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Abstract

RLV development can be considered as the modern step towards mission design due to financial and strategic
decisions. In the past, reusability has been addressed however the level of maturity of the technology, both
in terms of hardware and software was not yet reached. There are several aspects to developing a RLV, and
these can be categorized into optimization of the LV, optimization of the trajectory, and cost analysis. TO be
able to determine the feasibility of the mission, it is not just necessary to develop a suitable configuration, but
to also determine the physical feasibility of the trajectory. Several methods exist of which convex optimiza-
tion is selected. This class of algorithms have risen in popularity in the regime of powered descent guidance,
and present a desirable trade-off between performance and computational cost. An already existing algo-
rithm, DESCENDO, for a two-staged vehicle CALLISTO purposed for a mission to a geo-synchronous orbit,
is taken as reference. The algorithm is rewritten in YALMIP allowing it to perform more efficiently by saving
computation time through creation of multiple controllers based on a discretized burn schedule. A potential
candidate for reusability in the future is selected, which is a VEGA variant, considered as a two-staged vehicle
with set requirements on the mission and configuration. Through closed-loop simulations, the feasibility of
RTLS for a particular mission of this VEGA variant can be studied. The disciplines involved in the study in-
clude the launch vehicle optimization, engine sizing, preliminary ascent & descent, and 3-DoF simulations.
Previous research at TU Delft on RLV has included the work Rozenmeijer, Vandamme, Van Kesteren, Mi-
randa, and Contant, graduate students of the TU Delft Aerospace Engineering faculty. The work relied on the
usage of the TUDAT C++ software environment and based its feasibility or reusability of operations through a
cost-analysis. A shift in direction is taken away from cost-analysis to examine at a greater detail the physical
feasibility of the trajectory for a nominal candidate RLV. This is done by examining the influence of simula-
tor to guidance algorithm dynamics and guidance algorithm parameters. Moreover, a nominal payload class
between 100 and 500 kg is selected to determine the configuration of the vehicle ideal for this mission. To be
able to determine feasibility of RTLS, three metrics are considered, which are the final landing velocity, final
landing position, and maximum dynamic pressure.
The study performs higher fidelity analysis only on the return phase, and as such the starting conditions for
descent are determined through a preliminary design process by considering a drag-less ascent. This re-
turns a starting altitude of around 26-30 km, with similar values for starting downrange position, and varying
conditions of initial mass and velocity. For the preliminary descent, it is found that the metric of dynamic
pressure does not reach more than around 60% of the limit imposed by the VEGA-C, which is similar for
other VEGA variants. This coincides with research done with the CALLISTO vehicle. All in all, the best cases
for these metrics and one included as an overall best case where candidates for the 400 kg payload class. The
selection criteria for best cases of the preliminary descent involved the dynamic pressure, final velocity, and
required propellant mass for descent. Moreover, the vehicle optimization results showed that this contained
the most variation of vehicle characteristics, and as such it was deemed as a desirable class to work with for
its flexibility in design. The best case burnt mass result was selected as the best case velocity required ex-
tensive propellant mass to burn for only a less than 7 m/s difference in result, which would not be indicative
of what the convex algorithm could achieve due to dynamics involved in the preliminary experiment. This
nominal candidate is then tested for various variations of controller tuning parameters combinations, burn
schedules, and simulator/guidance frequencies. The results showed a clear desirable region for the final time
of just between 300 and 310 seconds for return, favouring shorter burns. The solution envelope for the burn
schedule showed gaps in zones of feasibility as well as optimality, suggesting some performance issues with
the algorithm due to it failing to find solutions. Nevertheless this envelope is well defined and several feasible
solutions existed. The influence of parameter tuning and simulator frequency was studied. It was determined
that no set of guidance parameters could give an advantage over the other, but that some values did favour
feasibility more. This is somewhat in contrast to the selection of frequencies, as despite the fact there was
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also a large difference for higher frequency ratios between the Q3 to Q4 and Q0 to Q2, there is a noticeably
trend that higher ratios are favoured. Moreover, a local optimal ratio of frequency of 10-1 was also found, and
being the same ratio used for the other experiments as well as the CALLISTO study, provides more evidence
that this effect is intended.
The uncertainties studied are for the initial state variations, errors in reading of position and velocities, and
process time delays. It was noted that almost all the errors in the initial state variations shared similar distri-
butions for ranges of values of the metrics. The overall majority returned feasible as well as the large minority
of this returned optimal. Of little to no significance was the processing time delay, of which the overwhelming
majority returned optimal results, and the rest where outliers whose process time factor where beyond the
3σ limit imposed in the creation of normal random variables. The largest errors arose from the real-time un-
certainty in the velocities and position, modelled after pseudo-range errors. Although results showed a high
density in the feasible and optimal regions for metrics of final time and position, there was also a high density
past the feasible regions. It can be considered that the feasibility of RTLS operations for such a VEGA vehicle
is restricted by such errors as expected, but nevertheless results are promising in what can be the main steps
to lead to an error analysis study by the use of state estimation techniques and testing various modifications
made to the SOCP problem to improve performance.
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Chapter 1

Introduction

Reusability has been considered as an alternative to expendable launch vehicles as early as 1967, as Knaur at
Boeing identified it as "The Next Major Launch Vehicle Development" . As with any development in the realm
of Aerospace Engineering, its purposes are based on financial and or strategic decisions. Financial decisions
are related to cutting costs or increasing profit margins, while strategic decisions seek end goals other than
making money [49]. Intuitively it is understandable that a reusable launch vehicle is financially attractive by
offering more flight opportunities for the launch service provider which in turn cut costs for developments
of new architecture [68]. Under the same study by Knaur it was noted that a proposed modified Saturn V/S-
IC for recovery could have contributed to 60% in savings when compared to the standard ELV (expendable
launch vehicle) version of the Saturn V.
It wasn’t until the 1970’s where the first reusable launch system started development under NASA’s Space
Shuttle program. From its first and last flight between 1981 and 2011 [31] respectively, several reusable launch
vehicle programs were contracted of which most never saw the light of day [49], one of the most noticeable
family being the x-30 to 40 experimental launchers [33][34][35][36]. A noticeable paradigm shift in the field
of reusability occurred with the introduction of SpaceX Falcon 9’s rocket [37][52]. Not only was it able to pro-
duce successful flights but for the first time since the Kistler K-1 [32] had been contracted, there was a focus
on VTVL semi-reusable systems rather than a completely reusable single-stage-to orbit LV. Later on in 2016
Blue Origin established itself as another key player in the RLV market having completed 4 tests of the first
stage of the New Glenn semi-reusable launch vehicle [44].
As mentioned, the RLV market is segmented. The segmentation of the market calls for attention to specific
sub categories of research. Beneath the top block representing the field of RLV study as a whole, lie subcate-
gories. The most active in the research community are the subcategories of guidance, trajectory optimization,
and studies on configuration.
The purpose of this literature study is to primarily serve as a requirement for graduation of the Aerospace En-
gineering masters at TU Delft, as well as a reference document when the student begins her/his thesis work.
The report is structured into the following sections. First, the stakeholder requirements given by AVIO are de-
tailed in the next chapter. Then, the section after deals with explaining flight mechanics, including reference
frames, translational and rotational equations of motion. Section 4 details the environment of the problem,
namely the acceleration, and atmospheric models relevant to a re-entry problem and briefly mentions how
to select the appropriate ones. Optimal control theory follows, which describes the components of solving an
optimal control problem; non-linear programming, differential equations and integration of functions, and
non-linear algebraic equation systems. Section 6 explains the guidance and control relevant to a reusable
rocket landing problem, detailing various guidance laws, and control methodologies, and selection strate-
gies. Launcher configuration then follows, detailing individual systems of the launch vehicle and then the
collective.

1.1 Stakeholder Interests

Founded in 1908, but officially known as “AVIO s.p.a” for the past 50 years, it started as an aeronautical com-
pany. Going through various rebranding from “Societá Italiana Aviazione” (Italian Aviation Society) to Fiat
Avio, and to what its known as today, being a leader in the space propulsion market. The work for which AVIO
has been most well known for the last decade has been its contribution to the development of the VEGA (Vet-
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2 1. Introduction

tero Europeo di Generazione Avanzata) rocket family. The expertise spans across liquid, solid, and cryogenic
propulsion for either military or commercial payload launches. While the origin of the word is merely a call
to the company’s original transition from Fiat Aviazione, then shortened to Fiat Avio, employers familiarize
the name as an acronym for “Advanced Vision Into Orbit”. Whether or not the company aims to explicitly
characterize itself as that, it is nonetheless a fair representation based on the work that it has accomplished.
The current VEGA family consists all of expendable launch vehicles (ELVs). An effort as arisen in a collab-
oration with the propulsion, structures, and guidance navigation and control (GNC) department at AVIO to
begin research on a semi-reusable derivative of a new VEGA launch vehicle. Prior to this study, some internal
cost and preliminary analysis for the design of the launch vehicle and its intended reusable purposes where
already established. The aim for AVIO is to research into a two stage launch vehicle with the purposes of
conducting missions to send a payload into a sun-synchronous orbit at altitudes of 600km. Among these re-
quirements, several others have been provided by AVIO for this study. The requirements ID in the first column
are used as short hand notation, whose notation is in the form of ’requirement-system-number’. The system
portion between the two hyphens are notations for launch vehicle (LV), propulsion (PR), and trajectory (TR),
each of which will be discussed in the relevant subsections of section.

ID Stakeholder Requirement
REQ-LV-1 The structural index of the launch vehicle should be within the range of 0.08 and 0.12
REQ-LV-2 Propellant mass should be within the range of 60000 to 80000 kg
REQ-LV-3 The RLV shall be flown with up to 500kg of payload
REQ-PR-1 Throttling rate is limited to 50% of maximum per second per stage
REQ-PR-2 The first stage shall have two MX and one M10 engines
REQ-PR-3 The second stage shall have one M10 engine
REQ-TR-1 The trajectory should follow a RTLS to the French Guiana space center
REQ-TR-2 The first stage shall return considering a 45-55% drop off in velocity prior to its separation
REQ-TR-3 The payload shall be ejected at 600km of altitude
REQ-GC-1 The guidance and control maximum frequency is 25 Hz

Table 1.1: Stakeholder requirements for mission.



Chapter 2

Research Goals

In this section we represent a summary of the literature study taken, the research gap, research objectives,
research questions, and finally the planning of the research. We note that some terminologies are used in a
different manner based on the authors they have been cited from. Specifically, we refer to trajectory opti-
mization to offline planning/guidance, which we previously referred to as open-loop guidance. The same is
true for closed-loop guidance, which we refer to here as online planning/guidance.

2.1 Literature Study Summary

It is clear from the research encountered, the importance of coupled flight and G&C optimization was not
studied in the early days of RLV development [51]. At the time of Boeing’s preliminary research prior to the
Moon landing the focus since then and for many decades was on MDO analysis. It is not surprising when it
has become a consensus that the capabilities of guidance are limited by the onboard computing power. In-
deed, the first form of planetary guidance was the Apollo polynomial guidance, which was easy to implement
and offered a solution in polynomial time. However, this was not an effective guidance scheme even at the
time, where findings point to Meditch’s fuel-optimal algorithm based on the Pontryagin Maximum principle
in 1964 [41]. Moreover, both where analytical methods, which inherently reduce the problem of powered
landing to only a few constraints. Specifically, most analytical methods do not consider process and attitude
constraints, have derived commands related to fixed tg o (time to go), and consider decoupled three axes ac-
celerations [57].
As the amount of onboard computation power increased throughout the years, researchers where able to de-
rive new numerical programming algorithms that saw the rise of the field of computational guidance. In the
mid 2000’s 3-DoF (degrees of freedom) studies with a fuel optimality objective where solved with nonlinear
programming problems. Specifically, the direct method (DM) of pseudospectral (PS) discretization showed
high accuracy, despite having computing speeds unsuitable for online guidance. A 3-DoF landing problem
on Mars was then revisited with other convex (CVX) methods of semi-definitive programming (SDP) and
second-order cone programming (SOCP). Studies then showed that convexification of the landing problem
resulted in the same solution as with the Pontryagin Maximum Principle. Unlike PS algorithms, convex opti-
mization algorithms compute solutions much faster.
Development of new strategies for solving the NLP powered descent (PD) problem has not been limited only
to the optimization method used. Different characteristics have been studied, such as hazard avoidance
[67][73], VTVL and VTHL configurations [59][68], as well as combinations of the above mentioned methods.
More recently, reinforcement learning approaches have been used to generate guidance commands. The an-
alytical zero error miss/zero error velocity (ZEM/ZEV) subject to improvements via a deep learning approach
has been studied [22][24][28]. Reinforcement learning approaches require training of the data, which must be
done offline, and in the case of the mentioned literature, it was shown that solutions could not adapt to model
uncertainties. For any NLP method, there is a trade-off between computation time and solution accuracy. For
G&C solutions must be available online, however it is also a possible strategy to use more computationally
expensive methods to generate an initial trajectory, as in the case of reinforcement learning and PS methods.
Even when compared to reinforcement learning approaches, a 3-DoF landing problem returned better fuel
optimal conditions and end time with a PS solver [57][25].
Aside from SpaceX and Blue Origin’s works, there have also been experimental studies on flight and G&C for
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RLVs. DLR launched the ENTRAIN (European Next Reusable AriaNe) to determine the financial and opera-
tional feasibility of different return options. These looked at how the choice of MPS, structures, hardware,
VTHL and VTVL LV format influenced the trajectory [68]. CNES (Centre National d’Études Spatiales) have
FROG, whose objective was experimenting of a control algorithm and adaptive control system. This demon-
strator shares an overall objective with others such as the EAGLE by DLR, DTV by ESA and INCAS in analyzing
control laws for retro propulsion, being vehicles of a VTVL format. Outside of Europe, exists the technology
demonstrators Peacock from CALT (China Academy of Launch Vehicle Technology), and RLV-T3 and RLV-T5
from Linkspace. Additionally JAXA has the RV-X launch vehicle and is also in a joint effort with CNES and
DLR on the CALLISTO (Cooperative Action Leading to Launcher Innovation in Stage Toss-back Operations),
whose main focus is GNC through convex optimization [16][20][57].
As was already mentioned, one of the key growing focus for RLV studies has been GNC and trajectory opti-
mization. This is both due to the historical growth of computational guidance capabilities and the research
in the mathematics that has amalgamated. Furthermore, approaches at solving the powered descent problem
have largely targeted Mars [5][6][8][27][46][47][58][60][60][62][63][74][75], Moon [23][30][38][41][39][56][67][72],
or asteroid landings [57]. Within the context of RLV, the ideal scenario would be to operate in atmospheric
conditions of the Earth. The Moon’s surface can be considered as a vacuum, and Mars’s atmospheric effects
can usually be ignored. In addition, Earth return has disturbances of wind shears. Moreover, landing zones
for Mars and Moon are usually designated in a region of km of magnitude, while Earth landing requires pin-
point precision. With regards to engine configurations, planetary landers have low thrust and wide throttling
capability, whilst Earth landers have limited throttling, high thrust and high fuel consumption. Lastly, RLV
on Earth have strict attitude constraints, while planetary landers are more compact vehicles whose attitude
control is less complex.
Assessment of the configuration of RLV is typically done with planning of both its ascent and descent tra-
jectory in mind. The focus remains on keeping the first stage to be reusable. However, the configuration of
the first stage is determined by what payload it needs to carry before jettisoning. As such, a systems analysis
is carried out of different configurations based on choices of gross lift-off mass (GLOM), stage lift-off mass
(SLOM), stage structural indices, and loads during re-entry [68]. Mass estimation of the first stage can be
done through empirical methods, and stage structural indices can be based off flight tested launchers. Load
constraints choices are typically, maximum dynamic pressure, maximum product of dynamic pressure and
angle of attack, and maximum acceleration. Based on the ascent profile, the ∆V at descent is determined, as
well as conditions for beginning of return trajectory [57].
Previously it was mentioned that the choice of mission profile was almost synonymous with the choice of
configuration. For example, the FB approach is characterized by a jettisoning of the first stage in a residual
atmosphere. This can influence the motion between the RLV and the expendable stages, which raises the pri-
ority for flight control at this stage. Because the maneuver aims to invert the horizontal speed a large portion
of the time the vehicle will be in a residual atmosphere environment, and as such it is advantageous to use an
air-breathing propulsion system. To cover the large downrange distances, the vehicle is fitted with wings to
increase its lift to drag ratio and allow gliding capability over a Mach range of 0.3 to 6. The TB profile features
a steep ascent profile, and as such the configuration of the RLV is close to an ELV. This means the vehicle has
a lower lift to drag ratio, and focuses on controlling its kinetic energy through ballistic phases, which demand
a suitable control strategy. Because of the slender cylindrical geometry of the RLV, the reusable stage could
have tendency to tilt around its transverval axis and reach high angles of attack. To change the angle of attack,
control algorithms using aerodynamic control surfaces can be used. The dead-leaf, a mix of the FB and TB
profile, intends to exploit the aerodynamics to the greatest extent such that very few or none (complete glide-
back) MPS re-ignitions are needed. As a result, the aerodynamics of the RLV is of most importance, featuring
large wings and extensive flight profile requirements, to optimize its lift to drag ratio. While RLVs are oriented
vertically for take-off, DL and FB approaches may favour a horizontal landing method (VTHL) as supposed
to a vertical one with TB (VTVL) [17].
The work done in ENTRAIN focused on the use of wings for any reusable first stage launcher approach meth-
ods, RTLS (return to launch site) or DRL (down range landing), and take off and landing method, VTHL (ver-
tical take-off horizontal landing)or VTVL (vertical take-off vertical landing). What was varied was the choice
of engine for the return options (choice of launcher approach method and vehicle format). As a general rule,
Earth landers require throttling capability, thus engines and propellants are limited to staged combustion
cycles and gas generator cycles. In addition, VTHL RLVs require an air-breathing engine. VTVL also requires
landing gear/legs, whose geometry can be design by scaling the masses of the Falcon 9 with its dry mass
[68], as can be done for the fins, or other available flight tested RLV landing leg design. Other aerodynamic
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control/surface choices can be the use of grid fins or conventional fins, body flaps, wings, and wing flaps.
The aerodynamics of the vehicles can be determined using slender body theory, with the wing aerodynamics
using empirical lifting line methods. Lift and drag profiles at varying Mach numbers and angle of attack are
then determined using semi-empirical methods [11].
Aside from having a vertical or horizontal landing approach, the return target may also influence the config-
uration of the launcher. For a slender cylindrical body RLV configuration RTLS proves to be an unreasonable
option for GTO (geostationary transfer orbit) missions [68]. More propellant may be required due to the in-
crease of the amount of burns: boostback, re-entry, and landing burn. In case of DRL, only the boostback
does not need to be performed since the horizontal velocity of the RLV after jettisoning does not need to be
inverted. For FB and DL the choice may not be immediately obvious. FB and DL both have velocity inversions
but at later stages of descent.
The main focus on NOA for PD has been on CVX optimization. This is an attractive strategy because of its
accuracy and capability for online planning. Studies with other NOA methods for Earth landing RLV have
both simultaneously considered ascent and descent phases. There are relatively more niche categories more
closely associated with the descent phase. These include load relief algorithms, retropropulsive thrust plume
effects, and optimization of engine restarts. Load relief algorithms intend to increase robustness to wind in-
fluences and allow a decrease of mass by removing the need to over-engineer the structure to account for
safety concerns due to wind conditions. It is more of a practice with descent trajectory as the effect of load
relief is influenced by the use of fins, usually inactive during ascent. Implementation of load relief algorithms
saw improvements in command tracking and wind rejection by reducing the impact of wind on pitch and
drift [12]. It is also shown that load relief is of most importance during peaks of maximum dynamic pressure.
Retro-propulsion causes the plume to be highly under-expanded, interacting with the outside surface a VTVL
RLV. During re-entry, the heat loads are known to be dispersed so that the maximum heat load on the vehicle
decreases at the baseplate but increases on the walls of the VTVL RLV [21]. As RLV require liquid engines, the
number of engine restarts should be minimized and can be optimized as a metric to determine the degree of
reusability [40].

2.2 Research Gap

It is expected from [57] that future developments on studies of PD of RLV will revolve around improving the
initial guess of the non-convex Earth landing problem. Additionally, it was mentioned that guidance algo-
rithms need to balance between accuracy and computational speed. This trade-off is part of three more
general issues not limited to algorithms but also the physical constraints imposed by the chosen configu-
ration of the RLV. The latter is related to the first general issue, which is physical feasibility. This relates to
whether or not the RLV virtually has a possible solution. Solutions are distinguished by two perspectives; the
reachable and controllable set. Of importance here is the controllable set, which are the entry conditions that
can be controlled to reach the desired final condition. These conditions are the boundary and the path and
control constraints. The second is the accuracy of the environmental and dynamics model. Model uncertain-
ties are always present, and are due to poor measurement accuracy, noise on measurements, unaccounted
dynamic characteristics, and inaccurate model parameters. An appropriate selection for the environment
models would be inclusion of gravity, tabulated atmospheric values (density, pressure, and temperature),
and engine back pressure losses.
Inferences on possible improvements were also made in the literature review. Out of all methods for optimiza-
tion of the offline or online solution, only bang-bang control, CVX, and RL methods consider a discontinuous
inequality constraint for the thrust. TB strategies employ the use of liquid engines with limited throttling
capability. Solutions shown for the thrust profiles of both CVX and PS methods for the descent phase in-
dicate a large throttling capacity. PS methods have the ability to solve for a problem with different thrust
constraints but requires splitting the problem into multiple phases. The issue then arises of giving a good ini-
tial condition or suitable search range for linking the ascent and descent. Other problem formulations, such
as NP-hard problems also require defining the bounds of the thrust profile. It would be useful therefore to
have a problem formulation and method that can consider multiple bounds for the thrust constraint without
having to split the problem in multiple phases.
With regards to research done on reusable vehicles at TU Delft, the following has been completed. In 2012,
Vandamme completed a thesis on research of the impact of launch assists on the effect on the performance
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of launch vehicle design. The main recommendation was to include a multi stage launch vehicle design and
subject it to the same MDO as was done [65].
In 2013, Van Kesteren followed this recommendations and modeled airplane-assisted launching with a cost
model. A major difference considered the usage of solid rocket propulsion instead of liquid propulsion. Two
different payload classes, 10kg and 2000kg where considered, yielding different ∆V to go into orbit, resulting
in difference in cost per flight and GLOM. The recommendations included here were to use boosters or mul-
tiple rocket engines and include models of liquid and hybrid rocket motors [64].
In 2015, Miranda completed research on the effect of hybrid rocket propulsion for airplane assisted launch-
ing and ground landing. Using the MDO methods from Vandamme and Van Kesteren, the results showed that
hybrid rocket propulsion decreased GLOM of the launch vehicle [42]. The recommendation was made that a
realistic model of separation of the launch vehicle from the assisting vehicle be made and introduce boosters
and/or multiple rocket engines.
More recently, in 2017 Contant completed research on a VTVL design microlaunch vehicle. In June of 2020,
Rozemeijer held the torch for the latest research in RLV’s. He conducted a price per flight investigation in the
cost effectiveness of toroidal staged microlaunch vehicles by comparison to a nominal VTVL microlaunch
vehicle design [50].
The general trend for RLV studies at TU Delft have been the following. An MDO consisting of separated
propulsion, geometry, and mass discipline, as well as trajectory and cost optimization disciplines. Over the
years, the main candidate for conducting simulations and optimization has been the TU Delft Astrodynamic
Toolbox (Tudat) using C++ libraries, along with trajectory optimization package PAGMO. Some level of guid-
ance, limited to a polynomial guidance law, was considered. An additional recommendation from Rozemeijer
was that the ignition of engines required precision so that the RLV did not spin out of control. This can be
prevented with the addition of control algorithms. In addition, amongst all these studies the equations of
the motion for the system where limited to the kinematics, and not the full body dynamics. This means the
trajectory optimization studies where limited to 3-DoF.
Outside of TU Delft, several research on the guidance and control aspect of the PD have been previously
mentioned. Most recently, Song et. al. [57] 2020 recommendations, and that of Simplício et. al. [53] in 2018,
mention that the industry short term trends will be to combine open loop guidance solutions with control
compensators for attitude control, and usage of closed loop laws, aided by offline trajectory solution way-
points. With this in mind, the research proposal is the following. An MDO approach is to be applied to a new
RLV configuration, starting at the vehicle design discipline. Trajectory optimization is included as the next
discipline and will couple both the ascent and descent phase of the vehicle using a preliminary approach of
analytical and semi-analytical routines. Its purpose is two-fold; to match the recommendations of Song et. al.
and Simplício et. al. for obtaining a a nominal selection of trajectory starting conditions, but also in order to
validate the configuration of the vehicle, insofar that it can actually achieve a mission, hence provide evidence
for its physical feasibility. Different payload mass classes are to be analyzed. A convex optimiation guidance
algorithm is applied to give a reference thrust profile for the RLV to match with uncertainties involved in the
actuator control allocation. Furthermore, sensitivity analysis experiments are run on initial state variations
as well as influences on computational time delays, and real-time position and velocity errors.
In order to make the goals of the research project feasible, in contrary to aforementioned researches into
reusability, a cost analysis is not considered, and only a single nominal VTVL configuration is selected. The
restriction to a VTVL configuration is done based on the design requirements that VTHL require as men-
tioned by [17]; namely a large focus on optimization of aerodynamic surfaces, which would require the study
to include an aerodynamics discipline to optimize the wings. Due to the fact that the study aims to build
several routines from the ground up, it’s scope will not include this. What is novel with respect to [20] is that
the approach for convex guidance will use 3 instead of one single engine and will test the robustness of the
guidance algorithm in this respect. Moreover, the RLV is tested for feasibility of RTLS assuming it is possible
to achieve a 600km orbit with two stages.

2.3 Research Objectives

Following the research proposal stated before, a research objective and following Sub-Objectives can be iden-
tified

Research Objective: Determine the feasibility of Reusable operations for the VEGARLV launcher by system



2.4. Research Question 7

analysis of configuration, couple ascent and descent trajectory optimization, and a descent G&C algorithm

The sub-objectives are the following:

Sub-Objective 1: Define a VTVL RLV configuration based on the VEGA launcher characteristics by a systems
engineering approach
Sub-Objective 2: Design a trade-off for the ascent and descent trajectory for the chosen RLV configuration by
analytical orbit insertion estimates and semi-analytical guidance law implementation
Sub-Objective 3: Improve the online planning capabilities of the optimized trajectory by implementing a con-
vex optimization guidance algorithm

The feasibility keyword in the main research objective is answered by the degree to which the results of the
sub-objective have been satisfactory. One key goal for the trajectory design is the ability for the missile to nul-
lify its touchdown speed, and land on the launch pad (6m wide launch pad as reference [20]). The RLV must
also have a completely vertical profile when landing. This check can be performed by analysis of the results
of the trajectory optimization and guidance process. These two requirements fall under what was introduced
as physical feasibility; the RLV can completed ascent and descent operations without breaking any path or
boundary constraints.
Discipline feasibility is another criteria, for vehicle design, trajectory optimization, guidance, and control.
The first objective has a preliminary role in determining these results. Vehicle Sizing discipline feasibility
entails constructing the launch vehicle so that it matches the stakeholders requirements listed in table 1.1.
Trajectory optimization discipline feasibility can be determined with preliminary analysis for the ascent and
descent profile. Guidance discipline feasibility will require a physically feasible solution using the selected
guidance method. This will be coupled with the actuators selected whose discipline feasibility will require
selection of a nominal set of engines. Ideally, after achieving all feasibility requirements, we will be able to
achieved inter-discipline feasibility, where several disciplines connect with one another.

2.4 Research Question

The main research question is formulated below:

Research Question: To what extent is the VEGARLV configuration feasible for RTLS operations based on system
sizing, offline planning, and online planning capabilities?

The research question can be broken down into sub-questions.

Sub-Question 1: What payload class can satisfy the structural index limit and achieve physically feasible as-
cent and descent operations?

Sub-Question 2: What type of burn schedule does the VEGARLV require for descent?

Sub-Question 3: What is the influence of tuning parameter choices on the guidance algorithm and its fre-
quency relative to the simulation?

Each research question is formulated so as to provide give insight into the internal goal of each sub objec-
tive. Research question 1 can be answered by the results of the first objective and also those of the second by
selection of nominal candidates from the preliminary analysis of the ascent and descent profile. The second
sub-question can be answered with the second and third objective, which is expected to yield different results
as the 3-DoF simulation is more accurate. The last sub-question deals with the tuning of the simulation and
guidance parameters and will be answered with the last objective.





Chapter 3

Methodology

Previous research at TU Delft on RLV ascent and re-entry studies have considered a MDO strategy (Multidis-
ciplinary Design optimization). This trend has not been adapted in this study for the novel techniques and
algorithms written. The mentioned previous research has primarily built upon an already existing environ-
ment written in tudat. However, because of the specific stakeholder requirements considered, it is more con-
venient to write anew the optimization strategy including software tools. There are still various approaches
that are similiar and independent on the programming environment used with respect to the previous stud-
ies, and previous contributions will be mentioned when necessary.
The multidisciplinary optimization problem considered in this study, at the monolithic level, still has require-
ments of discipline and interdiscipline feasibility. To achieve discipline feasibility, the stakeholder require-
ments must be respected at each of the different disciplines as shown in fig. 3.1. Some of these requirements
influence more than one discipline, being REQ-TR-1 between preliminary optimziation and the 3-DoF simu-
lations. This being because the preliminary optimization uses different equations of motion and assumptions
to model the descent trajectory, but the requirement that the RTLS launch pad (LP) should be at the French
Guiana Kourou space center is still there. In this chapter,the known design variables, constraints, optimizers,
and result processing techniques are detailed.

Discipline: 
Preliminary Optimization

Discipline: 
Engine Sizing

Discipline: 
3-DoF Simulations

Discipline: 
Vehicle Optimization

- Engine
definition

- NASA CEA 
runs

- MX M10 
database

- Preliminary 
ascent 
optimization

- Preliminary
descent
optimization

- Burn schedule
optimization

- Parameter tuning
- Frequency

variation

- Limits
definition

- Genetic 
Algorithm 
runs

- Result
Verification

REQ-PR-2 (First 
stage engines)
REQ-PR-3 
(Second stage 
engine)

REQ-TR-1 (LP location)
REQ-TR-2 (Velocity at 
separation)
REQ-TR-3 (Culmination 
altitude)

REQ-LV-1 
(Structural 
indices)
REQ-LV-2 
(Propellant mass 
first stage)
REQ-LV-3 
(Payload classes)

REQ-PR-1
(Throttling rate)
REQ-GC-1 (GNC 
frequency)
REQ-TR-1 (LP 
location)

Figure 3.1: MDO discipline structure and order.
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3.1 Design Variables

The design variables for each of the disciplines are inputs to their general optimization routine needed to
solve the problem. These are shown in tab. 3.1.

Discipline Design Variables Output

Engine Sizing

Pc

Isp
Pe
Pc

De

Pe

Launch Vehicle Optimization

Dst ag e,1

mpay

Lc,ox

kel l i pse,1

RLV Geometry
CD (α, M)
CL(α, M)

Preliminary Optimization

RLV Geometry
hcul m

mp,1

mp,2

mdr y,1

mdr y,2

x0,descent

3-DoF Simulation(s)

RLV Geometry
DESCO
x0,descent

CD (α, M)
CL(α, M)

x f ,descent

Table 3.1: Design variables and required output for each discipline.

For the engine sizing discipline, the inputs are given as ranges of chamber pressure Pc , specific impulse
of the engines Isp , and exit pressure to chamber pressure ratios Pe

Pc
. The output is a database of feasible exit

diameter De and pressures Pe of the engines. The Isp are needed to interpolate with the nearest output Isp of
the the database formulated. The launch vehicle optimization discipline deals with the creation of a routine
that builds the geometry and mass of the RLV. The first stage diameter Dst ag e,1, payload class mass mpay ,
length of the oxidizer section Lc,ox , and the ellipse ratio of the common bulkhead tank of stage 1 kel l i pse,1 are
the inputs to the problem. The output are the the RLV geometry, and as a end of optimization procedure, the
coefficients of drag and lift CD and CL that are part of the aerodynamic analysis routine.

3.2 Optimizer

Each discipline will use a specific set of optimizers, which are ran with software specific for solving that prob-
lem. When referring to software, it also intended the MATLAB scripts and functions that are written, used
interchangeably in this document with the word routine. Sometimes, the optimizer may be part of a specific
toolkit shares the same software as other routines. An example of this is YALMIP, that is a SDP (semi-definitive
programming) toolbox for MATLAB, which ECOS, the actual solver, is paired with. The 3-DoF simulation rou-
tine is also ran on MATLAB, and in fact the call to YALMIP is within it.
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Discipline Optimizer Software

Engine Sizing
Isp interpolation with
database

NASA CEA Run

Launch Vehicle Optimization Genetic Algorithm Launch Vehicle Optimization Routine

Preliminary Optimization
Factorial Experiment
fmincon

Preliminary Optimization Routine

3-DoF Simulation(s)
Factorial Experiment
fmincon (Actuator)
ECOS (DESCO)

3-DoF Simulation Routine
YALMIP

Table 3.2: Optimizer and software used for each discipline.

3.3 Constraints

The constraints to each discipline optimization problem are meant to narrow down the search space to a
local optimal solution. Each discipline will have different motivations for their constraints whilst some are
directly inherited by the stakeholder requirements.

3.4 Processing

When processing the results, due to the sequential structure of the optimization approach used for the study,
it is important that nominal conditions carry over to the next discipline. Nominal conditions to do not always
equate to feasible and/or optimal candidates. In some experiments, it is possible that the optimal results are
a result of the oversimplification of the problem, and as such when transferred across disciplines it may start
to propagate errors due to inconsistencies between assumptions of different disciplines and problem set-up.
The most intuitive example of this is between the preliminary optimization discipline, where the descent
trajectory is calculated using a far less accurate model of dynamics, for the sake of reduced computation cost
and to obtain a quantitative metric for a starting point of what would be the higher fidelity 3-DoF Simulation
discipline.
For the 3-DoF simulations, the tolerances are shown in tab. 3.3. An assumption is made that the landing pad
at Kourou has a radius of 6m. Moreover, it is considered that the limit for feasibility for the final velocity norm
||v f || is considered as 6m/s. In reality, the final landing velocity is a function of the landing legs structure.
However, not enough information is known about the RLV landing legs and as such it assumed that this can
be considered acceptable for landing. This is considered also for the lateral velocity as a maximum velocity
of 6 m/s will consider that any lateral movement will not drive the RLV away from the launch pad assuming
that the final position norm ||r f || is within feasible regions.

Metric Optimal Feasible Less than feasible Infeasible
r f m

[0,1] (1,6] (6,10] (10,∞]
v f m/s
qd yn,max Pa Determine from results [100000,∞]

Table 3.3: Metric tolerances for 3-DoF simulations





Chapter 4

Flight Mechanics

Flight dynamics refers to the aircraft/spacecraft’s translational and rotational motion, described by a vector
of position and velocities, as well as orientation in four dimensional space. This is based on Newton’s Second
Law F = ma, which allows calculation of the accelerations if the forces are known. In the sections below, the
reference frames, equations of motion, and the models for the forces used are described.

