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This article solves the fixed-time trajectory tracking problem for hypersonic flight vehicles (HFVs) 
encountered with diverse actuator faults and asymmetric envelope constraints. In contrast to the state 
of the art, the crucial characteristics of our design lie in obviating the explosion of complexity of the 
conventional recursive design, and in realizing satisfactory preselected tracking qualities for flight states 
in the sense of guaranteeing asymmetric envelope constraints. More precisely, by exploiting the fixed-
time command filters to produce certain command signals and their derivatives, a modified command-
filtered control algorithm is formulated to circumvent heavy computation burden caused by repetitive 
derivative of intermediate control laws. A two-step control methodology is devised based on an auxiliary 
compensating dynamics, which is capable of compensating for the actuator faults completely without 
the need for prior knowledge about the lumped disturbances and the actuator faults. Time-varying 
asymmetric barrier Lyapunov functions are introduced to confine the flight state tracking errors within 
the corresponding time-varying compact sets all the time provided their initial values remain therein. 
The effectiveness of the proposed method is validated by comparative simulation results.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

Hypersonic flight vehicles (HFVs) emerge as the times require for their capability of hypersonic cruise without carrying any oxidizer, 
viewed as the essential step towards achieving routine space access and remote power projection [1–8]. To improve the control per-
formances of HFVs in terms of complicated flight conditions and time-varying aerodynamic coefficients, it is crucial to implement the 
state-of-the-art control approaches, e.g., sliding mode control [9–11], fault-tolerant control [12,13], dynamic inversion control [14], adap-
tive backstepping control [15–17], and so on. Among them, adaptive backstepping control has aroused enormous attention and interest 
owing to its broad application scope [18–21]. However, implementation of adaptive backstepping controllers inevitably suffers from the 
explosion of complexity associated with the repeated differentiation of virtual control signal. It is well-recognized that analytic calculation 
of these derivatives becomes overly cumbersome in applications as the order of a nonlinear system increases [22].

To obviate the requirement of analytic differentiation, the paradigm of command-filtered backstepping was originally proposed in [23], 
where some command filters are resorted to estimate the differential coefficient of the virtual controllers [24]. Nonetheless, preliminary 
versions of the command-filtered backstepping are almost asymptotically stable methodologies [25], which indicates that the closed-loop 
convergence is achieved as time goes to infinity. In view of high speed and agile maneuvering of HFVs, fast convergence and strong 
robustness are essential for control design in the hypersonic regime. Taking advantage of faster response, higher tracking precision and 
better disturbance-rejection ability, the so-called finite-time [26–29] or fixed-time tracking concepts [30] have been widely investigated 
with the preassigned beforehand convergence rate. To be specific, fixed-time control has a prominent superiority that its convergence time 
is upper bounded by a positive constant irrelevant to the initial conditions [30,31]. However, the extant accomplishments of fixed-time 
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control schemes possess the potential singularity issue, which is inherent in the non-differentiable virtual control signal as the tracking 
error approaches zero.

Stemming from the viewpoint of engineering, the tightly integrated airframe-engine design leads to the strong aero-propulsion cou-
pling, consequently limiting the angle of attack (AOA) and flight path angle (FPA) within the narrow permissible ranges. It must be 
emphasized that the transgression of these envelope constraints probably results in a disastrous phenomenon, known as inlet unstart. Al-
though the envelope constraints have been extensively explored relying on the multiple-type barrier Lyapunov function (BLF), e.g., log-type 
BLF [32–35], integral-type BLF [36], and tan-type BLF [37], these barriers do not take into account possibly asymmetry in the operating 
regions of HFVs. More precisely, the AOA and FPA cannot operate in symmetric regions owing to the physics of a plane when climbing or 
descending. To summarize, we aim to propose a fixed-time command-filtered trajectory tracking control methodology for HFVs subject to 
diverse actuator faults and asymmetric envelope constraints. The main contributions of this article are four-fold:

• A novel adaptive command-filtered control methodology is presented by employing a fixed-time command filter, which is capable of 
estimating the differential coefficient of the virtual controller within fixed time.

• With the aid of a piecewise but differentiable switching control law that guarantees the continuity and differentiability everywhere 
via an appropriate design, the singularity issue that exists in [30,31] is effectively evaded in our work.

• Time-varying asymmetric barrier Lyapunov functions are appropriately embedded into the control design which are shown to confine 
the flight state variables within some asymmetric and time-varying sets all the time, provided that the initial conditions are inside of 
corresponding sets.

• Thanks to the introduction of an auxiliary compensating dynamics counteracting the adverse effects caused by actuator faults, the 
proposed two-step fault-tolerant control methodology not only ensures the boundedness of closed-loop signals but can also preserve 
the validity of fixed-time command filters.

The remainder of this work is organized as follows. The vehicle model and problem formulation are described in Section 2. The fixed-
time command-filtered control methodology is developed in Section 3. In Section 4, we provide the stability analysis for the whole HFVs 
dynamics. Section 5 presents the comparative simulation tests of the proposed control in contrast to the extant results. Finally, Section 6
concludes the paper.

