), and H/}(XA|B), > H}(A|B),. (A.3)

(iv) Conditioning on classical information (see [102]lemma 5.4): For p, ; classicalin X,
H/(AIXB) > H/(A|B) — log(rank(py)) (A.4)
>H/(A|B) — log|X]|, (A.5)
where rank(py ) is the rank of matrix p, and | X|is the dimension of system X.
(v) Conditioning on classical information (see [102] proposition 5.1): Let p,py = >, p. 0’5 @ |x) (x|then,

1

—

Ha(AIBX), = ——log (Z pX = x)z«lmHam'BXW], (A6)

H](A|BX), = 1 @ —log [Z (X = x)z(lw“Hi(AlBX—X»)). (A7)

And for the conditional von Neumann it holds that

H(A|BX), = Y p(X = x)H(A|BX = x),,. (A.8)

(vi) Entropy of the conditioned state (see [51]lemma B.5):Let pypy = >, p. P4 Blx then,

HI(AIB),,, > H(AIB), — —2 1og(l], (A.9)
" a—1 P,

In property 1(iv), the relation H, (A|XB) > HJ(A|B) — log|X|was stated in [102]. We remark that the
middle inequality follows from the fact that H] (A|XB) is invariant under local isometries. Therefore if
X" = V(X)isafull rank operator where V(-) is an isometry, we have that

HJ(AJXB) = H}(A|X'B) > H/(A|B) — log|X'| (A.10)

and since V(-) is an isometry |X'| = rank(py).

The min- and max- entropy are the particular extreme cases of H, for &« = coand o = % respectively. For
o — 1onerecovers the standard conditional von-Neumann entropy. The smoothed min- and max-entropies
are defined as an optimization over operators that are e-close, in the purified distance, to the state of interest.
This optimization takes into account also operators that are sub-normalized, i.e. positive operators with trace
smaller than 1.

Definition 7 (Smoothed entropies [102]). Let p, , be a quantum state and € > 0. The smooth min-entropy of
system A conditioned on B is defined as

Hyi. (AlB), = max Hpyin (A|B)j. (A.11)
PAsEB (pap)
The smooth max-entropy is
Hyw (AlB), = min  Hpy (A|B);. (A.12)
PaEB ()

In definition 7, B(p,) is an e-ball of sub-normalized operators around state p, ; defined in terms of the purified
distance.

Definition 8 (Purified distance [102]). For sub-normalized positive operators X and Y,i.e. X, Y > Oand
Tr(X) < 1, Tr(Y) < 1, the purified distance is given by
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DX, Y) = 1 — E(X, Y), (A.13)

where Ed(-,) is the generalized fidelity, defined as
FuX, Y) = (TrVX VY| + J = Trp)(1 — Tr(Y)))?. (A.14)

The smoothed entropies satisfy several chain rules. Some of them are stated below. A more complete list of chain
rule relations can be found in [102, 121].

Properties 2 (Chain rules for the smooth min-entropy). The smooth min-entropy satisfy the following
relations

(i) Foraquantum state p, 5,

2
Hr;in (A|BC)/J mm (ABlc)P rz;lax (Blc)p - 210g[1 - I (i) ) (A15)

(ii) If X isaclassical register and p,y @ quantum—quantum-classical state, it holds that'’
(A|XB), > Hy;, (A|B), — log(rank(py)), (A.16)

mm

where rank(py ) is the rank of state py.

A fully contained overview with properties and relations between different entropies can be found in [102]
(seealso, [122]).

Appendix B. Security proof

According to definition 5, a security proof of a DIQKD protocol consists in completeness and soundness. We
start by proving completeness of Protocols 1 and 2.

Theorem 10 (Completeness). The DIQKD protocols in consideration, Protocols 1 and 2 are € 1y qxp complete, with
€DIQKD S €EC T €est T €EC: (B.1)

Proof. The protocols in consideration can abort in two steps. Either because the error correction fail, or because
the estimated Bell violation is not high enough. Let us consider an honest implementation consisting of IID
rounds where the expected winning CHSH probability is wey,.

p(abort) = p((EC abort) or (EC does not abort and Bell test fail))
< p(EC abort) + p(EC does not abort and Bell test fail).