4.1 Reference Frames

Before introducing the equations used to solve the dynamics of the problem, it is useful to know the concept
of a reference frame and system. A reference frame is collection of points fixed relative to each other; in all
reference frames at least one point exists which describes the origin. Depending on the type of dimensions,
more points can exist that are fixed with respect to one another and the origin; these describe the axes in
a reference system. In other words, a coordinate system uses the axes and origin of its reference frame to
describe a set of point(s) [66]. The term coordinate system and reference system will be used interchangeably.
For Engineering applications, it is common to have multiple reference frames and therefore reference systems
pertaining to the problem. This happens when we look at space from a different observer. We may also want
to reformulate the problem so that equations of motion (our differential equations) can be simplified. In the
aerospace field, specifically in the problem of trajectory optimization, two reference frames are commonly
used in problems relating to the Earth Moon Sun System. These are Earth Centered Inertial (ECI) and the
Earth Centered Earth Fixed (ECEF) reference frames. One important caveat is that the way these reference
frames are defined can differ in literature. For the purposes of this study, ECI is considered to be the reference
frame with the origin at the center of a spherical Earth, the X axis pointing towards the Vernal Equinox, the Z
axis towards the north pole at the time of the Vernal Equinox passing, and the Y axis completing the right hand
rule. The ECEF frame’s coordinate axis are rotating with respect to ECI. The origin is also at the center of the
spherical Earth, and direction of rotation is assumed along the Z axis. In reality, the Earth’s Z axis also rotates
around an imaginary axis and wobbles about it. The first is due to a long-term effect known as precession,
and the second a short term variation known as nutation. Precession results in a smooth long period motion
of the ecliptic north pole (the real north pole at an instant in time) about the mean north pole, which takes
25800 years to complete. Nutation, whilst being a shorter term, still takes 18.6 years to complete a full cycle
(the equator wobbles about the ecliptic plane, which is where the Earth’s equator would be if neither effects
existed). The time scale for this problem is in the magnitude of hundreds of seconds. [66] As both effects are
dynamics that have significance over much larger time scales, they are excluded from this study. This explains
why the only difference between our ECEF and ECI frames is a simple rotation (which takes 1 Earth day to
complete) about the Z axis.
In simple mathematical formulation, we can put into symbols the difference between an inertial reference
frame composed of axis X Y Z and another inertial reference frame with a constant velocity this frame with
axis X ′Y ′Z ′. The constant velocity is with respect to the origins of the two frames. Figure 4.1 depicts the two
reference frames. In mathematical formulation, the position of the two frames are related by equation 4.1.W
is the velocity of the second reference frame with respect to the first. Reference frames can also have different
notions of time, which along with the relationship of position between X Y Z and X ′Y ′Z ′ describe the Galilei
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Figure 4.1: Two inertial reference frames, where X ′Y ′Z ′ is moving with a constant velocity W with respect to XYZ. Taken from Wakker [66]

.

transformations. Equation 4.2 shows the time difference where T is a time constant.

r ′′′ = r −W (t − t0) (4.1)

t ′ = t +T (4.2)

Transformations between different reference frames/systems are commonly performed with what is known
as direction cosine matrix (DCM) also known as transformation matrices. Below the various reference frames
used in this study will be discussed and DCMs are introduced where relevant. We denote transformation
matrices with the letter C , with the subindex referring to the reference system you are converting to, and the
superscript the reference frame you are converting to. We note that these matrices are square matrices and
therefore the inverse of the matrix results in the reverse transformation.

ECI & ECEF

Equation 4.3 is the transformation matrix from ECI to ECEF, where ω is the Earth rotation rate (72.9211585E-
06 rad/s), and t is the time passed. This is represented by considering at time 0 both the ECI and ECEF frame
being identical, and the ECI frame remaining fixed in space while the ECEF frame rotates around it.

C EC I
EC EF =

 cosω sinω 0
−sinω cosω 0

0 0 1

 t (4.3)

The conversion to the ECEF frame can also be found by taking the distance from the center of the Earth in
addition to the altitude R, the latitude δ, and longitude τ, as shown in equations 4.4 to 4.6.

rx,EC EF = R cosδcosτ (4.4)

rx,EC EF = R cosδsinτ (4.5)

rx,EC EF = R sinδ (4.6)

E-frame

The equations of motion are based on the E-frame. This set of equations considers the velocity in a local
vertical and local horizontal relative to the Earth’s center. The components are the north-pointing velocity vN ,
the east pointing velocitty vE and the downwards pointing velocity vD . To complement velocities, spherical
coordinates are used for the position of the RLV. The environment considers a completely spherical Earth,
which means that geodetic and geographic coordinates are the same. The longitude δ of the RLV is measured
with the Earth’s vernal equinox pointing towards δ = 0 at t = 0. This considers no inclination of the orbital
plane, and as such the latitude φ is 0 at the equator.
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Angle of Attack Formulation

The study in the simulator considers a 3-DoF approach, and as such, rotational kinematics of the RLV are not
considered. The angle of attack is defined as the between the rocket pointing vector and the velocity vector,
in the ECI frame. This formulation is given in Siouris [55], and the angle of attack is given in eq. 4.7. The
pointing vector in the ECI frame RN T is the unit vector of thrust, and the thrust magnitude vector RN Tm is
simply the thrust vector in ECI.

α= arccos
RN T ·v EC I

RN Tm ×|v EC I | (4.7)

4.1.1 Kinematic Equations of Motion

The equations of motion for the 3-DoF simulation are shown below from eq. 4.8 to 4.13. These have been
taken from [43].

v̇N = F E
x

m
−2ωvE sin(δ)− (ω)2R sin(δ)cos(δ)

v2
E tan(δ)− vN vD

R
(4.8)

v̇E =
F E

y

m
+2ω(vD cos(δ)+ vN sin(δ))+ vE

R
(vN tan(δ)+ vD ) (4.9)

v̇D = F E
z

m
−2ωvE cos(δ)−ω2R cos2 (δ)− v2

E + v2
N

R
(4.10)

δ̇= vN

R
(4.11)

τ̇= vE

R cos(δ)
(4.12)

Ṙ =−vD (4.13)

LP Velocity and Position

Two different reference frames are used for the guidance algorithm and for the simulator. Whilst the simu-
lator propagates the equations of motion as shown before in the E frame, the guidance algorithm considers
position and velocity in LP frame. The equations for converting to this frame are given in 4.14 and 4.15 below,
and have been taken from [20]. The subscript M denotes the missile location, whilst LP the launch pad loca-
tion. The velocity in the LP frame can be converted directly with the DCM C N ED

LP show in eq. 4.17 using the
NED velocity vN ED . The position rLP requires calculating the ECEF to NED DCM as given in eq. 4.16.

rLP =C N ED
LP C EC EF

N ED (rEC EF (t )− rEC EF (0)) (4.14)

vLP =C N ED
LP vN ED (4.15)

C EC EF
N ED =

 −sinδcosτ −sinδsinτ cosδ
−sinτ cosτ 0

−cosδcos t au −cosdel t a sinτ −sindel t a

 (4.16)

C EC EF
N ED =

0 1 0
1 0 0
0 0 −1

 (4.17)

Downrange and Crossrange distance

To be able to determine the relative ground track distances, the downrange and crossrange must be defined.
These refer to the ground track distance relative to a 0 change in τ, and 0 change in δ for the downrange
and crossrange, respectively. This helps give a more realistic representation of the final position norm metric
||rv ||, as using vector distances in the LP frame would assume cutting through the Earth to the final position
from the LP point, thus being an underestimate. The eq. for downrange is given in 4.18 and crossrange in
4.19.

Xe = Re (sin(
π

2
−δLP )(τM −τLP )) (4.18)

Ye = Re (sin(
π

2
−τLP )(δM −δLP )) (4.19)
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4.2 Environment

The environment of the simulation considers the dynamics included, their constants, and the trajectory re-
quirements. The sub-sections below will describe these dynamic models with a brief motivation for their
inclusion.

4.2.1 Dynamics Models

When dealing with real world applications or trying to simulate real world applications in trajectory opti-
mization, the forces being examined must be a function of the state parameters and some other constants. It
must also be accurate enough so as to minimize the difference between the real acceleration value and the
calculated value. In closed form solutions provided by Zarchan [71] to missile guidance, more commonly
applied to 2D problems, the only acceleration considered is gravity as a constant 9.81 m

s2 . This simplifica-
tion allows an analytical form of the trajectory in x and y coordinates. Undoubtedly, closed-form solutions
may provide results more efficiently and can be used as a preliminary experiment. However, the limitation
of the dynamics to a constant gravitational acceleration is too restrictive. We will see in literature results of
trajectory optimization that the effects of atmospheric drag at lower altitudes have a considerable effect on
the trajectory [17]. Therefore, drag and lift will also be included.
The formulation of any acceleration on the RLV can be formulated by starting with Newton’s second of law
of motion. An important framework when considering this law is the reference frame in question. It is more
practical and intuitive to solve and represent acceleration models and other parameters in terms of the ECI
frame. In this frame, Newton’s second law can be expressed as shown in 4.20, where v refers to the velocity,
m the mass, and r the position.

F = d

d t
(mv ) = d

d t
(m

dr

d t
) (4.20)

As shown in 4.1, a fixed reference frame (ECEF) can be reformulated into an inertial reference frame (ECI).
Similarly, Newton’s second law can be reformulated so that it is invariant in different inertial reference frames.
Substituting Eq. 4.1 & 4.2 into 4.20 we arrive at Eq. 4.21. W represents the velocity of the relative reference
frame used in fig. 4.1. Of importance, is the second term of Eq. 4.21, which tells us that Newton’s second law
is invariant only when the change in mass of the system is zero.

F = d

d t
(mv )−W

dm

d t
(4.21)

Figure 4.2: From left to right: regions of zonal, tesseral, and both harmonics, taken from Wakker [66]

Thrust Force

Ideal rocket theory considers that a force is applied on the system by an expulsion of mass which decreases
over time. It is important to note that the law of conservation of mass is still maintained (as all others), as in
the mass of the missile plus the mass of the particles in the expulsion plume is constant. Applying Newton’s
second law of motion for this point mass system relative to an inertial reference frame we get Eq. 4.22, where
ṁ is the mass flow leaving the rocket engine per unit time, and ve is the effective exhaust velocity.

FT −ṁve = M
d vC oM

d t
(4.22)
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The form of thrust used by algorithms presented in this report is given by Eq. 4.23 [70]. Ae is the exhaust
area of the rocket nozzle, and Pe & Pa the pressure at the end of the rocket nozzle and the ambient pressure
respectively. The second term in the equation does not seem intuitively to represent the final derived sec-
ond law aside from the first term. The second term is the pressure drop that occurs when the nozzle is not
able to achieve "optimum expansion". It can still be proven it is derived from the second law by considering
the body of gas inside the combustion chamber and rocket nozzle. As shown by Zandbergen [70], drawing a
boundary on the system consisting of the chamber and nozzle (resulting in a surface integral S I ), conserva-
tion of momentum yields Eq. 4.24, where the first area integral can be simplified in mass rate times expulsion
velocity.

F = ṁve + (Pe −Pa)Ae (4.23)∫
SI

(Pi −Pa)dSi =
∫

Ae

ρe (Ue )2d Ae +
∫

Ae

(Pe −Pa)d Ae (4.24)

The exhaust velocity ve is given by eq. 4.25.Note that R refers to the ideal gas constant, whose value is the
specific gas constant of the propellant and can be calculated by eq. 4.26 using the general gas constant R∗
whose value is 8.314362618 J/molK [1], and the molar mass mM .

ve =
√

2
γ

γ−1
RTc (1− Pe

Pc
)
γ−1
γ (4.25)

R = R∗

mM
(4.26)

The known parameters of the rocket engines in this study are the sea-level gravity g0 and the specific impulse
Isp , taken as the specific impulse at vacuum Isp,vac . Knowing the reference thrust Tr e f to achieve, we can
obtain the ṁ through eq. 4.27.

ṁ = Tr e f

Isp g0
(4.27)

The ideal thrust equation, shown as 4.23 has some limitations when representing the behavior of overexpan-
sion, that is when Pa < Pe . This is because if we assume that the exhaust velocity ve is the one calculated at
vacuum, and the only variables are ṁ, Pa and Pe , the equation will yield a higher thrust value than achievable
at optimum expansion when Pa = Pe . For this reason we assume two different formulations of eq. 4.23 by
taking different assumptions of the MX and M10 engines. The first, more conservative approach, is consid-
ering that the engines have ideal altitude adapting nozzles, which experience optimal expansion for when
0 ≤ Pe ≤ Pa . This is programmed as follows in eq. 4.28.

FT = ṁve +min[(Pa −Pe ),0]Ae (4.28)

In the case that overexpansion is of interest, then a first-order approximation can be made by considering that
Pe
Pc

remains constant. The procedure to make this approximation of overexpansion loss is to first calculate ṁ
with eq. 4.27. Then, the ideal rocket theory equation gives us another formulation for ṁ, as a function of γ,
Pe , Pc , R, Tc , and Ae . Knowing ṁ, the exit to chamber pressure ratio can be found by manipulating eq. 4.29.

ṁ = Ae
Pcp
RTc

√
2γ

γ−1
(

Pe

Pc
)

2
γ (1− Pe

Pc
)
γ−1
γ (4.29)

The new Pe can be determined by multiplying Pc by the constant Pe
Pc

, as shown in equations 4.30 and 4.31.

Pc = ṁ
√

RTc
Ae√

2γ
γ−1 ( Pe

Pc
)

2
γ (1− Pe

Pc
)
γ−1
γ

(4.30)

Pe,new = Pc
Pe

Pc
(4.31)

Finally, the new effective thrust can be calculated by re-evaluatiing ve with eq. 4.25, and then plugging in
Pe,new as Pe in eq. 4.23.
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Aerodynamic Forces

The aerodynamic forces on launch vehicle are the drag FD , lift FL , and side force FS . For this study the model
is simplified to exclude any side force as the sideslip angle β is treated as part of the effective angle of attack
αe f f . Eq. 4.7 is used to calculated this effective angle of attack (α=αe f f ). For the calculation of these forces,
the atmospheric density ρ, coefficients of drag CD and CL , and cross-sectional reference area of the RLV Sr e f

are used. To obtain CD and CL the vehicle optimization routine’s results are used as inputs for the geometry of
the first stage. The coefficients are then formulated for varying αe f f , and mach number M . For the purposes
of this study, CD and CL are not functions of altitude h as the prior parameters are more influential and higher
fidelity is not needed.
FD is calculated in the ECI frame by considering the relative velocity vector in the ECI frame Vr el , which is the
velocity that the RLV experiences relative to the wind. The formula for Vr el is given in eq. 4.34. For FL , due to
the abscence of vehicle rotational states, the velocity vector orthogonal to this is evaluated. This vector, vr el ,⊥,
is given in eq. 4.33. To calculate the perpendicular vector relative to the vr el and the direction of flight, the
ECI velocity v EC I and position r EC I is used. The formulation is based on Rodrigue’s rotation formula, used
to rotate a 3D vector given an angle and a reference axis [15]. The formula requires calculation of the plane
that skews the original vector to the new rotational direction. This planeΠvr el ,⊥ is simply the plane formed by

r EC I and v EC I , as shown in eq. 4.32.

Πvr el ,⊥ = vr el r EC I

||vr el ||||r EC I || (4.32)

vr el ,⊥ = vr el cos(
π

2
)+Πsin(

π

2
)+ (Π ·vr el )(1−cos(

π

2
)) (4.33)

vr el = vEC I
r el −Ω× r EC I (4.34)

F EC I
D =−1

2
ρSr e f CD ||vr el ||2 (4.35)

F EC I
L = 1

2
ρSr e f CL ||vr el ,⊥||2vr el ,⊥ (4.36)

Gravity

The gravitational acceleration on the RLV is calculated in the E-frame. No perturbations effects like spherical
harmonics are considered for this study, as the altitudes and duration of flight are presumed to not influence
the dynamics significantly. The formula for gravitational force Fg is given in eq. 4.37. The gravity is dependent

on the earth gravitational constant µE ar th , whose value is 3.986∗1014 m3

s2 , the earth pointing vector which is
the unit vector of the position vector in ECI, and the distance from the spacecraft to the center R, which is a
state variable in the equations of motion 4.13.

F EC I
g =−m

µE ar th

R2

r EC I

||r EC I || (4.37)

4.2.2 Atmospheric Models

Acceleration models may also be a function of parameters, which can be functions of state variables them-
selves. They can be represented by a tabulated form or an analytical form. Just like acceleration models, a
trade off between realism and complexity of the model is imminent. Our data parameters, whose values are
related as a function to the state parameters, are density ρ, and pressure P . These influence the drag and
thrust respectively. The drag FD is directly proportional to ρ, as seen in Eq. 4.35. The thrust is influenced
by the pressure based on the exit nozzle pressure Pe and the ambient pressure Pa , which is the one that is
calculated by a model.

Exponential

The simplest and commonly used model for atmopsheric effects is the exponential model. This is given by

equation 4.38 [7]. ρ0 is the density at sea level, which we define as 1.225 kg
m3 . h is the altitude, and H is the

scale height constant, which is 7200 m.
ρ = ρ0e−h/H (4.38)
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The altitude can be found from ECI coordinates with Eq. 4.39, where Re is the radius of the Earth (6378136
m).

h = ||r ||−Re (4.39)

Similarly, the pressure can also be represented with an exponential model and with CIRA data (see below).
The exponential model for the pressure is shown in equation 4.40.

P = P0e−h/H (4.40)

In principle, the only constants needed to calculate the relevant atmospheric data are the values at sea level
and the scale height (H).

CIRA

For a higher level of accuracy, there are the tabulated COSPAR international Reference Atmosphere (CIRA)
models. Three types of models have been tabulated: CIRA low, CIRA mean, CIRA high. These are based on
high (T∞ = 696K ), low (T∞ = 1310K ), and mean (T∞ = 1020K ) variations of solar and magnetic activity as
was done in [19]. The Committee on Space Research (COSPAR) developed this atmospheric reference models
of temperature and densities from 0 to 2000km. The model accurately represents the features of different
levels of the atmosphere: tropopause, stratopause, and mesopause. One reason such tabulated models may
be more accurate is that they can represent discontinuities or irregular slopes of the function of the data
parameter vs. the independent variable (height), which analytical equations may not. The low and high
models are the values at seasons where either density or temperature are at an overall minimum or maximum
[18].

Standard Atmosphere 1962

The Standard Atmosphere 1962 model has been tabulated from an already existing database used in a op-
timization package called GPOPS-II, in one of its example problems for rocket re-entry. The data has been
verified with the original report [? ]. The original data included ratios of P

P0
rather than the actual ambient

pressure at sea level P0. This is also true for the densities. As such, the constants used for this model are
shown in table 4.1.

Constant Definition Value

R ( R◦ f t 2

sec2 ) Air gas constant 1.71655e3
γ Specific heat ratio 1.4
P0 (psi) Sea level pressure 14.695972

ρ0 ( sl ug
f t 3 ) Sea level density 2.3768846e-3

M0 ( g
mol ) (Mean) Molecular weight at sea level 28.9644

Table 4.1: Standard atmosphere 1962 model constants.

COESA 1976

The COESA (Committee on Extension to the Standard Atmopshere) 1976 model is included in MATLAB as a
function. Below and above values of 0m and 84852m the function extrapolates values. The model includes
values of atmospheric temperatures, speeds of sounds, pressures, and densities.

NRLMSISE-00

The NRLMSISE-00 is a semi-empirical atmospherical model that contains definitions for atmospheric vari-
ables from the ground to the exobase. At the thermosphere, the model uses Bates-Walker equations that given
temperature and density of species as an analytical function of altitude. It uses modifications of the equa-
tions of Hedin for solar flux calculations, oxygen profile, simulation of chemistry and dynamic flow effect on
species, and thermal diffusion factors. For the mesosphere, the connection between the lower thermosphere
and altitudes below 62.5 km are smoothed [45].
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Configuration
Model
Pa A ρ

Low Fidelity 62 Standard Atmosphere 1962 Standard Atmosphere 1962 Standard Atmosphere 1962
Low Fidelity 76 COESA 1976 COESA 1976 COESA 1976

High Fidelity 62
nM with S.A. 1962, γ, R with S.A. 1962,

NRLMSISE00
reference T with NRLMSISE00 reference T with NRLMSISE00

High Fidelity 76 nM with COESA, γ, R with S.A. 1962,
reference T with NRLMSISE00 reference T with NRLMSISE00

Table 4.2: Atmospheric model variations used for 3-DoF simulations and guidance algorithm.

4.2.3 Atmospheric Model Selection Motivation

Certain models are considered to have qualitatively a better representation of the real world dynamics. There
are already some insights that can be made about the selection of aerodynamic models. A fidelity scale is
created to rank the different models examined for this study. From highest to lowest fidelity, is NRLMSISE-
00, COESA 1976, and Standard Atmoshere 1962. The issue with these atmospheric models is that they don’t
all contain the necessary information to completely model the atmospheric parameters, which are A for M
calculation, Pa for engine back-pressure losses, and ρ for aerodynamic drag and lift. COESA 1976 and SA
(Standard Atmosphere) 1962 models do contain this information. However, for NRLMSISE-00, to complete
the environment models, it must be coupled with either COESA’s or SA’s data. This leads to two different
additional models, for which will be named High Fidelity 62 for coupling NRMLSISE-00’s data with SA and
High Fidelity 76 for coupling with COESA. The HF (High Fidelity) 62 model is compiled by first obtaining the
pressures and temperatures at the given altitude(s). NRLMSISE-00 provides T and ρ. Therefore, in order to
obtain Pa using the model, the ideal gas law is used by considering a constant factor of number of moles times
the gas constant nM R. From the ideal gas law as given in eq. 4.41, we reformulate the equation to obtain the
nM as shown in eq. 4.42, for the SA T and P data, and eq. 4.44, for the COESA T and P data.

PV = nM RT (4.41)

nM ,HF 62 = PS A

RTS A
(4.42)

Pa,HF 62 = nM ,HF 62RTN RLMSI SE−00 (4.43)

nM ,HF 76 = PCOES A

RTCOES A
(4.44)

Pa,HF 76 = nM ,HF 76RTN RLMSI SE−00 (4.45)

To calculate A, T on the reference model (SA or COESA) is used and plugged into eq. 4.46.

A =√
γT R (4.46)

As for the other two models, CIRA and the exponential ones, their choice for not being included is the fol-
lowing. The exponential model is dependent on a scale height which can be modified. However, it does not
contain information to form a fully dependent model for P , ρ, and A, needed for the dynamics in the prob-
lem. This introduces the need for more dependencies from other model data which further increases the
model pool. For the purposes of this study, the physical fidelity of the model is not so much of concern as is
the discrepancy between a lower and higher (assumed) fidelity atmospheric model to mimic the uncertain-
ties in the dynamics present in the real world GNC loop. For the CIRA model, the same is also true based on
its dependency of atmospheric temperature regions.



Chapter 5

Launcher Configuration

The configuration of the launcher is in the early stages of development and will be concluded during the first
steps of the thesis. AVIO is currently considering a two stage vehicle, whose configuration is based off a cur-
rent work in progress M10 stage/engine, and a hypothetical MX, which has a thrust level six times more than
the M10. Regardless of the chosen configuration, the selection of the propulsion system, and its own and the
rest of the vehicles mass and sizing will be design variables in the equations of motions. These equations,
particularly the thrust equation, consider the same assumptions of ideal rocket theory. Real rocket motors
undergo other phenomenon, such as heat transfer from or to the expanding gas flow in the motor, non-ideal
gas behavior, heterogeneous fluid flow, non-axial flow through the nozzle, flow separation, friction, shock
waves, and chemical reactions to name a few. In an effort to bridge the gap between ideal rocket theory and
real rocket performance, correction factors may be used.
In the later sections, the first and second stage geometry of the vehicles are detailed. These include sizing
of the stage, interstages, and payload. They also include mass formulas used for the propellants, pressure
system, structure, engine, payload fairing, payload internal bay, and interstage. When design parameters are
not directly available from AVIO, they can be solved using relationships for geometry or equivalent theory.
Regression analysis has also been completed from previous literature for some components of an ELV which
will be assumed to work for an RLV here.

GLOM

Payload 
Bay

Adapter

Fairing VEB

Payload

Interstage

Stage

Pressure 
System Propellant Structure

Engine

OxidizerFuel Tank

Landing 
Legs

Figure 5.1: GLOM breakdown of the RLV adapted from [50]

Figure 5.1 shows the breakdown of the mass components that make up the gross lift off mass (GLOM) of
the system. The blocks shaded in blue indicate that the system makes up part of the total inert mass mi ner t ,

21
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whilst the blocks shaded in light orange indicate that the component makes up part of the total wet mass,
referred to as propellant mass mpr op of the system. We use the subindex i to denote the different stages of the
component. Components of the first and second stage will have identical equations but different variables
in some cases and result in different masses and geometries in the end. The payload is not referred to as a
stage of the vehicle and therefore will have its own sizing equations and methods. This is the same for the
interstage connecting stages 1 and 2.

5.1 Propulsion

The stakeholder requirements for the propulsion system are relisted below. We begin with the introduction
of the M10 engine listed in the latter 2 requirements.

• REQ-PR-1 Throttling rate is limited to 50% of maximum per second per stage

• REQ-PR-2 The first stage shall have two MX and one M10 engines

• REQ-PR-3 The second stage shall have one M10 engine

The ideal rocket thrust equation is repeated down below again for convenience, which represents the total
mass thrust based on ideal rocket theory. To model the thrust in the dynamics using this equation, infor-
mation on ṁ determinable by the Isp , the ambient pressure described by the atmospheric model in section
4.2.2, and the exit pressure Pe at the nozzle exit must be known. The latter parameters are properties of the
engines used for this study, the M10 and MX.

FT = (ṁve +
πD2

e

4
Pe )− πD2

e

4
Pa

The M10 engine is the first European methalox engine and stage that will be used for the new class of VEGA E
and VEGA E light vehicles. The engine is a cryogenic engine running on methalox; liquid methane CH4(L) and
liquid oxygen O2(L) propellant. Fig. 5.2 from [29] shown below details the characteristics of the stage/engine.

Figure 5.2: M10 engine characteristics given by [29]

A more recent research focus at AVIO has been the MX engine, which is meant to perform similarly to the
M10 but with 6 times more the maximum thrust capability. The currently known details of the MX engine
based on information provided by AVIO are listed in table 5.2. For the rotational equations of motion, it must
be known what the effective moment about the RLV’s longitudinal body axis iB is; this points out from the
bottom at the engines to the top of the nose cone of the payload. Fig. 5.3 shows a preliminary configuration
of the two MX engines and the single M10 engine on the first stage of the launcher. The axis labeld jB and kB

are the RLV body axis, with the iB axis pointing into the page. For the second stage, no offset between the iB

axis and the engines exist, as the single M10 engine is centered.
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Parameter Value Source
Isp (sec) 362 Stakeholder
FT (kN) 100 Stakeholder
De (m) TBD Stakeholder
O/F ratio 3.4 [3]
ρox (kg/m3) 1.14 [2]

ρ f (kg/m3) .423-.72
Lower bound:[2]

Upper bound:[10]

Table 5.1: M10 Engine characteristics grouped from stakeholder information and literature.

Parameter Value Source
Isp (sec) 317 Stakeholder
FT (kN) 600 Stakeholder
De (m) TBD Stakeholder
O/F ratio TBD Stakeholder
ρox (kg/m3) 1.14 [2]

ρ f (kg/m3) .423-.72
Lower bound: [2]

Upper bound: [10]

Table 5.2: MX Engine characteristics grouped from stakeholder information and literature.

𝑗𝑏

𝑘𝑏

−𝑥𝑏 𝑥𝑏

𝐷𝑒,𝑀𝑋 𝐷𝑒,𝑀10

Figure 5.3: MX (orange) and M10 (blue) engine configuration on vehicle body axis for first stage.

In section 4.2.1 the equations for the thrust of the rocket using ideal rocket theory were detailed. The
difference between this study and that of [42], [64], [65], and [50] is that some information on the propellant
is already given by AVIO. What needs to be determined however is the engine mass and size. This can be done
by usage of regression equations formulated by Zandbergen [69]. The M10 engine is a pump fed liquid engine.
In [69], mass estimation relationships (MER) for engines running on hydrolox and kerolox where done, but
not on methalox. The results however showed that the relationships for kerolox and hydrolox engines can be
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used to reasonable accuracy for methalox engines. In addition, if the area ratio is known, the estimation of
the length and diameter maybe further improved. The relationship for the mass and sizing of the engine. For
the MX stage, whose relationships for sizing and mass found to be applicable for methalox cases are given in
tab. 5.3.

Relationship R2 RSE Number of Points
D = .0455T .2745

max 0.794 14.7% 21

L = .1362T ,2279
max 0.783 17.6% 22

M = 1.104∗10−3Tmax +27.702 0.987 25.8% 25

Table 5.3: Relationships for a hydrolox propellant liquid engine from [69]

There are several parameters used in regression and showed in the Zandbergen study which give insight
into the goodness of fit of regression relationships. RSE represents the relative standard error, and is deter-
mine by dividing the standard error of the estimate by the estimate itself, and multiplying the fraction by
100. The RSE indicates the reliability of the estimation; higher RSE means less reliable. The study considers
that RSE’s above 30% are to be considered carefully, despite there being no fixed threshold. R2 represents
the coefficient of multiple determination. This is the degree to which the variation in the dependent variable
observations are account for by the regression relationship. This is the difference between 1 and the fraction
of the residual sum of squares SSR and the total sum of squares SST .
To determine the exit pressure of these engines, the NASA CEARUN online web-based interface for the Chem-
ical Equilibrium with Applications (CEA) software can be used. This program allow calculation of chemical
equilibrium compositions of propellants, in this case the methalox used in both engines. The inputs to the
program are the O/F , fuel and oxidizer selection, and combustion chamber pressure Pc The program then re-
turns various chemical properties at different O/F and Pc ranges selected for the chamber and throat sections
of the rocket nozzle. These include most importantly the temperature, pressures, and specific heat ratios γ.
Moreover, they give general values of c∗, CT , and Isp which are useful for cross validation given the specific
impulse and O/F is already provided by stakeholders.

5.2 Stages

The first stage of the launch vehicle consists of two MX engines, and one M10 engine. The second stage is a
M10 stage/engine. As mentioned, the MX engine is supposed to produce 6 times more the amount of thrust
than the M10. The performance parameters for the thrust, namely the O/F ratio, Isp , and Tmax are already
known. The length of the stages is given by Eq. 5.1.

Lst ag e,i = Lcb,i +2rpr ess,i +Leng ,i (5.1)

The parameters are the following: common bulkhead tank length Lcb,i , circular pressure tank radius rpr ess,i ,
and length of the engine reng i ne,i . The common bulkhead design for a propellant tank maximizes the amount
of volume available for propellant. SpaceX’s Falcon 9 and Rocket Lab’s Electron RLV’s both use common
bulkead propellant tanks for Kerolox engines. A design parameter associated with this design is the ellipse
ratio kel l i pse , which specifies the eccentricity of the ellipse at the top and bottom of the tank. This factor will
be used to determine the diameter of the common bulkhead tank Dcb,i , length of common bulkhead, length
of interstage Li nter , and payload adapter Lad apt , and finally mass of common bulkhead tanks mt ank,i . The
sections following will detail the procedures of estimating these parameters.

5.2.1 Propellant Tank

The diameter for the common bulkhead tank is given in Eq. 5.2.

Dcb,i =
Vcb,i

π( SL−1
4kel l i pse

+ 1
6kel l i pse

)
(5.2)

The diameter requires knowledge of the total volume of the tank, which can be determined based off the
knowledge of the O/F ratio and the total propellant volume itself, shown in Eq. 5.3. The useful volume of the
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tank is limited by the effects of ullage, boil-off, and other effects. The correction factor kte for these parasitic
tank effects on the volume is selected as .1 from the work of [50] and [65] and will be selected here as well.

Vcb,i = (1+kte )(m f l ,iρ f +mox,iρox ) (5.3)

The length of the common bulkhead tank is found by taking the length of both the oxidizer portion (Eq. 5.5),
the fuel portion (Eq. 5.6), with the final term adding the extra elliptical portion at the top of the oxidizer tank
5.4).

Lcb,i = Lox,i +L f l ,i +
Dcb,i

kel l i pse
(5.4)

Lox,i =
4Vox,i

πD2
cb,i

− 2Dcb,i

3kel l i pse
(5.5)

L f ,i =
4V f ,i

πD2
cb,i

(5.6)

The mass of the common bulkhead tank can be found by introducing a new parameter for the design factor
of ellipsoidal heads called E

′
, given in equation 5.7.

E
′ = 2kel l i pse +

1√
k2

el l i pse

ln(
kel l i pse +

√
k2

el l i pse −1

kel l i pse −
√

k2
el l i pse −1

) (5.7)

The mass of the common bulkhead tank can then be written as a function of this parameter, as well as the the
local thickness buildup factor kpt considered for piping and tank connections as shown in equation 5.8. The
density of the propellant tank material is given as ρcb

mcb,i = (1+kpt )(
3πr 2

cb,i tcb,i E
′
ρcb,i

2kel l i pse
+2tcbπrcb(Lcb,ox,i +Lcb, f l ,i )ρcb,i ) (5.8)

To accommodate the usage of the cryogenic propellants, tanks need thermal protection systems (TPS). Based
on the work done for a multidisciplinary design optimization of ELV, equations 5.9 and 5.10 show the masses
needed for both oxidizer and fuel tanks respectively[13]. These are based off H2(L) but will be assumed to be
applicable to CH4(L) as well.

mox,T PS,i = .9765(πDcb,i Lox,i +πD2
cb,i ) (5.9)

m f ,T PS,i = 1.2695(πDcb,i L f l ,i +πD2
cb,i ) (5.10)

5.2.2 Pressure System

The final component that adds considerable mass to the stage is the pressure system. Once again, a correction
factor kpr ess is taken here equivalent to 0.1 for connections of piping and local thickness. The mass of the
pressure system (Eq. 5.11) is determined by both the mass of the pressurant gas mg ,pr ess and the pressurant
tank mt ,pr ess , shown in equations 5.12 and 5.13 respectively.

ms y s,pr ess = mt ,pr ess +mg ,pr ess (5.11)

mg ,pr ess = 1.1
Ppt Vpt

Rg ,pr ess Tg ,pr ess

γ

1−Ppt /Ppr ess
(5.12)

mt ,pr ess = (1+kpr ess )(4πr 2
pr ess tpr essρpr ess ) (5.13)

Vg ,pr ess =
mg ,pr ess Rg ,pr ess Tg ,pr ess

Ppr ess
=

4πr 3
pr ess

3
(5.14)

tpr ess = SF
Ppr ess rpr ess

2σy,pr ess
(5.15)
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5.3 Interstage

The interstage is used to connect the first stage to the second stage. Following the work of [50], slanted inter-
stages by selecting their length, conical angle, and required thickness can be designed. Interstages are slanted
in order to accommodate the difference in diameters of the first and second stage. An extra 10 cm are account
for the engine size to size the interstage, as shown in Eq. 5.16.

Li nter = Leng ,2 + .1 (5.16)

The conical angle of interstage seection ∆i nter can be found by Eq. 5.17.

∆i nter = arctan(
|Dcb,1 −Dcb,2|

2Li nter
) (5.17)

In order to determine the mass of the interstage, the thickness of a conical shell must be determined. The
thickness is modeled after the largest load the RLV is expected to experience, which is assumed to occur at
take-off. The thrust at take off FT,T O considers the maximum buckling load the interstage will experience and
thus the thickness of the shell can be determined by rearranging Eq. 5.18.

FT,T O = kbuckl i ng
2πE(ti nter /SF )2√

3− (1−υ2)
cos2∆i nter (5.18)

The mass of the interstage is found by treating it as a conical frustum as given by Eq. 5.19, with base diameter
Dcb,1 and top diameter Dcb,2.

mi nter =πti nterρi nter
|Dcb,1 −Dcb,2|

2

√
(
|Dcb,1 −Dcb,2|

2
)2 +L2

i nter (5.19)

There is another structure present in rockets that covers the forward skirt to the interstage, and the aft skirt to
engines. This allows smoothing of the surfaces to result in a better aerodynamic shape of the RLV. The length
of this stage (Eq. 5.20) does not influence the total length of the RLV, but it does add to its mass, given by Eq.
5.21.

Lstr uc =
2rcb,1

kel l i pse
+2rpr ess (5.20)

mstr uc = 2πrcbLstr uc tstr ucρstr uc (5.21)

5.4 Payload Bay

The payload bay is comprised of the vehicle equipment bay mass mV EB , the payload adapter mass mad apt ,
the payload mass mpayload , and the fairing mass m f ai r i ng . The equivalent sizing method and selections are
detailed below.

5.4.1 Fairing

The payload fairing mass m f ai r i ng is based off the VEGA-C vehicle [4]. This is a parabolic shaped fairing.

5.4.2 Payload Adapter

The payload adapter uses the MER shown in Eq. 5.22, which is a function of the payload mass mpayload [13].

mad apter = .004775m1.0132
payload (5.22)

5.4.3 Vehicle Equipment Bay

The vehicle equipment (VEB) mass is given by the MER for the VEB is shown in Eq. 5.23 [13]. The inert mass
in the equation refers to the inert masses of the first and second stage combined. This includes everything
but the propellant masses (fuel, and oxidizer) shown in fig.5.1, and the payload bay mass.

mV EB = .3672m.6798
i ner t ,1+2 (5.23)
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5.4.4 Payload

The payload mass for the configuration has two options; 1000 kg, and 2000kg. This is restricted by REQ-LV-2.

• REQ-LV-2 The RLV shall be flown in two payload classes: 1000 kg and 2000kg with the rest of the archi-
tecture, aside the propellant masses, remaining the same.

