
 
 

Delft University of Technology

Towards a realization of device-independent quantum key distribution

Murta, G.; Van Dam, S. B.; Ribeiro, J.; Hanson, R.; Wehner, S.

DOI
10.1088/2058-9565/ab2819
Publication date
2019
Document Version
Final published version
Published in
Quantum Science and Technology

Citation (APA)
Murta, G., Van Dam, S. B., Ribeiro, J., Hanson, R., & Wehner, S. (2019). Towards a realization of device-
independent quantum key distribution. Quantum Science and Technology, 4(3), Article 035011.
https://doi.org/10.1088/2058-9565/ab2819

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/2058-9565/ab2819
https://doi.org/10.1088/2058-9565/ab2819


Quantum Science and Technology

PAPER

Towards a realization of device-independent
quantum key distribution
To cite this article: G Murta et al 2019 Quantum Sci. Technol. 4 035011

 

View the article online for updates and enhancements.

Recent citations
Advantage Distillation for Device-
Independent Quantum Key Distribution
Ernest Y.-Z. Tan et al

-

Experimental comparison of tomography
and self-testing in certifying entanglement
Koon Tong Goh et al

-

This content was downloaded from IP address 131.180.113.80 on 04/03/2020 at 13:15

https://doi.org/10.1088/2058-9565/ab2819
http://dx.doi.org/10.1103/PhysRevLett.124.020502
http://dx.doi.org/10.1103/PhysRevLett.124.020502
http://dx.doi.org/10.1103/PhysRevA.100.022305
http://dx.doi.org/10.1103/PhysRevA.100.022305
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjst5FIVeI76BAYqJyF5hSUFZFbDc_y8MjULygAalIuDAyZBNkXS9lrbhMaYwx5XfONitFSd1Vkcl_CsWbS8sD0NoxtGx-ZXjkssyLfBkgSFHpO4hszcgA9CTx1MlGPV7L4DFBwtTPmm-iwxZkGX3vEjAKBsRnUsZxZ5sao9N-iamyHxZcGRMQhO2gfBNitwsBPr4-i-DcKX9iy8UgipZMa35Bh3u20ixweGihrw1P-7OaZbYBJbp&sig=Cg0ArKJSzDvFJzIq4w-R&adurl=http://iopscience.org/books


QuantumSci. Technol. 4 (2019) 035011 https://doi.org/10.1088/2058-9565/ab2819

PAPER

Towards a realization of device-independent quantum key
distribution

GMurta1 , S B vanDam1,2 , J Ribeiro1, RHanson1,2 and SWehner1

1 QuTech, Delft University of Technology, Lorentzweg 1, 2628CJDelft, TheNetherlands
2 Kavli Institute ofNanoscience, Delft University of Technology, Lorentzweg 1, 2628CJDelft, TheNetherlands

E-mail: glauciamg.fis@gmail.com

Keywords: quantumkey distribution, quantum cryptography, device-independent

Abstract
In the implementation of device-independent (DI) quantumkey distribution (QKD)we are interested
inmaximizing the key rate, i.e. the number of key bits that can be obtained per signal, for a fixed
security parameter. In the finite size regime, we furthermore also care about theminimumnumber of
signals required before key can be obtained at all. Here, we perform a fullyfinite size analysis of device
independent protocols using theCHSH inequality both for collective and coherent attacks. For
coherent attacks, we sharpen the results recently derived inArnon-Friedman et al (2018Nat.
Commun. 9 459), to reduce theminimumnumber of signals before key can be obtained. In the regime
of collective attacks, where the devices are restricted to have nomemory, we employ two different
techniques that exploit this restriction to further reduce the number of signals.We then discuss
experimental platforms inwhichDIQKDmay be implemented.We analyse Bell violations and
expectedQBER achieved in previous Bell tests with distant setups and situate these parameters in the
security analysis.Moreover, focusing on one of the experimental platforms, namely nitrogen-vacancy
based systems, we describe experimental improvements that can lead to aDIQKD implementation in
the near future.

1. Introduction

1.1.Quantumkey distribution (QKD)
QKD [1, 2] is a remarkable example of the advantages that quantum systems bring to accomplishing classical
tasks. All the classical crypto-systems used for key exchange are based on computational assumptions and,
therefore, are susceptible to retroactive attacks. Indeed, if an adversary keeps track of the public information
exchanged during the communication of an encryptedmessage and, in a later future, amore efficient algorithm
or fastermachines become available, then themessages exchanged in the past can be decrypted. The novelties
brought by quantum systems allow two parties to establish a common key that is information-theoretically
secure and, therefore, can be used to achieve perfect secure communicationwith a one-time pad encryption.

QKD schemes explore intrinsic properties of quantum systems, such as no-cloning [3, 4] andmonogamy of
entanglement [5], in order to achieve security even against an all powerful adversary who has unlimited
computational power. Thewell knownQKD schemeBB84 [1] can tolerate a reasonable amount of noise and
decent rates3 can be achievedwith current technology, see for example the analyses of [6–8]. BB84-basedQKD
has been successfully implemented over long distances, see for example [9, 10], and even satellite-based secure
quantum communicationwas established [11].

A successful implementation of the BB84 protocol is, however, highly dependent on a good characterisation
of the underlying quantum system and themeasurement devices. For example, the protocol can easily be broken
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if the devices are performingmeasurements in four dimensional systems instead of qubits, see discussions in
[14, 15]. Furthermore, hacking of existent implementations that exploit experimental imperfections were
presented (see e.g. [16–19]).

A good characterization of the experimental setup is a strong assumption.What ismore, when quantum
technologies become commercially available, wemight often buy devices from a provider which is not entirely
trustworthy. Fortunately, quantumproperties allow us to overcome this problem: by exploring the strong
correlations that arise in quantum systems, one can prove security ofQKDeven in the very adversarial scenario
where Alice andBob do not have complete knowledge of the internal working of theirmeasurement devices or
the underlying quantum system that they aremeasuring [15, 20, 21–34]. This is the device-independent (DI)
model.

1.2. TheDI scenario
TheDI scenariomodels the underlying system andmeasurement devices as black boxeswhere the only relevant
information is the statistics of inputs and outputs. Therefore, no assumptions on the dimension of the quantum
systems or the particularmeasurements performed by the devices are required. This represents a significant
relaxation of the assumptions present in an implementation of the BB84 protocol. However, it is important to
remarkwhich assumptions remain present in any implementation of aDI protocol.

Assumptions 1 (Device-independentmodel). In theDImodel we assume:

(i) Isolated labs: no information is leaked fromor enters Alice’s andBob’s labs, apart from the state distribution
before themeasurements and the public classical information dictated by the protocol.

(ii) Isolated source: the preparation of states is independent of themeasurements.

(iii) Trusted classical post-processing: all the public classical communication is performed using an
authenticated channel and the local classical computations are trusted.

(iv) Trusted Random Number Generators: Alice and Bob possess independent and trusted random number
generators.

A bit of thought canmake one conclude that completely removing any of these assumptions leads to a
strategywhere the key is leaked to the adversary. However, we remark that partial relaxation of these
assumptions can still be considered. In [35], QKD is proved to achieve everlasting security by relaxing
assumption 1(iii) to a computationally secure authenticated channel, but assuming the eavesdropper to be
computationally bounded during the execution of the protocol. Inmany device independent protocols, instead
of assumption 1(ii), it is assumed that all the n systems are prepared before themeasurement phase starts, so that
no information other than the classical public communication is exchanged during the protocol. However, this
would require quantummemory fromAlice andBob in order to store the quantum states along the protocol. In
an implementationwhere the quantum states are generated round by round, and therefore inwhich no long
termquantummemory is required, assumption 1(ii) is necessary to avoid that the state prepared by the source
leaks the raw bits generated byAlice’s device in the previous round. Indeed, if the source is arbitrarily correlated
with themeasurement devices the state prepared can contain an additional degree of freedom that encodes the
string of bits generated in the previous rounds (this strategy is detailed in [36], appendix C).We remark that, in
experimental platforms, the preparation of states and themeasurements are either performedwithin the same
systems or optically connected ones, and therefore one needs to assume that the process of generating a quantum
state is not correlatedwith the previously performedmeasurements. This assumption is, however, oftenwell
justified based on a description of the setup. Reference [37] addresses the problemof hiddenmemory in the
devices. The authors show that amalicious eavesdropper can programme themeasurement devices in such a
way that information about a previously generated keymay be leaked through the public communication of a
subsequent run of the key generation protocol, if the devices are re-used. Reference [38]proposes an alternative
to overcomememory attacks and covert channels in general, as well as the need to assume that all the classical
post-processing is trusted. By introducing protocols based on securemulti-party computation distributed
amongmore devices, Ref. [38] relaxes the black-boxmodel to reliability of only one of the quantumdevices.
Moreover, the classical post-processing can tolerate up to a third ofmalicious classical devices.

Another assumption that is often used in security proofs is that the rounds of the experiment are independent
and identically distributed (IID). This, in particular, implies that themeasurement devices arememoryless and
the state shared byAlice and Bob is the same for every round on the protocol. The IID assumption can be
justified, for example, in experimental setupswhere Alice and Bob control to some extent the source and
measurement devices, but do not have a full characterization of their working.

2
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Assumptions 2 (IID assumption).An IID implementation assumes:

• IID devices: the devices behave independently and in the sameway in every round of the protocol.

• IID states: The state distributed is the same for every round of the protocol. In summary, the state of the n
rounds can bewritten as r r= Ä

A B E ABE
n

n n
1 1

.

The eavesdropper attacks inQKDare classified in three types: Individual attacks, where the eavesdropper has
nomemory and therefore is restricted to attack individually each round of the protocol;Collective attacks:where
in every round the systems of Alice and Bob, as well as themeasurement devices, are prepared identically but the
eavesdropper is allowed tomake arbitrary global operations on her quantum side information; andCoherent
attacks: additionally to the global operations the eavesdropper can perform in her quantum side information, the
states shared byAlice and Bob in each round can be arbitrarily correlated, as well as themeasurement devices in
theDI scenario can havememory and operate according to the results of previous rounds, i.e. do not satisfy the
IID assumption. The IID assumption, stated in assumptions 2, corresponds to the scenario where the
eavesdropper is restricted to collective attacks. Inwhat followswe focus on two types of adversarial attacks:
collective attacks and coherent attacks.

1.3.DIQKDprotocols
Thefirst ideas ofDIQKDarose in the E91 protocol [2], which uses a test of theCHSH inequality [39] in order to
certify that Alice and Bob share amaximally entangled state. This idea of self-testing quantumdevices was
further explored in [14]. Indeed, DIQKD relies on the violation of a Bell inequality in order to certify the security
of the generated key. The simplest DIQKDprotocol uses theCHSH inequality for the security test:

b = á ñ + á ñ + á ñ - á ñ ( )A B A B A B A B 2, 10 0 0 1 1 0 1 1

where á ñ = = - ¹( ∣ ) ( ∣ )A B p a b xy p a b xyx y represents the correlation of the outputs a b, of Alice and Bob
when they perform themeasurement labelled by x y, respectively. TheCHSH inequality can be phrased as a
game [40] in whichAlice and Bob receive x and y, respectively, as inputs and thewinning condition is that their
outputs satisfy + = ·a b x y , with the operations+, ·takenmodulo 2. Thewinning probabilityω of theCHSH
game relates to the violationβ by

w
b

=
+ ( )4

8
. 2

ForDIQKDbased on theCHSH inequality, we consider protocols where Alice possesses a device with two
possible inputs Î { }X 0, 1 andBob has a device with three possible inputs Î { }Y 0, 1, 2 . The inputs

Î { }X 0, 1 and Î { }Y 0, 1 are used to test for theCHSH inequality, and the inputsX=0 andY=2 are used
for the other rounds, often called key generation rounds, wheremaximal correlation of the outputs is expected.
The parameters of interest are the Bell violationβ, or winning probabilityω, achieved in the test rounds and the
QBERQ of the key generation rounds.We consider that an implementation of the protocol is expected to have n
rounds and a portion gn of these rounds is used for testing of theCHSH condition.

ADIQKDprotocol can be divided in three phases:

• An initial phasewhere Alice and Bob use their respective devices tomeasure the quantum systems and,
according to the obtained outputs, generate the n-bit stringsA1

n andB1
n.

• A second phase where Alice andBob publicly exchange classical information in order to perform error
correction, to correct their respective strings generating the raw keys; and parameter estimation, to estimate the
parameters of interest (Bell violation,β, andQBER,Q). At the end of this phase Alice and Bob are supposed to
share equal n-bit strings and have an estimate of howmuch knowledge an eavesdroppermight have about
their raw key.

