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ABSTRACT
The magnetic configuration of a ferromagnetic system 
with mono-disperse and poly-disperse distribution of 
magnetic particles with inter-particle interactions has been 
computed. The analysis is general in nature and applies to 
all systems containing magnetically interacting particles 
in a non-magnetic matrix, but has been applied to steel 
microstructures, consisting of a paramagnetic austenite 
phase and a ferromagnetic ferrite phase, as formed during the 
austenite-to-ferrite phase transformation in low-alloyed steels. 
The characteristics of the computational microstructures 
are linked to the correlation function and determinant of 
depolarisation matrix, which can be experimentally obtained 
in three-dimensional neutron depolarisation (3DND). By 
tuning the parameters in the model used to generate the 
microstructure, we studied the effect of the (magnetic) 
particle size distribution on the 3DND parameters. It is found 
that the magnetic particle size derived from 3DND data 
matches the microstructural grain size over a wide range of 
volume fractions and grain size distributions. A relationship 
between the correlation function and the relative width of the 
particle size distribution was proposed to accurately account 
for the width of the size distribution. This evaluation shows 
that 3DND experiments can provide unique in situ information 
on the austenite-to-ferrite phase transformation in steels.

1. Introduction

Three-dimensional neutron depolarisation (3DND) is a powerful technique to 
characterise the magnetic microstructure of polycrystalline bulk materials on the 
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(sub)micron scale [1–3]. In such measurements, a polarised neutron beam inter-
acts with the local magnetic induction in a magnetised sample, which results in a 
change of the polarisation vector of the neutron beam upon transmission through 
the (magnetised) sample. This change in polarisation is characterised by a rotation 
angle and by a shortening of the polarisation vector with respect to the initial 
polarisation. The mean magnetisation causes a net rotation of the polarisation 
vector and the magnetic inhomogeneities result in a decrease in polarisation. For 
a sample containing ferromagnetic particles (grains) in a paramagnetic matrix, 
the rotation angle monitors the phase fraction of the ferromagnetic phase inside 
the sample. The shortening of the polarisation determines magnetic correlation 
length, and thereby a mean magnetic particle (grain) size along the neutron beam.

This technique has successfully been used to study static and dynamic prop-
erties of magnetic microstructures in a wide range of materials such as magnetic 
recording materials, superconductors, amorphous metals and steels [4–9]. In 
low-alloyed steels, the austenite-to-ferrite [10] and the austenite-to-pearlite [11] 
phase transformations have been studied using in situ 3DND measurements. In 
such steels, the high temperature austenite phase, which has an fcc lattice struc-
ture and is paramagnetic, transforms into ferrite with a bcc structure below a 
characteristic transformation temperature (A3). Below the Curie temperature TC 
(=1043 K for pure Fe), the equiaxed ferritic phase becomes ferromagnetic. At a 
transformation temperature below the so-called A1 temperature, the remaining 
austenite, being enriched in carbon, transforms into a lamellar structure composed 
of ferrite and cementite Fe3C plates, the so-called pearlite. In this study, we focus 
on the microstructure evolution for a two-phase austenite–ferrite mixture, in 
which the equiaxed austenite grains form the continuous parent phase and the 
equiaxed ferrite grains are the emerging product phase.