2. The vehicle model and problem formulation

2.1. Hypersonic flight vehicle dynamics

The longitudinal motion of flexible HFVs is given by a set of differential equations for rigid-body states 
[

V , h, γ , α, Q
]� and flexible 

states η = [
η1, η̇1, . . . , ηn, η̇n

]� , n ∈N+ as [7]

V̇ = T cosα − D

m
− g sinγ , ḣ = V sinγ ,

γ̇ = L + T sinα

mV
− g cosγ

V
, α̇ = Q − γ̇ ,

Q̇ = M

I yy
, η̈i = −2ζiωi η̇i −ω2

i ηi + Ni, i ∈N1:n, (1)

where i ∈N1:n denotes i = 1, 2, . . . , n, rigid-body states V , h, γ , α, and Q denote velocity, altitude, FPA, AOA, and pitch rate, flexible state 
ηi represents amplitude of the i-th bending mode, which is obtained by modeling the fuselage as a single flexible structure with mass-
normalized mode shape. m, I yy , g , ζi , and ωi are vehicle mass, moment of inertia, gravitational acceleration, damping ratio, and flexible 
mode frequency. L, D , T , M , and Ni represent lift, drag, thrust, pitching moment, and generalized elastic force. The approximations of 
these forces and moment are given as

L ≈ q̄SCL (α, δe, δc,η) , M ≈ zT T + q̄Sc̄CM (α, δe, δc,η) ,

D ≈ q̄SC D (α, δe, δc,η) , T ≈ q̄S
[
CT ,� (α)�+ CT (α)+ Cη

T η
]
,

Ni ≈ q̄S
[
Nα

2

i α
2 + Nαi α + Nδe

i δe + Nδc
i δc + N0

i + Nη
i η

]
, i ∈ N1:n, (2)

where q̄, S , zT , and c̄ are dynamic press, reference area, thrust moment arm, and reference length. �, δe , and δc represent fuel equivalence 
ratio, deflection of elevator, and deflection of canard, which are the control inputs of the HFVs dynamics. The curve-fitted approximation 
coefficients are expressed as

C D = Cα
2

D α
2 + CαDα + C

δ2
e

D δ
2
e + C δe

D δe + C
δ2

c
D δ

2
c + C δc

D δc + C0
D + Cη

Dη,

CM = Cα
2

M α
2+ CαMα+ C δe

Mδe + C δc
Mδc + C0

M + Cη
Mη,

CL = CαL α + C δe
L δe + C δc

L δc + C0
L + Cη

L η,

CT ,� = Cα
3

T ,�α
3 + Cα

2

T ,�α
2 + CαT ,�α + C0

T ,�,

CT = Cα
3

T α
3 + Cα

2

T α
2 + CαT α + C0

T ,

Cη
j = [

Cη1
j ,0, . . . ,Cηn

j ,0
]
, j ∈ {T ,M, L, D},

Nη
i = [

Nη1
i ,0, . . . ,Nηn

i ,0
]
, i ∈N1:n. (3)
2
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Fig. 1. The responses of V̇ and Q̇ along with the varying of � and δe . (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Herein, to cancel the lift-elevator coupling, δc is set to be ganged with δe , i.e., δc = ke,cδe with ke,c = −Cδe
L /Cδc

L . As such, the control 
inputs of HFVs become � and δe . According to the strict requirements in terms of working conditions of HFVs, the states in (1) must 
operate in constrained regions that are not symmetric. To make an example, a typical operating region characterizing hypersonic flight 
and operability of scramjet engines can be the hypercube [4]

	0 �
{

85000 ≤ h ≤ 135000[ft],7500 ≤ V ≤ 11500[ft/s],

− 5 ≤γ ≤ 7[deg],−5 ≤α≤ 10[deg],−10 ≤ Q ≤ 10[deg/s]
}
.

Hereafter, we will deal with such an asymmetric region via the time-varying asymmetric thresholds −kx,L (t) (lower threshold) and 
kx,H (t) (upper threshold) for the corresponding state tracking error sx(t), x ∈	x � {h, γ , α, Q , V } [32–37]. For safety and reliability rea-
sons, the reference trajectories Vr and hr are restricted to a subset 	r ⊂	0. The control objective of this study is to design the fixed-time 
command-filtered trajectory tracking control methodology such that: 1) the tracking errors of velocity and altitude converge into the 
user-defined residual sets within fixed time; 2) all flight state variables of the resulting closed-loop system remain bounded; and 3) the 
asymmetric envelope constraints are never violated.

2.2. Model decomposition

As shown in Fig. 1, � and δe appear to vary linearly and have a more significant effect on V̇ and Q̇ respectively, inspiring us to 
decompose the longitudinal HFVs model (1) into the following velocity and altitude dynamics [12,13]. Considering that aerodynamic 
coefficients and atmospheric parameters constantly change from earth to near space, the uncertain velocity dynamics is formulated from 
(1)-(3) as [15,16]

V̇ = ζ�
V ( f V + gV�)+ dV , (4)

where

f V = q̄
[
01×4,α3cosα,α2cosα,α cosα, cosα,−α2,−α,−δ2

e ,−δe,−1,− g

q̄
sinγ

]�
ζ V = S

m

[
Cα

3

T ,�,Cα
2

T ,�,CαT ,�,C0
T ,�,Cα

3

T ,Cα
2

T ,CαT ,C0
T ,Cα

2

D ,CαD , (C
δ2

e
D + k2

e,cC
δ2

c
D ),

(C δe
D + ke,cC δc

D ),C0
D ,

m

S

]�, gV = q̄ cosα
[
α3,α2,α,1,01×10]�,

and the lumped disturbances dV , brought by external disturbances such as gust, turbulence, and atmospheric disturbances, as well as 
structural flexibility from the aerothermoelastic effects, can be expressed as dV = q̄S

m Cη
T η cosα − q̄S

m Cη
Dη +
V , with 
V representing the 

external disturbances.
From the viewpoint of engineering, FPA γ is quite small during the cruise phase, thus we take sinγ ≈ γ for simplicity [33]. In addition, 

AOA α is small enough such that the term T sinα is far smaller than lift L, thus T sinα can be neglected in (1) [30]. Therefore, the altitude 
dynamics can be transformed as [15,16]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ḣ = V γ + dh,