• In thefinal phase, Alice and Bob perform privacy amplification, where the not fully secure n-bit strings are
mapped into smaller stringsKA andKB, which represents the final keys of Alice and Bob respectively.

The specific protocols we consider for our analyses are detailed in section 2, (see protocols 1 and 2).
In order to define security of aDIQKDprotocol, we follow [20, 41] and adopt the security definition that is

universally composable for standardQKDprotocols [42]. Universal composability is the statement that a
protocol remains secure even if it is used arbitrarily in compositionwith other protocols. It is important to
remark that, for theDI case, attacks proposed in [37] show that composability is not achieved if the same devices
are re-used for generation of a subsequent key. Indeed, in [37], the authors have shown that amalicious
eavesdropper can program themeasurement devices in such away that information about a previously

3
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generated keymay be leaked through the public communication of a subsequent run of the key generation
protocol, if the devices are re-used. It is still an open problemwhat is theminimum set of assumptions that can
lead to universal composability ofDIQKD (e.g. the attacks of [37] can be avoided if we assume that Alice and Bob
have sufficient control over the existing internalmemory of their devices, so that they can re-set it after an
execution of the protocol).

LetKA andKB denote thefinal key held byAlice andBob, respectively, after they perform aDIQKDprotocol.
ADIQKDprotocol is secure if it is correct and secret. Correctness is the statement that Alice and Bob share the
same key at the end of the protocol, i.e.KA=KB. Secrecy is the statement that the eavesdropper is totally
ignorant about thefinal key.

Definition 1 (Correctness).ADIQKDprotocol is corr-correct if the probability that thefinal key of Alice, KA,
differs from thefinal key of Bob, KB, is smaller than corr, i.e.

¹( ) ( )P K K . 3A B corr

Definition 2 (Secrecy). Let W denote the event of not aborting in aDIQKDprotocol and W( )p be the probability
of the event W. The protocol is sec-secret if, for every initial state rABE it holds that

r t rW - ÄW ( ) · ( )∣p
1

2
, 4K E K E 1 secA A

where t = å ñá∣ ∣
∣ ∣

k kK K k A
1

A
A

is themaximallymixed state in the space of strings KA, and · 1 is the trace norm.

If a protocol is corr-correct and sec-secret, then it is 
s
DIQKD-correct-and-secret for any

   +s
DIQKD corr sec. See section 4.2 for amore detailed definition of security of aDIQKDprotocol.

Given anDIQKDprotocol that has n rounds and generates afinal correct-and-secret key of l bits, then the
secret key rate is defined as

= ( )r
l

n
. 5

Our goal is to derive the secret key rate as a function of the parameters of interest,β andQ, that Alice and Bob can
estimate during the execution of the protocol.

1.4. Security proof ofDIQKD
Even though the BB84QKD scheme dates back to 1984 [1], the formal security proof in the asymptotic regime
only came outmore than a decade later, see e.g. [43–46]. Security in the composable paradigm in the finite
regime against general coherent attacks was only formalized in 2005 [47–49].Moreover, afinite key analysis
without the IID assumption over the state preparation andwith parameters compatible with current technology
only came in 2012 [6, 7].

In theDI scenario, security against a quantum eavesdropper4 restricted to collective attacks was first proved
in [15, 27]. A proof against general attacks assumingmemoryless devices was presented in [28, 29]. The problem
of extending the security proofs to coherent attacks in theDI scenario remained open for a long time.One of the
main difficulties is that de Finetti techniques [48, 50], used to extend security proofs against collective attacks to
general coherent attacks in standardQKD, are not applicable in theDI scenario. A series of recent works [31–34]
culminated in the Entropy Accumulation Theorem (EAT) [20] (see [41, 51] for extended versions). The EAT
allows one to extend the analysis against collective attacks to the fullyDI scenario, resulting in asymptotically
tight security proofs and high rates in thefinite size regime.

1.5. Experimental DIQKD
Protocols forDIQKD rely on a Bell test between two distant parties [15]. In order to certify security, this Bell test
should be free of loopholes that could be exploited by an adversary.While closing the detection loophole is
crucial for aDIQKD implementation, the spacelike separation required for loophole-free Bell tests can be
relaxed. In aDIQKD experiment, no-communication between the devices does not have to be guaranteed by
spacelike separation, since the assumption of isolated labs, Assumption 1(i), is already needed to ensure that the
generated key is not leaked to the eavesdropper at any point in time.We are thus interested in considering Bell
violations between distant—albeit not necessarily spacelike separated—setups inwhich the detection-loophole
is closed [53–60]. The recent performance of fully loophole-free Bell tests [53–56]mark technological progress

4
Adiscussion on earlier security proofs that do not restrict the eavesdropper to the quantum formalism can be found in [52].
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towards Bell tests without detection loophole over increasingly distant setups, as needed for practically useful
DIQKD.

Despite the experimental progress, aDIQKDprotocol has not yet been performed. The reason for this is that
a Bell violation alone is not enough to guarantee security in aDIQKDprotocol. One also needs to account for the
amount of information leaked during the error correction, whenAlice and Bob correct their string of bits in
order to achieve a perfectly correlated raw key. The amount of information required for error correction is
determined by theQBER.With afiniteQBER, as in practical systems, a large Bell violation is needed to achieve a
positive key rate.Moreover, a highminimal number of rounds is required for security due tofinite-size effects.
The large number of necessary rounds requires a significantly high entangling rate. Altogether, DIQKD
demands a lowQBER, high Bell violation and high entangling rates. Even though some systems satisfy parts of
these requirements, e.g. a high Bell violation [53, 56, 59, 60] or high entangling rate [54, 55, 57, 58], so far there
are no systems that combine all requirements. In section 2.3we describe the potential platforms for an
experimental implementation ofDIQKD in detail.

2. Results

Wenowpresent our results. In section2.1,we establish thekey rates forDIQKDprotocols basedon theCHSH
inequality, both for coherent and collective attacks in thefinite size regime.As abenchmark, in section2.2,we
compare the key rates that canbe achieved in thefinite regime for the twoadversarial scenarios (collective and
coherent attacks)using an implementationwithdepolarizingnoise. In section 2.3,wediscuss the state of the art of
experimental implementations.We estimate theparameters of interest for previously performedBell experiments
and situate them in the security proofs. Additionally, focusingonNitrogen-vacancy (NV)based systemswe indicate
experimental improvements that can lead to an implementationofDIQKD in thenear future.Throughout this
manuscriptweuse Log10 todenote logarithm tobase 10 and log to denote logarithm tobase 2.

2.1. Key rates
In the following, we derive the key rates in thefinite size regime forDIQKDprotocols where theCHSH
inequality is used for certifying security. For coherent attackswe sharpen the results recently derived in [20]. For
collective attacks we perform the analysis by employing two techniques: thefinite version of the asymptotic
equipartition property (AEP) [61] and the additivity of the 2-Rényi entropy.

2.1.1. Key rates for coherent attacks
In order to analyse the key rates against general coherent attackswe use the recently developed EAT [20, 41, 51]
and consider the following protocol.

Protocol 1.DIQKDprotocol for coherent attacks [41]

1: forFor every block Î [ ]j m do

2: Set i=0 and = ^Cj .

3: while i smax do

4: Set = +i i 1.

5: Alice andBob choose a randombit Î { }T 0, 1i such that g= =( )P T 1i .

6: ifTi=0 thenAlice andBob choose inputs =( ) ( )X Y, 0, 2i i .

7: else they choose Î { }X Y, 0, 1i i (the observables for theCHSH test).
8: end if
9: Alice andBob use their devices with the respective inputs and record their outputs,Ai andBi respectively.

10: IfTi=1 they set = +i s 1max .

11: endwhile
12: end for
13: ErrorCorrection:Alice andBob apply the error correction protocol EC, communicating scriptOEC in the process. If EC aborts they

abort the protocol, else they obtain raw keys Ã
n

1 and B̃
n

1 .

14:Parameter estimation:Using B1
n and B̃

n
1 , Bob sets

=
= Å =
= Å ¹

^ =

⎧
⎨⎪
⎩⎪

·
· ( )C

T A B X Y

T A B X Y

T

1, if 1 and

0, if 1 and

, if 0

. 6i

i i i i i

i i i i i

i

He aborts if

å w d g< ´ - - -( )( ( ) )C m 1 1 ,
j

j
s

exp est max

i.e. if they do not achieve the expected violation.

15: Privacy Amplification:Alice andBob apply the privacy amplification protocolPA and obtain thefinal keysKA andKB of length l.
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In protocol 1, the total number of rounds is notfixed in advance, however for a number of blocksm large
enough the number of rounds will correspond, with high probability, to the expected value n. This is a
technicality introduced in [20, 41] in order to obtain better rates in thefinite regime. Amore detailed
explanation can be found in [41], appendix B. Improvements on the second order termof the EAT, that do not
rely on the introduction of blocks, were recently obtained in [62]. Following the techniques of [20, 41], we derive
theorem1.

Theorem1 (Key rates for coherent attacks).Either protocol 1 aborts with probability higher than
 - +( )1 EA EC , or it generates a   + +( )2 EC PA s -correct-and-secret key of length



  

 h w d n- - - -

- - -
+

+
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

¯ ¯
( )

¯

( )
( )

l
n

s

n

s
h

n

s
leak

3 log 1 1
4

2 log
1

2
, 7s

opt exp est 1 EC

EA EC

2

PA

where leakEC is the leakage due to error correction step and the functions h ns̄ , ,opt 1 and n2 are specified in table 1.
Theorem 1 sharpens the original analysis [20, 41] and has slightly improved key rates in the finite regime.

This results in a reduction of theminimumnumber of rounds (signals) required for positive rates by about a
factor of two, as illustrated infigure 1. A detailed derivation of theorem1 can be found in appendix B.3.

2.1.2. Key rates for collective attacks
For collective attacks, we derive the finite key rates by employing two techniques: the finite version of the
asymptotic equipartition property (AEP) and the additivity property of the conditionalα-Rényi entropies. To
deal with collective attacks we can use a simplified version of protocol 1, where the number of rounds isfixed.

Protocol 2.DIQKDprotocol for collective attacks

1: for i=1 ton do
2: State Alice and Bob choose a randombit Î { }T 0, 1i such that g= =( )P T 1i .

3: ifTi=0 thenAlice andBob choose inputs =( ) ( )X Y, 0, 2i i .

4: else they choose Î { }X Y, 0, 1i i (the observables for the CHSH test).
5: end if
6: Alice andBob use their devices with the respective inputs and record the outputs,Ai andBi respectively.

7: end for
8: Error correction:Alice andBob apply the error correction protocolEC, communicatingOEC in the process. If EC aborts they abort the

protocol, else they obtain raw keys Ã
n

1 and B̃
n

1 .

9: Parameter estimation:Using B1
n and B̃

n
1 , Bob sets for thefirst test rounds

=
Å =
Å ¹

⎧⎨⎩
·
·

( )C
A B X Y

A B X Y

1, if

0, if
8i

i i i i

i i i i

For the remaining rounds he sets = ^Ci .

He aborts if

å g w d< ´ -( )C n ,
j

j exp est

i.e. if they do not achieve the expected violation.

10: Privacy Amplification:Alice andBob apply the privacy amplification protocolPA and obtain thefinal keysKA andKB of length l.

Table 1.Explicit formof the terms that appear in theorem 1. For a detailed derivation see appendix B.3.

=
g

⎡⎢ ⎤⎥smax
1

= g
g

- - g
⎡⎢ ⎤⎥

¯ ( )
s

1 1
1

h n= -
< <

g- -
+

 ⎡⎣ ⎤⎦( )( )
( )

F p pmax , t mopt min
1

2pt
s

3
4

1

1 1 max
2 2

4

= + -
    

 

⎛
⎝⎜

⎞
⎠⎟( ) ( ) · ( ) ( ) ( ) · ( )
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In the following theoremwe state the length of a secure key that can be derived using the AEP, which is
formally stated in theorem7.

Theorem2.Either protocol 2 aborts with probability higher than  - +( )1 con EC , or it generates a
  + +( )2 EC s PA -correct-and-secret key of length:

 

   

 w d d w d d

g g w

- + - - - - - +

- - -

- + +
¢

-
¢

+
- ¢

- -

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )(( ) )

( ) ( ) ( )

( )

( )

l n h

h Q h

n

1
1

2

1

2
16 1 3

1

4log 2 2 1 log
2

log
8

log
8 2

2
log

1
2 log

1

2
. 9

exp est con exp est con

exp

s
2

EC
2

EC
2

EC EC PA

Adetailed derivation of theorem 2 can be found in appendix B.1.

Using a different technique, namely bounding the key rate by the conditional collision entropy, we derive the
following result.

