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Abstract This review provides an in-depth exami-
nation of machine learning applications in assessing
concrete durability from 2013 to 2024, with a particu-
lar focus on critical degradation mechanisms, includ-
ing carbonation, chloride-induced deterioration, sul-
fate attack, frost damage, shrinkage, and corrosion. It
underscores the field’s heavy reliance on laboratory-
based data and notes the limited use of field data and
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the scarcity of newly generated datasets. The review
reveals that most studies utilize existing literature-
based datasets, with few contributing novel data and
limited open access to these databases, which ham-
pers broader validation and application. The review
classifies the features analyzed in studies into catego-
ries such as mixture proportions, engineering proper-
ties, exposure conditions, test parameters, and chemi-
cal compositions, highlighting a growing emphasis on
chemical compositions. Modeling approaches are pre-
dominantly standalone, though ensemble and hybrid
models are increasingly prevalent, with ensemble
models showing particularly strong performance in
recent years. High accuracy is observed across stud-
ies, with ensemble models, neural networks, and
hybrid models leading in performance. Furthermore,
the review stresses the growing importance of model
explainability, noting that model-agnostic methods
like SHAP are frequently used and that the focus on
explainability has increased. To propel the field for-
ward, the review advocates for the development of
diverse new datasets that include both the chemical
and physical properties of various mix ingredients
and improved data-sharing practices. It recommends
adopting a multi-task learning approach to simulta-
neously address multiple deterioration mechanisms,
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which can yield deeper insights and support the crea-
tion of more durable concrete structures.

Keywords Machine learning - Carbonation -
Chloride attack - Frost damage - Shrinkage -
Corrosion
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RRHC Random restart hill Climbing
SHAP Shapley additive explanations
SOA Seagull optimization algorithm
SOFM Self-organizing feature map
SRC Standardized regression coefficient
SSA Sparrow search algorithm

SSIs Sobol’ sensitivity indices

SVM Support vector machines

TBFI Tree-based feature importance
TPE Tree-structured parzen estimator
TWSVM Twin support vector machines
VAF Variation account factor

WNN Wavelet neural network

WOA Whale optimization algorithm
XGBoost  Extreme gradient boosting

1 Introduction

The durability of reinforced concrete (RC) infrastruc-
ture is of vital importance for the construction sec-
tor. Besides the strong correlation between durability
and structural reliability, durability performance also
affects long term maintenance costs as well as con-
tributes to CO, emissions. In the United States alone,
only for maintaining reinforced concrete decks due to
poor durability the annual direct cost comes to a stag-
gering $2 billion [1]. Similar figures are being spent
in Europe as well [2]. Assessing the durability of
concrete is essential for ensuring the sustained perfor-
mance and safety of infrastructure during its lifetime.
Concrete, as the predominant construction mate-
rial, undergoes various environmental stressors and
loading conditions during its service life, leading to
deterioration and potential structural concerns [3-5].
Hence, precise assessment techniques are imperative
for detecting potential durability issues and imple-
menting suitable remedial measures.

The assessment of concrete durability typically
involves a series of standardized laboratory tests,
including chloride permeability, water absorption,
sulfate resistance, carbonation, freeze—thaw resist-
ance, alkali-silica reaction, and abrasion tests, con-
ducted in the early ages [6]. These tests employ
diverse methodologies to evaluate essential durability
aspects of concrete. Leveraging these laboratory tests
in the early stages, engineers obtain valuable data
to inform material selection, optimize mix designs,
and implement construction practices conducive to

enhancing the durability and longevity of concrete
structures.

However, conducting multiple tests to evaluate
durability performance is resource-intensive and
time-consuming. Hence, empirical models offer a
pragmatic complement to reduce laboratory tests for
assessing concrete durability. Derived from statisti-
cal analyses of experimental data, these models pro-
vide simplified methodologies for estimating concrete
properties and behaviors without extensive testing.
Nonetheless, it is crucial to acknowledge that empiri-
cal models have limitations and may not capture all
aspects of cement-based composite behavior. Fur-
thermore, with the increasing utilization of various
cementitious and other materials in concrete, empiri-
cal models face added complexity [7-9].

To address these challenges, the integration of
machine learning techniques has emerged as a prom-
ising avenue [10, 11]. Machine learning offers a data-
driven approach that uncovers complex relationships
between input features and concrete performance. By
leveraging large datasets, machine learning models
can predict durability properties while considering
the influence of various pertinent factors. This ena-
bles the development of highly accurate and scalable
predictive models, capable of capturing the intricate
effects of different mix components and compositions
on concrete durability.

This review aims to provide a comprehensive
overview of the current landscape of machine learn-
ing applications in the field of concrete durability
assessment. Focusing on developments over the past
decade, it synthesizes existing research and high-
lights key advancements in applying machine learn-
ing techniques to this field. By elucidating potential
benefits, challenges, and future directions of employ-
ing machine learning techniques in evaluating con-
crete durability, this review seeks to catalyze further
advancements in the field.

