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Abstract

Energy can be harvested from vibrations by using a damped harmonic oscillator with base excitation,
providing a sustainable way of yielding energy. By solving the equations of motion for this oscillator and
studying the steady state solution, an expression for the time-averaged power is obtained. Different
damping values of the oscillator influence how much power is yielded. In this thesis, it is analytically
shown that a constant damping value equal to cv =

√
c2mψ

2f2
s+(f2

s−1)2

ψfs
yields the most time-averaged

power for the case where there is no switch in damping value and when there is a singular arbitrary
switch in damping value. It is numerically shown that this damping value also yields the most time-
averaged power for multiple switches in the damping value.

ii



Contents

Preface i

Abstract ii

Nomenclature iv

List of Figures vii

List of Tables viii

1 Introduction 1

2 Deriving Relevant Equations and Parameters for the Model 3
2.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Power analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Damped Harmonic Oscillator with Base Excitation and Variable Damping 12
3.1 Constant damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Piecewise changing damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Pseudocontinuous damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Concluding the damped harmonic oscillator model . . . . . . . . . . . . . . . . . . . . . 23

4 Power Analysis without Damping Switch 25

5 Power Analysis Singular Switch 28
5.1 Power analysis for halfway singular switch . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Power analysis for a quarter switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Power analysis for an arbitrary singular switch . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Conclusion on power analysis singular switch . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Energy Analysis Multiple Switch 47
6.1 Power analysis according to paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 General multiple switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Conclusion 51
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References 53

A Code for Pseudocontinuous Damping 54

B Table with parameter values for the damped harmonic oscillator 56

C Harmonic Addition Theorem 57

D Simplifying Equation (5.93) 59

E Table with extrema values for arbitrary singular switch 60

F Visualisation of extrema of singular switch 62

G Code for visualising the boundary extrema 67

H Code for visualising the free first damping value extrema 69

I Code for visualising multiple switches in damping value 71

iii



Nomenclature

Symbol Definition Unit

F Force (general) [N]
Fspring Spring force [N]
Fdamp Damping force [N]
Fg Gravitational force [N]

m Mass [kg]
p Momentum [kg m/s]
v Velocity [m/s]
u Displacement [m]
k Spring coefficient [N/m]
g Gravitational constant [m/s2]
ẑ Relative displacement with respect to base excita-

tion
[m]

ẑeq Equilibrium position of ẑ [m]
z Relative displacement with respect to base excita-

tion and equilibrium position
[m]

zhom Homogeneous solution for relative displacement z [m]
zpart Particular solution for relative displacement z [m]

t Time [s]
T0 Starting time of the model [s]
Tm Time of switch of damping value [s]
Tb Beginning of time interval of switching damping

value
[s]

Tf End of time interval of switching damping value [s]

c Damping coefficient [Ns/m]
cm Parasitic damping [Ns/m]
cv Time-variable damping [Ns/m]
cv,i Specific value i time-variable damping [Ns/m]

Pinst Instantaneous power [J/s]
Pave Time-averaged power [J/s]

i Complex root [-]

ys Base excitation [m]
y0 Amplitude of incoming wave of base excitation [m]
fs Frequency of incoming of base excitation [1/s]
φ Phase of incoming wave of base excitation [-]
φ̂ Shifted phase due to harmonic addition theorem [-]

ϕi Specific mapping for certain interval i for solution [-]
ϕ General mapping for entire interval solution [-]
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1
Introduction

Imagine a world where energy harvesting would take place by cars driving over highways. Imagine
that energy can be harvested by people walking across the street. Imagine an electric car being able
to fully recharge by driving. All these wonderful applications might be possible due to vibrations. A car
driving over the highway causes vibrations in the road, and people walking across the street can cause
vibrations in the ground. By creating an oscillator which can harvest energy from these vibrations, a
new way of sustainable energy harvesting can be created.

The simplest model of an oscillator is the simple harmonic oscillator. In practice, damping will al-
ways exist due to natural causes, so the damped harmonic oscillator is most often used in current
research. An alteration to the damped harmonic oscillator model is to include a base excitation, as
is done by Stephen [13] and Rao [11]. Both discussed the damped harmonic oscillator with constant
damping with base excitation they assumed to be harmonic with frequency ω and amplitude Y . Another
alteration could be to assume the mass to be variable. The general behaviour of models with changing
mass has already been the topic of extensive research, for example by Awrejcewicz [2]. Specifically
oscillator models with varying mass without damping have been discussed by Núñez and Torres [9].
Papers by Horssen, Pischanskyy, and Dubbeldam [5], Horssen and Pischanskyy [4], and Pischanskyy
and Horssen [10]. Núñez and Torres [9] assumed a varying mass with constant damping. All of these
researches expand on the research by Irschik and Holl [6] who derived the relevant equations of mo-
tion.

Power harvesting from these oscillators is a relatively new topic. ThoughNikzamir et al. [8] and Scap-
olan, Tehrani, and Bonisoli [12] have researched how base excitation with time-dependent damping can
influence the power that could be gained from such a system, their analysis was purely numerical and
not analytical. Also, Di Monaco et al. [3] have researched this topic, by approximating the solution of
the damped harmonic oscillator using the harmonic balance method. All these papers assume that the
best way to harvest power from the damped harmonic oscillator is by having a variable damping with
twice the frequency of the base excitation. With the harvested power from these oscillators, several
applications exist. One is discussed by Yang et al. [15], who analysed power harvesting in vehicle
suspension applications.

In this thesis, a focus is put on damped harmonic oscillators with time-dependent damping and a
base excitation, to compare the findings with research done by Nikzamir et al. [8]. The base excitation
is due to external vibrations outside of the model, and the damping is used to yield power from these
vibrations. The goal is to analyse which damping value will allow for the most harvesting from the ex-
ternal vibration.

This thesis has two main objectives to achieve the aforementioned goal. The first objective is to get
a clear indication of the power that can be harvested from a damped harmonic oscillator with variable
damping. This requires a thorough analysis of the oscillator and a way to measure the power over the
oscillatory periods.

The second objective is to provide optimal damping for the yielding of power from the system. Op-
timal damping is herein defined as the damping for which the most power is yielded from the oscillator.
This damper value potentially depends on many variables, such as the frequency or phase of the ex-
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ternal vibration for the base excitation. The aim is to improve the work done by previous papers ([8],
[12] and [3]) by providing an analytical solution and showing that a solution can be found which yields
more power and is easier to implement.

The following structure is adhered to in this thesis. First, in Chapter 2, the relevant Equations of Motion
are derived for the discussed model. These Equations of Motion are derived stepwise, the notation
and assumptions are discussed and it is subsequently rescaled to reduce the number of parameters.
Furthermore, in this Chapter, the numerical model behind the damping, the equations for the time-
averaged power and finally the parameter bounds are presented. In Chapter 3, the Equations of Mo-
tion are solved. The solutions are presented for three cases: constant damping, piecewise changing
damping and pseudocontinuous damping. Piecewise changing damping is a stepfunction for the damp-
ing value, while pseudocontinuous damping is a damping value which mimicks a continuous damping
function by approximating it with several stepwise intervals. Chapter 4 focuses on the power yield for
a system where there is no switch in the damping value. In Chapter 5, an analysis of the harvested
power from the system is discussed. Here, a proposed method to find the damping value of power-
yielding is given for a singular switch. Thereafter, a scenario with multiple switches in damping value
is discussed in Chapter 6. Lastly, in Chapter 7 conclusions are drawn and several recommendations
for further research into this subject are given.



2
Deriving Relevant Equations and

Parameters for the Model

In this Chapter, the relevant equations and parameters for yielding power from a damped harmonic
oscillator with base excitation are discussed. In Section 2.1 the equations of motion for the damped
harmonic oscillator with base excitation are derived. Then, the model is rescaled for an easier analysis
in Section 2.2. Next, the equations regarding the damping value are introduced in Section 2.3. Here,
the cases of a piecewise changing damping and pseudocontinuous damping are discussed. Then,
an introduction is made to the relevant equations for the power analysis in Section 2.4. Here, the
instantaneous power is discussed in Section 2.4.1 and the time-averaged power is discussed in Section
2.4.2. Finally, in Section 2.5, an estimate is given for the bounds of the different parameters in the model
for the damped harmonic oscillator.

2.1. Equations of motion
This section derives the equations of motion for the damped harmonic oscillator with a base excitation,
which is done in steps for the relevant forces. The model is assumed to be one-dimensional

2.1.1. Newton's second law
At the basis of the model lies the second law of Newton. Though many readers know this formula
simply as the sum of all forces on an object equals the object’s mass times the object’s acceleration,
the actual law is slightly different. It states that the sum of all forces on an object equals the change in
the momentum of the object, so∑

F =
dp
dt

=
d
dt

(mv) =
d
dt

(
m
du
dt

)
. (2.1)

For clarity’s sake, F describes a force acting on the object, p describes the object’s momentum, m is
the object’s mass and v is the object’s velocity. All variables here can depend on time. Note that the
law will be simplified to the familiar version of mass times acceleration when an object has a constant
mass.

This law is the foundation for deriving the model used in this thesis.

2.1.2. Simple harmonic oscillator
The simple harmonic oscillator forms the basis of any oscillator. In the simple harmonic oscillator, the
only force acting is the spring force. This force is described by Hooke’s law, which describes the linear
relation between the spring coefficient k and the displacement from equilibrium of the mass u. Hooke’s
law thus states that

Fspring = ku. (2.2)

3
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Then, using Newton’s second law as stated in Equation (2.1), the equations of motion for the simple
harmonic oscillator are obtained as

−ku =
d
dt

(
m
du
dt

)
, (2.3)

where a minus sign is placed before the spring force, as it acts as a restoring force. A diagram of the
simple harmonic oscillator is given in Figure 2.1.

Figure 2.1: A diagram of the simple harmonic oscillator with a mass m and spring coefficient k.

2.1.3. Damped harmonic oscillator
For the damped harmonic oscillator, the previous model for the simple harmonic oscillator is expanded.
The damping force is introduced into the model. Damping linearly influences the velocity of the object
and is thus denoted by

Fdamp = c(t)v, (2.4)

where c(t) is the, potentially time-dependent, damping coefficient and v is the velocity of the object. As
mentioned previously, velocity is also time-dependent. The damping is assumed to contain a constant,
“parasitic” part cm and a time-variable part cv(t), so

c(t) = cm + cv(t). (2.5)

The above equation is rewritten with the consideration that v = du
dt , giving the equation of motion for

the damped harmonic oscillator as:

−ku− c(t)
du
dt

=
d
dt

(
m
du
dt

)
. (2.6)

A visualisation of the damped harmonic oscillator is given in Figure 2.2.

Figure 2.2: A diagram of the damped harmonic oscillator with mass m, spring coefficient k and damping value c(t).

2.1.4. Damped harmonic oscillator with gravity
Objects used in this model will experience a gravitational force, which is defined as

Fg = mg, (2.7)
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with g being equal to the gravitational acceleration. The gravitational force will influence the mass in
the damped harmonic oscillator. Thus, the equations of motion will change to

−ku− c(t)
du
dt

−mg =
d
dt

(
m
du
dt

)
. (2.8)

2.1.5. Damped harmonic oscillator with base excitation
This thesis focuses on energy harvesting from external vibrations. These external vibrations are con-
sidered to be base excitations, which means that the base to which the spring is attached, is moved. If
it is assumed that this moving of the base is indicated with displacement ys(t), the governing equations
of motion are

−c(t)
(
du
dt

− dys
dt

)
− k(u− ys)−mg =

d
dt

(
m
du
dt

)
. (2.9)

A visualisation of how the base excitation affects the damped harmonic oscillator is given in Figure 2.3,
Figure 2.4 and Figure 2.5. Here, the base excitation travels from left to right.

Figure 2.3: Diagram of the damped harmonic oscillator with base excitation, which is not affected yet by the base excitation
ys(t) with mass m, spring coefficient k and damping coefficient c(t).

Figure 2.4: Diagram of the damped harmonic oscillator with base excitation, where the oscillator is extended by the base
excitation ys(t) with mass m, spring coefficient k and damping coefficient c(t).

Figure 2.5: Diagram of the damped harmonic oscillator with base excitation, where the oscillator is compressed by the base
excitation ys(t) with mass m, spring coefficient k and damping coefficient c(t).

2.1.6. Notation and assumptions
Equation (2.9) forms the foundation for this thesis. A small change of notation is introduced to simplify
the writing of the derivative. This notation is

ut =
du
dt
, (2.10)

where, if a variable already has a subscript, the notation will change to

ys,t =
dys
dt

. (2.11)
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This change in notation transforms Equation (2.9) into

−c(t) (ut − ys,t)− k (u− ys)−mg = mutt. (2.12)

Rewriting slightly gives
mutt + c(t)(ut − ys,t) + k(u− ys) +mg = 0. (2.13)

To simplify the equation, the new variable ẑ = u − ys is introduced. This gives that ut = ẑt + ys,t and
utt = ẑtt + ys,tt transforming the equation into

mẑtt + c(t)ẑt + kẑ +mg = −mys,tt. (2.14)

Now, another transformation will be applied with respect to the equilibrium position to remove the influ-
ence of gravity on the displacement. The transformation of z = ẑ−ẑeq is made, where ẑeq represents the
equilibrium position of ẑ. As ẑeq represents an equilibrium position, the time derivative of this variable
will be equal to 0 as the position is constant. Hence, the equation will transform to

mztt + c(t)zt + kz + kẑeq +mg = −mys,tt. (2.15)

Note that, at an equilibrium position, the forces are in balance. This implies that∑
F = 0 = Fspring + Fg. (2.16)

Specifically,
−Fspring = kẑeq = −mg, (2.17)

thus transforming Equation (2.15) into

mztt + c(t)zt + kz = −mys,tt. (2.18)

Rewriting, with the assumption that m > 0, gives

ztt +
c(t)

m
zt +

k

m
z = −ys,tt. (2.19)

2.1.7. Boundary conditions
The model will need boundary conditions before a solution can be found. Due to the system being
moved by a base excitation, the boundary conditions are generally assumed to be

z(T0) = 0, (2.20)

and
zt(T0) = 0, (2.21)

where T0 is the starting time of the model.

2.2. Rescaling
An important step in simplifying the studied equation for the damped harmonic oscillator is to rescale the
equation. This way, the number of variables in the equation can be considerably reduced, simplifying
the later optimisation process.

To rescale the equation, the time and displacement are scaled with to be determined variables λ
and µ, giving

t =
1

λ
t̄, z = µz̄, (2.22)

and so, the derivatives are as
dz
dt

=
d
dt

(µz̄) = µ
dz̄
dt̄

dt̄
dt

= µλz̄t̄, (2.23)

and
d2z
dt2

= µλ2z̄t̄t̄. (2.24)
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This transforms Equation (2.19) into

µλ2z̄t̄t̄ +
c(t)

m
µλz̄t̄ +

k

m
µz̄ = −ys,tt, (2.25)

and, so,
z̄t̄t̄ +

c(t)

m

1

λ
z̄t̄ +

k

m

1

λ2
z̄ = − 1

µλ2
ys,tt. (2.26)

Rewriting the right hand side using

d2ys
dt2

=
d2ys
dt̄2

d2t̄
dt2

= ys,t̄t̄λ
2, (2.27)

gives Equation (2.26) to be

z̄t̄t̄ +
c(t)

m

1

λ
z̄t̄ +

k

m

1

λ2
z̄ = − 1

µ
ys,t̄t̄. (2.28)

Thus, we define
λ2 =

k

m
, (2.29)

and, as ys,t̄t̄ = y0 cos(fst̄
1
λ + φ)

µ = −y0, (2.30)
so that Equation (2.28) transforms into

z̄t̄t̄ +
c(t)

m

√
m

k
z̄t̄ + z̄ = cos(fs

√
m

k
t̄+ φ). (2.31)

Thus, simplifying further, the rescaled equation is

z̄t̄t̄ +
c(t)√
mk

z̄t̄ + z̄ = cos(fs

√
m

k
t̄+ φ), (2.32)

and, defining ψ = 1√
mk

and f̂s = fs
√

m
k , gives

z̄t̄t̄ + ψc(t)z̄t̄ + z̄ = cos(f̂st̄+ φ), (2.33)

where we have that
t =

√
m

k
t̄, (2.34)

and
z = −y0z̄. (2.35)

For simplicity, the notation with bars and hats in Equation (2.33) is dropped for the remainder of this
thesis.

2.3. Damping
The behaviour of the damping is crucial to this thesis, as the goal is to research the time-averaged power
yielded from the potentially variable damping value. This section describes what is meant by piecewise
changing damping and pseudocontinuous damping. Afterwards, the influence of the discontinuity of
these variable damping values on the general equations of motion is discussed.

2.3.1. Piecewise Changing Damping
As the name implies, piecewise changing damping is a damping which changes piecewise. We assume
that for the piecewise changing damping, it only changes one time. We define this particular moment of
switch in damping value to be at a certain time t = Tm. This value lies within a certain interval [Tb, Tf ],
which usually equals one period of the base excitation. Thus,

c(t) =

{
c1, for Tb ≤ t < Tm,

c2, for Tm ≤ t ≤ Tf .
(2.36)

Note that this damping is not continuous, as it jumps at Tm.
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2.3.2. Pseudocontinuous Damping
Pseudocontinuous damping mimics the behaviour of a continuous function, but still isn’t continuous. It
is a combination of multiple piecewise changing dampings at particular intervals. Two examples are
given in Figure 2.6 and Figure 2.7.

Figure 2.6: An example continuous damping c(t) = t in
red with a pseudocontinuous damping in green.

Figure 2.7: Another example continuous damping
c(t) = 1 + cos( t

2
) in red with a pseudocontinuous
damping in green.