Theorem3.Either protocol 2 aborts with probability higher than  - +( )1 con EC , or it generates a
 +( )2 EC PA -correct-and-secret key of length:
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An important step in the proof of theorem 3 is to derive a lower bound on the collision entropy as a function of
theCHSHviolationβ. A tight lower bound is proved in theorem 9. The detailed proof of theorem3 is presented
in appendix B.2.The rates presented in theorem2 are asymptotically tight, while theorem3 achieves strictly

Figure 1.Key rate r versus logarithmof the number of rounds n. Comparison of the improvements in the key rate, for an
implementationwhere themaximally entangled state is subjected to depolarizing noise and therefore b = -( )Q2 2 1 2 , forQBER

= { }Q 0.5%, 2.5%, 5% . The dashed curves correspond to the key rates derived in the original analysis [20, 41], the solid lines
represent the key rates derived in theorem 1. Similarly to [20], we take  = -10c

DIQKD
2 and  = -10s

DIQKD
5.
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smaller asymptotic rates. However, one can note that in theorem3 the termproportional to n has a smaller
pre-factor. This can potentially lead to an advantage for theminimumnumber of rounds required for security.
For protocol 2, an advantage can only be observed for very lownoise regime, as illustrated infigure 2.We
remark, however, that for protocols based on other Bell inequalities the techniques used for deriving theorem3
can present significant advantage for the collective attack analysis. This is further discussed in section 4.3.2.

In table 2, we list the parameters of theDIQKDprotocols in consideration.

2.2. Comparison of key rates for depolarizing noisemodel
Wenow compare the key rates achieved in the finite regime under the assumption of collective attacks (IID
scenario) and against general coherent attacks (fully DI scenario). As a benchmark, we focus on an honest
implementationwhere themaximally entangled state is prepared and subjected to depolarizing noise5:

r n n= - F ñáF ++ +( )∣ ∣ ( )I
1

4
. 11

In this case, the parameters of interest—the value of theCHSH inequalityβ and theQBERQ—relate to the noise
parameter ν by

n
b n b= = -  = -( ) ( ) ( )Q Q

2
and 2 2 1 2 2 1 2 . 12

Infigure 3we compare the key rates achievable under the IID assumption, given by theorem 1, and in the
fullyDI scenario, theorem2, for an honest implementationwith depolarizing noise.

Figure 2.Key rates versus logarithmof the number of rounds n for protocol 2 (collective attacks). The blue curve represent the key rate
using theorem 2 and the yellow curve shows the key rate using theorem3. It is considered an implementationwith depolarizing noise
andQBER =Q 0.01%. The inset graph shows a zoom in the region of lownumber of rounds. Similarly to [20], we take
 = -10c

DIQKD
2 and  = -10s

DIQKD
5.

Table 2.Parameters of the consideredDIQKDprotocols, protocols 1 and 2.

n expected number of rounds

l final key length

γ fraction of test rounds

Q quantumbit error rate

β CHSHviolation

wexp expectedwinning probability on theCHSHgame in an

honest implementation

dest width of the statistical interval for the Bell test

dcon confidence interval for the Bell test in protocol 2

s smoothing parameter

  ¢,EC EC error probabilities of the error correction protocol

EA error probability of Bell violation estimation in protocol 1

con error probability of Bell violation estimation in protocol 2

PA error probability of the privacy amplification protocol

leakEC leakage in the error correction protocol

5
This noisemodel can also be seen as the casewhere each individual qubit suffers a depolarizationwith parameter n ¢, where n n n= ¢ - ¢2 2.
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Figure 3 shows that the key rates approach the same asymptotic values, however theminimumnumber of
rounds required to guarantee security is significantly higher for general coherent attacks. Indeed, by adding the
assumption that the eavesdropper is restricted to collective attacks, theminimumnumber of signals required to
have a positive key rate drops by about two orders ofmagnitude. However, even for collective attacks, this
minimumnumber of required rounds is considerably large given the current entanglement generation rates.
This is one of the big challenges to be overcome for aDIQKD implementation. In the next sectionwe are going
to discuss the state of the art of experiments, and situate the current achievable parameters (Bell violation,QBER
and entanglement generation rate) in the security proofs.

2.3. The state-of-the-art experimental DIQKD
In the following, we discuss experimental platforms inwhichDIQKDmay be implemented.We analyse Bell
violations and expectedQBER achieved in previous Bell tests with distant setups and situate these parameters in
the context of the key rates derived in theorems 1 and 2. A summary of thefindings is presented in table 4 and
figures 5 and 6.

In experimental setups, distant entanglement is typically generated using photons to establish the
connection.We distinguish two approaches based on the role of the photonic qubits: (i)All-photonic schemes:
Approaches inwhich the entangled state is encoded in the photonic state directly. In this case,measurements
of the photonic states on two remote setups enable to infer their entanglement. (ii)Heralded schemes: In this case,
the entangled state is typically created in a long-lived system and the photons are used as ameans of establishing
the entanglement between two distant systems.

In this sectionwe provide a discussion of the parameters in each of these schemes and the related challenges
towards an implementation ofDIQKD.Weprovide amore detailed discussion of one of the systems, namelyNV
centres in diamonds, and describe improvements in experimental parameters that can lead to aDIQKD
implementation in the near future.

2.3.1. DIQKDwith all-photonic entanglement
Since in all-photonic schemes the entangled state is directly encodedon thephotonic state, photon losses limit the
entangled state detection efficiency.Closing thedetection loophole in aBell test thus requires very efficient entangled-
photon sources andphotondetectors.Recent technological advances enabled all-photonicBell tests that close the
detection-loophole [57, 58], later combinedwith spacelike separation in loophole-freeBell tests [54, 55].

In photonic systems the detection efficiency also impacts the entangled state fidelity.We thusmay expect
that Bell violations are low in photonic systems. To avoid having to deal with undetected events, photonic Bell
tests typically employ theCH-Eberhard inequality [63, 64]. TheCHSHandCH-Eberhard inequalities are
equivalent6, such thatwe can estimate theCHSHviolation achieved in photonic experiments. Table 4 presents
the corresponding value for theCHSH inequality achieved in the experiments of [54, 55, 57, 58]. One can note
that the violations achieved are indeed low, ranging from2.000 04 to 2.02. Combinedwith afiniteQBER (>2%),
this poses a significant challenge for the implementation of aDIQKDprotocol in photonic systems.

Figure 3.Key rates versus logarithmof the number of rounds for collective attacks (dashed lines) and coherent attacks (solid lines).
The different curves represent different values ofQBER = ( )Q 0.5%, 2.5%.5% considering an implementationwhere themaximally
entangled state is subjected to depolarizing noise (see relation (12)). The security parameters are taken as  = -10c

DIQKD
2 and

 = -10s
DIQKD

5.

6
One can see that by replacing non-detected events by the deterministic classical strategy ‘output 1’ in a test of the CHSH inequality.
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However, if these systemswould enter the regime of positive key rates, the entanglement generation rate can
be very high (~105 Hz), such that they could easily reach the asymptotic key rate values.

In order to overcome photon losses, several proposals for implementing heralding schemes in all-photonic
systemswere presented. In this case, the entangled state is created between photons and, also, this entanglement
is heralded by the interference of other photons. In particular, in [65] the authors propose a scheme based on a
qubit amplifier that combines single photon sources and linear optics. This proposal was further explored in
[66]. Schemes based on entanglement swapping by quantum relaywere also considered [67–69]. Reference [67]
makes a comparison of the performance of the two types of schemes. Analyses in [65, 67–69]make assumptions
on the possible attacks performed by the eavesdropper. Newprotocols based on single photon sources were
recently proposed in [70]. The proposed schemes use a combination of spontaneous parametric down
conversion sources and single-photon sources in order to achieve a setupwhere a heralding process could
overcome transmission photon losses. The security analysis presented in [70] does not restrict the eavesdropper
attacks. These setups are a promising proposal to bring the parameters of all-photonic systems to the region of
positive asymptotic key rates (see figures 5 and 6). However single-photon sources still lack the required
performance for an implementation of these schemes.

2.3.2. DIQKDwith heralded entanglement
Due to the nature of heralded entangling schemes, photon losses do not influence the entangled state detection
efficiency orfidelity. Heralded schemes have been used to entangle distant atomic ensembles [71, 72], trapped
ions [73], atoms [74], NV centres [75], quantumdots [76], andmechanical oscillators [77]. So far, entangled
statefidelities sufficiently high to violate Bell’s inequalities have only been reachedwith trapped ions [59, 60],
atoms [56, 74], andwithNV centres [53, 78]. The Bell violations observed in [53, 56, 59, 60, 78] are in the range
β= 2.22 toβ= 2.41, with a lower bound on theQBER, estimated fromdetection efficiencies alone, around 0.04
(see table 4 for a full overview). Apart from the results reported in [60], these parameters are not in the region of
positive key rate (see figures 5 and 6). However, all of them are in the proximity of this region, such that setup
improvementsmay enable to reach it.

The challenge for these implementations is however their low entangling rate, induced by photon losses.
Current rates range from (min)−1 [56, 59, 60, 74] to (h)−1 [53, 78]. A significant speed-up in the entanglement
generation rate is thus needed in order to achieve theminimumnumber of rounds required forDIQKD.Higher
entangling rates in heralded schemeswere recently achievedwith trapped ions [79] andNV centres [80, 81],
althoughwith lower state fidelities, and noBell violations are reported. Even though in [81] the statefidelity is
just high enough to be able to violate Bell inequalities, the expected Bell violationwould be low. Enhancement in
entangling rates, e.g. with optical cavities to improve light-matter coupling efficiency [82] is therefore crucial to
achieving an implementation ofDIQKDwith heralded schemes.

2.3.3. NV centre-based networks
In this section, we focus on heralded entanglement generation betweenNV centres in diamond forDIQKD.NV
centres are defect centres in the diamond lattice. They contain an electronic spinwith good coherence properties
and spin-selective optical transitions that can be used for intialization, readout and entanglement generation
[75, 83]. Next to the electronic spin, nearbyweakly coupled nuclear spins can serve as long-livedmemories
[84, 85]. These propertiesmake theNV centre a promising quantumnetwork node.

Entanglement between distantNV centres can be generated using an heralded scheme. Typically, local
entanglement isfirst generated between theNV electronic spin and a photonmode. And subsequently,
entanglement between distantNV centres is achieved through entanglement swapping by interfering the two
photonmodes fromdistant setups [86]. As discussed above for heralded protocols, photon attenuation does not
influence thefidelity of the generated entangled state or the detection efficiency. The detection of the spin states
has near-unit efficiency [87].

DIQKDparameters. In a loophole-free Bell test withNV centres [53, 78], a CHSHviolation b = 2.38 0.14
was observed between systems separated by 1.3 km. Taking into account the entangled state fidelity and
detection efficiency, we estimate that the correspondingQBERwould be = Q 0.06 0.03. The Bell violation
achieved in [53, 78] is considerably high, especially if compared to loophole-free Bell test experiments in
photonic systems [54, 55]. However, these parameters are not good enough to generate a secure key. Indeed,
using theorems 1 and 2, one concludes that it is not possible to achieve positive key rate with these parameters
(see figures 5 and 6).

In the following, we suggest two near-term experimental improvements to enhance these parameters.
Firstly, the frequency stability of the laser used to exciteNV centres during the entanglement protocols can

be increased using an external cavity. The instability of the laser can influence the indistinguishability of photons
emitted by the distantNV centres. The indistinguishability is crucial for photon interference, which can be
quantified by the visibility of the two-photon quantum interference (TPQI).We expect that compared to
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previous implementation [53], the improved laser frequency stability can lead to an improvement in TPQI
visibility from0.88 to 0.90.

Secondly, both theCHSHviolationβ and theQBERQ are impacted by theNV electronic spin state readout.
The readout can be performed using resonant excitation of a spin-selective optical transition [87].
Improvements to the detection efficiency can be obtained by storing the spin state in the nearby nitrogen spin
state, and performing repeated readout [88].We estimate that the repeated readout can lead to an average
readoutfidelity of»0.985, compared to an initial 0.97 [89]7.

Other improvements can be envisioned, such as enhancement of the detection efficiency by improving the
photon collection efficiency through the use of parabolic reflectors [90] or optical cavities [91]. In the following
discussionwe limit ourselves to the two advances listed above and summarized in table 3.

Taking into account these improvements, the expectedDIQKDparameters are b » 2.47 and »Q 0.051. In
figure 4we illustrate the rates achievable for these parameters against general coherent attacks and under the
assumption that the eavesdropper is restricted to collective attacks.We see that the requiredminimumnumber
of rounds is of order 108 for general attacks, and about ´5 106 for collective attacks.