2 Machine learning in concrete durability
assessment

2.1 Machine learning basics

Machine learning, a subset of artificial intelligence,

focuses on developing algorithms and techniques
that allow computers to learn from data and make
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predictions or decisions without being explicitly
programmed [12, 13]. At its core, machine learning
revolves around the idea of building models that can
automatically learn and improve from experience.
This process typically involves training these mod-
els on datasets, where patterns and relationships are
extracted to enable the model to make accurate pre-
dictions on new, unseen data.

Machine learning is underpinned by fundamen-
tal principles encompassing diverse learning para-
digms—including supervised, unsupervised, semi-
supervised, and reinforcement learning—tailored to
distinct scenarios and objectives [12, 14]. Among
these, supervised learning stands out, wherein algo-
rithms are trained on labeled datasets, each input
paired with a corresponding output. This setup ena-
bles the algorithm to learn patterns and relationships
between input features and target labels, making it
suitable for tasks such as classification and regression
[15, 16]. Unsupervised learning offers a contrasting
approach, operating on unlabeled datasets to uncover
hidden structures, patterns, or relationships within
the data. Without explicit guidance, unsupervised
learning algorithms autonomously identify clusters
of similar data-points or reduce the dimensionality of
complex datasets. Clustering algorithms group data-
points based on inherent similarities, while dimen-
sionality reduction techniques simplify data represen-
tations. Unsupervised learning is valuable for tasks
such as customer segmentation, anomaly detection,
and exploratory data analysis, where the underlying
structure of the data is unknown [17].

Semi-supervised learning amalgamates elements
of both supervised and unsupervised learning, lever-
aging a blend of labeled and unlabeled data during
model training. This hybrid approach proves advanta-
geous when labeled data is scarce or costly to obtain.
By harnessing additional unlabeled examples, semi-
supervised learning algorithms enhance model per-
formance and generalization [18]. In both supervised
and semi-supervised learning, two primary interpre-
tations are commonly applied: (i) learning the opti-
mal predictor based on the available data distribution,
and (ii) estimating the coefficients of a known struc-
tural relationship while leveraging the underlying
structure. Reinforcement learning, though less com-
monly applied, represents an increasingly prominent
paradigm. It furnishes a distinct framework for train-
ing agents to engage with environments and optimize

cumulative rewards. Through iterative experimenta-
tion, reinforcement learning agents refine optimal
strategies, guided by feedback in the form of rewards
or penalties based on their actions [19, 20].

These foundational principles constitute the back-
bone of machine learning, yielding a versatile toolkit
for tackling an array of challenges across various
domains. In the context of concrete science, super-
vised learning predominates, presenting opportunities
to enhance the efficiency, sustainability, and durabil-
ity of concrete infrastructure through predictive mod-
eling, optimization, and advanced monitoring tech-
niques. In the subsequent sections, the focus shifts to
the application of machine learning, emphasizing its
contribution to aiding concrete durability assessment.

2.2 Review of machine learning models

To comprehensively review the literature on the
application of machine learning models for predicting
values for durability indicators of cementitious mate-
rials, a systematic methodology was employed. Ini-
tially, databases such as Web of Science, Scopus, and
Google Scholar were queried using a combination of
keywords including “machine learning”, “durability
prediction”, ‘“‘cementitious materials”, “concrete”,
and other specific durability phenomena names. The
search was restricted to peer-reviewed articles pub-
lished between 2013 and 2024 to capture the latest
advancements. It is important to note that while the
review encompasses literature up to 2024, all rel-
evant articles were collected by the end of March
2024. Titles and abstracts of the retrieved papers were
screened for relevance, followed by a full-text review
of the selected articles. Inclusion criteria focused
on studies that specifically utilize machine learn-
ing techniques for durability assessment, excluding
those with purely theoretical or non-machine learning
approaches. The selected papers were then catego-
rized based on the specific durability properties they
addressed—such as alkali-silica reaction, carbona-
tion, chloride-induced degradation, sulfate attack,
frost damage, shrinkage, corrosion, and thermal
cracking—the type of machine learning models used,
and the characteristics of the dataset employed. For a
focused and robust evaluation, only durability mecha-
nisms explored in at least ten machine learning-based
studies were included. These mechanisms comprised
carbonation, chloride-induced degradation, corrosion
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of steel reinforcement, frost damage, shrinkage, and
sulfate attack, representing the most extensively
studied areas, as illustrated in Table 1. Key metrics
for model performance, such as R? value on the test
set, were extracted and analyzed to identify trends,
strengths, and gaps in the current research landscape.
Among the most frequently addressed features in the
models are those related to the concrete mix design
and exposure aggressiveness, with varying impact
levels (Fig. 1). This systematic approach ensured a
thorough and unbiased synthesis of existing knowl-
edge, facilitating a clear understanding of the state-
of-the-art and guiding future research directions in
the field.