γ̇ = ζ�
γ ( f γ + gγ α)+ dγ ,

α̇ = ζ�
α ( fα + gαQ )+ dα,

Q̇ = ζ�
Q ( f Q + gQ δe)+ dQ ,

(5)

where
3
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f γ = [
0,

q̄

V
,− g

V
cosγ

]�, fα= q̄

V

[
0,−α,−1,

g

q̄
cosγ

]�, f Q = q̄
[
01×2,α3�,α2�,

α�,�,α3,α2,α,1
]�, ζ γ = [ S

m
CαL ,

S

m
C0

L , 1
]�, ζα = [

1,
S

m
CαL ,

S

m
C0

L , 1
]�,

ζ Q = S

I yy

[
c̄C δe

M , c̄ke,cC δc
M , zT Cα

3

T ,�, zT Cα
2

T ,�, zT CαT ,�, zT C0
T ,�, zT Cα

3

T , (zT Cα
2

T

+ c̄Cα
2

M ), (zT CαT + c̄CαM), (zT C0
T + c̄C0

M)
]�, gγ = [ q̄

V
,01×2]�,

gα = [
1,01×3]�, gQ = [

q̄, q̄,01×8]�,
and the lumped disturbances dh =
h , dγ = q̄S

mV Cη
L η +
γ , dα = − q̄S

mV Cη
L η +
α , and dQ = zT q̄S

I yy
Cη

T η + q̄Sc̄
I yy

Cη
Mη +
Q , with 
h , 
γ , 
α , 

and 
Q representing the external disturbances.

2.3. Actuator fault modeling

Typically, there are two pieces of elevators installed on a HFV, i.e., the right one and left one [13]. Without loss of generality, the 
overall elevator deflection δe is modeled as a linear combination δe = ςe,1δe,1 + ςe,2δe,2, where ςe,i and δe,i (i ∈ N1:2) are elevator gain 
and deflection, respectively.

In aerospace engineering, the leakage of hydraulic fluid may lead to the degradation of the actuator effectiveness. Moreover, the sensor 
fault and elevator hysteresis shall cause the bias. By considering loss of effectiveness and bias simultaneously, the elevator fault model can 
be described as

δe,i(t)= σi,pδi,cmd(t)+ υi,p, i ∈N1:2, t ∈ [
tip,b, tip,e

)
, (6)

where δi,cmd represents the desired control command for the i-th elevator, σi,p ∈ [0, 1] is the actuator effectiveness factor, p ∈ N+ denotes 
the p-th fault model, υi,p is the bounded bias, tip,b and tip,e denote the time instants when the p-th fault takes place and ends on the 
i-th elevator.

Remark 1. Notice that (6) implies the following three cases:

• σi,p = 1 and υi,p = 0. This indicates the fault-free case.
• 0 < σ i,p ≤ σi,p ≤ σ i,p < 1 and υi,p = 0, with σ i,p and σ i,p being unknown positive constants. This case corresponds to the partial 

loss of effectiveness (PLOE).
• σi,p = 0 and υi,p �= 0. This fact is known as the total loss of effectiveness (TLOE) that δe,i is stuck at an unknown value υi,p . For the 

controllability, only up to one elevator is allowed to undergo TLOE at the same time.

Similar to (6), we consider the actual fuel equivalence ratio subject to loss of effectiveness and bias described by [13]

�(t)= σV ,p�cmd(t)+ υV ,p, t ∈ [
tV p,b, tV p,e

)
, (7)

where σV ,p ∈ [0, 1] is the actuator effectiveness factor, p ∈ N+ denotes the p-th fault model, υV ,p is the bounded bias, tV p,b and tV p,e
denote the time instants when the p-th fault takes place and ends.

2.4. Technical key lemmas

The following technical lemmas will be employed to derive the main results of this paper.

Lemma 1. For a generic dynamical system ̇x(t) = f (t, x), f (t, 0) = 0, x(0) = x0 , where x ∈	x ⊂ Rn, f : R+ ×	x → Rn, and origin is an equilibrium 
point, if 	x = Rn and there exists a Lyapunov function L(x) defined on Rn satisfying

L̇(x)≤ −(
αLp(x)+ βLq(x)

)κ
,

where α, β , p, q, and κ are some positive constants, pκ > 1 and qκ < 1, then the origin of the system is fixed-time stable, and the settling time 
satisfies T (x0) ≤ 1

ακ (pκ−1) + 1
βκ (1−qκ) for a given initial condition x0 ∈Rn [31].

To be specific, if κ = 1 and there exists a Lyapunov function L(x) defined on 	x,0 ⊆	x ⊂Rn satisfying

L̇(x)≤ −αLp(x)− βLq(x),

where α, β , p > 1, and q < 1 are some positive constants, then the origin of the system is locally fixed-time stable, and the settling time satisfies 
T (x0) ≤ 1

α(p−1) + 1
β(1−q) for a given initial condition x0 ∈	x,0 .

Lemma 2. For any given positive constants c0, c1 , and c2 , the following inequality holds [38–40]

|ξ |c0 |ζ |c1 ≤ c0c2

c1 + c2
|ξ |c0+c1 + c1

c1 + c2
c
− c0

c1
2 |ζ |c0+c1 ,

where ξ and ζ are any real variables.
4



R. Zuo, Y. Li, M. Lv et al. Aerospace Science and Technology 120 (2022) 107270
3. Fixed-time command-filtered control design

To start the design, let us introduce the tracking errors zV = V − Vr , zh = h −hr , zγ = γ −γd , zα = α−αd , and zQ = Q − Q d , where γd , 
αd , Q d and their derivatives γ̇d , α̇d , Q̇ d are generated by filtering the virtual control laws γcmd, αcmd, Q cmd via the following fixed-time 
command filter [41]:{ ˙̂x1 = x̂2 − τ1�̂x1 − xr�p1 − ι1�̂x1 − xr�q1 ,

˙̂x2 = − τ2�̂x1 − xr�p2 − ι2�̂x1 − xr�q2 ,
(8)

where xr is the input signal, �·�l denotes | · |lsgn(·), positive design parameters p1 ∈ (1, 1 +εp), q1 ∈ (1 −εq, 1), p2 = 2p1 − 1, q2 = 2q1 − 1, 
with εp and εq being sufficiently small positive constants. Furthermore, the filter gains τi and ιi (i ∈ N1:2) are assigned such that the 
matrices

Γ1 =
[−τ1 1
−τ2 0

]
, Γ2 =

[−ι1 1
−ι2 0

]
,

are Hurwitz, then the following lemma holds.

