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 A B S T R A C T

A plausible explanation about the acquisition and realization of beliefs by the central nervous system (CNS) 
when issuing control actions to counteract external perturbations, is to employ mechanisms aiming to minimize 
sensory conflict and muscle effort while maintaining biomechanical stability. However, existing head–neck 
postural control models fail to explicitly integrate this plausible CNS objective within their stabilization 
mechanisms. This study proposes a novel Model Predictive Control (MPC)-based framework to replicate CNS 
postural stabilization by incorporating the minimization of sensory conflict as a primary control objective 
through the MPC cost function. The MPC is integrated in a simplified biomechanical head–neck structure, 
using a prediction model and sensory feedback to optimize control actions over a finite time horizon within 
biomechanical constraints. Two human experiments measuring head motion with unpredictable seat and 
trunk perturbations were used to evaluate and validate different configurations of sensory feedback pathways. 
During anterior–posterior translational trunk perturbations, the results illustrated that the configuration with 
vestibular feedback improved head position prediction while muscle effort and partial somatosensory feedback 
alone, achieved superior results in head pitch prediction. Meanwhile, muscle effort and partial somatosensory 
feedback were sufficient to stabilize the head during trunk rotational (pitch) perturbations. Finally, a 
multi-scenario optimization demonstrated that a single set of MPC weights could generalize stabilization 
across both perturbation types. The results demonstrate the effectiveness of MPC in replicating CNS-inspired 
postural adjustments, indicating that controlling a simplified biomechanical head–neck model provides a 
computationally efficient and accurate alternative to complex multi-segment approaches.
1. Introduction

Maintaining balance and orientation is a complex task, particularly 
in dynamic environments such as moving vehicles. This challenge 
becomes even more critical in automated vehicles (AV), where unpre-
dictable maneuvers can affect the accuracy of self-motion perception 
used by the central nervous system (CNS) to restore balance. The 
CNS plays a crucial role in postural control while being driven. It 
relies on sensory integration (visual, vestibular and somatosensory), 
internal models of body and sensory dynamics (Wada, 2021), and 
adaptive mechanisms, to produce coordinated motor responses that 
ensure stability and orientation awareness (Forbes et al., 2013). How-
ever, the CNS’s inference and beliefs for the control process of these 
motor responses are not yet proven, and only plausible explanations 
exist (Friston, 2011; Parr et al., 2022).

Postural adjustments initiated by the CNS in response to perturba-
tions can be broadly categorized into anticipatory and compensatory 
adjustments (Liang et al., 2020). Anticipatory adjustments occur prior 
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to predictable disturbances (Santos et al., 2010), relying on inter-
nal models to estimate motion and issue proactive motor commands. 
Compensatory adjustments are driven by sensory feedback following 
perturbation onset and include reflexive and voluntary responses to 
restore balance (Chen et al., 2015; Santos et al., 2010). Although 
many theories support this internal model-based mechanism (Oman, 
1982, 1991), the full process is not yet experimentally confirmed. 
Validated motion perception models, including the Subjective Vertical 
Conflict (SVC) (Bos & Bles, 1998) and Multi-Sensory Observer Model 
(MSOM) (Newman, 2009), are based on the sensory conflict theory, 
which posits that the CNS continuously updates predicted motion based 
on feedback to minimize sensory conflict. Despite its relevance, the 
theory has only recently been incorporated into biomechanical models 
for head–neck postural stabilization (Happee et al., 2023).

Postural control is critical for maintaining motion comfort,
which encompasses both enhancement of ride comfort and mitigation 
of motion sickness. In AVs, occupants will likely engage in
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non-driving-related tasks such as reading or working (Kyriakidis et al., 
2015), reducing their ability to actively stabilize posture. Unpredictable 
maneuvers may provoke excessive head and body motion (Paddan & 
Griffin, 1994), leading to increased whole-body vibrations and dis-
comfort (International Organization for Standardization, 1997). Head 
motion plays a key role in motion perception, particularly through 
its impact on vestibular and visual systems. Although head motion 
strongly influences motion sickness (Papaioannou et al., 2023, 2025), 
most existing models do not predict head or body dynamics. Even 
when such data is experimentally available, accurate modeling of 
body-neck-head dynamics is essential to predict responses in new 
scenarios.

Several head–neck models have been developed, ranging from sim-
ple two-pivot systems to complex multi-segment and finite element 
(FEM) models. Passive models, often used for impact simulations, 
combine biomechanical detail with simplified representations of active 
control, and are generally not suitable for simulating postural stabiliza-
tion (Correia et al., 2020, 2021; Hedenstierna & Halldin, 2008; Meyer 
et al., 2013). While FEM-based models offer anatomical accuracy, 
they are computationally intensive, lack integrated postural control 
algorithms, and are not designed for real-time applications. Other 
approaches have explored sagittal plane models to study neural mecha-
nisms for head posture stabilization using vestibular and proprioceptive 
feedback (Fard et al., 2003; Peng et al., 1997, 1999). These models re-
vealed redundancy between feedback sources but were limited in scope, 
applying only to single-axis or static conditions and using basic control 
techniques. To date, no existing model integrates advanced postural 
control algorithms that aim to replicate CNS behavior in minimizing 
sensory conflict while maintaining head stability in multi-dimensional 
environments.

The most widely used models in this field are multi-segment models 
that incorporate detailed anatomical features (Almeida et al., 2009; 
Brolin et al., 2008; Stemper et al., 2004; Ee et al., 2000). For instance, 
a recent 3D multi-segment neck model (Happee et al., 2023) combined 
with MSOM and SVC frameworks estimated head angles and velocities 
based on sensory feedback and adjusted muscle activity accordingly. Al-
though this approach demonstrated the importance of various feedback 
pathways, it did not implement a control function explicitly minimizing 
sensory conflict. Instead, it required tuning of multiple feedback param-
eters for each condition, limiting its predictive power in new scenarios. 
Moreover, due to the complexity of the biomechanical structures and 
feedback loops, such models require high computational effort, making 
them impractical for applications requiring real-time performance.

To overcome these limitations, this work introduces and employs a 
Model Predictive Control (MPC) based framework, which offers a prin-
cipled method for generating control actions by predicting future be-
havior through an internal model and minimizing a cost function over 
a finite horizon while satisfying constraints. In this framework, the cost 
function represents a plausible CNS objective: minimizing both sensory 
conflict and muscle effort under biomechanical constraints. The inter-
nal prediction model is continuously updated using real-time sensory 
feedback, aligning the approach with current theories of CNS behavior. 
This MPC-based control is implemented in a simplified biomechanical 
model – a double inverted pendulum – representing the head and neck 
system. The model includes multiple sensory pathways (muscle effort, 
somatosensory input, semicircular canal, and otolith feedback) and 
simulates compensatory postural responses during anterior–posterior 
and pitch perturbations under eyes-closed conditions. Validation is 
performed against experimental human data from scenarios specifi-
cally designed to excite the head–neck system in the sagittal plane. A 
schematic of this concept is shown in Fig.  1. By focusing on postural 
control, this work extends previous applications of MPC (Cole, 2018; 
Fieldhouse & Cole, 2024), which used sensory predictions (Gaussian 
process model) combined with sensory feedback through a Kalman fil-
ter to model the drivers’ perception and update vehicle state estimates 
in a path-following context. To the authors’ knowledge, there is no 
2 
Table 1
Neck and head dimensions, mass, moments of inertia and centers of mass.
 Neck Head  
 Depth (m) 0.0589 0.0995 
 Width (m) 0.0589 0.0700 
 Height (m) 0.0994 0.1344 
 Mass (kg) 1.6000 6.2300 
 MoI𝑥 (kg m2) 0.0069 0.0180 
 MoI𝑦 (kg m2) 0.0069 0.0230 
 MoI𝑧 (kg m2) 0.0022 0.0170 
 CoM𝑥 (m) 0.0000 0.0000 
 CoM𝑦 (m) 0.0000 0.0000 
 CoM𝑧 (m) 0.0000 0.0000 

work in the literature adopting MPC in head–neck modeling, except 
for an earlier exploration presented by the authors in a conference 
paper (Messiou et al., 2023).

The key contributions of this study are as follows:

• This study introduces the first MPC-based postural control frame-
work that integrates plausible CNS behavior, including model-
ing of neural store and real-time sensory feedback, to minimize 
sensory conflict during stabilization.

• The influence of different sensory pathways (muscle effort, so-
matosensory input, semicircular canals, and otoliths) on the
model’s predictive accuracy and computational efficiency is eval-
uated.

• It is demonstrated that a single optimized MPC configuration can 
generalize across different perturbation types, offering a compu-
tationally efficient alternative to complex multi-segment models.

2. System dynamics: Plant and prediction model

This section outlines (a) the plant: a simplified head–neck model 
in Simscape, and (b) the prediction model: Ordinary Differential Equa-
tions (ODEs) describing the system dynamics.

2.1. Plant: Simscape model

The head–neck model (Fig.  2) was developed using MATLAB’s 
Simscape Multibody, which uses blocks to represent bodies, joints, 
forces, and sensors. For each body, mass, inertia, and geometry are 
defined, while joints specify DoFs, actuation, and internal mechanics 
(e.g., stiffness, damping). Simscape formulates and solves the system’s 
equations of motion. The model includes three main body segments: 
(1) two ellipsoidal bodies representing the head and the neck, and (2) a 
rectangular block representing the lumped torso and the car. Perturba-
tions are applied to the rectangular block body, approximated as the T1 
vertebra location, i.e. the first of twelve vertebrae of the thoracic spinal 
column. Each segment includes dimensions, moments of inertia (MoI), 
and centers of mass (CoM) The MoI are calculated based on segment 
geometry and the rotational radius between the CoM and joints. The 
CoM is positioned at the center of each segment, with dimensions 
specified according to the GEBOD regression equations (Cheng et al., 
1994). Tables  1 and 2 show the model anthropometric parameters, 
assuming a male with 83 kg weight and 1.80m standing height.