Now, the probability that the error correction protocol abort for an honest implementation is
p(EC abort) < ege. And for the other term we have

p(EC does notabort and Bell test fail)
—p(KA = KB)p(Z Ci< Z T; x (wexp - 6est)|KA = Kp)

+P(KA = KB)P(Z C < Z T X (wexp est)lKA = KB)

< €est T €EC>

where ey = e 27" follows from Hoeffding’s inequality. O

For the soundness proof we have to evaluate correctness and secrecy, definitions 1 and 2. For an error
correction protocol with error parameter epc we have that given that the error correction protocol does not
abort, the probability that the string B after error correction is equal to A} with probability higher than 1 — ep¢
and consequently

P(Ky = Kp) < €xc. (B.2)

0 [102] relation Hy;, (A|XB), > Hy,;, (A|B), — log|X| was proved. Relation (A.16) with the rank of p, follows as pointed out in
property 1(iv).
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For the secrecy let us recall that, for each considered Protocol, {2 is defined as the event that the respective
protocols do not abort. That happens when the error correction protocol does not abort and they achieved the
required violation of CHSH according to Bob’s estimation of Alice’s string. Now, let us the define the event (2 as
the event (2 of the protocol not aborting and the error correction being successful, i.e. B;' = A/". Now the
quantity we need to estimate for the secrecy, relates to the event QO by

HpKAEm - Tk, @ pE”l < HpKAEm - pKAEmHl + HpKAEm - Tk, @ pE”l
Serc + ||pKAE|Q — Tk, ® pE”l (B.3)

which follows from the fact that, since when error correction succeeds, the probability of B," = A" is higher
than (1 — €gc) then the following operator inequality holds: py, Ejq = (1 — epc)pk, B

In the following, we proceed to evaluate || py, B~ Tk ® Pp |l in order to prove theorems 1, 2 and 3.

B.1. Proof of theorem 2

In this appendix we present the proof of theorem 2, that determines the size of a secret key one can extract from
protocol 2 under the assumption that the eavesdropper is restricted to collective attacks. Importantly, theorem 2
is based on the AEP, theorem 7, in order to break the entropy of the 7 rounds into the one-round entropy.

The collective attacks assumption implies that in each round of the protocol the state distributed to Alice and
Bob is the same, as well as their devices function in the same way, i.e. the rounds are IID. Therefore the state
shared between Alice, Bob and Eve after Alice and Bob measure their raw keys is described by a tensor product
form p%. .

The AEP [61], theorem 7, states that the smooth min-entropy of a tensor product of states is almost
equivalent (up to terms of order of </7) to n times the von-Neumann entropy of an individual system. We now
make use of the quantum AEP to derive the length of a secure key that one can achieve for protocol 2.

As established by the leftover hashing lemma, theorem 5, the maximal length of a secure key is determined by
the smooth min-entropy of Alice’s raw key conditioned on all information available to the eavesdropper, given
that the protocol did not abort. In the case of protocol 2, it is given by

HES (AMX Y] T EOxc) (B.4)
Here we recall that O is the information exchanged by Alice and Bob during the error correction protocol.
T, X", Y{" are, respectively, the variable that determines whether the round is a test or a key generation round,
and Alice and Bob’s inputs, which are communicated publicly. ()is the event that error correction protocol
succeeds, i.e. K4 = Kgand the CHSH probability estimated by Bob is w > wexp — 0est- In the following we
describe the steps to estimate (B.4).

In order to avoid the conditioned state we can give one step back and note that in definition 2 we want to
bound

P lpx,ar0 — )i @ Prpolh = Pk mErd — )i @ PHEAG (B.5)

where py ppao = P Qp &, E|Q- Now using the Leftover Hashing Lemma, theorem 5, we can express an
(€pa + €5)-secretkey by

I = HS, (AME),, — 210g( ! ) (B.6)
2€pa
Now we make use of the following relation proved in [8], lemma 10
Hyyo (AL'E),,, = Hiy (A'|E),. (B.7)
In the following we proceed to estimate the quantity
Hys (A'X Y T EOkc)). (B.8)

Step 1: Accounting for the leakage in the error correction.
Using the chain rule relation for the smooth min-entropy conditioned on classical information, property
2(ii), we have