Lemma 3. For the fixed-time command filter (8), the filter state ̂x1 can converge to the input signal xr in a fixed time:

T1 ≤ T1,max �
λ

2−q1
max (P2)

(1−q1)λmin(Q2)
+ λmax(P1)

(p1−1)ξ p1−1λmin(Q1)
,

where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of the matrix A, ξ ≤ λmin(P1) is a positive constant, P1 , P2 , Q1 , and Q2 are 
the symmetric positive-definite matrices satisfying

P1Γ1 + Γ1P1 = −Q1, P2Γ2 + Γ2P2 = −Q2,

where the matrices Γ1 and Γ2 are defined after (8).

Proof. The detailed proof for Lemma 3 can be found in Theorem 3 of [41], thus is omitted here for space limitations. �
Subsequently, along the command-filtered backstepping design [23–27], let us define the compensated error sV = zV , sh = zh − χγ , 

sγ = zγ − χα , sα = zα −χQ , and sQ = zQ , and the compensated signals χγ , χα , and χQ as⎧⎪⎪⎨⎪⎪⎩
χ̇γ = − cγ ,1χγ − cγ ,2χ

3
γ − �γ sgn(χγ )+ V (γd − γcmd + χα),

χ̇α = − cα,1χα − cα,2χ
3
α − �αsgn(χα)+ ζ�

γ gγ (αd − αcmd + χQ ),

χ̇Q = − cQ ,1χQ − cQ ,2χ
3
Q − �Q sgn(χQ )+ ζ�

α gα(Q d − Q cmd),

(9)

where cz,1, cz,2, and �z are positive design parameters for z ∈	z � {γ , α, Q }.
Before moving on, utilizing the error coordinate sx (x ∈	x), a time-varying asymmetric BLF is devised as

LZx = 1

2
Z2

x , Zx = kx,Hkx,L sx(
kx,H − sx

)(
kx,L + sx

) . (10)

Calculating the time derivative of LZx along (10) yields

L̇Zx = Zx

(
∂Zx

∂kx,H
k̇x,H + ∂Zx

∂kx,L
k̇x,L + ∂Zx

∂sx
ṡx

)
= Zxϕxṡx +Zxςx, (11)

where

ςx = kx,Hk̇x,L s2
x

(kx,H −sx)(kx,L +sx)2
− kx,Lk̇x,H s2

x

(kx,H −sx)2(kx,L +sx)
,

ϕx = kx,Hkx,L(s2
x +kx,Hkx,L)

(kx,H −sx)2(kx,L +sx)2
> 0.

To further facilitate the control design and stability analysis, let us define the following variables:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φδe = sup

t≥0

2∑
i=1

∣∣ζ�
Q gQ ςe,iυi,p

∣∣, ωδe = inf
t≥0

2∑
i=1

ςe,iσi,p, ξδe = 1

ωδe

,

φ� = sup
t≥0

{∣∣ζ�
V gV υV ,p

∣∣}, ω� = inf
t≥0

{σV ,p}, ξ� = 1

ω�
,

(12)

and ϑV = d∗ + φ� , ϑh = d∗ + �γ , ϑγ = d∗
γ + �α , ϑα= d∗

α + �Q , ϑQ = d∗ + φδe , where constant d∗
x satisfies d∗

x ≥ |dx|.
V h Q

5
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Table 1
The control laws and adaptation laws.

Control laws

γcmd = − γcsg(Zhγc |ε)
ϕh V

, αcmd = −αcsg(Zγ αc |ε)
ϕγ ζ�

γ gγ
,

Q cmd = − Q csg(ZαQ c |ε)
ϕαζ�

α gα
, δi,cmd = − ξ̂δe δcsg(ZQ ξ̂δe δc |ε)

ϕQ ζ�
Q gQ

,

�cmd = − ξ̂��csg(ZV ξ̂��c |ε)
ϕV ζ�

V gV
, (13)

with

γc = κh,1Z p
h + κh,2ψ(Zh)+ cγ ,1ϕhχγ + cγ ,2ϕhχ

3
γ − ϕhḣr

+ ϑ̂hϕhsg(Zhϕh|ε)+ ςh,

αc = κγ ,1Z p
γ + κγ ,2ψ(Zγ )+ cα,1ϕγ χα + cα,2ϕγ χ

3
α − ϕγ γ̇d

+ ϑ̂γ ϕγ sg(Zγ ϕγ |ε)+ ϕγ ζ�
γ f γ +Zhϕh V βγ + ςγ ,

Q c =κα,1Z p
α+ κα,2ψ(Zα)+ cQ ,1ϕαχQ + cQ ,2ϕαχ

3
Q − ϕαα̇d

+ ϑ̂αϕαsg(Zαϕα |ε)+ ϕαζ�
α fα+Zγ ϕγ ζ�

γ gγ βα+ ςα,
δc = κQ ,1Z p

Q + κQ ,2ψ(ZQ )+ ϕQ ζ�
Q f Q − ϕQ Q̇ d + ςQ

+ ϑ̂Q ϕQ sg(ZQ ϕQ |ε)+Zαϕαζ�
α gαβQ ,

�c = κV ,1Z p
V + κV ,2ψ(ZV )+ ϕV ζ�

V f V − ϕV V̇ r + ςV

+ ϑ̂V ϕV sg(ZV ϕV |ε).