Key parameters to characterise the microstructure evolution during the aus-
tenite-to-ferrite transformation in steels for this magnetically inhomogeneous 
ferromagnetic system are the ferritic volume fraction and the ferritic particle size. 
Rosman and Rekveldt [1] derived the theoretical framework for the determina-
tion of the magnetic phase fraction and the (spherical) particle size in the case 
of monodisperse ferromagnetic particles in a dilute non-magnetic medium from 
neutron depolarisation experiments. Te Velthuis and co-workers [12] investigated 
the magnetic particle size obtained by neutron depolarisation and compared it to 
the ferrite grain size using a numerical model. The results showed that the mag-
netic particle size calculated from the neutron depolarisation is in good agreement 
(within of 10–20%) with the actual average ferrite grain size. Simultaneous meas-
urements of the (magnetic) volume fraction and the average (magnetic) particle 
size by in situ neutron depolarisation measurements provide unique insight in 
the austenite-to-ferrite transformation in steels, as it is one of the few physical 
characterisation techniques known to determine both the volume fraction and 
the average particle size on a micron length scale in a single experiment. Such 
information makes it possible to separate nucleation and growth effects during 
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the solid-state phase transformation and to reconstruct important details of the 
progression of this important solid-state phase transformation. However, the anal-
ysis of the 3DND data has not yet been brought to a level that makes it possible 
to capture not only the average ferritic particle size but also the width of the par-
ticle size distribution. The ferrite grain size distribution holds even more detailed 
information on the ferrite grain nucleation and growth rate and this information 
is crucial for accurate modelling of the austenite decomposition in low-alloyed 
steels during cooling. It is the aim of the present work to extend the 3DND data 
analysis in this direction.

To investigate the influence of the particle size distribution on the interpretation 
of 3DND data, we developed a model to compute the magnetic configuration for 
a given 3D microstructure. From this microstructure, the 3DND parameters were 
derived. By tuning the phase transformation parameters, the microstructure can 
be varied. We thereby investigated the effect of size distribution on the particle 
size derived from the 3DND analysis by a comparison to the mean particle size 
of the actual distribution. This theoretic study provides the foundation for the 
3DND analysis of evolving ferromagnetic microstructures starting from a fully 
paramagnetic parent phase.

2. Neutron depolarisation

Two approaches have been developed to describe the neutron depolarisation due 
to the interaction of a polarised neutron beam with a collection of magnetic par-
ticles: (i) the Larmor and (ii) the scattering approach. Rosman and Rekveldt [13] 
found that both approaches are fully equivalent as long as all scattered neutrons 
enter the analyser during the measurement. Here, we will just briefly present the 
neutron depolarisation in Larmor approach. A detailed overview of the neutron 
depolarisation theory can be found elsewhere [1,2,7,13].

As shown in Figure 1, the neutron depolarisation technique measures the 
change of the polarisation for a polarised neutron beam after transmission through 
a magnetic material. The relationship between the initial polarisation vector (P⃗0) 
and the polarisation vector after transmission (P⃗′) can be expressed as P⃗� = D̂P⃗0,  
where D̂ is a depolarisation matrix that contains 3 × 3 elements. Generally, the 
depolarisation matrix can be expressed in terms of a rotation of the beam polari-
sation and a reduction in beam polarisation (described by a matrix D̂′) [1,2]. This 
reduction in beam polarisation is directly related to the field correlation matrix �̂� 
of the sample volume VW with components αij (i, j = x, y or z) :

 

where r⃗ =
(
x, y, z

)
 is a spatial vector, 0 is the position where neutrons enter the 

sample, (x, y, z) and (xʹ, y, z) are two different arbitrary points in the sample 

(1)𝛼ij =
1

Vw

∫
Vw

d3r⃗ ∫ x0 ΔBi

(
x, y, z

)
ΔBj

(
x�, y, z

)
dx�
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volume and ΔBi

(
r⃗
)
 is the i-component of ΔB⃗(r⃗) that corresponds to the varia-

tion in magnetic induction with the mean magnetic induction ⟨B⃗⟩ expressed as 
ΔB⃗(r⃗) = B⃗(r⃗) − ⟨B⃗⟩ (see Figure 1 for the coordinate system). In the absence of 
correlations between the variations in the field components ΔBi(r⃗) and ΔBj(r⃗)  
(i ≠ j) along the neutron path, this correlation matrix �̂� is diagonal. The correlation 
function ξ, which is proportional to the correlation length of |ΔB⃗(r⃗)|2 along the 
neutron beam, can be expressed as

 

In the absence of a net polarisation rotation, the elements of the correlation matrix 
�̂� and the depolarisation matrix D̂′ are related as:
 

where δij is the Kronecker delta, c1 = 2.15 × 1029λ2 T−2 m−4 with λ the neutron 
wavelength and Lw is the sample length along the neutron beam. Rosman and 
Rekveldt [13] showed that in the Fourier space, �̂� is directly related to the mag-
netisation of the sample M⃗

(
r⃗
)
:

 

where B⃗
(
s⃗
)
=

𝜇0

(2𝜋)3
∫
Vw

(
s̃ ×

[
M⃗
(
r⃗
)
× s̃

])
eis⃗⋅r⃗d3r⃗, μ0 is the permeability of vacuum, 

s⃗ is the reciprocal lattice vector and s̃ = s⃗∕||s⃗|| its unit vector. As described in Ref. 