H (Aln |X1n Yln TlnEOEC )p > HS (A1n|X1n Ylﬂ TlnE)p — leakgc, (B.9)

min min
where leakgc = rank(p,, ) represents the minimum amount of classical information that needs to be

communicated from Alice to Bob in order to perform error correction''. We consider that Alice and Bob use a
protocol based on universal hashing which has minimum leakage [123]. In [124] it was proved that the

Note that in a realistic implementation Alice might send the error correction information using an encoding in order to overcome errors
in the transmission due to channel losses. Therefore, in general p,, . may not be full rank.
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minimum leakage is given by

! 1
leakgc < Hy®(A|B/'X['Y' T} + log (—), (B.10)
€EC
where, if Alice and Bob do not abort, then K4, = Kpwith probability atleast 1 — egc. And for an honest
implementation, the error correction protocol aborts with probability at most €5 = € + epc. Here Hpisa
Rényi entropy first introduced in [49] (in [102], it is denoted ). The entropy Hj, relates to the smooth max-
entropy in the following way [106], lemma 18,

‘kc
2

Hy (AP |BI XY T} < Hyi (AP|BIXPYTY) + log[ T+ 2;) (B.11)
€EC

€ EC

We now can use the AEP, theorem 7, to decompose (B.11) into the sum of the entropy of single rounds.
Moreover, for an honest implementation with winning CHSH probability wey, and QBER Q we have that for the
testrounds H (A|BXYT = 1) = h(weyp) and for the key generation rounds H (A[BXYT = 0) = h(Q).
Therefore the one round entropy is given by

H(AIBXYT) = p(T = 0)H (A|BXYT = 0) + p(T = )H(A|BXYT = 1)
=1 = NhQ) + Yh(wexp)s (B.12)

where in the first equality we have use property 1(v).
Therefore, the leakage due to error correction is given by

leakge < n((1 — Nh(Q) + Yh(Weg)) + ﬁ(410g(2ﬁ + 1) [log— ]

!/
€ EC

+ log( % + #,] + log(i). (B.13)

!
€' EC 2 — €EC €EC

Itis not known if an efficient error correction protocol can achieve the minimum leakage estimated in
equation (B.13), and practical implementations may use protocols with higher leakage. Reference [125] analyses
the leakage in error correction for concrete protocols, based on state-of-the-art error correcting codes, with
efficient implementation. A more realistic analysis of the error correction leakage should take into account an
specific code.

Step 2: Breaking the entropy into single rounds.

We now can use the AEP in order to bound H;, (A"|X["Y{" T{" E),. The assumption of collective attacks
implies that the state under consideration has the tensor product form and therefore

H:r;in (Alnlxln Yln TlnE)/J Zn H(A|XYTE)p - \/ﬁ(s(fsy 77)) (B14)

where ¢ (¢;, 17) and njare specified in theorem 7.
For the scenario under consideration we have

N < 2N 20 ma AIXYTE), 4 1 < 2/2 + 1. (B.15)

The first inequality follows from the fact that A is a classical register and therefore has positive conditional min-
entropy, which implies —Hyin (A|XYTE), < Hpin (A|XYTE), < Hpax (A|XYTE),. The second inequality
follows from the fact that since A is a binary variable Hyoy (A|XYTE), < 1. Therefore,

5 m) < 4log(2V2 + 1) /1og(iz]. (B.16)
€S

Step 3: Estimating the one-round entropy.

Now it only remains to lower bound H (A|XYTE),. Lemma 2 states the tight lower bound for the conditional
von-Neumann entropy as a function of the winning probability w for the CHSH game derived in [15, 41]. Using
this bound we have that if p is a state that achieves winning probability w then

H(A|XYTE), > 1 — h(% + %1/1601((0 1)+ 3). (B.17)

Now, protocol 2 aborts if the observed frequency of winning events is smaller than wey, — écst. Therefore,
given the event ) that protocol 2 does not abortand K, = Kp, we have that Alice and Bob observe a violation
higher than wey, — dest. Now we need to take into account that the CHSH violation is estimated with a finite
number of rounds. So in order to infer the real winning probability w* of the IID implementation, we can make
use of the Hoeffding’s inequality in order to define a confidence interval: if w* < Wexy — Gest — Ocon then
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_ ST
Prob(wobserved = Wexp — Oest) < € 2yn@eon)” 1= €con- (B.18)
Therefore, given that Alice and Bob do not abort the protocol, we infer that the expected winning probability of
the system under consideration is higher than wey, — Oest — 6con> and therefore