The reason for this follows from the work of [14] as was identified only one RLV exists in this range, being
Electron’s. This payload mass will allow more tuning given the restriction of structural index imposed by
REQ-LV-1. A clarification is made here that this requirement allows remodeling of the adapter mass which
can be estimated by the MER in Eq. 5.22, which is a function of the mpayload itself.

5.5 Landing Legs

A key difference in the configuration of an ELV to that of a RLV is the inclusion of landing legs. These tech-
nically take part of the overall system of the first stage, but have been separated here as their own system to
simplify the graph shown in fig.5.1. Following the work of [14], it was mentioned that landing legs are stowed
against the first stage outer circumference, does not have effect on the aerodynamics of the RLV. Previous re-
search for landing leg mass estimation considered it being 10% of the first stage inert mass mi ner t ,1. This was
used in Tartabini’s study where the extra 10% was considered an additional increase from a ELV configura-
tion to a RLV [61]. Blau’s work validates this assumption using the estimations of the Falcon 9’s vehicle mass,
resulting in an increase in 10% of the GLOM due to the landing gears [9]. Price et. al. also saw a similar 9.41%
increase for a Mars-lander with the inclusion of landing gears [48].

5.6 Launch Vehicle

A simplified schematic of the RLV and its associated geometry and design variables are shown in fig. 5.4.
From now on, this RLV will be referred to as the VEGARLV, with the number indicating the number of stages.
For each stage, and the entire launch vehicle, the configuration must adhere to REQ-LV-1 repeated below.

• RQ-LV-1 The structural index of the entire launch vehicle and each individual stage should be within
the range of .08 and .12

The structural index SI can be calculated by Eq. 5.24, where mi ner t can be defined to be the inert, dry mass of
the entire launch vehicle or the an individual stage’s mi ner t ,i inert mass. The same is true for the propellant
mass mpr op which when considering the SI of a single stage Eq. 5.24 uses the propellant mass of that stage
mpr op,i .

SI = mi ner t

mi ner t +mpr op
(5.24)
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Figure 5.4: RLV geometry, variables, and material properties over simplified schematic for the 2*MX+M10 first stage and M10 second
stage. Fuel tank, oxidizer tank, turbine, pump, and gas generator block diagram with valves shown on the first stage has been adapted
from [71]



Chapter 6

Launch Vehicle Optimization

The launch vehicle optimization process includes defining the geometry and performance of the RLV. This
includes vehicle sizing of both the second and first stages, as well as the payload. Whilst the trajectory opti-
mization and the purposes of this study are to examine feasibility of return trajectories of the first stage, the
entire RLV, according to available statistical and tabulated data of mostly VEGA family launchers, is generated.
This is because in the preliminary study for the selection of the starting conditions for descent an analytical
ascent trajectory will be calculated with the entire RLV. Additionally, MX and M10 engine characteristics are
finalized through the process of engine sizing. Moreover, the main procedure involving optimization of the
RLV will include sizing and mass determination of both the dry and wet mass of the vehicle. Such formulas,
which have been presented in section 6 are interdependent on other RLV characteristics. The most isolated
optimization procedure is the mass and engine sizing itself which is done through tabulation of data avail-
able on NASA CEA. The rest of the vehicle is optimized using heuristical optimization, with the inclusion
of non-linear optimization for sub-problems involved in this procedure. This section will lead off with the
explanation of how the data from NASA CEA run was compiled, followed by how the multiobjective genetic
algorithm was written to complete the optimization procedure.

6.0.1 NASA CEA Runs

NASA CEA Run was given inputs of chamber to exit pressure ratio, propellant mixture ratio, and chamber
pressure of both the M10 and MX engines. This was done once as a single problem. The minimum and maxi-
mum values of the each of the inputs for the different engines and the corresponding intervals is displayed in
table 6.1. The intuition behind the selection of these ranges was done based on the compiled data of liquid
propulsion engines given by Rozemeijer[50] and Contant[14].
The chemical equilibrium problem type to derive characteristics of the engines was selected as the rocket
problem. Next, the pressures, which are considered as the chamber pressures of the engine, the fuel and oxi-
dizers, the oxidizer to fuel ratio, and the ratio of chamber to exit pressures are selected. The only constant for
the M10 engine is the oxidizer to fuel ratio, and the assumption has been made that this oxidizer to fuel ratio
is also true for the MX, given that it is meant to be an upscaled version of the M10. The process of generating
all the data requires multiple user runs as the maximum number of values that can be given to the chamber to
exit pressure ratio is 16. Following work from other students, the range of feasible chamber to exit pressures
range from an order of magnitude of 103 to 106. Runs with ratios lower and higher than this where attempted,
but results ultimately showed that they where not feasible.
Whilst NASA CEA run generates and tabulates data for the engines, it cannot select a specific combination
of values for these variables given a particular specific impulse that the user wants. Therefore, the second
procedure after generation of data is to transport the results of the runs in MATLAB or any other software that
can directly import the output data. NASA CEA also outputs the specific impulse for these runs. Moreovoer,
it outputs the specific heat ratio that is needed to solve equation 6.1. This is the Vandenkerckhove function
and it is only dependent on the specific heat ratio. Next, the ideal thrust coefficient is calculated, dependent
on the exit to chamber pressure ratio, specific heat ratio, and the Vandenkerckhove result as seen in equation
6.2. In equation 6.14 the ideal exhaust velocity of the nozzle given the chamber temperature and the ideal gas
constant, as well as the Vandenkerckhove result in calculated. Finally, equation 6.4 shows how to obtain the
ideal specific impulse of the engine using the result of the thrust coefficient and exit velocity, as well as the sea

29



30 6. Launch Vehicle Optimization

level gravitational acceleration. This final value is crucial because it allows us to determine, with a given error
margin, the engine characteristics of the MX and M10 that are most loyal to the given stakeholder standards.
The way to do this is to calculate the quality factor as defined by Zandbergen [69], of the specific impulse as
shown in equation 6.5.

Γ=p
γ(

2

γ+1
).

γ+1
2(γ−1) ) (6.1)

CF,i d = Γ

p
2γ

γ−1

1− Pe
Pc

γ−1
γ

(6.2)

ci d = 1

Γ

√
RTc (6.3)

Isp,i d = CF,i d ci d

g0
(6.4)

Zsp = Isp,r eal

Isp,i d
(6.5)

For convenience of the reader that the MX and M10 real specific impulses are 317 and 364 respectively. This
process of backward engineering allows us to obtain a range of possible M10, and MX engine configurations.
Finally, with the viable candidates seperated from the rest of the CEA results, the engine diameters are then
ultimately calculated in the following approach. A parameter K is calculated with the known exit velocity Ue

that is given by the CEA run results. This also uses the exit exit pressure, chamber pressures and temperatures,
specific heat ratio, and specific impulse quality factor, as show in equation 6.5. Then, with the knowledge of
the vacuum thrust of the engines, equation 6.9 calculates the exit area, which then is converted into diameter
as shown in equation 6.7, given the nozzle of the engine is perfectly circular.

Ue =

√√√√
2

γ

γ−1

RA

M
Tc (1− Pe

Pc

γ−1
γ

) (6.6)

De =
√

4Ae

π
(6.7)

K = Zsp
Pcp
RTc

(

√√√√ 2γ

γ−1
(1− Pe

Pc

2
γ

Ue +Pe ) (6.8)

Ae =
FT,vac

K
(6.9)

Variable Pc (bar) O/F Pc
Pe

Range 5:5:100 3.4
10:10:480
500:100:10000
10000:1000:15000

No. of inputs 20 1 150

Table 6.1: Total variations for NASA CEA run. 3000 different points evaluated in total for varying Pc and Pc
Pe

6.0.2 RLV sizing

The vehicle sizing procedure is encapsulated in a multiobjective genetic algorithm. The general overview
of the procedure is as follows. The inputs to the genetic algorithm are the first stage diameter, common
bulkhead end ellipse ratio, and the length of the oxidizer section. The selection of these 3 components has
been chosen so as to reflect their variability with respect to other factors. These variables have a continuous
analytical relationship with other factors, and as such it is advantageous to set up the search space in the
GA for such variables. There are other variables that are used in this procedure but because of their discrete
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nature they are called from outside the genetic algorithm. As such multiple runs of the GA to cover all the
possible combinations of these variables is selected. The first step is the selection of the MX and M10 engines
based on the first stage diameter. This can be determined simply by considering a 10cm distance between
motors assembled as seen in figure 6.1 and whose overall diameter must encompass the diameter of the first
stage as seen in equation. Next, the first stage propellant tank is sized, followed by the second stage. At this
point, the algorithm reaches a criteria check to determine whether the structural index is within a certain
threshold. If it is not, the structural index is improved by decreasing the propellant mass. If it is, the structural
mass (dry mass) of the vehicle is increased instead. Finally, the propellant mass is checked again to ensure
the most optimal structural ratio for the candidate possible. The genetic algorithm does this for every single
candidate solution. Below, further detail on how these procedures are carried out are detailed. The majority
of the relations used in this procedure are given by Huzel and Huang.

MX and M10 fitting

The first calculation when beginning to evaluate the objective function of a candidate solution is determining
which, out of the available engine choices, is the most optimal. Two criteria determine this choice. First, from
the tabulated data of feasible engine configurations a mesh is created out of the two variables: ID of M10 and
MX. All of the possible combinations are then subjected to a check to see whether the engine nozzles do not
extend beyond the first stage diameter of the RLV. We recall that this is an input to the RLV from the overall
multiobjective GA procedure. Then, the second criteria is to determine which of these has the most optimal
thrust at sea level. Equation 6.10 shows the criteria that is evaluated for this condition.

min |Psea,tot = 2(Pa,sea −Pe,M X )(
π

4
D2

e,M X )+ (Pa,sea −Pe,M10)(
π

4
D2

e,M10)| (6.10)

This criteria finds the minimum value of the relationship, which corresponds to the configuration that will
have the lowest exit pressure losses at sea level. The exit pressures and diameters of the M10, and MX engines
are all tabulated matrices in the procedure and therefore renders this a simple row and column index search.
This then gives the equivalent values of the pressures and diameters, as well as the engine ID that is stored in
the tabulated results.
The purpose of doing this, which is true amongst many other procedures in this discipline, is to attempt to
create candidates that adhere to best the main purpose of the study. This is to determine feasibility for the
RLV of the first stage. When beginning descent the RLV experiences little to no pressure losses due to the
pressure differential between nozzle exit and environment. However, at around 4000-5000 meters of altitude,
pressure losses begin to amount, and considering from previous studies of re-entry, the RLV begins a steadier
and slower decline at this atmospheric region. This is in part due to the aerodynamic forces that are building
up but additionally also due to the fact that the RLV needs to take into account all of the errors that have build
up prior in the descent (guidance solution failure, model mismatch, sensitivity study errors). As a result, and
again as reported in [20], the required thrust can spike up to the maximum achievable with similarly written
convex algorithms. It is this combination of increased dynamics and need to correct previous errors that
warrants careful attention to the selection of exit pressures earlier in the study. This procedure attempts to
partly cover this responsibility by making the RLV operational at lower altitudes. It is certainly more intuitive
to create a use-case of the engine from scratch, that is select an available thrust that functions more correctly,
but the scope of this study calls for the use of the MX and M10 engines specifically.

Stage Sizing

The sizing of the first stage is based on the common bulkhead characteristics as reported by Huzel and Huang.
A common bulkhead configuration refers to a launch vehicle body where the head of the stage serves both
as the junction to the upper stage and also as the head of the propellant tank its stage. As its name suggests,
the oxidizer and fuel section are seperated by a common bulkhead which together look like a capsule shaped
tank. Individually, both tanks have a cylindrical portion and an elliptical portion which may be protuding
outwards for the head of the tank (fuel portion) or inwards (oxidizer portion). These two sections when refer-
ring to the lengths l physical characteristics such as density ρ are denoted by subscripts c and e for cylindrical
and elliptical, respectively. Moreover, this design has already been chosen on Rocket Lab’s Electron and by
a previous study on re-entry [50]. The common bulkhead ends are ellipsoidal shaped, and have limited ec-
centricity. In fact, their eccentricity is limited by the relationship reported by Huzel and Huang of Combined
stress factor K against ellipse ratio k. The ellipse ratio of the tank is given by equation 6.11. This is however
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given as a direct input to the genetic algorithm, bounded between the limits of 1 (completely spherical) and
2 (highest eccentricity). The variable De,cb,1 denotes the diameter of the elliptical end of the common bulk-
head, with the subscript index after the second comma denoting that it is for the first stage. Only the end
that interfaces with the interstage is elliptical, whilst the lower portion is spherical. The purpose of doing this
is to simplify the design as introducing another point of eccentricity introduces not just one but many new
variables for the GA to handle.

kel l i pse =
Dcb,1

Del l i pse,cb
(6.11)

Next, the mass of the oxidizer and fuel section of the propellant tanks is calculated using relations 6.12 and
6.13 respectively. The variable lco refers to the length of the cylindrical portion of the oxidizer section.

mox = ρox (((
8π

3
a2)b +πa2lco))) (6.12)

m f =
mox

OF
(6.13)

The volume of the fuel can then be calculated using equation 6.14.

V f =
m f

ρ f
(6.14)

Then, the length of the cylindrical portion of the fuel section is calculated via equation 6.15.

lc f =
V f

πD2
cb,1

(6.15)

The thickness tc of this cylindrical section is then calculated with equation 6.16. SF refers to a scale factor
that has been chosen as 1.5 for this study and also adheres to most selections used in [13].

tc = SF
Pp,t f a

σy
(6.16)

Finally, the design factor of the ellipsoidal tanks is completely dependent on kel l i pse and it is given by equa-
tion 6.11. This can then be used to find the mass of the elliptical ends of the oxidizer and fuel sections as given
in equations 6.17 and 6.18 respectively.

me,o =πD2
cb,i te,oE

′ ρppt

2kel l i pse
(6.17)

me, f = me,o
te, f

te,o
(6.18)

The length of the engines are the only parameters related to the engines that are not determine in the engine
sizing procedure but are rather fixed constants based off the relationship found by Zandbergen for liquid
propulsion systems using regression analysis, and these are given in equation 6.19 and 6.20.

leng = .1362F (
T,vac .2279) (6.19)

The same is true for the masses of engines, another relation wholly dependent on the vacuum thrust.

meng = (1.104E −3)FT,vac +27.702 (6.20)

Ultimately these calculations allow us to find the total structural (dry) mass of the first stage, given by equation
6.21. Note that this equation also incorporates the thermal protection system mass given by equations 6.22
and 6.23. Moreover, the factor of 1.1 in front of the 2 relates to the landing leg mass that incorporates 10% of
the total stage 1 mass as discussed in section 5.5.

mstr uc,1 = 1.1∗2πDcb,1tc (lc, f + lc,o +2De,1)ρc +mt ps (6.21)

mox,T PS,i = .9765(πDcb,i Lox,i +πD2
cb,i ) (6.22)



33

m f ,T PS,i = 1.2695(πDcb,i L f ,i +πD2
cb,i ) (6.23)

The various thicknesses of the tank include the wall thickness at the knuckle tk , the wall thickness at the
crown tcr , the wall thickness on the ellipsoidal tank-end te , wall thickness at the spherical tank-end ts , and
wall thickness of a cylindrical tank section tc . The calculation for these thicknesses are shown from equation
6.24 to 6.29. These thicknesses naturally have varying calculations based on section of oxidizer of fuel and
are denoted by the corresponding subindex in the equation set. We recall that the reason for this is because
the oxidizer section contains a lower head that is spherical, and an elliptical one at the top. The fuel section
instead has an elliptical head at the top and an indented ellipse at the bottom.

tk,o = SF K Ppt ,oDcb,1

σγ
(6.24)

tcr,o = SF Pppt ,okel l i pse Dcb,1

2σγ
(6.25)

te,o = tk,o + tcr,o

2
(6.26)

tk, f = tk,o
Ppt , f

Ppt ,o
(6.27)

tcr, f =
tcr,oPpt , f

Ppt ,o
(6.28)

te, f =
tk, f + tcr, f

2
(6.29)

The interstage is the section that connects the first stage to the second stage and its length can be determined
adding a 10cm margin to the value of the length of the engine fitted on the second stage (M10). As a result,
the relation for the interstage length is given in equation 6.30.

li nter = lM10 + .1 (6.30)

After completion of the first iteration of calculation of the first stage parameters, the second stage is evalu-
ated using the same equations. Note that the second stage uses the same kel l i pse from the first stage, whose
reasoning returns back to the point of keeping the program simple and reducing the number of variables
for the genetic algorithm to propagate. For the purposes of this experiment, the interest is not in generating
multiple feasible results because even a single result will still allow variation of parameters of the RLV such
as propellant in the tank. Moreover, aside from the general continuous variables that the GA is fed, there are
also discrete variables which further increase multiplicity in the results (e.g. changing the material density
will unequivocally vary the mass, and even if the mass remains the same across different materials, then it
strengthens the argument that it may be the size restrictions that drive the RLV design, not the mass. The
opposite is also true).
Finally, the first iteration of the RLV of the candidate solution can be generated by calculating the total inert
mass given in equation 6.31. Note that this relationship also has a factor of 1.1 in the front, and this time it is
applied to the total inert mass of the RLV has a margin for wiring, tubing and other components apart from
the ones mentioned.

mi ner t ,tot = 1.1Σ2
i=1(mstr uc,i +mb,e,i +mm,e,i )+2mM10 +mM X (6.31)

Payload Sizing

The payload sizing and mass depends on the payload mass of the instruments chosen (a discrete parameter),
the total inert mass of the stages given by equation 6.31, and the diameter of the second stage Dcb,2. Following
Castellini’s work [13], we can use regression relationships for sizing the various components that encompass
the payload: payload fairing, vehicle equipment bay, instruments (also simply referred to as payload), and
the payload adapter. As was shown in [13], reusable launch vehicles may have multiple types of forms, with
the most typical for multistage vehicles being a larger diameter of the first stage and smaller diameter of the
second, with an increase in diameter for the payload fairing. Amongst mass considerations, it was noted that
there are also aerodynamic factors that come into play. For the purposes of this study, the aerodynamics of
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the payload fairing and hence the first and second stack of the launch vehicle are not of importance as the
preliminary analysis used to obtain the starting conditions for descent do not take them into play. Further-
more, in case any of the candidate’s solution was taken to analyse it’s aerodynamic feasibility the payload
fairing may be easily morphed into a different design with negligible changes in the overall structural index
of the vehicle. This is assuming that the payload itself is a volume of a cylindrical shape whose radius is freely
adaptable to suit a require size and and shape of the fairing for aerodynamic stability. The diameter of the
fairing is taken as the largest value between 2.62, which is reported in [4] for the VEGA-C, and the diameter of
the first stage. The diameter of the payload (instruments) is shown in equation 6.40, where the factor kDpl is
taken from [13], and is 1.12.

Dpl =
D f ai r i ng

kDpl

(6.32)

The lengths of the fairing and adapter can also be calculated with such regression relationships from [13].
These are given in equations 6.33 and 6.34.

l f ai r i ng = 1

2
2.313Dpl + .15Dpl ) (6.33)

lad apt = .15Dpl (6.34)

The payload fairing can be calculated by obtaining first the density of the fairing, as given by equation 6.37.
Then, the area of the fairing, which has been chosen from [4] to be a parabolic shape that represents best that
of the VEGA-C is given by equation 6.36.

ρ f ai r i ng =
(

D f ai r i ng

2 )2 + l 2
f ai r i ng )

2
D f ai r i ng

2

(6.35)

A f ai r i ng = l f ai r i ngπ(
√
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f ai r i ng − l 2
f ai r i ng +
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f ai r i ng

2
arcsin

l f ai r i ng

ρ f ai r i ng
− l f ai r i ng (ρ f ai r i ng −

D f ai r i ng

2
) (6.36)

The mass of the fairing is then given by equation 6.37, which is equal to A f ai r i ng times a factor of 13.3 given
by regressional analysis.

m f ai r i ng = 13.3A f ai r i ng (6.37)

The vehicle equipment bay, adapter, and total mass of the payload is then given by equations 6.38, 6.39, and
6.40 respectively.

mveb = .3762m.6798
i ner t ,tot (6.38)

mad apt = .0477526m1.01317
pay (6.39)

mp,tot = mpl +m f ai r i ng +mveb +mad apt (6.40)

The mass of the interstage can be calculated by determining first the slant angle that is formed between the
first and second stage as shown in equation 6.42. This gives the mass relationship shown in equation 6.43,
using the thickness formula for the interstage as shown in equation 6.41. The slant angle equation considers
both a increasing and decreasing diameter from stage 1 and stage 2, as noticed by the absolute term of the
difference between the two diameters.

Structural Indices

The structural index, whose formula for the total index is shown in equation 6.46, is evaluated for each can-
didate GA individual with the first and second stages as shown in equations 6.44 and 6.45 respectively. This
equation includes yet another 1.1 factor for the total dry mass of the first stage. This is applied again to ac-
count for a margin of error that considers weight of tubing, instruments, and pipes connecting the stage to the
engines. Note that the first letter of the subscripts of the masses mb,e,l , mm,e,l and mt ,e,l refer to the bottom
lid, middle section, and top lid of the stage, respectively, which are just treated as flat plates of equal diameter
to the stage. The general formula of equation 6.46 is still applicable here as the structural indices are always
taken as the inert mass divided by the total mass.

ti nter = (Fvac,tot ,1

√
3(1− t 2

g aug e,mi n))(
SF 2

kbuck 2πE cosδi nter
2 ) (6.41)
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δi nter =
arctan |Dcb,1 −Dcb,2|

2li nter
(6.42)

mi nter =πti nterρi nter (|Dcb,1 −Dcb,2

2
|)
√

|Dcb,1 −Dcb,2|
2

2

+ l 2
i nter (6.43)

ϵ1 =
((mM10 +m2

M X )+1.1(mb,e,1 +mm,e,1 +mt ,e,1 +mstr uc,1)

mox +m f + ((mM10 +2mM X )+1.1(mb,e,1 +mm,e,1 +mt ,e,1 +mstr uc,1)
(6.44)

The structural index of the second stage can similarly be calculated as given in equation 6.45.

ϵ2 =
1.1(mstr uc,2 +mb,e,2 +mm,e,2 +mt ,e,2)+meng ,2

1.1(mstr uc,2 +mb,e,2 +mm,e,2 +mt ,e,2 +meng ,2)
(6.45)

ϵtot =
mi ner t ,tot +mpl

mox,tot +m f ,tot +mpl +mi ner t ,tot
(6.46)

Center of Gravity of First Stack

The center of gravity of the vehicle first stack is calculated to be used for calculation of the von mises stress
criterion validation for the shell thickness of the first and second stages. The calculation for this is included
in appendix A.1.

First Von Mises Stress Validation

Von mises stress criterion is used to obtain the minimum required stress for the launcher to not fail under
axial, tensile, and compressive (buckling) forces and moments at launch. There are two validations for each
GA candidate and the first is triggered after calculation of ε2. Before describing the equations, and important
note must be made here as to why the first validation begins with the second stage and not the first. NU T S ,
NY T S , use Nx,t and Nx,c to calculate ts,Y T S , ts,U T S , and tB . What these have in common is that they use
Mbendi ng which is dependent on xcg ,I . This is dependent on the entire vehicle as it is part of the first stack.
As a result, in order to apply von mises stress criterion to improve the structural indices, it must be done from
the top up as changing xcg ,I will change the values of the von-mises calculations. This is due to the fact that
the second stage has imposed limitations on the wet mass whilst the first stage is allowed to have a variable
wet mass. An important point is to be made here about the selection of FT,vac,1 as the force that induces the
bending moment. As Castellini [13] mentions, Mbendi ng is due to external flight loads, and therefore should
be imparted by aerodynamic forces. A far-reaching assumption is made here that the maximum bending
moment will be equal to the thrust force. The first reason this is made is related to the fact that in earlier runs
that did not have von-mises stress validation, the structural index of the vehicle was low, thus the thrust to
weight ratios of candidate solutions was high. This means that the thrust can be used as a very conservative
estimate. When faced with the alternative of using a safety factor to cover for the lower value of moment the
vehicle is built to resist, this is hindered by the computational cost of the procedure. No aerodynamic data of
the vehicle is generated in the GA run to avoid longer load times.

Second Von Mises Stress Validation

Once the first calculations of the candidate are complete, a check is made on tc,1 and ε1.. This check was
added as a result of previous testing done with the procedure where without it there was a tendency for the GA
to find solutions that where below the structural index minimum requirement of 0.8. This was noted because
the equations given by Huzel and Huang give a small value of tc , and that it does not vary much with an
increase in length of the vehicle. A low value of thickness not only reduces the mass of the vehicle thus making
it fall below the minimum requirement of structural index. It can also render the vehicle more susceptible to
damages under loads at lift-off where they are considered to be greatest due to the anti-parallel forces of thrust
and weight, which both are maximized in this period of flight. As such, deviating from historical procedures
used for these types of re-entry studies [50][14][65][64] that optimized RLV sizes and masses, a calculation of
the von-mises required thickness is made. This procedure is done by Castellini [13], and considers the worst-
case internal running loads of axial compression, axial tensile, hoop, and shear. There are also secondary
flight loads that act on the vehicle’s thrust frame but their equations consider forces that factor in the mass
of the engines only, and as such result in much smaller values of force. Instead, by considering the tensile
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forces, bending moment M , and radius of the first stage Dcb,1, we can derive the shear stress Nx,c and axial
compression stress Nx,c formula shown in equation 6.50 and 6.51 respectively.

Pt = FT,vac,tot ,1 −meng ,tot ,1(11g0) (6.47)

Pc = Pt (6.48)

Tx y =
FT,vac,tot ,1

π
Dcb,1

2

(6.49)

Nx,t = Pt

2π
Dcb,1

2

+ M

π(
Dcb,1

2 )2
− pDcb,1

4
(6.50)

Nx,c = Pc

2π
Dcb,1

2

+ M

π(
Dcb,1

2 )2
+ pDcb,1

4
(6.51)

To determine whether tc,1 needs to be improved, it is compared to the minimum gage shell thickness ts,mg

(equation 6.54), minimum shell thickness for yield strength ts,Y T S equation 6.60, minimum shell thickness for
ultimate tensile strength ts,U T S equation 6.61, and finally minimum shell thickness for buckling ts,B (equation
6.58). Furthermore, for ts,Y T S and ts,U T S the shear stress Nx y , and hoop stress Ny formulas are given in
equation 6.53, and 6.52 respectively. For NU T S and NY T S both are evaluated using values of Nx,c and Nx,t

and picking the result with the highest stress. There are also safety factors used in this equations, which are
SFY T S = 1.1 and SFU T S = 1.25. The ultimate yield strength σY T S and ultimate tensile strength σU T S are both
discrete parameters fed to the GA and varied across different GA runs.

Ny = Pi nter nal
Dcb,1

2
(6.52)

Nx y =
2Tx y

πDcb,1
(6.53)

ts,mg = tmi n,g ag e Kmg (6.54)

ts,Y T S = NY T S

σY T S
(6.55)

ts,U T S = NU T S

σU T S
(6.56)

NU T S = SFU T S (
1

2

√
Nx +Ny ±

√
1

4
(Nx −Ny )2 +N 2

x y ) (6.57)

ts,B =
√

Nx,c L f

ϵE
(6.58)

NY T S = 1.1
√

N 2
x +N 2

y −Nx Ny N 2
x y (6.59)

ts,Y T S = NY T S

σY T S
(6.60)

ts,U T S = NU T S

σU T S
(6.61)

In order to calculate ts,B the optimal frame spacing L f ,opt must be calculated using equation 6.62. This is de-
pendent on the buckling efficiency εbuckl i ng , Shanley’s constant C f (1/16000), and frame stiffness coefficient
K f , the latter which is a discrete variable dependent on the material selection chosen for the GA run.

L f ,opt =
√√√√6(

Dcb,1
2)2

√
C f π

be f f

K f
(6.62)

Ultimately, a new first stage shell thickness is calculated tc,new that takes the largest value out of all the afore-
mentioned thickness calculations. If the new shell thickness is greater than the old then mstr uc,1 is recalcu-
lated using tc,new . Note that from equation 6.63, if the new thickness is not greater than the old thickness,
and the ε1 was less than the minimum requirement, an SF of 1.5 is applied to the old value, and recalculation
is done using this tc,new .

tc,new =
{

max(ts,mg , ts,Y T S , ts,U T S , ts,B ) if tc < ts,mg , ts,Y T S , ts,U T S , ts,B

tc,new = SF tc else
(6.63)
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6.0.3 Missile DATCOM Database

In order to complete the design of the RLV, aerodynamic coefficient are generated to define FD and FL in the
closed loop trajectory. The software used for generating these trajectories is missile DATCOM. This software
has been used in precedent research at TU Delft on RLV [50]. The programme is a stand-alone executable
code that reads input in a FORTRAN format, and then returns the aerodynamic derivatives that can be used
to calculate the aerodynamic characteristics of the RLV. This software uses empirical and semi-empirical re-
lations and is considered as a preliminary design tool. The purpose for using this program is to focus on the
scope of the research to show mainly feasibility on RTLS based on the guidance strategy. As such, a higher
fidelity model to generate the coefficients is not needed here. Below, the procedure for generating the aero-
dynamic database of coefficients for the RLV is discussed.

Flight Conditions

The flight conditions for points at which to evaluate the aerodynamic coefficients must first be selected.
These are shown in table 6.2, and are largely based on the work done by Rozenmeijer[50]. One difference
however, is that because this study deals with re-entry, and that specifically of a fly-back RTLS, α can vary
considerably, especially at the beginning when the downrange velocity inversion has to be applied. This is
also true for the fact that contrary to an ascent profile, the downwards acceleration v̇D in the NED frame can
also vary considerably with respect to the velocity, as the thruster needs to fire in freel fall whilst its nose is
pointing up. In a 3-DoF environment, this can mean a range of α that varies from 180deg to −180deg. As
such, the range for α value is increased to cover this. The altitude is kept at a constant of 30000 m as it is
assumed that compared to the other input of M and α it does not influence significantly the coefficients.

Parameter Ranges

M
0, 0.3, 0.6, 0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.2,
1.3, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0

α (deg) -180:5:-15, -10:1:10, 15:5:180
β (deg) 0
h (m) 30000

Table 6.2: Flight conditions for Missile DATCOM runs.

Generating Script File

In order to generate the aerodynamic database, a script file for each unique RLV solution musts be created.
Meta-programming is used by calling missile DATCOM within a MATLAB script and passing the inputs us-
ing the fprintf command. The overarching procedure is showin in fig. 6.1. LAFT and DAFT are set 0 which
are the boattail or flare length and diameter. Since only the return flight for the first stage will be required
for missile DATCOM, these parameters are not further discussed here. The TRUNC=.FALSE command corre-
sponds to the type of input geometry that DATCOM receives. With this option, DATCOM must receive values
of longitudinal and radial distance from the respective axis of the vehicle. Nevertheless, as mentioned, as the
first stage’s shape very nearly represents a cylinder, the calculation of these coordinates is trivial and depends
entirely on radius and length of the first stage.

Running Missile DATCOM

Each DATCOM run has a limited number of inputs that it can handle, and therefore multiple scripts are cre-
ated to cover the entire range of flight conditions. Once a case is finished running, the output file generated is
opened and the aerodynamic coefficients are extracted from the derivatives of the output file. The procedure
for this has been written and verified by Rozenmeijer [50], and is the same used here. Once all the conditions
for the selected RLV configurations is run, the data is stored in a cell structure as a MATLAB file and loaded
onto the simulator when needed.

Interpolation of Results

When calling the aerodynamic database, the values of CD and CL are interpolated based on the flight con-
ditions of M and α. MATLAB’s interp2 function is used for two-dimensional interpolation. A value of 100 is
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'$FLTCON  BETA=0.0$\n' ...

'$REFQ BLAYER=TURB, RHR=0.0, LREF=%8.3f, SREF=%8.3f$\n' ...

'$AXIBOD BNOSE=0.0, TRUNC=.FALSE., LAFT=%8.3f, DAFT=%8.3f$\n' ...

'SOSE\n' ...

'PART\n' ...

'DAMP\n' ...

'PLOT\n' ...

'FORMAT (8(2X,F16.6))\n' ...

'SAVE\n' ...

'WRITE FLC,1,145      * Flight Condition Data\n' ...

'WRITE SBODY,1,220    * Static Coefficient and Derivative Data\n' ...

'WRITE DB1,1,400   * Dynamic Derivative Data\n' ...

'NEXT CASE\n' ...

Missile DATCOM

fprintf

Figure 6.1: Missile DATCOM procedure and code snippet for passing inputs through fprintf.

appended to the M vector used for interp2, in the case that there is a state for which the Mach number is
greater than 5.



Chapter 7

Preliminary Ascent and Descent

This section deals with the preliminary phase to calculate nominal launch vehicle descent starting condi-
tions. This is done by the usage of analytical methods to calculate the optimum ascent trajectory by evaluat-
ing metrics of performance, and using analytical descent methods to determine the preliminary feasibility by
varying the final time and candidate ascent trajectory solutions. The chapter is structured by first introduc-
ing the methods for evaluating the ascent trajectory of the launch vehicle, and then the method to evaluate
a feasible descent trajectory. These results of these approaches will carry on over to the closed-loop RTLS
simulations as a starting point for selection of the range of parameters to use in the DoE’s for the guidance
algorithm.

7.1 Preliminary Ascent

The scope of the project for evaluating ascent performance is not concerned with the hollistic feasibility of
the RLV for reaching the target. We interpret for this section of the study as having the second stack of the
RLV reach 600km with a threshold of -1 to 1 km. The purpose of this is two-fold; one to avoid the solver
used to exclude solutions that are slightly large or smaller than the intended target due to some round-off
or truncation error, and secondly because it is taken as a value of sensible target payload insertion altitude
error. For the latter because the mass of the propellant is a variable that is both a function of the ascent and
descent, the optimization approach will be to set it as an objective to maximize.
The optimization method used for evaluating the ascent trajectory is entirely dependent on obtaining a value
for propellant available for descent and ensuring that the target orbit is achievable. As such, the scope of the
project concerns itself with using simple, analytical approaches to find the solution of such a problem.
To explain this optimization approach, the following sections break down the problem by first explaining the
different characteristic quantities assigned to the multi-stage rocket, then the original lagrange approach as
introduced in the reader is described, and finally the form used for this study is introduced.

7.1.1 Multi-stage Rocket

The multi-stage rocket is categorized in different stages and sections. The latter term has already been used
previously in this document to refer to the vehicle stack, and thus will be used interchangeably. For the i th

rocket section the characteristic quantities of concern are the payload ratio λi , the construction mass ratio
ϵi , and the mass ratio Λi . These terms are all formulated in equations 7.1, 7.2, and 7.3, respectively. The
propellant mass ratio φi can be used to expressΛi and is given in equation 7.4.

λi =
mui

m0i

= mci+1

m0i

(7.1)

ϵi =
mci

mci +mpi

(7.2)

Λi =
m0i

m0i −mpi

= 1

1−φi
(7.3)
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φi =
mpi

m0i

(7.4)

Only λi , Λi , and φi refer to the rocket section, whilst ϵi refers to the rocket stage. The variable m refers
to the mass and the subscripts c, p, 0, and u refer to the construction, propellant, initial, and useful mass
respectively. The useful mass is intended as the total vehicle payload mass. The ideal end velocity can also be
obtained from all the rocket sections by equation 7.5, where ce f f is the effective exhaust velocity and along
with ϵi are known constants.

veN =ΣN
i=1(ce f fi lnΛi =−ΣN

i=1(ce f f ,i ln(λi (1−εi )+εi ) = f (λi ) (7.5)

In order to maximize equation 7.5 we introduce a subsidiary requirement by acknowledging that the total
payload ratio λtot is equal to the product of all payload ratios as shown in equation 7.6.

λtot =Πλi (7.6)

We rewrite this requirement by taking the difference of the two terms as shown in equation 7.7.

g (λi ) =ΣN
i=1 lnλi − lnλtot = 0 (7.7)

This can then be converted into a lagrange multiplier problem where we wish to find the optimal value of two
functions that are tangent to one another at a certain optima. This is shown in equation 7.8.

F (λi ) = f (λi )+µg (λi ) (7.8)

In order to find the optima, we wish to maximize f (λi ) and that involves taking the derivative as shown in
equation 7.9.

∂F (λi )

∂λi
= ∂ f (λi )

∂λi
+µ∂g (λi )

∂λi
= 0 (7.9)

Plugging equation 7.7 and 7.8 into this expression gives the equation for each λi , as shown in equation 7.10,
which can also be reformulated as shown in equation 7.11.