Note that in Figure 2.6 the intervals are of the same size and in Figure 2.7 the intervals have different
lengths. This is due to the function approximation method that is chosen to approximate the damping.

As mentioned before, for pseudocontinuous damping, multiple piecewise changing dampings are
used. Intuitively, this is similar to taking the intervals used in the Riemann sum of a particular function.

Different methods are commonly used for the approximation of functions, for example, the left-hand
approximation. Figure 2.6 displays how the left-hand approximation would work. The left-hand rule
states that the integral of a particular function f(x) on the interval [a, b] can be approximated by∫ b

a

f(x) ≈
n∑
i=1

f(xi)∆x, (2.37)

where n represents the number of intervals chosen and∆x the length of the intervals. Larger n implies
a better approximation. Instead of approximating the integral of the particular function, this theory is
instead used to approximate the function itself. By using a stepwise function, the approximation is
expressed as

f(x) ≈


f(x1), for x1 ≤ x < x2,

f(x2), for x2 ≤ x < x3,
...
f(xj), for xj ≤ x ≤ xj+1,

(2.38)

or, generally,

f(x) ≈

{
f(xi), for xi ≤ x < xi+1, where i ∈ 1, ..., j − 1,

f(xj), for xj ≤ x ≤ xj+1.
(2.39)

Next to the left-hand approximation rule, also the right-hand rule and midpoint rule exist, which, respec-
tively, would yield

f(x) =

{
f(xi+1), for xi ≤ x < xi+1, where i ∈ 1, ..., j − 1,

f(xj+1), for xj ≤ x ≤ xj+1,
(2.40)

and

f(x) ≈

{
f(xi+xi+1

2 ), for xi ≤ x < xi+1, where i ∈ 1, ..., j − 1,

f(
xj+xj+1

2 ), for xj ≤ x ≤ xj+1.
(2.41)
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Clearly, when more intervals are taken, the approximation will be closer to the actual function value.
However, using more intervals is computationally more expensive. Hence, an optimum must be found
for the minimum intervals and error between the function and the approximation.

The problem with these approximation rules is that they do not take into account the behaviour of
the function that is approximated. This can be seen in the following figure.

Figure 2.8: The graph c(t) = t2

100
with a left hand

approximation for the pseudocontinuous damping.
Figure 2.9: The graph c(t) = t2

100
with a right hand

approximation for the pseudocontinuous damping.

Here, the intervals are divided equally over the graph with every interval having an equal length, but
the approximation would be more accurate if the intervals were distributed unequally and had different
interval lengths. Specifically, a distribution of more intervals when the graph becomes steeper would be
optimal. To realise the exact distribution of intervals at the best moments to minimise the error between
the continuous and pseudocontinuous damping, a numerical implementation is used. This code is
given in Appendix A. The code provides the best approximation of a function based on the number of
intervals required by computing the difference between different values of a function f , hence effectively
judging the steepness of the graph.

2.3.3. Influence of the discontinuous damping
Having a discontinuous damping means that the acceleration of the system will not be continuous, as:{

zt = x,

mxt = −c(t)x− kz + F (t).
(2.42)

The jump in the damping will make it behave like a Heaviside function. In Figure 2.10 a plot is made of
c(t), which illustrates that it acts like a Heaviside function.

Figure 2.10: A plot of a c(t) where c1 = 0 and c2 = 1, showing how c(t) acts like a Heaviside function.

When a Heaviside function is integrated, it becomes continuous, if the same integration constants are
chosen. This is illustrated in Figure 2.11.
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Figure 2.11: A plot of the antiderivative of c(t) where c1 = 0 and c2 = 1, showing how the antiderivative of c(t) is continuous.

Therefore, although the acceleration is discontinuous, the velocity and the displacement are continuous.
This is crucial for the influence of the velocity and displacement on the power analysis later on in this
thesis. Those being continuous will make the analysis substantially easier.

Before explaining the exact function approximation method that is chosen for this pseudocontinuous
damping, it should be noted that, via reasoning similar to that in the previous section, the displacement
and velocity are continuous when using pseudocontinuous damping.

2.4. Power analysis
Since one of the two objectives of this thesis is to correctly measure the harvested power from the os-
cillation, in this section, the measure taken to research how much power is harvested from the damped
harmonic oscillator is discussed.

2.4.1. Instantaneous power
Instantaneous power is defined as the power that is obtained by a specific force at a particular moment
in time. We have instantaneous power defined as

Pinst = F · v. (2.43)

Instantaneous power for the damper is therefore

Pinst = Fdamp · v, (2.44)

or, using the previous notations and assumptions

Pinst = −c(t)z2t . (2.45)

As our goal is to determine the power obtained by the non-parasitic damping specifically, above equa-
tion should be rewritten to

Pinst = −cv(t)z2t . (2.46)

Yet, as the damping might experience resonance and therefore power gains at particular moments
might not be representative for the whole period of an incoming wave, the time-averaged power is
studied.

2.4.2. Time-averaged power
Time-averaged power is defined as, such as the name implies, the average power gain over a certain
period in time. Hence,

Pave =
1

Te − Tb

∫ Te

Tb

Pinsdt, (2.47)
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where Tb and Te are the respective begin and end time of the particular time period. This thesis will make
use of the time-averaged power for an analysis of the particular energy yield of the system. Specifically,
the interval will be taken as one oscillation from the incoming base excitation oscillation. Thus,

Pave =
1

2π+k2π
fs

− k2π
fs

∫ 2π+k2π
fs

k2π
fs

Pinsdt, (2.48)

with k being an integer. For simplicity and due to the periodicity of the goniometric formulas, this form
can be assumed to be equal to

Pave =
1
2π
fs

∫ 2π
fs

0

Pinsdt. (2.49)

and therefore, using the definition of instantaneous power given in Equation (2.46)

Pave =
1
2π
fs

∫ 2π
fs

0

−cv(t)z2t dt. (2.50)

2.5. Parameter estimates
This section explains the bounds that exist on the different parameters present in the equations of
motion for the damped harmonic oscillator. These bounds are relevant for computing the boundary
values, which may influence what solution is optimal for the time-averaged power yield. Bounds which
are found in literature are given in Appendix B in Table B.1.

It can be seen that there are several applications of the damped harmonic oscillator for which the
parameter values differ significantly. Due to the probability of any application of this thesis first being
tested in a lab, parameters close to the precision lab setup are chosen. These values can be found in
Table 2.1.

Table 2.1: Parameter values of the damped harmonic oscillator chosen for the damped harmonic oscillator with base excitation.

Parameter value [unit] Symbol Value
Mass [kg] m 1
Spring coefficient [N/m] k 4π2

Parasitic damping [Ns/m] cm 0.1
Variable damping [Ns/m] cv or cv,i [−0.15, 0.35]
Amplitude [m] y0 10−3

Frequency [Hz] fs (0, 2)
Phase [-] φ [−π, π)



3
Damped Harmonic Oscillator with

Base Excitation and Variable Damping

The damped harmonic oscillator model forms the basis of the research of this thesis. This chapter will
build towards solving the damped harmonic oscillator model with base excitation and variable damping.
This is done by first solving the model for a constant damping, as has been done in Section 3.1. Ther-
after, the model is solved for a piecewise changing damping in Section 3.2. Next, for pseudocontinuous
damping, the model is solved in Section 3.3. Each of these sections will discuss how the solution of
the damped harmonic oscillator is modelled and show how the different variable parameters influence
the behaviour of the oscillator. Lastly, in Section 3.4, concluding remarks are discussed.

3.1. Constant damping
As was concluded in Section 2.1.6 of Chapter 2, the governing equations of motion for the damped
harmonic oscillator with base excitation are

ztt + ψc(t)zt + z = cos(fst+ φ) (3.1)

For this section, the damping is assumed to be constant. Hence, there will be no time-dependency of
the damping coefficient, so

ztt + ψczt + z = cos(fst+ φ) (3.2)

is the governing equation of motion. To solve this equation, the homogeneous solution and particular
solution are derived, as the general solution is the sum of these two solutions, so

z(t) = zhom(t) + zpart(t). (3.3)

The homogeneous solution is derived in Section 3.1.1 and the particular solution in Section 3.1.2. Then,
the general solution is provided in Section 3.1.3 and visualised in Section 3.1.4. The influence of the
different parameters is discussed in Section 3.1.5.

3.1.1. Homogeneous solution
For the homogeneous solution of the governing equation, no base excitation is assumed. This simplifies
the equations of motion to

zhom,tt + ψczhom,t + zhom = 0. (3.4)

Using the ansatz that zhom ∼ eiωt, where i is the complex root, and ω is a constant, gives that

eiωt
(
−ω2 + iψcω + 1

)
= 0. (3.5)

The exponent will not equal 0 and therefore the quadratic formula should equate to 0. Solving this
quadratic formula gives that

ω =
1

2

(
ciψ ±

√
4− c2ψ2

)
. (3.6)

12
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Using the superposition principle, the solution of the homogeneous problem is given by

zhom(t) = e
−cψt

2

(
d1e

it
2

√
4−c2ψ2

+ d2e
−it
2

√
4−c2ψ2

)
, (3.7)

which could also be rewritten to a form using sines and cosines. This is explored further later in this
thesis. For the general solution, the form with exponentials is used.

Rewriting the above form to remove the complex root using the definition that i2 = −1, gives

zhom(t) = e
−cψt

2

(
d1e

t
2

√
c2ψ2−4 + d2e

−t
2

√
c2ψ2−4

)
, (3.8)

which implies that three different solutions exist depending on the value in the square root. These three
different solutions are discussed case by case.

c2ψ2 > 4
The homogenous solution in the case where c2ψ2 > 4 will be the same as Equation (3.8), as the root
is positive in this case. So,

zhom(t) = e
−cψt

2

(
d1e

t
2

√
c2ψ2−4 + d2e

−t
2

√
c2ψ2−4

)
. (3.9)

c2ψ2 = 4
In the case where c2ψ2 = 4km, the two solutions of the quadratic formula given in Equation (3.6) are
the same, this solution is defined as z1(t). As there should be two distinct solutions, as it is a quadratic
equation, the method of reduction of order is used to find the other solution. So, using a newly time-
dependent variable σ(t) to get

zhom(t) = z1(t)σ(t), (3.10)
which implies that

zhom,t = σ(t)z1,t(t) + z1(t)σt(t), (3.11)
and

zhom,tt = σ(t)z1,tt(t) + 2z1,t(t)σt(t) + z1(t)σtt(t). (3.12)
Substituting these back into Equation (3.4), gives

σ(t)z1,tt(t) + 2z1,t(t)σt(t) + z1(t)σtt(t) + ψc (σ(t)z1,t(t) + z1(t)σt(t)) + z1(t)σ(t) = 0. (3.13)

As z1 is a solution of Equation (3.4), the equation can be simplified to

z1(t)σtt(t) + 2z1,t(t)σt(t) + ψcz1(t)σt(t) = 0, (3.14)

or, simplified even further,

z1(t)σtt(t) + σt(t) (2z1,t(t) + ψcz1(t)) = 0. (3.15)

This is a first-order linear equation for σt(t), and its solution is given by

σt(t) = d3e
−

∫ (
2
z1,t(t)

z1(t)
+cψ

)
dt

= d3e−
∫
cψdte−2

∫ (
z1,t(t)

z1(t)

)
dt

=
d3e−

∫
cψdt

z21(t)
. (3.16)

Substituting the already-found solution

z1(t) = d1e
−cψt

2 , (3.17)

gives
σt(t) = d3

1

d21
e−cψte−(cψt) =

d3
d21
. (3.18)

Note that constant d3 can be freely chosen, as we are only interested in one solution to the differential
equation for σ1(t), given in Equation (3.16). Thus, we choose d3 = d21, so that

σt(t) = 1, (3.19)

and therefore the solution to the homogeneous problem is

zhom(t) = d1e−cψt + d2te−cψt. (3.20)
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c2ψ2 < 4
In the case where c2ψ2 < 4, the square root will be positive in the solution of the quadratic formula,
given in Equation (3.6). Therefore, the last step in determining the general homogeneous solution,
rewriting the solution to the form given in Equation (3.8), is unnecessary. To remove the complex root
in the equation, the exponentials are rewritten to sines and cosines, so

(3.21)
zhom(t) = e

−cψt
2

(
d1

[
cos

(
t

√
4− c2ψ2

2

)
+ i sin

(
t

√
4− c2ψ2

2

)]

+ d2

[
cos

(
−t
√
4− c2ψ2

2

)
+ i sin

(
−t
√

4− c2ψ2

2

)])
.

Combining the sines and cosines into their forms gives

zhom(t) = e
−cψt

2

(
cos

(
t

√
4− c2ψ2

2

)
[d1 + d2] + i sin

(
t

√
4− c2ψ2

2

)
[d1 − d2]

)
. (3.22)

Hence, by introducing new constants d3 = d1 + d2 and d4 = i (d1 − d2), the solution for the case where
c2ψ2 < 4 is

zhom(t) = e
−cψt

2

(
d3 cos

(
t

√
4− c2ψ2

2

)
+ d4 sin

(
t

√
4− c2ψ2

2

))
. (3.23)

3.1.2. Particular Solution
Now that the three different solutions, based on the value of the damping coefficient and variable ψ,
have been found, the particular solution of the problem is examined. For the particular solution to the
equations of motion with constant damping, the following equation will have to be solved:

zpart,tt + ψc(t)zpart,t + zpart = cos(fst+ φ). (3.24)

Just as in the solving of the homogeneous problem, the ansatz zpart ∼ eiωt is used, which gives

eiωt
(
−ω2 + i ψ c ω + 1

)
= F (t), (3.25)

which implies that F (t) ∼ eiωt. Using Fourier series, this exponential function can be created via
F (t) =

∑
n dn cos(θnt + φn) for n ∈ N, where dn, θn and φn are constants. This rewriting to a sum of

cosines is beneficial, as it can be physically interpreted as a wave with amplitude dn, frequency θn and
phase φn. So, if a solution is found for

zn,tt + ψczn,t + zn = cos(θnt), (3.26)

it can be combined to create∑
n

dn (zn,tt + ψczn,t + zn) =
∑
n

dn cos(θnt), (3.27)

which implies that a solution is found for the general equation

zpart,tt + ψczpart,t + zpart = cos(fst+ φ), (3.28)

where y0 represents the amplitude of the incoming wave, fs represents the frequency and φ the phase.
Using Euler’s Formula,

e−ifst+φ = cos(fst+ φ)− i sin(fst+ φ), (3.29)

gives that, if assuming that there exists a v(t) which solves

vtt + ψcvt + v = e−ifst+φ, (3.30)

and taking Re(v) = zpart with noting that Re(e−ifst+φ) = cos(fst+ φ), one should have that

Re(vtt + ψcvt + v) = Re(e−ifst+φ) = cos(fst+ φ) = zpart,tt + ψczpart,t + zpart. (3.31)
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This means, that to solve the particular solution, a solution should be found for

vtt + ψcvt + v = y0e−ifst+φ. (3.32)

Again using ansatz that v(t) = Ae−ifst+φ,

Ae−ifst+φ
(
−f2s − iψcfs + 1

)
= e−ifst+φ. (3.33)

same assumption that e−ifst+φ ̸= 0, gives

A =
1

−f2s − iψcfs + 1
, (3.34)

which gives then

zpart(t) = Re(v(t)) = Re
(

1

−f2s − iψcfs + 1
e−ifst+φ

)
(3.35)

to remove the complex part of the constant A it is rewritten

1

−f2s − iψcfs + 1
=

1

−f2s − iψcfs + 1

−f2s + iψcfs + 1

−f2s + iψcfs + 1
, (3.36)

=
−f2s + iψcfs + 1

(f2s − 1)
2
+ (ψcfs)

2 , (3.37)

=
−f2s + 1

(f2s − 1)
2
+ (ψcfs)

2 + i
ψcfs

(f2s − 1)
2
+ (ψcfs)

2 , (3.38)

so,

zpart(t) = Re

((
−f2s + 1

(f2s − 1)
2
+ (ψcfs)

2 + i
ψcfs

(f2s − 1)
2
+ (ψcfs)

2

)
(cos(fst+ φ)− i sin(fst+ φ))

)
.

(3.39)
This implies that

zpart(t) =
−f2s + 1

(f2s − 1)
2
+ (ψcfs)

2 cos(fst+ φ) +
ψcfs

(f2s − 1)
2
+ (ψcfs)

2 sin(fst+ φ), (3.40)

or, using the Harmonic Addition Theorem in Appendix C,

zpart(t) =
1√

(f2s − 1)
2
+ (ψcfs)

2
(cos(fst+ φ+ δ)) . (3.41)

where δ = arctan
(
− ψcfs

−f2
s+1

)
, or, assuming that φ̂ = φ+ δ,

zpart(t) =
1√

(f2s − 1)
2
+ (ψcfs)

2
(cos(fst+ φ̂)) . (3.42)
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3.1.3. General Solution
The general solution is, as given in Equation (3.3),

z(t) =
1√

(f2s − 1)
2
+ (ψcfs)

2
(cos(fst+ φ̂))+


e

−cψt
2

(
d1e

t
2

√
c2ψ2−4 + d2e

−t
2

√
c2ψ2−4

)
for c2ψ2 > 4,

d1e−cψt + d2te−cψt for c2ψ2 = 4,

e
−cψt

2

(
d1 cos

(
t

√
4−c2ψ2

2

)
+ d2 sin

(
t

√
4−c2ψ2

2

))
for c2ψ2 < 4.