Entangling rate. Although the improved parameters lead to a positive key rate, this does notmean that
DIQKDwithNV centres is readily achievable. The system faces another challenge: the probabilistic nature of the
heralded entanglement scheme limits the entanglement generation rate.

In the heralded entanglement generation protocol used in [53, 75] the photonic qubit is time-bin encoded
and entanglement is heraldedwith the detection of a photon in each of two time-bins [86]. Since two photons
have to be detected, the rate of the protocol is proportional to the square of the photon losses. For the spacelike
separated setups in [53] the total emission and detection efficiency per photon is» -10 4, leading to a total success
probability of» -10 8. Since the repetition rate, limited by the spin-state reset time, is of the order of≈μs,
generating a raw key of length 106 bits would take»103 days. It is clear that a speed-up of entanglement
generation rate is required to useNV centres in aDIQKDprotocol.We describe two approaches toward this.

Figure 4.Key rates versus logarithmof the number of rounds n for parameters that are readily-implementable inNV centres setups
(CHSHviolation b = 2.47 andQBERQ=0.051). The red line shows the key rates obtained against general coherent attacks, and the
blue dashed line shows the key rates under the assumption of collective attacks. The security parameters are chosen to be
 = -10c

DIQKD
2 and  = -10s

DIQKD
5.

Table 3.TheCHSHviolationβ andQBERQ inNV centre-based implementations are strongly
dependent on the TPQI visibility and the readoutfidelity. The resulting values are shown for
parameters achieved in a loophole-free Bell test, and for expected values from several readily-
implementable improvements.

DIQKDparameters
References [53, 78] Expected

setup A B A B

average readoutfidelity 0.974 0.969 0.985 0.985

TPQI visibility 0.88 0.90

β 2.38±0.14 2.47

Q 0.06±0.03 0.051

7
Wenote that this readoutmethod increases the readout duration, which compromises spacelike setup-separation.However, security in a

DIQKD implementation does not require spacelike separation since it is superfluouswith the assumption of isolated labs in place (see
assumptions 1). Therefore, an increased readout time does not present a problem for security.
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Firstly, this could be achieved by adapting the entanglement generation protocol. A linear dependency of the
rate on photon losses can be achieved by employing an extreme-photon-loss (EPL) protocol [94] or single-
photon (SP)protocol [95]. Demonstrated implementations of these protocols withNV centres indeed provide a
speed-up in entanglement rate of three orders ofmagnitude [80, 81]. However, these implementations do not
yet provide the entangled statefidelities leading to Bell violations that allow forDIQKD (the entangled state
fidelities are = F 0.65 0.03EPL and = F 0.81 0.02SP , leading to noBell violation for the EPL protocol and a
small violation b = 2.1SP for the single photon protocol). Better parametersmay be achievedwith
improvements of the robustness of the nuclear-spinmemories [85] andwith an improved photon detection
versus dark-count rate [95].

Secondly, an increase in the entanglement rate can be achieved by a reduction of the photon losses per
round. These losses consist of three parts: a low coherent-photon emission probability, a non-unit collection
efficiency and fibre attenuation. The photon attenuation during transmission over fibres is»8 dB for theNV
emissionwavelength (637 nm). Tomaintain high entangling rates for distant setups, this should be reduced.
This can be achieved by frequency downconversion of the photons at awavelength of 637 nm emitted by theNV
centres to telecom frequencies [96, 97]. The emission probability of coherent photons,»3%, and subsequent
collection efficiency (»10%, [75]) together limit the best achievable entangling rates. They can be addressed
simultaneously by embedding theNV centre in an optical cavity to enhance coherent-photon emission and the
collection efficiency [91]. A promising approach employsNV centres in diamondmembranes in Fabry–Perot
microcavities [98–100]. In such a designNV centres remain far away from the optical interface, retaining bulk-
like optical coherence properties. These cavities are expected to provide three orders ofmagnitude enhancement
in entangling rate for a two-click protocol [99]. Together with the improvedDIQKDparameters described
above, thismakes a demonstration ofDIQKDwithNV centres experimentally feasible.

3.Discussion

Detection-loophole-free Bell tests between separated setupsmark an important step towards the
implementation ofDIQKD. Progress towards extending Bell experiments to larger distances were also achieved,
in particular by the Bell tests additionally closing the locality loophole. However aDIQKDprotocol has not yet
been implemented.

In order to shed light on the experimental performance needed forDIQKD,we have derived the key rates in
thefinite size regime as a function of the experimental parameters: CHSHviolationβ andQBERQ. For
comparison of the key rates obtained in the finite regime for coherent and collective attacks, we have used as a
benchmark an implementationwhere themaximally entangled state is subjected to depolarizing noise.
Although the asymptotic key rates against collective attacks and general coherent attacks coincide, it is known
that this is not the case in the finite regime.Wefind that, with the currently available tools, security against
coherent attacks requires aminimumnumber of rounds about two orders ofmagnitude higher thanwhat is
necessary for security against collective attacks for realistic near-termparameters.

Table 4. Summary of the estimated parameters of interest forDIQKD. (1), (2) are Bell tests with trapped ions, (3)–(5) are all-photonic
experiments, (7) usesNV centres and (8) trapped atoms. (9)Reports on near-term achievable parameters withNV centres as described in
section 2.3.3. In all experiments the detection loophole is closed; (5)–(8) additionally close the locality loophole. TheCHSHviolations for
neutral atoms (8), trapped ions (1), (2) andNV centres (7) are as reported in the corresponding experiments. For (3)–(5), inwhich the value
of theCH-Eberhard inequality J is reported, wemake use of the relation b = +J4 2 between theCHSHvalue and the CH-Eberhard value.
This relation is found if one attributes ‘output 1’ to undetected events in aCHSH inequality test. For (6) theCHSHviolationwas estimated
directly from the reported data. For the estimation of theQBER (Q), in (1), (2) and (8)we assume perfect classical correlation in the
generated state and find a lower bound for theQBER from reported detection efficiencies (0.979±0.002 [92] for (1) and (2), and
0.982±0.002 [93] for (8)). ForNV centres (7), we additionally account for imperfections in the entangled state based on the reported
densitymatrix. For all-photonic systems (3–6), theQBER is estimated by taking into account the detection efficiency and using the reported
estimated state and themeasurements performed byAlice, optimizing overmeasurements for Bob.

β Q

(1)Matsukevich et al [59] 2.22±0.07 0.041±0.003
(2)Pironio et al [60] 2.414±0.058 0.041±0.003
(3)Giustina et al [57] 2.020 96±0.000 32 0.0297±0.0003
(4)Christensen et al [58] 2.000 22±0.000 03 0.0244±0.0009
(5)Giustina et al [54] 2.000 030±0.000 002 0.0379±0.0002
(6) Shalm et al [55] 2.000 04±0.000 01 0.0292±0.0002
(7)Hensen et al [53] 2.38±0.14 0.06±0.03
(8)Rosenfeld et al [56] 2.221±0.033 0.035±0.003
(9)Expected improvements inNV systems 2.47 0.051
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Here, we have focused onDIQKDprotocols that use theCHSH inequality. So far theCHSH inequality is the
onewhich leads to the best performance for aDIQKDprotocol. The challenge in using other Bell inequalities is
that, up to date, only non-tight lower bounds on the secure key rates can be derived. Therefore, it is still an open
questionwhether any other Bell inequality can outperform theCHSH, either in terms ofmaximum tolerable
QBER, higher rates or lowerminimumnumber of rounds required.

Towards exploring the potential of different experimental platforms to implementDIQKD,we have
analysed the Bell violation and expectedQBERof previously performedBell tests and situated these parameters
in the context of the derived key rates. Figures 5 and 6 summarize this analysis.

For photonic systems, aDIQKD implementation is currently barred by the very lowCHSHviolation. To
overcome this, a strong reduction of photon losses is required.

Detection-loophole free Bell tests based on heralded entanglement schemes approach the allowed region,
with the Bell test of [60], performedwith trapped ions separated by 1meter, even exhibiting parameters in the
allowed region. These heralded schemes however suffer from low entangling rates resulting fromphoton losses.
An increase in the entangling rates is expected to be achieved by improving collection efficiencies, e.g. by
employing optical cavities.Moreover, with frequency downconversion these results can be extended to long (?
1 km) distances.We illustrate that with near-term experimental improvements forNV centres, in combination
with optical cavities for enhancing entangling rate, described in section 2.3.3, a demonstration ofDIQKD is
achievable.

4.Methods

Wenowpresent the theoretical tools that allows us to derive the key rates for theDIQKDprotocols, protocol 1
and protocol 2.We start by defining some quantities that are going to play an important role in the security proof
and state inmore details the security definition forDIQKD.

4.1. Notation anddefinitions
In cryptographic tasks, we are often interested in estimatingwhat is themaximumprobability withwhich an
adversary can guess the value of a classical variableA8. This is defined as the guessing probability pguess. In the

Figure 5.Region of positive key rates for coherent attacks: the red area is the region of values ofQBER (Q) andCHSHviolation (β) for
which a positive key rate cannot be reachedwith any number of rounds. In the green area, the dashed curves represents theminimum
number of rounds required to get positive key rate. For parameters above each curve, a key rate can be extracted if the number of
rounds is higher than specified in the curve. The points show the Bell violation and estimatedQBER achieved by previous experiments
(see table 4). They, however, do not reflect the corresponding entanglement generation rates. Similarly to [20], we take  = -10c

DIQKD
2

and  = -10s
DIQKD

5.

8
InQKD, for example, the classical variable is the string of bits that Alice holds aftermeasuring her quantum systems.
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general case where the adversarymight have access to a quantum side information E, and therefore the state of
interest is a cq-state (classical-quantum state) rAE, the guessing probability is defined as:

å r= =r r =( ∣ ) ( ) ( ) ( )
{ }

∣p A E p A a Msup Tr , 13
M a

E
a

E A aguess
E
a

where the supremum is taken over all POVMs { }ME
a that can be performed on the system E. Themin-entropy of

the classical variableA conditioned on the quantum side information E is then given by [101]

= -r r( ∣ ) ( ∣ ) ( )H A E p A Elog . 14min guess

A smoothed version of themin-entropy can also be defined.

Definition 3 (Smoothmin-entropy). For a quantum state rAE and  Î [ )0, 1



=r

r r
r

Î
( ∣ ) ( ∣ ) ( )

˜ ( )
˜H A E H A Esup , 15min min

AE AB

where the supremum is taken over positive sub-normalized operators that are ò-close to rAB in the purifying
distance [102].

The smoothing parameter ò allows us to restrict attention to typical events (the ones that occurwith
probability higher than d- ( )1 , where d ( ) is a function of the smoothing parameter). As a consequence, the
smoothedmin- andmax-entropies (see appendix A for definition) havemany nice properties and find an
operational interpretation inmany applications [102, 103].

Other quantities of interest that will appear along the text are the conditional von-Neumann entropy,

r( ∣ )H A E , and the conditional collision entropy r( ∣ )H A E2 . They are particular cases of the one-parameter family
of entropies called sandwiched conditional Réyni entropies, first defined in [104].

Definition 4. For any density operator rAE and for Èa Î ¥⎡⎣ ) ( ), 1 1,1

2
the sandwiched a-Réyni entropy of A

conditioned on E is defined as

a
r r r

-
a r

a
a
a

a
a

- -⎡⎣ ⎤⎦( )( ∣ ) ≔ ( ) ( )H A E
1

1
log Tr , 16E AE E

1
2

1
2

where r
a
a
-

E

1
2 is a short notation for rÄ

a
a
-

IA E

1
2 .

Figure 6.Region of positive key rates for collective attacks: the red area is the region of values ofQBER (Q) andCHSHviolation (β) for
which a positive key rate cannot be reachedwith any number of rounds. In the green area, the dashed curves represents theminimum
number of rounds required to get positive key rate. For parameters above each curve, a key rate can be extracted if the number of
rounds is higher than specified in the curve. The points show the Bell violation and estimatedQBER achieved by previous experiments
(see table 4). They, however, do not reflect the corresponding entanglement generation rates. Similarly to [20], we take  = -10c

DIQKD
2

and  = -10s
DIQKD

5.
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Avariant can also be defined as

 a
s r s

-a r
s

a

Î

a
a

a
a

- -⎡⎣ ⎤⎦( )( ∣ ) ≔ ( ) ( )H A E sup
1

1
log Tr , 17E AE E

E

1
2

1
2

where  denotes the set of quantum states and the supremum is taken over density operators sE.

Themin- andmax-entropy correspond to the extremal cases of definition (17) for a = ¥ and a = 1

2
respectively. For a  1, definition (16) and (17) coincide and one recover the standard conditional von-
Neumann entropy. Properties of the conditionalα-Réyni entropies are presented in appendix A.