−(ce f f )i
1−εi

λi (1−εi )+εi
+µ 1

λi
= 0 (7.10)

λi = µεi

ce f f ,i
−µ(1−εi ) i = 1,2, ...N (7.11)

This equation gives the optimal value of l ambd ai given a value of µ. Additionally, by knowledge of the fact
that the sum of the products ofλi givesλtot , equation 7.12 can be used to find the optimal lagrange multiplier.

ΠN
i=1λi =ΠN

i=1
µεi

ce f f ,i
−µ(1−εi ) =λtot (7.12)

Equation 7.12 can then be expanded to show the general equation used for calculatingλtot by replacing all the
indices i with their appropriate stack number and taking the sum of the products. This is shown in equation
7.13.

λtot = −ε1ε2µ
2

(ε1 +ε2 −ε1ε2 −1)µ2 + (c1 + c2 −ε1c1 − c1ε2 − c2ε1 − c2ε2 + c1ε1ε2 + c2ε1ε2)µ− c1c2 + c1c2ε1 + c1c2ε2 − c1c2ε1ε2
(7.13)

Finally, by evaluating expression 7.13 and collecting like terms, we arrive at the equation that can be used to
solve for µ, which is a quadratic, as shown in eq. 7.14.

λtot = (ε1ε2µ
2)/((ce f f ,1 −µ)(ce f f ,2 −µ)(ε1 −1)(ε2 −1)) (7.14)

This results in two possible values and the selection for the correct value is given by virtue of the fact that the
payload ratio needs to remain within a sensible value of magnitude, and that it must be positive.
Once the optimum propellant mass of the vehicle is determined, the equations that govern the position and
thus the propellant burnt to reach orbit in the ascent phase are accounted for.
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7.1.2 Culmination Altitude

For a multi-stage rocket, the (i +1)th rocket section can be considered to burn directly after the ejection of the
i th stage. However, it is also possible to introduce a coasting arc between the ignition of two stages. In two
different cases, the influence of a coasting arc can either increase the culmination altitude or decrease it. The
culmination altitude hc , is defined at the point where the vertical velocity of the vehicle is zero. In the case of
no aerodynamic drag, the relationship between hc and coasting time tco is indirectly proportional and linear.
With aerodynamic drag an optimal tco can be found for culmination altitude. This hco will nevertheless be
lower than the one without vacuum at any tco . For this study, it is decided that aerodynamic drag is not in-
cluded in the evaluation of hco for two different purposes. First of all, hco corresponds to the starting altitude
for descent. It is considered worthwhile to make this over-prediction as it accounts for the overall distance of
the vehicle to the LP. It is therefore advantageous to set up a nominal trajectory for the closed-loop simulation
where the distance covered is greater than expected. Secondly, as the method is analytical, it may be highly
inaccurate to account for drag using a term that does not require some level of numerical iteration. The drag
force is a non-conservative and therefore depends on the altitude variation against time which may be non-
linear. Estimation as a linear function may cause an under-estimate of hco resulting in a less than nominal
candidate for benchmark selection of starting conditions.
For a two stage vehicle, the culmination altitude can be found given the equation shown in 7.15. The changes
in altitude from each stage (∆h1, ∆h2).

hc =∆h1 +∆h2 +∆V1tb,2
(∆V1 +∆V2)2

2g0
(7.15)

To determine the different ∆V for each stage we can use equation 7.16 for vertical flight in a constant gravity
field and vacuum.

(∆ve )i =−(ce f f ,i ) lnλi (1−εi )+εi )+εi − g0tbi (7.16)

7.1.3 Final Optimization Routine

There is a fundamental difference between the objective of the original hc problem included in the reader and
that for this study. Recall that for ascent the objective is to save propellant mass and reach a target hc within
a certain threshold. Therefore, the original lagrange problem does not conserve itself only with finding an
optimal µ, but also maximizing a variable. As a result, the multi-stage rocket problem needs to be altered to
include a new variable, msaved which is the propellant mass that is not burnt in stage 1 for ascent operations.
Furthermore, it is no longer valid to exclude tco as the objective is not to maximize or even reach a set hc , but
it is to do it with as little propellant as possible. As a result, tco is predicted no longer to be zero.
For this reason, the equations to solve for hco andµ are recomposed with tco and msaved in mind. For msaved ,
it simply becomes a matter of substituting mp,1 in the original equations with mp,1 +msaved .
The new hc is given in equation 7.17 introducing the relevant gravity losses to the vehicle during the culmi-
nation arc.

hc =∆h1 +∆V1tco − 1

2
g0t 2

co +∆h2 + (∆V1 − g0tco)tb,2 +
(∆V1 +∆V2 − g0tco)2

2g0
(7.17)

We note that as shown in equation 7.18 ce f f ,i is a function of Isp and is divided by a factor of 1000 to account
for the change of units in km (which is what the reader used in the original equations). We rewrite the payload
ratio with their respective indices as shown in equations 7.19, and 7.20 for the first and second stack of the
vehicle. Note the inclusion of the term msaved in equation 7.19.

ce f f ,i =
Isp,i g0

1000
(7.18)

ε1 =
mc,1 +msaved

mc,1 +mp,1
(7.19)

ε2 =
mc,2

mc,2 +mp,2
(7.20)
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The optimization problem can be formulated as shown in equation 7.21. The two variables are tco and
msaved , where the objective is set as −msaved , as f mi ncon interprets the objective to be minimized.

min(msaved , tco)−msaved

s.t.hcul m =−Isp,1g0 log
λ1

λ2
(1− (

mc,1 +msaved

mc,1 +mp,1
)+ mc,1 +msaved

mc,1 +mp,1

mp,1 +msaved

FT,vac,1
Isp,1g0

+

∆V1tco − 1

2
g0(tco2 )+

(−Isp,2g0 logλ2(1− mc,2

mc,2 +mp,2
)+ mc,2

mc,2 +mp,2
−

g0
mp,2

FT,vac,2
Isp,2g0

mp,2

FT,vac,2
Isp,2g0

+

(∆V1 − g0tco
mp,1 +msaved

FT,vac,1
Isp,1g0

+ (∆V1 +∆V2 − g0tco)2

2g0
))

∆V1 = ((Isp,1g0) logλ1(1−ε1)+ε1 − g0tb,1)sinθpi tch

∆V2 = ((Isp,2g0) logλ2(1−ε2)+ε2 − g0tb,2)sinθpi tch

λ1 =
µ

mc,1+msaved
mc,1+mp,1

(
Isp,1g0

1000 −µ)(1− mc,1+msaved
mc,1+mp,1

)

λ2 =
µ

mc,2
mc,2

+mp,2

(
Isp,2g0

1000 −µ)(1− mc,2
mc,2+mp,2

)

tb,1 =
mp,1 −msaved

FT,vac,1
Isp,1g0

tb,2 =
mp,2

FT,vac,2
Isp,2g0

tco ≥ 0

599000 ≤ hcul m ≤ 601000

(7.21)

7.2 Preliminary Descent

The preliminary descent procedure follows from the results of the preliminary ascent by using the nominal
starting conditions for descent to determine the feasibility of operations by varying time to reach the LP. This
is done as the guidance algorithm to be implemented is a finite horizon problem, where the final time must
be an input and not a result of the optimization. Through the preliminary ascent procedure, multiple starting
points are obtained also by virtue of the fact that the culmination altitude is bounded inequality on both sides
rather than an equality constraint. By varying final time and using different conditions for ascent, a trade off
can be made using the results of the descent to further refine the nominal trajectory used. The preliminary
descent, like the ascent procedure, also considers a reduced complexity of the problem for the purpose that it
is intended to provide a starting point to where the DoE’s efforts to optimize the guidance controller’s should
be spent. However, unlike preliminary ascent, whilst the guidance law is analytical, the trajectory is numer-
ically propagated in time, yet without aerodynamic drag. Aerodynamic drag is also excluded here as the
procedure is meant to generate a fast trade-off analysis and due to the fact that the guidance laws do not take
into account the drag acceleration of the vehicle. It is worthwhile to mention that the same approach could
be done by an open-loop fashion using the convex guidance algorithm as the optimization problem rather
than using analytical guidance laws. However, the size of the discretized grid of the problem would have to
be exceptionally large.
In the following sections the guidance law used for this procedure is explained, followed by the closed-loop
simulation set up. Next, the approach to generate trade off contour maps is explained along with the method
to narrow down nominal trajectories for use in the closed-loop simulations is explained.
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7.2.1 Guidance Law

The guidance law used in this study is the ZEM/ZEV (zero-error miss and zero-error velocity). The ZEM/ZEV
law falls under the class of optimal feedback guidance algorithms as described by [53]. This approach was
also used in [20] to generate a trade-off space rapidly relative to the time for higher fidelity simulations to
evaluate. In short, optimal feedback guidance laws allow definition of the final velocity, which in this case is
set to 0. To arrive at the definition of the ZEM/ZEV formulation, we first start with the constrained terminal
velocity guidance law (CTVG).

Constrained-Terminal Velocity Guidance (CTVG)

We define a cost function for minimizing the integral of the square of the acceleration given by Eq. 7.22. To
derive a law that optimizes the equation the trajectory, whilst keeping a closed-form solution, a Hamiltonian
function is used. The Hamiltonian is the sum of the kinetic and potential energy in a system. For this problem
it is defined by Eq. 7.23.

J = 1

2

∫ t f

t0

aT ad t (7.22)

H = 1

2
aT a +pT

r v +pT
v (g +a) (7.23)

The symbols p denote the co-states of the problem, also known as the auxiliary or ad-joint. Taking the neg-
ative result of the partial derivative of the Hamiltonian with respect to the states, the co-states can be found.
Nulling the Hamiltonian’s derivative with respect to the acceleration minimizes the cost function as stated by
the Pontryagin maximum principle [53]. This is done in equation 7.24.

˙pr (t ) =− ∂H

∂r (t )
= 0

˙pv (t ) =− ∂H

∂v (t )
=−pr (t )

∂H

∂a(t )
= 0

(7.24)

The last line of this equation can be substituted by the integrated terms of the co-state vectors given in equa-
tion 7.25 to give the optimal control solution in Eq. 7.28, and the states (Eq. 7.26 & 7.27). We rewrite these new
state functions as a function of their respective co-states as shown in 7.28, and then substitute the solution in
7.25 to obtain Eq. 7.29 which is the constrained terminal velocity guidance (CTVG) law [26][53].

pr (t ) = pr (t f )

pv (t ) = tg o pr (t f )+pv (t f )
(7.25)

v (t ) =
t 2

g o

2
pr (t f )+ tg o pv (t f )− tg o g +v f (t ) (7.26)

r =−
t 3

g o

6
pr (t f )−

t 2
g o

2
pv (t f )+

t 2
g o

2
g − tg o v f + r f (7.27)

pr (t f ) = 6(v −v f )

t 2
g o

+ 12(r − r f )

t 3
g o

pv (t f ) =−2(v +2v f )

tg o
− 6(r − r f )

t 2
g o

+g

(7.28)

a = 6(r f − (r (t )+ tg o v ))

t 2
g o

+ 4(v f −v (t ))

tg o
−g (7.29)
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Zero Effort Miss (ZEM) & Zero Effort Velocity (ZEV)

ZEM & ZEV are useful concepts when trying to understand how guidance laws work. ZEM distance is defined
as the separation between the target and missile at the end of flight, without any further accelerations. This
of course would mean that the trajectories would be straight lines. Eq. 7.30 shows how the ZEM distance is
calculated, with tg o being the time to go.

Z E M = r +v tg o (7.30)

Both concepts can also simply be expressed as the difference between the final state (position for ZEM, ve-
locity for ZEM) as given by Eq. 7.32 & 7.31. Note that for this formulation, we have also included the effect of
gravity.

Z EV (t ) = v f − [v (t )+
∫ t0

t f

g (τ)dτ] (7.31)

Z E M(t ) = r f − [v (t )tg o +
∫ t0

t f

(t f −τ)g (τ)dτ] (7.32)

ZEM and ZEV by themselves do not automatically form a guidance law. However, as detailed by [26], a deriva-
tion of a new guidance law may exist by using these two new concepts. In fact, the CTVG, FTVG, and PNG law
can be reformulated using this concept as shown in Eq. 7.33, 7.34, and 7.35 respectively.

a(t ) = 6

t 2
g o(t )

Z E M(t )− 2

tg o(t )
Z EV (t ) (7.33)

a(t ) = 3

t 2
g o(t )

Z E M(t ) (7.34)

a(t ) = n

t 2
g o(t )

Z E M(t ) (7.35)

The first two terms of the final form are the most useful result after all substitutions. The integers 6 and -2 that
appear in front of the two terms in Eq. 7.33 are actually the optimal gains for what is more generally known
as terminal velocity guidance. The control vector for the acceleration for this general guidance law is given
by Eq. 7.29 (K1 = 6 and K2 =−2 for the optimal solution which is also known as CTVG) [53].

a(t ) = K1
Z E M

t 2
g o

+K2
Z EV

tg o
(7.36)

7.2.2 Closed-loop Simulation

The closed-loop simulation involves the descent guidance, and SDK (spacecraft dynamics and kinematics)
blocks only. The problem formulation is named as RTLS1, that includes a varying gravity field, in a Flat Earth
environment, with 3-DoF. Moreover mass propellant dynamics are turnt off to give a conservative metric of
the available maximum thrust acceleration to the vehicle during descent. The maximum available thrust ac-
tually increases as more propellant is burnt but is not included here for the following reasons. The analytical
ZEM/ZEV guidance law does not follow a discrete burn schedule but rather, from previous results shown by
[53], starts with a high thrust which decays and then rises back up again. In fact, given that the formulation
of the analytical guidance law uses the integration of the acceleration as a cost function in its derivation, it is
intuitive to see how the cost function will have a local minima and never reach a discrete value. Therefore, for
this limitation, we turn off propellant depletion dynamics to counteract this discrepancy and overestimation
of the performance of the vehicle compared to the convex algorithm. Additionally the rotation of the Earth is
accounted for by account for the distance covered over the selected final time, as well as the burn time of the
first stage during ascent. This is shown in equation 7.37.

XeD,F = Xe A,F δtb,1 +ωRe t f (7.37)

The closed loop simulation parameters for both SDK and DG block are shown in table 9.2. The one-to-one
ratio of fsi m to fg ui is done so as not to account for update delays and that the best possible trajectory is
achieved as the main priority is assessing the feasibility of RTLS in a reduced fidelity and not that of the
guidance law. The integration scheme used is RK4 (runge-kutta 4).
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7.2.3 Trade-off Space

Each trajectory starting point for descent will be varied based on the preliminary ascent solutions and a final
time for reaching the LP when considering t0 as the beginning of descent. The trade-off contour maps aim
to reflect the three different primary metrics for evaluating feasibility of RTLS operations. These are veloc-
ity touchdown norm ||v f || in m/s, required propellant mass for burn mbur n in kg, and maximum dynamic
pressure Qd yn,max in kPa. These three metrics can provide information on the feasibility of different starting
points, hence, ascent trajectories, as well as t f to touchdown. An important note must be made on the po-
sition touchdown norm ||r f ||, which is excluded as the position of the LP with the ZEM/ZEV law was noted
to always remain within the optimal bounds considered for landing, and as such is not included here. ||v f ||
can provide information on the control strictness required for landing. An intuitive understanding as to why
this metric is more sensitive in this preliminary analysis may be due to the fact that velocity variations as
a percentage of the maximum velocity the guidance law computes over the trajectory are greater and more
prevalent than position variations. This can be seen in equation 7.26 as v (t ) is dependent on the factor of tg o ,
and as such when the final time is reached, the final velocity may not have reached target yet. Instead, r (t ) is
directly related to a(t ), and therefore the thrust acceleration is still prevalent.





Chapter 8

Closed-Loop Simulations

The main method that the feasibility for RTLS for the VEGA vehicle designed for this study will be assessed
on, is it’s performance in a 3-DoF simulator. This simulator architecture has been written entirely in MATLAB.
Large scale DoEs (Design of Experiment) are run to examine three different criteria for feasibility: physical
feasibility, model accuracy, and real-time performance. Separate DoE’s are run to focus on varying certain
aspects of the RTLS strategy mainly through variation of the guidance algorithm. Whilst each DoE focuses on
a particular aspect of the mission, the results may given insights that relate to more than one of the criteria.
The rest of this chapter will begin by describing the architecture of the software used to run the closed-loop
simulations. The closed-loop simulator will be broken down into each of the high-level components and
explained in detail. Next, the parameters chosen for the DoE’s and their motivation is given, along with ex-
pectation of results and hypothesis. Within the section of DoE’s campaign will also include the method for
sensitivity analyses, considered as the 4th main DoE in this study. Finally, verification that the closed-loop
simulator works as intended will be evidenced.

8.1 Architecture

The architecture of the simulator, whilst programmed completely in MATLAB code, is built in mind repre-
senting the block diagram structure shown in fig. 8.1. The simulator can be intuitively broken down into
separate blocks that are responsible for different procedures in the closed-loop simulations. The architecture
aims to replicate the influence of errors on the control u and state x from the data measured by sensors of the
RLV. The simulation begins by first calculating the descent guidance (DG) which takes in inputs of real and
measured states xr eal and xmeas . The actuator also receives this information, and additionally the required
control, which is the real (expected) control ur eal , which in this case is the magnitude and thrust direction of
the engines. Next, umeas and xr eal is fed to the spacecraft dynamics & kinematics block (SDK), which then
converts xr eal into xmeas . The closed-loop system is completed by passing the new xmeas into the next step
of the guidance algorithm at the next guidance step.

8.1.1 DG (Descent Guidance)

The descent guidance block incorporates the procedure of determining whether or not the current simulation
step coincides with a guidance step. The simulator runs at a fixed guidance and simulation step size, and it is
the simulation step size that drives the process ( fsi m ≥ fg ui ). The only variable influencing the descent guid-
ance step size other than fg ui is the process time for calculating the guidance solution. This includes the en-
tire guidance solution from icv x = 1 to Ncv x+1 as Ncv x is the number of successive convexifications, and apart
from those SOCP1 is always invoked. The function containing the controller evaluation is entitled DESCO-
Descent Envelope with Successive Convex Optimization. This name references loosely the DESCENDO (de-
scending over successive envelopes using successive convexification-based optimization) controller, albeit
with a different acronym to distinguish them being two different controllers but essentially executing the
same function, with similar if not identical architectures (apart from being written by two different users).
After running DESCO, the process time is saved. At the first guidance step, thus at the beginning of the sim-
ulation, the trajectory gets a free guidance solution. This solution will also set the initial thrust acceleration
of the engine. The point at which the next guidance step is computed is dependent upon three things: the
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Figure 8.1: Simulator block diagram representation

guidance frequency delay 1
fsi m

, the process time delay tpt , and the simulation frequency delay. The latter is
the effect that is caused by the remaining time from the start of the last guidance step tg ui ,ig ui with the added
frequency and process time delay, and the time until the next simulation step tsi m,isi m+1. The subscript is i m

and ig ui refer to the simulation time and guidance time index respectively. Therefore, unless fsi m
fg ui

is a whole

number and that there is no tpt , there will always be simulation frequency delay.
The guidance step determination section of the block also saves a flag guidance_step to keep track of whether
a guidance solution has been recently calculated or not. This step is then fed to the SN block to determine
whether a bias and error has to be applied to the guidance time. The analogy purpose of doing so is that the
virtual guidance controller aims to replicate the functionalities of real-time GNC hardware. Every time the
guidance clock measures the time at which the solution is calculated, there may be some delay due to bias
ϵt and (random) noise ηt . Note that the delays mentioned before are not errors and they are always present
even in the case of a perfect controller.
Once a guidance solution has been evaluated, it is stored and kept until the simulation time tsi m is greater
than all the time delays and errors. This is where another flag guidance_read registers whether a guidance
solution has been recently updated or not. All of the information from the guidance solution obtained from
DESCO is stored as a cell structure named Ur e f . This cell structure replaces Ur e f ,0, which is the structure that
is used in the actuator block, when the flag is 0 and when the combined guidance delay and error time ∆tg ui

and tg ui is less than tsi m . If it is the case, guidance_read is set 1 or else 0. The purpose of this flag is to avoid
re-updating Ur e f when a new guidance solution has yet not been calculated. After updating the solution, a
diagnostics check is passed. This check is done at isi m = 1 and it is meant to determine the overall feasibility
of the simulation case. If DESCO fails to calculate the SOCP1 solution at tsi m = tg ui = 0, then the sim_break
flag is set to 1. This will be used to evaluate the simulation termination criteria after the SN block.

8.1.2 ACT (Actuators)

The inputs from the DG block used to calculate the reference acceleration come from the cell structure Ur e f .
These are the reference discretized time grid tr e f [k], and thrust acceleration w [k]. In order to calculate the
reference acceleration, the tr e f [k] is interpolated with w [k] with MATLAB’s interp1. A reference thrust accel-
eration to achieve ar e f is obtained which is then passed on to a function that calculates the throttling %’s of
the M10 %TM10 and MX %TM X engines.
Following this, a check is made to determine that there is propellant (mmeas ≥ mdr y ). If not, then the throt-
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tling %’s are set 0. Otherwise, depending on the value of ||ar e f || the thrust to achieve Tt vc is split up amongst
the 2 types (3 in total) engines. The actuator strategy here aims to match, whenever possible, Isp,oa that is
used in DESCO to determine the mass flow rate in the SOCP problems. As such, the first if statement in this
routine check whether Tt vc is greater than the overall combined minimum thrust of all engines. If so, then an
fmincon sub-routine is called.
If the overall combined minimum thrust of the engines is greater than Tt vc , the thrust acceleration is then
checked to match the lowest possible output thrust by the RLV, which is TM10,mi n . If the check is valid, and
Tt vc if it is not greater than 2TM X ,mi n , the MX engines are used, otherwise, it resorts to the M10. Otherwise,
ar e f is too low and the engines are not turned off or switched off. The reason a threshold is not applied is
because in testing it was determined that if ever ar e f was lower than TM10,mi n , then it was because of resid-
ual values from the SOCP solver. This is true in cases where there is a thrust-on-off-on or off-on sequence
where certain constraints are turned off in the problem, but ECOS may return very small values close to 0.
It may also be true when a free burn schedule (q[k] = 1 ∀k) is applied. In preliminary testing, there was
no incidence where this caused ar e f values close to but below TM10,mi n to be set to 0 in the actuator block.
Moreover, second priority is given to firing the M10 engine as for the nominal engine configuration the loss
of thrust compared to the overall thrust achievable by the M10 at sea level pressure is much greater than that
of the MX.
If the overall combined minimum thrust of the engines does not exceed Tt vc then a fmincon sub-routine is
called “TVC Opt.”. This sub-routine contains checks that where done in the higher level routine explained
before. However, instead of determining whether Tt vc is in the bounds of the minimum thrusts of the various
possible combinations of engine throttling, it checks whether the exit pressures Pe can compensate for the
ambient pressure Pa . As with before, M10 is the first priority due to its lower potential at lower altitudes. If
M10 can provide a positive overall thrust relative to the ideal thrust equation, then the following can occur. If
Pe,M X ≥ Pa and Pe,M10 ≥ Pa , meaning the exit pressures of all engines are greater than ambient, all engines
are used. The rest of the statements, visible in figure B.1 in appendix B.1.2, adapt the equality constraints of
the problem based on the relationship of Pe with respect to Pa .

8.1.3 SDK (Spacecraft Dynamics & Kinematics)

The spacecraft dynamics & kinematics block is associating with the real state values and simulation of the
environment of the spacecraft. The pseudo-code for this block is shown in fig. B.4. The environment is built
from the equations of motion, listed in equations 4.8 to 4.13. The SDK block also contains information about
the integrator used, in this case RK4, and also propagates tsi m to the next simulation index. Moreover, once
the real state is propagated to the next simulation index, the block also calculates auxiliary data which is
included in a vector containing αe f f , Qd yn , M , Cd , Cl , ρ, vr el ,x , vr el ,y , vr el ,z , Pa . This information can be
used to evaluate trajectories once completed. The purpose of saving these variable is that they can be helpful
in debugging when NaN’s or Inf values are reached. Looking at the state history from the solution output
cannot intuitively explain why NaN’s occur if they do. Rather, looking at the data that is used to propagate the
states, such as thrust acceleration data and aerodynamic data, can give insight into whether the models used
have been programmed incorrectly.

8.1.4 SN (Sensors & Navigation)

In the case of a perfect system with no delays, real state xr eal is equivalent to the xmeas state. The pseudo-code
for this block is shown in fig. B.5. For each block, either one of these vectors are fed. The DG and ACT block
reads xmeas , and SDK & SN read xr eal . It should be made clear that the ACT block serves as a virtual actuator
controller, as the pressure model is the same that is used for DG. SDK then takes the reference %TM10 and
%TM X and determines whether that is achievable based on the real environment Pa . The reason that ACT is
separated from xr eal is so that as the SDK block already calculated the atmospheric properties (Pa , ρ, A∗), it
avoids having to call the atmospheric function twice within one simulation index. This call in fact is one of
the most expensive routines apart from the DESCO function and as such was deemed sensible to not include
this in ACT. This is one of the few exceptions where the GNC block diagram in the simulator differs from its
real life counterpart, as actuators will always optimize the control based on the readings sensors pick up, but
the execution is dependent on the real limits of the system (Pa,r eal and not Pa,i deal ).
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8.2 Design of Experiment Campaigns

In this section we will discuss the main DoE campaigns used to determine the feasibility of RTLS operations
for the nominal RLV candidate. Additionally, other DoE campaigns are carried out to examine the robustness
of the algorithm to different burn schedules and final times. Moreover, interactions interactions between fsi m

and fg ui are examined to determine what effect the delay on guidance update has on the physical feasibility
of the solution. Last of all, The sensitivity analysis, considered as the final main DoE to examine the effects of
the algorithm with input errors and model mismatch is carried out.
Throughout each DoE there is an evolution of the nominal trajectory that is carried over to the next DoE.
This process of sequential development aims to cover as many different cases as possible and of interest are
solutions that are just outside the bounds of feasibility for metrics of ||r f || and ||v f ||. The purpose of selecting
nominal trajectories under this criteria is to discover cases that may improve the feasibility of the solutions. In
these DoE, except for the sensitivity analysis, the dynamic models remain constants, and as such there is no
reason to carry over feasible results over the next experiment. Understanding what types of values variables
should undertake based on the type of starting conditions (specifically burn schedule and t f ) can serve as a
useful first-hand approach to development of automatic gain selection once enough data is gathered.

8.2.1 DoE1- Burn Schedule and Final Time

The first major design of experiments for high fidelity simulations involves studying the influence of the burn
schedule and final time on the feasibility metrics ||r f ||, ||v f ||, and Qd yn . In determining the feasibility of
operations, varying t f , t1, and t2 gives insight into both the physical feasibility of RTLS and that of DESCO.
Moreover, as was done in [20], this provides a trade-off map between feasibility metrics and solution metrics
t f and mbur n . Whilst the objective of the SOCP problems are concerned with maximizing the final mass, the
analysis can nonetheless extend to optimizing the final time indirectly by varying the parameters in the DoE.
The reason for selecting these parameters as the first step for high fidelity simulations is to include parameters
that are universal to a convex optimization approach for RTLS. Moreover, nominal values with reasoning for
choice have already been provided for DESCENDO, and the algorithm used here shares many similarities.
Furthermore, as the burn schedule(s), thus q∀t requires a unique controller for every unique value of q ,
it makes sense to focus initial efforts on debugging and verification of the multiple controller approach by
varying t f , t1, and t2, where the highest number of controller cases for q are likely to be covered.
The number of controllers needed to be generated for this DoE is 191 for each SOCP problem. There are in
total four (2 at t = 0, and 2 more for t > 0). This results in a total of 764 controllers.

8.2.2 DoE2- Algorithm Parameter Tuning

The second DoE concerns itself with optimizing parameters that are mostly exclusive to the SOCP problem(s).
This involves wηw , θmax , Nd g , and Ncv x , with nominal trajectory selection. The nominal trajectories are cho-
sen by analysing the feasible solutions for ||r f || (thus within 6 meters), and infeasible in ||v f ||. Then, the
maximum value of ||v f || for this cluster of cases is obtained and used to extend the search space for ||v f || by
setting this maximum value as the new vtol , f . The same procedure is also done for cases that are feasible in
||v f || but infeasible in ||r f ||. This procedure is repeated and both vtol , f and rtol , f is extended and saved for
each iteration until when the number of cases of the infeasible metric starts showing a non-linear correlation
with the % increase of the last iteration’s vtol , f or rtol , f value. Finally, for each of the ranges between each
iteration of clusters, a random value is sampled. No cross-sampling (that is mixing the ranges of the two met-
rics ||r f || and ||v f || is done as it is deemed that enough nominal trajectories can be obtained this way. The
minimum number of trajectories accepted will be 4, with a maximum of 9, meaning each metric will need to
have at least 2 iterations passed.
The reasoning for this type of sampling is to obtain a solution envelope that is worthwhile examining and fo-
cusing on results that do are not feasible, by introducing variations on variables that control both the size of
the problem, modify the objectives, and alter the constraints. To reduce/increase the size of the problem, Nd g

variations can be applied to increase/decrease the discretization grid. This will increase the solution time but
may also provide a more robust control by increasing the accuracy of the prediction horizon (although the
prediction horizon remains the same). More points are evaluated in the grid and as such more variations of
the control can be applied which may also result in a smoother control profile, and as such if noticeable vari-
ations occur in the trajectory the control profile does not have to alter as much. A non-smooth control profile
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can result in a prediction and control horizon that is non-smooth and as such variations on the dynamics
which the convex problem does not respond well too might introduce more steep control profiles in an effort
to find a feasible solution. The objective for SOCP2 can be controlled by varying Wηw , increasing or decrease
the weight of the reference thrust vector on the new thrust vector computed by the current i th SOCP2 iter-
ation. This in itself can also relax constraints and allow more freedom in calculating the prediction horizon.
On the other hand increasing the value may also be beneficial by providing an already existing prediction
horizon which may be useful especially if the problem is more robust. In fact, one can see that increases in
Nd g and ⊒ηw may work hand-in-hand in improving the feasibility of the solution. Last of all, θmax provides a
value that can be used to increase/decrease the control envelope of the solution. This can result both in cases
where a more restricted direction profile can result in improved or reduced feasibility, the same is true for a
more relaxed direction profile. In the first case, reduced the direction profile can reduced the search space
by restraining the results to a smaller direction envelope, meaning that it is more likely that between succes-
sive convexification iterations but also between different guidance steps the direction profile is more likely
to remain the same. With a wider direction profile if one solution calculates a reference thrust acceleration
vector that is noticeably larger than the previous ones, we have to rely that the change in dynamics in future
simulation steps will allow that thrust value to be accepted. Indeed, the expectation from decreasing θmax

will be either improving the number of feasible guidance steps calculated along the trajectory or completely
worsening the overall feasibility of the solution.
DoE 2 generates controllers based on Nd g and burn schedule. In total, 10720 controllers are generated, and
processes are segmented by the value of Nd g to reduce the size of the cell structure used to store the con-
trollers when passing the controllers to the input structure of the simulator.

8.2.3 DoE3- Guidance and Simulation Frequencies

This DoE aims to analyse the effect of fsi m and fg ui . The purpose of this experiment is to determine whether,
due to the model mismatch of the SOCP problem and the environment of the simulator, the physical fea-
sibility of the solution is impacted. There may be a bottleneck, where increasing fsi m any further does not
cause any noticeably differences in the trajectory. For very high fidelity simulations, a fast update time of the
dynamics is key in replicating the real world effect that guidance delay has on the RTLS. These simulations
will also be run at a fixed time step with RK4 and such is done so that the focus remains on the selection of
these parameters and not on the influence that the integrator may have when dealing with variable step sizes.
Finding these bottlenecks can be useful for understanding how high fsi m needs to be without needlessly in-
creasing it to the point where no real impact on the feasibility occurs.
The choice of fg ui is limited by the stakeholder requirement where the guidance controller has a limit of
25Hz. Increasing the guidance frequency up to these values may not provide an effective strategy to studying
the coupled effects of fsi m and fg ui . This is because a perfect simulator would have a fsi m that approaches
infinity. As such, applying very high values of fg ui would require a sensible increase in fsi m as well for the

results to mean anything. Therefore, it is especially true that the ratio fsi m
fg ui

be taken into account as well. For

example, a choice of 10 to 1 may provide a less precise reference solution than 60 to 25. However, it is proves
more useful in determining the influence of model and parameter mismatch between the environment and
the guidance algorithm.

8.2.4 DoE4- Sensitivity Analysis

The sensitivity analysis aims to determine the degree of uncertainty to which the algorithm can still obtain
feasible results. The approach used here is a one-at-a-time sensitivity analysis. In addition to uncertainties
and discrepancies fed to the DG block and the SDK block, the variation of the initial starting conditions will
also be analysed. Moreover, an additional time delay source is added to the guidance algorithm, and that
is the processing time delay. To generate the random variables, each separate sensitivity experiment uses 3
different seeds, thus a total of 9 seeds are used. The random number algorithm used is the mersenne twister
with MATLAB’s rand and normrnd function, if random variables with a normal distribution are required. The
methods for how these experiments are set are discussed below.
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Parameter Nominal Value Variation Total Variations
vN ,0 (m/s) 0

±10%||vN ED,0,nomi nal ||
300

vE ,0 (m/s) 90.06073 300
vD,0 (m/s) -456.025 300
h0 (m) 26008.95 ±10%h0,nomi nal 900
m0 (kg) 30254.15 ±10%mp,nomi nal 900
X0 (m) 29938.44 ±10%X0,nomi nal 900

Table 8.1: DoE 4 sensitivity analyses for initial state variations. 3600 total cases. Each case used seed values of 10, 11, and 12 with the
mersenne twister algorithm.

Initial State Variations

The variation of the initial state can help expand the search space of feasibility for RTLS of the launch vehicle
by compensating for the approximated methods of finding the initial state through the preliminary ascent
section of the study. The parameters that are varied and their values are shown in table 8.1. The seeds used
for creating the random variables are 10, 11 and 12, each used to generate an equal number of cases for each
variable. The motivation for selecting these variables and their variation is as follows. A nominal variation of
10% is considered and the approach used here is one of montecarlo sampling. The values are generated with
a nominal distribution, with the mean equation to the nominal values of each variable plus an increase or
decrease of 10%, which corresponds to 3σ. The general equation for generating the variation of the nominal
parameters is shown in eq. 8.1 and 8.2.

µ= Nominal (8.1)

σ= Nominal

3
(8.2)

The value of 10% is assumed to represent the variations that result from the previous disciplines of prelimi-
nary ascent and descent tasked with finding the nominal trajectory(ies). Moreover, it also takes into account
the degree of error associated with using these methods. We are more interested however in errors of smaller
degree, and for that reason a normal distribution is used here to increase the pool of variations that are closest
to the nominal values.

Processing Time Delay

The second set of variables studied in the sensitivity analyses is the processing time delay tpt . Fig. 8.2 shows
what errors can be present in the simulator for an example case where fsi m/ fg ui = 2.
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Figure 8.2: Time lag effects between guidance algorithm and simulator.

This sensitivity analysis aims to study the effects of the processing time delay, by varying the total pro-
cessing time for the DESCO algorithm by a factor of .001 to 10. The motivation for this is that it is assumed
that the most powerful on-board guidance computer will be able to compute the solutions 10 times faster
than what the machine that ran the simulations can achieve. The opposite is true for the slowest guidance
computer. This factor is simply considered as a heuristical value and may actually vary from what the actual
VEGA on-board computer can achieve. However, due to the lack of information on the hardware of the guid-
ance computer, we resort to this assumption. The distribution of variation however is made to favour the case
where a more powerful computer is available. Moreover, because this parameter does not deal with differ-
ences that are within the ±10% variation of the nominal parameter, but rather deals with variations that are
order of magnitude difference, the random variables are passed through an exponential filter which results
in an absolute value. In order to do this, the normal distribution is first calculated using the log equivalent of
the ranges.

Pseudo-range Errors

The real time errors are modelled as errors that stem from the calculation of the pseudo-range P . The
pseudo-range is assumed to be the distance that the position information of the RLV travels from the RLV
to the ground-station (assumed as the LP) and back, to inform the guidance controller on-board its position
relative to the LP. The information is assumed to be trasmitted as an electromagnetic wave, with negligible
doppler shift effects and other time varying effects. The pseudo-range P can be calculated as show in eq. 8.3.
The distances between the missile position (subscript M) and LP ∆xM ,LP , ∆xM ,LP , and ∆xM ,LP are given in
eq. 8.4 to 8.6.