H(A|XYTE)p > 1 - h(% + %\/16(wexp - 6est - 6con)((wexp - 6est - 6con) - 1) + 3) (B19)

Putting the results of these steps together we have that either protocol 2 aborts with probability higher than
1 — (€con + €rc), or the probability of aborting is smaller than (e.on + €pc) anda (2epc + € + €pa)-correct-
and-secret key can be generated of size

1 1
1> ”[1 - h(g + 5\/16(Wexp — Oest — (Scon)((wexp — Oest — Ocon) — 1) + 3)

— (1 = NhQ) — Yh(wexp)]

— ﬁ[4log(2x/§ + l)ulogi2 + Jlog i ]]
€5 € EC

— log 8 + S log I 2log ! . (B.20)
% 2 — ¢} € 2
EC EC EC €PA

This establishes theorem 2.

B.2. Proof of theorem 3
We now present the proof of theorem 3, that determines the size of a secret key one can extract from protocol 2
for collective attacks, but differently from theorem 2, we now use the additivity property of the 2-Rényi entropy,
lemma 1, in order to break the entropy of the string into the one-round entropy.

We are now interested in estimate the length of a secure key as established in theorem 4, which is given by

H} (A/'1X]"Y{ T{'EOgc) p - (B.21)

Asin appendix B.1 we now present the steps thatlead to the proof of theorem 3.
Step 1: Accounting for the leakage in the error correction.
Using property 1(v), we have

HJ(A"|X'Y{'T{'EO¢c),, > HI(A!'IX]'Y['TV'E),,, — leakec, (B.22)

where leakgc = rank(p,, ) represents the minimum amount of classical information that needs to be
communicated from Alice to Bob in order to perform error correction.

Now the error correction leakage leakg is the same as derived in equation (B.13).

Step 2: Breaking the entropy into single rounds.

We first use property 1(v) in order to express the entropy of the state conditioned on the event Qin terms of
the entropy of the unconditioned state

HJ(A|X!'Y]'TV'E),,, > HI(AIX{"Y]' T['E), — 2log [i) (B.23)
“ Po
We can now make use the additivity property of 2-Réyni entropy, lemma 1, in order to bound

H (AMX!"Y] T'E )o- The assumption of collective attacks implies that the state under consideration has the
tensor product form and therefore

HI(AX'Y{'T'E), > n Hy(A|XYTE),, (B.24)

where now the single round entropy in consideration is the conditional collision entropy.

Step 3: Estimating the one-round entropy.

Now it only remains to lower bound H, (A|XYTE),. Theorem 9 shows that a tight lower bound for the
conditional collision entropy as a function of the violation (3 coincides with the previously derived conditional
min-entropy [109], equation (36). Therefore, for a state p that wins the CHSH game with probability w

Hy(A|XYTE), > flog(% + % l6w(l — w) — 2). (B.25)

Now, either the expected winning probability of the system under consideration is smaller than
Wexp — Oest — Ocon» in which case the protocol aborts with probability higher than 1 — (econ + €rc), or
Pg > €on + €pc which implies that the system has winning probability larger than wex, — 6est — con> and
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HZ(A|XYTE)p 2 _log(% + %\/16(wexp - 6est - 6con)(1 - (wexp - 6est - 6c0n)) - 2) (B26)

In conclusion we have that, either protocol 2 aborts with probability higher than 1 — (é.on + €rc), or the
probability of not aborting is greater than (e, + €gc) anda (2egc + €pa)-correct-and-secret key is generated
of size:

1> nl:_log(% + %\/16(wexp — best — bcon) (1 — (Wexp — Oest — Ocon)) — 2)
— (1 = MVh(Q) — Yh(wexp)] (B.27)

8
_ ﬁ[4log(2«/§ +1) logfl2 )
EC
—lo 8 + 2
’ €fc 2- €xc

— log(i) — 210g( ! ) — Zlog(;). (B.28)
€EC 2fPA €con + €EC

This establishes theorem 3.

B.3.Proof of theorem 1
In this appendix we present the proof of theorem 1, which establishes the size of a secure key that can be
extracted from protocol 1 for general coherent attacks. We follow closely the proof developed in [20, 41].