4.2. Security ofDIQKD
In order to determinewhat itmeans for aDIQKDprotocol to be secure, we adopt the security definition used in
[41]. This security definition follows the universally composable security definition for standardQKDprotocols
[42]. However it is important to note that for theDI case composability was never proved and attacks proposed
in [37] show that composability is not achieved if the same devices are re-used for generation of a
subsequent key.

In the composably secure paradigm, the security of a protocol is defined in terms of its distance to an ideal
protocol [42, 105]. Following this definition, given a protocol described by the completely positive and trace
preserving (CPTP)map diqkdreal, we say that the protocol is 

s
DIQKD-secure for any  s

DIQKD if:

 - à ≔ ( )1

2
diqkd diqkd 18real ideal

r r= -
r

 ( ) ( ) ( )sup
1

2
diqkd diqkd . 19ABEreal ABE ideal 1

ABE

Expression (19) can be split into two terms that reflect independently the correctness and the secrecy of the
protocol (see [42]), given by definitions 1 and 2. Correctness is the statement that Alice and Bob share equal
strings of bits at the end of the protocol. And secrecy states howmuch information the eavesdropper can have
about their shared key.

Another requirement for a goodDIQKDprotocol is that there exist a realistic implementation that do not
lead the protocol to abort almost all the time, i.e. the protocol should have some robustness. This is captured by
the concept of completeness.

Definition 5 (Security).ADIQKDprotocol is  ( )l, ,s c
DIQKD DIQKD -secure if

(i) (Soundness) For any implementation of the protocol, either it aborts with probability greater than
-1 s

DIQKD or an  s
DIQKD-correct-and-secret key of length l is obtained.

(ii) (Completeness) There exists an honest implementation of the protocol such that the probability of not
aborting, W( )p , is greater than -1 c

DIQKD.

The correctness of thefinal key is ensured by the error correction step. During error correction, Alice sends
to Bob a sufficient amount of information so that he can correct his raw key. If Alice and Bob do not abort in this
step, then the probability that they end upwith different raw keys is guaranteed to be very small. For the secrecy
of the protocol, according to definition 2, one needs to estimate how far thefinal state describing Alice’s key and
the eavesdropper system is from a state where the eavesdropper is totally ignorant about Alice’s key, see
equation (4). The formal security proof ofQKDbecame possible due to the quantumLeftoverHashing lemma
[49, 106] that quantifies the secrecy of a protocol as a function of a conditional entropy of the state before privacy
amplification and the length of the final key.

Theorem4 (LeftoverHashing lemma ([49], theorem5.5.1)). Let rA En
1

be a classical-quantum state and let be a

2-universal family of hash functions, from { }0, 1 n to { }0, 1 l, thatmaps the classical n-bit string An
1 into KA. Then

r t r- Ä - -r  ( )( ( ∣ ) )2 . 20K HE K HE
H A E l

1A A

n1
2 2 1

For the proof of the LeftoverHashing lemmawe refer to [49]. In [49], it was shown that the LeftoverHashing
lemma can also be formulated in terms of the smoothmin-entropy, and the price to pay is only a linear term in
the security parameter9.

9
In [49], the leftover hash lemmawas formulatedwith the smoothmin-entropy defined as a supremumover states that are ò-close to ρ in the

trace norm. The proof of theorem5, with the smoothmin-entropy defined according to definition 3, can be found in [8].
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Theorem5 (LeftoverHashing lemmawith smoothmin-entropy [8, 49]). Let rA En
1

be a classical-quantum state

and let be a 2-universal family of hash functions, from { }0, 1 n to { }0, 1 l, thatmaps the classical n-bit string An
1

into KA. Then


r t r- Ä +- -r  ( )( ( ∣ ) )2 2 . 21K HE K HE

H A E l
1A A

n1
2 min 1

Given the LeftoverHash Lemma, stated in theorems 4 and 5, and the definition of secrecy, definition 2, we can
now express the length of a secure key as a function of the entropy of Alice’s raw key conditioned on Eve’s
information before privacy amplification.

Theorem6 (Key length). Let W( )p be the probability that theDIQKDprotocol does not abort for a particular
implementation. If the length of the key generated after privacy amplification is given by


= -r


W

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( )

∣
l H A E 2 log

1

2
. 22n

2 1
PA

then theDIQKDprotocol is PA-secret.
We can also express the key length in terms of the smoothmin-entropy, where if l satisfies


= -

W
r

W
W

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ) ( )( )

∣
l H A E

p
2 log

2
23p n

min 1
PA

s


 -r

W
W

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( )( )

∣
H A E 2 log

1

2
, 24p n

min 1
PA

s

then theDIQKDprotocol is  +( )PA s -secret.

We see that the leftover hashing lemma expressed in terms of smoothmin-entropy only leads to an extra s

term in the security parameter. However, the smoothmin-entropy can bemuch larger than the 2-Rényi entropy
H2 and, therefore, it is advantageous to lower bound the key by the smoothmin-entropy.

4.3. Security analysis
In the previous sectionwe have seen that in order to determine the length of a secret key generated by a particular
protocol one needs to estimate the (smooth-min or 2-Rényi) entropy of Alice’s string conditioned on all the
information available to the eavesdropper before privacy amplification.Now, in order to estimate this quantity
for aDIQKDprotocol one faces twomain challenges:

• How to evaluate the entropy of a very long string of bits?

• How to evaluate the one-round entropy in theDI scenario?

In section 4.3.1we present the theoretical tools that allow to reduce the problemof evaluating the entropy of
a string of bits to the evaluation of a single round.Moreover, in theDI scenariowe do notwant tomake any
assumptions over the underlying quantum state andmeasurement devices. In section 4.3.2we present a tight
bound derived in [15, 27] for the one round conditional vonNeumann entropy of protocols where Alice and
Bob test the CHSH inequality.We then explore further this bound to prove a tight bound on the single round
conditional collision entropy as a function of theCHSHviolation.

4.3.1. Reducing the problem to the estimation of one round
Wenowpresent the techniques that allow to reduce the evaluation of the entropy  W ( ∣ )( )H A Ep n

min 1
s to the

estimation of the conditional vonNeumann entropy of a single round for the two adversarial scenarios under
consideration, collective attacks and coherent attacks.Moreover, for the IID scenario, i.e. when the
eavesdropper is assumed to be restricted to collective attacks, we showhow to break the analysis of the entropy

( ∣ )H A En
2 1 into single rounds evaluation.
The IID scenario (collective attacks).Whenwe restrict the eavesdropper to collective attacks, we are assuming

that, even though she can perform an arbitrary operation in her quantum side information, the state distributed
by the source and the behaviour of Alice’s and Bob’s devices are the same in every round of the protocol. This
implies that after n rounds, the state shared byAlice, Bob and Eve is r r= Ä

A B E ABE
n

n n
1 1

. In this case, the quantum

AEP [61] allows to break the conditional smoothmin-entropy of state rÄAE
n into n times the conditional von

Neumann entropy of the state rAE .
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Theorem7 (Asymptotic equipartition property [61]). Let r r= Ä
AE

n be an i.i.d. state. Then for


n log8

5

2
2

  d h-r rÄ( ∣ ) ( ∣ ) ( ) ( )H A E nH A E n , 25n n
min 1 1 AE

n
AE

and similarly

  d h+r rÄ( ∣ ) ( ∣ ) ( ) ( )H A E nH A E n , , 26n n
max 1 1 AE

n
AE

where 


d h h=( ), 4 log log 2
2 and h = + +- r r( ∣ ) ( ∣ )2 2 1H A E H A EAE AEmin max .

The quantumAEP is a generalization to quantum systems of the classical statement that, in the limit ofmany
repetitions of a random experiment, the output sequence is one from the typical set. Therefore, under the
assumption of collective attacks, the quantumAEP reduces the problemof estimating the key rate of a string of n
bits to the problemof bounding the one-round conditional vonNeumann entropy.We remark that the AEP
implies an additional term, proportional to n , which is significant for thefinite regime analyses.

In section 4.2, we have seen that the left-over hashing lemma can also be stated in the terms of the 2-Réyni
conditional entropy r

( ∣ )H A E2 . A useful property of the conditional a
H entropies is additivity [102] (see

appendix A property 1(ii)), which implies the following lemma.

Lemma1. Let r r= Ä
AE

n be an i.i.d. state. Then

=r r r
 Ä( ∣ ) ( ∣ ) ( ∣ ) ( )H A E nH A E nH A E , 27n n
2 1 1 2 2

AE
n

AE AE

where r( ∣ )H A E2 AE
is denoted collision entropy.

Validity of lemma 1 can be seen from the following: equality in (27) follows from the additivity property of

a
H entropies, property 1(ii) in appendix A, and the inequality follows from the definition ofα-Rényi entropies,

definition 4.
Therefore, for collective attacks one can break the analysis into the evaluation of a single-round entropy by

using both, the formulation of the left-over hashing lemma in terms of the smooth-min entropy, theorem5, and
in terms of the 2-Rényi entropy, theorem 4. The possible advantage of using lemma 1 over the AEP, theorem7, is
that no extra overhead term( )n is gained due to the additive property of the 2-Réyni conditional entropy

r
( ∣ )H A E2 . However, in general the vonNeumann entropy can bemuch larger than the collision entropy, and

this trade-off has to be taken into account.We remark that, for protocols based on other Bell inequalities, the
techniques used for deriving theorem3 can be advantageous for collective attack analysis. This is due to the fact
that for other Bell inequalities there is no known technique to directly bound the conditional von-neumann
entropy and a good bound on themin-entropy can be found using semidefinite-programming techniques (see
section 4.3.2).

The fullyDI scenario (coherent attacks). In the fullyDI scenario the eavesdropper can perform a general
coherent attack, and the state shared by the partiesmay not be of the form rÄABE

n . Therefore, the tools presented in
the previous section are not applicable in this scenario. In standardQKD, de Finetti techniques [48–50] allow
one to extend the proofs against collective attacks to coherent attacks for protocols that present some symmetry.
The price to pay is an overhead term( )n whose pre-factor depends on the dimension of the underlying
system.However, in theDI scenario, we do notwant tomake assumptions on the dimension of the underlying
system.Moreover, symmetry of the protocol is not guaranteed, as we do not know the behaviour of the
measurement devices. Therefore, de Finetti techniques cannot be used to straightforwardly extend the security
proofs against collective attacks to coherent attacks in theDI scenario.

Recently, this problemwas overcome by the EAT [20, 51]. In this section, we state the EAT,which allows to
break the entropy 

r
W

W
( ∣ )( )

∣
H A Ep n

min 1
s into the entropy of single rounds and therefore extends proofs against

collective attacks to coherent attacks.
An important ingredient in the formulation of the EAT is the concept ofmin-/max-tradeoff function of a

channel.

Definition 6. Let i be aCPTPmap thatmaps -Ri 1 to ˆ ˆA B C Ri i i i, where ˆ ˆA B,i i and Ci are classical registers and
the value of Ci can be inferred from Âi and B̂i. Let


q denote a probability distribution on the possible values the

randomvariable Ci can assume. Themin- andmax-tradeoff functions for the channel i are defined as:


s

s
ÎS


( ) ( ˆ ∣ ˆ ) ( )

( )
f q H A B Rinf , 28

q
i imin

i


s

s
ÎS




( ) ( ˆ ∣ ˆ ) ( )
( )

f q H A B Rsup , 29
q

i imax
i
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where

s w sS = = Ä =-

 ( ) { ( )( )∣ } ( )ˆ ˆq I q , 30i C A B R R i R R R Ci i i i i i1

and the infimumand supremumare set to+¥ -¥, , respectively, if the setS
( )qi is empty.

Definition 6 states that themin-(max-)tradeoff function is a lower (upper) bound on the conditional von
Neumann entropy s( ˆ ∣ ˆ )H A B Ri i of afinal state s ˆ ˆC A B R Ri i i i

, for all states that result from the action of the channel
i on an arbitrary initial state and exhibit a particular distribution


q over the classical variableCi, whereR is a

side information. In particular, for aDIQKDprotocol, wherewe are testing theCHSH inequality, the variable Âi

can be the outputs of Alice andBob in round =ˆ { }i A A B, ,i i . The variable B̂i can be the inputs of Alice and Bob
togetherwith the variable that determines whether the round is a test round or a key generation round,

=ˆ { }B X Y T, ,i i i i . AndR can represent any quantum side information E that the eavesdropper holds.Wewill
then be interested in defining a variableCi that assumes value 1 if the condition of theCHSHgame is satisfied
(i.e. if the outputs of Alice and Bob satisfy + = ·A B X Yi i i i), 0 if it is not satisfied andwe attribute the value
^ if the inequality was not tested in that round (i.e. ifTi=0, the key generations rounds). Now the distributions
= ^

 ( ( ) ( ) ( ))q q q q0 , 1 , of interest are the ones that achieve awinning probabilityω for theCHSH game, i.e.

w=
- ^

( )
( )

q

q

1

1
. The EAT channel i represents localmaps that, according to the value ofTi, generate the variables

X Y,i i randomly and independently, and then generate the outcomesAi andBi. Finally, the set of statesS
( )qi of

interest are all the states resulting from the action of this channel in an arbitrary state and exhibiting a violation
b w= -8 4 for theCHSH inequality. For amore detailed description of the EAT channel associated to protocol
1, we refer the reader to [20, 41].