P =
√

(∆xM ,LP )2 + (∆yM ,LP )2 + (∆M ,LP )2 (8.3)

∆xM ,LP = xEC EF
M −xEC EF

LP (8.4)

∆yM ,LP = yEC EF
M − yEC EF

LP (8.5)

∆zM ,LP = zEC EF
M − zEC EF

LP (8.6)

The errors considered in the pseudo-range stem from the UERE (User Equivalent Range Errors). These errors
are shown in tab. 8.2. The UERE total error is taken as the sum of these errors based on the region of altitude h.
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Error Source Error Range (m) h threshold (m)
Satellite Clocks ±2

[0,∞]
Orbits Errors ±2.5
Receiver Noise ±.3
Multipath ±1
Ionospheric Delays ±5 [48000,∞]
Tropospheric Delays ±.5 [8000,15000]

Table 8.2: User equivalent range errors used for DoE 4 and regions of h for activation.

Using these errors, the ECEF position of the missile can be calculated by equation 8.7. The error ϵr EC EF .
As with the previous experiments, the random error values are generated with a normal distribution with a
mean of 0 and σ that varies between 0 and 3 with a uniform distribution, equivalent to the sum of all UERE
sources given the current h. The seed used for variations of σ are 10, 11, and 12.

r EC EF
M ,er r or = r EC EF

M +ϵr EC EF (8.7)

The error in position is calculated by considering δmeas and λmeas as given in equations 8.8 and 8.9.

δmeas = arctan(
ry,M ,er r or

ry,M ,er r or
) (8.8)

λmeas = arctan(
rz,M ,er r or

||rx,y,M ,er r or ||
) (8.9)

The measured pseudo-range can then be calculated by eq. 8.10.

P = ||(r EC EF
LP − r EC EF

M ,er r or )|| (8.10)

Finally, the velocity errors can be found by considering the signal travel distance to and from the ground
station and with the speed of light as a constant of 299792458 m/s. The equation for the measured NED
velocity is given in 8.11.

vN ED,meas = vN ED,r eal + v̇N ED,r eal
2P

c
(8.11)

With equations 8.11, 8.8, and 8.9, the errors for the experiments can be calculated.



Chapter 9

Guidance Algorithm

The guidance algorithm used for this study and subsequent variations are based on convex programming.
Within the convex programming spectrum, the guidance algorithm sets up the problem as a second-order
cone program (SOCP). The algorithm is a rewritten version of the DESCENDO algorithm [54], using MATLAB
and the YALMIP toolbox to construct an optimizer object, which is by all intents and purposes a controller, to
solve the RTLS problem in a closed-loop.
This chapter starts with a basic overview of the convex programming problem, and the subset of SOCP prob-
lems. It then introduces the problem set up for the SOCP1 problem, and subsequently the SOCP2 problem,
explaining the procedures of successive and lossless convexification. Following this, the practical improve-
ments made in the algorithm, entitled DESCO (Descent Envelope With Successive Convex Optimization),
written for this project, over the original DESCENDO algorithm will be highlighted. Then, the general pseudo-
code procedure for the algorithm is introduced. Lastly, a validation of the program with sample problems will
be highlighted to show that the algorithm meets the constraint requirements imposed in the optimizer build
up.

9.1 Convex Optimization

Convex optimization is a class of mathematical optimization where the objective function and constraints
are convex. Intuitively, this means that the function that describes the objectives and constraints has a seg-
ment between any points on the graph that can be drawn, and has the function below this segment. This is
mathematically portrayed by the relations shown by eq. 9.1 to 9.2.

fi (αx +βy) ≤α fi (x)+β fi (y)

∀x, y ∈Rn

∀α,β ∈R
(9.1)

α+β= 1

α≥ 0

β≥ 0

(9.2)

An important distinction is that eq. 9.1’s first statement may seem similar to that of the objective for a linear
problem, which is instead denoted by an equal sign rather than an inequality, as shown in eq. 9.3.

fi (αx +βy) =α fi (x)+β fi (y) (9.3)

This difference also highlights the fact that a convex problem has less strict requirements than a linear prob-
lem. Nonetheless, a linear program is a convex programming problem, and we can consider convex opti-
mization as a class of linear optimization. Following this, we can form a general description of the convex
optimization problem with the objective described by eq. 9.4.

min f0(x) (9.4)

55
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This statement presumes that the functions f0, . . . , fm , which are the m constraints and objective functions,
are convex, and therefore satisfy eq. 9.1 and 9.2. A special subclass of convex programming problems are
the least-squares programming problems, and the linear programming problems. These are discussed in the
following subsections below.

9.1.1 Least Squares Problem

The least squares problem has no constraints, therefore m = 0 in eq. 9.4. Its objective function is instead of
the form given in eq. 9.5, where aT

i are the rows of A, and x is the decision variable vector.

min f0(x) = ||Ax −b||22 =Σk
i=1(aT

i x −bi )2

x ∈Rn

A ∈Rk×n

k ≥ n

(9.5)

These types of problems can be solved by forming a system of linear equations of the form shown in eq. 9.6,
giving us the solution, obtainable analytically, in eq. 9.7.

(AT A)x = AT b (9.6)

x = (AT A)
−1

AT b (9.7)

These types of problems have been solved for decades, and their solution times are restrained by Moore’s
law: they will decrease exponentially in the future with the advent of more powerful computer architectures.
Generally speaking, the least squares problem can be solved with a time that is roughly equal in order of
magnitude to n2k.

9.1.2 Linear Programming Problem

Linear programming problems are problems where the objective and constraint functions are linear. The
general formulation of the linear programming problem is given in eq. 9.8. The parameters c, and ai are
vectors and bi are scalars which are ∈R, and specify the objectives and constraint functions, respectively.

mincT x

subject toaT
i x ≤ bi , i = 1, . . . ,m

(9.8)

In other words, linear constraints are constraints of the form shown in 9.8, where on both sides of the inequal-
ity the expressions are linear polynomials.
The difference between linear programming and least-squares problems does not end in their method of
definition of objectives and constraints. Linear programming problems cannot always be solved analytically,
especially if we impose several constraints. Nevertheless, they both share the similarity in that both problems
have been explored in academics for a long time, and therefore there are numerical methods which can be
used to solve such problems. A rule of thumb in identifying the complexity of solving a linear program is
taking order of magnitude of n2m, assuming m ≥ n.

9.1.3 Convex Optimization Problem

By combining the characteristics of the linear programming problem and the least squares problem, we can
obtain the convex optimization problem. That is, we have a problem of the form given by eq. 9.9, where we
have both an objective function and inequality and equality constraints, fi and hi , respectively.

min f0(x)

subject to fi ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

(9.9)

The inequality constraints and objective functions must be convex, whilst the equality constraint function
function can be affine. This means that the function, which contains the set C ⊆ Rn , has any two distinct
points in C lying in C , or in other words, any two points in C are a linear combination that is part of C .
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Quadratic Optimization Problems

A convex optimization problem is called a quadratic program (QP) if it has affine constraint functions and a
quadratic objective function. The general formulation of the QP is given in eq. 9.10.

min
1

2
xT P x +qT x + r

subject toGx ⪯ h

Ax = b

P ∈Sn
+

G ∈Rm×n

A ∈Rp×n

(9.10)

In the QP problem, a convex quadratic function is minimized over a polyhedron, which contains a feasible
set for which the optimal value of the decision variable x, may lie within or on the bounds of.
A special class of QP programs are the quadratically constrainted quadratic programs (QCQP). These have
multiple intersecting ellipsoids whose mutual set describes the feasible region for which the optimal value
of x may lie in. QP may also be reformulated into linear programs when setting P = 0, whilst QCQP may be
reformulated into QP by setting Pi = 0∀i .

Second-order cone programming

Closely related to the QCQP problem is the second-order cone programming problem (SOCP), whose general
formulation is given by eq. 9.11.

min f T x

subject to||Ai x +bi ||2 ≤ cT
i x +di , i = 1, . . . ,m

(9.11)

For SOCP problems, it holds true that A ∈Rk×n , which is called the second-order cone constraint. The newly
defined optimization variable g , and x, are respectively ∈Rp and ∈Rn . As the name suggests, SOCP problems
contain intersecting cones, rather than general polyhedrons, which contain the feasible set for which the
optimal value of both these decision variable lies in. The quadratic objective function, for which we want to
find the optimum, intersects with these second-order, or in other words, quadratic, cones.

9.1.4 Guidance Strategy

Convex optimization problems have gained traction over years not just as a general mathematical procedure
to solve any sort of problems with given equality, inequality constraints and an convex objective function.
There is evidence to show that in the field of the solving fuel-optimal trajectory problems with state and con-
trol constraints they have become an increasingly popular strategy to solve these sorts of problems. More-
over, and most importantly, with the increase of power in modern computers and software to reliably solve
multiple classes of convex optimization problems, they have gained popularity for their ability to solve such
problems in a closed-loop fashion.
The guidance strategy, which this project attempted to replicate, is based on the DESCENDO (descending
over extended envelopes using successive convexification-based optimization) algorithm. Aside from being
a SOCP, the distinguishing characteristics of the algorithm are its usage of the procedures of lossless and suc-
cessive convexification.

Lossless Convexification

Lossless convexification is used to ’relax’ non-convex constraints in a convex form. The keyword lossless in-
dicates that no region of the feasible space of the solution disappears through the process of convexification.
The two dynamics which are non-convex are the propellant depletion dynamics, and the thrust magnitude
and pointing constraints. Both of these have previously been studied and proven to work [54]. The propellant
depletion dynamics is convexified by change of coordinates. We introduce the new variable z(t ), which is the
log of the mass of the launch vehicle m̂(t ). The mass and mass flow rate can then be written as shown by eq.
9.12 and 9.13 respectively.

z(t ) = lnm̂(t ) (9.12)
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ż(t ) =
˙̂m(t )

m̂(t )
(9.13)

The second source of non-convexification requires the introduction of another optimization constraint using
two new changes of coordinates, denoted by W (t ) and σ(t ). These two new constraints are shown in eq. 9.14
and 9.15.

W (t ) = TCV X (t )

m̂(t )
(9.14)

σ(t ) = ||TCV X (t )||
m̂(t )

(9.15)

Successive Convexification

Successive convexification is the process of introducing non-convex constraints, or objective functions, as
pre-determined values of a previous convex problem, into a new convex problem. The DESCENDO algorithm
was written with the inclusion of successive convexification in mind as part of the work done by Jerez et
al. [20]. In it, the optimality of the solution is increased by introducing aerodynamic effects in a second
procedure based on the state history of the first solution. We rewrite the force drag term included in eq.
4.35 with the newly introduced z(t ) variable to formulate the drag dynamics for the successively convexified
iteration(s), as shown in eq. 9.24 as the drag acceleration.

d∗(t ) = 1

2
ρ∗Sr e f C∗

D
||v∗(t )||

ez∗(t )
(9.16)

9.2 DESCO

DESCO is meant to take all functioning characteristics of the DESCENDO algorithm but improve its com-
putational efficiency through the use of a different framework for solving convex optimization problems. In
the original paper of DESCENDO, CVX, a MATLAB software for disciplined convex programming was used
to build the optimizer routine that computed the trajectory given the inputs of the state of the vehicle. The
same principle is mostly true in the DESCO algorithm, however the software YALMIP has been adopted to
reduce the overhead time in building the problem. YALMIP is able to create a controller beforehand, that is
prior to the launch of the simulation, in a process that takes nonetheless no more than a few seconds. The
key point here however is that for the amount of cases to be run in the design of experiments whose purpose
is to select the most robust tuning parameters of the algorithm, these few seconds can become hundreds if
not thousands of hours. In fact, in comparison to CVX, YALMIP’s feature of building a controller means that
successive iterations and calls to the algorithm within a simulation will take tenths of seconds rather than
whole seconds.
Additionally, whilst the original DESCENDO algorithm has not been procured to be compared with DESCO,
the controller framework in YALMIP allows the usage of Big-M reformulations that is more of a programming
technicality than a feature like lossless convexification and successive convexification. Big-M reformulations
involves the process of converting a non-convex or binary (logic) constraint to a set of constraints using a
change of coordinates by introduces additional binary variables and binary constraints. In an intuitive sense,
this allows the usage of if statements, whose influence in DESCO will be explained in section 9.3.

9.2.1 Problem Formulation

The SOCP (second-order cone programming) problem is introduced in this section. The equations of motion
used for calculating the state (mass, velocity, and position) are in the LP frame. These equations consider
a very simple euler scheme where the position is propagated through the discretized points in time by its
proportional relationship to the current velocity, and the rate of change of velocity. The time interval between
each discretized points is governed by the relationship in eq. 9.17. In this equation the time interval Ts is
related to the final time t f , current time t , and number of discretization points N .

Ts =
t f − t

N −1
(9.17)

The equations of motion for the launch vehicle in the LP frame do not consider non-inertial effects, precisely
because the conversion from the algorithm’s frame of reference to the simulator’s equation of motion frame
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of reference (E frame), and vice-versa, do not require them. The discretized dynamics equations are given in
equations 9.18 to 9.20.

r [k +1] = r [k]+Ts v [k]+ T 2
s

3
(a[k]+ a[k +1]

2
) (9.18)

v [k +1] = v [k]+ Ts

2
(a[k]+a[k +1]) (9.19)

z[k +1] = z[k]− 1

Isp,oa g0

Ts

2
(σ[k]+σ[k +1]) (9.20)

The variables a and σ, are surrogate variables, and are defined slightly different for the initial problem solu-
tion in the algorithm than the successive convexification iterations.

SOCP1 & SOCP2

The DESCO algorithm, like its original counterpart DESCENDO, works by solving a simplified RTLS prob-
lem with no drag dynamics with the dynamics equations listed in 9.18 to 9.20. This procedure takes place in
SOCP1, where nevertheless lossless convexification is applied. Successive convexification however, is han-
dled by SOCP2, and its subsequent iterations. In this procedure, what otherwise would be nonconvex terms
are introduced as a vector of already determined values for each different time step. This convexifies (turns
linear) nonlinear dynamics by introducing them as an input rather then as a term to solve. By pairing this
constraint with a regularization parameter in the thrust history that penalizes large changes in the thrust ac-
celeration vector, it renders neighbouring iteration of solutions not too different from one another. There are
additional constraints imposed upon SOCP2, including a trust region constraint, and additional boundary
conditions, which are described below. The algorithms for SOCP 1 and SOCP 2 are near exact to the ones
used in [54] and are shown in appendix B.4.2 and B.4.4, including their counterparts for t = 0 in B.4.1 and
B.4.3.

Objective Functions

The DESCO algorithm’s main objective is to minimize the fuel mass expended. Considering the change of
coordinates introduced in equation 9.12 for the mass, this means that we must maximize the final value of z,
and in discrete terms z[N ]. This is shown in equation 9.21, where an equivalent form of the expression using
the newly introduced σ variable for thrust acceleration constraint is included. Indeed, whilst the earlier form
of the objective function is used for the algorithm, these two expressions are identical, albeit numerical errors
and for the purposes of clarity we adopt the more direct approach that means more explicitly maximizing the
final mass of the vehicle.

max z[N ] (9.21)

A design choice for SOCP2 is made to augment, by regularization (that is by adding additional linear terms),
the objective function. The SOCP2 objective function is then described by eq. 9.22.

max z[N ]−WηwΣ
N
k=1ηw [k] (9.22)

The summation term contains a weight factor Wηw where ηw is the norm of the difference between thrust pro-
files of the first SOCP1 solution or previous successive convexification iterations. The reason for included the
weight factor is so one can balance the importance of the original objective term (log of the final mass z[N ])
and the differences in thrust profiles. The reason for regularizing the function in the first place is to allow for
solutions to not vary, or vary significantly, depending on the mission and thrust profile achievable, whether
previous thrust profiles are as reliable as newly calculated ones. With this phraseology it may be obvious that
regularizing the term prevents us from finding an optimal solution only with respect to the final mass, and
this is also in fact quite clear from the expression itself. However, as the very purpose of successive convex-
ification is to introduce non-convex constraints are readily evaluated terms, each SOCP2 algorithm with the
inclusion of the newly added dynamics of drag will unequivocally generate a different thrust profile using
the same objective function. Whilst the algorithm has control rate constraints in order to function with the
characteristics of the MX and M10 launchers, new iterations of DESCO have no obligation to keep the same
profile of the previous iterations. That is, without the regularization term successive convexifications will
cause rapidly changing thrust profiles that will still adhere to the control rate constraints, but is not favorable
for guidance when errors are introduced as the thrust profile is less predictable. This can cause a non-smooth
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thrust profile which may be more efficient in reaching maximizing fuel mass and landing . However, because
of this increased freedom in the thrust profile the RLV may favour an increased number of burns over single
longer smooth burns. This may also cause multiple burns than scheduled, and in real life applications, delays
due to transient time in engine starts and stops may accumulate errors in the long run and cause infeasible
landings.

Surrogate Variables

A surrogate variable is used to express another variable or an expression containing two or more variables.
This is done for simplifying expressions in the programming of the algorithm for ease of readability for the
user. In the dynamics eq. 9.18 to 9.20 the surrogate variable is the acceleration a[k]. This variable has different
expressions for the SOCP1 and SOCP2 algorithm, given that the latter introduces the drag term. For SOCP1,
the surrogate variable is given in eq. 9.23. The gravity ĝ (t ) is the gravitational acceleration vector in the LP
frame taken at the time of the first index of the algorithm’s iteration.

a[k] = w [k]+ ĝ (t ) (9.23)

SOCP2 introduces the drag term that is expressed in a continuous formulation as eq. 9.16. In the discrete
formulation this can be written using eq. 9.24. The asterix superscripts denote that it is a supplied (already
known) vector. Note that the drag is not a vector quantity for each time index, and that the drag is in fact
approximated as the overall aerodynamic force on the vehicle in all axis of the LP frame.

d∗
i [k] = 1

2
ρ∗

i [k]Sr e f C∗
D,i [k]

||v∗
i [k]||

exp z∗
i [k]

(9.24)

The directional vector in which the drag acts is antiparallel to the RLV velocity vector, and thus, for the SOCP2
algorithm the surrogate variable for acceleration is written as given in eq. 9.25.

a[k] = w [k]− ĝ (t )−d∗
i [k]v [k] (9.25)

Both these expressions are written as equality constraints in the respective algorithms. On the contrary, a
surrogate variable, introduced as part of the lossless convexification procedure, σ, is expressed as a surrogate
variable for the norm of the thrust acceleration vector as an inequality constraint. This constraint is expressed
in eq. 9.26.

||w [k]|| ≤σ[k] (9.26)

Boundary Conditions

The objective of the algorithm however needs to be guided by constraints, as introduced in the convex op-
timization problem formulation in eq. 9.4. Boundary conditions refer to constraints that are placed on the
final and or initial index. The requirements for RTLS as mentioned in table 3.3 is to execute a landing with
a sufficiently low final velocity and deviation from the launch site. Whilst there is a margin of error for both
requirements, only the final velocity has an inequality constraint in the SOCP1 problem. This is to ensure
that any errors in position do not build up upon the existing deviation from the exact landing coordinates
from the algorithm’s solution. The boundary conditions for the position and velocity of the RLV are expressed
in eq. 9.27. We note that continuous terms with the hat indicate single values fed to the algorithm at time t
which may be non-zero.

r [1] = r̂ (t )

r [N ] = r f

v [1] = v̂ (t )

v [N ] ≤ v f

(9.27)

For mass, the first boundary condition is placed at the starting time of the algorithm iteration, which is the
natural log of the mass at that time. The final time index constraint for the mass is expressed as an inequality
constraint for which the variable z must be greater than or equal to the natural log of the dry mass of the
vehicle. These two constraints are expressed in eq. 9.28.

z[1] = lnm̂(t )

z[N ] ≥ lnmdr y,1
(9.28)
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Moreover, because the guidance algorithm does not take into account attitude angles, both the algorithm and
the simulator for this study will calculate all needed angles to establish the approximated orientation of the
RLV from the thrust vector. Therefore, constraints on the final thrust vector in the LP frame have to be placed.
Furthermore, for the purposes of this study the thrust profile must be as smooth as possible when firing. This
is because rapid throttling of the engines can result in an unreliable thrust profile when considering the real-
world application.
In addition to the regularization term in the objective function, an initial condition on the thrust vector based
on either the vehicle starting condition at a non-zero time of the simulation must be placed based on the ve-
hicle’s current thrust acceleration. This means that the final landing condition, considering that the thrust
vector’s z axis in the LP frame corresponds to the vehicle’s longitudinal position, and is antiparallel to the ve-
hicle’s x axis in the body frame, must result in zero for the thrust acceleration’s x and y axis and greater than
or equal to zero for the z axis (vertical landing). The thrust acceleration term w is then bounded for the first
time index in the algorithm to its current acceleration. For the remainder of constraints a similar method-
ology follows, since the first time index of the algorithm is an input and not solution of the first future state
index (which would be the second time index). The thrust acceleration boundary conditions are expressed in
eq. 9.29.

w [1] = ŵ (t )

w [N ] ≥ 0
(9.29)

Control and Control Rate Constraints

When viewing the SOCP procedures as solving an optimal control problem with decision variables and con-
trol variables, the only control variable that is present is the thrust acceleration vector w . This vector must
be bounded by equivalent magnitude and rate constraints. In addition, as mentioned before, for both the
simulator and algorithm this study assumes the orientation of the RLV based on the direction of thrust. As a
result, a direction constraint on the firing angle must be imposed. This direction constraint is expressed in eq.
9.30. The variable θmax is a constant that can be adjusted that indicates the angle between the longitudinal
of the vehicle and the vertical direction (LP frame z axis).

wz [k] ≥ ||wx,y [k]||
tanθmax

(9.30)

The magnitude of the thrust is expressed using the σ variable as shown in eq. 9.31. The minimum and
maximum thrust in Newtons is indicated by Tmi n and Tmax respectively. Note that the fixed mass is used
for all time indices of the algorithm to preserve the convexity. This approximation as stated by Simplicío
et. al. [20], is not restrictive because the actual limits themselves may be adjusted to better represent the
the real maximum and minimum thrust achievable by the propulsion system. Moreover, as the simulation
progresses closer to the landing point, the deviation between the mass of the initial index and that of the
final index becomes less. This approximation may further benefit as well by increasing the number of indices
for each SOCP algorithm run as it realistically only affect the final index solutions as between closer spaced
indices the mass is meant to drop off less when firing.

Tmi n

m̂(t )
≤σ[k] ≤ Tmax

m̂(t )
(9.31)

In addition to thrust magnitude constraints, we also supply thrust rate constraints using a forward discretiza-
tion scheme. This means that, as we begin with the first time index as an already predetermined value for
thrust and state of the RLV, we start calculating the thrust rate from the second time index of the SOCP prob-
lem. Given the thrust rate constraints Ṫmi n and Ṫmax for the minimum and maximum N thrust per second
(N/s), respectively, the thrust rate constraint is expressed as shown in eq. 9.32.

σ[k]−Ts
Ṫmax

m̂(t )
≤σ[k +1] ≤σ[k]+Ts

Ṫmax

m̂(t )
(9.32)

It is noted that the aforementioned constraint was of high importance in reducing chattering without forcing
restrictions on eq. 9.26.
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Big-M Reformulation

The thrust constraint itself does not represent entirely the functional characteristics of the propulsion system.
For any optimal control problem, due to the limits on both the MX’s and M10’s throttling capability ranges, an
additional constraint must be imposed. In order to do this, the SOCP problems identify prespecificed burn
and coasting intervals where this constraint is turned off and on. From a programming perspective, the thrust
constraint inequality, or for that matter, all inequalities represent N constraints in the problem. This means
that the convex optimization problem handles the constraints at each time index, and does not generalize
a constraint over the whole time span. Whilst this may indicate a problem in the efficiency in solving the
algorithm, it actually allows us to specify constraints based on the time index, or in other words the burning
periods.
As introduced as the start of this section, Big-M reformulations allow us to specify when the magnitude con-
straint should be applied. In a logical formulation, constraints shown by eq. 9.31, 9.32, and 9.30 are to be
interpreted as shown in eq. 9.33.{

wz [k] ≥ ||wx,y [k]||
tanθmax

, Tmi n
m̂(t ) ≤σ[k] ≤ Tmax

m̂(t ) ifTs (k −1) ∈TP

w [k] = 0, otherwise
(9.33)

The pre-specified burn time is part of the set TP . In logical sense, we describe this with an if, or otherwise
approach. In a programming sense, using Big-M formulation, we introduce a new variable q , which is a
predetermined vector of dimension 1×N . This is is a binary vector for which a value of 1 at the corresponding
index indicates that the time is within the set of TP , and 0 indicates it isn’t, so there is no thrust. This variable
q however, cannot be used as a binary factor to turn off or on the constraints by multiplying the left or right
hand side of the constraints to result in a zero or non zero value (by virtue of 1−q[k]), since multiplication of
two convex variables would result in a non-convex problem. Rather, the inequalities must be driven to zero
by using an offset, which as the name of the procedure implies, is M . In selecting M , the goal is to choose a
number that is sufficiently big for which the expression may never reach. In order choose such a number we
have to look at which constraint has the fewest number of terms on the left and right hand inequalities, and
in this case it is the thrust acceleration vector constraint on the first line of eq. 9.33. The vector w is bounded
by the maximum and minimum achievable thrust, not in terms of magnitude, but as a vector quantity. This
means that the minimum acceleration is the negative of the maximum achievable magnitude of acceleration
(not the minimum value of the thrust acceleration magnitude). By indicating that 1’s denote burn periods
and 0’s denotes coasting, the thrust acceleration constraint is written programmatically in YALMIP as shown
in 9.34. The value of M is then simply the maximum achievable acceleration, which will occur at the lowest
possible mass value (mdr y,1) and the highest thrust value Tmax , as shown in eq. 9.35.

−M q[k] ≤ w [k] ≤ M q[k] (9.34)

M = Tmax

mdr y,1
(9.35)

The direction constraint and thrust rate acceleration constraint can then be augmented with the terms M(1−
q[k] on the left and both sides of the inequalities, respectively. This is shown in eq. 9.36, and 9.37.

M(1−q[k])+wz ≥
||wx,y [k]||
tanθmax

(9.36)

−M(1−q[k])+ Tmi n

m̂(t )
≤σ[k] ≤ M(1−q[k])+ Tmax

m̂(t )
(9.37)

Trust Region Constraint

SOCP2’s objective function is regularized by the inclusion of the summation of differences in a newly gen-
erated SOCP’s w solution and the old. The term ηw [k], is used to express this difference as a inequality
constraint shown in eq. 9.38. The parameter w∗[k] is the thrust accerelation profile of the previous SOCP
iteration.

||w [k]−w∗
i [k]|| ≤ ηw [k] (9.38)

This constraint, as mentioned by Simplicío et. al.[20], makes it easier for the algorithm to converge by restrict-
ing how much the thrust solution may change, and is called the trust region constraint (TRC). An emphasis
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should be noted on the ease of convergence as it is an inequality constraint, whereas an equality constraint
will be interpreted as more numerically stringent on the algorithm. Nevertheless, the algorithm will choose,
if it is able to find the optimal solution, a value of ηw [k] that is equal to and not greater than or equal to the
left hand side of the expression as it directly results in a better value of the objective function (eq. 9.22).

Flight Path Constraint

An additional constraint in SOCP2 is the inclusion of a subsurface flight constraint and a flight path constraint
(FPC). Eq. 9.39 covers both grounds of these requirements, where the RTLS trajectory is bounded to the
interior of a shrinking cone [20], whose geometry is determined by the first index position of the RLV ( ˆ[r ](t )).

r [k] ≥
ˆrz (t )

||r̂x,y (t )|| ||rx,y [k]|| (9.39)

It is important to note that the inclusion of this constraint only in the SOCP1 algorithm was a design choice
made in DESCENDO and carried over to DESCO, as the authors noted that feasible SOCP1 solutions could
only be found by removing this constraint. Nevertheless, it was also noted that SOCP1 would find a solution
that did not break this constraint despite it not being programmed in the algorithm.

9.2.2 Procedure

As mentioned before, DESCO is a rewrite of the DESCENDO algorithm by Simplicío et. al.[20], with the most
noticeable difference is the usage of a different convex optimization software, YALMIP, instead of CVX. The
interface between the simulator and the DESCO algorithm is shown in fig. B.3. Due to the algorithm’s simi-
larity with DESCENDO, the flowchart has been adapdted from Simplicío et. al., safe for the inclusion of the
initialization of the SOCP controllers and the inclusion of the SOCP at time 0 problems. Lines of green colors
indicate a logical true to the diamond yellow shaded figures, which are logical statements. Lines of orange
color indicate a logical false. Lines going away from blue boxes, which are calculation procedures are dotted
to be visually more recognizable. At the SOCP2 feasibility check, a single line is drawn for simplicity but it is
made note that the ’SOCP2t0’ algorithm is called at t = 0 just as the SOCP1t0. We recall that these algorithms
do not have the initial thrust acceleration constraint w0 and as such the optimization problem is tasked with
finding the current thrust acceleration too.
Prior to the beginning of the simulation, the static inputs for the SOCP controllers are declared in a script.
These static inputs include the weight for the regularization term in SOCP2 Wηw , the maximum Tmax and
minimum Tmi n achievable thrust, the height threshold for SOCP2 to activate hp , the number of indices in
the SOCP problem N , the number of successive convexifications Np , the minimum thrust rate Ṫmi n ,and
maximum thrust rate Ṫmax , overall specific impulse Isp,oa , and maximum direction angle between vehicle
longitudinal axis and ground θmax . At any simulation time step, for which the time tsi m always corresponds
to t (the governing frequency is the simulation frequency fsi m , a check is made to determine whether the
guidance algorithm is used or not. At t = 0, this guidance step is always taken, and at other time steps the
inequality in 9.40 is treated as a logical statement whose true result will mean that the guidance algorithm
solution is computed.

tg ui + 1

fg ui
≤ tsi m + 1

fsi m
(9.40)

At any time other than t = 0, if a new guidance solution is not generated, a stored guidance solution will be
interpolated for based on the current time t . Each time a solution is generated, it replaces the previous (if
existing) solution. SOCP2 solutions prioritize over SOCP1 solutions, but only for the same guidance step.
If the algorithm determines that a guidance step is to be made, it prepares the problem by initially trajectory
discretization and sets up the vector q needed as part of the Big-M reformulation to determine burn periods.
Each guidance step is fed with updates dynamic inputs, which are the current RLV position and velocity in
LP frame coordinates, as well as the previous solution’s state history and thrust profile, as well as the corre-
sponding time vector, used in case the solution to SOCP1 is infeasible for the given time step. The current
mass of the vehicle m is also provided. The burn time periods of the vehicle is also specified tb,i , where the
first value of the index i indicates the end of the first burn, and subsequent values alter between starts and
stops unless the final burn lasts until the final time t f . This subscript is used interchangeably with t1 and t2

which also indicate the end and beginning times of the first and second burns respectively. The drag coeffi-
cient Cd of the vehicle is computed by calling the aerodynamic database stored and interpolating for α and
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Burn Schedule TP Approach Controller build count Software
If statement ig ui CVX, YALMIP

Big-M
ig ui CVX, YALMIP
1 YALMIP

Pre-built controllers All unique q vectors CVX (undocumented), YALMIP

Table 9.1: Burn schedule characterization for SOCP problems based on number of times controllers require formulation

M . The atmospheric density ρ is computed based on the chosen atmospheric model which are detailed in
section 9.3. Lastly, the final time is indicated to complement the definition of q with the burn periods tb,i .
Following trajectory discretization, a logical check is made on whether the guidance time tg ui is 0. As men-
tioned, both the simulation time and guidance time match at the start of the simulation, so that guidance
solution is always calculated at the start. If true, than the t0 variation of the SOCP controllers will be used. As
mentioned, a different controller for the initial time needs to be used in order to calculate the initial thrust
vector, whilst the standard SOCP1 and SOCP2 controllers will require it as an input from the previous guid-
ance step solution. Once the controller has been identified, the solution, with the respective dynamic inputs
is calculated. If the SOCP1t0 controller returns an infeasible solution, the RTLS problem is handled as in-
feasible and therefore the simulation is terminated. If feasible, and also in the case of SOCP1, the altitude
threshold check indicated in eq. 9.41 is made.

h ≥ hp (9.41)

If true, an index i is initialized to 1 which will correspond to the index representing the number of successive
convexifications made +1. At i = 1, no successive convexifications have been made, and therefore the first
lossless convexification solution will be generated by introducing the drag term using the dynamic inputs of
ρ and cD , as well as the state history of the SOCP1 (or SOCP1t0) solutions. If feasible, the stored solution is
updated, and the index i is increased by 1. This loop is repeated until i exceeds Np + 1. If the solution is
infeasible at any index i , the most recent stored solution will be interpolated and used in the simulator.

9.2.3 Burn Schedule Definition

The burn schedule can have a considerable impact on the feasibility of the solution. There is a limitation
however in the approach in [54], whereby the software employed, CVX, to construct the SOCP problem, re-
quires building of the problem/controller and cannot take in so called ’dynamic’ inputs, which vary between
each tg ui step. The example of what can be deemed dynamic inputs are the initial states r0, velocity v0, mass
m, initial time t0, final time t f , the burn schedule array q and additionally for SOCP2 the approximated drag
acceleration d∗. Static inputs are variables that are used to tune the controller, which are the thrust history
difference weight factor Wηw , altitude threshold hp , number of discretization points N , number of successive
convexifications Ncv x , maximum thrust rate Ṫmax , overall specific impulse Isp,oa , maximum thrust direction
angle θmax , and minimum and maximum thrust Tmi n and Tmax . For this study these ’static’ inputs, as the
name suggest, are open-loop variables and do not change during the trajectory.
YALMIP is another software package for MATLAB that allows creation of SOCP problems. Within the toolbox,
there is an option to use an ’optimizer’ structure to set up a problem as a controller which can be saved and
then called to solve the problem with different inputs. This can save time for DoE’s as the controller only
needs to be generated once. This type of approach also exists in CVX however it is not a documented proce-
dure and little to no support or examples exit for its application. As a result, it was not explored in this study.
In the original DESCENDO study, CVX used if statements to declare different constraints for different steps
in the discretized grid. We note that these constraints are switched on based on the Tp , and in programming
sense are the 1’s (thrust on) or 0’s in the input q . Table 9.1 shows the different approaches identified for this
study in generating the controllers.

9.3 Verification

In this section verification procedures to determine that the algorithm runs as intended are detailed. These
verification procedures where run as independent tests from the DoE’s of the 3-DoF simulation discipline.
The verification tests ran involve varying hp , as well as varying the atmospheric models between the DG
(plus ACT) and SDK blocks to determine the suitable model selection. For these tests, the feasibility of the two
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Block Variable Value

SDK

Tmi n,M10 10kN
Tmi n,M X 60kN
Tmax,M10 100kN
Tmax,M X 600kN
fsi m 10Hz

DG

θmax 70deg
Wηw .0001
Tmi n 130kN
Tmax 1300kN
fg ui 1Hz
Ṫmax 1kN/s

Table 9.2: Nominal parameters for SDK (spacecraft dynamics & kinematics) and DG (descent guidance) block.

Trajectory ||r f || (m) vN , f (m/s) vE , f (m/s) vD, f (m/s)
Pre-generated Tp , t f = 300, %t1 = .1, %t2 = .6 0.007915 0.003206 0.001491 0.406295
Pre-generated Tp , t f = 280, %t1 = 0, %t2 = 0 0.030835 0.003101 -0.00246 0.57546
Big-M Tp , t f = 280,% t_1=0,% t_2=0$ 0.122493 0.00676 1.313176 1.21859

Table 9.3: Verification trajectories for different types of Tp and methods of generation.

different YALMIP controller optimizer approaches is analysed (Big-M and controller pre-generation), as well
as the adherence of the thrust profiles to the two difference ACT schemes formulated (prioritize Pa , prioritize
running engine). The parameters used for the SDK and DG blocks are show in table 9.2. Additional tests
where run on Ṫmax but results showed an overwhelming evidence that the nominal value of 1 kN/s as used
in [54] faired much better as values in the search space from .5 to 100kN/s all resulted in infeasible results.
As such this parameter was not studied further. Two different burn schedules and t f where considered for
both Big-M and the pre-generated controller methods. The first criteria was t f = 300 sec, with %t1 = .1 and
%t2 = .6. This criteria was chosen with hindsight after completing partially some runs from DoE1. The second
trajectory selected was with t f = 280 sec, and no strict burn schedule (%t1 = 0, %t2 = 0). The final time was
tested in grid search from 250 seconds to 350 seconds with increments of 10 seconds. It was determined that
from 250-260 sec the solution was infeasible at t = 0, whilst at 270 it was feasible, and 280 was the first point
of optimality.