(2)� =
∑
i

�ii

(3)D�
ij = �ij

(
1 − c1Lw�

)
+ c1Lw�ij

(4)𝛼ij =
8𝜋4

Vw

∫
S

Bi

�
s⃗
�
Bj

�
−s⃗

�
d2s⃗ −

Lw

2
⟨Bi⟩⟨Bj⟩

Figure 1.  (colour online) sketch of the neutron depolarisation method shows that a polarised 
neutron beam (P⃗0) is partly depolarised (P⃗′) after transmitting through a magnetised sample 
subjected to an external applied magnetic field 𝜇

0
H⃗
a
 along z direction.

note: The positions where neutrons enter and leave the sample are denoted as 0 and Lw, respectively. The sample 
volume is Vw.
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[12], for a distribution of uncorrelated ferromagnetic particles, the diagonal ele-
ments of the matrix �̂� have the following analytical solutions:
 

 

 

where f is the volume fraction of the ferromagnetic phase, m⃗ = M⃗∕Ms is the 
reduced magnetisation scaled to the saturation magnetisation Ms of the ferro-
magnetic phase, c2 =

(
4�f 2∕81

)1∕3 is a constant and R is the radius of the fer-
romagnetic particle. According to Equation (2), the correlation function ξ then 
corresponds to
 

where m = ||m⃗|| and c3 is a constant that depends on the shape, orientation and 
spatial distribution of the ferromagnetic particles. For identical spheres, this con-
stant is c3 = 16∕

�
9
�
1 + ⟨m2

x⟩
��

. Equation (8) shows that ξ depends on the ratio of 
the higher order averages of the particle sizes, which suggests that ξ includes the 
information of both the average particle radius ⟨R⟩ and the spread in radius. By 
writing � =

⟨R4⟩
⟨R3⟩ and assuming ⟨R

3⟩ 4
3

⟨R4⟩ → 1, Equation (8) is transformed to give the 
relationship between δ and ξ:
 

These equations show that one can derive the neutron depolarisation parameters 
�̂�, ξ and D̂ by computing the orientation of the magnetic moments for all magnetic 
particles in a particulate system. Furthermore, the characteristic particle size δ can 
be obtained with Equation (9) from the magnetic correlation length. In a 3DND 
measurement, one measures the transmission of the polarisation components to 

(5)�xx = f
�
�0Ms

�2�6⟨m2
x⟩⟨R4⟩

8⟨R3⟩ −
2

3
c2⟨mx⟩2⟨R3⟩ 1

3

�

(6)�yy = f
�
�0Ms

�2
⎛⎜⎜⎜⎝

3
�

3

4
⟨m2

y⟩ + 1

4
⟨m2

z⟩
�
⟨R4⟩

8⟨R3⟩ −
2

3
c2⟨my⟩2⟨R3⟩ 1

3

⎞⎟⎟⎟⎠

(7)�zz = f
�
�0Ms

�2
⎛⎜⎜⎜⎝

3
�

1

4
⟨m2

y⟩ + 3

4
⟨m2

z⟩
�
⟨R4⟩

8⟨R3⟩ −
2

3
c2⟨mz⟩2⟨R3⟩ 1

3

⎞⎟⎟⎟⎠

(8)� =
2f
�
�0Ms

�2
3c3

⟨R4⟩
⟨R3⟩

�
1 − c2c3m

2 ⟨R3⟩ 4

3

⟨R4⟩

�

(9)� =
3c3�

2f
(
�0Ms

)2(
1 − c2c3m

2
)
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derive the depolarisation matrix D̂ and then calculate f and δ [10,11]. However, 
it should be noted that several approximations have been made in the derivation 
of Equation (9). The goal of the present work is to evaluate how the particle size 
distribution influences the analysis of the neutron depolarisation data and how 
large the potential deviations are for our system of interest in the case of ferrous 
phase transformations.