We now state the EAT.

Theorem8 (The entropy accumulation theorem (EAT) [51]). For an event W that happens with probability
W( )p , and for t such that ( ( ))f c tfreq n

min 1 for all Î Wcn
1 , it holds that

 n> -r W
( ∣ ) ( )

∣
H A B E nt n 31n n

min 1 1

and similarly, for ¢t such that  ¢( ( ))f c tfreq n
max 1 for all Î Wcn

1 ,
 n< ¢ +r W

( ∣ ) ( )
∣

H A B E nt n 32n n
max 1 1

with

n = + +  - W¥ ( ( ) ⌈ ⌉) ( · ( )) ( )d f p2 log 1 2 1 2 log 33A s

for f equals to fmin and fmax respectively .

Analogous to the AEP, the EAT allows us to break the entropy of the string of bits into the entropy of a single
round.Note, however, that this single-round entropy does not refer to the real entropy of each round of the
protocol, but is evaluated over the hypothetical states that would achieve the observed violation. It is important
to remark that a crucial assumption in the EAT [20, 51] is that some of the variables of interested satisfy what is
called theMarkov condition. This is the case forQKDprotocols performed sequentially. For definition and
discussion of the implications of theMarkov condition, see [51].

4.3.2. Estimating the one-round entropy
Now that we have reduced the evaluation of the secret key length to the estimation of the conditional
vonNeumann entropy of a single round, we are ready to face the next challenge: how to estimate the
single round entropy without any assumptions on the quantum states and behaviour of themeasurement
devices.

The CHSH scenario:TheCHSH scenario [39], where Alice and Bob each perform one among two possible
binarymeasurements, is significantly simpler than other Bell scenarios. Due to the fact that the CHSH
inequality has only two binary inputs per party, a strong result [107, 108] states that the description of any
realization of a CHSH experiment can be decomposed into subspaces of dimension two, where projective
measurements are performed in each subspace. This allows one to restrict the analysis to qubits, which
significantly simplifies the problem. Exploring these nice properties, a tight bound on the vonNeumann
entropy of Alice’s outcome conditioned on Eve’s information, as a function of the CHSH violation, was
derived in [15, 27].
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Lemma2.Given that Alice and Bob share a state rAB that achieves a violation b for the CHSH inequality, it holds
that

 b
- + -r ⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟( ∣ ) ( )H A E h1

1

2

1

2 2
1 . 34

2

In section 4.3.1we have seen that for collective attacks the key rate can also be estimated by the single round
collision entropy. And due to the additivity property of H2 , no overhead n term is present. Therefore, this
analysis can potentially lead to an advantage with respect to theminimumnumber of rounds required for
positive key rate. The conditional collision entropy satisfies the following relation [102, corollary 5.3]

r r( ∣ ) ( ∣ ) ( )H A E H A E . 352 min

And a lower bound for the conditionalmin-entropy as a function of the Bell violationwas derived in [109]:

 b
- + -r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ∣ ) ( )H A E log

1

2

1

2
2

4
. 36min

2

Therefore expression (36) can be used to bound the conditional collision entropy as a function of the
violationβ.We nowprove that this bound is actually tight.

Theorem9.There exist a state *rAB andmeasurements for Alice and Bob such that, *rAB achieves violation b and the
collision entropy of Alice’s outputA conditioned on Eve’s quantum information E is

*
b

= - + -r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ∣ ) ( )H A E log

1

2

1

2
2

4
. 372

2

The proof of theorem9 is presented in appendix C. Theorem 9 togetherwith relations (35) and (36) imply a tight
lower bound for the conditional collision entropy as a function of theCHSHviolationβ. Infigure 4.3.2 we plot

( ∣ )H A E and ( ∣ )H A E2 as a function of the violationβ. One can see that the points ofmaximumandminimum
entropy (corresponding tomaximal violation b = 2 2 and no violation, respectively) coincide, but for
intermediate values ofβ the conditional collision entropy is smaller than the conditional vonNeumann entropy.

Other Bell inequalities and themin-entropy estimation:The use of different Bell inequalities has proved to be
advantageous in different taks. For example, a tiltedCHSH inequality was used to certifymaximal randomness
in states arbitrarily close to separable [110], and inequalities withmore inputs and outputs have shown to exhibit
higher noise robustness [111]. Therefore it is natural to askwhether other Bell inequalities can also bring
advantage to the task ofDIQKD.

By considering an arbitrary Bell inequality, one faces the problem that the techniques used to bound the
conditional vonNeumann entropy as a function of theCHSHviolation do not apply. Indeed, the proof of
lemma 2 is highly based on the fact that one can reduce the analysis to qubits. In fact, very few results are known
on tight bounds for the conditional vonNeumann entropy as a function of the Bell violation for other
inequalities. In [112] a boundwas derived for a family of inequalities denotedmeasurement-device-dependent
inequalities [113], which are very suitable for the task of randomness amplification. In [114] a tight boundwas
derived as a function of the violation of themultipartiteMABK inequality [115–117]. However in these two cases
the proof is based on a reduction to theCHSH inequality.

In general, the conditional vonNeumann entropy can be lower bounded by the conditionalmin-entropy

r r( ∣ ) ( ∣ ) ( )H A E H A E . 38min

The advantage of looking at the conditionalmin-entropy is that it can be computed as a function of the Bell
violation by a semi-definite programming [109]. The idea is that in order to estimate themin-entropy one can
upper bound the guessing probability, pguess (see equation (13)), of the eavesdropper. This problem can then be
expressed as an optimization over probability distributions, which is exactly the information available in theDI
scenario. As shown in [109], for any Bell inequality, an upper bound on the pguess can be obtained by a
semidefinite programmingmaking use of theNPA-hierarchy [118, 119].

Lower bounding the conditional von-Neumann entropy by themin-entropymight be far fromoptimal. For
example, for theCHSH inequality we have that the conditional vonNeumann entropy as a function of the
violation ismuch larger than the conditionalmin-entropy, as illustrated infigure 7 (recall that, in theorem9,

r( ∣ )H A Emin was shown to be a tight bound on r( ∣ )H A E2 as a function of theCHSHviolation). Bymaking use of
the tight bound on the conditional vonNeumann entropy, equation (34), one can prove security forDIQKDup
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to 7.1% ofQBER [15], whereas using themin-entropy, equation (36), security can only be guaranteed up to a
QBERof 5.2% [109].

It is still an open problemwhether any other Bell inequality can lead to better performance forDIQKD than
theCHSH inequality. Recently, an extensive analysis of the performance of different Bell inequalities for the task
of randomness expansionwas presented in [120].

4.3.3. Key rates
The techniques presented in sections 4.3.1 and 4.3.2 allows us to establish the length of a secure key that can be
extracted as a function of theCHSHviolationβ andQBERQ.

For coherent attacks, the EAT (theorem8) and the tight lower bound on the conditional vonNeumann
entropy (lemma 2) are the key tools to establish theorem1. The complete proof of theorem 1 includes several
intermediate steps, and is presented in details in appendix B.3.

For collective attacks, the key ingredients to derive theorem2 are the AEP (theorem7) and lemma 2. A
detailed proof of theorem2 is presented in appendix B.1.We have also presented a different technique of
breaking the entropy of Alice’s string into the entropy of single rounds in the IID scenario, namely bymaking use
use of the additivity of 2-Réyni entropy, lemma 1. This technique, together with theorem9 leads to theorem3. A
detailed proof of theorem3 can be found in appendix B.2.
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AppendixA.Definitions

In this appendixwe present some properties of the conditional sandwichedα-Réyni entropies [104], definition
4, and the smoothed entropies that are used for the security proof.

Properties 1.The conditionalα-Rényi entropies satisfy:

(i) Data processing ([102] corollary 5.1): Let t r= Ä¢ ( )IAB A B AB , where B is a CPTP ( ¢B B, ) channel, then

 ¢ ¢a r a t a r a t
 ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )H A B H A B H A B H A Band . A.1

Figure 7.Graph illustrating the difference of the conditional vonNeumann entropy ( ∣ )H A E and the conditional collision entropy
( ∣ )H A E2 as a function of theCHSHviolationβ.
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(ii) Additivity ([102] corollary 5.2): For r tÄ ¢ ¢AB A B it holds that

¢ ¢ = + ¢ ¢a r t a r a t


Ä
 ( ∣ ) ( ∣ ) ( ∣ ) ( )H AA BB H A B H A B . A.2

(iii) Entropy of classical information ([102] lemma 5.3): For rABX classical inX

 a r a r a r a r
 ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )H XA B H A B H XA B H A Band . A.3

(iv) Conditioning on classical information (see [102] lemma 5.4): For rABX classical in X ,

 r-a a
 ( ∣ ) ( ∣ ) ( ( )) ( )H A XB H A B log rank A.4X

 -a
 ( ∣ ) ∣ ∣ ( )H A B Xlog , A.5

where r( )rank X is the rank ofmatrix rX and ∣ ∣X is the dimension of systemX.

(v) Conditioning on classical information (see [102] proposition 5.1): Let r r= å Ä ñá∣ ∣p x xABX x x AB
x then,

åa
=

-
=a r

a- =a r
⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ) ( )(( ) ( ∣ ) )H A BX p X x

1

1
log 2 , A.6

x

H A BX x1

åa
a

=
-

=a r
 =a

a a r
- ⎛

⎝⎜
⎞
⎠⎟

( )( ∣ ) ( ) ( )( ∣ )H A BX p X x
1

log 2 . A.7
x

H A BX x1

And for the conditional vonNeumann it holds that

å= = =r r( ∣ ) ( ) ( ∣ ) ( )H A BX p X x H A BX x . A.8
x

(vi) Entropy of the conditioned state (see [51] lemmaB.5): Let r r= å ∣pABX x x AB x then,

 a
a

-
-a r a r

 
⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ∣ ) ( )

∣
H A B H A B

p1
log

1
. A.9

x
AB x

In property 1(iv), the relation  -a a
 ( ∣ ) ( ∣ ) ∣ ∣H A XB H A B Xlog was stated in [102].We remark that the

middle inequality follows from the fact that a
( ∣ )H A XB is invariant under local isometries. Therefore if

¢ = ( )X X is a full rank operator where (·) is an isometry, we have that

= ¢ - ¢a a a
  ( ∣ ) ( ∣ ) ( ∣ ) ∣ ∣ ( )H A XB H A X B H A B Xlog A.10

and since (·) is an isometry r¢ =∣ ∣ ( )X rank X .

Themin- andmax- entropy are the particular extreme cases of a
H for a = ¥ and a = 1

2
respectively. For

a  1one recovers the standard conditional von-Neumann entropy. The smoothedmin- andmax-entropies
are defined as an optimization over operators that are ò-close, in the purified distance, to the state of interest.
This optimization takes into account also operators that are sub-normalized, i.e. positive operators with trace
smaller than 1.

Definition 7 (Smoothed entropies [102]). Let rAB be a quantum state and   0. The smoothmin-entropy of
systemA conditioned onB is defined as




=r

r r
r

Î
( ∣ ) ( ∣ ) ( )

˜ ( )
˜H A B H A Bmax . A.11min min

AB AB

The smoothmax-entropy is




=r

r r
r

Î
( ∣ ) ( ∣ ) ( )

˜ ( )
˜H A B H A Bmin . A.12max max

AB AB

In definition 7,  r( )AB is an ò-ball of sub-normalized operators around state rAB defined in terms of the purified
distance.

Definition 8 (Purified distance [102]). For sub-normalized positive operators X and Y , i.e. X Y, 0 and
 ( ) ( )X YTr 1, Tr 1, the purified distance is given by
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* = -( ) ( ) ( )X Y F X Y, 1 , , A.13

where *(· ·)F , is the generalized fidelity, defined as

* r= + - -( ) ( ∣ ∣ ( )( ( )) ) ( )F X Y X Y Y, Tr 1 Tr 1 Tr . A.142

The smoothed entropies satisfy several chain rules. Some of them are stated below. Amore complete list of chain
rule relations can be found in [102, 121].