9.3.1 Burn Schedule Approach

The trajectory profile with the strict burn schedule for the big-M approach fails to find a feasible solution with
the SOCP1t0 algorithm. Other tests are ran for t f in the range of 280 to 400 with increments of 10, all yielding
infeasibility at t = 0 or largely infeasible solutions with ||r f || and ||v f || in the tens of thousands of meters and
hundreds of m/s respectively. The controller fails to find optimal solutions soon after the first few guidance
iterations. This indicates that there is an inherit problem with the way that the constraints are rewritten in
the big-M approach for burn schedules. A possible reason for this may be the fact that the big-M problem
would need to have constraints with discrete and non-smooth profiles for the bounds.
The rest of the results for both the big-M approach and pre-generated controllers is shown in tab. 9.3. The
results show that all trajectories return optimal values, except for the big-M trajectory which yields a slightly
less than optimal value for velocity. The feasibility of the big-M approach without a strict burn schedules
reinforces the idea that the binary type constraints on the problem may impose numerical problems far too
great for ECOS to solve. This reasoning could also be applied to the fact as to why the choice of Ṫmax is
extremely sensitive.

The trajectories are plotted and shown in fig. 9.1. The following insights can be made from the figure.
The big-M approach without a strict burn schedule seems to have the most direct approach to the LP, in the
sense that it does not overshoot the longitude. The ground track profile shows however that there is more
crossrange (latitude) variation compared to the pre-generated approach.
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Figure 9.1: Verification trajectories. The points on the trajectory are selected so as to indicate a 6 (for t f = 300 sec) or 5.6 (for t f = 280
sec) second interval between the last point.

In all cases, what can be noticed is that at the point of approach there seems to be more time taken (in-
dicated by the increasing number of points which denote 10 second intervals on the trajectory curves). And
exception to this is for the pre-generated unrestricted burn profile which shows a slow down at the lowest lon-
gitude point, where an angle is formed to redirect the RLV towards the LP. A rapid thrust profile is followed,
which then ultimately leads to a slower and more controlled thrusts towards the LP.
The pre-generated restricted burn schedule trajectory (blue) shows a different strategy to reach the LP. For
the majority of the flight, the points are somewhat equally distributed, up until where a maximum latitude
point is reached. Interestingly, this trajectory favours to distance itself respective to the crossrange of the LP
and redirected itself to land laterally. A rapid burn sequence is then followed after redirection, and ultimately
more controlled burns near the LP.
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Figure 9.2: Thrust profile of pre-generated burn schedule approach for t f =300 sec, %t1=.1, and %t2 = .6.
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Figure 9.3: Thrust profile of pre-generated burn schedule approach for t f =280 sec, %t1=.0, and %t2=0.
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Figure 9.4: Thrust profile of big-M approach burn scheduling for t f =280 sec, %t1=.0, and %t2=0.

The reasoning as to why the different trajectories with different controller burn scheduling approaches
have different strategies for return may be answered by looking at the thrust profiles. Fig. 9.2 to 9.4. Fig. 9.4
shows a non-smooth thrust profile for the MX engine, with a smooth M10 profile that switches on at 130 sec.
It can also be seen that the MX engine does not switch on immediately at the start of the simulation, which
when looking at the diagnostics shows that the first few guidance iterations fail to find a feasible solution. The
thrust rate constraint in SOCP1 and SOCP2 is not respected as well, indicating that the big-M constraints are
not representative of the original problem. Between t = 5 and t = 120 a large majority of the SOCP1 guidance
solution are solved with numerical problems or fail to find a solution. Past the point the solutions begin to
improve, which is followed by a more smoothed out thrust profile. Despite the lack of adherence to Ṫmax , the
maximum thrust the MX achieves is only around 162kN.
In comparison,the pre-generated burn schedule approach produces a much smoother thrust profile as shown
in fig. 9.4. There are three particular points of non-smoothness, one being at an engine switch on at around
105 sec up until 120 sec. The other is at 178 sec to 200 sec, and the last the final 15 seconds before landing.
No particular pattern related to the diagnostics of the solutions reflects this behavior, aside from the former
of the three points where SOCP2 solutions result in feasible with numerical problems. Nevertheless, three
clear burn regions can be identified: t = 0 to t = 80, t = 120 to t = 178, and t = 200 to t = 280. This result is
favourable because it shows that the algorithm is capable of producing a smoothed thrust profile, and also
shows the contrast between what can be achieved with analytical guidance law such as ZEM/ZEV whereby a
zero thrust acceleration is possible for multiple instances of time.
Fig. 9.2 shows the thrust profile for the pre-generated burn scheddule with fixed tb,i . This result shows no
non-smoothness apart from a very small degree towards landing. This is expected as near landing the algo-
rithm is more likely to vary its thrust due to the way that the discretized grid is set up, such that as the tg ui

approaches t f the time step size decreases. Interestingly, the control allocation scheme allocates the thrust
initially only to M10 at tb,2. This is in contrast to all trajectories where for tb,1 only the MX is firing. At the
initial point of the trajectory, based on the nominal control allocation scheme shown in fig. B.1, both the
MX and M10 are favoured to thrust. It seems however that the fmincon solution favours only the switch on
of the MX engine, despite the fact that firing the M10 engine would require less mass by virtue of its higher
Isp . Nevertheless the initial thrust as determined by the algorithms are all greater than TM10,max , safe for the
big-M approach. The level of controllability and smoothness as shown in the pre-generated trajectories is
also therefore in partial merit to the control allocation scheme, which does not switch between usage of MX
and M10 engines when crossing the TM10,max (100kN) threshold. This behaviour however is not expected
and presents an opportunity to revisit the fmincon problem that minimizes the mass flow rate. Nevertheless,
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Trajectory ||r f || (m) v_{N , f } (m/s) v_{E , f } (m/s) v_{D, f } (m/s)
Pre-generated Tp , t f = 300, %t1 = .1, %t2 = .6 0.073674 0.005404 -0.00244 0.859375
Pre-generated Tp , t f = 280, %t1 = 0, %t2 = 0 0.032975 0.003059 -0.00026 0.581003
Big-M Tp , t f = 280,% t_1=0,% t_2=0$ 0.09013 0.008428 0.753591 1.330494

Table 9.4: Verification trajectories for different types of Tp and methods of generation, with the minimum thrust constraint Tmi n as 10%
of the maximum thrust of each engine.

the set burn schedule with pre-generation of controller strategy shows the most favourable outcome out of
all three approaches.
A trend can be noticed between these three trajectories, in the context of controllability and resulting trajec-
tory. Whilst the big-M approach does not adhere to the SOCP problem’s constraint, it can deemed to have the
highest level of controllability out of all three solutions. By having a control profile that is more adjustable, the
maximum thrust achieved does not need to be as high. In contrast, introducing a working Ṫmax constraint re-
turned a much smoother thrust profile, with identifiable regions of tb,i despite the fact that none where fixed.
Moreover, with the introduction of fixed tb,i the thrust profile eventually smoothed out. This result shows the
importance of the Ṫmax parameter and can provides more evidence to support the difficulty in finding mul-
tiple working values that allow the algorithm to work. It was also deemed important in making DESCENDO
work in [54]. In short, increase level of control does not indicate a reduced quality of the solution, but rather
can help validate the algorithm to its real-world application. Whilst it is true that REQ-PR-1 has a Ṫmax of 50%
which is far beyond what any of the profiles show to reach (not including switch on or offs), for the validation
of the guidance algorithm it is important to show smoothness of the thrust profile to add an increased level of
predictability of the solution and better translation to the actual capabilities of the engines and actuators of
a physical RLV. Moreover, when subjecting the algorithm to noise, it is unfavourable to deal with an irregular
thrust profile, as at a point of infeasibility, the SOCP problems may have more difficulty determining the next
feasible solution by virtue of the fact that neighbouring solutions themselves already have a large discrepancy
between them. This added level of controllability also explains the direct approach that the big-M trajectory
has compared to the other. Intuitively, it may be favourable in fact to approach the LP with some negative
downrange or crossrange so as to allow space to make final manoeuvres rather than approach the target too
rapidly, risking an overshoot from the control that may cause the solution to become infeasible due to the last
few seconds of thrust. This is especially true when we impose a restriction of Tmi n which is described in the
next section.

9.3.2 Minimum Thrust Constraint

In order to avoid the presence of non-smooth regions of thrust, especially lower values near T = 0, we impose
a Tmi n condition on the thrusters of 10% of their maximum thrust. The results for the verification trajectories
with this condition are shown in tab. 9.4. All results show feasibility, with optimality for velocities for the
pre-generated methods, as well as their ||r f ||. A slight drop off of vE , f in the big-M approach can be noticed,
albeit with an equally slight increase of its vD, f .
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Figure 9.5: Verification trajectories with the added Tmi n constraint on DESCO. The points on the trajectory are selected so as to indicate
a 6 (for t f = 300 sec) or 5.6 (for t f = 280 sec) second interval between the last point.

The improved final condition may be attributed to the fact that as discussed before, the pre-generated
TP trajectories distance themselves from the LP during the landing to allow for some degree of correction,
whilst the big-M approach rapidly approaches it. This can also be seen in this scenario with the added Tmi n ,
as shown in fig. 9.5. The pre-generated TP approach fixed fixed tb,i shows an interesting deviation from its
counterpart without Tmi n constraints. The trajectory seems to oscillate across the latitude point of the LP,
which varies a maximum of 4e-6◦, roughly 3.9m if we convert this distance with eq.4.19. This presents an
interesting scenario where the algorithm essentially hovers above the LP until it can arrive at the designated
t f with the right conditions. This reinforces the idea that with reduced controllability and set bounds the
solution can improve in accuracy. In fact, even in this case both pre-generated trajectory share a better solu-
tion that the big-M approach which again favours a direct landing without distancing itself during the final
moments. An advantage of this may be presented in the context of safety of operations when landing. If the
algorithm favours a landing approach that takes up more distance it may be a safety hazard in the event that
a failure occurs. However, in this case a large deviation from the LP coordinates at the point of landing is not
present, with the larger distance being covered by the red curve of a few hundred meters west of the LP.
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Figure 9.6: Thrust profile of big-M approach burn scheduling for t f =280 sec, %t1=.0, and %t2=0, with added Tmi n constraint on DESCO.

Fig.9.8 shows the thrust profile of the big-M approaches with added Tmi n constraint. The profile now
shows a switch a on of the M10 in the earlier stages of flight, and non-smooth control for both engines, until
the final 120 seconds where the M10 retains its smoothness. The t f had to be increased to 300 sec, with
290 sec providing an infeasible solution. Overall the profile shows an undesirable type of control whereby
translating it to a real world actuator system may not be practical.
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Figure 9.7: Thrust profile of pre-generated burn schedule approach for t f =280 sec, %t1=.0, and %t2=0, with added Tmi n constraint on
DESCO.

Fig. 9.7 shows the pre-generated TP without set tb,i . The solution does shows adherence to the Tmi n
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constraint, also noted by the fact that its diagnostics return no infeasible solutions. The profile shows that the
control allocation scheme can distribute lower levels of thrust to the M10, whilst allowing the MX to cover the
remaining thrust, as well as understanding when to switch on or off either engines. The difference between
its counterpart without Tmi n is in that several switch on and off of the MX and M10 are noticeable. Increasing
the amount of restarts for a liquid rocket engine may increase the amount of complexity of the design if
pyrotechnic igniters are used, and requires further analysis through reliability testing[70].
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Figure 9.8: Thrust profile of pre-generated burn schedule approach for t f =300 sec, %t1=.1, and %t2 = .6, with added Tmi n constraint on
DESCO.

Fig. 9.8 shows the pre-generated TP trajectory with fixed tb,i . Several restarts for the MX (4) and even more
so for M10 (10) are noticeably for tb,2. The number of restarts does not present itself an issue but the time span
in which they occur, between t = 225 sec to t = 265 sec is fairly brief. Whilst the control profile itself is smooth
in preiods of switch on, and adheres to all thrust contraints, rapid switch on and off can also present issues
when translating the control to a physical actuator control system in case noise is added. In contrast with fig.
9.6 and 9.4, the overall thrust in this region however is a smooth profile, and it is the control allocation scheme
that experiences issues due to the variations of Pa when entering lower altitudes. This causes a change in
priority between engine should be switched on. Ultimately however, the landing stage shows a return to a
more smoothed distribution of thrust across the two engine types. This thrust profile also shows the highest
reached thrust for the MX engine out of the previous verification tests, and reinforces the call for higher thrust
values when more constraints are applied. The SOCP solutions are all deemed feasible for both SOCP1 and
SOCP2 albeit a few between tb,1 and tb,2 that return infeasible. Nevertheless, the first feasible solutions at
tb,2 delay the thrusting of the engines for about 25 seconds (tb,2=25). This is again evidence to show that the
algorithm can favour a coasting period before re-ignition.

9.3.3 Computation Time

Table 9.5 shows the overall computation times needed for the verification trajectories without set tb,i ’s. The
big-M approach has an overall much smaller preliminary time to generate the controllers (4 in total: SOCP1t0,
SOCP1, SOCP2t0, SOCP2). The average time taken however is noticeably greater than the pre-generation
approach, for both SOCP1 and SOCP2. This strategy allows more effective execution of large scale DoE’s,
but also for physical feasibility of the mission when testing the delay due to a simulated processing time to
compute the problem covered in the sensitivity analysis in section 8.2.4.



9.3. Verification 73

Approach Preliminary Time over 3 runs (sec) Average time per SOCP 1 (sec) Average time per SOCP2 (sec)
Big-M 4.7210 .1187 .0458
Pre-generation approach N = 20, t f = 280 sec,
%t1=0, %t2=0

Controller Build Controller Load
.0729 .0227

423.8331 75.6543

Table 9.5: Controller pre-load and build times for different burn scheduling approaches.

9.3.4 Atmospheric Model Selection

For selection of the nominal atmosphere models, the pre-generated unrestricted tb,i trajectory is ran with all
possible combinations of guidance and simulator atmospheric model choices. These are shown in table 4.2,
where the LF models are used for the guidance algorithm, and the HF for the simulator. The results for the
variation of states can be seen in fig. 9.9.
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Figure 9.9: State history comparison for pre-generated burn schedule approach for t f =280 sec, %t1=0, and %t2 = 0, using the LF 62 and
HF 76 atmospheric models for guidance and simulator respectively.

The figure shows that compared to the LF 76 and HF 76 selection, there is a consistent variation of the
states since t = 0, which has been cut off from the graph because previous values are less than 1 or 2 orders of
magnitude for all states than what is visible in the given time range. The purpose of the graph is to determine
whether a selection of models results in a larger discrepancy in states compared to other model selections.
The results do not show a noticeably difference in state histories.
The LF 76, and HF 62 selection shows the most difference for the majority of the trajectory except for vD and
R. The LF 76 HF 76 model sits somewhere in between the two.
The models do not impact the feasibility of the trajectory, as the dips at 280 seconds, the value of t f , indicate
the differences start decreasing. The latitude λ shows at most a peak of a few 10’s of meters of variation at
around 180 sec to 210 sec. The most noticeably differences are for vD and R, where up to 231 m of difference
is noticeably at around 220 sec when comparing the nominal model to LF 76 and HF 76. The former shows
a maximum peak of around 33 m/s at 220 sec. When looking at only these two most influential differences
across all state histories, the hierarchy of difference between models matches with what is expected, from 240
sec to 280 sec. This shows the blue curve on top of the yellow, which is on top of the red. With the nominal
model being LF 62 and HF 76, switching the SA 1962 for the COESA 1976 models with the LF 76 and HG 62
shows the lowest state difference for vD and R, which is the opposite in this time range for the other states,
which is the expected outcome, as a direct switch in models for guidance simulator should represent the
greatest state history difference. It is possible that as vD and R are variables that are directly impacted by the
variations in the model selection due to the fact that all models are functions of the altitude and that Ṙ =−vD .
The downwards velocity may build up greater differences compared to the LF 62 and HF 76. This effect then
carries on to R as it starts to follow opposite the trend of the other states because of its state equation. This
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effect then snowballs into vD as its state equation as given in 4.10 is related to R, and as such these two states
follow the opposite trend in state differences with respect to the nominal atmospheric model.
In short, the results show the expected behaviour in differences in thrust history based on the qualitative
fidelity of the models. This is an exception for vD and R, possibly due to the proportionality of Ṙ to vD . The
nominal selection of LF 62 for the guidance algorithm and HF 76 for the simulator is kept and used for all
simulations.



Chapter 10

Results

This chapter presents all the results of the three DoE’s and the disciplines of Launch Vehicle Optimization,
Engine Sizing, and preliminary ascent & descent. For each DoE campaign and discipline, the motivation for
the selection of nominal candidates to pass on to the next disciplines is explained.

10.1 Launch Vehicle Optimization

The results of the launch vehicle optimization procedure return a total of 1499 final candidates after 500
generations which respect all requirements for all payload classes. Tables 10.1 to 10.5 show the measures of
central tendency results for the various payload classes. All but the 500 kg payload class runs returned 300
feasible candidates, which returned 299 instead. All payload classes cover the entire span of possible mp,1

except for 500 kg, which has the lowest minimum of 58371.27 kg. There is also quite a noticeably difference
between the minimum and the rest of the quantiles for all payload classes for mp,1. From a jump of 400
to 500kg, there is an increase in the minimum propellant of 8371 kg. The value of 400kg also presents an
interesting case for the minimum value of mdr y,1, where the greatest payload increases the minimum mass
by around 823.66 kg. This is two order of magnitudes different than the differences between the smaller
payload classes. Moreover, 400kg presents the largest σ for all variables included in the table. The usefulness
of selecting a nominal candidate for in this class is that when examining the variation of propellant mass for
the sensitivity study, there may be an added degree of reliability that the increase or decrease in propellant
mass may correspond to feasible configuration. This translates to both the variation in mdr y,1 and mp,1, as
with a 3-DoF simulation, the final mass can correspond to any combination of dry and propellant mass, as
long as it greater than the former. This is also true for the fact that the 400 kg class contains candidates feasible
for the maximum and minimum propellant mass requirements.
The smaller variation with respect to µ is found in mpay , for all payload classes. This result is desirable as
the added payload mass apart from the instruments itself should not be too dependent on the inputs to the
launch vehicle optimization problem, aside from mpl itself. Another small relative difference in % comes
from mdr y,2. There is statistical evidence to show that the effects of mass variation can be focused on mdr y,1

and mp,1. As an example, for mpay = 100, σ for mdr y,2 corresponds to roughly 4.5145 % of µ. For mp,1, it is
6.3029%, for mpay it is 1.9675 %, and for mdr y,1 it is 7.2825 %.

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

mdr y,1 (kg) 7606.731 553.9627 7543.791 7669.672 5381.787 7709.429 7801.191 7844.051 7869.603
mdr y,2 (kg) 1146.725 51.76849 1140.843 1152.607 931.1554 1152.119 1165.569 1172.128 1176.243
mp,1 (kg) 68701.69 4330.192 68209.7 69193.68 50000 69973.13 69992.53 69997.13 69999.99
mpay (kg) 443.6766 8.729242 442.6848 444.6684 408.5555 445.2785 446.7338 447.4155 447.8241

Table 10.1: Measures of central tendency for GA results for 100kg payload class RLV.
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Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

mdr y,1 (kg) 7702.689 576.0237 7637.242 7768.136 5340.135 7819.859 7910.236 7950.439 7978.701
mdr y,2 (kg) 1162.021 53.01285 1155.998 1168.044 951.8506 1168.65 1182.112 1188.457 1193.066
mp,1 (kg) 68763.25 4097.879 68297.66 69228.85 50000 69976.95 69992.23 69997.01 69999.91
mpay (kg) 550.3822 9.024853 549.3568 551.4076 512.9626 552.2009 553.6305 554.2702 554.721

Table 10.2: Measures of central tendency for GA results for 200kg payload class RLV.

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

mdr y,1 (kg) 7520.461 522.078 7461.144 7579.779 5297.128 7610.85 7725.32 7769.16 7795.273
mdr y,2 (kg) 1135.544 46.09642 1130.307 1140.782 943.2143 1137.401 1154.532 1161.304 1165.763
mp,1 (kg) 68695.17 3904.478 68251.55 69138.79 50000 69967.87 69991.03 69996.65 69999.99
mpay (kg) 652.7006 8.167361 651.7726 653.6286 617.3672 654.075 655.9034 656.6021 657.0226

Table 10.3: Measures of central tendency for GA results for 300kg payload class RLV.

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

mdr y,1 (kg) 7563.23 612.7882 7493.606 7632.854 5254.154 7672.336 7704.111 7873.786 7997.259
mdr y,2 (kg) 1173.643 67.34537 1165.991 1181.294 928.8036 1185.169 1200.974 1206.294 1210.752
mp,1 (kg) 68539.85 4471.482 68031.81 69047.89 50000 69971.82 69992.66 69997.49 69999.99
mpay (kg) 759.0157 9.77548 757.905 760.1264 721.7938 761.0568 761.5607 763.4987 765.4495

Table 10.4: Measures of central tendency for GA results for 400kg payload class RLV.

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

mdr y,1 (kg) 7603.646 381.0357 7560.28 7647.012 6078.02 7650.484 7744.883 7786.385 7820.872
mdr y,2 (kg) 1194.148 53.68117 1188.039 1200.258 1016.899 1200.197 1215.388 1221.794 1227.404
mp,1 (kg) 69259.6 2355.019 68991.58 69527.62 58371.27 69969.6 69992.02 69996.79 69999.99
mpay (kg) 865.1837 6.15545 864.4832 865.8843 840.7916 865.9689 867.4835 868.1445 868.6969

Table 10.5: Measures of central tendency for GA results for 500kg payload class RLV.
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10.2 Engine Sizing

The results of the engine sizing procedure are shown in tab. 10.7, and 10.6. The values of De are lower for all
measures of central tendency values and quantiles for the M10 engine except for the minimum. The same
is true for Pe . This gives the MX a greater potential in mantaining maximum thrust at lower altitudes if we
consider Pe as a maximal achievable value and assume the engines have altitude compensation abilities. We
note that the feasible configurations of the M10 contain a much smaller range of errors for Isp . Moreover, the
confidence intervals for both engines on %Isp,er r or is fairly large. This being 37.5% and 23.5% of µ for the MX

and M10 engines respectively. The MX also has a wider spread in Pe
Pa

with a 11.6907% difference, and 1.8252%
for the M10. For Pc , the differences from the confidence intervals to the µ are 17.38% for MX, and 14.439% for
the M10. This is evidence that the sample points of chosen for the MX as inputs to the CEA run problem may
not be representative of the entire distribution. The %Isp,er r or variation also supports this hypothesis, and
therefore the number of points for the MX case should be increased to obtain a better representation of the
engine characteristics. However, the wide distribution of the MX’s engine outputs demonstrate that, along
with its generally higher Pe , serves as a suitable candidate to be considered as an engine with an altitude
compensating nozzle.
The total number of feasible MX candidates are 42, and the total for M10 are 59. The smaller pool of can-
didates for MX may also explain the larger disparity in the CI, as a larger sample may reduce this. There is
an increasing difference between quantiles of the MX for Pe . The maximum feasible value results in a 110
kPa candidate, which would cover sea-level altitudes (101.325 kPa). To determine the variation of %Isp,er r or

relative to Pe , we can look at tab. A.2 and A.2. The MX candidates show a decrease in %Isp,er r or as Pe , whilst
the inverse is true for M10. This result is ideal as the MX engines are closer to Isp,theor y with larger Pe making
them an effective choice for near sea-level altitude. Whilst the M10’s error increase with higher Pe , it’s shorter
variation of error makes up for this.

Variable µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

De (m) 1.244731 0.694935 1.028175 1.461288 0.589972 0.803284 1.026194 1.426183 3.573345
Pe (Pa) 41006.67 29448.05 31830.01 50183.33 2690 17350 33800 57300 110000
Pc (Pa) 5345881 2981428 4416803 6274959 2690 17350 33800 57300 110000
Pe
Pa

0.007553 0.002834 0.00667 0.008436 0.003407 0.005653 0.006245 0.010372 0.011145

%Isp,er r or -2.50762 3.017659 -3.44799 -1.56726 -8.06462 -4.44131 -2.77354 0.317805 0.894548

Table 10.6: Measures of central tendency for MX feasible candidates.

Variable µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

De (m) 1.121321 0.616043 0.960779 1.281862 0.620621 0.726445 0.899157 1.277063 3.154245
Pe (Pa) 5495.532 3224.08 4655.332 6335.732 416.6571 2620.832 5309.014 8165.8 11234.55
Pc (Pa) 5101889 2826726 4365240 5838538 416.6571 2620.832 5309.014 8165.8 11234.55
Pe
Pa

0.001041 7.28E-05 0.001022 0.00106 0.000844 0.001007 0.001065 0.001095 0.001138

%Isp,er r or -0.25681 0.231872 -0.31724 -0.19639 -0.57579 -0.43302 -0.30915 -0.11878 0.299995

Table 10.7: Measures of central tendency for M10 feasible candidates.

10.3 Preliminary Ascent & Descent

The preliminary ascent and descent results are split into the 5 payload classes to help better identify if a
suitable candidate exists, and give insight to begin answering the first research question.

10.3.1 Preliminary Ascent

The preliminary ascent measures of central tendency are shown in tables 10.8 to 10.12. The CI for all of the
variables and payload classes are not much greater than 1% in the worst cases, making it a statistically accu-
rate representation of the distribution of results. This could be to the uniform grid space used for variation
of the variables kh0,descent

and t f . The highest relative variation lies in starting descent velocities vx,0,descent
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and vz,0,descent . These are dependent entirely on λ (mass fraction), which is a function of the RLV candidate
geometry. When it comes to the variation of h0 and t f , whilst t f remains the same for all payload classes,
h0,descent varies with the solution case due to kh0,descent

. The smallest σ lies for the 500 kg payload class, the
largest for 100 kg. This trend is also true for all other variables, and there is a jump that occurs at 400 kg where
the highest variation for X0,descent , m0,descent , and starting velocities is present.
There is statistically significant variation of the quantile distribution for m0,descent across different payload
classes. What is interesting is the spread of solutions for the 400 kg payload class. It was seen that for the
launch vehicle optimization it was also the highest class that covered the entire mp,1 range. As mentioned
before, the 400 kg payload class is an optimal nominal candidate for its widespread characteristics. When
carrying out the sensitivity analysis, having a wider variation ensures that the actual RLV itself can support an
increase or decrease of m whether it be of its mdr y or mp . In a 3-DoF environment this is not of concern as
the mass split between dry and wet only starts to influence the trajectory if the trajectory requires complete
exhaustion of propellant. In 6-DoF, this would influence the moment of inertia of the vehicle and thus impact
the e.o.m. This is also true for variations of the velocities, X0,descent , and h0,descent .

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

h0,descent (m) 28644.19 538.7293 28642.26 28646.12 26086.7 28676.65 28715.23 28787.19 29397.77
X0,descent (m) 41140.69 2589.384 41131.42 41149.95 29938.53 41902.27 41913.81 41916.59 41918.3
m0,descent (kg) 41957.58 2702.612 41947.91 41967.25 30381.79 42696.43 42798.91 42841.47 42868.29
t f (sec) 400.0838 115.3999 399.6708 400.4967 200.0009 300.2378 400.0117 500.0686 599.9978
vx,0,descent (m/s) -32.7341 28.25129 -32.8352 -32.633 -41.2844 -41.2 -41.1088 -40.8218 91.13656
vz,0,descent (m/s) 390.8203 17.01486 390.7594 390.8812 384.1059 384.4699 385.0809 386.4441 458.2496

Table 10.8: Measures of central tendency for preliminary ascent and descent starting conditions and criteria, for payload class of 100kg.

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

h0,descent (m) 28470.36 447.1603 28468.76 28471.96 26084.97 28469.23 28505.93 28575.64 29395.63
X0,descent (m) 41177.33 2450.411 41168.56 41186.1 29938.53 41904.71 41913.35 41916.23 41918.02
m0,descent (kg) 42084.32 2605.701 42074.99 42093.64 30340.13 42811.47 42907.06 42948.45 42977.05
t f (sec) 400.0749 115.4018 399.662 400.4879 200.0016 300.1146 400.3028 499.63 599.9999
vx,0,descent (m/s) -33.5946 26.57582 -33.6897 -33.4995 -41.728 -41.647 -41.5436 -41.2836 90.76682
vz,0,descent (m/s) 388.104 17.16176 388.0426 388.1655 381.2667 381.654 382.2411 383.6049 457.4855

Table 10.9: Measures of central tendency for preliminary ascent and descent starting conditions and criteria, for payload class of 200kg.

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

h0,descent (m) 28570.21 422.4747 28568.7 28571.72 26018.69 28563.23 28601.1 28674.06 29220.77
X0,descent (m) 41136.65 2334.797 41128.3 41145.01 29938.45 41898.97 41912.76 41916.13 41918.19
m0,descent (kg) 41868.04 2457.418 41859.25 41876.84 30297.13 42597.73 42719.52 42766.91 42792.9
t f (sec) 399.7879 115.5293 399.3745 400.2013 200.0006 299.6421 399.9285 499.6664 599.9969
vx,0,descent (m/s) -33.1183 24.99358 -33.2078 -33.0289 -41.5165 -41.4357 -41.3281 -41.0092 90.41368
vz,0,descent (m/s) 389.7572 16.3566 389.6987 389.8158 382.5985 382.9586 383.6052 385.3261 456.7553

Table 10.10: Measures of central tendency for preliminary ascent and descent starting conditions and criteria, for payload class of 300kg.

Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

h0,descent (m) 28348.22 509.3182 28346.4 28350.04 26003.96 28305.78 28488.64 28517.9 29070.41
X0,descent (m) 41043.39 2673.815 41033.83 41052.96 29938.43 41901.08 41913.65 41916.47 41918.08
m0,descent (kg) 41833.15 2828.587 41823.03 41843.28 30254.15 42667.15 42702.01 42857.79 42995.38
t f (sec) 399.7454 115.4477 399.3323 400.1585 200.0028 299.6478 399.6429 499.6766 599.9995
vx,0,descent (m/s) -32.4141 29.01521 -32.5179 -32.3103 -42.1507 -41.708 -41.6016 -41.5121 90.06097
vz,0,descent (m/s) 387.6096 18.31798 387.544 387.6751 378.4426 380.2963 381.92 382.4065 456.0256

Table 10.11: Measures of central tendency for preliminary ascent and descent starting conditions and criteria, for payload class of 400kg.
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Variables µ σ
CI Quantile
2.5% 97.5% 0 .25 .5 .75 1

h0,descent (m) 28389.65 154.7304 28389.1 28390.21 27914.34 28310.28 28348.82 28434.96 28969.13
X0,descent (m) 41474.44 1408.161 41469.39 41479.48 34952.75 41899.58 41913.07 41915.89 41917.83
m0,descent (kg) 42233.45 1543.433 42227.91 42238.98 35263.66 42634.12 42741.52 42784.39 42812.66
t f (sec) 399.8611 115.6002 399.4468 400.2755 200.002 299.7292 399.6077 500.0428 599.9974
vx,0,descent (m/s) -37.3843 14.44425 -37.4361 -37.3325 -42.0663 -41.9846 -41.8843 -41.5982 30.61817
vz,0,descent (m/s) 384.2406 12.03191 384.1975 384.2837 379.0375 379.4398 380.0458 381.4889 434.8955

Table 10.12: Measures of central tendency for preliminary ascent and descent starting conditions and criteria, for payload class of 500kg.

10.3.2 Preliminary Descent

The results for the chosen nominal candidates are shown in table 10.13. The majority of the candidates are
for the 400 kg payload class. The best case Qmax candidate is for 500 kg. When looking at the variation of
Qmax , none of the results show a value close enough to the vehicle limit, 110 kPa. This result coincides with
what was shown by Simplicio [54], where RTLS trajectories experience a much lower Qd yn than DRL. We can
therefore narrow down the selection criteria and look at the other candidates. As such, this metric is not
much of importance to us and this serves as a validation that it is the other metrics of mbur n , ||v f || and ||r f ||
that are critical in determining feasibility of RTLS operations. The latter is shown to have no variation ex-
cept for candidates whose propellant mass far exceeds that available on board. We recall that preliminary
descent was done without propellant depletion dynamics and therefore as a first step it is determined if any
of the potential candidates selected fall into this region. The candidate with the selection criteria for the best
case ||v f || falls into this region, consuming 1668.15 kg over its maximum capacity, and with the candidates
m0,descent being 30254.18 kg, this goes well beyond its capability to return. It is expected that solutions with
a lower ||v f || may required more expulsion of propellant. Due to the way that the ZEM/ZEV guidance cal-
culates the reference thrust, such that it is never non-zero, this can amount to trajectories where mbur n far
exceeds m0,descent .
It is the convex guidance will be more robust and therefore the propellant consumption and ||v f || will be
decreased due to a greater degree of control achievable by imposing a burn schedule. Therefore, it may be
worthwhile to look at candidates that can already optimize mbur n,descent . For this candidate, m0,descent is
30254.15 kg, well within the available propellant used for descent. The other metrics of Qmax and ||v f || are
also not exceedingly larger than their respective optimal cases. Moreover, from the discussion before, it is
expected that a final velocity 14.672 m/s can be further reduced by implement convex guidance.
The progression of the 400 kg payload class as the most suitable candidate for is continued here. For this
reason, and amongst the usefulness of all the metrics discussed, the best case mbur n,descent solution’s condi-
tions are used as nominal conditions for the closed-loop simulations. The best case overall selection criteria
shares values that are very similar to this case. However ultimately it is not selected as it has a slight higher
propellant burn requirement and is subject to an optimal selection of Qmax , which is nevertheless a metrics
that does not exceed the feasible range.

Selection Criteria mdr y,1 (kg) mp,1 (kg) mdr y,2 (kg) mbur n,descent (kg) Qmax (Pa) ||v f || (m/s) RLV ID Sol. ID Payload Class (kg)
Best case Qmax 7297.204 69264.78 1234.302 31247.19 9457.682 9.477059 497 806 500
Best case ||v f || 5254.186 50000 1070.45 51688.15 23234.31 2.378602 340 887 400
Best case mbur n,descent 5254.154 50000 1070.518 17361.55 23234.28 14.67268 802 294 400
Best case overall 5254.176 50000 1070.483 17400.11 23234.29 13.74467 800 769 400

Table 10.13: Preliminary descent nominal selection results.
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10.4 Aerodynamics

The aerodynamics coefficients for the first stage of the nominal RLV id of 802 that corresponds to the best
case mbur n,descent selection criteria as per analysis of the preliminary guidance results is shown in fig. 10.1.
Compared to the CALLISTO’s first stage there are some noticeable similarities in the CD curve. The maximum
value is at around 10.9, for a Mach number of 1.1, whereas the CALLISTO peaks at around 5.5 for 1.6. There is
a noticeable increase in the spike magnitude for CD for the transonic region, and this may be due to the fact
as identified by Van Kesteren, and Pagano, and analysed by Martjin, that Missile DATCOM 97’s wave drag in
the transonic regime is overestimated. The solution to this was to assume uniform diameter, which indeed
is the case here as the first stage is modelled as a uniform diameter cylinder. As such, these effects are not
present in the results. This large difference in CD could be attributed if there was a larger radius of the nominal
candidate of 1.1637 m, but it is indeed smaller than the radius of the CALLISTO which is 1.4m. It could be
attributed to the reference surface area Sr e f , but since the shapes of the the CALLISTO is of the same topology
for the nominal RLV, the formula is dependent on radius and thus it is smaller nonetheless.