2.2.1 Carbonation

Carbonation is a process by which carbonic acid,
formed through the interaction of atmospheric
CO, and moisture, chemically interacts with alka-
line phases in hardened concrete forming carbonate
phases. In terms of durability, this process lowers the
pH of concrete, which is critical for maintaining the
protective passivation layer on the steel reinforce-
ment. The prediction of the carbonation depth of con-
crete over time allows an estimation of the initiation
time for corrosion when the limit state is defined as
the depassivation of the reinforcement. Currently,
researchers are developing prediction models to esti-
mate concrete carbonation-related test results from
the perspective of carbon uptake by concrete struc-
tures. This relates to the need to estimate the environ-
mental impact of structures in terms of their global
warming potential. For this reason, the prediction of
the carbonation depth is not sufficient, and the alka-
line reserve of concrete needs to be addressed as well.
The present review focuses on the durability aspects
of the carbonation of concrete, but comments are
largely valuable for CO, uptake approaches, as well.
The estimation of natural carbonation during the
service life of field concrete is relatively complex
due to the influence of several factors. These factors
include the mix constituents (e.g., types of cement
and supplementary cementitious materials (SCMs),
chemical admixtures), the mixture design (e.g., rela-
tive contents of binders, water-to-binder ratio (w/b),
air content, aggregate gradation), structural design
and construction techniques (e.g. concrete cover
depth, curing, compaction), environmental exposure

and climatic conditions (e.g., indoor, outdoor shel-
tered, outdoor unsheltered, temperature, humidity,
precipitation) [53]. The prolonged process of natu-
ral carbonation imposes substantial costs and further
complicates the quantification of carbonation in field
concrete. To overcome the complexity induced by
time constraints, accelerated carbonation tests have
been employed to expedite the investigation of vari-
ous influential parameters on concrete carbonation.
Most machine learning models found in the literature
rely on data from these accelerated tests to predict
carbonation depth [54—63]. While many studies focus
on predicting carbonation depth as the model output,
a few (e.g., [64] and [54]) have explored the use of
the carbonation coefficient as the output variable.

Table 2 summarizes the research papers that
employed different machine learning models to pre-
dict carbonation depth and rate of a wide range of
concrete technologies. Accordingly, most models
for the prediction of accelerated carbonation depth
focused on binary blended concrete mixtures incorpo-
rating fly ash (FA). While these models have achieved
high prediction accuracy, certain limitations highlight
the need for further research to develop more gen-
eralized models. For instance, FA as supplementary
cementitious material demonstrates significantly dif-
ferent carbonation behaviour depending on whether
it is siliceous fly ash (class F according to ASTM
C618) or high-calcium fly ash (class C according
to ASTM C618) [65]. Considering no distinction or
clarification on the type(s) of FA used for the train-
ing implies the possibility of some bias in the model
towards one of the types or a weighted average
between both. Another important aspect is the range
of CO, concentrations in the database. It has been
reported that accelerated carbonation at ratios higher
than 3-4% diverges very substantially from the natu-
ral carbonation of concrete under service (occurring
at CO, concentrations of 0.03-1%, depending on the
type of surrounding environment) [66]. The median
of the dataset of 6.5% CO, is very much above this
threshold, posing difficulties for the application of
the model to the prediction of natural carbonation of
concrete.

In addition to binary blended concrete mixtures
incorporating FA, some studies proposed models to
predict the carbonation depth of concrete with other
SMCs including ground granulated blast furnace slag
(GGBFS), steel slag powder (SSP), metakaolin (MK),
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&
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Fig. 1 Comparative impact levels of common features across various deterioration mechanisms

and silica fume (SF). These studies include Wei et al.
[59], Duan and Cao [60], Khan and Javed [67] and
Taffese et al. [68]. For instance, Taffese et al. [68]
used a comprehensive dataset that incorporates six
types of cement and three types of SCMs.

In contrast to the majority of studies that focus
on accelerated carbonation, Majlesi et al. [69]
developed a model to predict the carbonation depth
of concrete exposed to long-term (up to 10 years)
corrosive environments. They utilized a dataset
of 110 instances and incorporated six input fea-
tures for model development using the ANN algo-
rithm. These features encompassed descriptions of
exposure time, concrete quality (capillary absorp-
tion, calcium oxide content (CaQ)), annual aver-
age environmental parameters (temperature and
relative humidity), and accumulated precipitation
(APP) at the time of carbonation depth measure-
ment. The authors reported a validation accuracy
of 0.910. Furthermore, they compared the perfor-
mance of their model with other machine learning
models of DT and MLR on the entire dataset. ANN
exhibited a high accuracy with an R? value of 0.950,
while DT and MLR achieved accuracy of 0.790 and
0.710, respectively. An important limitation of the
model is that it was trained with data from concrete
made with unblended cement only (CEM I as from
EN 197-1), with uncertain applicability to the more

commonly used blended cements nowadays. To
address such limitations, Marani et al. [53] devel-
oped a probabilistic neural network trained with
2165 data measurements to predict natural carbona-
tion depth of low-carbon concrete incorporating
Portland cement and five different types of SCMs.
Their model captured the effect of different types
of SCMs indicating that FA and limestone and cal-
cined clays accelerate the rate of natural carbonation
more significantly compared to ground GGBFS.
Additionally, their model successfully learned the
effect of regional/geographical climatic exposure on
natural carbonation of low-carbon concrete.
Vollpracht et al. [70] used a dataset of 1044
cases, including both concrete and mortar mixes for
both natural and accelerated carbonation. Among
the binder types, various types of cement and
SCMs are considered, with CEM I, CEM II/B-L,
CEM 1I/B-V, CEM II/A, CEM III/B, siliceous FA,
GGBFS, and calcined clay being the most present.
The XGBoost algorithm was used to derive the per-
mutation feature importance and the SHAP values.
This obviously depicted time as the most dominant
parameter governing the progression of carbona-
tion depth, followed by CO concentration, concrete
strength, clinker content, reactive CaO content, rel-

ative humidity, and curing time.
nilem
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2.2.2 Chloride attack