Properties 2 (Chain rules for the smoothmin-entropy).The smoothmin-entropy satisfy the following
relations

(i) For a quantum state rABC,

  
 - - - -r r r ⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟( ∣ ) ( ∣ ) ( ∣ ) ( )H A BC H AB C H B C 2 log 1 1

4
. A.15min min max

2
4 4

(ii) If X is a classical register and rABX a quantum–quantum-classical state, it holds that10

  r-r r( ∣ ) ( ∣ ) ( ( )) ( )H A XB H A B log rank , A.16Xmin min

where r( )rank X is the rank of state rX .

A fully contained overviewwith properties and relations between different entropies can be found in [102]
(see also, [122]).

Appendix B. Security proof

According to definition 5, a security proof of aDIQKDprotocol consists in completeness and soundness.We
start by proving completeness of Protocols 1 and 2.

Theorem10 (Completeness).TheDIQKDprotocols in consideration, Protocols 1 and 2 are  c
DIQKD complete, with

    + + ( ). B.1c c
DIQKD EC est EC

Proof.The protocols in consideration can abort in two steps. Either because the error correction fail, or because
the estimated Bell violation is not high enough. Let us consider an honest implementation consisting of IID
roundswhere the expectedwinningCHSHprobability is wexp.


=

+
( ) (( ) ( ))

( ) ( )
p p

p p

abort EC abort or EC does not abort and Bell test fail

EC abort EC does not abort and Bell test fail .

Now, the probability that the error correction protocol abort for an honest implementation is
( )p EC abort c

EC. And for the other termwe have

 

å å

å å

w d

w d

= = < ´ - =

+ ¹ < ´ - ¹

+

( )
( ) ( ( )∣ )

( ) ( ( )∣ )

p

p K K p C T K K

p K K p C T K K

EC does not abort and Bell test fail

,

A B
i

i
i

i A B

A B
i

i
i

i A B

exp est

exp est

est EC

where  = g d- ( )e n
est

2 est
2
follows fromHoeffding’s inequality. ,

For the soundness proof we have to evaluate correctness and secrecy, definitions 1 and 2. For an error
correction protocol with error parameter EC wehave that given that the error correction protocol does not
abort, the probability that the string B̃ after error correction is equal toA1

nwith probability higher than -1 EC

and consequently

¹( ) ( )P K K . B.2A B EC

10
In [102] relation   -r r( ∣ ) ( ∣ ) ∣ ∣H A XB H A B Xlogmin min was proved. Relation (A.16)with the rank of rX follows as pointed out in

property 1(iv).
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For the secrecy let us recall that, for each considered Protocol,Ω is defined as the event that the respective
protocols do not abort. That happenswhen the error correction protocol does not abort and they achieved the
required violation of CHSHaccording to Bob’s estimation of Alice’s string. Now, let us the define the event Ŵ as
the eventΩ of the protocol not aborting and the error correction being successful, i.e. =B̃ A

n n
1 1 . Now the

quantity we need to estimate for the secrecy, relates to the event Ŵ by







r t r r r r t r

r t r

- Ä - + - Ä

+ - Ä
W W W W

W

     

  ( )
∣ ∣ ∣ ˆ ∣ ˆ

∣ ˆ B.3

K E K E K E K E K E K E

EC K E K E

1 1 1

1

A A A A A A

A A

which follows from the fact that, sincewhen error correction succeeds, the probability of =B̃ A
n n

1 1 is higher
than -( )1 EC then the following operator inequality holds: r r-W W( )∣ ∣ ˆ1K E K EECA A

.

In the following, we proceed to evaluate r t r- ÄW ∣ ˆK E K E 1A A
in order to prove theorems 1, 2 and 3.

B.1. Proof of theorem2
In this appendixwe present the proof of theorem2, that determines the size of a secret key one can extract from
protocol 2 under the assumption that the eavesdropper is restricted to collective attacks. Importantly, theorem 2
is based on theAEP, theorem 7, in order to break the entropy of the n rounds into the one-round entropy.

The collective attacks assumption implies that in each round of the protocol the state distributed toAlice and
Bob is the same, aswell as their devices function in the sameway, i.e. the rounds are IID. Therefore the state
shared betweenAlice, Bob and Eve after Alice and Bobmeasure their raw keys is described by a tensor product
form rÄABE

n .
TheAEP [61], theorem7, states that the smoothmin-entropy of a tensor product of states is almost

equivalent (up to terms of order of n ) to n times the von-Neumann entropy of an individual system.Wenow
make use of the quantumAEP to derive the length of a secure key that one can achieve for protocol 2.

As established by the leftover hashing lemma, theorem5, themaximal length of a secure key is determined by
the smoothmin-entropy of Alice’s raw key conditioned on all information available to the eavesdropper, given
that the protocol did not abort. In the case of protocol 2, it is given by



r
W

W
( ∣ ) ( )( )

∣ ˆH A X Y T EO . B.4n n n n
min 1 1 1 1 EC

s
p

Herewe recall thatOEC is the information exchanged byAlice and Bob during the error correction protocol.
T X Y, ,n n n

1 1 1 are, respectively, the variable that determines whether the round is a test or a key generation round,

andAlice andBob’s inputs, which are communicated publicly. Ŵ is the event that error correction protocol
succeeds, i.e.KA=KB and theCHSHprobability estimated by Bob is w w d-exp est. In the followingwe
describe the steps to estimate (B.4).

In order to avoid the conditioned state we can give one step back and note that in definition 2wewant to
bound

r t r r t rW - Ä = - ÄW W W W   ( ˆ ) ( )∣ ˆ ∣ ˆ ˆ ˆp B.5K HE K HE K HE K HE1 1A A A A

where r r= WW W( ˆ )ˆ ∣ ˆpK HE K HEA A
. Nowusing the LeftoverHashing Lemma, theorem 5,we can express an

 +( )sPA -secret key by


= -rW

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( )l H A E 2 log

1

2
. B.6n

min 1
PA

s

Nowwemake use of the following relation proved in [8], lemma 10
 r rW

( ∣ ) ( ∣ ) ( )H A E H A E . B.7n n
min 1 min 1

s s

In the followingwe proceed to estimate the quantity


r( ∣ ) ( )H A X Y T EO . B.8n n n n
ECmin 1 1 1 1

s

Step 1:Accounting for the leakage in the error correction.
Using the chain rule relation for the smoothmin-entropy conditioned on classical information, property

2(ii), we have
  -r r( ∣ ) ( ∣ ) ( )H A X Y T EO H A X Y T E leak , B.9n n n n n n n n
min 1 1 1 1 EC min 1 1 1 1 EC

s s

where r= ( )leak rank OEC EC
represents theminimumamount of classical information that needs to be

communicated fromAlice to Bob in order to perform error correction11.We consider that Alice and Bob use a
protocol based on universal hashingwhich hasminimum leakage [123]. In [124] it was proved that the

11
Note that in a realistic implementationAlicemight send the error correction information using an encoding in order to overcome errors

in the transmission due to channel losses. Therefore, in general rOEC
may not be full rank.
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minimum leakage is given by


 +
¢ ⎛

⎝⎜
⎞
⎠⎟( ∣ ) ( )H A B X Y Tleak log

1
, B.10n n n n n

EC 0 1 1 1 1 1
EC

EC

where, if Alice and Bob do not abort, thenKA=KBwith probability at least -1 EC. And for an honest
implementation, the error correction protocol aborts with probability atmost   = ¢ +c

EC EC EC. HereH0 is a
Rényi entropy first introduced in [49] (in [102], it is denoted H̄0 ). The entropy

H0 , relates to the smoothmax-
entropy in the followingway [106], lemma 18,

 




 +
¢

+
- ¢

¢ ¢ ⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ∣ ) ( )H A B X Y T H A B X Y T log

8 2

2
. B.11n n n n n n n n n n

0 1 1 1 1 1 max 1 1 1 1 1
EC
2

EC

EC
EC
2

Wenow can use the AEP, theorem7, to decompose (B.11) into the sumof the entropy of single rounds.
Moreover, for an honest implementationwithwinningCHSHprobability wexp andQBERQwehave that for the
test rounds w= =( ∣ ) ( )H A hBXYT 1 exp and for the key generation rounds = =( ∣ ) ( )H A h QBXYT 0 .
Therefore the one round entropy is given by

g g w
= = = + = =
= - +

( ∣ ) ( ) ( ∣ ) ( ) ( ∣ )
( ) ( ) ( ) ( )

H A p T H A p T H A

h Q h

BXYT 0 BXYT 0 1 BXYT 1

1 , B.12exp

where in the first equality we have use property 1(v).
Therefore, the leakage due to error correction is given by



  

 g g w- + + +
¢

+
¢

+
- ¢

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

(( ) ( ) ( )) ( )

( )

n h Q h nleak 1 4log 2 2 1 log
8

log
8 2

2
log

1
. B.13

EC exp
EC
2

EC
2

EC EC

It is not known if an efficient error correction protocol can achieve theminimum leakage estimated in
equation (B.13), and practical implementationsmay use protocols with higher leakage. Reference [125] analyses
the leakage in error correction for concrete protocols, based on state-of-the-art error correcting codes, with
efficient implementation. Amore realistic analysis of the error correction leakage should take into account an
specific code.

Step 2:Breaking the entropy into single rounds.
Wenow can use the AEP in order to bound 

r( ∣ )H A X Y T En n n n
min 1 1 1 1

s . The assumption of collective attacks
implies that the state under consideration has the tensor product form and therefore

  d h-r r( ∣ ) ( ∣ ) ( ) ( )H A X Y T E n H A XYTE n , , B.14n n n n
smin 1 1 1 1

s

where d h( ),s and η are specified in theorem7.
For the scenario under considerationwe have

 h + +r ( )( ∣ )2 2 1 2 2 1. B.15H A XYTEmax

Thefirst inequality follows from the fact thatA is a classical register and therefore has positive conditionalmin-
entropy, which implies  - r r r( ∣ ) ( ∣ ) ( ∣ )H A XYTE H A XYTE H A XYTEmin min max . The second inequality
follows from the fact that sinceA is a binary variable r( ∣ )H A XYTE 1max . Therefore,




d h +
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ), 4 log 2 2 1 log

2
. B.16s

s
2

Step 3: Estimating the one-round entropy.
Now it only remains to lower bound r( ∣ )H A XYTE . Lemma 2 states the tight lower bound for the conditional

von-Neumann entropy as a function of thewinning probabilityω for theCHSHgame derived in [15, 41]. Using
this boundwe have that if ρ is a state that achieves winning probabilityω then

 w w- + - +r ⎜ ⎟⎛
⎝

⎞
⎠( ∣ ) ( ) ( )H A XYTE h1

1

2

1

2
16 1 3 . B.17

Now, protocol 2 aborts if the observed frequency of winning events is smaller than w d-exp est. Therefore,

given the event Ŵ that protocol 2 does not abort andKA=KB, we have that Alice and Bob observe a violation
higher than w d-exp est. Nowweneed to take into account that the CHSHviolation is estimatedwith afinite
number of rounds. So in order to infer the real winning probability *w of the IID implementation, we canmake
use of theHoeffding’s inequality in order to define a confidence interval: if *w w d d< - -exp est con then
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 w w d- g d-( ) ≔ ( )( )Prob e . B.18n
observed exp est

2
con

con
2

Therefore, given that Alice andBob do not abort the protocol, we infer that the expectedwinning probability of
the systemunder consideration is higher than w d d- -exp est con, and therefore

 w d d w d d- + - - - - - +r ⎜ ⎟⎛
⎝

⎞
⎠( ∣ ) ( )(( ) ) ( )H A XYTE h1

1

2

1

2
16 1 3 . B.19exp est con exp est con

Putting the results of these steps together we have that either protocol 2 aborts with probability higher than
 - +( )1 con EC , or the probability of aborting is smaller than  +( )con EC and a   + +( )2 EC s PA -correct-

and-secret key can be generated of size

 

   

 w d d w d d

g g w

- + - - - - - +

- - -

- + +
¢

-
¢

+
- ¢

- -

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )(( ) )

( ) ( ) ( )]

( )

( )

l n h

h Q h

n

1
1

2

1

2
16 1 3

1

4log 2 2 1 log
2

log
8

log
8 2

2
log

1
2 log

1

2
. B.20

s

exp est con exp est con

exp

2
EC
2

EC
2

EC EC PA

This establishes theorem2.

B.2. Proof of theorem3
Wenowpresent the proof of theorem3, that determines the size of a secret key one can extract fromprotocol 2
for collective attacks, but differently from theorem 2,we nowuse the additivity property of the 2-Rényi entropy,
lemma 1, in order to break the entropy of the string into the one-round entropy.