Adaptation laws

˙̂ξδe
= ρδeZQ δc − ρδeσδe ξ̂δe ,

˙̂ξ� = ρ�ZV�c − ρ�σ�ξ̂�,
˙̂ϑh = ρhZhϕhsg(Zhϕh|ε)− ρhσhϑ̂h,

˙̂ϑγ = ργZγ ϕγ sg(Zγ ϕγ |ε)− ργ σγ ϑ̂γ ,
˙̂ϑα = ραZαϕαsg(Zαϕα |ε)− ρασαϑ̂α,
˙̂ϑ Q = ρQ ZQ ϕQ sg(ZQ ϕQ |ε)− ρQ σQ ϑ̂Q ,

˙̂ϑ V = ρV ZV ϕV sg(ZV ϕV |ε)− ρV σV ϑ̂V . (14)

At this stage, let us devise the control laws and adaptation laws as summarized in Table 1 (13)-(14), where κx,1, κx,2, σx , σu , ρx = 2cx
2cx−1 , 

ρu = 2cu
2cu−1 , and ε are positive design parameters with cx >

1
2 , cu >

1
2 , and u ∈	u � {�, δe}, p = p1/p2 > 1, q = q1/q2 < 1 with positive 

odd integers p1, p2, q1, and q2, sg(x|ε) = x√
x2+ε2

, βx = (kx,H −sx)(kx,L+sx)

kx,H kx,L
, and switching function

ψ(Zx)= S�(Zx)ϒ(Zx), (15)

with

S(Zx)=
{[

1, 0
]�, if |Zx| ≥ νx,[

0, 1
]�, otherwise,

and ϒ(Zx) =
[
Zq

x , 
∑2n−1

i=1 liZ i
xν

q−i
x

]� for positive constants νx and li (i = 1, 3, . . . , 2n − 1, n ∈N+) determined by⎡⎢⎢⎢⎢⎢⎣
k1
k3
k5
...

k2n−1

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 1 · · · 1
1 3 · · · 2n − 1
0 3 × 2 · · · (2n − 1)(2n − 2)
...

...
. . .

...

0 0 . . .
∏n−1

i=1 (2n − i)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
l1
l3
l5
...

l2n−1

⎤⎥⎥⎥⎥⎥⎦ ,

where k1 = 1, k3 = q, k5 = q(q −1), . . . , and k2n−1 =∏n−1
i=1 (q − i + 1). Up to now, the fixed-time command-filtered control design has been 

completed, whose architecture is sketched in Fig. 2.
6
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Fig. 2. The overall control architecture of the proposed method.

Table 2
Proof sketch for Theorem 1.

Proof sketch

Step 1. Calculate L̇ZV for velocity dynamics.
Step 2. Calculate L̇Zh , L̇Zγ , L̇Zα , and L̇ZQ for altitude dynamics.

Step 3. Calculate L̇ϑ and L̇ξ , and accumulate the results of Steps 1-2, verify that all the signals in the closed-loop system are bounded.
Step 4. Analyze the convergence rate and region of χγ , χα , χQ , zh , and zV .

Remark 2. The switching function ψ(Zx) in (15) is devised to fulfill the requirement for numerical differentiation in input signal of 
command filter. In the controller design procedure of existing relevant literature (see [26–31] and the references therein), the feedback 
term ψ(Zx) = Zq

x guarantees the desired finite-time convergence, where 0 < q < 1 for ∀Zx ∈ R. However, this choice might result in a 
singularity issue (non-differentiability), i.e., ψ̇(Zx) = qZq−1

x → ∞ as Zx → 0. As a result, the command-filtered backstepping approach 
cannot be applied directly. To overcome this singularity, the switching function ψ(Zx) in (15) is skillfully designed to be continuous and 
differentiable, which further ensures the absence of the singularity issue in our work.

4. Stability analysis

In this section, the stability analysis for the whole HFVs dynamics will be presented. Initially, let us construct the following overall 
Lyapunov function:

L = LZ +Lϑ +Lξ , (16)

where Lϑ =∑
i∈	x

1
2ρi
ϑ̃2

i , Lξ =∑
j∈	u

1
2ρ j
ω j ξ̃

2
j , and LZ =∑

i∈	x
LZi with LZi being the time-varying asymmetric BLF specified in (10). 

Then, the main results of our work are now given as follows.

Theorem 1. Consider the velocity dynamics (4) and altitude dynamics (5) in the presence of diverse actuator faults and asymmetric envelope con-
straints. Under the fixed-time control laws (13) and adaptation laws (14) for any initial condition −kx,L(0) ≤ sx(0) ≤ kx,H (0), x ∈	x, the following 
goals can be achieved: 1) V and h are driven to track the reference trajectories Vr and hr in fixed time; 2) all the signals in velocity dynamics (4) and 
altitude dynamics (5) are bounded; 3) the asymmetric envelope constraints are never violated.

Proof. See Appendix for the proof where a proof sketch is given in Table 2 to make the proof procedure more clear. The proof will be 
divided into four steps. We begin the proof with the investigation of the time derivative of LZx in Steps 1-2. In the sequel, the main 
results in Theorem 1 will be obtained in Steps 3-4 by fusing the analysis in Steps 1-2. �
Remark 3. It is well documented that the convergence rate of command filter is vital to the performance of whole control system, 
especially for the safety-critical HFVs working in the harsh flight environment. In contrast to extant command filters whose estimation 
errors are convergent asymptotically [23–25] or within a finite time [26,27], the resorted fixed-time command filter (8) is capable of 
estimating the unavailable state in fixed time irrelevant to the initial conditions, facilitating the control design and stability analysis.