3. Microstructural magnetic model

The present model was developed on the basis of the austenite–ferrite microstruc-
tural model by Te Velthuis and co-workers [12] in which spherical (ferromagnetic) 
ferritic particles nucleate and grow in a fully (paramagnetic) austenitic microstruc-
ture that is generated by a Voronoi construction. A given 3D microstructure with 
a preset ferrite size distribution was generated first and its magnetic configuration 
was computed. The resulting 3DND characteristics were then calculated using 
Equations (4)–(7). After the 3DND parameters were obtained, Equation (9) was 
used to back calculate the magnetic particle size, which should be identical to the 
given particle size if all the used approximations are valid. Otherwise, a devia-
tion will be generated, which can be evaluated subsequently. The present work is 
generic in nature, but has been applied to the magnetic microstructure evolution 
during the austenite–ferrite phase transformation in steels. In this phase trans-
formation, the high-temperature austenite phase is nonmagnetic (paramagnetic), 
while the low-temperature ferrite phase is magnetic (ferromagnetic) below the 
Curie temperature TC [10–12].

To start the simulations, a 3D microstructure comprising a nonmagnetic phase 
and a magnetic phase was created in a cubic box with a length Lb. The magnetic 
particles are assumed to be spherical and centred at the grain corners of the non-
magnetic phase, as discussed in [14]. For the austenite–ferrite microstructure in 
low-alloyed steels, the parent austenite grain corners, edges and surface are the 
preferred nucleation sites for the ferrite particles [15]. For isothermal transforma-
tions at a low undercooling or for transformations at a slow continuous cooling, 
austenitic grain corners are the most probable sites for the nucleation of ferrites 
[16,17]. The geometry of the ferrite particles depends largely on the specific trans-
formation conditions. Although ferrite can grow into allotriomorphic plate-like 
particles along grain boundaries [18–20], most experimental [17] and modelling 
[21,22] studies showed relatively isotropic equiaxed ferrite in the early stages of 
the phase transformation when coalesce of particles has not yet appeared. In the 
present modelling, the geometry of the magnetic particles has been simplified 
to a spherical shape as this shape is close to the most frequently observed equi-
axed ferrite particles. The collection of the magnetic particles closely resembles a 
log-normal size distribution. Each magnetic particle is then assigned with a radius, 
a spatial location and a randomly chosen magnetic anisotropy (referred to as the 
easy axis). The magnetisation of each magnetic particle M⃗ = Msm⃗ is assumed to 
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be homogeneous with a magnitude Ms and an orientation m⃗. The orientation for 
each magnetic particle was computed by extending the original Stoner–Wohlfarth 
model [23] to include the mean field and the magnetic interaction with neigh-
bouring particles. To compute the magnetic configuration, the total energy of all 
magnetic particles is minimised.

For a domain i, the local field H⃗l,i is the summation of the applied field H⃗a, the 
total magnetic dipole field 

∑
H⃗d,ji (sum over j) and the mean field 𝛼M⃗:

 

where α is the mean field parameter [24], which has a fixed value of α = 1/3 in the 
present study. The magnetic dipole field accounts for the total field originating 
from all neighbouring magnetic particles [25]. The dipole field for particle i from 
another particle j is expressed as
 

where r⃗ji is the displacement vector from particle j to i, M⃗j is the magnetisation 
and Vj is the volume of particle j. When the magnitude of the dipole field Hd,ij 
(which depends on rij and Vj) becomes smaller than 0.5% Ms, it is considered to 
be negligible and is ignored in the calculations. This threshold corresponds to: 
rij/(3Vj/4π)1/3 > 5.2.