Joint locations are also determined based on the GEBOD regression 
equations, with J1 and J2 (neck joints) being implemented as 3DoF 
gimbal joints with translation blocked. The T1-world joint retains 6DoF 
to allow general input motion. This study focuses on sagittal plane 
perturbations. Furthermore, built-in Simscape sensors (e.g., rigid trans-
formations between body and world frames, as well as joint sensors) are 
used to update the plant’s states at every simulation timestep (𝑇𝑠𝑖𝑚). 𝑇𝑠𝑖𝑚
is defined as the time step between each simulation step when running 
the proposed framework (Fig.  1) online in Simulink. The plant’s states 
are equivalent to those used by the prediction model.
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Fig. 1. Block diagram of the postural stabilization system illustrating the CNS’s function using MPC. When the Simscape model experiences a disturbance (𝑑𝑘(𝑇𝑠𝑖𝑚)) at time step 
𝑘 = 1 and simulation timestep 𝑇𝑠𝑖𝑚 = 8ms, the CNS receives sensory feedback through afferent pathways: proprioceptive (muscle spindles and Golgi tendons), vestibular (semicircular 
canals and otolith organs), and visual inputs. In this study, this sensory feedback is derived from the Simscape model’s states (𝑞(𝑇𝑠𝑖𝑚), 𝑞̇(𝑇𝑠𝑖𝑚), 𝑞(𝑇𝑠𝑖𝑚)). The MPC internal model 
predicts sensory outcomes (𝑞𝑘(𝑇𝑠𝑖𝑚), ̂̇𝑞𝑘(𝑇𝑠𝑖𝑚), ̂̈𝑞𝑘(𝑇𝑠𝑖𝑚)) over a prediction horizon (𝑘 = 1, 2,… , 20) using the Prediction Model’s ODEs (Section 2.2). The MPC solver adjusts motor 
commands by minimizing sensory conflict (difference between predicted and actual feedback) and muscle effort, while adhering to biomechanical constraints. These control actions 
are applied to the plant (𝑢𝑘(𝑇𝑠𝑖𝑚)) at time step 𝑘 = 1 to mimic CNS-inspired postural stabilization.
Table 2
Neck and head joint locations.
 Joint Locations  
 Upper neck joint (J2) Relative to CoM of head: 
 𝐽2𝑥 (m) 0.0270  
 𝐽2𝑦 (m) 0.0000  
 𝐽2𝑧 (m) 0.1344  
 Lower neck joint (J1) Relative to CoM of neck: 
 𝐽1𝑥 (m) 0.0000  
 𝐽1𝑦 (m) 0.0000  
 𝐽1𝑧 (m) 0.0406  

2.2. Prediction model

The MPC prediction model (Fig.  1) uses ODEs to represent the 
plant’s nonlinear dynamics, solved over a prediction horizon (𝑁)with 
discretization interval (𝑇𝑠𝑝). The model is a double inverted pendulum, 
derived using GEBOD anthropometric parameters for a 50th percentile 
male, and includes masses (𝑚 ), lengths (𝑙 ), joint-CoM distances (𝑟 ), 
𝑖 𝑖 𝑖

3 
and MoIs (𝐼𝑥𝑥 𝑖, 𝐼𝑦𝑦 𝑖, 𝐼𝑧𝑧 𝑖) for torso (𝑖 = 0), neck (𝑖 = 1), and head 
(𝑖 = 2).

The system has 12 DoFs, accounting for both rotation and transla-
tion. To reduce computation time (RTF), the TMT multibody method in 
3D (Schwab & L., 2020) is used, which provides a compact formulation.

External forces and control inputs

The total external force vector 𝐅(𝑡), consisting of applied perturba-
tions at T1 and MPC control inputs, is given by: 

𝐝(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃𝑥(𝑡)
𝑃𝑦(𝑡)
𝑃𝑧(𝑡)
𝑅𝑥(𝑡)
𝑅𝑦(𝑡)
𝑅𝑧(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐮(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏𝑥1(𝑡)
𝜏𝑦1(𝑡)
𝜏𝑧1(𝑡)
𝜏𝑥2(𝑡)
𝜏𝑦2(𝑡)
𝜏𝑧2(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1)
𝐅(𝑡) = [𝐝(𝑡);𝐮(𝑡)] (2)
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Fig. 2. Head–neck model with global and local coordinate frames at the initial frame 
(upright).

where:

• 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 are translational perturbations applied at T1.
• 𝑅𝑥, 𝑅𝑦, 𝑅𝑧 are rotational perturbations.
• 𝜏𝑥𝑖, 𝜏𝑦𝑖, 𝜏𝑧𝑖 are control torques applied at joints 𝑖 = 1, 2.

State-space representation

The generalized coordinates (𝑞) and their derivatives ( ̂̇𝐪), are given 
as: 

̂𝐪(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥0(𝑡)
𝑦0(𝑡)
𝑧0(𝑡)
̂𝑞𝑥0(𝑡)
̂𝑞𝑦0(𝑡)
̂𝑞𝑧0(𝑡)
̂𝑞𝑥1(𝑡)
̂𝑞𝑦1(𝑡)
̂𝑞𝑧1(𝑡)
̂𝑞𝑥2(𝑡)
̂𝑞𝑦2(𝑡)
̂𝑞𝑧2(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, ̂̇𝐪(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂̇𝑥0(𝑡)
̂̇𝑦0(𝑡)
̂̇𝑧0(𝑡)
̂̇𝑞𝑥0(𝑡)
̂̇𝑞𝑦0(𝑡)
̂̇𝑞𝑧0(𝑡)
̂̇𝑞𝑥1(𝑡)
̂̇𝑞𝑦1(𝑡)
̂̇𝑞𝑧1(𝑡)
̂̇𝑞𝑥2(𝑡)
̂̇𝑞𝑦2(𝑡)
̂̇𝑞𝑧2(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

where:

• 𝑞𝑥𝑖, 𝑞𝑦𝑖, 𝑞𝑧𝑖 represent joint angles for the torso (𝑖 = 0), neck (𝑖 = 1), 
and head (𝑖 = 2).

• 𝑥 , 𝑦 , 𝑧  define global translational positions of the base (T1).
0 0 0
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Rotation matrices (𝑅) are then constructed as the product of axis-
specific rotations (𝑅𝑥𝑖, 𝑅𝑦𝑖, 𝑅𝑧𝑖) and depend on the angular displace-
ments 𝑞𝑥𝑖, 𝑞𝑦𝑖, 𝑞𝑧𝑖. The mass (𝑀𝑖) and inertia (𝐼𝑖) matrices for each body 
are represented as diagonal matrices: 
𝑀𝑖 = diag(𝑚𝑖, 𝑚𝑖, 𝑚𝑖), (4)

𝐼𝑖 = diag(𝐼𝑥𝑥𝑖, 𝐼𝑦𝑦𝑖, 𝐼𝑧𝑧𝑖) (5)

Transformation matrices (𝑇𝑖) are derived as Jacobians of the posi-
tion vectors with respect to the generalized coordinates: 

𝑇𝑖 =
𝜕𝑢𝑖
𝜕𝑞

, (6)

where 𝑢𝑖 represents the displacement fields of the system components. 
The generalized mass matrix is formulated as: 

𝑀̄ =
2
∑

𝑖=0
(𝑇 ⊤

𝑖 𝑀𝑖𝑇𝑖 + 𝐁⊤
1 𝐼𝑖𝐁𝑖) (7)

where 𝐵𝑖 represent the rate of orientation transformation matrices in 
body frames. The generalized force vector combines external forces 
acting on the CoM for each body (𝐹ext𝑖), convective terms (ℎ𝑖, 𝑔𝑖), and 
external moments (𝑀ext𝑖): 

𝑄̄ = 𝐹 +
2
∑

𝑖=0
(𝑇 ⊤

𝑖 (𝐹ext,𝑖 −𝑀𝑖ℎ𝑖)+

𝐵⊤
𝑖 (𝑀ext,𝑖 − 𝐼𝑖𝑔𝑖 −𝑤𝑖 × (𝐼𝑖𝑤𝑖)))

(8)

The equations of motion for the double derivatives of the generalized 
coordinates ( ̂̈𝐪) are then expressed as:

𝐃 ̂̇𝐪 = 𝑀̄−1𝑄̄ (9)
where ̂̈𝐪 = 𝐃 ̂̇𝐪 (10)

The generalized state vector is finally expressed as: 

𝑓 (𝐱̂,𝐮,𝐝) = 𝑑
𝑑𝑡

[

𝑞
̂̇𝑞

]

=
[ ̂̇𝑞
̂̈𝑞

]

. (11)

where 𝐱̂ are the plant’s states. The full ODE derivations are provided in 
the online supplementary material.

3. MPC-based postural control

In this work, MPC is employed to represent the behavior of the 
CNS. The control framework (Fig.  1) consists of the FORCESPRO MPC 
Block (controller) and the Simscape model (Plant, Section 2.1), with 
input perturbations acting as external forces (Eq. (1)). At each 𝑇𝑠𝑖𝑚, the 
MPC block receives the actual plant states and state derivatives (𝑞, 𝑞̇, 𝑞
- Fig.  1), current 6DoF perturbations (translational and rotational, 
Eq. (1)), and the weight vector for the cost functions (Section 3.3). The 
Simscape model continuously updates the actual states, which are used 
to initialize the first step of the MPC’s prediction model (Section 2.2). 
This prediction model forecasts the motion over the selected prediction 
horizon (Section 3.4). The solver (Section 3.5) computes the optimal 
control torques at each 𝑇𝑠𝑖𝑚, considering the internal prediction model, 
constraints (Section 3.2), and cost function (Section 3.3). Both the Sim-
scape and prediction model start from zero initial states, corresponding 
to an upright posture at the beginning of the simulation.