(3.43)

3.1.4. Visualising solution
In Section 3.1.3, the general solution for the damped harmonic oscillator with base excitation with a
constant damping has been given. This solution depends on the relationship between the damping,
spring coefficient, and mass. The constants of the general solution are still to be determined and can
be found by rewriting the solution to(

z(t)
zt(t)

)
= C(t)

(
d1
d2

)
+

(
zpart(t)
zpart,t(t)

)
. (3.44)

To determine the constants d1 and d2, it can be evaluated at a particular starting time T0 given the initial
displacement z(T0) and velocity zt(T0) to get(

z(T0)
zt(T0)

)
= C(T0)

(
d1
d2

)
+

(
zpart(T0)
zpart,t(T0)

)
, (3.45)

which can be rewritten to

C−1(T0)

[(
z(T0)
zt(T0)

)
−
(
zpart(T0)
zpart,t(T0)

)]
=

(
d1
d2

)
, (3.46)

giving a final expression which is used for the visualisation of the solution to be(
z(t)
zt(t)

)
= C(t)C−1(T0)

[(
z(T0)
zt(T0)

)
−
(
zpart(T0)
zpart,t(T0)

)]
+

(
zpart(t)
zpart,t(t)

)
. (3.47)

Different parameters influence the behaviour of the damped harmonic oscillator. For example, the
damping value or the base excitation. An analysis of the influence of most of these variables is made
in the following section.

3.1.5. Influence of different factors
The general solution without rescaling is visualised, as then the physical interpretation of the variables
is easier. This means that Equation (2.19) is modelled, of which the solution is

z(t) =
y0√(

f2s − k
m

)2
+
(
c
mfs

)2 (cos(fst+ φ̂))+


e−ct

2m

(
d1e

t
2m

√
c2−4km + d2e

−t
2m

√
c2−4km

)
for c2 > 4km,

d1e
−ct
2m + d2te

−ct
2m for c2 = 4km,

e−ct
2m

(
d1 cos

(
t
√
4km−c2
2m

)
+ d2 sin

(
t
√
4km−c2
2m

))
for c2 < 4km.

(3.48)
It should be noted that only variables y0, fs, c and φ are discussed. So, respectively, only the amplitude
of the base excitation, the frequency of the base excitation, the damping value and the phase of the
base excitation. This spring coefficient and mass are considered fixed.
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Influence of Amplitude

Figure 3.1: The displacement and velocity of the damped harmonic oscillator with values c = 1,m = 1, k = 2, fs = 1, φ = 0,
initial conditions z(T0) = 0, zt(T0) = 0, and changing amplitude from 0 to 3.

The displacement and velocity with different amplitude values are plotted in Figure 3.1. As can be
expected, the displacement of the damped harmonic oscillator becomes larger when the incoming
base excitation has a higher amplitude. Oscillations do still occur, as the system is underdamped.

Influence of damping

Figure 3.2: The displacement and velocity of the damped harmonic oscillator with values y0 = 1,m = 1, k = 2, fs = 1, φ = 0,
initial conditions z(T0) = 0, zt(T0) = 0, and changing damping from 0.5 to 2.

The displacement and velocity with different damping values are plotted in Figure 3.2. Again, as can
be expected, with higher damping values, the manner of displacement decreases. This is due to the
damping having a higher influence on the displacement for higher values. Oscillations do still occur, as
the system is underdamped.
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Influence of frequency

Figure 3.3: The displacement and velocity of the damped harmonic oscillator with values y0 = 1,m = 1, k = 2, c = 1, φ = 0,
initial conditions z(T0) = 0, zt(T0) = 0, and changing frequency from 0 to 4.

The displacement and velocity with different frequencies are plotted in Figure 3.3. It can be seen that
when the frequency is equal to 0, the damped harmonic oscillator will come to a standstill. This is due
to no external base excitation happening, and therefore, the system will not move. Oscillations do still
occur when a frequency is non equal to 0, as the system is underdamped. Frequencies which are close
to the eigenfrequency result in bigger oscillations.

Influence of phase

Figure 3.4: The displacement and velocity of the damped harmonic oscillator with values y0 = 1,m = 1, k = 2, c = 1, fs = 1,
initial conditions z(T0) = 0, zt(T0) = 0, and changing phase from 0 to 2.25.

The displacement and velocity with different phase values are plotted in Figure 3.4. The phase de-
termines at which level the incoming wave hits the base excitation. Oscillations do still occur, as the
system is not overdamped but rather underdamped. Logically, for different values of the phase, the
oscillator is excited differently.
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3.2. Piecewise changing damping
This section elaborates on the general solution when a piecewise changing damping is assumed. The
piecewise changing damping is explained in Section 2.3.1. The general solution for the damped har-
monic oscillator with a piecewise changing damping subject to a base excitation is given in 3.2.1. Af-
terwards, the visualisation of the solution is explained in Section 3.2.2 and the influence of the different
parameters in discussed in Section 3.2.3.

3.2.1. General solution
As explained in Section 2.3.3, the displacement and velocity of the damped harmonic oscillator remain
continuous, even though the damping value is not. Due to this continuity, the following maps can be
created as (

z(Tb)
zt(Tb)

) (
z(Tm)
zt(Tm)

) (
z(Tf )
zt(Tf )

)
.

c(t) = c1

ϕ1(t)

c(t) = c2

ϕ2(t)

Mapping ϕ1(t) and ϕ2(t) are constructed in a similar manner. On the intervals [Tb, Tm) and [Tm, Tf ],
the damping is constant. This allows the previous solution from Section 3.1 to be used. The map ϕ1(t)
can therefore be expressed as

ϕ1(t) :

(
z(Tm)
zt(Tm)

)
= A1(t)

(
z(Tb)
zt(Tb)

)
+

(
zpart,1(Tm)
zpart,1,t(Tm)

)
, (3.49)

and, similarly, for map ϕ2(t)

ϕ2(t) :

(
z(Tf )
zt(Tf )

)
= A2(t)

(
z(Tm)
zt(Tm)

)
+

(
zpart,2(Tf )
zpart,2,t(Tf )

)
. (3.50)

These maps can be combined to create one bigger map, indicated by ϕ(t)(
z(Tb)
zt(Tb)

) (
z(Tm)
zt(Tm)

) (
z(Tf )
zt(Tf )

)
.

c(t) = c1

ϕ1(t)

c(t) = c2

ϕ2(t)

ϕ(t)

Looking at the construction of the map and Equations (3.49), (3.50), it can be concluded that ϕ(t) =
(ϕ2 ◦ ϕ1)(t). The map ϕ(t) can therefore be expressed as

ϕ(t) :

(
z(Tf )
zt(Tf )

)
= A2(t)

(
A1(t)

(
z(Tb)
zt(Tb)

)
+

(
zpart,1(Tm)
zpart,1,t(Tm)

))
+

(
zpart,2(Tf )
zpart,2,t(Tf )

)
, (3.51)

which can be rewritten to

ϕ(t) :

(
z(Tf )
zt(Tf )

)
= A2(t)A1(t)

(
z(Tb)
zt(Tb)

)
+A2

(
zpart,1(Tm)
zpart,1,t(Tm)

)
+

(
zpart,2(Tf )
zpart,2,t(Tf )

)
, (3.52)

and thus the solution for the equation of motion with piecewise changing damping can be found.

3.2.2. Visualising the solution
The map ϕ(t) forms the equations of motion and can thus be used for the visualisation of the damped
harmonic oscillator, if rewritten to determine the displacement and velocity at an arbitrary time t, so

ϕ(t) :

(
z(t)
zt(t)

)
= A2(t)A1(t)

(
z(Tb)
zt(Tb)

)
+A2

(
zpart,1(Tm)
zpart,1,t(Tm)

)
+

(
zpart,2(t)
zpart,2,t(t)

)
. (3.53)
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3.2.3. Influence of different factors
The influence of the amplitude, frequency and phase is studied. We do not study the influence of the
damping value as this is the piecewise changing damping model.

Influence of Amplitude

Figure 3.5: The displacement and velocity of the damped harmonic oscillator with values, m = 1, k = 2, fs = 1, φ = 0, initial
conditions z(T0) = 0, zt(T0) = 0, switching damping from c = 1.5 to c = 6.6 and changing amplitude from 0 to 3.

The displacement and velocity with different amplitude values are plotted in Figure 3.5. After the
crossed red line, the damping value has switched. It can immediately be seen that the system changes
from an under- to an overdamped damped harmonic oscillator, as the displacement and velocity both
die out. Higher amplitude will make the damped harmonic oscillator still move, but not as big as before.

Influence of frequency

Figure 3.6: The displacement and velocity of the damped harmonic oscillator with values y0 = 1,m = 1, k = 2, φ = 0, initial
conditions z(T0) = 0, zt(T0) = 0, , switching damping from c = 1.5 to c = 6.6 and changing frequency from 0 to 2.25.

The displacement and velocity with different frequencies are plotted in Figure 3.6. It can be seen that
when frequency is equal to 0, the damped harmonic oscillator will come to a standstill. This is due to
no external base excitation happening, and therefore the system will not move.
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Influence of phase

Figure 3.7: The displacement and velocity of the damped harmonic oscillator with values y0 = 1,m = 1, k = 2, fs = 1, initial
conditions z(T0) = 0, zt(T0) = 0, , switching damping from c = 1.5 to c = 6.6 and changing phase from 0 to 3.

The displacement and velocity with different phase values are plotted in Figure 3.7. Like before, the
influence of the phase is limited, as it only shifts the base excitation oscillation.

3.3. Pseudocontinuous damping
In this section, the general solution for the case of pseudocontinuous damping is given in Section 3.3.1.
The visualisation is explained in Section 3.3.2 and then, in Section 3.3.3, the influence of the different
parameters is discussed.

3.3.1. General solution
Building on the steps taken in the previous section, the map for the pseudocontinuous case will take
the following form. Similarly to the previous section, we get a total map ϕ(t), which is also indicated
below(

z(T0)
zt(T0)

) (
z(T1)
zt(T1)

) (
z(T2)
zt(T2)

)
· · ·

(
z(Tn)
zt(Tn)

)
,

c(t) = c1

ϕ1(t)

c(t) = c2

ϕ2(t)

c(t) = c3

ϕ3(t)

c(t) = cn

ϕn(t)

ϕ(t)

where

ϕi(t) :

(
z(Ti)
zt(Ti)

)
= Ai(t)

(
z(Ti−1)
zt(Ti−1)

)
+

(
zpart,i(Ti)
zpart,i,t(Ti)

)
, (3.54)

with i ∈ 1, 2, ..., n. Here n denotes the number of switches in damping values. Thus, also

ϕi+1(t) :

(
z(Ti+1)
zt(Ti+1)

)
= Ai+1(t)

(
Ai(t)

(
z(Ti−1)
zt(Ti−1)

)
+

(
zpart,i(Ti)
zpart,i,t(Ti)

))
+

(
zpart,i+1(Ti+1)
zpart,i+1,t(Ti+1)

)
, (3.55)

and so

ϕ(t) :

(
z(Tn)
zt(Tn)

)
=

n∏
j=1

Aj

(
z(T0)
zt(T0)

)
+

n∑
j=1

n∏
k=j

Ak

(
zpart,j(Tj)
zpart,j,t(Tj)

)
. (3.56)
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3.3.2. Visualising the solution
Equation (3.56) is used for the visualisation of the solution of the damped harmonic oscillator model.

3.3.3. Influence of parameters
The influence of the parameters is the same as that of the piecewise changing damping. To illustrate
this, the different images are reproduced based on damping values from the approximation of function
c(t) = (t+8)3

5000 and four intervals.

Figure 3.8: An example continuous damping
c(t) =

(t+8)3

5000
in red with a pseudocontinuous damping

in green, giving values 1, 4, 7 and 9.

Figure 3.9: The displacement and velocity of the
damped harmonic oscillator with values

φ = 0,m = 1, k = 2, fs = 1, initial conditions
z(T0) = 0, zt(T0) = 0, damping values from Figure 3.8

changing amplitude from 0 to 3.

Figure 3.10: The displacement and velocity of the
damped harmonic oscillator with values

y0 = 1,m = 1, k = 2, φ = 0, initial conditions
z(T0) = 0, zt(T0) = 0, damping values from Figure 3.8

changing frequency from 0 to 2.25.

Figure 3.11: The displacement and velocity of the
damped harmonic oscillator with values

y0 = 1,m = 1, k = 2, fs = 1, initial conditions
z(T0) = 0, zt(T0) = 0, damping values from Figure 3.8

changing phase from 0 to 3.

It should be noted that in Figure 3.8, the intervals of the damping value are purposely not equidistant, as
then the approximation of the continuous function c(t) = (t+8)3

5000 has the lowest error with using interval
values for the damping. This numerical approximation has been discussed in Section 2.3.2.

The influence of the amplitude, frequency and phase, visualised in Figure 3.9, Figure 3.10 and
Figure 3.11 respectively, is the same as previously discussed in Section 3.1.5 and Section 3.2.3.
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3.4. Concluding the damped harmonic oscillator model
In this section, the conclusion on themodelling of the damped harmonic oscillator with different methods
to implement a variable damping, is given. In Section 3.4.1 a table is given which outlines the effect
of different parameter values on the damped harmonic oscillator with base excitation. Thereafter, in
Section 3.4.2, an explanation is given why only the steady state solution the damped harmonic oscillator
with base excitation is studied for the power analysis.

3.4.1. Influence of parameters
An overview of the different influence of the parameters on the damped harmonic oscillator is given in
Table 3.1.

Table 3.1: Influence of different parameters on the damped harmonic oscillator.

Parameter Influence
Amplitude Higher amplitudes of the base excitation imply a higher amplitude of the oscillator
Damping Higher damping values reduce the displacement and velocity of the oscillator
Frequency Frequencies closer to the eigenfrequency imply larger displacement and velocity
Phase Bigger phase shifts the displacement and velocity with a larger value

The amplitude, frequency, and phase are all related to the base excitation, which excites the damped
harmonic oscillator. These terms cannot be influenced in the application of the damped harmonic
oscillator to yield power.

3.4.2. Transient solution and steady state solution
The solution of the damped harmonic oscillator typically consists of homogeneous and particular so-
lutions. The piecewise and pseudocontinuous are nothing more than mappings of this solution for a
constant damping on different intervals.

It should be noted that the solution consists of a so-called transient and steady state part. The
transient solution is the part belonging to the homogeneous equation, while the steady state is related
to the particular solution. For time intervals which start close to zero, both terms are required to study
the behaviour of the oscillator properly. In simulations where the damped harmonic oscillator is studied
far away from zero in time, however, it can be shown that the transient solution will not influence the
behaviour of the model. A visualition is given in Figure 3.12.

Figure 3.12: Graph of the damped harmonic oscillator with the red line as the transient solution, the blue line as the steady
state solution and the black line as the total solution.

So, from the visualisation, we can conclude that after a short number of seconds have passed, only the
steady state solution determines the behaviour of the damped harmonic oscillator with base excitation.

This conclusion is logically supported by studying all cases of the homogeneous solutions discussed
in Section 3.1.1. All forms of these solutions contain an exponential with a negative power with a factor
of time. For these, it holds that

lim
t→∞

e
−ct
2m = 0, (3.57)
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even when multiplied by the variable t this expression will still converge to zero, so

lim
t→∞

te
−ct
2m = 0. (3.58)

Therefore, we will see that the model will be governed by the dynamics which can be described by

z(t) =
1√

(f2s − 1)
2
+ (ψcfs)

2
(cos(fst+ φ̂)) . (3.59)



4
Power Analysis without Damping

Switch

This chapter focuses on the power analysis when there is no switch in the damping value for the damped
harmonic oscillator. This significantly simplifies the analysis that is done. First, the extrema are found
and then they are classified. Thereafter, a visualisation of the optimal solution is given to show it truly
yields the most time-averaged power from the damped harmonic oscillator with base excitation.

In the case where there is no switch in the damping value, it implies that

c = cm + cv, (4.1)

and so, using the governing equation of motion given in Equation (3.59), we have as time-averaged
power, defined in Equation (2.50),

Pave =
1
2π
fs

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2

∫ T

0

1− cos(2fst+ 2φ̂)dt, (4.2)

where we used the goniometric identity

sin2(fst+ φ̂) =
1− cos(2fst+ 2φ̂)

2
. (4.3)

As mentioned before, a cycle is defined as one oscillation of the base excitation wave. This gives
T = 2π

fs
, and so

Pave =
1
2π
fs

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2

(
2π

fs
− 1

2fs
(sin(4π + 2φ̂)− sin(2φ̂))

)
. (4.4)

Due to the periodicity of the sine function, Equation (4.4) simplifies to

Pave =
cvf

2
s

2

1

(f2s − 1)2 + (ψcfs)2
. (4.5)

As the goal is to find the optimal time-averaged power, this equation is now differentiated with respect
to variable cv and put equal to zero to find the extrema. So,

∂Pave

∂cv
=
f2s
2

(f2s − 1)2 + (cψfs)
2 − 2cmcvψ

2f2s − 2c2vψ
2f2s

((f2s − 1)2 + (cψfs)2)2
= 0, (4.6)

so,
∂Pave

∂cv
=
f2s
2

(f2s − 1)2 + ψ2f2s (c
2
m − c2v)

((f2s − 1)2 + (cψfs)2)2
= 0, (4.7)

25
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which is simplified further to,
(f2s − 1)2 + ψ2f2s (c

2
m − c2v) = 0. (4.8)

Solving this equation for variable cv gives

cv,opt = ±
√
c2mψ

2f2s + (f2s − 1)2

ψfs
, (4.9)

thus implying there are two extreme values. Here cv,opt is defined as the optimal value for the variable
damping. Specifically, cv,opt,+ is the optimal value where the root has a plus sign in front and similarly
cv,opt,− is defined.

To check whether these values are a maximum or a minimum, Equation (4.7) is studied further. The
second derivative test is used. So, for the second derivative we obtain

∂P 2
ave

∂c2v
=
f2s
2

((f2s − 1)2 + (cψfs)
2)2
(
−2cvcmψ

2f2s
)
−
(
(f2s − 1)2 + ψ2f2s (c

2
m − c2v)

) (∂((f2
s−1)2+(cψfs)

2)2

∂cv

)
((f2s − 1)2 + (cψfs)2)4

.