The magnetic energy Ei of a particle i is the sum of the magnetostatic energy 
EH,i and the anisotropy energy Ea,i 

with EH,i = −μ0Hl,iMscosφi and Ea,i =
1

2
�0NsM

2
s sin

2
(
�i − �i

)
, where φi is the angle 

between H⃗l,i and M⃗j, θi is the angle between H⃗l,i and the easy axis and Ns is the shape 
anisotropy factor, chosen to be Ns = 0.1 to reflect the sample geometries used in 
the ND experiments. To derive the minimum of Ei expressed in Equation (12), 
one can get a unique solution for φi by applying the constraints dEi

d�i

= 0 and d
2Ei

d𝜑2
i

> 0 
[26]. Once the minimum energy is derived for all particles, the total energy of 
the whole system is calculated and compared to the one derived in the previous 
calculation until the difference between them is less than 0.5%. By this iterative 
process, a stable magnetic configuration can be achieved. The mean magnetisa-
tion ⟨M⃗⟩, the reduced magnetisation m and the values of ⟨m2

i ⟩ are calculated in 
the same way as in [12].

The 3DND parameters are then calculated as a function of applied magnetic 
field from the computed magnetic configuration. The magnetic particle size δND 
is estimated from the 3DND data with Equation (9) and compared to the known 
structural particle size δs derived from the computed magnetic microstructure. 

(10)H⃗l,i = H⃗a +
∑

H⃗d,ji + 𝛼M⃗

(11)H⃗d,ij =
1

4𝜋

3r̂ji

(
r̂ji ⋅ M⃗j

)
− M⃗j

|||r⃗ji
|||
3

Vj

(12)Ei = EH ,i + Ea,i
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To study the influence of grain size distribution, computations are carried out 
for a series of given microstructures, composed of (paramagnetic) austenite and 
(ferromagnetic) ferrite, that evolved as a function of temperature [14]. The satura-
tion magnetisation of ferrite Ms is calculated with the formula proposed by Arrott 
and Heinrich [27]. The starting austenite structure is generated in a cubic box 
with Lb = 70 μm containing quasi-isotropic austenite grain cells with an average 
diameter of dγ = 20 μm and a minimum value of dmin = 12 μm constructed via a 
conventional Voronoi construction method. The ferrite is generated at the corners 
of the austenite grains and allowed to grow isotropically once nucleated, result-
ing in a ferrite grain number density ρα, volume fraction f, average grain radius 
⟨R⟩ and a standard deviation σ. The ferrite grain size distribution is produced in 
such a way that both f and ⟨R⟩ are kept constant, whilst ρα is adjusted to ensure a 
constant ratio of �∕⟨R⟩.

4. Results and discussion

4.1. Influence of the size distribution

Figure 2(a) shows the microstructure generated for f = 0.10, ρα = 2.45 × 1014 m−3, 
R = 4.4 μm and σ/R = 0.25 and the corresponding magnetisation for each parti-
cle. By representing the particles by magnetic dipoles (of strength VMsm⃗ with V 
the volume of the particle) located at their centres, we can directly visualise the 
orientations of the magnetisation for each particle at different applied fields, as 
shown in Figure 2(b).

At a positive field of μ0Ha = 0.39 T, the M⃗ of all particles tend to incline towards 
the direction of the applied field. However, due to the magnetic interactions of 
the particles, the local magnetisation inside the particles is not perfectly aligned, 
which results in <mz >  = 0.97 (with <mx> ≈ <my> ≈ 0). When μ0Ha decreases to 

Figure 2. (colour online) (a) 3D visualisation of the microstructure with f = 0.10, ρα = 2.45 × 1014 m−3, 
⟨R⟩ = 4.4 μm and σ/R = 0.25 and (b) the computed magnetisation for each particle illustrated by 
the orientation of the arrows with easy axis shown in dashed lines. (c) The calculated <mx>, <my> 
and <mz> as a function of the applied field (arrows indicate the changing direction of applied 
field) for a magnetic hysteresis loop.
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0.0075 T, the local magnetisation shows more orientational disorder resulting 
in <mz> = 0.57. When μ0Ha is reversed to −0.39 T, most magnetisation vectors 
rotate to align with the negative applied field. As shown in Figure 2(c), the overall 
change in magnetisation shows a magnetic hysteresis loop. As in the actual 3DND 
experiment, the magnetic field is aligned along the z-axis the magnitude of <mx> 
and <my> is expected to be very small. We will therefore only focus on <mz> in 
the remainder of the analysis.