First Stage Aerodynamic Coe/cients
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Figure 10.1: CD and CL data for 802 RLV Id (best case mbur n,descent

The aerodynamic coefficients computed by computational fluid dynamics method have been graciously
supplied by Simplicio, for the CALLISTO vehicle. By considering that the relative shapes of the first stages of
the two vehicles are identical, an error fit curve can be made for each M and α value available for CALLISTO
compared to all the feasible RLV solutions. This is shown in fig. 10.2.
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Aerodynamic Error Lines
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Figure 10.2: CD and CL linear fit with minimum and maximum variation relative to CALLISTO

The fit curve with minimum and maximum variations is generated by considering the predicted drag
CD,pr ed and lift CL,pr ed coefficients which are taken from the RLV optimization results, have a fit with the
real drag CD,r eal and lift CL,r eal data. This analysis considers a conservative assumption that the relative
shapes of the launch vehicles are similar enough, and the primary dimensions of length and diameter are not
too different to be able to compare the two via a linear fit. There is in fact a noticeable trend that both real
coefficients increase as the predicted coefficients increase as well. For lower M numbers this spread is most
quantifiable due to the smaller variation of the drag and lift relative to α.
It can be seen for lift that the errors are largest and most accumlated at M ≤,1.05, and as CL,pr ed and CL,r eal

approaches zero. This may be because of the fact that the lift can cross between positive and negative values
and the relative difference becomes larger due to the sign change.
For CD , the errors are most accumlated at this same M region but are smaller. Larger variations are present
for M >2, and for CD > 4, for some values of M > .95 there are large variations. For CL , it can be seen that there
are two main clusters of lines at different M , one for .01 ≤ M ≤ 1.1, and another for 1.25 ≤ M ≤ 8. This tells us
that there may be a noticeably difference in the methods used to calculate the two coefficients between the
CFD and Missile DATCOM results, independent of the geometry of the RLV. The gap between this region is
above the transonic just at the border of the transonic regime, which may indicate that the uniform diameter
of the RLV is still not a method to bypass the wave drag overestimation in Missile DATCOM 97. This is also
true for CL , indicating that the flow separation may be also incorrectly estimated due to the poor accuracy of
the wave drag estimation, as the latter induces the former.
By using this data, it is possible to run a sensitivity analysis on the aerodynamic errors by varying them along
the linear fit. This can serve useful in order to bridge the gap between the higher fidelity CFD data, expected
from a RLV of that form, for the transonic regime. For the purposes of this study, this result is not further
investigated and is left for future research.
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10.5 Simulations

In examining the DoE 1 results we are interested in obtaining solutions that are both feasible in all metrics,
and solution envelopes that are highly correlated with as few variations of variables as possible. To do so,
the data is first visually inspected to determine if there are any trends. The most intuitive inspection can
be done by plotting the results in a 3-D scatterplot with ||r f || on the x axis, ||v f || on the y axis. Trends on
this plot can be spotted as clusters, where the data is more dense in certain regions and less dense in others.
Indeed, sparsity of this data visualization will give insight into the robustness of the algorithm, and sensibility
of the problem. To identify clusters, the “kmeas” MATLAB function can be used whose input takes the data
and sorts it according to the number of groups specified. If the sorting does not match the result expected
via visual inspection, the plot range can be trimmed to focus on specific areas and repeat the process until
all desired clusters are identified. Once the clusters are separated and solution indices obtained, measures
of central tendency can be used on the variable variations and the results of the metrics themselves in that
region. These measures provide insight on the statistical distribution of variable variations. This can provide
a means to generating a trade-off space for selection of certain variables to feasibility of results.

10.5.1 DoE 1

In the first DoE, the following data trends are identified. Using kmeas, it is not possible to segment the data
because of the poor quality of the solution, but is visible on fig. 10.3 that there are distinct clusters. Through
inspection of the scatter plot, it is possible to distinguish four different clusters with the log scale for x and y.
These clusters are manually identified with the ranges as given in table 10.14.
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Figure 10.3: DoE1 metric results.
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Cluster
Ranges and Feasibility

Number of Solutions||r f || ||v f ||
1 (.2,∞) (F&O) [0,2) (F&O) 5080
2 [0,.04) (O) (.09,.3) (F&O) 1237
3 [0,.03) (O) [0,.09) 343
4 (10,∞) (I) (6,.∞) (I) 51263

Table 10.14: Ranges of DoE 1 clusters for ||v f || vs. ||r f ||. The signs in the parentheses in the ranges column corresponds to F for feasible,
O for optimal, and I for infeasible.

When analysing the selection of cluster ranges to solutions within metric tolerances, fig. 10.4 shows that
there is an overwhelming majority of solutions that are infeasible in ||v f || but feasible in ||r f ||, than vice versa.
This tells us that the metric which is hardest to meet for these tolerances is the final velocity. It is expected
that this result may have something to do with the conditions imposed on the SOCP1 problem v f ,z constraint,
which is an equality constraint set to 0, different from the original DESCENDO problem. This could indicate
that there may be failures to achieve this condition for h ≤ hp and for when landing occurs, meaning that it
could also impact the result of ||r f ||.
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Figure 10.4: Feasible to infeasible metric comparison for DoE 1 results.

Due to the disproportionally larger infeasibility in ||v f ||, the final landing velocity criteria could be too
strict. An additional piece of evidence in this is the large separation between the chosen clusters that are
examined and the rest of the infeasible solutions. This can be seen from equivalent density in fig. 10.3. Even
so, the majority of points in the chosen clusters are in 1 out of the feasible cluster regions (1-3), and the other
2 feasible clusters represent a small percentage of the total 61300 solutions. The reason this provides evi-
dence for the fact that strict v f ,z equality constraint may reduce the reliability of the algorithm is that there
is no continuity in the solution envelope. By continuity, we refer to the length to which these feasible cluster
zones extend to. By looking at 10.5, a plot that shows the 3 feasible clusters with a dotted line of best linear
fit through them, one can see that 1 and 2 are clearly recognizable trends as opposed to cluster 4 (in fig. 10.3.
The coefficients for the linear fit where found with MATLAB’s polyfit function and their value along with R2

coefficient is shown in table 10.15 (C1 represents the slope and C2 the intercept for a linear polynomial of the
form ||v f || =C1||r f ||+C2). Cluster’s 1 and 2 show a strong correlation whilst 3’s is fairly weak. When referring
to continuity, the high regression coefficient indicates that this cluster of data does not appear out of coinci-
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dence but rather is a region where results are predictable. This trend can provide useful data about what burn
schedule choices are more optimal than others.
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Figure 10.5: Feasible cluster plots with line of best fit as scatter data for DoE1.

Cluster
Linear Fit Statistics
C1 C2 R2

1 0.328074 8.076176 0.777951
2 0.098558 1.670712 0.737537
3 .027252 1.514048 0.389108

Table 10.15: Linear fit statistics of DoE 1 feasible clusters for ||v f || vs. ||r f ||

Tables 10.16 to 10.18 show the measures of central tendency for tb,i , and t f for the three feasible cluster
zones. The first out of these three shows the distribution of %t1. The value of 1 for Q4 represents the free
burn schedule solution. The higher confidence interval is larger for all 3 clusters than the smaller one, indi-
cating that the distribution of %t1 in this cluster is possibly towards the left. The results amongst the different
clusters are fairly similar. Cluster 1 seems to have the lowest number of solutions that fall in higher values of
%t1, both due to its lowest 97.5% confidence interval, Q3, and second lowest σ. Cluster 3 is somewhere in
between, whilst cluster 2 shows the most variation.
Tab. 10.17 shows the measures of central tendency for %t2. The value of 2 for Q4 is the one that represents
the free burn schedule. In contrast to the %t1 results, this shows the the highest value for Q3 for cluster 1, and
cluster 2 has the least variation both in terms of its C.I., and quantile distributions.
Tab. 10.18 shows the cluster results for t f . Cluster 1 covers the larger range Q0-Q4, despite having the smallest
gap of C.I. between 2.5% and 97.5%. Cluster 2 and 3 are mostly identical.
These results show that with Cluster 1 containing the most data, and the lowest variation for the burn sched-
ule parameters, it is the region where the highest predictability of results can be obtained. In other words,
it presents a suitable design region for trading off t f as an alternative metric with final poisition and final
velocity wanted.
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||v f || vs.
||r f ||
cluster

µ σ
C.I. Quantile
2.5% 97.5% Q0 Q1 Q2 Q3 Q4

1 0.292984 0.288166 0.297802 0.175154 0.016327 0.163265 0.261224 0.391837 1
2 0.316361 0.304819 0.327903 0.206913 0.016327 0.130612 0.277551 0.489796 1
3 0.285179 0.265247 0.30511 0.187671 0.016327 0.114286 0.244898 0.457143 1

Table 10.16: Measures of central tendency of feasible ||v f || vs. ||r f || clusters for %t1.

||v f || vs.
||r f ||
cluster

µ σ
C.I. Quantile
2.5% 97.5% Q0 Q1 Q2 Q3 Q4

1 0.302542 0.297142 0.307942 0.19633 0.016327 0.130612 0.293878 0.457143 2
2 0.260076 0.249014 0.271138 0.19831 0.016327 0.097959 0.212245 0.408163 2
3 0.281145 0.258505 0.303785 0.213175 0.016327 0.130612 0.228571 0.440816 2

Table 10.17: Measures of central tendency of feasible ||v f || vs. ||r f || clusters for %t2.

||v f || vs.
||r f ||
cluster

µ (sec) σ
C.I. (sec) Quantile (sec)
2.5% 97.5% Q0 Q1 Q2 Q3 Q4

1 307.7441 306.1413 309.3468 58.27025 210 270 290 330 640
2 322.1423 319.9756 324.309 38.84271 230 300 310 340 480
3 328.2507 324.3576 332.1438 36.65671 250 310 320 340 470

Table 10.18: Measures of central tendency of feasible ||v f || vs. ||r f || clusters for %t f .

It is entirely possible that there may be a point along the trajectory that is common to the majority of cases
of DoE 1 where it will ‘make’ or ‘break’ the feasibility. This means that the feasibility of the solution is highly
dependent on how the guidance algorithm performs at that point. One way to examine this is to check the
distribution of the burn schedule across the different feasibility regions.
It can be seen in the feasibility envelope plots, especially for T1 vs T2 (10.12, that there are numerous gaps.
Between %t1, %t2, and t f , the main observation is that the latter is the one that has the most control on
the physical feasibility of the solution. %t1 and %t2 have more uniform distributions than t f for the feasi-
bility and optimality, as seen on fig. 10.8, fig. 10.9, and fig. 10.10. What can be taken from these plots is
that the duration of the first burn tends to be much smaller for optimal and feasible results than the second
burn. Moreover, there is an optimal final time region, as seen from the infeasibility distribution in t f , that is
smoother compared to the others. This can also be seen in the feasibility envelope plots, where the is a line of
optimal results that covers nearly the entire %t1 and %t2 region, that starts at t f = 300/310 sec (fig. 10.13 and
10.11), which coincidentally is the bin for which the lowest number of infeasible results where present as seen
in fig. 10.10. The reasoning for the fact that selection of t f can represent more clearly the feasibility of the
solution can be down to how these variables are treated in the guidance algorithm. %t1 and %t2 are variables
that are passed into a burn schedule vector q , which are then represented in a discretized grid. Whenever
using binary vectors or discretized grids in closed-loop systems, there may be some discrepancies in future
solutions based on the rounding errors that occur between the cut off of a thrusting and non-thrusting point,
or vice versa. For example, it is possible that a decimal second difference in the starting time between one
guidance solution and the next causes the vector of thrust schedule to switch an element from a 0 to 1, even
though it underestimation the burning period. That switch from a 0 to 1 means that the next guidance solu-
tion will consider a thrusting duration that is not a difference in time equal to the difference between the last
guidance solution time and the current, but it will be a whole time step in the solution difference, which when
dealing with grids that are relatively smaller than the simulation grid, may be in the same order of magnitude
or one smaller than the final time. Let us consider an example of t f = 300. The first time index in the guidance
solution is 59, and the next is 61.5 seconds. We set %t1 = .3. In the previous guidance solution, the time was
less than the cutoff threshold for t1, which would be 60 seconds. Therefore, this solution will generate a vec-
tor with a grid for N=20 that will overcompensate the thrust duration by (300-60)/19-1 (1 for considering an
fg ui of 1), that is roughly 11.6316 seconds longer than the predicted thrusting period. This effect may be even
more exacerbated when we have a lower fg ui , and the guidance steps near t1 evaluate the solution further
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away from that point.
On fig. 10.6, the y axis are the % of infeasible solutions compared to the total solutions for that time step
difference between t1 and tg ui . The x axis represents the difference of the guidance time step and the time
of the second burn point start. It can be seen for the first two plots, which is Ncv x = 1 and Ncv x = 2, there is
a slight increase from the left and right side in the number of 100 % infeasible solutions. Therefore, there is
evidence to show that there is a statistically significant increase in the number of infeasible solutions when
you approach the t2 point.
Primarily the location of infeasible results occurs seconds before t1 and in the zero thrust phase between t1

and t2. Evidence of this can be seen as in t1 we note that there is a spike in infeasible results after .55 seconds,
which indicate the first guidance solution after entering the t1 to t2 region as the guidance frequency was 1
second. This error could occur because the reference thrust value recorded by the ACT block does not coin-
cide with the thrust requirement of the first guidance solution calculated after passing t1. This means that
the guidance solution reads that the vehicle is still thrusting, whilst in reality it does not want it to thrust and
so the input thrust acceleration does not match the constraints of the SOCP problem for the next guidance
step.
The other possibility, is that there is an issue with the thrust rate constraints when you have to switch off and
switch on. These constraints, when you assume a minimum thrust value that is greater than the achievable
thrust rate over one step in the discretized grid, can cause infeasibility. The solution would be to relax the
problem and introduce an additional constraint for when thrust stops or/and thrust recontinues to allow any
thrust rate or an increased thrust rate magnitude. Alternatively, a new input to the problem could be intro-
duced which is a variable time step vector. There is an issue however of introducing non-convex inputs, and
the time step vector as the discretized grid over time would no longer be convex. By introducing a variable
time step, you can take into account the regions where the thrust switches on and/or off and increase the
time step to account for thrust magnitude change needed to follow the solution. Moreover, a variable custom
time step can also prevent the time over-prediction effects discussed before by reducing the time step at the
point of approach of t1 and t2. The issue of non-convex inputs like a custom step size vector is that it forces a
non-smooth bound for which the solver may have difficulties finding a solution.
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Figure 10.6: Density plot for variations of feasibility with respect to total evaluations for difference between tg ui and t1 = tsi m .
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Figure 10.7: Density plot for variations of feasibility with respect to total evaluations for difference between tg ui and t2 = tsi m .
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DoE 1-Distribution of %t2
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Figure 10.11: a nice plot
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Nominal Candidate %t1 %t2 t f (sec) ||r f || (m) ||v f || (m/s)
1 0.310204 0.620408 380 7830.334 105.9759
2 0.293878 0.620408 190 6753.126 258.1761
3 0.081633 0.195918 500 391.4016 73.50938
4 0.097959 0.473469 250 0.003318 0.354625
5 0.244898 0.391837 200 4253.586 225.6671
6 0.42449 0.604082 610 1120.967 135.9666

Table 10.19: DoE 2 and 3 nominal candidates selected from DoE 1 results.
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Figure 10.13: a nice plot

The nominal candidates selected from DoE1 are shown in table 10.19. One optimal candidate (4) is se-
lected amongst a variety of infeasible candidates for both metrics of ||r f || and ||v f ||. The purpose of this is to
determine both how variations of guidance algorithm parameters, and frequencies of guidance and simula-
tor can both improve or decrease performance.
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10.5.2 DoE 2

The measures of central tendency for results of DoE 2 are shown in tables 10.20 to 10.29 for metrics of ||r f ||
and ||v f ||. The results for variations of discretized grid size N show that there is a direct decrease for all mea-
sures as N increases except for Q4 for N = 50. The increase of N shows a statistically significant decrease in
the metric of both metrics and as such it is a variable that can be simply optimized against computation time
and not an optimal value based on the quality of the solution.
The number of successive convexifications distribution shows some improvement as Ncv x increases for both
metrics but there is no clear statistical trend that increasing this improves the solution. Ncv x is dependent on
the robustness of the problem, and the present problems with burn schedule overestimation or underesti-
mation due to the discretization of the grid as discussed in section 10.5.1 may take control over the would-be
improvement of refining the dynamics of the problem.
The reference thrust difference weight factor Wηw shows that decreasing the value below the nominal of 1e−4
can improve the quality of the solution as σ, µ and all but Q4 show improvements most noticeably for ||r f ||
rather than ||v f ||. There is not enough statistical evidence to show that there is a more favorable weight factor
when aiming for increasing feasibility of results.
The maximum thrust direction angle θmax shows noticeable improvement for ||r f || for Q1 and Q2 as the an-
gle increases. The other quantiles however show no clear statistical trend. σ also decreases for increasing
θmax for both metrics. One possible explanation for this is that as explained in section 10.5.1, increasing the
control profile can improve or decrease the quality of the solution as increasing the search space may provide
with more local optimal that may be far less optimal than a global one. Therefore, it may be that there are
solutions that can benefit from this and those that otherwise suffer from an increase of range in the control
profile. The lack of trend in the higher quantiles supports this as this variable can only target a select few
candidates.
The variation of the nominal candidate results show that nominal candidate 4 is likely infeasible, 3 may or
may not be improved further by change of burn schedule or frequencies, whilst 6 shares the same possibility
for only its ||v f ||. 3 out of 6 candidates have been turned from infeasible to feasible, and 2 out of these 3
are optimal. The results show that there is statistically significant evidence that tuning the parameters of the
algorithm(s) can improve modestly the solution feasibility. There is however very strong evidence that there
is no optimal set of guidance variables that guarantee feasibility or even offer an advantage over others, as all
the σ for all variables and metrics are near the same order of magnitude or even greater in value than the µ,
showing evidence that there is a large statistical spread in the data.

N µ (m)
C.I. (m)

σ (m)
Quartile (m)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
10 5111.949 4707.92 5515.978 5030.757 0.002202 866.7187 4779.555 7449.332 53543.22
20 (*) 2752.684 2463.952 3041.416 3601.172 0.002039 296.7763 1225.889 4253.586 43782.82
30 1886.395 1592.595 2180.194 3472.313 0.002121 55.51481 324.4138 3141.408 38433.11
40 1493.267 1312.108 1674.426 2259.485 0.002177 33.86605 300.6431 3349.357 21271.49
50 1466.817 1275.718 1657.915 2383.453 0.004546 16.50744 154.8919 3011.659 24867.11

Table 10.20: DoE 2 Measures of statistical tendency for variation of N ’s ||r f ||. Asterix (*) denotes nominal value for experiments without
variation of this parameter unless otherwise stated.

N µ (m/s)
C.I. (m/s)

σ (m/s)
Quartile (m/s)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
10 179.4001 172.378 186.4221 87.43501 0.098074 122.9181 156.8576 259.0109 321.0363
20 (*) 140.416 133.1112 147.7207 91.10759 0.096568 70.89255 136.4173 223.9699 407.4824
30 110.9422 103.7843 118.1001 84.59682 0.132558 27.64788 119.0705 175.4399 401.7398
40 103.434 97.21499 109.653 77.56556 0.156819 28.30501 113.666 142.6744 302.3612
50 93.97785 87.7684 100.1873 77.44666 0.068698 17.49764 79.42482 134.9321 297.2325

Table 10.21: DoE 2 Measures of statistical tendency for variation of N ’s ||v f ||. Asterix (*) denotes nominal value for experiments without
variation of this parameter unless otherwise stated.
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Ncv x µ (m)
C.I. (m)

σ (m)
Quartile (m)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
1 2489.167 2232.435 2745.899 3545.349 0.002121 88.98436 645.1872 3982.37 36693.54
2 2612.915 2326.478 2899.351 3952.857 0.004546 80.4165 652.2184 4089.98 43782.82
3 (*) 2554.221 2295.754 2812.688 3569.302 0.003318 89.68192 717.6272 4089.98 38433.11
4 2560.168 2274.637 2845.7 3937.665 0.002039 65.38899 581.6893 4089.98 53543.22

Table 10.22: DoE 2 Measures of statistical tendency for variation of Ncv x ’s ||r f ||. Asterix (*) denotes nominal value for experiments
without variation of this parameter unless otherwise stated.

Ncv x µ (m/s)
C.I. (m/s)

σ (m/s)
Quartile (m/s)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
1 132.3646 126.1585 138.5706 85.70274 0.096568 74.66148 127.4415 208.4941 321.0363
2 122.6118 116.0102 129.2134 91.10233 0.132558 30.44079 120.9239 208.4941 321.0363
3 (*) 125.7799 119.3 132.2599 89.48546 0.068698 54.34426 119.6808 209.1375 401.7398
4 122.841 116.2444 129.4376 90.97131 0.10051 44.34124 119.1164 208.7086 407.4824

Table 10.23: DoE 2 Measures of statistical tendency for variation of Ncv x ’s ||v f ||. Asterix (*) denotes nominal value for experiments
without variation of this parameter unless otherwise stated.

W ηw µ (m)
C.I. (m)

σ (m)
Quartile (m)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
5e-5 2338.04 2065.229 2610.85 3368.262 0.002039 36.07185 483.617 3867.274 21271.49
1e-5 2398.988 2128.526 2669.45 3339.265 0.002121 43.53461 565.7526 3925.833 17381.3
5e-4 2529.085 2237.556 2820.614 3599.365 0.002177 94.27853 654.5969 4037.186 36693.54
1e-4 (*) 2753.8 2394.569 3113.032 4423.877 0.003099 125.2312 774.4151 4174.517 53543.22
5e-3 2751.573 2433.402 3069.745 3928.307 0.002202 145.9501 995.0729 4174.517 38433.11

Table 10.24: DoE 2 Measures of statistical tendency for variation of W ηw ’s ||r f ||. Asterix (*) denotes nominal value for experiments
without variation of this parameter unless otherwise stated.

W ηw µ (m/s)
C.I. (m/s)

σ (m/s)
Quartile (m/s)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
5e-5 125.3056 117.9694 132.6418 90.57642 0.068698 35.94071 123.8846 208.9231 321.0363
1e-5 123.7866 116.4619 131.1113 90.43437 0.10051 34.02277 123.0964 208.4941 321.0363
5e-4 126.6497 119.5288 133.7707 87.91845 0.133319 53.30454 123.4727 208.4941 321.0363
1e-4 (*) 130.6916 123.5794 137.8037 87.58547 0.096568 55.32583 124.9416 210.0604 407.4824
5e-3 123.1037 115.7789 130.4285 90.43564 0.098074 39.92772 119.2422 208.4941 401.7398

Table 10.25: DoE 2 Measures of statistical tendency for variation of W ηw ’s ||v f ||. Asterix (*) denotes nominal value for experiments
without variation of this parameter unless otherwise stated.

θmax (deg) µ (m)
C.I. (m)

σ (m)
Quartile (m)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
60 4358.505 3976.006 4741.003 4766.671 0.013526 283.5801 3194.993 6923.69 53543.22
65 3108.225 2784.398 3432.052 3967.288 0.002352 150.8284 1656.455 5092.764 43782.82
70 (*) 2302.587 2011.398 2593.776 3570.522 0.002039 73.50129 461.6045 3602.856 28718.24
75 1554.123 1320.344 1787.902 2866.567 0.002121 35.6368 278.6946 2656.491 38433.11
80 1425.834 1244.471 1607.197 2260.133 0.002367 19.41456 369.2721 2198.534 21271.49

Table 10.26: DoE 2 Measures of statistical tendency for variation of θmax ’s ||r f ||. Asterix (*) denotes nominal value for experiments
without variation of this parameter unless otherwise stated.
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θmax (deg) µ (m/s)
C.I. (m/s)

σ (m/s)
Quartile (m/s)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
60 157.5478 150.2672 164.8284 90.73044 0.102111 98.01395 149.3964 237.7441 321.0363
65 134.8692 127.2163 142.5222 93.75855 0.099199 49.92667 128.692 216.8418 307.6048
70 (*) 117.424 110.1412 124.7069 89.3011 0.068698 31.43861 120.2011 196.5842 407.4824
75 110.0344 102.9959 117.073 86.30581 0.098074 20.09658 107.8844 167.8672 401.7398
80 109.1643 103.0078 115.3209 76.72207 0.11471 37.93855 114.9561 145.2916 302.3612

Table 10.27: DoE 2 Measures of statistical tendency for variation of θmax ’s ||v f ||. Asterix (*) denotes nominal value for experiments
without variation of this parameter unless otherwise stated.

Nominal Candidate µ (m)
C.I. (m)

σ (m)
Quartile (m)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
1 778.6982 603.7976 953.5988 1990.553 2.415856 138.2475 225.1506 535.339 32129.91
2 1304.409 1057.302 1551.515 2812.329 0.002039 0.030016 0.171962 2225.272 38433.11
3 4197.048 3875.47 4518.625 3432.136 43.53461 1039.831 3264.239 6909.861 12826.72
4 6249.823 5999.185 6500.461 2852.52 3445.321 3867.274 5378.154 7449.332 14849.13
5 1764.881 1460.895 2068.868 3452.725 0.002202 3.45679 183.7577 2040.63 24867.11
6 1221.034 852.6798 1589.389 4188.046 4.095149 79.93218 282.7009 905.7538 53543.22

Table 10.28: DoE 2 Measures of statistical tendency for variation of Nominal Candidate’s ||r f ||.

Nominal Candidate µ (m/s)
C.I. (m/s)

σ (m/s)
Quartile (m/s)

2.5% 97.5% Q0 Q1 Q2 Q3 Q4
1 90.43588 86.59584 94.27592 43.7037 2.865491 50.86814 91.58956 132.1213 195.878
2 69.09564 60.70671 77.48456 95.47474 0.068698 0.528899 2.027921 172.3836 407.4824
3 179.9864 172.6132 187.3595 78.69246 17.49764 100.002 186.2821 244.8735 282.8889
4 241.5605 238.5768 244.5441 33.95708 196.5842 216.415 230.5565 259.0109 321.0363
5 52.68945 47.89497 57.48392 54.45634 0.098074 4.78785 34.88128 102.2621 223.5115
6 127.8486 125.6996 129.9975 24.43288 12.29632 118.5587 124.889 136.2558 304.5971

Table 10.29: DoE 2 Measures of statistical tendency for variation of Nominal Candidate’s ||v f ||.



94 10. Results

10.5.3 DoE 3

The results for the variation of fsi m to fg ui are shown in fig. 10.14 for ||r f || and fig. 10.15 for ||v f ||.
When plotting the quantiles for solution metrics against the ratios of fsi m and fg ui , a better representation of
the effects of both parameters can be obtained as realistically it is this ratio and not just the change in indi-
vidual parameters that reflects how well the guidance algorithm can cope with a higher fidelity simulation.

Immediately, some interesting trends are present. There is a trend that occurs at fsi m
fg ui

=20 where both metric’s

Q4 stretch out several orders of magnitude below Q3, and the solutions become increasingly more widespread
for order of magnitude of Q1 and Q0. The median of these results also shows a noticeably but more modest
decrease for both metrics, and interestingly it remains mostly stable at around 103 for ||r f || and 102 for ||v f ||.
There is therefore statistical evidence to show that there is a performance increase noticeably beginning at

this frequency ratio. An interesting outlier lies in fsi m
fg ui

=10 which is the nominal ratio used for all DoE’s. In this

range lie the possible combinations of 10-1, 100-10, and 200-20. All possible combinations are included in
the Q0-Q1 interquartile range. This showcases proof that the anomaly may in fact be a local optimal region.
There is more evidence to support that this point is optimal as with DESCO the simulations where also ran

with fsi m
fg ui

=10, with the authors mentioning that it was selected after testing.

For lower values of fsi m
fg ui

, there is less statistical certainty about their performance as ||v f || contains various

outliers (red cross points), and the quartiles do not even show feasibility for either ||v f || or ||r f ||. Having a
matching fsi m and fg ui should in theory improve the perforamnce as for every step that the e.o.m. of the
spacecraft are propagated, a new guidance solution is calculated. This means that the feedback loop updates
more frequently, and it is counterintuitive to see it degrade performance. Looking at the values of the exit flags
for each DESCO call, there is no clear indication that the solution quality is affected, as it is not straightfor-
ward to compare diagnostics results for simulations with different frequencies of simulation and guidance. In
order to yield any valuable information about these low ratios, more tests should be conducted and with the
removal of SOCP2 to remove the influence of non-convex dynamics. It is possible that the fast feedback loop
between guidance and simulator causes issues in the reference thrust vector term in the objective because
the values may approach zero and those zeros in the convex optimization controller can induced rounding
errors which build up and eventually cause the controller to produce infeasible SOCP runs and an infeasible
solution.
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DoE 1 Results
r f (m) v f (m/s)
4.2091e-4 .0754

Table 10.30: DoE 1 nominal candidate used for DoE 4.

10.5.4 DoE 4

The nominal candidate chosen from DoE 1 for the sensitivity analysis is shown in table 10.30. This candidate
was chosen to be the most optimal such that any errors could only amount reasonably to a direction away
from optimality. The plots from fig. 10.16 to 10.23 are grouped as three different graphics. On the top left is
the distribution relative to the range difference of range of the metric value for ||r f ||. On the bottom left is the
same plot but for ||v f ||. On the right side the density of the distribution for the absolute velocity difference
|(||v f ,nomi nal ||−||v f ||)| against the absolute position difference |(||r f ,nomi nal −r f ||)| is plotted as different col-
ored shaded regions, with the single results overlayed on top as black dots. This plot aims to show where the
greatest region of plots are present. The reason for this is that the wide majority of sensitivity analysis results
do not demonstrate a clear fit for error against uncertainty. From the previous DoE’s, results show that there
isn’t a clear set of optimal guidance algorithms parameter values that universally work for all trajectories.
For vN ,0, vE ,0, and vD,0 sensitivity results the results are fairly widespread. The majority of results are mostly

optimal. The range of ||r f || spans across more order of magnitude than ||v f || for all the velocity cases. The
distributions for all velocity elements are fairly similar. The vN ,0 component is the only one that is non-zero
at the nominal condition. Nevertheless, the same peaks are noticeable for ||r f || at 10e −3 ≤ ||r f || < 100e −3,
and 100 ≤ ||r f || < 1e+3. This is also true for 1 ≤ ||v f || < 10. It also exhibits an increase in the two distributions
to the right. This is evidence that the norm of the velocity, and not the increase in magnitude of one of the
elements that influences the errors in ||v f || and ||v f ||. This provides useful evidence that the assumption that
the off-plane velocity occurs, and that the assumption of the flat earth such that no crossrange is incurred is
ideal. This result is fortuitous for the fact that the velocity loss at seperation can safely be assume to be a loss
of norm and not specific in any of the velocity elements.
The distribution for ||r f || and ||v f || for all other variable variations follow the same trend for velocities. The
most distingueshed distribution is the one for σU ERE , where for ||r f || after the peak the distribution is mono-
tonically decreasing. There is also a considerable number of cases beyond 10m/s for the absolute velocity dif-
ference. The distribution of the scatter plot of fig. 10.23 show a much wider spread for .3 m/s≤ ||v f ,nomi nal ||−
||v f || <20 m/s, and .3 m≤ ||r f ,nomi nal || − ||r f || <20 m. This variation causes a visible difference in the den-
sity spread of solutions. Previous variables show a somewhat log-log linear relationship, meaning that as
|(||r f ,nomi nal || − ||r f ||)| increases, the rate at which |(||v f ,nomi nal || − ||v f ||)| increases slows down. This is a
useful insight because it allows focusing on improvement of one of the metrics and not both simultane-
ously when turning a non-feasible candidate into a feasible one. There is a caveat to this however for X0,
h0, m0 and the velocities, most noticeably vN ,0, vD,0, at the .3 m/s≤ ||v f ,nomi nal || − ||v f || <3 m/s, and .09
m≤ ||r f ,nomi nal ||− ||r f || <.3 m region, where there is a nonlinear log-log relationship. This instead shows for
the optimal and feasible region there is an increase in the rate of velocity errors. This evidence matches the
one found in DoE 1 where there where more noticeably more infeasible solutions in ||v f || that where feasible
in ||r f || than vice versa. Nevertheless, results in this curved cluster are feasible and almost all optimal for ||r ||.
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Figure 10.16: DoE 4 sensitivity analysis for vN ,0

Figure 10.17: DoE 4 sensitivity analysis for vE ,0



98 10. Results

Figure 10.18: DoE 4 sensitivity analysis for vD,0

Figure 10.19: DoE 4 sensitivity analysis for m0
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Figure 10.20: DoE 4 sensitivity analysis for h0

Figure 10.21: DoE 4 sensitivity analysis for X0
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Figure 10.22: DoE 4 sensitivity analysis for tpt

Figure 10.23: DoE 4 sensitivity analysis for σU ERE



Chapter 11

Conclusion

In this chapter the conclusions of the research are covered, and the research questions and subquestions are
answered.
With the rise of convex optimization guidance algorithms, and the research gap for a VEGA launch vehicle to
enter the RLV market, this research aimed to analyse the feasibility of RTLS by design of a two-staged VEGA
variant for reusable operations. The vehicle is optimized based on 5 different payload classes within 100 to
500 kg to determine the optimal payload class based on system and mission requirements for vehicle. Due
to the specific requirements and use-case of the MX and M10 engines, a launch vehicle optimization rou-
tine is written from the ground up with a dual objective form, one for vehicle mass with priority to maximize
propellant mass but minimize dry mass, and the other for vehicle center of gravity position. The latter is
implemented for rendering feasibility of results as translatable as possible to a 6-DoF environment by over-
engineering the procedure that may improve controllability of the thrusters due to the increase of pivot ac-
tion. The engine sizing is selected so as to match the diameter of the first stage given the bounds selected
prior to the launch vehicle optimization discipline. The nominal engine is then selected as one for which
the nominal operating point is as close as possible to the atmospheric conditions at sea level, by assuming
it operates as an ideal engine with an altitude adapting nozzle, such that only under-expansion losses are
incurred. A similar approach to that of the CALLISTO RLV is then applied, by writing a similar variant of the
DESCENDO guidance algorithm, as the DESCO. The usage of convex optimization in this algorithm considers
first a solution with no additional dynamics other than thrust acceleration and gravity acceleration. Through
successive convexification, non-convex dynamics, drag in this case, can be applied to obtain a higher fidelity
solution. This will then yield, through the creation of a GNC block process, a 3-DoF environment where the
guidance algorithm is used in a closed-loop fashion and grant the ability to answer the following research
questions:
Research Question: To what extent is the VEGARLV configuration feasible for RTLS operations based on system
sizing, offline planning, and online planning capabilities?

This research-question was then broken down to help examine the feasibility of operations at each differ-
ent discipline to give insight prior to the final phase of simulations, whether there is a good indication that
the RLV design is feasible for operations through the following sub-question:

Sub-Question 1: What payload class can satisfy the structural index limit and achieve physically feasible as-
cent and descent operations?

Sub-Question 2: What type of burn schedule does the VEGARLV require for descent?

Sub-Question 3: What is the influence of tuning parameter choices on the guidance algorithm and its fre-
quency relative to the simulation?