Chloride-induced deterioration is one of the most sig-
nificant threats to the durability of RC structures, par-
ticularly those exposed to marine environments and
deicing salts. In its natural state, concrete provides a
highly alkaline environment that fosters the forma-
tion of a passive layer on the surface of reinforcement
bars, effectively protecting them from corrosion.
However, when chloride ions penetrate the concrete
and accumulate beyond a critical threshold at the
reinforcement level, depassivation occurs, compro-
mising the protective layer and triggering corrosion.
This process ultimately undermines the structural
integrity, serviceability, and durability of RC struc-
tures [75].

In recent years, machine learning has emerged
as a transformative tool in modeling and predicting
chloride transport behavior. Table 3 provides a sum-
mary of machine learning applications over the past
decade. Most studies primarily use input features
related to mix proportions, with some incorporating
environmental conditions and fundamental material
properties.

Studies utilizing field datasets predominantly aim
to predict surface chloride concentrations in marine
environments [76—78], whereas those utilizing labo-
ratory data emphasize modeling chloride ion diffusiv-
ity, chloride ion penetration resistance, and chloride
profiles. These assessments employ various standard-
ized test methods, including the rapid chloride per-
meability test [67, 79-83] and the rapid migration
test [84-88]. The investigations encompass diverse
concrete types, including self-compacting concrete
(SCC) [80, 81], high-performance concrete (HPC)
[89], and recycled aggregate concrete (RAC) [79].

While most studies concentrate on mix propor-
tions, Tran [85] took a more comprehensive approach
by incorporating tricalcium aluminate (C;A) content
of the cement and the specific surface area of fly ash
as input features, alongside seven mix-related fea-
tures, for predicting the chloride diffusion coefficient
[90]. Given that C;A plays a crucial role in chlo-
ride binding by reducing ion mobility and delaying
chloride transport, its inclusion enhances predictive
accuracy. Many laboratory-based studies employing
migration tests tend to overlook the chloride bind-
ing capacity, particularly when SCMs such as slag
and FA are involved. However, a notable limitation in

Tran’s study lies in its insufficient distinction between
apparent diffusion coefficients derived from two types
of accelerated migration tests and those obtained
from natural diffusion tests.

Beyond chloride penetration, a select number
of studies have embraced a more comprehensive
approach by simultaneously predicting multiple dura-
bility- or strength-related properties. For instance,
Delgado et al. [83] developed models to capture both
chloride penetration depth and diffusion coefficients
in concrete subjected to drying—wetting cycles. Khan
and Javed [67] expanded this scope by predicting
chloride permeability, compressive strength, and car-
bonation resistance. Meanwhile, Wang et al. [82] and
Taffese and Espinosa-Leal [91] modeled both chlo-
ride penetration rate and compressive strength, albeit
through different methodologies—the former relying
on passed electric charge, while the latter utilized
chloride migration coefficients. These studies under-
score the growing shift toward integrated predictive
frameworks, paving the way for more robust durabil-
ity assessments in concrete materials.

Despite regression-based machine learning mod-
els being widely utilized in chloride transport stud-
ies, classification-based approaches remain under-
explored. Typically, chloride transport indexes are
used for a qualitative assessment of the concrete
performance, yet predictive tools based on classi-
fication rather than direct numerical values could
offer improved accuracy. For instance, Marks et al.
[88] and Taffese and Espinosa-Leal [84] developed
machine learning models to classify the chloride
resistance levels of concrete. Both studies utilized
classification models based on chloride migration
coefficients obtained under the Nordic standard NT
Build 492 [32]. The former categorized concrete into
four resistance classes—Very Good, Good, Accept-
able, and Unacceptable—while the latter refined the
classification into five levels: Low, Moderate, High,
Very High, and Extremely High. These efforts high-
light the potential of classification-based machine
learning models in providing more interpretable and
application-driven assessments of chloride resistance
in concrete.

2.2.3 Sulfate attack

Sulfate attack in concrete occurs when sulfate ions
from external or internal sources, such as soil,
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seawater, or industrial effluents, penetrate the cemen-
titious matrix and react with hydration products,
leading to chemical transformations that weaken the
structure. The primary mechanisms of deteriora-
tion include the formation of gypsum and secondary
ettringite, which result from the reaction of sulfate
ions with calcium aluminate hydrates (C-A-H) and
monosulfate phases. These reactions induce expan-
sion, cracking, and loss of cohesion within the mate-
rial. In aggressive environments, magnesium sulfate
can also contribute to deterioration by transforming
calcium silicate hydrates (C-S-H) into magnesium
silicate hydrates (M-S-H). Additionally, under pro-
longed exposure and in the presence of carbonates at
low temperatures, thaumasite formation may occur,
leading to further degradation.