The first calculation was done for different microstructures with a fixed mag-
netic fraction f. Table 1 gives the configuration of the magnetic microstructure 
with f = 0.10 for different values of �∕⟨R⟩. Figure 3 shows the characteristic 3DND 
parameters: the rotation angle φ, the determinant of depolarisation matrix det

(
D̂
)
,  

the correlation function ξ and the particle radius δND as a function of the applied 
field. By increasing �∕⟨R⟩ from 0 to 0.25, the curves for φ hardly change. Only 
when �∕⟨R⟩ is increased to 0.50, the hysteresis increases and the saturation levels 
decreases. The value of det

(
D̂
)
 is more sensitive to σ/R as it probes the variations 

in local magnetic induction. As shown in Figure 3(b), the magnitude of det
(
D̂
)
 

decreases with increasing �∕⟨R⟩. This indicates that for identical values of f and 
⟨R⟩, the polarisation is reduced more strongly when the spread in size distribu-
tion increases. The lowest values for det

(
D̂
)
 are observed for the smallest applied 

fields (|μ0Ha| < 0.1 T), whereas a saturation is found for higher applied fields. In 
Figure 3(c), the corresponding values for the magnetic correlation function ξ are 
shown. As ξ probes the product of the correlation length and the average variation 
in magnetic induction ⟨���ΔB⃗

�
r⃗
����

2⟩, a more disordered magnetic configuration 
present at small applied fields (as shown in Figure 2(b)) results in a bigger value 
of ξ. Figure 3(d) compares δND to δs. A very good consistency is found for the 
whole range of applied fields, although a small but growing deviation is found 
for increasing values of �∕⟨R⟩.

4.2. Influence of the volume fraction

Figure 4 shows the characteristic 3DND parameters as a function of the applied 
field for different magnetic fractions f with a constant relative distribution width 
of �∕⟨R⟩ = 0.25. It can be seen from Figure 4(a) that the value of f indeed has a 
significant effect on the rotation angle φ as the saturation level roughly scales with 
the magnetic fraction. Similarly, the saturation level of det

(
D̂
)
 is very sensitive to 

the magnetic fraction (see Figure 4(b)) in comparison with the effect of varying 
�∕⟨R⟩ (see Figure 3(b)). It is interesting to note that for f = 0.05, the derived det

(
D̂
)
 

Table 1. The configuration of the ferrite microstructure at an identical magnetic fraction.

f ρα (×1014 m−3) R (μm) �⟨R⟩
0.10 2.80 4.4 0
0.10 2.45 4.4 0.25
0.10 1.75 4.4 0.50
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shows a negligible dependence on the applied field. However, the sensitivity of 
det

(
D̂
)
 to the applied magnetic field increases significantly for increasing values 

of f. For increasing values of f, the difference between δND and δs becomes more 
pronounced. At small applied fields, δND underestimate δs, whereas at higher fields 
δND is larger than δs.

Similar results for ξ as a function of applied field are found for a value of con-
stant σ/R (Figure 4(c)) and a constant value of f (Figure 3(c)). As the magnetic 
fraction f increases, the effect of magnetic inter-particle interactions becomes 
more pronounced, resulting in an increasing hysteresis.