5. Simulation results

This section presents the simulation tests of the proposed fixed-time asymmetric-constrained control (PFCC) in contrast to the extant 
results, i.e., the conventional infinite-time symmetric-constrained control (CICC) [32] and infinite-time unconstrained control (CIUC) [15]. 
The vehicle is assumed to climb a maneuver where the reference commands are set as an increment of 1000 ft/s step signal in velocity 
dynamics and an increment of 3000 ft step signal in altitude dynamics. To make the given commands more realizable, the trajectories of 
Vr , hr and their derivatives are generated by filtering the reference commands via tracking differentiators [15]. According to the practical 
engineering characteristics, the limitations of actuators are set as � ∈ [0.05, 1.2] and δe ∈ [−20 deg, 20 deg]. The external disturbances are 
described by the following second-order Markov process
7
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Fig. 3. Disturbances and actuator faults in the simulations.{

̈i = − 
̇i −
i + 0.01�i,


̈ j = − 
̇ j −
 j +� j,
(17)

where i ∈ {h, V }, j ∈ {γ , α, Q }, �i and � j are two independent Gauss white noises with the variance of 1. The uncertain aerodynamic 
coefficients in (3) are modeled as Ci = C∗

i (1 + σi), where C∗
i represents the nominal coefficient and σi represents the uncertain factor 

ranging from −30% to 30%. To further verify the robustness of the proposed control methodology, the perturbations 3 sin( π10 t) and sin( π10 t)
are added to the velocity dynamics and altitude dynamics respectively when t > 200 s. On the basis of (6) and (7), the fault models 
σ1,1 = 0.6, υ1,1 = −2, σV ,1 = 0.8, and υV ,1 = 0.1 are introduced when t > 100 s. To sum up, the actuator faults and external disturbances 
imposed on velocity dynamics and altitude dynamics are summarized in Fig. 3.

The parameters of control laws and adaptation laws are chosen as: κh,1 = 5.5, κh,2 = 25, κγ ,1 = 2.5, κγ ,2 = 1, κα,1 = 1.2, κα,2 = 0.75, 
κQ ,1 = 10, κQ ,2 = 1.2, κV ,1 = 5, κV ,2 = 10, p = 5/3, q = 3/5, l1 = 6/5, l3 = −1/5, ε = 0.1, νx = 0.05, cz,1 = 0.75, cz,2 = 1, �z = 0.5, cx =
cu = 0.6, ρx = ρu = 6, and σx = σu = 0.5, for x ∈	x , z ∈	z , and u ∈	u . The parameters of command filters are set as τ1 = ι1 = 1, τ2 =
ι2 = 0.25, p1 = 1.1, p2 = 1.2, q1 = 0.9, and q2 = 0.8. The time-varying asymmetric thresholds are selected as kV ,L(t) = 1.5e−0.08t + 0.5, 
kV ,H (t) = 0.4e−0.08t +0.1, kh,L(t) = 1.5e−0.08t +0.5, kh,H (t) = 0.2e−0.08t +0.1, kγ ,L(t) = kα,L(t) = kQ ,L(t) = 0.05e−0.08t +0.05, and kγ ,H (t) =
kα,H (t) = kQ ,H (t) = 0.1e−0.08t + 0.1. The initial values of 

[
V , h, γ , α, Q

]� are chosen as 
[
7699 ft/s, 84999 ft, 0 deg, 1.6325 deg, 0 deg/s

]� , 
and the initial values of 

[
η1, η̇1, η2, η̇2

]� are selected as 
[
0.9700, 0, 0.7967, 0

]� .
Simulation results are shown in Figs. 4-5. Fig. 4 (a)-(b) reveal that, in comparison with CICC and CIUC, the proposed control formulation 

leads to a quicker convergence speed with smoother transients and is robust enough not to violate the imposed asymmetric envelope 
constraints. It can be observed that if the level of uncertainty lies in the interval 

[−30%, 30%
]
, the velocity and altitude curves obtained 

utilizing PFCC are smoother and maintained within imposed asymmetric constraints. The lower constraint on the velocity results in above 
Mach 5 curve, which confirms that the HFV was in the hypersonic regime throughout the flight. The altitude trajectory shows that only 
a small climbing maneuver is maintained by the controller, which indicates that the HFV was in cruise during the flight. It is clear from 
Fig. 4 (c) that, the designed compensated signals are featured with fixed-time convergence when considering aerodynamic coefficient 
uncertainties and external disturbances simultaneously. Fig. 4 (d)-(f) reveal that the control inputs and flight states obtained by PFCC 
are smoother than those of CICC and CIUC, and there is no high frequency oscillation. It can also be noted that PFCC is effective in 
fast suppressing the sudden high-frequency transients in 200 s due to the introduction of adaptation laws. In addition, to illustrate the 
tracking performance and evaluate the control energy quantitatively, integral absolute error (IAE), root mean square error (RMSE), and 
mean absolute control actions (MACA) are introduced as [16]

Jz(IAE)=
t∫

t0

|z(τ )|dτ , Jz(RMSE)=

√√√√√1

t

t∫
t0

z2(τ )dτ ,

Ju(MACA)= 1

t

t∫
t0

|u(τ )|dτ , Ju̇(MACA)= 1

t

t∫
t0

|u̇(τ )|dτ ,

where z ∈ {zh, zV } and u ∈ {�, δe}. The calculation results are summarized in Tables 3-4 and Fig. 5. Table 3 and Fig. 5 show that JzV (IAE)
obtained by PFCC is respectively less than CICC and CIUC by 50.66% and 57.76%, and Jzh (IAE) obtained by PFCC is respectively less than 
CICC and CIUC by 7.34% and 19.86%. This indicates that PFCC exhibits less error energy in contrast to CICC and CIUC. Table 4 and Fig. 5
show that J�(MACA) obtained by PFCC is respectively less than CICC and CIUC by 50.66% and 57.76%, and Jδe (MACA) obtained by PFCC 
is respectively less than CICC and CIUC by 7.34% and 19.86%, implying that the control effort of PFCC is smaller than the one of CICC and 
CIUC.