(4.10)
Note that

(
∂((f2

s−1)2+(cψfs)
2)2

∂cv

)
isn’t evaluated due to the fact that the

(
(f2s − 1)2 + ψ2f2s (c

2
m − c2v)

)
will

be equal to zero at cv = cv,opt. So,

∂P 2
ave

∂c2v
(cv,opt) =

f2s
2

((f2s − 1)2 + (coptψfs)
2)2
(
−2cv,optcmψ

2f2s
)

((f2s − 1)2 + (coptψfs)2)4
, (4.11)

where copt = cm + cv,opt. Note that

sgn
(
∂P 2

ave
∂c2v

(cv,opt)

)
= sgn

(
−2cv,optcmψ

2f2s
)
, (4.12)

thus, since cm > 0,

sgn
(
∂P 2

ave
∂c2v

(cv,opt)

)
= −sgn (cv,opt) , . (4.13)

Therefore we have a maximum when

cv,opt,+ =

√
c2mψ

2f2s + (f2s − 1)2

ψfs
, (4.14)

and a minimum when

cv,opt,− = −
√
c2mψ

2f2s + (f2s − 1)2

ψfs
. (4.15)

There are, however, more possibilities where the time-averaged power yield is more than when we are
at a maximum. This is due to the bounds of the damping value, as we might have boundary optimal
values which aren’t a maximum, but might be higher than the maximum we found. The discussion
of the bounds for the variable damping value can be found in Section 2.5. Due to these bounds, we
should also test whether cv = −0.15 or cv = 0.35 is an optimal value. A visualisation is made to show
the time-averaged power.

As the only variable in the optimum damping value is the frequency, a plot is made for cv =
cv,opt,+, cv = −0.15 and cv = 0.35. This plot can be seen in Figure 4.1.
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Figure 4.1: Time-averaged power of damped harmonic
oscillator with base excitation with no switch in damping
value, where damping values on boundary extrema and

cv,opt,+ are plotted.

Figure 4.2: Time-averaged power of damped harmonic
oscillator with base excitation with no switch in damping

value, where damping values cv = 0.35 and
cv = cv,opt,+ are plotted.

It can be seen in Figure 4.1, that the damping value cv = −0.15 is not optimal. A closer look at Figure
4.2, where cv = −0.15 is omitted, shows that cv = cv,opt,+ outperforms cv = 0.35. The time-averaged
power is plotted for several damping values compared to cv = cv,opt,+ in Figure 4.3.

Figure 4.3: Time-averaged power of damped harmonic oscillator with base excitation with no switch in damping value, where
damping values cv ∈ {0.05, 0.1, 0.15, 0.2, cv,opt,+} are plotted.

From these visualisations, it can be concluded that indeed the damping value cv = cv,opt,+ provides
the most time-averaged power for the damped harmonic oscillator with base excitation for no switch in
damping value.



5
Power Analysis Singular Switch

This chapter will delve into howmuch power can be yielded from a damped harmonic oscillator with base
excitation when a singular switch in damping value is made. This is done for three cases: a halfway
switch, a quarter switch and an arbitrary switch. The case of a halfway switch is called a halfway switch
due to the switch in damping value happening halfway through the period of the base excitation. The
quarter switch is defined similarly. These specific cases are discussed before the general case due to
the goniometric identities of sine and cosine at the halfway and quarter switch.

5.1. Power analysis for halfway singular switch
Now, the case of a halfway switch is studied. With a halfway switch, it is meant that the moment the
damping value changes, the oscillation of the base excitation is precisely in the middle of the cycle.
Hence,

c(t) = cm + cv(t), (5.1)

where,

cv(t) =

{
cv = cv,1 t ∈ [0, πfs ),

cv = cv,2 t ∈ [ πfs ,
2π
fs
),

(5.2)

and so, for i ∈ {1, 2}
ci = cm + cv,i. (5.3)

Now, generally we had, using the rescaled equation, the expression for the time-averaged power as

Pave =
1
2π
fs

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2

∫ T

0

1− cos(2fst+ 2φ̂)dt, (5.4)

however, as cv now depends on time, the above equation is now rewritten to

Pave =
1
2π
fs

∫ T

0

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2
(1− cos(2fst+ 2φ̂)) dt. (5.5)

Now, as cv(t) has a switch between variable damping value cv,1 and cv,2 at a certain time Tm = π
fs
,

which lies between 0 and 2π
fs

as T = 2π
fs
, the integral can be split into two parts. So,

Pave =
1
2π
fs

(∫ π
fs

0

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fst+ 2φ̂1)) dt

+

∫ 2π
fs

π
fs

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
(1− cos(2fst+ 2φ̂2)) dt

)
,

(5.6)

28
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which, when working out the integrals, is

Pave =
1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2

(
π

fs
− 1

2fs
(sin(2π + 2φ̂1)− sin(2φ̂1))

)
+
cv,2f

2
s

2

1

(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− π

fs
− 1

2fs
(sin(4π + 2φ̂2)− sin(2π + 2φ̂2))

))
,

(5.7)

and so, due to the periodicty of the sine function

Pave =
1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2

(
π

fs

)
+
cv,2f

2
s

2

1

(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− π

fs

))
, (5.8)

simpliyfing

Pave =
1

2

f2s
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2
+

cv,2
(f2s − 1)2 + (ψc2fs)2

)
. (5.9)

Due to the symmetry of this equation, the optimal solution when optimising for cv,1 and cv,2 will be the
same value, namely, taken from the previous section, with now i ∈ {1, 2}

cv,i = ±
√
c2mψ

2f2s + (f2s − 1)2

ψfs
. (5.10)

These solutions imply that there are four different extreme values. Similar to the previous section, the
derivative is studied to determine which of these extreme values are maxima and which are minima.
The derivative for i ∈ {1, 2} is

∂Pave

∂cv,i
=

1

2

f2s
2

(f2s − 1)2 + (ciψfs)
2 − 2cmcv,iψ

2f2s − 2c2v,iψ
2f2s

((f2s − 1)2 + (ciψfs)2)2
. (5.11)

Note that Equation (5.11) is the same as Equation (4.6). Hence, via similar reasoning as at the end of
Chapter 4, it can be concluded that there will be a maximum when cv,i is positive and thus, cv,1 = cv,2.
Therefore, no actual switch is needed, and the situation is reduced to the first case discussed without
any switch in Chapter 4.

Similar to Chapter 4, we also have boundary values where the damping value could provide a
higher time-averaged power. Thus, we should also test the cases where cv,1 = −0.15 or cv,1 = 0.35
and cv,2 = −0.15 or cv,2 = 0.35.

So, we create a visualisation for these three damping values, cv = cv,opt,+, cv,1 = −0.15 and cv,2 =
0.35 or cv,1 = 0.35 and cv,2 = −0.15. We do not have to study the case where the damping value both
equal the same boundary damping value, as it has already been shown in Chapter 4 that cv = cv,opt,+
outperforms these damping values. The visualisation can be seen in Figure 5.1.
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Figure 5.1: Time-averaged power of damped harmonic oscillator with base excitation with a halfway switch in damping value,
where damping values cv,1 = 0.1± 0.25, cv,2 = 0.1∓ 0.25 and cv = cv,opt,+ are plotted.

In Figure 5.1 it can be seen that the damping value cv = cv,opt,+ performs better than the boundary
extrema. To verify the performance with respect to other damping values, Figure 5.2 is studied.

Figure 5.2: Time-averaged power of damped harmonic oscillator with base excitation with a halfway switch in damping value,
where damping values with a switch indicated in the legend of the graph and cv = cv,opt,+ are plotted.

We can see in Figure 5.2 that no other damping value combination yields more time-averaged power
than cv = cv,opt,+.

Therefore, it can be concluded that when using a halfway switch, the best strategy is to remove the
switch and stick to the damping value cv = cv,opt,+.
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5.2. Power analysis for a quarter switch
Another special case of a switch is the case of a quarter switch. With a quarter switch, the quarter of
the base excitation oscillation is meant for the switch in the damping value. So,

c(t) = cm + cv(t) (5.12)

where,

cv(t) =

{
cv = cv,1 t ∈ [0, π

2fs
),

cv = cv,2 t ∈ [ π2fs ,
2π
fs
),

(5.13)

and so, for i ∈ {1, 2}
ci = cm + cv,i. (5.14)

Now, generally we had, using the rescaled equation, the expression for the time-averaged power as

Pave =
1
2π
fs

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2

∫ T

0

1− cos(2fst+ 2φ̂)dt, (5.15)

however, as cv now depends on time, the above equation is now rewritten to

Pave =
1
2π
fs

∫ T

0

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2
(1− cos(2fst+ 2φ̂)) dt. (5.16)

Now, as cv(t) has a switch between variable damping value cv,1 and cv,2 on certain time Tm = π
fs
, which

lies between 0 and 2π
fs

as T = 2π
fs
, the integral can be split into two parts. So,

Pave =
1
2π
fs

(∫ π
2fs

0

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fst+ 2φ̂1)) dt

+

∫ 2π
fs

π
2fs

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
(1− cos(2fst+ 2φ̂2)) dt

)
,

(5.17)

which, when working out the integrals, is

Pave =
1
2π
fs

f2s
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2

(
π

2fs
− 1

2fs
(sin(π + 2φ̂1)− sin(2φ̂1))

)
+

cv,2
(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− π

2fs
− 1

2fs
(sin(4π + 2φ̂2)− sin(π + 2φ̂2))

))
,

(5.18)

and so, due to the periodicty of the sine function and the property of shifting the sine by half a period,

Pave =
1
2π
fs

f2s
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2

(
π

2fs
+

1

2fs
2 sin(2φ̂1)

)
+

cv,2
(f2s − 1)2 + (ψc2fs)2

(
3π

2fs
− 1

2fs
2 sin(2φ̂2)

))
,

(5.19)

simpliyfing

Pave =
1
2π
fs

fs
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2

(π
2
+ sin(2φ̂1)

)
+

cv,2
(f2s − 1)2 + (ψc2fs)2

(
3π

2
− sin(2φ̂2)

))
,

(5.20)
An optimal solution needs to be found on all variables cv,1, cv,2, fs and φ. The optimal solution for
variable φ is studied. Recall that φ̂i = φ+ δi, as discussed in Section 3.1.2. Differentiating with respect
to this variable and equalising to zero gives

∂Pave

∂φ
=

1
2π
fs

fs
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2
2 cos(2φ̂1)−

cv,2
(f2s − 1)2 + (ψc2fs)2

2 cos(2φ̂2)

)
= 0, (5.21)
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where the equality to zero is put to find extrema. Hence, it must hold that

cv,1
(f2s − 1)2 + (ψc1fs)2

2 cos(2φ̂1) =
cv,2

(f2s − 1)2 + (ψc2fs)2
2 cos(2φ̂2). (5.22)

Besides the trivial solution of cv,1 = cv,2, no other obvious solution can be spotted. Note that this
equation is nonsymmetric, nonlinear and transcendental. This equation and its solution are further
discussed later in Chapter 6. Instead of solving the equation, we focus on an arbitrary moment of
switch in the damping value instead.
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5.3. Power analysis for an arbitrary singular switch
Finally, we discuss a switch in damping at a certain time Tm. Note that due to previous two cases
discussed, it holds that

Tm ∈ (0,
2π

fs
) \ { π

fs
}. (5.23)

Note that the values 0 and 2π
fs

are excluded, as a switch on those moments implies a constant damping
for the entire oscillation cycle. Value π

fs
is excluded due to it already being analysed in the previous

section.
For the damping value this means that

cv(t) =

{
cv = cv,1 t ∈ [0, Tm),

cv = cv,2 t ∈ [Tm,
2π
fs
),

(5.24)

and still for i ∈ {1, 2}
ci = cm + cv,i. (5.25)

Now, again, we generally use the expression for the time-averaged power as

Pave =
1
2π
fs

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2

∫ T

0

1− cos(2fst+ 2φ̂)dt. (5.26)

However, experiencing a switch between the variable damping value cv,1 and cv,2 at a certain time Tm
which lies between 0 and 2π

fs
, gives

Pave =
1
2π
fs

(∫ Tm

0

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fst+ 2φ̂1)) dt

∫ 2π
fs

Tm

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
(1− cos(2fst+ 2φ̂2)) dt

)
,

(5.27)

working this out gives

Pave =
1
2π
fs

(
cv,1f

2
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2

1

(f2s − 1)2 + (ψc1fs)2

(
Tm − 1

2fs
(sin(2fsTm + 2φ̂1)− sin(2φ̂1))

)
+
cv,2f

2
s

2

1

(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− Tm − 1

2fs
(sin(2φ̂2)− sin(2fsTm + 2φ̂2))

))
.

(5.28)

Using the goniometric identity

sin(θ)± sin(φ) = 2 sin

(
θ ± φ

2

)
cos

(
θ ∓ φ

2

)
, (5.29)

Equation (5.28) is reduced to

Pave =
1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2

(
Tm − 1

fs
sin(fsTm) cos(fsTm + 2φ̂1)

)
+
cv,2f

2
s

2

1

(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− Tm +

1

fs
sin(fsTm) cos(fsTm + 2φ̂2)

))
.

(5.30)

5.3.1. Finding extrema
Before optimising over the existing values in the time-averaged power, we note that besides all optimal
values potentially coming out of the extrema, we have boundary values which could also be extrema.
Therefore, similarly to Section 5.2, we should also test the cases where cv,1 = −0.15 or cv,1 = 0.35 and
cv,2 = −0.15 or cv,2 = 0.35. The cases where cv,1 = cv,2 for these boundary values do not need to be
studied however, as then we would have no switch in damping value.

An optimal solution needs to be found for all variables cv,1, cv,2, fs, Tm and φ. First, the optimal
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solution for variable φ is studied. Differentiating with respect to this variable and equalising to zero
gives

∂Pave

∂φ
=

1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2
2

fs
sin(fsTm) sin(fsTm + 2φ̂1)

−cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
2

fs
sin(fsTm) sin(fsTm + 2φ̂2)

)
= 0,

(5.31)

where the equality is put to zero to find extrema. Simplifying,

∂Pave

∂φ
=

sin(fsTm)
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2
2

fs
sin(fsTm + 2φ̂1)

−cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
2

fs
sin(fsTm + 2φ̂2)

)
= 0,

(5.32)

implying the two solutions to be
sin(fsTm) = 0, (5.33)

or,

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
2

fs
sin(fsTm + 2φ̂1) =

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
2

fs
sin(fsTm + 2φ̂2).

(5.34)
Assuming that indeed sin(fsTm) = 0 gives

fsTm = kπ, (5.35)

where k is an integer. And so, also
Tm =

kπ

fs
. (5.36)

Due to the bounds stated in Equation (5.23), it is implied that k ∈ {0, 1, 2}, and so Tm = 0, Tm = π
fs

or
Tm = 2π

fs
. Therefore, this solution has already been discussed in the previous sections.

The other solution is now studied. So, it is assumed that Equation (5.34) holds. Simplifying this
equation gives

cv,1
(f2s − 1)2 + (ψc1fs)2

sin(fsTm + 2φ̂1) =
cv,2

(f2s − 1)2 + (ψc2fs)2
sin(fsTm + 2φ̂2). (5.37)

This equation does not have an obvious general solution. A trivial solution, cv,1 = cv,2, is quickly spotted,
but this solution implies no change in damping value, which is contradictory to the assumption that there
should be a switch in damping value. Hence, further work is required to find the general solution to
determine the optimal values for the damping.

To find a general solution, the time-averaged power equation is now optimised for the variable Tm.
So, we obtain

∂Pave

∂Tm
=

1
2π
fs

f2s
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fsTm + 2φ̂1)

+
cv.2

(f2s − 1)2 + (ψc1fs)2
(cos(2fsTm + 2φ̂2 − 1)

)
= 0,

(5.38)

and so,
cv,1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fsTm + 2φ̂1) =

cv,2
(f2s − 1)2 + (ψc2fs)2

(1− cos(2fsTm + 2φ̂2) . (5.39)

Using the goniometric identity
1− cos(2θ) = 2 sin2(θ), (5.40)
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we get
cv,1

(f2s − 1)2 + (ψc1fs)2
sin2(fsTm + φ̂1) =

cv,2
(f2s − 1)2 + (ψc2fs)2

sin2(fsTm + φ̂2). (5.41)

Now, Equation (5.37) and Equation (5.41) are studied. Both are similar, as both equations are oscil-
lations with the same amplitude but different trigonometric functions. In short, we have the following
system of equations{

cv,1
(f2
s−1)2+(ψc1fs)2

sin(fsTm + 2φ̂1) =
cv,2

(f2
s−1)2+(ψc2fs)2

sin(fsTm + 2φ̂2),
cv,1

(f2
s−1)2+(ψc1fs)2

sin2(fsTm + φ̂1) =
cv,2

(f2
s−1)2+(ψc2fs)2

sin2(fsTm + φ̂2).
(5.42)

We solve by studying two different cases. We either assume that sin(fsTm + 2φ̂1) = 0 or sin(fsTm +
2φ̂1) ̸= 0.

Case sin(fsTm + 2φ̂1) = 0
This assumption would imply that either cv,2

(f2
s−1)2+(ψc2fs)2

= 0 or sin(fsTm +2φ̂2) = 0. Both of these are
studied case by case, starting with the first.