3.1. Problem formulation

The MPC problem for head–neck postural stabilization is formu-
lated as a constrained nonlinear optimization problem. The objective 
function minimizes sensory conflict and muscle effort while ensuring 
biomechanical constraints are satisfied. The general form of the MPC 
problem is: 

min
𝐮

𝐽 =
𝑁
∑

𝓁(𝐱̂𝑘, 𝐱,𝐮𝑘) (12)

𝑘=0
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where 𝐽 is the total cost over the prediction horizon 𝑁 , 𝐱̂𝑘 is the 
prediction model states at time step 𝑘, 𝐱 is the plant states at 𝑘 = 1, 
𝐮𝑘 is the control input and the stage cost 𝓁(𝐱̂𝑘, 𝐱,𝐮𝑘) is defined in Eq. 
(22).

Subject to:
State dynamics (Section 2.2) discretized for compatibility with the 

MPC solver: 
𝐱̂𝑘+1 = 𝑓 (𝐱̂𝑘,𝐮𝑘,𝐝𝑘) (13)

State and Control equality constraints (Section 3.2):
𝐱̂min ≤ 𝐱̂𝑘 ≤ 𝐱̂max (14)

𝐮min ≤ 𝐮𝑘 ≤ 𝐮max (15)

Global head–neck system inequality constraints (biomechanical limits):
𝐡𝑥̂(𝐱̂𝑘) ≤ 𝟎 (16)

𝐡𝑢(𝐮𝑘) ≤ 𝟎 (17)

where the state-dependent constraint vector 𝐡𝑥̂(𝐱̂𝑘) encodes limits on 
global head angle and global head angular velocity: 

𝐡𝑥̂(𝐱̂𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

̂𝑞𝑦𝑔𝑙𝑜𝑏 𝑘 − ̂𝑞𝑦𝑔𝑙𝑜𝑏,max
̂𝑞𝑦𝑔𝑙𝑜𝑏,min − ̂𝑞𝑦𝑔𝑙𝑜𝑏 𝑘
̂̇𝑞𝑦𝑔𝑙𝑜𝑏 𝑘 − ̂̇𝑞𝑦𝑔𝑙𝑜𝑏,max
̂̇𝑞𝑦𝑔𝑙𝑜𝑏,min − ̂̇𝑞𝑦𝑔𝑙𝑜𝑏 𝑘

⎤

⎥

⎥

⎥

⎥

⎦

≤ 𝟎 (18)

where:

̂𝑞𝑦𝑔𝑙𝑜𝑏 𝑘 = ̂𝑞𝑦0 𝑘 + ̂𝑞𝑦1 𝑘 + ̂𝑞𝑦2 𝑘

̂̇𝑞𝑦𝑔𝑙𝑜𝑏 𝑘 = ̂̇𝑞𝑦0 𝑘 + ̂̇𝑞𝑦1 𝑘 + ̂̇𝑞𝑦2 𝑘
Similarly, the control-dependent constraint vector 𝐡𝑢(𝐮𝑘) captures the 
limit on the total muscle torque acting in flexion/extension: 

𝐡𝑢(𝐮𝑘) =
[

𝜏𝑦𝑔𝑙𝑜𝑏 𝑘 − 𝜏𝑦𝑔𝑙𝑜𝑏,max
𝜏𝑦𝑔𝑙𝑜𝑏,min − 𝜏𝑦𝑔𝑙𝑜𝑏𝑦𝑔𝑙𝑜𝑏, 𝑘

]

≤ 𝟎 (19)

where:

𝜏𝑦𝑔𝑙𝑜𝑏 𝑘 = 𝜏𝑦1 𝑘 + 𝜏𝑦2 𝑘

Prediction horizon:
The MPC operates over a finite forecast horizon, defined as: 

𝑇𝐻 = 𝑁 × 𝑇𝑠𝑝 (20)

where 𝑁 is the prediction horizon and 𝑇𝑠𝑝 is the discretization timestep.
This general formulation captures the CNS-inspired postural con-

trol strategy. The specific components of the MPC – constraints, cost 
function, prediction horizon, and solver – are detailed in the following 
sections. As this paper focuses on the sagittal plane, the formulation is 
limited to the costs and constraints on the states, control inputs, and 
model responses relevant to sagittal head–neck motion.

3.2. Constraints

The constraints on states and control inputs are established based 
on biomechanical limits to ensure realistic simulation of the head–
neck dynamics. More specifically, they reflect the physiological limits 
of cervical spine motion and muscle forces.
Cervical Spine Flexion/Extension: Typical values range from 45−50◦ for 
flexion and 60−70◦ for extension (Moriguchi et al., 2011). These lim-
its accommodate normal perturbation scenarios in dynamic driving, 
excluding extreme impact conditions.
Angular Velocity: The peak angular velocity for cervical flexion and ex-
tension can reach approximately 20 rad/s, varying based on individual 
and task-specific conditions (Tierney et al., 2019).
Neck Flexion/Extension Forces: The maximum forces for neck flexion are 
about 16 N m for females and 34 N m for males. For neck extension, 
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the values are higher, averaging 34 N m for females and 60 N m for 
males (Lo Martire et al., 2017).

These constraints are used to satisfy the average data from the stud-
ies (Section 4) and were adjusted for a 50th percentile male, reflecting 
the demographics of the experimental datasets used to validate the 
model’s responses to rotational and translational trunk perturbations 
in the sagittal plane. Accordingly, the above values were used to define 
inequality constraints for global angles, angular velocities, and torques, 
and equality constraints to define the upper (𝐮𝑚𝑎𝑥, 𝐱̂𝑚𝑎𝑥) and lower 
bounds (𝐮𝑚𝑖𝑛, 𝐱̂𝑚𝑖𝑛) for each state (𝐱̂𝑘 = [𝑞𝑦1, 𝑞𝑦2, ̂̇𝑞𝑦1, ̂̇𝑞𝑦2]) and control 
input (𝐮𝑘 = [𝜏𝑦1, 𝜏𝑦2]). For the sagittal plane perturbations in this study, 
the relevant equality constraints (as denoted in Eqs. (14) & (15)) are: 
⎡

⎢
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⎢

⎢

⎣
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⎤
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⎥

⎥
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(21)

where 𝜏𝑦1 is input torque J1 about 𝑦-axis (N m); 𝜏𝑦2 is input torque J2 
about 𝑦-axis (N m); ̂𝑞𝑦1 is y-angle of J1 (rad); ̂𝑞𝑦2 is y-angle of J2 (rad); 
̂̇𝑞𝑦1 is y-angular velocity of J1 (rad/s) and ̂̇𝑞𝑦2 is y-angular velocity of 
J2 (rad/s).

3.3. Cost functions

The cost function in the MPC-based postural control algorithm 
addresses the mismatch between predicted and actual sensory inputs 
representing a plausible CNS objective i.e., to minimize sensory conflict 
and muscle effort. The predicted sensory feedback (𝑞, ̂̇𝑞, ̂̈𝑞) is generated 
by the internal prediction model, while the actual feedback is extracted 
from the Simscape model (𝑞, 𝑞̇, 𝑞). The mismatch is penalized over the 
prediction horizon, with each component weighted accordingly.

This approach mimics the CNS’s hypothesized internal model mech-
anism, in which motor output is continuously refined by compar-
ing predicted and actual sensory states. The model includes feed-
back pathways that replicate somatosensory and vestibular inputs—
specifically, Golgi tendon organ (muscle effort/toque), muscle spindles 
(joint angles and velocities), semicircular canal signals (angular veloc-
ity), and otolith signals (tilt/verticality). These components have been 
shown to be essential in stabilizing posture under dynamic, eyes-closed 
conditions (Happee et al., 2023).

The cost function includes eight weighted terms:

1. Muscle torque effort at the lower and upper neck joints (𝜏𝑦1 𝑘-F1, 
𝜏𝑦2 𝑘-F2), representing Golgi tendon organ feedback.

2. Relative angular positions (𝑞𝑦1-F3 𝑞𝑦2-F4) and velocities ( ̇𝑞𝑦1-F5 
̇𝑞𝑦2-F6), simulating muscle spindle input.

3. Global head angular velocity and tilt ( ̂̇𝑞𝑦𝑔𝑙𝑜𝑏 𝑘-F9, ̂𝑞𝑦𝑔𝑙𝑜𝑏 𝑘-F7), 
corresponding to semicircular canal and otolith organ feedback.

Eq. (22) presents the complete cost function for which the cost 
is minimized over 𝑁 . Each component is squared and multiplied by 
a respective weight (𝑊 ), which reflects the possible prioritization of 
sensory channels during postural stabilization. These weights were 
tuned using a high-level optimization process to match experimental 
data across multiple perturbation conditions.

In this implementation, visual feedback is excluded to isolate and 
evaluate the impact of non-visual sensory pathways. The simplified 
head–neck model has two sagittal-plane rotational DoFs, corresponding 
to joints J1 and J2. By minimizing this cost function under biome-
chanical constraints, the MPC replicates CNS-like stabilization without 
requiring the complex tuning of feedback gains seen in other models.
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3.4. Prediction horizon

In optimizing the horizon 𝑁 , a critical balance had to be struck 
between computational efficiency and head–neck model accuracy. Due

𝐽 =
𝑁
∑

𝑘=0
𝓁(𝐱̂𝑘, 𝐱,𝐮𝑘)

=
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⎢
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⎢
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Torque for J2 (F2)

Angle about J1 (F3)

Angle about J2 (F4)

Angular velocity about J1 (F5)

Angular velocity about J2 (F6)

Head global angle (F7)

Head global angular velocity (F8)
(22)

to the complexity and nonlinearity of the ODEs, an increased 𝑁 could 
increase the computational load, thus increasing the RTF. However, 
a too small 𝑁 could compromise the accuracy and robustness of the 
system’s response. Through testing (Appendix  B) an optimal setup was 
identified: a 𝑇𝑠𝑝 of 10ms with one intermediate shooting node per 
interval, and a 𝑇𝐻  configured to 200ms by setting 𝑁 to 20.