6. Conclusion

This work presents a novel fixed-time trajectory tracking control formulation for HFVs in the presence of asymmetric envelope con-
straints and diverse actuator faults. By introducing fixed-time command filters to produce certain command signals and their derivatives, 
8
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Fig. 4. Tracking performances, control inputs and flight states.

a modification is addressed to obviate the explosion of complexity in the backstepping-based design framework. With the aid of a time-
varying asymmetric barrier Lyapunov function, satisfactory preselected tracking qualities are guaranteed for flight states via asymmetric 
envelope constraints. An auxiliary compensating dynamics is integrated into the two-step fault-tolerant control methodology to compen-
9
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Fig. 5. Performance indices of tracking errors and control inputs.

Table 3
Performance indices of velocity and altitude channels 
under three methods.

Schemes Velocity channel Altitude channel

IAE RMSE IAE RMSE

CICC 0.8765 0.0089 20.5314 0.2366
CIUC 1.0239 0.0120 23.7392 0.3468
PFCC 0.4325 0.0045 19.0240 0.1980

sate for the diverse actuator faults (e.g., loss of control effectiveness, bias, and stuck fault). In accordance with the fixed-time stability 
criterion, it is rigorously proved that both the tracking performance and closed-loop stability can be ensured in fixed time. Comparative 
simulations have been conducted to highlight the superiorities of the developed method. Future research will be concentrated on visual 
10
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Table 4
MACA of control inputs under three methods.

Schemes � δe �̇ δ̇e

CICC 0.4341 11.4876 0.0554 1.4783
CIUC 0.4139 10.5788 0.0423 1.3442
PFCC 0.3837 9.3749 0.0357 1.2762

simulation and hardware in the loop simulation of the proposed control scheme, as well as the consensus tracking problem for HFV swarm 
systems [42].
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Appendix A. Proof of Theorem 1

Step 1. Initially, by combining (4), (7), with (11), the time derivative of LZV is upper bounded by

L̇ZV ≤ ZVϕV ζ�
V f V +ZVϕV ζ�

V gV σV ,p�cmd

+ |ZV |ϕV ϑV −ZV ϕV V̇ r +ZV ςV .
(18)

Substituting (13) into (18), and employing the inequality 0 ≤ |q| − q2√
q2+υ2

≤ υ for ∀q ∈R and ∀υ > 0, we arrive at

L̇ZV ≤ − κV ,1Z p+1
V − κV ,2Zq+1

V +ZV ξ̃�ω��c +ω�ε
− ϑ̂V ZV ϕV sg(ZV ϕV |ε)+ |ZV |ϕV ϑV ,

(19)

for |ZV | ≥ νV . When |ZV | < νV , in view of (15), there will be an extra term κV ,2Zq+1
V + κV ,2

∑2n−1
i=1 liZ i+1

V ν
q−i
V in (19). Notice that if 

|ZV | < νV , this extra term must be bounded by a small constant �V . As a result, (19) can be rewritten as

L̇ZV ≤ − κV ,1Z p+1
V − κV ,2Zq+1

V +ZV ξ̃�ω��c +ω�ε
− ϑ̂V ZV ϕV sg(ZV ϕV |ε)+ |ZV |ϕV ϑV +�V .

(20)

Step 2. Similarly and iteratively, substituting (5), (6), and (13) into (11) along the similar lines as (18)-(20), the time derivative of LZh , 
LZγ , LZα , and LZQ satisfy the inequalities similar to (20), which are omitted here for space limitations.
Step 3. Hereafter, the stabilization of whole system will be investigated. Considering the overall Lyapunov function (16) and invoking (20), 
the time derivative of L can be written as

L̇ ≤ −
∑
i∈	x

κi,1Z p+1
i −

∑
i∈	x

κi,2Zq+1
i +

∑
i∈	x

ϑiε+
∑
i∈	x

�i

+
∑
i∈	x

σiϑ̃iϑ̂i +
∑
j∈	u

σ jω j ξ̃ j ξ̂ j +
∑
j∈	u

ω jε+ 3ε. (21)

On account of Young’s inequality [26], ϑ̃iϑ̂i and ξ̃ j ξ̂ j in (21) satisfy ϑ̃i ϑ̂i ≤ 1
2 ciϑ

2
i − 1

ρi
ϑ̃2

i and ξ̃ j ξ̂ j ≤ 1
2 c jξ

2
j − 1

ρ j
ξ̃2

j . On this basis, (21)

can be rewritten as

L̇ ≤ −
∑
i∈	x

κi,1Z p+1
i −

∑
i∈	x

κi,2Zq+1
i −

∑
i∈	x

1

ρi
σiϑ̃

2
i −

∑
j∈	u

1

ρ j
σ jω j ξ̃

2
j + C0, (22)

where C0 =∑
i∈	x

( 1
2 ciσiϑ

2
i + ϑiε+�i) +∑

j∈	u
(ω jε+ 1

2 c jσ jω jξ
2
j ) + 3ε.

From Lemma 2, there exist inequalities 
(
ϑ̃2

i
2ρi

)q+1
2 ≤ 1

2ρi
ϑ̃2

i + 1−q
2

(
2

1+q

)− 1+q
1−q

and 
(
ω j ξ̃

2
j

2ρ j

)q+1
2 ≤ 1

2ρ j
ω j ξ̃

2
j + 1−q

2

(
2

1+q

)− 1+q
1−q

. Incorporating 
these inequalities into (22) yields

L̇ ≤ −
∑
i∈	x

σi

2ρi
ϑ̃2

i −
∑
j∈	u

σ jω j

2ρ j
ξ̃2

j − CpL
p+1

2 − CqL
q+1

2

+
∑
σi

(
ϑ̃2

i

2ρi

)p+1
2

+
∑
σ j

(
ω j ξ̃

2
j

2ρ j

)p+1
2

+ C1,

(23)
i∈	x j∈	u

11
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with Cp =min{2
p+1

2 κi,1, σi, σ j}, Cq =min{2
q+1

2 κi,2, σi, σ j}, and C1 = C0 + 7(1−q)
2

(
2

1+q

)− 1+q
1−q

.