In protocol 1, the number of rounds is not fixed. Instead, protocol 1 has a fixed number of blocks m, such

that the maximum number of rounds inside a block is set to s, = [% . This is a technicality introduced in

[20,41]in order to get a better pre-factor for the overhead terms that scale with /7. For each block j Alice and
Bob run the protocol until they have a test round or they reach the maximum number of rounds s;,,,,. At each
round j; Alice and Bob choose a random bit T}, such that P(T}, = 1) = ~y, which determines whether they are
going to test the CHSH inequality or make a key generation round. They repeat the process until they obtain
T, = 1ori = spay. With these constraints the expected number of rounds in a block is given by

1- @1 -yl
’y bl

5= (B.29)

and the expected number of rounds is
n = ms. (B.30)

For details on the derivation of equations (B.29) and (B.30) see [41], appendix B.
We now proceed to derive the key rates against a general coherent attack. In order to calculate the size of the
key we need to estimate

HI? A" 1X"Y" T EO),,, (B.31)
Now A, denotes the total string of bits, expected to be of size 1, and A; denotes the string of outputs generated
in the block i, and similarly for the other variables. In the following, we proceed step by step in order to lower

bound H/\ (Klm Ile ﬁm ﬁm EO),,, and we detail the changes introduced to the original analysis [20, 41].

Step 1: Accounting for the leakage in the error correction.
Similar to the proof of protocol 2, we have that

HY ARV T EO),, > HID (R 1X" 1" 1" E),,, — leakc, (B.32)
and

& mgmom 1

leakgc < H (A, 1B, X" Y"T") + log(—] (B.33)
€EC
< Hy 1B %" 3T
8 2 1

+ log( 2T 7 ] + 10g(—)- (B.34)

€EC (2 — €x0) €EC

However, now we need to take into account for the fact that the number of rounds in the protocol is not fixed.
Following the steps of [41], we first note that the number of rounds N obtained in an implementation of the
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protocol 1 satisfies:

2t%y2
PIN > n + t] < exp ——|=é (B.35)
m(l — )

— ~)2 ..
where n = ms5 is the expected number of roundsand t = | — %lbgf‘ . Moreover, by the definition of

smooth max-entropy one have that

2 M =M M S M M, =M 2m 3m =2

Heo (A" 1B X" V" T'N) < Hend A 1B X" V' TN < n + 1), (B.36)

max
Note that N can be included in the entropy since it is completely determined by T, .
Now applying the AEP, theorem 7, to the maximal length N = n + t we have

leakge < (71 + 1) - [(1 — VH(Q) + Yh(Wexp)]

8 2 1
+w/ﬁ+tyz+log( — + - ]—i—log(—],
€EC

€EC (2 — €50)

where v, = 4log(2v/2 + 1) /210g(ﬁ) and ¢, is a free parameter to be optimised.

If the error correction protocol does not abort, then
P(KA = KB) < €EC. (B37)

And the completeness of the error correction protocol (i.e. the probability of not aborting in an honest IID
implementation) is given by €5 = €gc + €xc.

Step 2: Chain rule.

In protocol 1, a statistical test is performed on the variable C; which accounts for the condition of winning
the CHSH game being satisfied or not. In order to use the EAT, we need to be able to infer the value of this
variable C; from the variables that appear in the smooth min-entropy we are calculating.

Here we choose to use a chain rule, relation (A.15), with the variable C;itself, as opposed to using the variable
B;asisdonein [41]. The reason is that the dimension of the variable C;is smaller than B;, as for each block the
variable C; assumes one out of three values. This leads to a slight improvement in rates achieved in the finite
regime:

omom =2, 4P(9) m 3 m 2m

HEb AR T E)y, > Hit (4 CPIX Y T B)

omom=2m

HIZ (A" S8 T By,

2
€.
—3log|1 — |1 — = ) (B.38)
(4p<m
HET A" CMR" 8" T By,

~ A (1T By

2
“3logl1— 1o [—&— | B.39
o8 \/ (4(6EA + EEC)) -39

In inequality (B.39) we use the fact that p(€2) > (ega + €gc) and that removing the conditioning on classical
variables can only increase the entropy, which can be seen as a particular case of data processing, property 1(i).