3.5. MPC solver

For the MPC solver, FORCESPRO was used, an off-the-shelf opti-
mization tool suited for the development of highly customized solvers 
(Zanelli et al., 2017). It was selected for its ability to handle large ODE 
systems and its efficient matrix handling via the MX class, essential 
for the prediction model. FORCESPRO employs CASADI’s Automatic 
Differentiation (versions 3.5.1–3.5.5) and supports multicore compu-
tation via OpenMP, enabling efficient distribution of computational 
load across cores. The Nonlinear Primal–Dual Interior-Point method 
(‘PDIP_NLP’) was chosen for its robustness to solve the problem defined 
in Section 3.1, with the internal continuous-time system dynamics 
integrated using a 4th-order explicit Runge–Kutta method. Details of 
the complete FORCESPRO configuration are provided in Appendix  A.

4. Scenarios: Experimental datasets from human subjects

The validation of the head–neck model against experimental data 
involves two distinct scenarios with applied body motion in seated 
human subjects: anterior–posterior perturbation (Scenario A) (Forbes 
et al., 2013) and pitch perturbation (Scenario B) (Keshner et al., 1995). 
These experimental datasets from the literature were specifically se-
lected, because they were uniquely designed to excite the human 
head–neck system within the bandwidth relevant to ride comfort and 
to extract frequency response functions between the trunk (the point 
of perturbation application) and the head/neck. Consequently, these 
experimental datasets are ideally suited for head–neck model fitting 
and validation (Happee et al., 2019).

Scenario A involves fore-aft translational pseudorandom multisine 
perturbations applied to a seat using a motion platform. The bandwidth 
for these perturbations was 0.3–8.0 Hz. Participants were restrained by 
a five-point harness on a rigid seat with a 10◦ inclined backrest and 
listened to a science radio program to minimize voluntary responses.

Scenario B applied pseudorandom multisine seat pitch rotations 
around the interaural axis, and included three conditions: Voluntary 
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Stabilization (VS), No Vision (NV), and Mental Arithmetic (MA). For 
the purposes of this study, the MA condition was employed, where 
participants performed mental arithmetic tasks to divert focus from 
head stabilization. This condition was chosen to simulate natural re-
sponses in situations where occupants of automated vehicles would not 
actively attempt to stabilize their heads, while engaged in NDRTs. The 
bandwidth for these perturbations was 0.35–3.05 Hz.

The averaged responses of the participants were used to tune and 
validate the model. Averaging responses mitigates the influence of 
individual variability and outliers, resulting in a more robust and 
generalizable model that better represents the collective biomechanical 
response to these perturbations. The eyes-closed condition from both 
scenarios was used for validation, as it simplifies the interpretation 
of results by isolating vestibular and somatosensory influences while 
excluding visual feedback. The validation step assesses the predictive 
capabilities of the model by comparing its head responses under sagittal 
plane excitation at T1 (trunk), both in translation (scenario A) and 
rotation (scenario B) with human experimental data.

5. High-level optimization: Parameter tuning

In addition to the low-level optimization of the MPC for control 
input computation, a high-level optimization was implemented to tune 
the MPC cost function weights. This section outlines the high-level 
optimization process, the configuration used for each scenario, and the 
fine-tuning of evaluation functions in Scenario A. The objective was 
to optimize the MPC weights in the cost function to fit the simulated 
head–neck model responses with the averaged human responses from 
two experimental studies (Section 4). Each cost function component 
(Eq. (22)) is scaled by a weight, influencing the MPC solver’s priori-
tization during low-level optimization. The high-level optimization is 
formulated as follows: 
min
𝐖

𝑓 (𝐹𝑒𝑣𝑎𝑙1(𝐖),… , 𝐹 𝑒𝑣𝑎𝑙𝑖(𝐖)) =
√

E
[

(𝑋𝑆
𝑖,sim −𝑋𝑆

𝑖,exp)2
]

(23)

where 𝑋𝑖,sim is the simulated model head response and 𝑋𝑖,exp is the 
human head response; 𝑆 is the perturbation scenario; 𝐖 is the weight 
vector shown in Fig.  1. The index 𝑖 corresponds to the evaluation 
metrics (Feval) that compute the root mean squared error (RMSE) 
between the simulated and experimental head responses in both the 
time and frequency domains (Eqs. (24), (25)). For the high level 
optimization, multi-objective genetic algorithms were employed using 
MATLAB’s multiga() function. The initial population matrix (‘x1’) of 
size [𝑛 × 20], where 𝑛 is the number of optimization variables, was 
generated by randomizing best-case values from preliminary analyses. 
The population size was set to 200. Additionally, the impact of different 
components in the MPC cost function was examined as part of the low-
level optimization. The influence of different cost function components 
on low-level optimization was further analyzed using random forests. 
Cost function components were grouped into distinct ‘‘cases’’ to ana-
lyze their influence on head–neck responses. This approach provides 
insights into how each feedback pathway influences the head–neck 
model’s response and validates the relevance of incorporating these 
pathways in replicating CNS-driven postural control.

5.1. Configuring the high-level optimization

The human experimental datasets from Section 4 are used in the 
high-level optimization to fit the model responses with real human 
responses. This section details the optimization configuration for Sce-
narios A, B, and C.
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Table 3
Correlation coefficient (𝜌Feval𝑖 ,Feval𝑗 ) between Fevals. The colors depict the following levels of 𝜌: (a) red: 𝜌 = 1, (b) 
orange: 0.9 < 𝜌 < 1, (c) yellow: 0.7 < 𝜌 ≤ 0.9, (d) blue: 𝜌 ≤ 0.7, (e) gray: values below the diagonal.

Feval1 Feval2 Feval3 Feval4 Feval5 Feval6 Feval7 Feval8

Feval1:𝑞𝑦 (rad)  1.00  0.714  0.762  0.670  0.633  0.733 −0.084 −0.049
Feval2:𝑥 (m)  0.00  1.00  0.201  0.996 −0.054  0.997 −0.073  0.003
Feval3:𝑤𝑦 (rad/s)  0.00  0.00  1.00  0.151  0.942  0.213 −0.060 −0.059
Feval4:𝑣𝑥 (m/s)  0.00  0.00  0.00  1.00 −0.110  0.992 −0.071  0.004
Feval5:‖𝑓𝑞𝑦‖ (deg/m)  0.00  0.00  0.00  0.00  1.00 −0.034 −0.034 −0.063
Feval6:‖𝑓𝑥‖ (m/m)  0.00  0.00  0.00  0.00  0.00  1.00 −0.071 −0.003
Feval7: 𝑓 𝑞𝑦 (deg)  0.00  0.00  0.00  0.00  0.00  0.00  1.00 −0.064
Feval8: 𝑓 𝑥 (deg)  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00
5.1.1. Scenario A: Anterior-posterior perturbation
Scenario A optimization utilized eight evaluation functions based 

on RMSE between simulated and experimental data in both time and 
frequency domains. The experimental dataset included head rotation 
and translation, allowing comprehensive evaluation. The responses 
considered for anterior–posterior (AP) perturbation are: 

𝐹𝑒𝑣𝑎𝑙1 − 8 =
[

√

E[(𝛥𝑋𝐴𝑃
1 )2],… ,

√

E[(𝛥𝑋𝐴𝑃
8 )2]

]

(24)

where: 𝑋𝐴𝑃
1 = 𝑞𝑦 (head global pitch in time domain), 𝑋𝐴𝑃

2 = 𝑥 (head 
global linear position in time domain), 𝑋𝐴𝑃

3 = 𝑤𝑦 (head global angular 
velocity in time domain), 𝑋𝐴𝑃

4 = 𝑣𝑥 (head global linear velocity in time 
domain), 𝑋𝐴𝑃

5 = ‖𝑓𝑞𝑦‖ and 𝑋𝐴𝑃
6 = ‖𝑓𝑥‖ (gains of head global pitch 

and linear position in frequency domain), 𝑋𝐴𝑃
7 = 𝑓𝑞𝑦 and 𝑋𝐴𝑃

8 = 𝑓𝑥
(phases of head global pitch and linear position in frequency domain).

To calculate Feval5-Feval8, the T1-to-head transmission of the per-
turbation stimulus were estimated. More specifically, two transfer func-
tions were estimated: (1) between the observed signal at T1 (input) and 
the head’s global pitch (output), and (2) between the observed signal at 
T1 (input) and the head’s global position (output). The gain and phase 
of the system were computed using a custom method specifically de-
signed to analyze the multisine input signals in Scenario A. This method 
utilizes a predefined frequency vector to focus on the frequencies of 
interest, which in this case correspond to the harmonics of the multisine 
signal used in Forbes et al. (2013) to excite seated human subjects (Sec-
tion 4): 𝑓 = [0.25, 0.65, 1.05, 1.45, 1.85, 2.25, 2.7, 3.2, 3.85, ..4.65, 5.55, 6.65,
8] Hz, adjusted with additional offsets and scaled by the experiment’s 
fundamental time period (20 s). Through this approach, the method 
computes spectral densities and the transfer functions only at these 
specific frequencies, ensuring no interference from irrelevant spectral 
components. Furthermore, frequency averaging is applied to improve 
signal-to-noise ratio while preserving the distinct characteristics of the 
multisine excitation.

All eight evaluation functions were included in the optimization 
process to ensure an effective tuning of the MPC weights. After an 
initial optimization, correlation coefficients (Lindroth et al., 2010) were 
calculated to efficiently configure the evaluation functions and avoid 
inconsiderable selection of them (Papaioannou & Koulocheris, 2018). 
Based on the correlation coefficients (Table  3), it became evident that 
some of these functions were highly correlated, with correlation coeffi-
cients ≥ 0.9. Such high correlations suggest that these functions provide 
redundant information, and could make the optimization process in-
effective while delaying the convergence. Hence, Feval4, Feval5 and 
Feval6 were excluded from Scenario C optimization. This will improve 
the ratio between Fevals for Scenario A (5 Fevals after exclusion) and 
Scenario B (2 Fevals), decreasing the bias of the high-level optimization 
due to unbalanced evaluation functions.