Assuming that indeed cv,2
(f2
s−1)2+(ψc2fs)2

= 0. This implies that either cv,1
(f2
s−1)2+(ψc1fs)2

= 0 or sin2(fsTm+

φ̂1) = 0. The first case would imply that cv,1
(f2
s−1)2+(ψc1fs)2

=
cv,2

(f2
s−1)2+(ψc2fs)2

= 0, implying that cv,1 =

cv,2 = 0. The second case would imply that fsTm + 2φ̂1 = k1π and fsTm + φ̂1 = k2π with both k1, k2
being integers, so {

fsTm + 2φ̂1 = k1π,

fsTm + φ̂1 = k2π.
(5.43)

Substracting the second equation twice from the first equation gives

fsTm + 2φ̂1 − 2 (fsTm + φ̂1) = (k1 − 2k2)π, (5.44)

so
−fsTm = (k1 − 2k2)π, (5.45)

and so
fsTm = k̂π, (5.46)

where k̂ = 2k2 − k1, and so still an integer. Similar to the reasoning regarding the solution form
sin(fsTm) = 0, this gives an already known solution.

Now starting with other assumption, so assuming that sin(fsTm + 2φ̂2) = 0. Now we get both
equations that hold which are {

fsTm + 2φ̂2 = k3π,

fsTm + 2φ̂1 = k4π.
(5.47)

Using the above equations means that

cos(fsTm + 2φ̂i) = ±1, (5.48)

for i ∈ {1, 2} and so, using Equation (5.39),

Table 5.1: Outcome of using Equation (5.39).

Assumption on fsTm + 2φ̂1 Assumption on fsTm + 2φ̂2 Result
cos(fsTm + 2φ̂2) = −1 cv,1 = cv,2

cos(fsTm + 2φ̂1) = −1
cos(fsTm + 2φ̂2) = 1 cv,1 = 0

cos(fsTm + 2φ̂2) = −1 cv,2 = 0
cos(fsTm + 2φ̂1) = 1

cos(fsTm + 2φ̂2) = 1 Discussed later.
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Note that cv,1 = cv,2 implies that there is no damping switch. The result cv,2 = 0 implies that cv,2
(f2
s−1)2+(ψc2fs)2

=

0 and thus again, via the same steps in the beginning of this case, implies that cv,1 = cv,2.
The case where cv,1 = 0 is studied further. Looking at the time-averaged power, this case yields

Pave =
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cv,2f
2
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(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

)
. (5.49)

Now, the optimal value cv,2 is studied. Hence, we differentiate with respect to this variable and put the
result equal to zero to find the extrema.

∂Pave

∂cv,2
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1

2

(
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1
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sin(fsTm)

)
(f2s − 1)2 + (c2ψfs)

2 − 2cmcv,2ψ
2f2s − 2c2v,2ψ
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((f2s − 1)2 + (c2ψfs)2)2

= 0,

(5.50)
which implies that either (

2π

fs
− Tm +

1

fs
sin(fsTm)

)
= 0, (5.51)

which is only true when fsTm = 2π, so it must be the case that

(f2s − 1)2 + (c2ψfs)
2 − 2cmcv,2ψ

2f2s − 2c2v,2ψ
2f2s

((f2s − 1)2 + (c2ψfs)2)2
= 0. (5.52)

And so, the solution is given by

cv,2 = ±
√
c2mψ

2f2s + (f2s − 1)2

ψfs
, (5.53)

which is similar to the solution found in Chapter 4. Hence, an extremum has been found for cv,1 = 0

and cv,2 = ±
√
c2mψ

2f2
s+(f2

s−1)2

ψfs
.

Studying the inconclusive result further, gives, when looking at the time-averaged power
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1

fs
sin(fsTm)
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.

(5.54)

Now, optimising over the two damping values, giving the equations

∂Pave
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)
(f2s − 1)2 + (c1ψfs)

2 − 2cmcv,1ψ
2f2s − 2c2v,1ψ

2f2s
((f2s − 1)2 + (c1ψfs)2)2

= 0, (5.55)

and

∂Pave

∂cv,2
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f2s
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fs
− Tm +
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fs
sin(fsTm)

)
(f2s − 1)2 + (c2ψfs)

2 − 2cmcv,2ψ
2f2s − 2c2v,2ψ

2f2s
((f2s − 1)2 + (c2ψfs)2)2

= 0.

(5.56)
Simplifying gives the following system of equations

(
Tm − 1

fs
sin(fsTm)

)
(f2
s−1)2+(c1ψfs)

2−2cmcv,1ψ
2f2
s−2c2v,1ψ

2f2
s

((f2
s−1)2+(c1ψfs)2)2

= 0,(
2π
fs

− Tm + 1
fs

sin(fsTm)
)

(f2
s−1)2+(c2ψfs)

2−2cmcv,2ψ
2f2
s−2c2v,2ψ

2f2
s

((f2
s−1)2+(c2ψfs)2)2

= 0.
(5.57)

Note that
Tm − 1

fs
sin(fsTm) = 0, (5.58)

implies that fsTm = 0 which cannot be true and that

2π

fs
− Tm +

1

fs
sin(fsTm) = 0, (5.59)
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implies that fsTm = 2π which also cannot hold. Therefore it must be that

(f2s − 1)2 + (c1ψfs)
2 − 2cmcv,1ψ

2f2s − 2c2v,1ψ
2f2s

((f2s − 1)2 + (c1ψfs)2)2
= 0 =

(f2s − 1)2 + (c2ψfs)
2 − 2cmcv,2ψ

2f2s − 2c2v,2ψ
2f2s

((f2s − 1)2 + (c2ψfs)2)2
.

(5.60)
which gives solutions where either cv,1 = cv,2 or cv,1 = −cv,2. For the case when cv,1 = cv,2, there is
no switch in damping value and thus we refer back to Chapter 4. The case where cv,1 = −cv,2 gives
the following for the time-averaged power that,

Pave =
1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2

(
Tm − 1

fs
sin(fsTm)

)
−cv,1f

2
s

2

1

(f2s − 1)2 + (ψ (cm − cv,1) fs)2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

))
.

(5.61)

Taking the partial derivative with respect to the first variable damping, gives

∂Pave

∂cv,1
=

1
2π
fs

(
f2s
2

(
Tm − 1

fs
sin(fsTm)

)
(f2s − 1)2 + (ψfs)

2
(
c2m − c2v,1

)
((f2s − 1)2 + (ψc1fs)2)

2

−f
2
s

2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

)
(f2s − 1)2 + (ψfs)

2
(
c2m − c2v,1

)
((f2s − 1)2 + (ψ (cm − cv,1) fs)2)

2

)
,

(5.62)

which simplifies to

∂Pave

∂cv,1
=

1
2π
fs

f2s
2

(
(f2s − 1)2 + (ψfs)

2
(
c2m − c2v,1

))( Tm − 1
fs

sin(fsTm)

((f2s − 1)2 + (ψc1fs)2)
2 −

2π
fs

− Tm + 1
fs

sin(fsTm)

((f2s − 1)2 + (ψ (cm − cv,1) fs)2)
2

)
,

(5.63)
which will be equal to zero as the optimum value is sought. As fs > 0, Equation (5.63) simplifies to

∂Pave

∂cv,1
=
(
(f2s − 1)2 + (ψfs)

2
(
c2m − c2v,1

))( Tm − 1
fs

sin(fsTm)

((f2s − 1)2 + (ψc1fs)2)
2 −

2π
fs

− Tm + 1
fs

sin(fsTm)

((f2s − 1)2 + (ψ (cm − cv,1) fs)2)
2

)
= 0.

(5.64)
The case where

(f2s − 1)2 + (ψfs)
2
(
c2m − c2v,1

)
= 0, (5.65)

will imply that

cv,1 = ±
√
c2mψ

2f2s + (f2s − 1)2

ψfs
. (5.66)

When
Tm − 1

fs
sin(fsTm)

((f2s − 1)2 + (ψc1fs)2)
2 −

2π
fs

− Tm + 1
fs

sin(fsTm)

((f2s − 1)2 + (ψ (cm − cv,1) fs)2)
2 = 0, (5.67)

we define

A =
Tm − 1

fs
sin(fsTm)

2π
fs

− Tm + 1
fs

sin(fsTm)
, (5.68)

and note that
A > 0, (5.69)

as both the numerator and denominator are strictly positive. Then Equation (5.67) will simplify to

A
(
(f2s − 1)2 + (ψ (cm − cv,1) fs)

2
)2

=
(
(f2s − 1)2 + (ψc1fs)

2
)2
, (5.70)

taking the square root on both sides gives
√
A
(
(f2s − 1)2 + (ψ (cm − cv,1) fs)

2
)
= ±

(
(f2s − 1)2 + (ψc1fs)

2
)
. (5.71)

For the positive root and defining
Â =

√
A− 1, (5.72)
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gives, after simplifying,

c2v,1ψ
2f2s Â− 2cv,1cmψ

2f2s

(
Â+ 2

)
+ (f2s − 1)2Â+ ψ2f2s Âc

2
m = 0. (5.73)

This quadratic formula can be solved and will give solutions

cv,1 = cm +
2cm

Â
±

√
(2ψfscm)

2
(
Â+ 1

)
− Â2 (f2s − 1)

2

ψfsÂ
. (5.74)

For the negative root and defining
Ã =

√
A+ 1, (5.75)

gives, after simplifying,

c2v,1ψ
2f2s Â− 2cv,1cmψ

2f2s

(
Â+ 2

)
+ (f2s − 1)2Â+ ψ2f2s Âc

2
m = 0. (5.76)

This quadratic formula can be solved and will give solutions

cv,1 = cm − 2cm

Ã
±

√
(2ψfscm)

2
(
1− Ã

)
− Ã2 (f2s − 1)

2

ψfsÃ
. (5.77)

Hence, for the case where cv,1 = −cv,2, six extrema have been found.
Concluding for the case sin(fsTm + 2φ̂1) = 0, the following outcomes are obtained. The first pos-

sibility is that the solution has already been discussed in Chapter 4. The second is the case when
cv,1 = 0 with cv,2 = ±

√
c2mψ

2f2
s+(f2

s−1)2

ψfs
, and finally six cases for extrema when cv,1 = −cv,2.

Case sin(fsTm + 2φ̂1) ̸= 0
With this assumption, we can write

cv,1
(f2s − 1)2 + (ψc1fs)2

=

cv,2
(f2
s−1)2+(ψc2fs)2

sin(fsTm + 2φ̂2)

sin(fsTm + 2φ̂1)
, (5.78)

and therefore
cv,2

(f2
s−1)2+(ψc2fs)2

sin(fsTm + 2φ̂2)

sin(fsTm + 2φ̂1)
sin2(fsTm + φ̂1) =

cv,2
(f2s − 1)2 + (ψc2fs)2

sin2(fsTm + φ̂2). (5.79)

Thus either cv,2
(f2
s−1)2+(ψc2fs)2

= 0, which implies that cv,1 = cv,2, or

sin(fsTm + 2φ̂2)

sin(fsTm + 2φ̂1)
sin2(fsTm + φ̂1) = sin2(fsTm + φ̂2). (5.80)

Grouping the terms with the same damping value, gives

sin2(fsTm + φ̂1)

sin(fsTm + 2φ̂1)
=

sin2(fsTm + φ̂2)

sin(fsTm + 2φ̂2)
. (5.81)

We want to determine when this equality holds. For i ∈ {1, 2}, we rewrite the numerator to

sin(fsTm + φ̂i) = sin(fsTm + φ) cos(δi) + cos(fsTm + φ) sin(δi). (5.82)

Using the identities
sin(arctan(θ)) =

θ√
1 + θ2

, (5.83)

and,
cos(arctan(θ)) =

1√
1 + θ2

, (5.84)
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we obtain
sin(fsTm + φ̂i) =

sin(fsTm + φ) + xi cos(fsTm + φ)√
1 + x2i

, (5.85)

where
xi =

−ψcifs
1− f2s

. (5.86)

Rewriting the denominator for the same values of i gives

sin(fsTm + 2φ̂i) = sin(fsTm + 2φ) cos(2δi) + cos(fsTm + 2φ) sin(2δi). (5.87)

Using the identities
sin(2 arctan(θ)) =

2θ

1 + θ2
, (5.88)

and,

cos(2 arctan(θ)) =
1− θ2

1 + θ2
, (5.89)

we obtain
sin(fsTm + 2φ̂i) =

sin(fsTm + 2φ)(1− x2i ) + cos(fsTm + 2φ)2xi
1 + x2i

. (5.90)

Thus,

sin2(fsTm + φ̂i)

sin(fsTm + 2φ̂i)
=

(sin(fsTm + φ) + xi cos(fsTm + φ))
2

1 + x2i

1 + x2i
sin(fsTm + 2φ)(1− x2i ) + cos(fsTm + 2φ)2xi

,

(5.91)
which is rewritten to

sin2(fsTm + φ̂i)

sin(fsTm + 2φ̂i)
=

sin2(fsTm + φ) + 2xi sin(fsTm + φ) cos(fsTm + φ) + x2i cos
2(fsTm + φ)

sin(fsTm + 2φ)(1− x2i ) + 2xi cos(fsTm + 2φ)
. (5.92)

Using Equation (5.92) to rewrite Equation (5.81) to get

sin2(fsTm) + 2x1 sin(fsTm) cos(fsTm) + x21 cos
2(fsTm)

sin(fsTm)(1− x21) + 2x1 cos(fsTm)
=

sin2(fsTm) + 2x2 sin(fsTm) cos(fsTm) + x22 cos
2(fsTm)

sin(fsTm)(1− x22) + 2x2 cos(fsTm)
.

(5.93)
This equation is further simplified in Appendix D. It is shown that Equation (5.81) reduces to

(x1−x2) (sin(fsTm + 2φ)(x1 + x2) + 2 sin(fsTm + φ) sin(φ)− 2 cos(fsTm + φ)x1x2 cos(2fsTm + 3φ)) = 0.
(5.94)

Assuming that
cv,1 ̸= cv,2, (5.95)

as the case that they are equal has already been discussed, simplifies Equation (5.94) to

sin(fsTm + 2φ)(x1 + x2) + 2 sin(fsTm + φ) sin(φ)− 2 cos(fsTm + φ)x1x2 cos(2fsTm + 3φ) = 0. (5.96)

Expanding xi for i ∈ {1, 2}, gives

c2
ψfs

−f2s + 1

(
sin(fsTm + 2φ) + 2 cos(fsTm + φ) cos(2fsTm + 3φ)

ψfsc1
−f2s + 1

)
= c1 sin(fsTm+2φ)+2 sin(fsTm+φ) sin(φ),

(5.97)
and, therefore,

cv,2 = −cm +
(cm + cv,1) sin(fsTm + 2φ) + 2 sin(fsTm + φ) sin(φ)

ψfs
−f2

s+1

(
sin(fsTm + 2φ) + 2 cos(fsTm + φ) cos(2fsTm + 3φ)

ψfs(cm+cv,1
−f2

s+1

) . (5.98)

Hence, we have an expression for the second damping value, based on the first damping value.
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5.3.2. Classifying extrema
From the analysis, several extrema for variable damping values cv,1 and cv,2 were identified. These
extrema are noted in Table E.1 in Appendix E.

We note that the first extremum falls under the case where there is no switch. Hence, we refer to
Chapter 4, where the case of no switch is discussed.

To determine whether the remaining extrema are a maximum or a minimum, the second derivative
test is used. This is done on a per-group basis. For each group, variables fs, Tm and φ are fixed.
As we are dealing with a multivariate function, the determinant of the Hessian matrix is required. The
determinant is given by

Det(cv,1, cv,2) =
∂2Pave

∂c2v,1

∂Pave

∂c2v,2
− ∂

∂cv,2

(
∂Pave

∂cv,1

)
∂

∂cv,1

(
∂Pave

∂cv,2

)
, (5.99)

which will be used in later calculations.

Case fsTm + 2φ̂1 = π + k12π and fsTm + 2φ̂2 = k22π
We first look at the cases where the assumptions of fsTm+2φ̂1 = π+k12π and also fsTm+2φ̂2 = k22π
are made. The time-averaged power for these assumptions is equal to

Pave =
1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2

(
Tm +

1

fs
sin(fsTm)

)
+
cv,2f

2
s

2

1

(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

))
.

(5.100)

Now, the derivative with respect to cv,2 is taken two times. Note that the first derivative has already
been given in Equation (5.50) and is similar to the first derivative in the case of no switch, given in
Equation (4.7). It only differs by a term which doesn’t contain the damping value cv,2, thus the second
derivative will look similar. So,

∂P 2
ave

∂c2v,2
=

1
2π
fs

1

2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

)
((f2s − 1)2 + (c2ψfs)

2)2
(
−2cv,2cmψ

2f2s
)
−
(
(f2s − 1)2 + ψ2f2s (c

2
m − c2v,2)

) (∂((f2
s−1)2+(c2ψfs)

2)2

∂cv,2

)
((f2s − 1)2 + (c2ψfs)2)4

.

(5.101)

Similar to Chapter 4, ∂((f
2
s−1)2+(c2ψfs)

2)2

∂cv,2
drops out when filling in either value of cv,2 for this case.