A high concentration of sulfates in the pore solu-
tion can also lead to physical attack, this is not a
chemical attack but a physical deterioration process
instead. Sulfates dissolved in water penetrate unsatu-
rated concrete pores via capillary action (wicking).
During drying cycles, water evaporates, concentrat-
ing on the sulfate solution until salts crystallize. The
crystallization pressure from expanding salts (e.g.,
mirabilite — thenardite) generates internal stresses,
leading to fracturing of the concrete matrix. Repeated
wetting—drying cycles replenish sulfates and amplify
crystallization damage without requiring chemical
reactions with cement phases. This mechanism is
particularly observed in sulfate-laden environments
with fluctuating moisture, such as coastal zones or
groundwater-exposed structures. Machine learning
models have been applied to predict key deteriora-
tion parameters in sulfate-exposed concrete, including
strength degradation, mass loss, and expansion. The
following subsections provide a detailed review of the
algorithms and datasets used for these predictions.

Table 4 summarizes machine learning models
used over the past decade to predict durability indi-
cators related to sulfate attack. Most studies focus on
strength deterioration, while some model mass loss or
expansion. All models use mix proportions and expo-
sure conditions as inputs, with some incorporating
clinker composition (notably CsA content), engineer-
ing properties, or sample geometry.

Early models for strength degradation prediction
primarily employed ANNs trained on laboratory data.
Diab et al. [95] compiled data from 38 studies con-
taining compressive strength, expansion, and weight

loss records. Their ANN model, using cement con-
tent, water-to-cement ratio (w/c), CsA content, sulfate
concentration, initial strength, and time, achieved an
R? of 0.942. Tanyildizi [96] used machine learning
models to predict the compressive strength of light-
weight cement mortar with SF and FA, with the best
ANN model reaching R>=0.935. Chen et al. com-
pared ANN and SVM models for sulfate-exposed
mortars using 638 samples from accelerated tests,
with ANN performing best.

Recent studies applied ensemble models. Liu
et al. [97] used machine learning models to predict
sulfate resistance in RAC, with XGBoost achieving
R?=0.957, outperforming standalone models (ANN,
GPR, SVM, DT). Sun et al. [98] analyzed low-carbon
concrete data from 20 references, finding that GWO-
optimized SVM performed best (R?=0.972), high-
lighting water-to-cement ratio (w/b) ratio and wet-dry
cycles as key variables.

Few studies addressed mass loss and expansion.
Akyuncu et al. [99] used ANN to assess durabil-
ity in 39 concrete mixtures with Class C and F fly
ash, showing improved sulfate resistance regardless
of type. Hilloulin et al. [100] compiled 336 expan-
sion curves from literature, interpolated to 5294 data
points. XGBoost, optimized via TPE, best predicted
expansion curves based on mix proportions, clinker
composition, geometry, sulfate solution, and exposure
conditions (R?=0.933 on training, 0.788 on test).

In summary, few papers have considered C;A
content, whereas it has been shown experimentally
to have a huge influence on the degradation mecha-
nism. Furthermore, in real life, concrete exposed to
sulfate-laden environments suffers deterioration due
to salt crystallization, which is particularly more pro-
nounced under wet-dry cycles. The inclusion of wet-
dry cycles in machine learning studies would help
to provide better predictive results for field applica-
tions. Notably, no public database exists yet, though
explainability tools are emerging to help analyze pre-
dictions and enhance model interpretability.

2.2.4 Frost attack

In cold regions, frost damage progresses through
cumulative mircrocraking and surface spalling. When
pore saturation in concrete exceeds the saturation
threshold, freezing water generates hydrostatic pres-
sure in the pore structure and potential microcrack
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propagation. Over time, successive freeze—thaw
cycles accumulate microcracking, leading to progres-
sive degradation. This deterioration affects mechani-
cal properties and increases permeability, making the
concrete more susceptible to environmental damage
from harmful substances [102, 103]. Machine learn-
ing principles have been explored to identify trends
and potentially fast prediction of cement-based com-
posites’ performance under such exposures. Table 5
summarizes machine learning models used over the
past decade to predict durability indicators related
to frost attack. Three main types of applications can
be distinguished: direct prediction of durability indi-
cators based on concrete mix proportions, damage
degree assessment thanks to the analysis of nonde-
structive tests and image analysis to qualify air-void
system or damage due to freeze—thaw test.

Concerning image analysis, Tian et al. [104]
experimentally studied the effect of freeze—thaw
action on the internal microstructure of concrete.
They used X-ray computed tomography technology
(X-ray CT) with deep convolutional neural network
for 3D reconstruction of three-phase segmentation.
Based on the 3D reconstruction, they studied the
effect of freeze—thaw action on the damage evolution
in the hydraulic concrete. Additionally, they proposed
the formulation for predicting the freeze—thaw life as
a function of damage variables. Similarly, Hilloulin
et al. [105] proposed a model to segment air-voids
in concrete microscopic images to calculate the pro-
tected paste volume and showed it is proportional to
scaling during freeze—thaw test.