5.1.2. Scenario B: Pitch perturbation
Scenario B optimization focused solely on frequency-domain evalu-

ation due to the lack of time-domain experimental data. The evaluation 
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functions considered for pitch (P) perturbation are: 
𝐹𝑒𝑣𝑎𝑙9 − 10 =

[

√

E[(𝛥𝑋𝑃
1 )

2],
√

E[(𝛥𝑋𝑃
2 )

2]

]

(25)

where 𝑋𝑃
1 = ‖𝑓𝑞𝑦‖ (gain of head global pitch in frequency domain), 

𝑋𝑃
2 = 𝑓𝑞𝑦 (phase of head global pitch in frequency domain).
The gain and phase of the system were computed in the frequency 

domain using a custom implementation of the transfer function esti-
mation tailored to Scenario B’s multisine input perturbation applied to 
seated participants (Keshner et al., 1995), as described in Section 4. The 
method extracts system characteristics at the predefined frequencies 
of interest (𝑓2 = [0.3, 0.7, 1.5, 2.1, 3.1] Hz) from the broader frequency 
spectrum. After performing a Fast Fourier Transform (FFT) on both 
the input signal (T1 global pitch) and the output signal (head global 
pitch), the spectral densities were computed. The transfer function gain 
and phase were then derived using these spectral densities. Only the 
spectral components corresponding to the target frequencies (𝑓2) were 
extracted.

5.1.3. Scenario C: Multi-scenario optimization
In the multi-scenario (Scenario C) optimization, both anterior–

posterior and pitch perturbations were optimized simultaneously to 
derive a single set of weights applicable to both conditions. A total 
of seven evaluation functions were used: five from Scenario A (Fe-
val1–Feval3 and Feval7–Feval8) and two from Scenario B (Feval9 and 
Feval10)’’.

5.2. Configuring MPC-tuning process

One of the main objectives of this study was to evaluate the impact 
of the different feedback pathways (muscle effort, somatosensory, semi-
circular and otolith) on the head–neck model’s performance, including 
both accuracy and computational efficiency. Additionally, the analysis 
aimed to determine whether the importance of each component of the 
cost function varied between scenarios A and B.

This was accomplished by initially optimizing the MPC-based postu-
ral control using the full set of pathways (Section 3.3) – muscle effort, 
somatosensory, semicircular, and otolith – for both scenarios. Opti-
mization was carried out following the same procedure outlined above 
for both scenarios. To assess the influence of each component of the 
cost function on the head–neck model’s response, Random Forests were 
employed to calculate the importance of each cost function component 
with respect to the evaluation functions and the RTF. Feature impor-
tance was calculated using Mean Decrease in Accuracy (Permutation 
Importance), which evaluates the impact on head–neck model accuracy 
when the values of a feature are randomly shuffled. A larger decrease 
in accuracy signifies greater importance.

Table  4 displays the feature importance of the evaluation functions 
(Fevals) of the genetic algorithm optimization for Scenario A (Feval1 - 
Feval8) and Scenario B (Feval9 - Feval10) (Section 5). The table also 
shows the RTF for each scenario relative to the cost function weights. 
The results indicate that relative angles and otolith feedback have 
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Table 4
Feature importance for cost function weights vs. Feval1 - Feval8 and RTF for Scenario A and Feval9-
Feval10 and RTF for Scenario B.
Feature

𝑊𝑡𝑦1 𝑊𝑡𝑦2 𝑊𝑞𝑦1 𝑊𝑞𝑦2 𝑊𝑤𝑦1
𝑊𝑤𝑦2

𝑊𝑞𝑔𝑙𝑜𝑏 𝑊𝑤𝑔𝑙𝑜𝑏importance

Feval1:𝑞𝑦 (rad) 1.65 0.56 −0.02 0.11 3.49 2.16 0.13 0.53
Feval2:𝑥 (m) 2.33 0.35 0.20 −0.01 0.97 2.91 0.18 0.73
Feval3:𝑤𝑦 (rad/s) 0.30 2.24 −0.14 0.27 3.84 0.97 0.05 0.26
Feval4:𝑣𝑥 (m/s) 2.31 0.50 0.22 0.04 0.72 2.76 0.26 0.63
Feval5:‖𝑓𝑞𝑦‖ (deg/m) 0.09 0.76 0.05 −0.04 2.43 2.73 0.13 0.16
Feval6:‖𝑓𝑞𝑦‖ (m/m) 0.77 1.08 0.15 −0.08 0.48 1.34 0.28 0.62
Feval7: 𝑓 𝑞𝑦 (deg) 0.01 0.32 −0.01 0.01 −0.03 0.77 0.01 0.11
Feval8: 𝑓 𝑥 (deg) −0.03 0.05 −0.01 0.18 0.16 0.25 −0.06 0.03
RTF 2.71 1.07 0.26 −0.12 0.96 0.91 0.01 0.16

Feval9:‖𝑓𝑞𝑦‖ (deg/deg) 2.78 0.77 0.47 0.55 1.82 2.48 0.56 0.91
Feval10: 𝑓 𝑞𝑦 (deg) 1.31 0.63 0.46 0.52 1.58 1.65 0.49 0.81
RTF 2.89 1.62 0.46 0.46 1.11 1.43 0.39 0.60
the lowest feature importance scores in all Fevals. Semicircular canal 
feedback emerges as a medium strength feature for Scenario B (Feval9 
and Feval10) and only for Feval2 in Scenario A. However, the weights 
associated with muscle spindle function (𝑊𝑤𝑦1, 𝑊𝑤𝑦2) and Golgi ten-
don feedback (𝑊𝑡𝑦1, 𝑊𝑡𝑦2) consistently dominate in importance across 
almost all Fevals, except for Feval8 (RMSE of the head pitch phase in 
the frequency domain) which shows no importance across any feedback 
pathways. Furthermore, the RTF is primarily influenced by variations 
in 𝑊𝑡𝑦1, 𝑊𝑡𝑦2, 𝑊𝑤𝑦1

, and 𝑊𝑤𝑦2
, directly linking computational cost to 

the sensory feedback pathways that had the highest feature importance 
among Fevals. This highlights that the sensory channels most critical for 
matching human responses also drive computational effort, reflecting 
the direct trade-off between model accuracy and real-time performance.

5.3. Case-specific optimization

The cases considered across all scenarios (A, B and C) for optimiza-
tion were extracted based on the above MPC sensitivity analysis and the 
interest in understanding the pathways’ influence on head–neck model 
accuracy. The cases are described below:

• Case 1: Only muscle effort (F1 and F2) and partial somatosensory 
feedback (F5 and F6).

• Case 2: Full pathways—muscle effort (F1 and F2), somatosensory 
feedback (F3 to F6), otolith feedback (F7) and semicircular canal 
feedback (F8).

• Case 3: Muscle effort (F1 and F2), full somatosensory feedback 
(F3 to F6), and semicircular canal feedback (F8).

High-level optimization for tuning the MPC weights was separately 
performed for all Cases (1, 2, and 3) across all scenarios (A, B, and 
C). The first step involved optimizing each scenario independently to 
understand the system thoroughly. This optimization focused on two 
main aspects:

1. Evaluation Functions: Analyzing the relationships between the 
evaluation functions used in the optimization algorithms
(multiga()), identifying the necessary trade-offs and how these 
differ for each case, and determining which case minimized the 
evaluation functions most effectively (best overall result in terms 
of optimized performance).

2. Cross-Scenario Optimization: Deriving a single set of MPC
weights that could ensure optimal inputs by the MPC-based pos-
tural control to the head–neck model across different perturba-
tion scenarios, while also maintaining computational efficiency.

6. Results

This section presents the results of the high- and low-level optimiza-
tions across three scenarios: Scenario A, Scenario B, and Scenario C 
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(multi-scenario). For each, the MPC cost function weights (Eq. (22)) are 
tuned using high-level optimization to fit two experimental datasets. 
Three configurations (Case 1, Case 2, Case 3) were used. Results 
are evaluated based on Pareto alternatives, TOPSIS (Technique for 
Order of Preference by Similarity to Ideal Solution, Pandey et al. 
(2023))-compromised solutions, VAFs, Fevals, and RTFs.

6.1. Scenario A: Anterior-posterior perturbation

Scenario A optimizes the response to anterior–posterior perturba-
tions across Cases 1–3. Trade-offs between evaluation functions were 
assessed via Pareto fronts. Conflicting Feval pairs were identified using 
Kendall’s Tau and hypervolume reduction (𝛥𝑖𝑗), showing Feval2 vs. 
Feval5 and Feval4 vs. Feval5 as most conflicting. These align with 
the results in Table  3 and support the rationale for multi-scenario 
optimization. Fig.  3 illustrates the solutions with a Pareto dominance 
rank of 15 or less to highlight the identified conflicts.

TOPSIS was applied to identify best-compromised MPC weights 
(Fig.  4). Case 3 performed best overall, excelling in Feval2, Feval4, 
Feval6, and Feval8. Case 1 led in three of four head pitch metrics, 
including Feval5, and shared Feval7 with Case 3. Case 2 did not lead 
in any Feval.

Fig.  5 compares simulation outputs with experimental data. MPC 
weights revealed that both Case 1 and 3 prioritized the lower joint: 
𝑊𝑡𝑦1 > 𝑊𝑡𝑦2, 𝑊𝑤𝑦1

> 𝑊𝑤𝑦2
. Case 1 showed a ratio of ≈23, while 

Case 3’s was ≈2.5. Case 2 favored the upper joint, especially in angular 
position costs, with higher values for 𝑊𝑞𝑦2 .