Figure 3.  (colour online) Derived 3DnD parameters as a function of the applied field μ0Ha for 
microstructures with a constant magnetic fraction f = 0.10 and different values of the distribution 
width �⟨R⟩: (a) rotation angle φ, (b) determinant of depolarisation matrix D̂, (c) correlation 
function ξ and (d) average particle radius δND. in (d), the average particle radius δs calculated 
directly from the microstructures computationally generated is plotted as solid lines.
notes: The relevant particle size characteristics are indicated in each figure. note that the closed symbols correspond 
to a decreasing applied magnetic field, while the open symbols correspond to an increasing applied magnetic field.
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4.3. Determination of the particle size

The simulations of Figures 3 and 5 show that an increase in the width of the parti-
cle size distribution enhances the difference between δND and δs. The main reason 
for this difference is that magnetic correlations were assumed to be negligible 
when Equations (5)–(9) were derived. However, in the present numerical calcu-
lations, these magnetic correlations are explicitly included. In addition, parameter 
c3 = 16∕

�
9
�
1 + ⟨m2

x⟩
��

 in Equations (8) and (9) has been derived for identical 
spheres, but was applied for poly-dispersed spheres.

In Figure 5, a comparison between δND and δs as a function of f is made for 
different values of �∕⟨R⟩ at applied magnetic fields ranging from −0.39 to + 0.39 T. 
In general, δND is in good agreement with δs over the range of magnetic fractions 
and size distributions studied. However, the difference increases with increasing f 

Figure 4.  (colour online) Derived 3DnD parameters as a function of the applied field μ0Ha for 
microstructures with a constant �⟨R⟩  =  0.25 and different values of the magnetic fraction f: 
(a) rotation angle φ, (b) determinant of depolarisation matrix D̂, (c) correlation function ξ and 
(d) average particle radius δND. For comparison in (d), the average particle radius δs calculated 
directly from the microstructure is shown as solid lines.
notes: The values are indicated in the figure. note that the closed symbols correspond to a decreasing applied 
magnetic field, while the open symbols correspond to an increasing applied magnetic field.
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and �∕⟨R⟩. As explained earlier, this difference is mainly attributed to the limited 
validity of the assumptions made in the original 3DND analysis. As can be seen 
in Figure 5, the maximum difference between δND and δs is about 13%, which 
is satisfactory for most experiments. Based on this analysis, it was possible to 
deduce the number density ρ of magnetic particles. A simple relation based on 
the assumption of identical spherical particles yields ρ = 3f/4πδ3 with an estimated 
number density that is found to be within a factor 5 compared to the real magnetic 
particle number density.

To accurately determine the average particle size, an accurate relationship 
between ξ and δ is required. Te Velthuis and co-workers [12] analysed the depend-
ence of ξ on the magnetic configuration. They generalised Equation (8) as:

 

In the previous analysis, the constants were equal to a1 = 3/4 and a2 = 4/3(4πf2/81). 
In their numerical study, it was found that the parameters a1 and a2 were sensitive 
to (1) the ferrite grain size distribution and (2) the spatial homogeneity of the 
ferrite grains.

Since the analytical solution of Equation (4) was derived for mono-disperse 
particle distributions, it is not straightforward to include the effect of the size 
distribution on ξ. An alternative approach is to compare the numerical results for 

(13)� = �f
�
�0Ms

�2�
a1
�
1 + ⟨m2

x⟩
�
− a2m

2
�

Figure 5.  (colour online) comparison between the particles radius δND derived by an 3DnD 
analysis and the actual particle radius δs for different size distributions with �⟨R⟩ = 0, 0.25 and 
0.50 as a function of the magnetic fraction f at applied fields ranging from −0.39 to +0.39 T.
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poly-disperse particle distributions to those for identical particles to investigate its 
influence. To this aim, we calculated the ratio of ξ(σ)/ξ(0) for different values of f. 
The results show that ξ(σ)/ξ(0) is nearly independent of both the applied field and 
the magnetic fraction f at a fixed value of σ/R. However, ξ(σ)/ξ(0) increases with 
increasing σ/R. When we plot the parameter ξ(σ)/ξ(0) as a function of �∕⟨R⟩, as 
shown in Figure 6, a power law dependence �(�)

�(0)
− 1 ∝

(
�

R

)p

 with p = 2 is observed 
for �∕⟨R⟩≤ 0.5. This relation suggests that the effect of the size distribution on ξ can 
be described by an additional factor. We can therefore conclude that the relation