Concerning nondestructive tests results machine
learning-mediated analysis, Lian et al. [106]
investigated the effect of freeze—thaw cycles on the
fracture behavior of concrete using nondestructive
testing techniques such as acoustic emission (AE),
digital image correlation, and nuclear magnetic
resonance techniques. The acoustic emission
parameters were used to classify the fracture
behavior by employing K-means clustering method.
These findings gave valuable insights into the
influence of freeze—thaw cycles on the mechanical
behavior of concrete. Liao et al. [107] automated
the assessment of the freeze—thaw damage in
concrete by combining the piezoelectric-based
active sensing and deep learning techniques.
Two concrete specimens, under no-load and
bending states, respectively, were exposed to

freeze—thaw cycles. They acquired the stress wave
using PZT transducers which were later converted
into time—frequency maps using continuous
wavelet transform to obtain the dataset. A novel
deep learning model, referred to as the DSC-
ACGRU algorithm, was developed for automatic
feature extraction. This model combined depth-
wise separable convolution, convolutional gated
recurrent units, and an attention mechanism. The
proposed DSC-ACGRU model exhibited superior
efficiency, precision, and accuracy compared to
traditional machine learning models (SVM, DT,
BPNN) and other deep learning models (CNN,
CNN-LSTM).

Several machine learning models have been
applied to predict concrete frost resistance based on
mix compositions. Liu et al. [108] investigated frost
durability in RAC using ANN, GPR, and MARS, with
ANN achieving the highest accuracy (R*=0.951).
Air entrainment was identified as the dominant factor.
Wu et al. [109] developed a hybrid RF-RFE model
for predicting high-performance concrete frost resist-
ance, outperforming RF, SVM, PB, and GBDT, with
an R? of 0.958. Dai et al. [110] evaluated multiple
machine learning models on a dataset of 7088 sam-
ples, finding nonlinear models more effective. GBDT
performed best for relative dynamic elastic modulus
(R*=0.780), while CatBoost excelled in mass loss
rate prediction (R*=0.840). Atasham ul Haq et al.
[111] estimated the deteriorated compressive strength
(DCS) after freeze—thaw cycles using ANN, RF, and
SVM, all achieving R2>0.900, with ANN perform-
ing best (R?=0.924). Sensitivity analysis highlighted
the importance of initial concrete strength, lower
w/c, and air entrainment. Qiao et al. [112] compared
eight models for predicting freeze-thaw damage in
dune sand fiber-reinforced concrete (DSFC), where
XGBoost emerged as the best (R?=0.965). Esmaeili-
Falak et al. [113] optimized SVM with ALO, GWO,
and HGSO, with HGSO-SVM achieving the best per-
formance (R?=0.997), revealing cement and sand
as key factors. Gao et al. [114] assessed rubberized
concrete frost resistance, with XGBoost outper-
forming DT, ANN, SVM, RF, and stacking methods
(R?=0.960). Qin et al. [115] studied freeze—thaw
cycles, showing GBM significantly outperformed RF
(R?=0.990 vs. 0.930), while GLM and GAM had
lower accuracy. The study emphasized the need to
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Table 5 (continued)