To assess sensitivity to specific cost components, four additional 
cases were created. Case 2.1 is based on Case 2 but removes the 
relative angular position costs (𝑊𝑞𝑦1 ,𝑊𝑞𝑦2 = 0). Case 2.2 removes 
angular position, semicircular canal, and otolith costs. Similarly, Case 
3.1 is based on Case 3 but excludes relative angular position costs, 
while Case 3.2 removes global pitch and angular velocity costs. Though 
these weights had high values (Table  6), feature importance analysis 
(Table  4) suggested weak effects. Results confirmed this: Case 2.1 and 
3.1 showed <1% AVG VAF drop, whereas 2.2 and 3.2 showed more, 
with Case 3.2 dropping ≈7%, indicating semicircular canal costs impact 
pitch accuracy. Cases 1 and 3 showed similar AVG VAFs: 77.77% and 
77.83%, respectively. Case 1 led in pitch metrics; Case 3 led in position. 
Case 2 had the lowest AVG VAF (74.63%) but outperformed Case 1 in 
head position. VAF differences were: 𝛥VAF𝑝𝑖𝑡𝑐ℎ ≈ 6.5%, 𝛥VAF𝑤𝑝𝑖𝑡𝑐ℎ ≈
10%, 𝛥VAF𝑥 ≈ 2%, 𝛥VAF𝑣𝑥 ≈ 13%.

The above suggest Case 1 provided more uniform time-domain 
fitting, except for VAF𝑣𝑥, which showed the largest deviation due 
to high-frequency content. Frequency domain results (Feval5–Feval8) 
showed Case 1 led in Feval5 (pitch gain), while Case 3 led in Feval6 
(position gain) and Feval8 (position phase) (Table  7). Feval7 showed 
negligible difference. Case 3 improved Feval6 by 6.52% and Feval8 by 
8.61% while Case 1 outperformed Case 3 in Feval5 by 9.03%. Case 2 
followed Case 3’s weight pattern but with worse overall results.
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Fig. 3. Pareto dominance rank solutions (Rank ≤15) for Scenario A. Fig.  3(a): Feval2 
vs. Feval5 & Fig.  3(b): Feval4 vs. Feval5.

Comparing additional cases to their bases: Cases 2.1 and 2.2 showed 
increased Feval5 RMSE; Feval6 worsened only for 2.2. Feval7 and 
Feval8 improved for Case 2.2. Similar trends appeared in Cases 3.1 
and 3.2. This suggests relative angular position and otolith costs had 
marginal impact, indicating that most probably the high-level optimiza-
tion assigned random values.

6.2. Scenario B: Pitch perturbation

Scenario B optimized pitch perturbation using Feval9 (RMSE of 
head pitch gain) and Feval10 (RMSE of head pitch phase). No time-
domain data was available. Pareto fronts showed conflict between 
Feval9 and Feval10 (Fig.  6); Feval9 was prioritized. TOPSIS-selected 
weights showed Case 1 as the best performer in Feval9 and RTF, while 
Case 3 was best in Feval10.

RMSEs relative to normalized experimental ranges showed that Case 
1 outperformed Case 2 by 41.88%, and Case 3 by 55.89% in Feval9 
9 
(Table  8). Case 3 outperformed Case 1 by 23.96%, and Case 2 by 7.52% 
in Feval10.

All cases showed 𝑊𝑤𝑦1
< 𝑊𝑤𝑦2

, especially in Case 3 (≈9). Muscle 
effort ratios were ≈5.25 for Case 1 and 2, indicating prioritization of 
the upper joint.

Additional case results showed that Case 2.1 offered a small Feval9 
improvement but degraded Feval10, while Case 2.2 improved Feval10 
with negligible change in Feval9. Case 3.1 and 3.2 showed similar 
but opposite trends, with Case 3.2 showing the largest increase in Fe-
val10 RMSE (≈30%), highlighting the importance of semicircular canal
costs.

The frequency-domain responses for Cases 1, 2, and 3, obtained 
using the optimal MPC weights, are compared to experimental data 
in Fig.  7. Overall in Scenario B, Case 1 remains the optimal case, 
demonstrating superior performance when additional sensory pathways 
are excluded from high-level optimization of the MPC weights.

6.3. Scenario C: Multi-scenario optimization

Scenario C optimized across both perturbation types using Case 1 
(selected based on prior results in Scenarios A and B). Pareto fronts 
for Feval2 vs. Feval5 (Fig.  9(a)) and Feval4 vs. Feval5 (Fig.  9(b)) 
showed steeper slopes than in Scenario A. In pitch metrics, Scenario C 
resembled B (Fig.  8). Asymptotic behavior appeared at slope extremes, 
confirming the need for compromise.

TOPSIS selected weights that dominated five of ten Fevals: Feval2, 
Feval4, Feval6, Feval8 (anterior–posterior), and Feval10 (pitch) (Fig. 
10). The weight set aligned more with Scenario B - Case 1, emphasizing 
upper joint torque and velocity costs (Table  5).

The AVG VAF for Scenario C was 71.02%, similar to Scenario A 
- Case 2.2, reflecting similar cost weight ratios. Scenario C - Case 
1 achieved the second-best Feval9 and improved Feval10 (Table  9) 
compared to Scenario B - Case 1. Time and frequency responses are 
shown in Figs.  11 and 12.

7. Discussion

This study examined three distinct cases to evaluate the effects of 
different sensory feedback pathways and muscle effort on the head–
neck system’s response to perturbations. The results offer critical in-
sights into the performance and computational efficiency of each case 
under anterior–posterior and pitch perturbations. Additionally, the 
study examined whether a single set of MPC weights could effectively 
stabilize the system across these varied conditions.

7.1. Scenario A: Anterior-posterior perturbations

During anterior–posterior perturbations, the almost complete (with-
out the otolith feedback) feedback pathways demonstrated superior 
overall performance across evaluation functions, particularly in
position-related metrics as highlighted by the optimal solutions (TOP-
SIS results, Fig.  4 & Table  7). Muscle effort with partial somatosensory 
feedback, however, provided higher accuracy in pitch-related metrics, 
indicating its stronger performance in pitch, angular velocity and pitch 
gain compared to having the complete sensory feedback without the 
otolith feedback. Despite the differences in the individual metrics 
(Fevals), the average behavior (VAFs) of both cases (complete sensory 
feedback without the otolith feedback, and muscle effort with partial 
somatosensory feedback) were nearly identical (Table  6), indicating 
comparable overall accuracy in the time domain. However, the indi-
vidual VAF components revealed trade-offs: muscle effort and partial 
somatosensory feedback provided a more uniform match across three 
of the four VAF metrics, while complete sensory feedback without the 
otolith feedback exhibited a clear bias toward fitting position-related 
metrics. This trade-off is evident in Fig.  5(c), where the pitch gain for 
complete sensory feedback without the otolith feedback drops above 
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Fig. 4. TOPSIS Scores vs. Fevals in Scenario A for Case 1 (muscle+somato), Case 2 (muscle+somato+semi+oto) and Case 3 (muscle+somato+semi). Optimum solutions per Feval 
as derived by TOPSIS are shown as: red dot - Case 1; yellow square - Case 2 & green rhombus - Case 3.
Table 5
Optimized MPC weights across Scenarios A, B, and C for Case 1 (muscle+somato), Case 2 (muscle+somato+semi+oto), Case 3 (muscle+so-
mato+semi), and sub-cases: Case 2.1 (Case 2 with 𝑊𝑞𝑦1 , 𝑊𝑞𝑦2 = 0), Case 2.2 (Case 2 with 𝑊𝑞𝑦1 , 𝑊𝑞𝑦2 , 𝑊𝑞𝑦𝑔𝑙𝑜𝑏 , 𝑊𝑤𝑦𝑔𝑙𝑜𝑏

= 0 ), Case 3.1 (Case 3 with 
𝑊𝑞𝑦1 , 𝑊𝑞𝑦2 = 0) and Case 3.2 (Case 3 with 𝑊𝑞𝑦1 , 𝑊𝑞𝑦2 , 𝑊𝑤𝑦𝑔𝑙𝑜𝑏

= 0). Dashes (—) indicate deactivated weights. RTF = Real-Time Factor.
 Sc. Case 𝑊𝑡𝑦1 𝑊𝑡𝑦2 𝑊𝑞𝑦1 𝑊𝑞𝑦2 𝑊𝑤𝑦1

𝑊𝑤𝑦2
𝑊𝑞𝑦𝑔𝑙𝑜𝑏 𝑊𝑤𝑦𝑔𝑙𝑜𝑏

RTF  
 

A

1 76.96 3.37 – – 8.26 1.62 – – 6.78  
 2 18.42 70.47 65.05 87.55 46.39 68.65 70.47 84.36 7.16  
 3 62.63 25.51 77.23 90.44 88.76 18.06 – 63.32 8.10  
 2.1 ’’ ’’ – – ’’ ’’ ’’ ’’ 9.16  
 2.2 ’’ ’’ – – ’’ ’’ – – 10.05 
 3.1 ’’ ’’ – – ’’ ’’ – ’’ 8.56  
 3.2 ’’ ’’ – – ’’ ’’ – – 9.72  
 

B

1 15.83 75.64 – – 28.20 74.14 – – 8.14  
 2 11.04 63.60 23.61 67.52 19.88 32.06 19.06 7.71 9.18  
 3 76.09 64.48 27.34 86.01 9.37 81.96 – 92.51 8.98  
 2.1 ’’ ’’ – – ’’ ’’ ’’ ’’ 9.08  
 2.2 ’’ ’’ – – ’’ ’’ – – 10.45 
 3.1 ’’ ’’ – – ’’ ’’ – ’’ 9.38  
 3.2 ’’ ’’ – – ’’ ’’ – – 9.95  
 C 1 38.09 91.56 – – 73.00 98.45 – – NA  
1.125 Hz, indicating a shift toward head-in-space stabilization (reduced 
global pitch magnitude) rather than head-on-trunk stabilization. This 
outcome is expected when including semi-circular canal and otolith 
costs, as these components penalize global head motion.