We are now interested in estimate the length of a secure key as established in theorem 4,which is given by

r


W
( ∣ ) ( )

∣ ˆH A X Y T EO . B.21n n n n
2 1 1 1 1 EC

As in appendix B.1we nowpresent the steps that lead to the proof of theorem 3.
Step 1:Accounting for the leakage in the error correction.
Using property 1(v), we have

 -r r
 

W W
( ∣ ) ( ∣ ) ( )

∣ ˆ ∣ ˆH A X Y T EO H A X Y T E leak , B.22n n n n n n n n
2 1 1 1 1 EC 2 1 1 1 1 EC

where r= ( )leak rank OEC EC
represents theminimumamount of classical information that needs to be

communicated fromAlice to Bob in order to perform error correction.
Now the error correction leakage leakEC is the same as derived in equation (B.13).
Step 2:Breaking the entropy into single rounds.
Wefirst use property 1(v) in order to express the entropy of the state conditioned on the event Ŵ in terms of

the entropy of the unconditioned state

 -r r
 

W
W

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ∣ ) ( )

ˆ
∣ ˆH A X Y T E H A X Y T E

p
2 log

1
. B.23n n n n n n n n

2 1 1 1 1 2 1 1 1 1

Wecan nowmake use the additivity property of 2-Réyni entropy, lemma 1, in order to bound

r
( ∣ )H A X Y T En n n n
2 1 1 1 1 . The assumption of collective attacks implies that the state under consideration has the

tensor product form and therefore

r r
( ∣ ) ( ∣ ) ( )H A X Y T E n H A XYTE , B.24n n n n
2 1 1 1 1 2

where now the single round entropy in consideration is the conditional collision entropy.
Step 3: Estimating the one-round entropy.
Now it only remains to lower bound r( ∣ )H A XYTE2 . Theorem9 shows that a tight lower bound for the

conditional collision entropy as a function of the violationβ coincideswith the previously derived conditional
min-entropy [109], equation (36). Therefore, for a state ρ that wins theCHSHgamewith probabilityω

 w w- + - -r ⎜ ⎟⎛
⎝

⎞
⎠( ∣ ) ( ) ( )H A XYTE log

1

2

1

2
16 1 2 . B.252

Now, either the expectedwinning probability of the systemunder consideration is smaller than
w d d- -exp est con, inwhich case the protocol aborts with probability higher than  - +( )1 con EC , or

 > +Ŵp con EC which implies that the systemhaswinning probability larger than w d d- -exp est con, and
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 w d d w d d- + - - - - - -r ⎜ ⎟⎛
⎝

⎞
⎠( ∣ ) ( )( ( )) ( )H A XYTE log

1

2

1

2
16 1 2 . B.262 exp est con exp est con

In conclusionwe have that, either protocol 2 aborts with probability higher than  - +( )1 con EC , or the
probability of not aborting is greater than  +( )con EC and a  +( )2 EC PA -correct-and-secret key is generated
of size:

 w d d w d d

g g w

- + - - - - - -

- - -
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⎡
⎣⎢

⎛
⎝
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16 1 2

1 B.27
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log
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2 log
1

2
2 log

1
. B.28

EC
2

EC
2

EC

EC PA con EC

This establishes theorem3.

B.3. Proof of theorem1
In this appendixwe present the proof of theorem1,which establishes the size of a secure key that can be
extracted fromprotocol 1 for general coherent attacks.We follow closely the proof developed in [20, 41].

In protocol 1, the number of rounds is notfixed. Instead, protocol 1 has afixed number of blocksm, such

that themaximumnumber of rounds inside a block is set to =
g

⎡⎢ ⎤⎥smax
1 . This is a technicality introduced in

[20, 41] in order to get a better pre-factor for the overhead terms that scale with n . For each block jAlice and
Bob run the protocol until they have a test round or they reach themaximumnumber of rounds smax. At each
round jiAlice andBob choose a randombitTji

, such that g= =( )P T 1ji
, which determines whether they are

going to test theCHSH inequality ormake a key generation round. They repeat the process until they obtain
=T 1ji

or =i smax.With these constraints the expected number of rounds in a block is given by

g
g

=
- - g

⎡⎢ ⎤⎥
¯ ( ) ( )s

1 1
, B.29

1

and the expected number of rounds is

= ¯ ( )n ms . B.30

For details on the derivation of equations (B.29) and (B.30) see [41], appendix B.
Wenowproceed to derive the key rates against a general coherent attack. In order to calculate the size of the

keywe need to estimate


r
W

W

   
( ∣ ) ( )( )

∣ ˆH A X Y T EO . B.31
m m m m

min 1 1 1 1

s
p

Now

A

m
1 denotes the total string of bits, expected to be of size n, and


Ai denotes the string of outputs generated

in the block i, and similarly for the other variables. In the following, we proceed step by step in order to lower

bound


r
W

W

   
( ∣ )( )

∣ ˆH A X Y T EO
m m m m

min 1 1 1 1

s
p andwe detail the changes introduced to the original analysis [20, 41].

Step 1:Accounting for the leakage in the error correction.
Similar to the proof of protocol 2, we have that

 

 -r r
W

W
W

W

       
( ∣ ) ( ∣ ) ( )( )

∣ ˆ
( )

∣ ˆH A X Y T EO H A X Y T E leak , B.32
m m m m m m m m

min 1 1 1 1 min 1 1 1 1 EC

s
p

s
p

and


 +
¢      ⎛

⎝⎜
⎞
⎠⎟( ∣ ) ( )H A B X Y Tleak log

1
B.33

m m m m m
EC 0 1 1 1 1 1

EC

EC
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



+
¢

+
- ¢

+

¢     

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ∣ )

( )
( )

H A B X Y T

log
8 2

2
log

1
. B.34

m m m m m
max 1 1 1 1 1

EC
2

EC EC

EC
2

However, nowwe need to take into account for the fact that the number of rounds in the protocol is notfixed.
Following the steps of [41], wefirst note that the number of roundsN obtained in an implementation of the
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protocol 1 satisfies:

  g
g

+ -
-

⎛
⎝⎜

⎞
⎠⎟[ ]

( )
≔ ( )P N n t

t

m
exp

2

1
, B.35t

2 2

2

where = ¯n ms is the expected number of rounds and
= - g

g
-( )

t
m 1 log

2
t

2

2 .Moreover, by the definition of

smoothmax-entropy one have that

    +-         
( ∣ ) ( ∣ ) ( )H A B X Y T N H A B X Y T N n t . B.36

m m m m m m m m m m
max 1 1 1 1 1 max 1 1 1 1 1

t

Note thatN can be included in the entropy since it is completely determined by


T
m

1 .
Now applying the AEP, theorem 7, to themaximal length = +N n t wehave

  

 g g w

n

+ - +

+ + +
¢

+
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+
⎛
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⎞
⎠⎟

⎛
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⎞
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¯
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log
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2
log

1
,

EC exp

2
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2
EC EC

where
 

n = + ¢ -( )( )
( )

4 log 2 2 1 2log2
8

2 tEC
2 and t is a free parameter to be optimised.

If the error correction protocol does not abort, then

¹( ) ( )P K K . B.37A B EC

And the completeness of the error correction protocol (i.e. the probability of not aborting in an honest IID
implementation) is given by   = ¢ +c

EC EC EC.
Step 2:Chain rule.
In protocol 1, a statistical test is performed on the variableCiwhich accounts for the condition of winning

theCHSHgame being satisfied or not. In order to use the EAT,we need to be able to infer the value of this
variableCi from the variables that appear in the smoothmin-entropywe are calculating.

Here we choose to use a chain rule, relation (A.15), with the variableCi itself, as opposed to using the variable
Bi as is done in [41]. The reason is that the dimension of the variableCi is smaller thanBi, as for each block the
variableCi assumes one out of three values. This leads to a slight improvement in rates achieved in thefinite
regime:
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EA EC
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p
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p

4

4

In inequality (B.39)we use the fact that  W +( ) ( )p EA EC and that removing the conditioning on classical
variables can only increase the entropy, which can be seen as a particular case of data processing, property 1(i).

Step 3:Upper bound on


r
W

W


( ∣ )( )

∣ ˆH C T Em m
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s
p4 .

We can use the EAT to upper bound


r
W

W


( ∣ )( )

∣ ˆH C T Em m
max 1 1

s
p4 . In order to do thatwe only have tofind amax-

tradeoff function for a protocol withm rounds.We have that for any distribution = ^
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smax
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where in (B.41)we use the fact that = =
 

( ∣ )H C T E0 0i i , and in (B.42)weuse that ¹
 

( )p T 0 1i and that

wº
g- -

( )
( )

p 1

1 1 smax
. Note that (·)h is a concave function.

Nowwe can take w d= -( )f hmax exp est and  = ´
g w w d

¥ - -
¶
¶ -

 
( )

f h
max

1

1 1 smax
exp est

, where wexp is the

expectedwinning probability of the CHSHgame in an honest implementation and dest accounts for the
statistical confidence interval of the experiment. Using the EAT, theorem8, we have



 w d n- +r
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and ¢h represents the derivative of the binary entropy function, w
w

¶
¶

( )h .

Step 4: Lower bound on

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Finally, we apply the EAT to lower bound the term


r
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min-tradeoff function such that
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:Rj E j Cj

j

1

Note that the length of each block is variable. However, we can consider that all the blocks have size smax and
set all the variables to^ for the roundswhich are not performed.

First note that


       
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And fromnowon, we follow the same steps as [41].
Using the chain-rule for VonNeuman, property 1(v), entropywe have
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1max can be seen as the entropy of a single round. An expression for

the entropy of a single roundwas derived for collective attacks in [15]. This gives us:
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Note that as g - - +( ) (( ( ) )p 1 1 1 s 2 2

4
max , the gradient of


( )g p tends to infinity, which compromises

the n term that depends on the normof the gradient of f. Since
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( )g p is a convex function, the tangent line in
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pt is a lower bound to
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Finally, the length of a secure key that can be extracted is given by
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AppendixC. Proof of theorem9

Theorem9.There exist a state *rAB andmeasurements for Alice and Bob such that, *rAB achieves violationβ and the
collision entropy of Alice’s output A conditioned on Eve’s quantum information E is

*
b

= - + -r

⎛
⎝
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⎞
⎠
⎟⎟( ∣ ) ( )H A E log

1

2

1

2
2

4
. C.12

2

Proof.The proof consists in exhibiting a state *rAB andmeasurements for Alice and Bob such that the lower
bound given by equation (36) is saturated. Our derivation is based on the techniques presented in [15], which led
to a tight lower bound for the conditional von-Neumann entropy.

Let us consider that Alice and Bob share a Bell diagonal state rAB

r l l l l= F + F + F + F ( ), C.2AB 00 00 01 01 10 10 11 11

where F = F ñáF∣ ∣ij ij ij and F ñ = Ä ñ + ñ( )∣ (∣ ∣ )I X Z 00 11ij
i j 1

2
.Wefirst prove the following result:

Lemma3. For a Bell-diagonal state where Alice performs ameasurement in theZ-basis we have that

 l l l l- + +r ⎜ ⎟⎛
⎝

⎞
⎠( ∣ ) ( )H A XYE log

1

2
. C.32 00 01 11 10

Proof.Given a Bell diagonal state r l l l l( ), , ,AB 00 01 10 11 , a purification Yñ∣ ABE of this state is given by

12
In [20, 41] the authors consider the followingmin-tradeoff function.
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We remark that, since the gradient of


( )g p is an increasing function of p(1), the optimumvalue for hopt is always achieved for ( ) ( )p p1 1t .
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After Alicemeasures in theZ basis we have
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The collision entropy of a cq-state rAE is given by

r r r r= -r
- -( ∣ ) ( ) ( )H A E logTr , C.7E AE E AE2

1 2 1 2

which, evaluated for the state (C.5) gives
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Now let us consider a Bell diagonal state *rAB such that

l q l q l l

q q

= = = =
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R R

R

cos , sin , 0,

s.t. cos sin
1

C.8

00 01 10 11

which can hold for >R 1

2
. This choice is inspired by the optimal strategy thatmaximizes the conditional von

Neumann entropy as shown in [15].
For these parameters we have that
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Finally, we know from [126] that for a state r l l l l( ), , ,AB 00 01 10 11 , themaximal violation bmax of theCHSH
inequality is given by

b l l l l l l l l= - + - - + -{ ( ) ( ) ( ) ( ) } ( )max 2 2 , 2 2 C.10max 00 11
2

01 10
2

00 10
2

01 11
2

and that this violation can be achievedwith one of Alice’smeasurement being in the Z basis.
Therefore, for the state *rAB, specified by (C.8), andAlice and Bob performing themeasurements that gives

themaximumviolation achievable for theCHSH inequality, we have that b = R2 2 . This implies
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