8 improve frost resistance, particularly for regions with
5 _ _ more than 200 freeze-thaw cycles.
g iﬁ = = These findings highlight the increasing use of
§ B : : ensemble learning techniques, particularly XGBoost,
é é § § GBDT, and RF, in predicting concrete frost resist-
_ ance, while sensitivity analyses confirm the impor-
§ tance of mix proportions, air entrainment, and w/c
= . . o
T ratio in enhancing durability.
— S
2 |2 .
q O 2.2.5 Shrinkage
>
= )
'—§ E L:) The prediction of autogenous and drying shrink-
3 g % age properties in cementitious materials is a crucial
=] . .
S %ﬁ = | aspect of concrete technology, as these properties sig-
_ S S nificantly influence the long-term performance and
< e .
E 3 |X & 2 durability of concrete structures. Shrinkage can lead
8*§ = . . to cracking and reduced structural integrity, mak-
< E g o BE Z & i dicti tial f i d
S| E RS2, S 1 ing accurate prediction essential for engineers an
s 2|% R s u;E 58 E 5 2'5 5 researchers in the field. While traditional empirical
= on = . . . . .
§ 8= 3 O<LOZX0a 8 ©o models have provided some insights into shrinkage
5 behavior, they often fall short in capturing the com-
.22 =) plex interplay of various influencing factors, such as
XS * - . . .
;§ g 5’ § 2 moisture loss, temperature fluctuations, and the inher-
o ent material characteristics of the concrete mix.
- . .
z = 5 - In recent years, there has been a growing inter-
= . . . . .
5‘ §§ <Z“>‘o‘o E est in leveraging machine learning techniques to
- enhance the prediction of shrinkage properties. Few
. machine learning models have been developed to
kS| z ° ° predict autogenous or drying shrinkage properties of
<s “ “ cementitious materials. Table 6 summarizes machine
(2] . .
° 3 LB learning models used over the past decade to predict
< = oo .
§ 8 ;.L 2 shrinkage.
2 — m For drying shrinkage prediction, ANN was
3 g deployed by Bal and Buyle-Bodin [116] and
5 5 % b Mermedas and Arbili [117]. The former applied
z E = z ANN to predict drying shrinkage in normal concrete
- o =t . | using a database of 296 specimens, considering
O = o) ' o a2 . .
ER) . gg 2 e% g S 5%; 11 parameters related to mix properties, sample
= 2 28 %5238 . ..
§ ki g REeRro= & =9 geometry, environmental conditions, and 28-day
£ mechanical strength. An R? of 0.967 was achieved.
5 2 = 2 On the other hand, Mermedas and Arbili [117] used
2 E,' o g g, experimental data comprising 586 data points from
3 . . .
_ e five studies on binary and ternary formulations
Q Q | ! Q . . g .
5] o, %D § ‘g ; o B 5 incorporating silica fume and fly ash. Their results
13) S g i) —_ 3] .. . . .
g g & E5SEEEES5 £ § indicated that higher mineral admixture content leads
a ©= © . © e to increased shrinkage strain, with the ANN model
2 s - é 2 R accurately predicting experimental values (R*>=0.954
23 L EZ g 3|2
2§ £E£2%83 2 EEQ E on the test set). More recently, ensemble models
(5] i) i) (5] . .
g2 Lg=e 242 o = have been used by Hilloulin and Umunnakwe [118]
ilem
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and Ocak et al. [119] to predict drying shrinkage in
mortar and concrete formulations, incorporating mix
compositions, environmental conditions, geometric
features, and aggregate properties. Hilloulin and
Umunnakwe reported that Extra Trees Regression
performed best and provided additional insights
through SHAP analysis, while Ocak et al. reported
CatBoost was the best model and successfully
predicted crack widths due to shrinkage.

Concerning autogenous shrinkage prediction,
Liu et al. [120] developed an SVM model for con-
crete with SF and FA, using eight input parameters.
The model outperformed ANN but slightly under-
estimated shrinkage, showing potential for further
improvement. Hilloulin and Tran [121] used ensem-
ble learning on a dataset of 437 studies to predict
autogenous shrinkage in cementitious materials with
superabsorbent polymers and a broad range of SCMs
(calcined clay, slag, FA, SF). XGBoost achieved high
accuracy (R>=0.954), and SHAP analysis identified
key parameters. A follow-up study [122] showed the
optimized model can outperform analytical models
(B4, CEB). Similarly, Li et al. [123] used 11 factors
to predict autogenous shrinkage in ultra-high-perfor-
mance concrete (UHPC), with GB providing the best
accuracy (R2=0.89O). Cement, SF, and water content
were most influential, but conflicting results on SF
effects suggest variability in its composition.

Finally, Wang et al. [124] predicted nonuniform
shrinkage (NUS) in steel-concrete composite slabs
using machine learning models. A database of 782
data points from six studies was built, with five input
features: relative distance, slab depth, relative humid-
ity, age, and compressive strength. GB emerged as the
best model (R>=0.927), and SHAP analysis identi-
fied key influencing parameters.

2.2.6 Corrosion of steel reinforcement

Corrosion of reinforcement bars is a major concern in
reinforced concrete structures. It typically arises when
the protective alkaline environment of the concrete is
compromised, allowing aggressive agents to penetrate
the concrete and reach the steel reinforcement. Two
key parameters characterize the corrosion process
in reinforced concrete: the corrosion potential
and the corrosion rate. The corrosion potential
(electrochemical or half-cell potential) indicates

the likelihood of corrosion occurring, reflecting the
thermodynamics of the process. Meanwhile, the
corrosion rate measures the speed at which corrosion
progresses, representing the kinetics of the process.

As the deterioration advances, a third critical fac-
tor comes into play: the development of cracks in the
concrete cover. In addition to its chemical protection,
the intact concrete cover serves as a physical barrier
for the reinforcement bar. However, when cracks form
due to the pressure exerted by the expansive corro-
sion products, the reinforcement becomes signifi-
cantly more exposed, leading to a rapid acceleration
in the corrosion rate.

Zhang et al. [125] used six algorithms, including
BR and RF, to predict the integrity of the concrete
cover during accelerated corrosion due to chlorides
of reinforced concrete with various rubber contents,
finding all models except the linear one accurate in
estimating cracking due to corrosion.

Nikoo et al. [126] predicted corrosion rate (as
obtained from linear polarization resistance) in rein-
forced concrete using SOFM. It is mentioned that the
reinforced concrete was corroded ‘naturally’ but it is
unclear if this was a result of carbonation or chloride
ingress, implying a big limitation to the utility of the
results. Liu et al. [127] evaluated sulfide corrosion
rates and initiation times using a hybrid GPR model,
which outperformed MLR and RBF models. Sulfide
corrosion is comparable to chloride corrosion more
than carbonation corrosion, and it implies reinforce-
ment corrosion accelerated by acid attack of cover
concrete. Giineyisi et al. [128] used GA and ANN
to predict the time from accelerated corrosion initia-
tion to cracking in RC elements, with the ANN model
showing higher accuracy. Xu and Jin [129] employed
ANN to predict reinforcement corrosion levels, find-
ing the RBF model more accurate than the BP model.