The analysis of MPC weights further clarifies these trade-offs. Both 
cases (complete sensory feedback without the otolith feedback, and 
muscle effort with partial somatosensory feedback) prioritized lower 
neck joint cost components. However, the significantly larger ratio 
between the two joint cost components (approximately 2.5 for complete 
sensory feedback, and approximately 23 for muscle effort with partial 
somatosensory feedback) emphasizes the focus of the latter on lower 
10 
neck joint muscle effort. This likely contributed to superior perfor-
mance in pitch metrics in the simplified feedback case, whereas the 
complete feedback offered more balanced prioritization of neck joint 
costs which supports its dominance in position-related metrics.

The additional cases showed that the angular position costs had 
negligible effects on model performance, suggesting that the high-level 
optimization process randomly assigned weights to these components. 
This validated the results of the weights feature importance for the de-
veloped MPC-based postural control strategy. In contrast, the removal 
of otolith and semi-circular canal costs significantly impacted perfor-
mance. Nonetheless, muscle effort and partial somatosensory feedback 
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Fig. 5. Scenario A time and frequency domain experimental and simulated responses: 
Case 1 (muscle+somato), Case 2 (muscle+somato+semi+oto) and Case 3 (muscle+so-
mato+semi). 𝑁 = 20 and 𝑇𝑠𝑖𝑚 = 0.8ms.
11 
Table 6
VAFs (%) across Scenarios A and C. Time-domain metrics only; Scenario B is not 
applicable (NA).
 Case VAFs

 𝑝𝑖𝑡𝑐ℎ 𝑥 𝑤𝑝𝑖𝑡𝑐ℎ 𝑣𝑥 AVG  
 Scenario A:
 1 76.62 89.35 83.72 61.38 77.77 
 2 64.69 92.42 68.85 72.55 74.63 
 3 70.09 92.89 73.86 74.48 77.83 
 2.1 63.63 92.20 68.39 71.70 73.98 
 2.2 59.42 91.33 66.76 68.35 71.47 
 3.1 69.61 92.78 73.66 74.05 77.53 
 3.2 58.82 89.49 71.96 61.34 70.40 
 Scenario C:
 1 58.61 91.05 67.00 67.44 71.02 
 Scenario B:
 NA

Table 7
Fevals for Scenario A – Anterior–Posterior Perturbation. All values are RMSEs. Units: 
Feval1, Feval3 in rad; Feval2, Feval4 in m; Feval5 in deg/m; Feval6 in m/m; 
Feval7–Feval8 in deg.
 Case Fevals

 1 2 3 4 5 6 7 8  
 1 0.020 3.82e−3 0.31 3.49e−2 161.81 0.24 122.06 60.31 
 2 0.024 3.22e−3 0.43 2.94e−2 238.39 0.18 139.07 64.61 
 3 0.022 3.12e−3 0.40 2.84e−2 216.24 0.17 122.01 47.21 
 2.1 0.025 3.27e−3 0.44 2.99e−2 240.21 0.18 118.00 45.54 
 2.2 0.026 3.44e−3 0.45 3.16e−2 245.83 0.20 118.75 47.74 
 3.1 0.023 3.14e−3 0.40 2.86e−2 217.21 0.17 151.58 68.62 
 3.2 0.026 3.80e−3 0.41 3.49e−2 212.34 0.24 128.37 51.45 

Table 8
Fevals for Scenario B – Pitch Perturbation. Units: Feval9 in deg/deg, 
Feval10 in deg.
 Case Fevals

 9 10  
 1 0.42 34.51 
 2 0.60 29.13 
 3 0.66 26.67 
 2.1 0.62 33.35 
 2.2 0.72 29.36 
 3.1 0.73 26.81 
 3.2 0.83 37.91 

Table 9
Fevals for Scenario C – Multi-scenario optimization. Units consistent with Tables  7 and
8.
 Case Fevals

 1 2 3 4 5 6 7 8 9 10  
 1 0.026 3.50e−3 0.44 3.20e−2 244.80 0.21 106.85 60.86 0.58 30.14 

(relative angular velocity) emerged as the primary contributors to the 
model’s performance.

These findings suggest that for anterior–posterior perturbations un-
der eyes-closed conditions, simpler postural control focusing on muscle 
effort with partial somatosensory feedback (relative angular velocity) 
may suffice. This aligns with prior research (Happee et al., 2023), 
where muscle feedback alone could adequately describe such scenarios. 
Similar observations were noted in vestibular loss patients subjected to 
low-amplitude horizontal seat translations with their trunk strapped to 
the seat (Keshner, 2003).

The inclusion of additional sensory feedback pathways improved 
performance in position-related metrics but increased computational 
complexity, leading to a higher RTF compared to only muscle effort 
with partial somatosensory feedback. Case 2, which incorporated all 
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Fig. 6. Feval9 vs. Feval10 Pareto dominance rank solutions (Rank ≤15) for Case 
1 (muscle+somato), Case 2 (muscle+somato+semi+oto) and Case 3 (muscle+so-
mato+semi), in Scenario B.

Fig. 7. Frequency domain responses for Case 1 (muscle+somato), Case 2 (muscle+so-
mato+semi+oto) and Case 3 (muscle+somato+semi) along with experimental responses. 
𝑁 = 20 and 𝑇𝑠𝑖𝑚 = 0.8ms.

sensory pathways, showed even lower performance, likely due to the 
more complex high level optimization introduced by the additional 
design variables. This additional complexity could have made the op-
timization complex both in terms of the MPC cost functions but also 
for the genetic algorithm parameter tuning in the specific scenario. 
However, the configuration of the genetic algorithm was selected based 
on default values suggested by MATLAB for the specific number of 
design variables.

Computationally, muscle effort with partial somatosensory feedback 
was the most efficient, achieving the lowest RTF of 6.78 (Table  5). For 
context, Happee et al. (2023) reported an RTF of approximately 100. 
The strong performance and efficiency of Case 1 reinforce the value 
of simpler biomechanical head–neck models combined with advanced 
postural control algorithms for this type of perturbation.
12 
Fig. 8. Feval9 vs. Feval10 Pareto dominance rank solutions (Rank ≤15) for Case 1 in 
Scenario B, and Case 1 in Scenario C.

Fig. 9. (a) Feval2 vs. Feval5. (b) Feval4 vs. Feval5. Both (a) and (b) show Pareto 
dominance rank solutions (Rank ≤15) for Case 1 in Scenario A, and Case 1 in Scenario 
C.
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Fig. 10. TOPSIS scores vs. Fevals. Scenario C is compared with Scenario A for Feval1 - Feval8, annotating the optimum solutions (red dot - Scenario C & yellow square - Scenario 
A). Additionally, Scenario C is compared with Scenario B for Feval9 & Feval10, annotating the optimum solutions (red dot - Scenario C & green rhombus - Scenario B).
7.2. Scenario B: Pitch perturbations

In Scenario B, based on prior studies (Happee et al., 2023), it was 
anticipated that muscle effort alone would be insufficient for stabilizing 
the head and that semi-circular canal feedback would be critical for 
accurate performance. Contrary to these expectations, muscle effort and 
partial somatosensory feedback achieved the best overall balance across 
evaluation functions.

However, even the best-performing solution in Scenario B (muscle 
effort with partial feedback) exhibited discrepancies in low-frequency 
dynamics. Specifically, at 0.3 Hz and 0.7 Hz, the experimental pitch 
gains were below 1 (0.9487 and 0.9040, respectively), while the simu-
lated gains exceeded 1 (1.2987 and 1.0977). This discrepancy indicates 
a limitation of the current MPC-based postural control in accurately 
capturing low-frequency behaviors when the model is excited under 
pitch perturbations. The reason behind this issue might be related to 
the current optimization method which uses as a criterion the RMSE of 
the experimental and simulated gain between the equally weighted 5 
frequency points. Furthermore, the limited experimental data points (5 
frequency points in gain and phase) and the age of the data (collected 
in 1995) posed additional challenges for achieving better fits during 
optimization.

The additional in the other cases, which represent semi-circular 
canal and otolith costs, did not substantially improve performance. 
These results suggest that in the simplified MPC-base postural control, 
the additional semi-circular canal feedback may have been partially 
redundant, given that the relative angular (or joint) velocity feedback 
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already captured most of the critical dynamics (Eq. (22)). The addition 
of extra optimization variables in these cases may have complicated 
the optimization problem, hampering the convergence. As with the 
anterior–posterior perturbation, muscle effort combined with partial 
somatosensory feedback was also the most computationally efficient, 
further emphasizing the benefits of a streamlined approach.

7.3. Scenario C: Multi-scenario optimization

This scenario explored whether a single set of MPC weights could 
properly fit the head–neck model’s response to the data across both 
anterior–posterior and pitch perturbations. Building on the results of 
the single perturbation scenario, muscle effort and partial somatosen-
sory feedback was selected for this multi-scenario optimization.

The results indicate that the multi-scenario optimization success-
fully balanced the performance for both perturbation types, though 
trade-offs were observed. Interestingly, the optimal weights for the 
multi-scenario aligned more closely with the pitch perturbations than 
the anterior–posterior perturbations. The weights prioritized upper 
neck joint components, mirroring the trend observed in pitch pertur-
bations. This suggests that incorporating pitch perturbations in the 
optimization process shifted the emphasis toward upper neck dynamics. 
The average VAF for Scenario C was closely resembling the perfor-
mance of the case where semi-circular canal, otolith, and relative 
position costs were deactivated (Case 2.2). This similarity indicates 
that the additional Fevals for pitch gain and phase in the high-level 
optimization for tuning, introduced a cost penalty on global head 
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Fig. 11. Response for multi-scenario optimization in pitch perturbation comparing Case 
1 in Scenario B, Case 1 in Scenario C, and experimental data, in the frequency domain. 
𝑁 = 20 and 𝑇𝑠𝑖𝑚 = 0.8ms.

pitch motion, favoring head-in-space stabilization. This trend is also 
evident in Fig.  7, where the experimental gain is below 1, reflecting 
a head-in-space control strategy.