Step 3: Upper bound on H#R (C/"| ﬁmE)p

1Q°
We can use the EAT to upper bound Hpiy (C/”| ﬁmE )pjq- Inorder to do that we only have to find a max-

tradeoff function for a protocol with 7 rounds. We have that for any distribution p = (p(1), p(0), p(L)) of the
variable C:

H(CIT,E),, = p(T; = 0)H(CI|T; = 0F),,,

+p(T; = O)H(CIT, = 0E),, (B.40)

= p(T; = O)H(CI|T; = 0F),,, (B.A1)

<h(ﬂ) - h(ﬁ) ~ h(w), (B.42)
1 —p() L — (1 — )
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where in (B.41) we use the fact that H (Cj| T; = 0E) = 0,and in (B.42) we use that p(ﬁ = 0) < 1andthat
p(1)

1= (1 — yymar
Now we can take f.

max

= w. Note that /(-) isa concave function.

! on
1 — (1 — y)smax ow

=h(Wexp — Ges) and || VS [loe = , where wey, is the

Wexp— Best

expected winning probability of the CHSH game in an honest implementation and .5 accounts for the
statistical confidence interval of the experiment. Using the EAT, theorem 8, we have

HED (CP'NT"E)yy, < m h(Wey — Ses) + N7 11, (B.43)

where

h, €X] 635
v = 2[log7 + [ M])Jl —2loge, (B.44)

1= (1= )

and &’ represents the derivative of the binary entropy function, k()

ow

Sm om 2m

Step 4: Lower bound on H! (A" C["|X"Y," T, E) fye

min

om om =2m

Finally, we apply the EAT to lower bound the term H, ’@) (A'lm CX,' Y, T, E) pg- Therefore we need to find a

min

min-tradeoff function such that

fan@ < inf  HA&CIK Y TE) mo (B.45)

or;_ 15 Mj(0)c;=q

Note that the length of each block is variable. However, we can consider that all the blocks have size s,,,, and
set all the variables to L for the rounds which are not performed.
First note that

H(A;Cj|X;Y;T,E) > H(A;|X;Y, T;E). (B.46)

And from now on, we follow the same steps as [41].
Using the chain-rule for Von Neuman, property 1(v), entropy we have

Smax _ .
HAIX Y, TiE) = H(AIX Y TEA; ™. (B.47)
i=1

and forevery i € [smaxls
[ i—1
H (A}l XY TiEA; ™)
:P(leiil = 6)H(Aj,i|)?jY}EAJ';ATJ}SW’ Tflii1 - 6)

i-1_. 3 2.7 i1 sma T, i71 2
+ p(T}ll = O)H(AJ)1|X]Y]EA]11 T}‘is N T:,ll = 0) (B.48)
= (1 = NCVHALIXYEA T, T, = 0), (B.49)

where we used the fact that H (Aj,i|}?j l_/}EAjli’l TjiSmaX, 7}11'—1 = 6) = 0. Therefore
Smax . RN . . N
HANX Y, TE) = Y (1 — ) VHAIX VEA; T T, T, = 0). (B.50)
i=1
Eachterm H (A I)_f]- Y;—EAJ' :’1 Tjism“*, T; :’1 = 0) can be seen as the entropy of a single round. An expression for
the entropy of a single round was derived for collective attacks in [15]. This gives us:

HACI% T TE) =5 (1 — 7)<"1>[1 — h(% + %J16wi(wi -+ 3)] (B.51)
i=1
such that
Smax .
p) = 70 =NV, (B.52)
=1
Now, in [41] itis proved that the minimum of (B.51) is achieved for
1
P O R (B.53)
1T — (1 — 7y)max
and therefore we have a min-tradeoff function:
N e S p(1) p) .
g(p) = 5[1 h(2 + 2\/161—(177)%“(17(177)5.““ 1) + 3):|> (B.54)
p(1) 3 2442
for 1— (1 — 7y)max I:Z’ 4 ]
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the gradient of g (p) tends to infinity, which compromises