Before moving on, let us first assume that there exist two unknown positive constants  ϑi and  ξ j satisfying |ϑ̃i | ≤  ϑi and |̃ξ j | ≤
 ξ j . Hereafter, the following two cases need to be considered: 1) If  ϑi <

√
2ρi and  ξ j <

√
2ρ j
ω j

, one has σi

(
ϑ̃2

i
2ρi

)p+1
2 − σi

2ρi
ϑ̃2

i < 0 and 

σ j

(
ω j ξ̃

2
j

2ρ j

)p+1
2 − σ jω j

2ρ j
ξ̃2

j < 0; 2) Otherwise, one has σi

(
ϑ̃2

i
2ρi

)p+1
2 − σi

2ρi
ϑ̃2

i ≤ σi

( 2
ϑi

2ρi

)p+1
2 + σi

2ρi
 2
ϑi

and σ j

(
ω j ξ̃

2
j

2ρ j

)p+1
2 − σ jω j

2ρ j
ξ̃2

j ≤ σ j

(ω j 
2
ξ j

2ρ j

)p+1
2 +

σ jω j
2ρ j
 2
ξ j

. Summarizing above two cases yields

L̇ ≤ − CpL
p+1

2 − CqL
q+1

2 + C2, (24)

where C2 = C1 +∑
i∈	x

σi

( 2
ϑi

2ρi

)p+1
2 +∑

i∈	x
1

2ρi
σi 

2
ϑi

+∑
j∈	u

σ j

(ω j 
2
ξ j

2ρ j

)p+1
2 +∑

j∈	u
1

2ρ j
σ jω j 

2
ξ j

.

According to (24), it is easily verified that L is bounded since L̇ ≤− CqL
q+1

2 ≤ 0 for L
p+1

2 ≥ C2
Cp

. The boundedness of L implies the 
boundedness of Zi , ϑ̃i , and ξ̃ j , which, combined with the boundedness of ϑ̂i and ξ̂ j (i ∈	x, j ∈	u), ensures that the fixed-time control 
laws (13) and adaptation laws (14) are bounded. Thence, it is concluded that all the signals in velocity dynamics (4) and altitude dynamics 
(5) are bounded, and the asymmetric envelope constraints will not be violated during operation. In addition, when L

p+1
2 ≥ C2

μ0Cp
with 

0 <μ0 < 1, one has C2 ≤μ0CpL
p+1

2 , which gives rise to

L̇ ≤ − (1 −μ0)CpL
p+1

2 − CqL
q+1

2 . (25)

In the light of Lemma 1 and (25), L will converge to the set 	L =
{
L <

(
C2
μ0Cp

) 2
p+1

}
in fixed time with the guaranteed convergence 

time estimated as follows

T0 ≤ T0,max �
2

Cp(1 −μ0)(p − 1)
+ 2

Cq(1 − q)
. (26)

Step 4. In what follows, we will show that χγ , χα , and χQ are bounded in a fixed time. Let us start with constructing the Lyapunov 
function Lχ = 1

2χ
2
γ + 1

2χ
2
α + 1

2χ
2
Q for the compensated systems. According to Lemma 3, the rest of the proof will be divided into two 

steps.
1) Initially, based on the properties of fixed-time command filter (8), it will be shown that the system states do not escape to infinity 

during ∀t ∈ [
0, T1

]
. Recalling the stability analysis in [41], the estimation errors γd − γcmd, αd − αcmd, and Q d − Q cmd are bounded, i.e., 

there exist some positive constants oγ , oα , and oQ satisfying oγ ≥ |γd − γcmd|, oα ≥ |αd − αcmd|, and oQ ≥ |Q d − Q cmd| for ∀t ∈ [
0, T1

]
. 

Thence, differentiating Lχ with respect to time obtains

L̇χ ≤!χLχ +!0, (27)

where !0 = 1
2 V o2

γ + 1
2 ||ζ γ || ||gγ ||o2

α + 1
2 ||ζα || ||gα ||o2

Q , !χ = max{!γ , !α, !Q } with !γ = 2V , !α = 2||ζ γ || ||gγ || + V , and !Q =
||ζα || ||gα || + ||ζ γ || ||gγ ||. Solving inequality (27) obtains Lχ (t) ≤

(
Lχ (0) +!0/!χ

)
exp(!χ T1) for ∀t ∈ [

0, T1
]
, where Lχ (0) represents 

the initial value of Lχ . As such, it can be derived that all the closed-loop system states will not escape to infinity for ∀t ∈ [
0, T1

]
.

2) Then, the fixed-time convergence of the closed-loop system states will be proven in this step. Invoking (9) and setting cγ ,1, cα,1, 
and cQ ,1 such that cγ ,1 ≥ 1

2 V , cα,1 ≥ 1
2 ||ζ γ || ||gγ || + 1

2 V , and cQ ,1 ≥ 1
2 ||ζ γ || ||gγ ||, the following inequality holds:

L̇χ ≤ −�1L2
χ −�2

√
Lχ , (28)

with �1 =min
{

4cγ ,2, 4cα,2, 4cQ ,2
}

and �2 =min
{√

2�γ , 
√

2�α, 
√

2�Q
}

. In view of (28) and Lemma 1, χγ , χα , and χQ will converge to 
zero within a fixed time satisfying

t ≥ T2 = T1 + T0,max � T1 + 1

�1
+ 2

�2
. (29)

To sum up, recalling (25), Lemma 1, and the construction of L in (16), it is straightforward to deduce that

|Zh|<
√√√√

2

(
C2

μ0Cp

) 2
p+1

, |ZV |<
√√√√

2

(
C2

μ0Cp

) 2
p+1

, (30)

for ∀t ≥ max
{
T0, T2

}
. This further indicates that Zh and ZV converge into a disc region with radius 

√
2
(

C2
μ0Cp

) 2
p+1

in fixed time. �
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