Now, for cv,1. Note that the first-order partial derivative has been given in Equation (5.55). The
second-order partial derivative is given by

∂P 2
ave

∂c2v,1
=

1
2π
fs

1

2

(
Tm +

1

fs
sin(fsTm)

)
((f2s − 1)2 + (c1ψfs)

2)2
(
−2cv,1cmψ

2f2s
)
−
(
(f2s − 1)2 + ψ2f2s (c

2
m − c2v,1)

) (∂((f2
s−1)2+(c1ψfs)

2)2

∂cv,1

)
((f2s − 1)2 + (c1ψfs)2)4

,

(5.102)

where, when evaluating at the value cv,1 = 0, we get

∂P 2
ave

∂c2v,1
(0) =

1
2π
fs

1

2

(
Tm +

1

fs
sin(fsTm)

) −
(
(f2s − 1)2 + ψ2f2s c

2
m

) (∂((f2
s−1)2+(c1ψfs)

2)2

∂cv,1

)
((f2s − 1)2 + (cmψfs)2)4

. (5.103)

This simplifies to

∂P 2
ave

∂c2v,1
(0) =

1
2π
fs

1

2

(
Tm +

1

fs
sin(fsTm)

) −
(
∂((f2

s−1)2+(c1ψfs)
2)2

∂cv,1

)
((f2s − 1)2 + (cmψfs)2)3

, (5.104)
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and when working out the partial derivative

∂((f2s − 1)2 + (c1ψfs)
2)2

∂cv,1
= 4c1ψ

2f2s

((
f2s − 1

)2
+ (c1ψfs)

2
)
, (5.105)

we get

∂P 2
ave

∂c2v,1
(0) =

1
2π
fs

1

2

(
Tm +

1

fs
sin(fsTm)

) −
(
4cmψ

2f2s

((
f2s − 1

)2
+ (cmψfs)

2
))

((f2s − 1)2 + (cmψfs)2)3
, (5.106)

For the mixed partial derivative for cv,1 and cv,2, it is noted that in Equation (5.55) and Equation (5.50)
contain no damping value cv,2 and cv,1 respectively. Hence

∂

∂cv,2

(
∂Pave

∂cv,1

)
= 0, (5.107)

and
∂

∂cv,1

(
∂Pave

∂cv,2

)
= 0. (5.108)

Now, an analysis is made of the determinant given in Equation (5.99).
Note that

sgn

(
∂P 2

ave
∂c2v,2

)
= sgn

(
2π

fs
− Tm +

1

fs
sin(fsTm)

)
sgn

(
−2cv,2cmψ

2f2s
)
, (5.109)

where
sgn

(
2π

fs
− Tm +

1

fs
sin(fsTm)

)
> 0, (5.110)

as, with x = fsTm,
f(x) = 2π − x+ sin(x) > 0, (5.111)

for x ∈ (0, 2π), since f(0) = 2π and f(2π) = 0. Thus

sgn

(
∂P 2

ave
∂c2v,2

)
= sgn

(
−2cv,2cmψ

2f2s
)
, (5.112)

but, as also cm > 0,

sgn

(
∂P 2

ave
∂c2v,2

)
= −sgn(cv,2). (5.113)

Now, for
∂P 2

ave
∂c2v,1

(0) < 0. (5.114)

as all terms, except for the minus, in Equation (5.106) are positive.
To classify what type of extrema we have, the determinant is studied. Note that for this case, we

have that
Det(cv,1, cv,2) =

∂2Pave

∂c2v,1︸ ︷︷ ︸
<0

∂Pave

∂c2v,2︸ ︷︷ ︸
sgn=±1

− ∂

∂cv,2

(
∂Pave

∂cv,1

)
︸ ︷︷ ︸

=0

∂

∂cv,1

(
∂Pave

∂cv,2

)
︸ ︷︷ ︸

=0

, (5.115)

and thus, when sgn(cv,2) > 0 we have a saddle point and for sgn(cv,2) < 0 we have a minimum.
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Case fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π
Now, assuming that both fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π. Then,

Pave =
1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2

(
Tm − 1

fs
sin(fsTm)

)
+
cv,2f

2
s

2

1

(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

))
.

(5.116)

Note that the term which is multiplied with cv,2 is no different than from previous case which is studied.
Hence, again

∂P 2
ave

∂c2v,2
=

1
2π
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1

2

(
2π
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− Tm +

1

fs
sin(fsTm)

)
((f2s − 1)2 + (c2ψfs)

2)2
(
−2cv,2cmψ

2f2s
)
−
(
(f2s − 1)2 + ψ2f2s (c

2
m − c2v,2)

) (∂((f2
s−1)2+(c2ψfs)

2)2

∂cv,2

)
((f2s − 1)2 + (c2ψfs)2)4

.

(5.117)

Now, for cv,1. Note that the first order partial derivative has been given in Equation (5.55). The second-
order partial derivative is given by

∂P 2
ave

∂c2v,1
=

1
2π
fs

1

2

(
Tm − 1

fs
sin(fsTm)

)
((f2s − 1)2 + (c1ψfs)

2)2
(
−2cv,1cmψ

2f2s
)
−
(
(f2s − 1)2 + ψ2f2s (c

2
m − c2v,1)

) (∂((f2
s−1)2+(c1ψfs)

2)2

∂cv,1

)
((f2s − 1)2 + (c1ψfs)2)4

.

(5.118)

Note that for both second-order partial derivatives, it is the case that

c2m − c2v,i = 0, (5.119)

for i ∈ {1, 2}, as
cv,1 = −cv,2. (5.120)

Thus the derivatives simplify to

∂P 2
ave

∂c2v,1
=

1
2π
fs

1

2

(
Tm − 1

fs
sin(fsTm)

)
((f2s − 1)2 + (c1ψfs)

2)2
(
−2cv,1cmψ

2f2s
)

((f2s − 1)2 + (c1ψfs)2)4
, (5.121)

and

∂P 2
ave

∂c2v,2
=

1
2π
fs

1

2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

)
((f2s − 1)2 + (c2ψfs)

2)2
(
−2cv,2cmψ

2f2s
)

((f2s − 1)2 + (c2ψfs)2)4
. (5.122)

Note that, like before,

sgn

(
∂P 2

ave
∂c2v,i

)
= −sgn (cv,i) , (5.123)

for i ∈ {1, 2}.
For the mixed partial derivative for cv,1 and cv,2, it is again noted that in Equation (5.55) and Equation

(5.50) contain no damping value cv,2 and cv,1 respectively. Hence

∂

∂cv,2

(
∂Pave

∂cv,1

)
= 0, (5.124)

and
∂

∂cv,1

(
∂Pave

∂cv,2

)
= 0. (5.125)
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To classify what type of extrema we have, the determinant is studied. Note that for this case, we have
that

Det(cv,1, cv,2) =
∂2Pave

∂c2v,1︸ ︷︷ ︸
sgn=±1

∂Pave

∂c2v,2︸ ︷︷ ︸
sgn=±1

− ∂

∂cv,2

(
∂Pave

∂cv,1

)
︸ ︷︷ ︸

=0

∂

∂cv,1

(
∂Pave

∂cv,2

)
︸ ︷︷ ︸

=0

, (5.126)

and the signs are given in Table 5.2.

Table 5.2: Outcome of extrema for damping values cv,1 and cv,2.

Value of cv,1 sgn (cv,1) Value of cv,2 sgn (cv,2)√
c2mψ

2f2
s+(f2

s−1)2

ψfs
+1 −

√
c2mψ

2f2
s+(f2

s−1)2

ψfs
−1

−
√
c2mψ

2f2
s+(f2

s−1)2

ψfs
−1

√
c2mψ

2f2
s+(f2

s−1)2

ψfs
+1

cm + 2cm
Â

+

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ
± −cm − 2cm

Â
−

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ
∓

cm + 2cm
Â

−
√

(2ψfscm)2(Â+1)−Â2(f2
s−1)2

ψfsÂ
± −cm − 2cm

Â
+

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ
∓

cm − 2cm
Ã

+

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ
± −cm + 2cm

Ã
−

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ
∓

cm − 2cm
Ã

−
√

(2ψfscm)2(1−Ã)−Ã2(f2
s−1)2

ψfsÃ
± −cm + 2cm

Ã
+

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ
∓

The signs of the first two cases are trivial and thus denoted in the table. The signs of the other cases
are more difficult to determine, due to the extensive number of terms in the fraction and due to the sign
switch of Â and Ã. This difficulty is indicated in the figures below.

Figure 5.3: Graph of the function 1
Â

for x ∈ [1, π − 1
10

]

and for x ∈ [π + 1
10

, 2pi].
Figure 5.4: Graph of the function 1 + 2

Â
for for

x ∈ [1, π − 1
10

] and for x ∈ [π + 1
10

, 2pi].

Figure 5.5: Graph of the function 1
Ã

for x ∈ [0, 2π) with
a grey dotted line indicating where x = π.

Figure 5.6: Graph of the function 1
Ã

for x ∈ [0, 2π) with
a grey dotted line indicating where x = π.

Note that the interval isn’t chosen for x-value π as then we reach the asymptote for 1
Â
. The grey dotted

line in Figure 5.5 and Figure 5.6 indicates the point where the graph crosses the x-axis.
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The exact sign of cv,1 and cv,2 doesn’t need to be determined, however. Due to the shown result
that

sgn

(
∂P 2

ave
∂c2v,i

)
= −sgn (cv,i) , (5.127)

and the given fact for these six cases from Table 5.2, that

sgn (cv,1) = −sgn (cv,2) , (5.128)

and the result that
cv,i ̸= 0, (5.129)

as then cv,1 = cv,2, and we would have no switch and thus we can refer back to Chapter 4, we can
conclude that

sgn

(
∂P 2

ave
∂c2v,1

)
= −sgn

(
∂P 2

ave
∂c2v,2

)
, (5.130)

and therefore all extrema from Table 5.2 are saddle points.

Case fsTm + 2φ̂1 ̸= k1π
For this case, the damping variable of cv,1 has been left free. This means that the sign of the determi-
nant can not be determined and therefore no classification can be given to this extremum. Hence, a
visualisation will show us the behaviour of this extremum.

5.3.3. Visualising extrema
For the different extrema, a visualisation is created to show which damping values yield the most time-
averaged power. These visualations are given in Appendix F. Note that there are no visualisations
given of the case where the damping value contains the value Ã, as those values do not exist for the
bounds picked of the parameters.

Due to the moment of switch in damping value being at an arbitrary moment, this variable is crucial
for the correct visualisation of the power analysis. Per case, a different method is used to determine
this moment of switch.

Damping value equal to optimal damping value
When one of the damping values is equal to the optimal damping value, we have the assumption that
sin (fsTm + 2φ̂1) = 0. This implies that fsTm = k1π − 2φ − 2δ1. As fsTm ∈ (0, 2π) \ {π}, the moment
of switch should be calculated modulo 2π. The necessity of this module calculation is highlighted in
Figure 5.7.
The modulo calculation is visualised in Figure 5.8. It can be seen that there is a moment where the
constant k1 switches in value.

Damping values are negative reciprocal and dependent on moment of switch
When the damping value is dependent on the moment of switch, but also a negative reciprocal, the
time-averaged power is equal to

Pave =
1
2π
fs

(
cv,1f

2
s

2

1

(f2s − 1)2 + (ψc1fs)2

(
Tm − 1

fs
sin(fsTm)

)
+
cv,2f

2
s

2

1

(f2s − 1)2 + (ψc2fs)2

(
2π

fs
− Tm +

1

fs
sin(fsTm)

))
,

(5.131)

meaning that the two variables are the frequency and the moment of switch. Hence, for these damping
values, the extrema can be visualised by a 3D graph of frequency versus moment of switch versus the
time-averaged power. Thus, no module calculation needs to be made.
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Figure 5.7: Moment of switch between damping values
for different frequency and phase values where the blue
graph indicates k1 = 2, the green line has k1 = 1 and

the red line is k1 = 0 for cv,1 = 0.

Figure 5.8: Moment of switch between damping values
for different frequency and phase values where the blue
graph indicates the bound of 0 and 2π and the red is the

moment of switch for cv,1 = 0.

Boundary extrema
On the boundary values of the damping, we have the frequency, phase and moment of switch as un-
known variables. As these cannot be determined from the model, these all need to be plotted. There-
fore, a numerical implementation is created which plots the maximum value of the time-averaged power
per different phase value in the 3D graph. This code can be seen in Appendix G.

Free first damping value
For the case where cv,1 is assumed to be a free variable, the time-averaged power is dependent on four
variables. Thus, a visualisation is created based on a similar way of work for the boundary extrema,
but then the maximum value is taken per phase and first damping value. This code can be seen in
Appendix H.

5.4. Conclusion on power analysis singular switch
Previous sections found and classified all extrema of the damped harmonic oscillator subject to base
excitation with an arbitrary switch in damping value. An overview of these extrema and their type is
given in Table 5.3.

From the visualisations in Appendix F, it can be concluded that the best solution is that where
the damping value does not change. So, the optimal power yielding is when we have the situation
discussed in Chapter 4 and optimal damping value

cv,1 = cv,2 = cv,opt,+. (5.132)
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Table 5.3: Types of extrema for damping values cv,1 and cv,2.

Value of cv,1 Value of cv,2 Type
cv,opt cv,opt Maximum

0
√
c2mψ

2f2
s+(f2

s−1)2

ψfs
Saddle point

0 −
√
c2mψ

2f2
s+(f2

s−1)2

ψfs
Minium√

c2mψ
2f2
s+(f2

s−1)2

ψfs
−
√
c2mψ

2f2
s+(f2

s−1)2

ψfs
Saddle point

−
√
c2mψ

2f2
s+(f2

s−1)2

ψfs

√
c2mψ

2f2
s+(f2

s−1)2

ψfs
Saddle point

cm + 2cm
Â

+

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ
−cm − 2cm

Â
−

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ
Saddle point

cm + 2cm
Â

−
√

(2ψfscm)2(Â+1)−Â2(f2
s−1)2

ψfsÂ
−cm − 2cm

Â
+

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ
Saddle point

cm − 2cm
Ã

+

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ
−cm + 2cm

Ã
−

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ
Saddle point

cm − 2cm
Ã

−
√

(2ψfscm)2(1−Ã)−Ã2(f2
s−1)2

ψfsÃ
−cm + 2cm

Ã
+

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ
Saddle point

cv,1 −cm +
(cm+cv,1) sin(fsTm+2φ)+2 sin(fsTm+φ) sin(φ)

ψfs
−f2s+1

(
sin(fsTm+2φ)+2 cos(fsTm+φ) cos(2fsTm+3φ)

ψfs(cm+cv,1)

−f2s+1

) -

−0.15 0.35 Boundary Extrema
0.35 −0.15 Boundary Extrema



6
Energy Analysis Multiple Switch

6.1. Power analysis according to paper
For the case where there is more than one switch, first, the case is studied similarly to Nikzamir et al.
[8]. In this paper, switches are defined as

T0 = 0, T1 =
π

2fs
, T2 =

π

fs
, T3 =

3π

2fs
, T4 =

2π

fs
. (6.1)

However, the switches aren’t used to implement four different damping values, but rather to switch
between two values. Hence

cv(t) =

{
cv = cv,1 t ∈ [T0, T1) ∪ [T2, T3),

cv = cv,2 t ∈ [T1, T2) ∪ [T3, T4),
(6.2)

and still for i ∈ {1, 2}
ci = cm + cv,i. (6.3)

An attentive reader might note this expression for damping values to be an approximation of the cosine
function with a frequency of twice the base excitation frequency.

Now, again, we generally use the expression for the time-averaged power as

Pave =
1
2π
fs

cvf
2
s

2

1

(f2s − 1)2 + (ψcfs)2

∫ T

0

1− cos(2fst+ 2φ̂)dt. (6.4)

However, experiencing a switch between variable damping value cv,1 and cv,2 on certain time Tm which
lies between 0 and 2π

fs
, gives

Pave =
1
2π
fs

(∫ T1

T0

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fst+ 2φ̂1)) dt∫ T2

T1

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
(1− cos(2fst+ 2φ̂2)) dt∫ T3

T2

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fst+ 2φ̂1)) dt∫ T4

T3

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
(1− cos(2fst+ 2φ̂2)) dt

)
,

(6.5)
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working this out gives

Pave =
1
2π
fs

(∫ π
2fs

0

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fst+ 2φ̂1)) dt∫ π

fs

π
2fs

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
(1− cos(2fst+ 2φ̂2)) dt∫ 3π

2fs

π
fs

cv,1f
2
s

2

1

(f2s − 1)2 + (ψc1fs)2
(1− cos(2fst+ 2φ̂1)) dt

∫ 2π
fs

3π
2fs

cv,2f
2
s

2

1

(f2s − 1)2 + (ψc2fs)2
(1− cos(2fst+ 2φ̂2)) dt

)
,

(6.6)

and so

Pave =
1
2π
fs

f2s
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2

(
π

fs
− 1

2fs
(2 sin(π + 2φ̂1)− 2 sin(2φ̂1))

)
cv,2

(f2s − 1)2 + (ψc2fs)2

(
π

fs
− 1

2fs
(2 sin(2φ̂2)− 2 sin(π + 2φ̂2))

))
.

(6.7)

Using the goniometric identity with the π shift gives

Pave =
1
2π
fs

f2s
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2

(
π

fs
+

1

2fs
4 sin(2φ̂1)

)
+

cv,2
(f2s − 1)2 + (ψc2fs)2

(
π

fs
− 1

2fs
4 sin(2φ̂2)

))
,

(6.8)
and so, simplified,

Pave =
1
2π
fs

fs
2

(
cv,1

(f2s − 1)2 + (ψc1fs)2
(π + 2 sin(2φ̂1)) +

cv,2
(f2s − 1)2 + (ψc2fs)2

(π − 2 sin(2φ̂2))

)
. (6.9)

An optimal solution needs to be found on all variables cv,1, cv,2, fs and φ. For reasons that become
clear later, first an optimal solution for variable φ is studied. Differentiating with respect to this variable
and equalising to zero gives

∂Pave

∂φ
=

1
2π
fs

f2
2

(
cv,1

(f2s − 1)2 + (c1ψfs)2
4 cos(2φ̂1)−

cv,2
(f2s − 1)2 + (c2ψfs)2

4 cos(2φ̂2)

)
= 0. (6.10)

Thus, it must hold that
cv,1

(f2s − 1)2 + (c1ψfs)2
4 cos(2φ̂1) =

cv,2
(f2s − 1)2 + (c2ψfs)2

4 cos(2φ̂2), (6.11)

and so, simplifying further,
cv,1

(f2s − 1)2 + (c1ψfs)2
cos(2φ̂1) =

cv,2
(f2s − 1)2 + (c2ψfs)2

cos(2φ̂2). (6.12)

Note that this equation is the same nonsymmetric, nonlinear, transcendental equation as discussed in
Section 5.2. Hence, the same trivial solution of cv,1 = cv,2 holds.