To be able to answer these research sub-questions, the optimization strategy for this project was sequen-
tial in nature and discipline feasibility was the factor that allowed propagation to the next discipline. This is
in contrast to previous approaches used at TU Delft due to the fact that the toolkits, routines, and algorithms
written have been created and not built upon already existing software architecture, except for optimizers and
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solver packages. Moreover, because the focus is on the feasibility of return through a closed-loop approach
of simulations, thus in real-time, the context of cost evaluation is not considered as feasibility of operations
is directly bounded by set stakeholder mission and vehicle requirements. The disciplines involved in this ap-
proach where the engine sizing, launch vehicle optimization, aerodynamics, preliminary ascent and descent
analysis, and 3-DoF trajectories. The constraints set to these discipline’s inputs where guided by the con-
straints of the stakeholder requirements and already existing data. Software used to carry out optimization of
these disciplines involved the usage of NASA CEA (Chemical Equilibrium with Applications) for engine siz-
ing, Missile DATCOM 97 for aerodynamics, YALMIP and ECOS as the SDP (semi-definitivive programming)
package and solver respectively for the guidance algorithm in the 3-DoF simulations, and fmincon for opti-
mization of the preliminary analysis of ascent.
The optimzation procedure began with the building of a feasible set of candidates of M10 and MX engine.
The former whose information was available online on the AVIO website and the latter is currently a work in
progress with a know Isp value and whose rest of characteristics was reverse engineered by cross-referencing
this with Isp,meas from multiple NASA CEA evaluations. Results showed that variation of the error in Isp var-
ied more for the MX than that of the M10, and that a more refine grid search would be necessary to obtain
more accurate values. In constrast to the M10 however, there was an inversely proportional relation between
the %Isp,er r or and Pe for the MX, which makes it an appealing choice for an engine to operate at sea-level
conditions when a high thrust is needed to nullify the final velocity ||v f ||. The two engines do complement
each other in the context of controllability as despite the fact that the M10 has a lower achievable thrust, its
higher Isp means less mass is consumed and more precision can be acquired as both engines are restricted
to operating within 10%to100% of their maximum thrust. Nevertheless, the optimal candidate chosen for
the M10 still allowed more than 70% of its maximum thrust during operation at sea-level pressures, making a
good choice for redirecting the RLV to land with a vertical control profile.
From the results of the launch vehicle optimization, all payload classes can satisfy the structural index limit.
There is however an optimal payload class compared to the others for its desirable spread of characteristics
of mp,1 and starting conditions as shown in tables 10.11 and 10.13. The preliminary descent results show that
perhaps due to the larger possible variation of the RLV at this payload class, it renders it more robust as a
choice as it was deemed a suitable candidate for 3 out of the 4 selection criteria for preliminary descent. The
other criteria considered the best case Qmax , but it was validated, in similarity with results from the CALLISTO
study, that at an altitude of around 26−30 km the maximum dynamic pressure does not come close to the
maximum that the vehicle can achieve, when considering the same maximum as the VEGA-C launch vehicle.
The larger variability of vehicle characteristics for the 400 kg payload class also makes it a suitable candidate
for sensitivity analysis as when selecting a nominal candidate the intention is to make sure it operates well in
all possible conditions and not optimal just at one.
The aerodynamics results show large variations in peaks of CD and CL compared to a similar design such
as the CALLISTO, despite the fact the nominal candidate and the majority of the candidates across different
payload classes have a smaller first stage radius and as a consequence Sr e f as well. It was noted that between
the pre-transonic and transonic region, the error curves where clustered at two different groups for both CD

and CL . This may indicate that despite the fact that the vehicle diameter is uniform, which should alleviate
the effects of wave drag overestimation, there may still be a large degree of inaccuracy at this M region. Nev-
ertheless, there is a moderately strong fit between the drag and lift coefficients between the CALLISTO and
nominal RLV for this study, paving the way to sensitivity analysis of the errors in the aerodynamic coefficients.
As the project built the foundation for various tools and routines to test the feasibility of operations for the
VEGA variant bounded by the requirements of the study, it is worthwhile to mention also that the over-
engineering of the launch vehicle optimization process had proved a desirable addition. With the inclusion
of the center of gravity term as the second objective to maximize relative to the position of the thrusters of
the first stage, the results yielded an overall smaller diameter and little to no statistically significant change in
other 3-DoF dependent characteristics of the RLV, relative to tests ran without the second objective. This may
help translate the procedure with more ease and increase the usefulness of the results when implementing a
6-DoF simulation.
The inclusion of the burn schedule pre-processing proved to be an effective method to circumvent compli-
cations to the algorithm by usage of big-M formulations. This procedure allocates the time needed to build
the controllers before the beginning of the descent and is only a function of the guidance and launch vehicle
Tmax , %Tmi n , $Tmax and mdr y,1 parameters, and no information about the position or velocity of the RLV at
the time of descent is needed to build these controllers. By applying a different controller at t = 0 an initial
thrust value was also able to be formulated, granting more control at the initial condition without employing
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an analytical approximation of the initial thrust that may worsen performance.
The DoE results showed that there are several feasible and optimal results for values of %t1, particularly in the
range of .1 to .5. In this region, the results for t f optimality fluctuates but the envelope encapsulates well from
300 to 310 seconds. Taking into account the possible time delay effects that may influence the burn schedule
at points of approach near %t1 and %t2 for tg ui , this may be a good nominal selection to counteract these
effects as feasibility of the solution is most robust to variation of the burn schedule at this point.

Overall, results showed that the variation of fsi m
fg ui

had a greater statistically significant influence on the qual-

ity of the solution that tuning of the parameters. In other words, the former can be deemed as more of a
global improvement to the feasibility than the latter. The spread of the variation of the tuning parameter
results showed that whilst improvement was possible by selecting certain values for Wηw , θmax , and N . The
former two of the three showed improvement but not widespread. The thrust difference objective may not
be as influential of a term for the given values of Wηw considered. The maximum direction angle θmax may
exhibit improvement on the solution but is highly dependent on the robustness of the algorithm. Since the
maximum number of evaluations considered was high (10000) for each SOCP iteration, and with the results
showing some noticeably improvement in Q2 but not higher quartiles, this variable is also dependent on the
path taken and not global optimal value exists for the nominal cases considered. This was explained by the
fact that increasing the control profile may decrease the performance by settling for a local optimum as op-
posed to a global optimum within a smaller range that would be harder to find for the solver because of the
increase in bounds. Nevertheless, when 3/6 nominal candidates achieved feasibility by tuning the param-
eters and 2 of these achieve optimality. The difference between parameter tuning and control of simulator
and guidance frequency is that whilst both may be dependent on the robustness of the controller, the results

showed that there is a more well defined region for which fsi m
fg ui

optimal value exists, and even a local optimum

at fsi m
fg ui

= 10, which may be preferred as a trade off between computation time of the trajectory and feasibil-

ity. Nevertheless, it is important to mention the difference in the available variation of the parameters as the
maximum number of variations per variable in DoE 2 was only 6, which may reduce the level of insight due
to a small sample.
The sensitivity analysis results show the most variation for the chosen set of values of σU ERE . These log-log
relationship between the final velocity and final position differences are more spread out for this analysis,
and the majority of simulations are outside feasibility range for both metrics. The initial state variations show
very similar distribution shapes for both metrics and also exhibit a cluster at optimal values of absolute posi-
tion difference and absolute velocity difference. Interestingly, the relationships for velocities, h0, m0, and X0

show a linear log-log relation, meaning that the position errors are more likely to increase in proportion to the
velocity errors. The added tpt show that the algorithm can exhibit good robustness for both metrics, and the
majority of the solutions are in the feasible region of velocity difference and optimal for position difference.
In conclusion, to a certain extent the feasibility of operations for the VEGA variant of the nominal launch vehi-
cle design is limited in its robustness to variations of the trajectory due to σU ERE errors. However, as no state
estimation and correction procedure has been adopted, the overwhelming conclusion is that to a larger ex-
tent the VEGARLV is a suitable candidate for return given the number of feasible and optimal solutions found
across the different DoE’s. A more optimal selection of frequencies may improve the performance of the al-
gorithm indirectly as well. The selection of engine, vehicle, and guidance algorithm show both discipline and
interdiscipline feasibility and in this context the RTLS can certainly be deemed as a feasible operation sub-
ject to correct planning and tuning. The tuning parameter choices, within the variations considered, did not

seem to have as great as an effect on the feasibility of the solution as the choice of fsi m
fg ui

. The most important

tuning parameter choice was the burn schedule parameters %t1, %t2, and t f , whose feasibility envelope was
well defined, and a clear optimal and safe t f of 310 sec was identified.





Chapter 12

Recommendations

Throught the document several recommendations have been given on how to improve performance or aug-
ment the disciplines with better models and data. For convenience, these are restated here and are separated
into three different categories: recommendations on future research that can stem from this project, model
improvements, and software advice. The sections below will discuss these.

12.1 Research

This research was tasked with determining the feasibility by subjecting the disciplines to set stakeholder re-
quirements and as such all routines had to be written from scratch. With the availability now of the verified
and validated results, different studies can be conducted that build upon the available launch vehicle op-
timization, simulator, and guidance algorithm and study behavior at the lower level. The list mentions the
possible studies that can be conducted to further explore feasibility of RTLS.

• A verification of the launch vehicle optimization for different sets of stakeholder requirements has not
been carried out. This would verify the procedure for any type of launch vehicle, allowing the research
to expand into different payload classes.

• Convex optimization techniques are not the only method to generate the closed-loop trajectory. Pseudo-
spectral techniques identified in the literature study may also be an alternative to generate the trajec-
tory, and with their acceptance of non-linear dynamics, can also be used as a reference offline solution.

• When landing, retro-propulsion may interact with the landing legs by the variation of the thrust plume’s
geometry. This effect may influence landing performance and can be studied further with CFD software
to better represent the landing procedure.

• The SOCP problem is not restricted to just SDP and Pseudo-psectral optimization. MILP (mixed-inter
level programming) approaches also exist which allow non-convex constraints.

12.2 Model Improvements

• The preliminary analysis of the ascent flight is only an analytical approximation coupled with an fmin-
con procedure. This does not include atmospheric drag and it was seen that tco far exceeding what was
deemed reasonable for a vehicle with an orbit insertion at 600km. Previous research at TU Delft carried
out optimization of the ascent profile with tudat and such can be done here as well to improve the set of
initial conditions for descent. Alternatively, a convex guidance algorithm for ascent can also be created
and the overall optimization of the 3-DoF simulation be a coupled ascent and descent flight. In this
method the analytical equations for ascent can be kept but included in the equations a drag term that
gives a more moderate h0,descent .

• A 6-DoF simulation can be applied to examine the effects of rotational motion. Currently the 3-DoF ap-
proximatesα as the angle of the thrust and velocity vectors, and not rotational states which are coupled
with the kinematic motion.
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• With the overall optimization of the set of all disciplines being sequential in nature, an iterative ap-
proach coupling the feasibility of RLV and trajectory together could prove useful to give insights into
how the variation of the RLV can influence RTLS.

• Engine over-expansion was not considered as it was assumed the MX and M10 behaved optimally for
all Pe > Pa . An analysis of similar liquid propulsion engines can be carried out to obtain estimations of
the thrust coefficients at various nozzle conditions.

• Wind perturbations and other effects such as J2 gravity was not considered for this study but their
influence may be detrimental to the performance of the algorithm.

• Inclusion of other dynamics in SOCP problem such as pressure and lift was studied but not extensively.
Whilst results showed no real improvement over the original formulation, with added effects like wind
it may be worthwhile to add them especially so since their influence can easily translate to the convex
formulation by adding an additional term to the velocity equations.

12.3 Software

• There exists various different solvers that can be used to solve SOCP problems aside from ECOS. Most
noticeably are MOSEK and GUROBI. It was mentioned by Simplicio in a conversation that the former
of the two was less robust but provided better solutions when it did work.

• Missile DATCOM 97 showed that between the CALLISTO and the nominal RLV, despite the difference in
sizes, with the geometries being similar, there was an unexpectadly higher CD and CL . A more precise
technique to calculate the aerodynamic coefficients such as computational fluid dynamics (CFD) can
be used to obtain a more accurate aerodynamic modelling of the vehicle.

• The simulation is run on a single core. With MATLAB’s parallel toolbox capabilities, the simulator can
be rewritten to allow parallel computation of the environment and the guidance algorithm simultane-
ously.

• Whilst the software written and research completed presents a novel use case for a VEGA variant of
the launch vehicle, extensive work had to be put in to create and verify these tools. A suggestion for
future students would be to focus on already existing tool-boxes such as tudat, and built upon only the
necessary components in C++. YALMIP is applicable with C++ and the transcription of the problem
would not be too different from that in MATLAB.
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Appendix

A.1 Vehicle Optimization

The center of gravity of the first vehicle stack was evaluated to be use to carry out von-mises stress criterion
on both the second and first stage during lift off. The point of origin for the center of gravity location is the
base plate of the first stage, not the tips of the engine nozzles. Moving along the longitudinal axis, towards
the payload, therefore, corresponds in a positive change of the center of gravity location of the first stack. The
center of gravity lateral coordinate is 0 as the vehicle is perfectly symmetrical. To calculate xcg ,I , mI must
first be calculated as given by equation A.1.1. Note that the variable for length L is uppercase to denote the
cumulative distance from the origin to center of mass of that structure (denoted by the subscript), and not
the length of the portion of the RLV that the subscript refers to.

mI =
2mM X +2mM10

+ (1.1Σ2
i=1((mb,e,i +mm,e,i

+mt ,e,i +mstr uc,i m f ,i +mox,i )))

+mi nter +mad apt +m f ai r i ng +mpay

(A.1.1)

xcg ,I =
((mI l I − (2mM X LM X +mM10LM10 +mI Leng

+m f ,1L f ,1 +mm,e,1Lm,e,1 +mox,1Lox,1 +mt ,e,1Lt ,e,1

+mstr uc,1Lstr uc,1 +mi nter Li nter +mM10LM10,2 +mb,e,2Lb,e,2

+m f ,2L f ,2 +mb,e,2Lb,e,2 +mox,2Lox,2mt ,e,2Lt ,e,2mstr uc,2Lstr uc,2

+mpay Lpay +m f ai r i ng L f ai r i ng mpl Lpl ))/(mI )
(A.1.2)

Lmx = lM X

2
(A.1.3)

LM10,1 = lM10

2
(A.1.4)

Leng = max(lM X , lM10) (A.1.5)

Lox,1 =
hox,1

2
+Leng (A.1.6)

Lb,e,1 = Leng + lox,1 (A.1.7)

L f ,1 =
h f ,1

2
+Lb,e,1 (A.1.8)
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Lt ,e,1 = Lb,e,1 + li nter (A.1.9)

Lstr uc,1 = Leng +
lstr uc,1

2
(A.1.10)

Li nter = li nter

2
+Lt ,e,1 (A.1.11)

Lb,e,2 = Lt ,e,1 + li nter (A.1.12)

Lox,2 =
hox,2

2
+Lb,e,2 (A.1.13)

Lb,e,2 = lox,2 +Lb,e,2 (A.1.14)

L f ,2 = Lb,e,2 +
h f ,2

2
(A.1.15)

Lt ,e,2 = Lb,e,2 + l f ,2 (A.1.16)

Lstr uc,2 = Li nter + li nter

2
+ lstr uc,2

2
(A.1.17)

Lpay = Li nter + li nter

2
+ lstr uc,2 +

lpay

2
(A.1.18)

L f ai r i ng = Li nter + li nter

2
+ lstr uc,2 + lpay +

l f ai r i ng

3
(A.1.19)

Lpay = L f ai r i ng (A.1.20)

L I = Lpay + 2

3
lpay (A.1.21)

A.2 NASA CEA Run Database

A.2.1 M10 Engine

Pc (Pa) De (m) Pe (Pa) Isp Error (%)
493460 0.620621 416.6571 -0.57579
493460 0.621999 416.8333 -0.55669
493460 0.639181 417.7875 -0.53526
986920 0.646423 904.2286 -0.53202
986920 0.647573 906.35 -0.52932
986920 0.65617 909.5889 -0.51794
1480400 0.664067 1384.2 -0.51654
1480400 0.665138 1418.3 -0.49825
1480400 0.67809 1431.033 -0.49681
1973800 0.685389 1928.886 -0.4887
1973800 0.686377 1935.217 -0.47928
1973800 0.698205 1949.5 -0.47701
2467300 0.706471 2459.043 -0.4487
2467300 0.707624 2464.9 -0.44542
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2467300 0.724485 2495.443 -0.43522
2960800 0.732326 2997 -0.42639
2960800 0.733123 3002.033 -0.42141
2960800 0.749632 3047.214 -0.41472
3454200 0.751593 3536.7 -0.41106
3454200 0.759395 3549.3 -0.40114
3454200 0.779668 3558.613 -0.39962
3947700 0.781794 3969.071 -0.38883
3947700 0.789535 4165.757 -0.38072
3947700 0.816001 4195.183 -0.36099
4441200 0.823639 4647.3 -0.35596
4441200 0.824797 4735.114 -0.35335
4441200 0.861284 4763.7 -0.35224
4934600 0.863481 5036.471 -0.3374
4934600 0.875561 5189.114 -0.3202
4934600 0.899157 5309.014 -0.30915
5428100 0.908355 5571.486 -0.30705
5428100 0.92052 5748.029 -0.29923
5428100 0.948899 5781 -0.29075
5921500 0.951448 6305.614 -0.24636
5921500 0.959421 6325.55 -0.23571
5921500 1.010387 6459.3 -0.21867
6415000 1.013564 6889.333 -0.21719
6415000 1.035662 7043.543 -0.20611
6415000 1.094998 7086.767 -0.1882
6908500 1.096279 7451.517 -0.17983
6908500 1.09802 7626.5 -0.17946
6908500 1.182894 7671.4 -0.17142
7401900 1.19081 7998.9 -0.14594
7401900 1.191702 8018.5 -0.12733
7401900 1.305517 8214.9 -0.11593
7895400 1.31272 8594.333 -0.09971
7895400 1.314116 8625.9 -0.06591
7895400 1.474592 8857.233 -0.064
8388800 1.47945 9136.529 -0.05682
8388800 1.481619 9166.2 -0.0483
8388800 1.71818 9389.6 -0.01301
8882300 1.72507 9737.467 0.050444
8882300 1.74397 9772.825 0.093359
8882300 2.147836 10039.43 0.143824
9375800 2.151275 10274.86 0.155041
9375800 2.153537 10316.05 0.172127
9375800 3.150404 10580.91 0.287088
9869200 3.153645 11178.61 0.289101
9869200 3.154245 11234.55 0.299995

Table A.1: M10 Engine sizing suitable candidates.

A.3 MX Engine

Pc (Pa) De (m) Pe (Pa) Isp Error (%)
493000 0.589972 2690 -8.06462
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493000 0.606165 3380 -7.57434
987000 0.62259 4110 -7.50978
987000 0.640677 5580 -7.50136
987000 0.669982 8970 -7.13124
1480000 0.69163 10720 -6.82925
1970000 0.715105 11370 -6.50812
1970000 0.7424 13933.33 -6.49355
2470000 0.772378 14460 -4.5422
2470000 0.774758 16450 -4.50034
2960000 0.803284 17350 -4.44131
2960000 0.812388 17500 -4.31498
2960000 0.815941 18500 -4.27255
3450000 0.829504 18800 -4.25732
3950000 0.858589 24700 -4.15153
4440000 0.864882 25100 -3.96295
4440000 0.880555 28600 -3.94847
4440000 0.90464 29400 -3.83792
4930000 0.958281 29600 -3.4344
4930000 0.995 31000 -3.25067
4930000 1.011656 33300 -3.16099
5430000 1.040732 34300 -2.38609
5430000 1.069103 34500 -0.12567
5430000 1.086031 40966.67 0.029593
5920000 1.099583 46033.33 0.120111
6420000 1.123258 46300 0.158267
6910000 1.186343 47900 0.173561
7400000 1.227845 51133.33 0.179192
7400000 1.34615 52300 0.184089
7900000 1.386152 53900 0.223261
7900000 1.403545 55400 0.25369
8390000 1.426183 57300 0.317805
8390000 1.432619 59800 0.346156
8390000 1.559837 63600 0.35975
8880000 1.626339 68933.33 0.361474
8880000 1.760612 74233.33 0.369802
8880000 1.768171 79466.67 0.410428
9380000 2.018236 84800 0.543742
9380000 2.499681 93200 0.557367
9380000 2.952031 98700 0.600822
9870000 3.132548 104000 0.795794
9870000 3.573345 110000 0.894548

Table A.2: MX Engine sizing suitable candidates.
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Appendix B

Pseudocode

B.1 Control allocation

B.1.1 Pa thrust allocation scheme

(𝑇𝑀10+ 𝑃𝑒,𝑀10 − 𝑃𝑎 𝐴𝑒,𝑀10)>0 ?

𝑃𝑒.𝑀𝑋 ≥ 𝑃𝑎 & 𝑃𝑒,𝑀10 ≥ 𝑃𝑎

𝑃𝑒.𝑀𝑋 ≥ 𝑃𝑎 & 𝑃𝑒,𝑀10 < 𝑃𝑎

𝑃𝑒.𝑀𝑋 < 𝑃𝑎 & 𝑃𝑒,𝑀10 ≥ 𝑃𝑎

𝑃𝑒,𝑀𝑋 ≥ 𝑃𝑎

min ሶ𝑚
𝑠. 𝑡.

%𝑇𝑀𝑋𝑇𝑀𝑋,𝑚𝑎𝑥

𝑚

+
%𝑇𝑀10𝑇𝑀10,𝑚𝑎𝑥

𝑚
= ||𝒂𝑟𝑒𝑓||

min ሶ𝑚
𝑠. 𝑡.

%𝑇𝑀𝑋
𝑇𝑀𝑋,𝑚𝑎𝑥

𝑚

+
%𝑇𝑀10𝑇𝑀10,𝑚𝑎𝑥 + 𝑃𝑒,𝑀10 − 𝑃𝑎 𝐴𝑒,𝑀10

𝑚
= ||𝒂𝑟𝑒𝑓||

min ሶ𝑚
𝑠. 𝑡.

%𝑇𝑀𝑋𝑇𝑀𝑋,𝑚𝑎𝑥 + 2 𝑃𝑒,𝑀𝑋 − 𝑃𝑎 𝐴𝑒,𝑀𝑋
𝑚

+
%𝑇𝑀10𝑇𝑀10,𝑚𝑎𝑥

𝑚
= ||𝒂𝑟𝑒𝑓||

min ሶ𝑚
𝑠. 𝑡.
%𝑇𝑀𝑋𝑇𝑀𝑋,𝑚𝑎𝑥

𝑚
= ||𝒂𝑟𝑒𝑓||

min ሶ𝑚
𝑠. 𝑡.

%𝑇𝑀𝑋𝑇𝑀𝑋,𝑚𝑎𝑥 + 2 𝑃𝑒,𝑀𝑋 − 𝑃𝑎 𝐴𝑒,𝑀𝑋
𝑚

+
%𝑇𝑀10𝑇𝑀10,𝑚𝑎𝑥 + 2 𝑃𝑒,𝑀10 − 𝑃𝑎 𝐴𝑒,𝑀10

𝑚
= 𝒂𝑟𝑒𝑓

min ሶ𝑚
𝑠. 𝑡.

%𝑇𝑀𝑋𝑇𝑀𝑋,𝑚𝑎𝑥 + 2 𝑃𝑒,𝑀𝑋 − 𝑃𝑎 𝐴𝑒,𝑀𝑋
𝑚

= ||𝒂𝑟𝑒𝑓||

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Figure B.1: Thrust control allocation scheme pseudo-code for optimization of minimized mass consumption based on maximum achiev-
able thrust with pressure losses.
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B.1.2 Engine ignition thrust allocation scheme

𝑇𝑀𝑋,0 > 0 & 𝑇𝑀10,0 = 0

𝑇𝑀𝑋,0 = 0 & 𝑇𝑀𝑋,0 > 0

𝑀10𝑐ℎ𝑒𝑐𝑘 = 𝑇𝑟𝑒𝑓 − 𝑀10𝑃𝑙𝑜𝑠𝑠 < 0 (𝑀10𝑃𝑙𝑜𝑠𝑠)

𝑀𝑋𝑐ℎ𝑒𝑐𝑘 = 𝑇𝑟𝑒𝑓 − 𝑀𝑋𝑃𝑙𝑜𝑠𝑠 < 0 (2𝑀𝑋𝑃𝑙𝑜𝑠𝑠)

𝑀𝑋𝑐ℎ𝑒𝑐𝑘 +𝑀10𝑐ℎ𝑒𝑐𝑘
= 𝑇𝑟𝑒𝑓 − 𝑀𝑋𝑃𝑙𝑜𝑠𝑠 < 0 2𝑀𝑋𝑃𝑙𝑜𝑠𝑠
−𝑀10𝑃𝑙𝑜𝑠𝑠 𝑀10𝑃𝑙𝑜𝑠𝑠 < 0

2𝑇𝑀𝑋,𝑚𝑖𝑛 ≤ 𝑀𝑋𝑐ℎ𝑒𝑐𝑘 ≤ 2 𝑇𝑀𝑋,𝑚𝑎𝑥

𝑇𝑀10,𝑚𝑖𝑛 ≤ 𝑀10𝑐ℎ𝑒𝑐𝑘 ≤ 𝑇𝑀10,𝑚𝑎𝑥

2𝑇𝑀𝑋,𝑚𝑖𝑛 + 𝑇𝑀10,𝑚𝑖𝑛

≤ 𝑀10𝑐ℎ𝑒𝑐𝑘 +𝑀𝑋𝑐ℎ𝑒𝑐𝑘
≤ 2𝑇𝑀𝑋,𝑚𝑎𝑥 + 𝑇𝑀10,𝑚𝑎𝑥

2𝑇𝑀𝑋,𝑚𝑖𝑛 + 𝑇𝑀10,𝑚𝑖𝑛

≤ 𝑀10𝑐ℎ𝑒𝑐𝑘 +𝑀𝑋𝑐ℎ𝑒𝑐𝑘
≤ 2𝑇𝑀𝑋,𝑚𝑎𝑥 + 𝑇𝑀10,𝑚𝑎𝑥

%𝑇𝑀𝑋 = 𝑀𝑋𝑐ℎ𝑒𝑐𝑘
%𝑇𝑀10 = 0

%𝑇𝑀𝑋 = 0
%𝑇𝑀10 = 0

%𝑇𝑀𝑋 = 0
%𝑇𝑀10 = 𝑀10𝑐ℎ𝑒𝑐𝑘

%𝑇𝑀𝑋 = 0
%𝑇𝑀10 = 0

𝑇𝑀10,𝑚𝑖𝑛 ≤ 𝑀10𝑐ℎ𝑒𝑐𝑘 ≤ 𝑇𝑀10,𝑚𝑎𝑥

%𝑇𝑀𝑋 = 0
%𝑇𝑀10 = 𝑀10𝑐ℎ𝑒𝑐𝑘

2𝑇𝑀𝑋,𝑚𝑖𝑛 ≤ 𝑀𝑋𝑐ℎ𝑒𝑐𝑘 ≤ 2 𝑇𝑀𝑋,𝑚𝑎𝑥

%𝑇𝑀𝑋 = 𝑀𝑋𝑐ℎ𝑒𝑐𝑘
%𝑇𝑀10 = 0

min ሶ𝑚
𝑠. 𝑡.

%𝑇𝑀𝑋𝑇𝑀𝑋,𝑚𝑎𝑥 + 2 𝑃𝑒,𝑀𝑋 − 𝑃𝑎 𝐴𝑒,𝑀𝑋
𝑚

+
%𝑇𝑀10𝑇𝑀10,𝑚𝑎𝑥

𝑚
= 𝒂𝑟𝑒𝑓

𝑇𝑀10,𝑚𝑖𝑛/𝑇𝑀10,𝑚𝑎𝑥 ≤ %𝑇𝑀10 ≤ 1
𝑇𝑀𝑋,𝑚𝑖𝑛/𝑇𝑀𝑋,𝑚𝑎𝑥 ≤ %𝑇𝑀𝑋 ≤ 1

2𝑇𝑀𝑋,𝑚𝑖𝑛 + 𝑇𝑀10,𝑚𝑖𝑛

≤ 𝑀10𝑐ℎ𝑒𝑐𝑘 +𝑀𝑋𝑐ℎ𝑒𝑐𝑘
≤ 2𝑇𝑀𝑋,𝑚𝑎𝑥 + 𝑇𝑀10,𝑚𝑎𝑥

𝑇𝑀10,𝑚𝑖𝑛 ≤ 𝑀10𝑐ℎ𝑒𝑐𝑘 ≤ 𝑇𝑀10,𝑚𝑎𝑥

%𝑇𝑀𝑋 = 0
%𝑇𝑀10 = 𝑀10𝑐ℎ𝑒𝑐𝑘

2𝑇𝑀𝑋,𝑚𝑖𝑛 ≤ 𝑀𝑋𝑐ℎ𝑒𝑐𝑘 ≤ 2 𝑇𝑀𝑋,𝑚𝑎𝑥

%𝑇𝑀𝑋 = 𝑀𝑋𝑐ℎ𝑒𝑐𝑘
%𝑇𝑀10 = 0

%𝑇𝑀𝑋 = 0
%𝑇𝑀10 = 𝑀10𝑐ℎ𝑒𝑐𝑘

YN

N

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Definitions

Figure B.2: Thrust control allocation scheme pseudo-code with prioritization for engines that are already switched on.
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B.2 DESCO

Trajectory Discretization

𝑇𝑠 =
𝑡𝑓 − 𝑡

𝑁 − 1
𝑡𝑟𝑒𝑓 𝑘 = Σ𝑖=1

𝑘 𝑇𝑠[𝑖]

𝑞[𝑘] = ൞

1 𝑖𝑓 𝑡1 > 𝑡𝑟𝑒𝑓 𝑘

1 𝑖𝑓 𝑡2 < 𝑡𝑟𝑒𝑓[𝑘]

0 𝑖𝑓 𝑒𝑙𝑠𝑒

Feasible 
?

ℎ >
ℎ𝑝?

𝑖 = 𝑖 + 1

𝑖 ≤
𝑁𝑝 +

1?

𝑖 = 1

Static 
Inputs

ⱳ𝜂𝑤
𝑇𝑚𝑖𝑛

ℎ𝑝 𝑇𝑚𝑎𝑥

𝑁 ሶ𝑇𝑚𝑖𝑛

𝑁𝑝 ሶ𝑇𝑚𝑎𝑥

𝐼𝑠𝑝,𝑜𝑎 𝜃𝑚𝑎𝑥

Guidance Step

𝑡𝑔𝑢𝑖 +
1

𝑓𝑔𝑢𝑖
≤

𝑡𝑠𝑖𝑚 + 1/𝑓𝑠𝑖𝑚

𝑡𝑔𝑢𝑖 ≠

0 ?

Interpolate

Simulator

Feasible 
? Updated Solution

Dynamic 
Inputs

𝒓𝟎 𝒓𝒓𝒆𝒇

𝒗𝟎 𝒗𝒓𝒆𝒇

𝑚 𝒘𝒓𝒆𝒇

𝑡 𝑡𝑟𝑒𝑓

𝑡𝑏,𝑖 𝑐𝐷

𝑡𝑓 𝜌

SOCP2 SOCP2t0

SOCP1 SOCP1t0

Load 
Controllers

Dynamics 
Model(s) 

Evaluation

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

Figure B.3: DESCO pseudocode.
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B.3 Simulator

B.3.1 SDK Block

Equations 
of Motion

RK4 
Integration

Auxiliary 
Data 

Calculation
𝒙𝑟𝑒𝑎𝑙,𝑖𝑠𝑖𝑚+1

𝑎𝑢𝑥𝑖𝑠𝑖𝑚 → [𝛼𝑒𝑓𝑓 𝑄𝑑𝑦𝑛 𝑀 𝐶𝑙 𝐶𝑑 𝜌 𝑣𝑟𝑒𝑙,𝑥 𝑣𝑟𝑒𝑙,𝑦 𝑣𝑟𝑒𝑙,𝑧 𝑃𝑎] Auxiliary 
Data

Actuators
Sensors & 
Navigation

Figure B.4: SDK block pseudocode.

B.3.2 SN Block

𝒙𝑟𝑒𝑎𝑙,𝑖𝑠𝑖𝑚+1

Descent 
Guidance

𝒙𝑚𝑒𝑎𝑠,𝑖𝑠𝑖𝑚+1 = 𝒙𝑟𝑒𝑎𝑙,𝑖𝑠𝑖𝑚+1 + 𝝐𝑥 + 𝜼𝑥

𝜼𝑥 → 𝐇𝑥𝑟𝑎𝑛𝑑(1, 𝑁𝑥)

Spacecraft 
Dynamics & 
Kinematics

𝑡𝑠𝑖𝑚,𝑖𝑠𝑖𝑚+1 𝑡𝑔𝑢𝑖,𝑖𝑔𝑢𝑖+1 = 𝑡𝑔𝑢𝑖,𝑖_𝑔𝑢𝑖 + 𝝐𝑡

𝝐𝑡 → 𝑡𝑝𝑡

Descent Guidance

Fail 
flag=1?

Fail 
Flag

END

Figure B.5: SN block pseudocode.
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B.4 Algorithms

All algorithms from this section have been adapted from the work of [54].

B.4.1 SOCP1t0

min(w ,σ)− z[N ], s.t.

Boundary conditions

z[1] = logm̂(t ), r [1] = r̂ (t ), v [1] = v̂ (t )

r [N ] = r f , v [N ] = v f , wx,y [N ] = 0, wz [N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N −1]

r [k +1] = r [k]+Ts v [k]+ T 2
s

3
(a[k]+ a[k +1]

2
)

v [k +1] = v [k]+ Ts

2
(a[k]+a[k +1])

z[k +1] = z[k]− 1

Isp g0

Ts

2
(σ[k]+σ[k +1])

Surrogate variables,∀k ∈ [1, · · · , N ]

a[k] = w [k]+ ĝ (t )

||w [k]|| ≤σ[k]

Control constraints,∀k ∈ [1, · · · , N −1]{
wz [k] ≥ ||wx,y [k]||

θmax
, | : Tmi n

m̂(t ) ≤σ[k] ≤ Tmax
m̂(t ) , if Ts (k −1) ∈TP

w [k] = 0, else

Control rate constraints,∀k ∈ [1, · · · , N −1]

σ[k]−Ts
Ṫmax

m̂(t )
≤σ[k +1] ≤σ[k]+Ts

Ṫmax

m̂(t )

(B.4.1)
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B.4.2 SOCP1

min(w ,σ)− z[N ], s.t.

Boundary conditions

z[1] = logm̂(t ), r [1] = r̂ (t ), v [1] = v̂ (t ), w [1] = ŵ (t )

r [N ] = r f , v [N ] = v f , wx,y [N ] = 0, wz [N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N −1]

r [k +1] = r [k]+Ts v [k]+ T 2
s

3
(a[k]+ a[k +1]

2
)

v [k +1] = v [k]+ Ts

2
(a[k]+a[k +1])

z[k +1] = z[k]− 1

Isp g0

Ts

2
(σ[k]+σ[k +1])

Surrogate variables,∀k ∈ [1, · · · , N ]

a[k] = w [k]+ ĝ (t )

||w [k]|| ≤σ[k]

Control constraints,∀k ∈ [1, · · · , N −1]{
wz [k] ≥ ||wx,y [k]||

θmax
, | : Tmi n

m̂(t ) ≤σ[k] ≤ Tmax
m̂(t ) , if Ts (k −1) ∈TP

w [k] = 0, else

Control rate constraints,∀k ∈ [1, · · · , N −1]

σ[k]−Ts
Ṫmax

m̂(t )
≤σ[k +1] ≤σ[k]+Ts

Ṫmax

m̂(t )

(B.4.2)
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B.4.3 SOCP2t0

min(w ,σ)− z[N ]+WηwΣ
N
k=1ηw [k], s.t.

Boundary conditions

z[1] = logm̂(t ), r [1] = r̂ (t ), v [1] = v̂ (t )

r [N ] = r f , v [N ] = v f , wx,y [N ] = 0, wz [N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N −1]

r [k +1] = r [k]+Ts v [k]+ T 2
s

3
(a[k]+ a[k +1]

2
)

v [k +1] = v [k]+ Ts

2
(a[k]+a[k +1])

z[k +1] = z[k]− 1

Isp g0

Ts

2
(σ[k]+σ[k +1])

Surrogate variables,∀k ∈ [1, · · · , N ]

a[k] = w [k]+ ĝ (t )

||w [k]|| ≤σ[k]

Trust region constraints,∀k ∈ [1, · · · , N ]

||w [k]−wicv x ∗ [k]|| ≤ ηw [k]

Flight path constraints,∀k ∈ [1, · · · , N −1]

rz [k]/g eq
r̂z (t )

||r̂x,y (t )|| ||rx,y [k]||

Control constraints,∀k ∈ [1, · · · , N −1]{
wz [k] ≥ ||wx,y [k]||

θmax
, | : Tmi n

m̂(t ) ≤σ[k] ≤ Tmax
m̂(t ) , if Ts (k −1) ∈TP

w [k] = 0, else

Control rate constraints,∀k ∈ [1, · · · , N −1]

σ[k]−Ts
Ṫmax

m̂(t )
≤σ[k +1] ≤σ[k]+Ts

Ṫmax

m̂(t )

(B.4.3)
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B.4.4 SOCP2

min(w ,σ)− z[N ]+WηwΣ
N
k=1ηw [k], s.t.

Boundary conditions

z[1] = logm̂(t ), r [1] = r̂ (t ), v [1] = v̂ (t ), w [1] = ŵ (t )

r [N ] = r f , v [N ] = v f , wx,y [N ] = 0, wz [N ] ≥ 0

Dynamics equations, ∀k ∈ [1, · · · , N −1]

r [k +1] = r [k]+Ts v [k]+ T 2
s

3
(a[k]+ a[k +1]

2
)

v [k +1] = v [k]+ Ts

2
(a[k]+a[k +1])

z[k +1] = z[k]− 1

Isp g0

Ts

2
(σ[k]+σ[k +1])

Surrogate variables,∀k ∈ [1, · · · , N ]

a[k] = w [k]+ ĝ (t )

||w [k]|| ≤σ[k]

Trust region constraints,∀k ∈ [1, · · · , N ]

||w [k]−wicv x ∗ [k]|| ≤ ηw [k]

Flight path constraints,∀k ∈ [1, · · · , N −1]

rz [k]/g eq
r̂z (t )

||r̂x,y (t )|| ||rx,y [k]||

Control constraints,∀k ∈ [1, · · · , N −1]{
wz [k] ≥ ||wx,y [k]||

θmax
, | : Tmi n

m̂(t ) ≤σ[k] ≤ Tmax
m̂(t ) , if Ts (k −1) ∈TP

w [k] = 0, else

Control rate constraints,∀k ∈ [1, · · · , N −1]

σ[k]−Ts
Ṫmax

m̂(t )
≤σ[k +1] ≤σ[k]+Ts

Ṫmax

m̂(t )

(B.4.4)
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