 

with χ = 3.0(3) can be used to describe the correlation function for poly-disperse 
particle size distributions. The variable ξ(0) can be calculated with Equation (8). 
The newly derived equation (14) is now a very useful addition to analyse experi-
mental 3DND data. For an identical particle system (mono-disperse), the average 
particle size can be calculated with Equation (9). For a poly-disperse system, 
ξ(σ > 0) can be expressed as a function of �∕⟨R⟩ with Equation (14), as shown in 
Figure 6. The effective size δ can then be calculated with Equation (9). Since δ now 
directly depends on �∕⟨R⟩, the additional relation of Equation (14) provides an 
accurate estimate for δ. For a lognormal distribution f (R) = 1

R�
√
2�
exp

�
−

(ln (R)−�)2

2�2

�
,  

one can derive the moments of the radius ⟨Rn⟩ = exp
�
n� + n2�2∕2

�
 and 

�2 = ln

�
1 +

�
�

⟨R⟩

�2
�

. Combining these relations yields ⟨R4⟩
⟨R3⟩⟨R⟩ =

�
1 +

�2

⟨R2⟩

�3

. 

(14)
�(�)

�(0)
= 1 + �

(
�

R

)2

Figure 6. (colour online) normalised field correlation function ξ (σ)/ξ (0) as a function of �⟨R⟩. The 
solid line shows the fit to the relationship �(�)

�(0)
= 1 + 3.0(3)

�
�

⟨R⟩

�2

 for �⟨R⟩ ≤ 0.5.
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For σ/R ≪ 1, this results in ⟨R4⟩
⟨R3⟩⟨R⟩ ≈ 1 + 3

�
�

⟨R⟩

�2

, which is fully consistent with 

the fitted relationship shown in Figure 6. Hence, the relationship between ξ(σ)/ξ(0) 
and σ/R found in the present study is suitable to determine both the particle size 
and the width of the size distribution, particularly for σ/R  ≤  0.5. The average 
particle size now corresponds to ⟨R⟩ ≈ �

1+3(�∕⟨R⟩)2.

In the above simulations, the value of σ/R is set as a constant. During the aus-
tenite-to-ferrite phase transformations in steels, σ/R is found to vary between 0 
and 0.7 [14,28], but once nucleation is completed σ/R tends to fluctuate around 
a constant value. This behaviour simplifies the above 3DND analysis to obtain a 
reliable experimental estimate of the magnetic particle size (ferrite grain size) and 
size distribution during phase transformations in steels. The newly established 
relationship between ξ(σ > 0) and ξ(σ = 0) thereby sheds new light on the analy-
sis of size distributions of magnetic particles from the 3DND data. It should be 
noted that the geometry of the ferrite particles has been simplified in the present 
modelling to a spherical shape. Under most conditions, the simplified geometry 
used here reflects the ferrite growth reasonably well in the initial stages of the 
transformation. The conclusions drawn from this study are thereby very useful 
to link the 3DND parameters to the microstructural characteristics.

5. Conclusions

We have computed magnetic configurations for magnetic microstructures with 
mono- and poly-disperse magnetic particles in 3D space and translated those to 
the characteristic 3DND parameters. The correlation function and the determi-
nant of the depolarisation matrix are found to be very sensitive not only on the 
magnetic phase fraction and average particle size, but also on the particle size 
distribution. The correlation function increases with increasing volume fractions 
and with the width of the particle size distribution of the magnetic particles. 
The magnetic particle size derived from 3DND data is found to be in very good 
agreement with the computed microstructural particle size over a wide range of 
volume fractions and grain size distributions. Deviations in the estimated particle 
size from 3DND data are found to originate from the spread in particle size. A 
relationship between the field correlation function and the relative width of the 
particle size distribution is found that accurately describes the deviations. The 
present simulations shed new light on the analysis of 3DND data from magnetic 
particle systems with a poly-disperse particle size distribution and are extremely 
useful to deepen the analysis of the austenite–ferrite transformation in low- 
alloyed steels.
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