Note that Nikzamir et al. [8] study the solution cv,2 = −cv,1. However, this solution is not a general
solution to Equation (6.12), as

c21 = c2m + 2cmcv,1 + c2v,1, (6.13)

and
c22 = c2m + 2cmcv,2 + c2v,2 = c2m − 2cmcv,1 + c2v,1, (6.14)

which implies that cv,1 = 0 must hold, thus implying that indeed cv,1 = cv,2. Therefore, the optimal
solution that Nikzamir et al. [8] propose is suboptimal.

To determine the optimal solution to this problem, we study the general case of multiple switches.
This is done in the next section.
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6.2. General multiple switches
Now, we discuss the general case of multiple switches in the damping value at general times. This
coincides with the pseudocontinuous damping as discussed earlier. The general approach means that

cv(t) =
{
cv = cv,i t ∈ [Ti−1, Ti), (6.15)

for i ∈ {1, ..., n} with T0 = 0 and Tn = 2π
fs
. For the same values of i, it again holds that

ci = cm + cv,i. (6.16)

Discussing this general form for the damping values will give the possibility to fully implement the
pseudocontinuous damping in the model.

The general expression for time-averaged power is used. Substituting the different integrals that
appear due to the different switches in damping, it gives

Pave =
1
2π
fs

n∑
i=1

cv,i
(f2s − 1)2 + (ciψfs)2

∫ Ti

Ti−1

1− cos(2fst+ 2φ̂)dt. (6.17)

Evaluating the integrals in this expression for the time-averaged power will give the following

Pave =
1
2π
fs

f2s
2

n∑
i=1

cv,i
(f2s − 1)2 + (ciψfs)2

(
Ti − Ti−1 −

1

2fs
(sin(2fsTi + 2φ̂i)− sin(2fsTi−1 + 2φ̂i))

)
,

(6.18)
so, optimising over φ gives

∂Pave

∂φ
=

1
2π
fs

f2s
2

n∑
i=1

−cv,i
(f2s − 1)2 + (ciψfs)2

1

2fs
(2 cos(2fsTi + 2φ̂i)− 2 cos(2fsTi−1 + 2φ̂i)) = 0, (6.19)

and

∂Pave

∂φ
=

1
2π
fs

fs
2

n∑
i=1

cv,i
(f2s − 1)2 + (ciψfs)2

(cos(2fsTi−1 + 2φ̂i)− cos(2fsTi + 2φ̂i)) = 0. (6.20)

Hence,
n∑
i=1

cv,i
(f2s − 1)2 + (ciψfs)2

(cos(2fsTi−1 + 2φ̂i)− cos(2fsTi + 2φ̂i)) = 0, (6.21)

where it should be noted that for n = 2 this equation reduces to the solved equation of Section 5.2 and
previous Section 6.1.

We are curious to see if the trivial solution, so
∑n
i=1 cv,i = ncv,i with i ∈ {1, ..., n}, would still solve

Equation (6.21). Indeed, this holds, as for the same damping value for the entire duration of a period
of the base excitation, the equation will reduce to

cv,i
(f2s − 1)2 + (ciψfs)2

(cos(2π + 2φ̂i)− cos(2φ̂i)) = 0. (6.22)

The sum disappears due to the fact that there are no switches between damping values as all damping
values are equal. Moreover, the equality holds due to the periodicity of the cosine function.

Equation (6.21) appears to also be subject to the telescopic sum construction. However, due to the
different damping values, these terms will not equal each other. Hence, the telescopic sum construction
can only be used if

cv,j
(f2s − 1)2 + (cjψfs)2

cos(2fsTi−1 + 2φ̂j) =
cv,i

(f2s − 1)2 + (ciψfs)2
cos(2fsTi + 2φ̂i) = 0. (6.23)

Another question that arises is whether there are any other specific cases for which a solution to the
above equation can be found. This thesis will not study this equation further analytically, but rather
poses a numerical simulation.
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The code for this numerical simulation can be found in Appendix I. It can be seen that the code
optimises the time-averaged power for an input number of switches and the moment of switches. For
each iteration of determining the time-averaged power, the formula recalculates for which damping
values the most time-averaged power was yielded. In Figure 6.1, the time-averaged power is given for
two switches and Figure 6.2 for three switches in the damping value.

Figure 6.1: Time-averaged power for two switches at
T1 = 2π

3fs
and T2 = 4π

3fs
compared to the time-averaged

power for cv = cv,opt,+.

Figure 6.2: Time-averaged power for three switches at
T1 = π

2fs
, T2 = π

fs
and T3 = 3π

2fs
compared to the

time-averaged power for cv = cv,opt,+.

These simulations are also done for four switches and five switches, which can be seen in Figure 6.3
and Figure 6.4 respectively.

Figure 6.3: Time-averaged power for four switches at
T1 = 2π

5fs
, T2 = 4π

5fs
, T3 = 6π

5fs
and T4 = 8π

5fs
compared

to the time-averaged power for cv = cv,opt,+.

Figure 6.4: Time-averaged power for five switches at
T1 = 2π

6fs
, T2 = 4π

6fs
, T3 = 6π

5fs
, T4 = 8π

6fs
and T5 = 10π

6fs
compared to the time-averaged power for cv = cv,opt,+.

It can be seen that, again, damping value cv = cv,opt,+ yields the most time-averaged power.



7
Conclusion

In this chapter, a summary and several recommendations are given. In Section 7.1, the summary is
discussed, and in Section 7.2, the recommendations are discussed.

7.1. Summary
This thesis aimed to get a clear indication of the power that can be harvested from a damped harmonic
oscillator with a variable damping and to optimise the yielded power.

The analysis of the power harvesting showed that the time-averaged power is the physically appro-
priate choice, due to the periodic nature of the base excitation acting on the damped harmonic oscillator.
The time-averaged power was studied with the variable damping value and the velocity of the steady
state part of the damped harmonic oscillator model. This completes the first objective of this thesis.

Next, several cases of variable damping values and their effects on the yielded time-averaged power
were studied. It has been analytically shown that for no switch in damping value the strategy that yields
as much time-averaged power as possible is to use cv = cv,opt,+. For the case of a singular switch in
damping value, it has been shown that the strategy to yield the most time-averaged power is to remove
the switch and stick to damping value cv = cv,opt,+ . For the case of multiple switches, previous work
of Nikzamir et al. [8], Scapolan, Tehrani, and Bonisoli [12] and Di Monaco et al. [3] has been expanded
to a solution which yields more power and is easier to implement, completing the second objective of
this thesis. It has been numerically shown that for multiple switches the solution where cv = cv,opt,+
remains the best option to yield the most time-averaged power.

7.2. Recommendations
This section discusses the recommendations for future research regarding this thesis. These are given
in separate subsections.

7.2.1. Improved analytical analysis of single switch
In the analysis of the single switch of the damped harmonic oscillator, the case where fsTm+2φ̂1 ̸= k1π
did not yield any value for cv,1. This value could still be sought after if the value of cv,2 is substituted into
the expression of Pave and then optimised for cv,1. Due to the time constraint of this thesis, unfortunately,
this was not done. Future research could explore this path to fully conclude the analytical work of this
thesis, allowing the extremum to be classified.

7.2.2. Research influence of scaled variables and parasitic damping
Currently, the value ψ is left outside of the scope of this research. The influence of this value could
impact the amount of power that is harvested from the oscillations. Determining the ideal value of the
variable ψ will provide an optimal ratio between the mass and spring coefficient of the oscillator and is
therefore useful for the application of this thesis. This variable can be researched by treating it as the
other variables, such as the frequency or phase of the base excitation, in this thesis. Hence, effectively
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creating the function for the time averaged power to be

Pave(fs, cv,i, cm, ψ, φ, Ti). (7.1)

The amplitude of the base excitation also influences the time-averaged power, via the displacement.
Future research should rescale this variable back and then study influence the amplitude of the base
excitation.

The parasitic damping, cm, is a variable that influences the time-averaged power yield, but as it
doesn’t yield any power in itself, it should be aimed for to be as close to zero. Thus, it is not a variable
that should optimised for in itself.

7.2.3. Including transient solution in oscillator model
In this thesis, only the steady state solution of the damped harmonic oscillator was studied, as the influ-
ence of the transient response was considered minimal. However, for a more accurate representation
of the oscillator’s behaviour, the transient solution should also be included in the power analysis. Incor-
porating this component may offer new insights into the optimal damping value during the initial phase
of power transfer from base excitation. The conclusions drawn in this thesis could then be applied after
the transient solution is not significant anymore.

7.2.4. Improved research behind multiple switches
An analytical examination was only done in the specific case of a single switch to demonstrate improved
solutions over those currently proposed in the field. Thereafter, a numerical approach was used to study
the case of multiple switches. In this numerical approach, the moment of switch is considered input in
the simulation. A better numerical simulation would also leave this variable up to the numerical imple-
mentation to be optimally chosen.

Next, future work could improve the research behind multiple switches by exploring how the nu-
merical conclusions given can be shown analytically. This can be done by expanding the number of
variables which are studied in the optimisation process. Note that this also makes the classification of
the extrema more difficult as the number of variables increases.

7.2.5. Multidimensional oscillator model
Further research could expand on the current model by allowing two of the three-dimensional move-
ments. Currently, only up and down movement is considered, while in practice also side-to-side or
back-and-forth movement will also occur. A diagram of the oscillator is given in Figure 7.1

Figure 7.1: Diagram of a three-dimensional damped harmonic oscillator.

The equations will transform into a three-dimensional form for the damped harmonic oscillator.
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A
Code for Pseudocontinuous Damping

1 import numpy as np
2

3 def adaptive_fixed_intervals(f, a, b, size, num_intervals):
4 """
5 Divide the function into a fixed number of adaptive intervals based on variability.
6

7 Parameters:
8 f: function to be approximated
9 a: begin of interval where f is approximated

10 b: end of interval where f is approximated
11 size: the sample size of f
12 num_intervals: number of intervals
13

14 Returns:
15 stepwise_x: array of x values of interval begin- and endpoints
16 stepwise_f: arrays of f values belonging to x values of stepwise_x
17 """
18

19 # Creating the interval
20 x = np.linspace(a, b, size)
21

22 # Calculate variability (absolute difference between successive y values)
23 variability = np.abs(np.diff(f))
24

25 # Normalize variability to calculate relative weights
26 weights = variability / np.sum(variability)
27

28 # Determine cumulative weights to split into intervals
29 cumulative_weights = np.cumsum(weights)
30 interval_bounds = np.linspace(0, 1, num_intervals + 1) # Divide cumulative weights into

intervals
31

32 stepwise_x = []
33 stepwise_f = []
34

35 start_idx = 0
36

37 if num_intervals == 1:
38 avg_y = np.mean(f)
39 return np.array([x[0], x[-1]]), np.array([avg_y, avg_y])
40 else:
41 for i in range(num_intervals):
42 # Find the end index based on cumulative weights
43 end_idx = np.searchsorted(cumulative_weights, interval_bounds[i + 1],side='right'

)
44

45 # Ensure the end index stays within bounds
46 end_idx = min(end_idx, len(x) - 1)
47

48 # Get the x and y values in this interval

54
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49 x_interval = x[start_idx:end_idx + 1]
50 f_interval = f[start_idx:end_idx + 1]
51

52 if len(x_interval) > 0:
53 if i == num_intervals -1:
54 avg_f = np.mean(f_interval) # Average y value in the interval
55 stepwise_x.extend([stepwise_x[-1], b])
56 stepwise_f.extend([avg_f, avg_f])
57 else:
58 if start_idx > 1:
59 avg_f = np.mean(f_interval) # Average y value in the interval
60 stepwise_x.extend([stepwise_x[-1], x_interval[-1]])
61 stepwise_f.extend([avg_f, avg_f])
62 else:
63 avg_f = np.mean(f_interval) # Average y value in the interval
64 stepwise_x.extend([x_interval[0], x_interval[-1]])
65 stepwise_f.extend([avg_f, avg_f])
66

67

68 start_idx = end_idx + 1 # Move to the next interval
69

70 return np.array(stepwise_x), np.array(stepwise_f)



B
Table with parameter values for the damped harmonic

oscillator

Table B.1: Parameter values for different applications of the damped harmonic oscillator.

System Type Mass m (kg) Spring Constant k (N/m) Damping Coefficient c (kg/s)
Micro-mechanical systems (MEMS) [14] 1.44 · 10−9 6057 8.8
Precision lab setups (e.g. exploring viscous damping) [7] 0.12 1.39 0.25
Vehicle suspension [1] 35 160000 980
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C
Harmonic Addition Theorem

The harmonic addition theorem states that

f(θ) = a cos(θ) + b sin(θ), (C.1)

can be rewritten to a form like
g(θ) = c cos(θ + δ). (C.2)

This can be shown by first rewriting function g(θ) using the angle addition identity for the cosine function,
giving

g(θ) = c cos(θ) cos(δ)− c sin(θ) sin(δ), (C.3)

which means that, if f(θ) = g(θ), it should be true that

a = c cos(δ) and b = −c sin(δ). (C.4)

Therefore, using the identity that
cos2(ϕ) + sin2(ϕ) = 1, (C.5)

we get that
a2 + b2 = c2 cos2(δ) + c2 sin2(δ), (C.6)

which implies that
c = ±

√
a2 + b2. (C.7)

Also, assuming that a ̸= 0, it should hold that

b

a
=

−c sin(δ)
c cos(δ)

(C.8)

and therefore
− b

a
= tan(δ), (C.9)

and thus
δ = arctan(− b

a
). (C.10)

Now, note that δ ∈ (−π
2 ,

π
2 ), and therefore cos(δ) > 0. This implies, due to the fact that it should hold

that a = c cos(δ), that it should also hold that

sgn(a) = sgn(c). (C.11)

Hence, concluding that indeed
f(θ) = a cos(θ) + b sin(θ) (C.12)

equals
g(θ) = c cos(θ + δ) (C.13)
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when
c = sgn(a)

√
a2 + b2 (C.14)

and, assuming that a ̸= 0,
δ = arctan(− b

a
). (C.15)



D
Simplifying Equation (5.93)

The aim is to simplify

sin2(fsTm) + 2x1 sin(fsTm) cos(fsTm) + x21 cos
2(fsTm)

sin(fsTm)(1− x21) + 2x1 cos(fsTm)
=

sin2(fsTm) + 2x2 sin(fsTm) cos(fsTm) + x22 cos
2(fsTm)

sin(fsTm)(1− x22) + 2x2 cos(fsTm)
.

(D.1)
For simplicity, we write

s1 = sin(fsTm + φ), s2 = sin(fsTm + 2φ) (D.2)

and
c1 = cos(fsTm + φ), c2 = cos(fsTm + 2φ) (D.3)

which gives(
s21 + 2s1c1x1 + x21c

2
1

) (
s2(1− x22) + 2x2c2

)
=
(
s21 + 2s1c1x2 + x22c

2
1

) (
s2(1− x21) + 2x1c2

)
, (D.4)

and so

s21s2(1−x22−1+x21)+2s21c2(x2−x1)+2s1c1s2(x1−x22x1−x2+x2x21)+c21s2(x21−x21x22−x22+x22x21)+2c21c2(x2x
2
1−x1x22) = 0.

(D.5)
Rewriting

(x21−x22)(s21s2−c21s2)+(x2−x1)(2s21c2)+2s1c1s2(x1−x2)+2s1c1s2(x2x
2
1−x22x1)+2c1c2(x2x

2
1−x1x22 = 0,

(D.6)
and thus

(x1 − x2)
(
(x1 + x2)(s2(s

2
1 + c21)) + 2s1(c1s2 − s1c2) + 2x1x2c1(s1s2 − c1c2)

)
= 0. (D.7)

Using goniometric identities
sin2(θ) + cos2(θ) = 1, (D.8)

and
sin(θ − ϕ) = sin(θ) cos(ϕ)− cos(θ) sin(ϕ), (D.9)

and finally,
cos(θ + ϕ) = cos(θ) cos(ϕ)− sin(θ) sin(ϕ), (D.10)

we get that
(x1 − x2) (s2(x1 + x2) + 2s1 sin(φ)− 2c1x1x2 cos(2fsTm + 3φ)) = 0. (D.11)
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E
Table with extrema values for arbitrary singular switch
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Table E.1: Outcome of extrema for damping values cv,1 and cv,2.

Assumptions Value of cv,1 Value of cv,2
fsTm + 2φ̂1 = π + k12π and fsTm + 2φ̂2 = π + k22π cv,opt cv,opt

fsTm + 2φ̂1 = π + k12π and fsTm + 2φ̂2 = k22π 0

√
c2mψ

2f2
s+(f2

s−1)2

ψfs

fsTm + 2φ̂1 = π + k12π and fsTm + 2φ̂2 = k22π 0 −
√
c2mψ

2f2
s+(f2

s−1)2

ψfs

fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π

√
c2mψ

2f2
s+(f2

s−1)2

ψfs
−
√
c2mψ

2f2
s+(f2

s−1)2

ψfs

fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π −
√
c2mψ

2f2
s+(f2

s−1)2

ψfs

√
c2mψ

2f2
s+(f2

s−1)2

ψfs

fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π cm + 2cm
Â

+

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ
−cm − 2cm

Â
−

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ

fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π cm + 2cm
Â

−
√

(2ψfscm)2(Â+1)−Â2(f2
s−1)2

ψfsÂ
−cm − 2cm

Â
+

√
(2ψfscm)2(Â+1)−Â2(f2

s−1)2

ψfsÂ

fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π cm − 2cm
Ã

+

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ
−cm + 2cm

Ã
−

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ

fsTm + 2φ̂1 = k12π and fsTm + 2φ̂2 = k22π cm − 2cm
Ã

−
√

(2ψfscm)2(1−Ã)−Ã2(f2
s−1)2

ψfsÃ
−cm + 2cm

Ã
+

√
(2ψfscm)2(1−Ã)−Ã2(f2

s−1)2

ψfsÃ

fsTm + 2φ̂1 ̸= k1π cv,1 −cm +
(cm+cv,1) sin(fsTm+2φ)+2 sin(fsTm+φ) sin(φ)

ψfs
−f2s+1

(
sin(fsTm+2φ)+2 cos(fsTm+φ) cos(2fsTm+3φ)

ψfs(cm+cv,1

−f2s+1

)
None −0.15 0.35
None 0.35 −0.15



F
Visualisation of extrema of singular

switch

Figure F.1: The graph of the time averaged power with
cv,1 = 0 and cv,2 = cv,opt,+.