Note thatas p(1) — (1 — (1 — ~)m) - 2
the /71 term that depends on the norm of the gradient of f. Since g (p ) is a convex function, the tangent line in
any point p, isalower bound to g(p). Therefore, as in [20, 41], we take the min-tradeoff function to be a tangent

ginapoint p, to be optimized'”:
(P p) = — il IRAURY i e | n (8:55)
Fnin (P Py dp(1) o dp(1) . !
Then we have
. i
HEO A" ez T E)pg > M Moy = = * Topo (B.56)
where
~ =~ 1
T T s [me@’f’r) - ﬁ] ®-57
TSy max < g
such that
vy = 2|log(1 + 2 - 25mx3) + dL(l)g(p) ‘ J1 — 2loge,. (B.58)
b,
Finally, the length of a secure key that can be extracted is given by
5 _ =
1> “Mopt — gh(wexp best) — \/jl/l
5 5 5
@i+ 1) - [(1 = Nh(Q) + Yh(wexp)]
ni+tv log(8 + 2 ) log(l)
, — — -
b (2 — €k €EC
(B.59)

Appendix C. Proof of theorem 9

Theorem 9. There exist a state p, , and measurements for Alice and Bob such that, p, , achieves violation 3 and the
collision entropy of Alice’s output A conditioned on Eve’s quantum information E is
32
Hy(AIE),» = — + X el (C.1)

Proof. The proof consists in exhibiting a state g , and measurements for Alice and Bob such that the lower
bound given by equation (36) is saturated. Our derivation is based on the techniques presented in [15], which led

to a tight lower bound for the conditional von-Neumann entropy

Let us consider that Alice and Bob share a Bell diagonal state p,
Pag = 200Poo + o1 Po1 + Mo ®Pro + M1 P11, (C.2)
where ®; = |D;) (D] and | ;) = I ® X'Z/ (%(|00> + | 11>)). We first prove the following result
Lemma 3. For a Bell-diagonal state where Alice performs a measurement in the Z-basis we have that
Hz(AlXYE)p —lOg( + \/>\00)\01 + \/)\11)\10) (C3)

Proof. Given a Bell diagonal state p,5(Xoo> o> Mio» Mi1)» @ purification | U), g of this state is given by

In [20, 41] the authors consider the following min-tradeoff function
. g(p) itp (1) > p@)

f min (p ) = I . ! .

Eain(P> p) = ifp() <p(D)

We remark that, since the gradient of g(p) is an increasing function of p(1), the optimum value for 7),,,, is always achieved for p,(1) < p(1)
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|\II>ABE =4 Aoo |¢’00>AB|€1>E + \//\01 |(I)01>AB|62>E
+ Vo [Pro)agles)e + VA1 | Pii)agles)s. (C.4)

After Alice measures in the Z basis we have
1 1
Pap = 5|0><0| ® pgjo + 5|1><1| ® pgp> (C.5)

where
Pjo = [0 (il +192) (2| and pgy = [3) (3] + [ta) (Yul, (C.6)

with non-normalized states

19n) = WAwle)) + yarlea)),
12y = o les) + Vit les)),
¥35) = W holes) — Aules)),
1%5) = WAoo ler) = VAarlea).
The collision entropy of a cq-state p, , is given by
Hy(A|E), = —logTr(p, " pappp "> Pap)» (C.7)

which, evaluated for the state (C.5) gives

Hy(A|E), = —log(% + oo Vot + JATOJA_H)).

O
Now let us consider a Bell diagonal state g, such that
)\0() = Rcos (9, )\01 = Rsin 9, Al() = )\11 =0,
s.t. cosf + sinf = % (C.8)

which can hold for R > % This choice is inspired by the optimal strategy that maximizes the conditional von

Neumann entropy as shownin [15].
For these parameters we have that

Hy(AIXYE) » > —log(% + R %(% — 1)] (C.9)

Finally, we know from [126] that for a state p, 5 (Aoo> Ao1> Mo> A1), the maximal violation By, of the CHSH
inequality is given by
Bmax = max {2\/5\/0\00 = )2+ Qo — Mo)?, 2\/5\/(/\00 = Xo)? + ot — A} (C.10)
and that this violation can be achieved with one of Alice’s measurement being in the Z basis.

Therefore, for the state g, specified by (C.8), and Alice and Bob performing the measurements that gives
the maximum violation achievable for the CHSH inequality, we have that 3 = 2+/2 R. This implies

1, B
2 4]. (C.11)

1

Hy(A|XYE) ; = log(z +

O
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