In this scenario, the muscle effort with partial somatosensory feed-
back achieved the second-best fitting for head pitch gain for pitch 
perturbations. However, a notable imbalance in the optimization pro-
cess favored anterior–posterior metrics due to the disproportionate 
number of Fevals (5 for anterior–posterior vs. 2 for pitch perturbations). 
This bias could suggest that achieving a truly balanced multi-scenario 
solution would require equal representation of evaluation functions for 
both perturbation types.

The AVG VAF reflects a reduction in overall accuracy compared 
to single-scenario setups. Future refinements could include adaptive 
weights or frequency-dependent optimizations to address these trade-
offs. Studies on alert macaques (Carriot et al., 2015) have shown that 
the integration of rotational (semi-circular canal) and translational 
(otolith) inputs is frequency-dependent, with canals dominating at 
lower frequencies and otoliths becoming more significant at higher fre-
quencies. Incorporating such frequency-dependent adjustments into the 
MPC framework could improve performance under multi-dimensional 
perturbations.

7.4. Limitations

While the MPC-based postural control offers a novel approach to 
modeling compensatory postural control in the head–neck system, there 
are limitations that merit further exploration.

The MPC algorithm is limited by its reliance on predefined mod-
els and static optimization horizons. This makes it less adaptive in 
scenarios requiring real-time learning and adjustment, as might be 
expected in a biologically plausible representation of the CNS. The 
CNS’s postural control mechanisms are thought to adapt and learn from 
repeated exposures to perturbations, a feature not yet captured in the 
current MPC framework. Furthermore, the model should be adaptive to 
different postures and initial conditions, because variations in starting 
postures affect the entire dynamic response.

The model currently assumes perfect sensory perception, excluding 
the influence of sensory delays and noise. The CNS, however, operates 
14 
Fig. 12. Response for multi-scenario optimization in anterior–posterior perturbation 
comparing Case 1 in Scenario A, Case 1 in Scenario C, and experimental data, in the 
time and frequency domain. 𝑁 = 20 and 𝑇𝑠𝑖𝑚 = 0.8ms.
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under conditions of incomplete and noisy sensory feedback, necessi-
tating robust strategies to integrate delayed or uncertain information. 
While this simplification enhances computational efficiency, it limits 
the realism of the model, particularly under conditions involving rapid 
or complex perturbations.

The parameter tuning of the model was considered during unex-
pected events (i.e., compensatory postural control without anticipation) 
excluding visual feedback. These scenarios are more relevant for au-
tomated vehicles or trains where occupants engage in non-driving 
related tasks and are not able to anticipate upcoming motion. However, 
further work is required to explore the ability of the model to capture 
accurately the response of the head–neck system during perturbation 
where occupants anticipate the upcoming motion (i.e., activation of 
anticipatory postural adjustments). Another aspect is that the model 
was only tested in perturbations in sagittal plane. Hence, it has to be 
validated in more dynamic driving scenarios where six dimensional 
perturbations are provided.

8. Conclusions

This study presented a novel MPC-based framework to simulate 
CNS-inspired head–neck postural stabilization strategies under dynamic 
perturbations. The first key contribution is the development of an 
MPC-based postural control algorithm that integrates the fundamental 
behavior of the CNS, including the neural store, sensory integration, 
and minimization of sensory conflict as a guiding principle for motor 
control. This approach balances computational efficiency and modeling 
accuracy, addressing limitations in existing methods.

The second contribution is a detailed evaluation of sensory
pathways – muscle effort, somatosensory input, semicircular canals, 
and otolith organs – and their effects on stabilization accuracy and com-
putational load. The findings demonstrate that muscle effort and partial 
somatosensory feedback are sufficient for predicting accurate stabiliza-
tion, minimizing computational demand. While additional vestibular 
feedback pathways offered marginal benefits in accuracy, they in-
creased computational complexity, emphasizing the trade-offs involved 
in sensory pathway inclusion in eyes closed conditions.

The third contribution is the demonstration that a single set of 
MPC weights can effectively generalize well across anterior–posterior 
and pitch perturbations, suggesting the potential for unified control 
strategies in dynamic environments.

Overall, the framework provides a computationally efficient, bio-
logically plausible alternative to complex multi-segment models and 
enhances the understanding of CNS-inspired postural control. Beyond 
fundamental research, it could be integrated into vehicle control mod-
ules or design processes to improve motion comfort. The predicted 
dynamic responses may also support motion sickness and comfort as-
sessment models. Further work is ongoing to address current limitations 
and extend the model to more diverse motion scenarios.
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Appendix A. FORCESPRO solver options

 Solver options Value Description  
 codeop-
tions.maxit

200 QP solver uses no 
more than 200 
iterations to solve a 
problem

 

 codeop-
tions.optlevel

3 0: no optimization, 
1: optimize for size, 
2: optimize for 
speed, 3: optimize 
for size & speed

 

 codeoptions.nlp.
integrator.type

‘ERK4’ Integrator functions  

 codeoptions.nlp.
integrator.Ts

1𝑒−2 Absolute time 
between two 
integration intervals 
(𝑇𝑠𝑝)

 

 codeoptions.nlp.
integrator.nodes

1 Defines the number 
of intermediate 
nodes

 

 codeop-
tions.solvemethod

‘PDIP_NLP’ Set optimization 
method

 

 codeoptions.
BuildSimulinkBlock

1 Simulink block is 
compiled

 

 codeoptions.par-
allel

1 Internal 
parallelization of the 
solver using 
OpenMP

 

 codeoptions.
threadSafeStorage

1 Generated solver is 
thread safe

 

 codeop-
tions.nlp.Tol-
Stat

1𝑒−1 Infinity norm 
tolerance on 
stationarity

 

 codeop-
tions.nlp.TolEq

1𝑒−3 Tolerance on 
equality constraints

 

 codeop-
tions.nlp.Tol-
Comp

1𝑒−1 Tolerance on 
complementarity

 

 codeoptions.ac-
curacy.eq

1𝑒−3 Infinity norm of 
residual for 
equalities

 

 codeoptions.ac-
curacy.mu

1𝑒−6 Absolute duality gap  

 codeoptions.ac-
curacy.
rdgap

1𝑒−2 Relative duality 
𝑔𝑎𝑝 ∶=
(𝑝𝑜𝑏𝑗 − 𝑑𝑜𝑏𝑗)∕𝑝𝑜𝑏𝑗

 

 codeoptions.no-
hash

1 Enforce solver 
regeneration

 

 codeop-
tions.overwrite

1 Overwrite existing 
solver

 

 codeop-
tions.nlp.ad
_expression_class

‘MX’ Automatic 
differentiation 
expression class

 

Appendix B. Simulation timestep and prediction horizon

Various combinations of 𝑁 and 𝑇𝑠𝑝 were tested for Scenario A, with 
𝑁 ranging from 20 to 45 to 20. According to the results, a 𝑇𝐻  of less 
than 200ms led to unstable responses, emphasizing the importance of 
maintaining an appropriate prediction window. Table  B.10 outlines all 
the tested parameters. Fig.  B.13(a) illustrates the relationship between 
𝑁 and Average VAFs, with each data point labeled according to its 𝑇𝐻 . 
Fig.  B.13(b) displays the relationship between 𝑁 and RTF, showing that 
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Table B.10
Examined range of prediction forecast, horizon, and timestep.
 Values

 Forecast horizon (𝑇𝐻 [ms]) 225 200 245 210 225 200 
 Prediction horizon (𝑁) 45 40 35 30 25 20  
 Prediction timestep (𝑇𝑠𝑝 [ms]) 5 5 7 7 9 10  
Fig. B.13. The left plot shows the average VAFs vs. 𝑁 , while the right plot presents the RTF vs. 𝑁 . Labels show the respective 𝑇𝐻 in seconds.
Table B.11
Simulation timestep, RTF, and VAF Values.

𝑇𝑠𝑖𝑚 RTF VAF_Pitch (%) VAF_X (%) VAF_WPitch (%) VAF_VX (%) AVG VAF (%) 
0.004 13.30 72.25 88.08 63.33 54.03 69.42 
0.005 10.87 72.99 88.39 66.79 55.98 71.04 
0.006 9.06 74.98 89.21 75.25 59.50 74.73 
0.007 8.01 74.66 88.49 79.26 57.53 74.99 
0.008 6.97 76.62 89.35 83.72 61.38 77.77 
0.009 6.20 76.21 90.14 78.38 63.94 77.17 
0.010 5.52 75.84 89.94 77.92 64.42 77.03 
reducing 𝑁 generally improves RTF, while increasing 𝑇𝐻  enhances the 
average VAFs. However, it is important to note that RTF is not solely 
dependent on 𝑁 , as evidenced by the larger RTF observed at 𝑁 = 35, 
likely due to the corresponding larger 𝑇𝐻 . 

Additionally, the optimal simulation timestep 𝑇𝑠𝑖𝑚 is determined by 
experimenting with values starting from 4ms and incrementing by 1ms
up to 11ms. The response accuracy improved consistently until 8ms; 
however, at 11ms, the head–neck model response became unstable, 
hence VAFs for the respective 𝑇𝑠𝑖𝑚 are not included in Table  B.11. This 
led us to conclude that a 𝑇𝑠𝑖𝑚 of 8ms offered the best accuracy and 
stability. The outcomes of these tests are detailed in Table  B.11, which 
presents the various 𝑇𝑠𝑖𝑚 values tested alongside the corresponding 
VAFs for head pitch (VAF_Pitch), head position (VAF_X), head angular 
velocity (VAF_WPitch), head linear velocity (VAF_VX), and the average 
VAFs (AVG VAF) for Scenario A. Hence, the optimal configuration 
identified was a fixed 𝑇𝐻  of 200ms with a fixed 𝑁 equal to 20 and 
𝑇𝑠𝑝 equal to 10ms, along with a 𝑇𝑠𝑖𝑚 of 8ms. These configurations 
ensured that the head–neck model performed efficiently, maintaining 
both accuracy and stability.

Appendix C. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.conengprac.2025.106428.
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