Figure F.2: The graph of the time averaged power with
in blue cv,1 = 0 and cv,2 = cv,opt,+ and in orange

cv = cv,opt,+.

Note that in Figure F.14, the blue appears to performs better than the orange, however, this is only
when Tm = 2π

fs
, hence a value which does not fall in the bounds allowed for the moment of switch.
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Figure F.3: The graph of the time averaged power with
cv,1 = 0 and cv,2 = cv,opt,−.

Figure F.4: The graph of the time averaged power with
in blue cv,1 = 0 and cv,2 = cv,opt,− and in orange

cv = cv,opt,+.

Figure F.5: The graph of the time averaged power with
cv,1 = cv,opt,+ and cv,2 = cv,opt,−.

Figure F.6: The graph of the time averaged power with
in blue cv,1 = cv,opt,+ and cv,2 = cv,opt,− and in orange

cv = cv,opt,+.
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Figure F.7: The graph of the time averaged power with
cv,1 = cv,opt,− and cv,2 = cv,opt,+.

Figure F.8: The graph of the time averaged power with
in blue cv,1 = cv,opt,− and cv,2 = cv,opt,+ and in orange

cv = cv,opt,+.

Figure F.9: The graph of the time averaged power with

cv,1 = cm + 2cm
Â

+

√
(2ψfscm)2(Â+1)−Â2(f2s−1)2

ψfsÂ
and

cv,2 = −cv,1.

Figure F.10: The graph of the time averaged power with

cv,1 = cm + 2cm
Â

+

√
(2ψfscm)2(Â+1)−Â2(f2s−1)2

ψfsÂ
and

cv,2 = −cv,1 and in orange cv = cv,opt,+.
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Figure F.11: The graph of the time averaged power with

cv,1 = cm + 2cm
Â

−
√

(2ψfscm)2(Â+1)−Â2(f2s−1)2

ψfsÂ
and

cv,2 = −cv,1.

Figure F.12: The graph of the time averaged power with

cv,1 = cm + 2cm
Â

−
√

(2ψfscm)2(Â+1)−Â2(f2s−1)2

ψfsÂ
and

cv,2 = −cv,1 and in orange cv = cv,opt,+.

Figure F.13: The graph of the time averaged power with
cv,1 = cv,1 and cv,2 = −cm +

(cm+cv,1) sin(fsTm+2φ)+2 sin(fsTm+φ) sin(φ)

ψfs
−f2s+1

(
sin(fsTm+2φ)+2 cos(fsTm+φ) cos(2fsTm+3φ)

ψfs(cm+cv,1)

−f2s+1

) .

Figure F.14: The graph of the time averaged power with
cv,1 = cv,1 and cv,2 = −cm +

(cm+cv,1) sin(fsTm+2φ)+2 sin(fsTm+φ) sin(φ)

ψfs
−f2s+1

(
sin(fsTm+2φ)+2 cos(fsTm+φ) cos(2fsTm+3φ)

ψfs(cm+cv,1)

−f2s+1

)
and in orange cv = cv,opt,+.
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Figure F.15: The graph of the time averaged power with
cv,1 = −0.15 and cv,2 = 0.35.

Figure F.16: The graph of the time averaged power with
in blue cv,1 = −0.15 and cv,2 = 0.35 and in orange

cv = cv,opt,+.

Figure F.17: The graph of the time averaged power with
cv,1 = 0.35 and cv,2 = −0.15.

Figure F.18: The graph of the time averaged power with
in blue cv,1 = 0.35 and cv,2 = −0.15 and in orange

cv = cv,opt,+.



G
Code for visualising the boundary

extrema

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 # Constant Variables
5 mass = 1.0 # Mass of oscillator (kg)
6 k = 4 * np.pi ** 2 # Spring constant (N/m)
7

8 # Initial conditions
9 u0 = 0 # Initial position (m)

10 v0 = 0 # Initial velocity (m/s)
11

12 # Time
13 t_start = 3000 # Starting time (s)
14 t_end = 3020 # End time (s)
15 dt = 0.01 # Time step (s)
16

17 time = np.arange(t_start, t_end, dt)
18

19 y0_1 = 1 # Amplitude of base excitation (m)
20 fs_1 = 1 # Frequency of base excitation (Hz)
21

22 no_damping_array = np.array([0.1])
23

24 # Scaled variables
25 psi = 1/(np.sqrt(k * mass))
26 c_m = no_damping_array[0]
27

28 def opt_damping(fs):
29 return (np.sqrt( (c_m * psi * fs) ** 2 + (fs ** 2 - 1) ** 2 )) / (psi * fs)
30

31 def averaged_power_zero_switch(fs, damping):
32 return damping * 0.5 * fs ** 2 * 1 / ((fs ** 2 - 1) ** 2 + ((c_m + damping)* psi * fs) **

2)
33

34 def averaged_power_one_switch(fs, phase, damping_one, damping_two, T_m):
35 delta_one = np.arctan( (-psi * fs * (c_m + damping_one) ) / (-fs ** 2 + 1) )
36 delta_two = np.arctan( (-psi * fs * (c_m + damping_two) ) / (-fs ** 2 + 1) )
37 phi_hat_one = phase + delta_one
38 phi_hat_two = phase + delta_two
39 return 1 / (2 * np.pi / fs) * (damping_one * fs ** 2 * 0.5 * 1 / ((fs ** 2 - 1) ** 2 + ((

c_m + damping_one)* psi * fs) ** 2) * (T_m - 1 / (2 * fs) * (np.sin(2 * fs * T_m + 2
* phi_hat_one) - np.sin(2 * phi_hat_one) ) ) + damping_two * fs ** 2 * 0.5 * 1 / ((fs
** 2 - 1) ** 2 + ((c_m + damping_two)* psi * fs) ** 2) * (2*np.pi/fs - T_m - 1 / (2

* fs) * (np.sin(2 * phi_hat_two) - np.sin(2 * fs * T_m + 2 * phi_hat_two) ) ) )
40

41 ### 3D Time Avg Power
42 fig = plt.figure(figsize=(20, 10))
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43 ax = fig.add_subplot(111,projection='3d')
44 freq_vals = np.linspace(0.5, 1.5, 100)
45 Tm_vals = np.linspace(0 , 2*np.pi, 100)
46 freq, Tm = np.meshgrid(freq_vals, Tm_vals)
47

48 phase_list = np.linspace(-np.pi, np.pi, 100)
49

50 max_time_avg_power = None
51

52 for phase in phase_list:
53 time_avg_power_random_switch = averaged_power_one_switch(freq, phase, -0.15, 0.35, Tm)
54 if max_time_avg_power is None:
55 max_time_avg_power = time_avg_power_random_switch
56 else:
57 max_time_avg_power = np.maximum(max_time_avg_power, time_avg_power_random_switch)
58

59

60 ax.plot_surface(freq, Tm, max_time_avg_power, label='$c_{v,1}␣=␣=␣-0.15,␣c_{v,2}␣=␣0.35$')
61

62 time_avg_power_zero_switch = averaged_power_zero_switch(freq, opt_damping(freq))
63 ax.plot_surface(freq, Tm, time_avg_power_zero_switch , label='$c_{v}␣=␣c_{v,opt,+}$')
64 ax.set_xlabel("Frequency␣(Hz)")
65 ax.set_ylabel("Moment␣of␣switch␣(s)")
66 ax.set_zlabel("Time␣averaged␣power␣(W)", labelpad=1)
67 plt.tight_layout()
68 plt.legend()
69 plt.title('Time-averaged␣power␣for␣a␣random␣switch')
70 plt.show()



H
Code for visualising the free first

damping value extrema

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 # Constant Variables
5 mass = 1.0 # Mass of oscillator (kg)
6 k = 4 * np.pi ** 2 # Spring constant (N/m)
7

8 # Initial conditions
9 u0 = 0 # Initial position (m)

10 v0 = 0 # Initial velocity (m/s)
11

12 # Time
13 t_start = 3000 # Starting time (s)
14 t_end = 3020 # End time (s)
15 dt = 0.01 # Time step (s)
16

17 time = np.arange(t_start, t_end, dt)
18

19 y0_1 = 1 # Amplitude of base excitation (m)
20 fs_1 = 1 # Frequency of base excitation (Hz)
21

22 no_damping_array = np.array([0.1])
23

24 # Scaled variables
25 psi = 1/(np.sqrt(k * mass))
26 c_m = no_damping_array[0]
27

28 def opt_damping(fs):
29 return (np.sqrt( (c_m * psi * fs) ** 2 + (fs ** 2 - 1) ** 2 )) / (psi * fs)
30

31 def averaged_power_zero_switch(fs, damping):
32 return damping * 0.5 * fs ** 2 * 1 / ((fs ** 2 - 1) ** 2 + ((c_m + damping)* psi * fs) **

2)
33

34 def averaged_power_one_switch(fs, phase, damping_one, damping_two, T_m):
35 delta_one = np.arctan( (-psi * fs * (c_m + damping_one) ) / (-fs ** 2 + 1) )
36 delta_two = np.arctan( (-psi * fs * (c_m + damping_two) ) / (-fs ** 2 + 1) )
37 phi_hat_one = phase + delta_one
38 phi_hat_two = phase + delta_two
39 return 1 / (2 * np.pi / fs) * (damping_one * fs ** 2 * 0.5 * 1 / ((fs ** 2 - 1) ** 2 + ((

c_m + damping_one)* psi * fs) ** 2) * (T_m - 1 / (2 * fs) * (np.sin(2 * fs * T_m + 2
* phi_hat_one) - np.sin(2 * phi_hat_one) ) ) + damping_two * fs ** 2 * 0.5 * 1 / ((fs
** 2 - 1) ** 2 + ((c_m + damping_two)* psi * fs) ** 2) * (2*np.pi/fs - T_m - 1 / (2

* fs) * (np.sin(2 * phi_hat_two) - np.sin(2 * fs * T_m + 2 * phi_hat_two) ) ) )
40

41 def damping_value_two(fs, phase, damping_one, T_m):
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42 return -c_m + ( (c_m + damping_one) * np.sin(fs * T_m + 2 * phase) + 2 * np.sin(fs * T_m
+ phase) * np.sin(phase) ) / ( ((psi * fs) / (fs ** 2 + 1)) * (np.sin(fs * T_m + 2 *
phase) + 2 * np.cos(fs * T_m + phase) * np.cos(2 * fs * T_m + 3 * phase) * ( (psi *
fs * (c_m + damping_one)) / (fs ** 2 + 1) ) ) )

43

44

45 ### 3D Time Avg Power
46 fig = plt.figure(figsize=(20, 10))
47 ax = fig.add_subplot(111,projection='3d')
48 freq_vals = np.linspace(0.5, 1.5, 200)
49 Tm_vals = np.linspace(0 , 2*np.pi, 200)
50 freq, Tm = np.meshgrid(freq_vals, Tm_vals)
51

52 phase_list = np.linspace(-np.pi, np.pi, 200)
53 damping_value_one_list = np.linspace(-0.15, 0.35, 200)
54

55 max_time_avg_power = None
56

57 for damping_value_one in damping_value_one_list:
58 for phase in phase_list:
59 time_avg_power_random_switch = averaged_power_one_switch(freq, phase,

damping_value_one, damping_value_two(freq, phase, damping_value_one, Tm), Tm)
60 if max_time_avg_power is None:
61 max_time_avg_power = time_avg_power_random_switch
62 else:
63 max_time_avg_power = np.maximum(max_time_avg_power, time_avg_power_random_switch)
64

65

66 ax.plot_surface(freq, Tm, max_time_avg_power, label='$c_{v,1}␣=␣' + str(damping_value_one) +
',␣c_{v,2}␣=␣0.35$')

67

68 time_avg_power_zero_switch = averaged_power_zero_switch(freq, opt_damping(freq))
69 ax.plot_surface(freq, Tm, time_avg_power_zero_switch , label='$c_{v}␣=␣c_{v,opt,+}$')
70 ax.set_xlabel("Frequency␣(Hz)")
71 ax.set_ylabel("Moment␣of␣switch␣(s)")
72 ax.set_zlabel("Time␣averaged␣power␣(W)", labelpad=1)
73 plt.tight_layout()
74 plt.legend()
75 plt.title('Time-averaged␣power␣for␣a␣random␣switch')
76 plt.show()



I
Code for visualising multiple switches

in damping value

1

2 import matplotlib.pyplot as plt
3 import numpy as np
4 import itertools
5

6 # Constant Variables
7 mass = 1.0 # Mass of oscillator (kg)
8 k = 4 * np.pi ** 2 # Spring constant (N/m)
9

10 # Initial conditions
11 u0 = 0 # Initial position (m)
12 v0 = 0 # Initial velocity (m/s)
13

14 # Time
15 t_start = 3000 # Starting time (s)
16 t_end = 3020 # End time (s)
17 dt = 0.01 # Time step (s)
18

19 time = np.arange(t_start, t_end, dt)
20

21 y0_1 = 1 # Amplitude of base excitation (m)
22 fs_1 = 1 # Frequency of base excitation (Hz)
23

24 no_damping_array = np.array([0.1])
25

26 # Scaled variables
27 psi = 1/(np.sqrt(k * mass))
28 c_m = no_damping_array[0]
29

30 def opt_damping(fs):
31 return (np.sqrt( (c_m * psi * fs) ** 2 + (fs ** 2 - 1) ** 2 )) / (psi * fs)
32

33 def averaged_power_zero_switch(fs, damping):
34 return damping * 0.5 * fs ** 2 * 1 / ((fs ** 2 - 1) ** 2 + ((c_m + damping)* psi * fs) **

2)
35

36 def compute_max_time_avg_power(fs, phase, damping_linspace, moment_of_switches_list , x):
37 if len(moment_of_switches_list) - 2 != x:
38 return print("Length␣of␣moment␣of␣switches␣not␣equal␣to␣amount␣of␣switches!")
39 else:
40 max_time_avg_power = -np.inf
41 initial = 1 / (2 * np.pi / fs) * (fs ** 2) / 2
42

43 damping_values = np.empty((detail, detail) + (x,))
44

45 for combo in itertools.product(damping_linspace, repeat=x):
46 summations = []

71



72

47 for i, k in enumerate(combo):
48 # compute varphi_hat directly from this k
49 varphi_hat = phase + np.arctan((-psi * fs * (c_m + k)) / (-fs**2 + 1))
50

51 # compute the summation for this interval
52 summation = (k / ((fs**2 - 1)**2 + (psi * fs * (c_m + k))**2)) * (

moment_of_switches_list[i+1] - moment_of_switches_list[i]- (1/(2*fs)) * (
np.sin(2*fs*moment_of_switches_list[i+1] + 2*varphi_hat)- np.sin(2*fs*
moment_of_switches_list[i] + 2*varphi_hat) ) )

53 summations.append(summation)
54

55 # # total time-avg power for this combo
56 time_avg_power = initial * sum(summations)
57

58 max_time_avg_power = np.maximum(max_time_avg_power, time_avg_power)
59

60 new_max = np.maximum(max_time_avg_power, time_avg_power)
61

62 mask = new_max > max_time_avg_power
63

64 # Store tuple for updated elements
65 for dim in range(x):
66 damping_values[..., dim][mask] = combo[dim]
67

68 return max_time_avg_power, damping_values
69

70 ### 3D Time Avg Power
71 fig = plt.figure(figsize=(20, 10))
72 ax = fig.add_subplot(111,projection='3d')
73

74 detail = 100
75

76 freq_vals = np.linspace(0.5, 1.5, detail)
77 phase_vals = np.linspace(-np.pi, np.pi, detail)
78 freq, phase = np.meshgrid(freq_vals, phase_vals)
79

80 trial_switches = 3
81

82 trial_moments = [0,
83 np.pi/2, np.pi, 3*np.pi/2,
84 2 * np.pi]
85

86 boundary_damping_left = -0.15
87 boundary_damping_right = 0.35
88 damping = np.linspace(boundary_damping_left , boundary_damping_right , detail)
89

90 max_time_avg_power, damping_values = compute_max_time_avg_power(freq, phase, damping,
trial_moments, trial_switches)

91 ax.plot_surface(freq, phase, max_time_avg_power, label='$c_{v,1}␣=␣,␣c_{v,2}␣=␣0.35$')
92

93 time_avg_power_zero_switch = averaged_power_zero_switch(freq, opt_damping(freq))
94 ax.plot_surface(freq, phase, time_avg_power_zero_switch , label='$c_{v}␣=␣c_{v,opt,+}$')
95

96 ax.set_xlabel("Frequency␣(Hz)")
97 ax.set_ylabel("Phase␣(-)")
98 ax.set_zlabel("Time␣averaged␣power␣(W)", labelpad=1)
99 plt.tight_layout()

100 plt.legend()
101 plt.title('Time-averaged␣power␣for␣a␣random␣switch')
102 plt.show()
103

104 i, j = 5, 3 # pick some index in your meshgrid
105

106 print("Max␣value:", max_time_avg_power[i, j])
107 print("Best␣damping␣tuple:", tuple(damping_values[i, j]))
108 print("Optimal␣damping␣value", opt_damping(freq[i,j]))
109 print("Timeavgpower␣zero␣switch", time_avg_power_zero_switch[i,j])
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