Ji and Ye [130] employed RF, SVM, XGBoost,
and ANN to predict corrosion rates in carbonated
cementitious mortars, finding SVM to be the most
accurate. Salami et al. [131] used LR, ANN, SVM,
KNN, and RF to predict corrosion initiation times
in steel embedded in SCC exposed to sodium chlo-
ride, with RF as the most effective model. Zounemat-
Kermani et al. [132] compared neural network-based
models (MLP & RBF) and tree-based models (RF,
CHAID, & CART) for predicting concrete corrosion
in sewers, finding RF superior. Sadowski and Nikoo
[133] combined ANN with ICA and GA to predict
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corrosion current density, with the ICA-ANN model
demonstrating enhanced accuracy.

3 Data
3.1 Data source

A detailed examination of the aforementioned
machine learning studies reveals some trends regard-
ing the origin of the data. More specifically, as illus-
trated in Fig. 2. Figure 2, most of the studies (79%)
used experimental data from a laboratory environ-
ment, while only 14% of the studies reported the use
of data from field experiments and the remaining 7%
did not mention the origin of the data. The predomi-
nance of laboratory studies is unsurprising, as natural
degradation mechanisms unfold over extended peri-
ods, often spanning decades, making long-term field
studies impractical. To circumvent this limitation,
researchers frequently employ accelerated testing
in controlled environments, enabling them to simu-
late long-term deterioration within feasible research
timelines.

While laboratory experiments offer precise control
over influencing factors, they rely on accelerated test-
ing conditions that do not always correlate perfectly
to real exposure conditions. Field exposure provides
more real results, but the specific exposure condi-
tions are not always relevant for other environments.
Moreover, field data frequently originates from struc-
tures already exhibiting signs of degradation, as
well-performing structures are rarely the subject of
durability studies. This introduces an inherent bias:
subpar concrete structures in the field tend to be made
with mixes below minimum standards, while labora-
tory studies often use high-quality concrete mixes to
ensure broad applicability of results. Consequently,
the predictive capabilities and reliability of machine
learning models can be inadvertently skewed depend-
ing on whether they are trained on field or laboratory
data. Furthermore, laboratory tests are performed
under controlled conditions that cannot fully rep-
licate the effects of moisture content and transport
(e.g., variations in relative humidity, wetting—drying
cycles). As a result, the importance of moisture con-
tent and transport may be underestimated by models
trained solely with lab data. Regardless of whether
the studies used experimental data from lab or field

environments, the majority obtained their data from
literature sources. For example, of the 79% of stud-
ies reporting the use of laboratory data, about half
(50%) used data published in the literature and only
28% based their model partially or entirely on their
own experiments. Databases consisting of their own
results tend to be smaller in size compared to data-
bases constructed from literature. It could be expected
that models using field experimental data from litera-
ture provide predictions that tend to be more univer-
sal but less precise.

Regarding the main temporal trends, the number of
machine learning studies focusing on concrete dura-
bility has increased over the years, especially since
2019, as shown in Fig. 3. To an extent this is expected
as the state-of-the-art machine learning tools have
developed significantly in the last 5 years as well.
This upsurge is accompanied by an increase in both
the number of features and instances in these studies.
Initially, most databases contain tens or hundreds of
instances. However, most recent studies have lever-
aged databases with thousands of instances, reflecting
a significant expansion in the scope of data utilized.

The number of features incorporated in these stud-
ies has varied significantly, ranging from a few as 3
to as many as 37, with a median of 8. Recent research
commonly employs between 5 and 15 features. Nota-
bly, studies leveraging the largest databases tend to
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incorporate feature sets exceeding the median, ena-
bling models to more effectively capture and charac-
terize the complex mechanisms governing concrete
durability.

In recent years,
increase in the duration of experiments, measured in
the square root of days, considered in machine learn-
ing studies focused on concrete durability, as shown
in Fig. 4. Conventionally, studies based on labora-
tory data typically report experiment durations rang-
ing from tens to hundreds of days, often driven by
accelerated testing protocols. However, the exposure
times reported in more recent research utilizing field
data have documented exposure times extending into
thousands of days, with the longest reported dura-
tion reaching 18,250 days. In contrast to the trend of
using more features in larger databases, recent stud-
ies with long exposure times do not typically include
more than the median number of features. This could
be because the existing descriptors are sufficient or
because accessing additional descriptive features is

there has been a noticeable

challenging. Moreover, despite being relatively newly
published, these documents should not be considered
always universally relevant for current construction
practices because they are sometimes based on data
that is decades old (especially those containing field
data). An important aspect to consider is the evolu-
tion of binder types, which makes models trained on
data that includes only CEM I (or OPC) less up to
date.

3.2 Data availability

A significant portion of machine learning studies on
concrete durability (68.49%) rely on previously pub-
lished data, whereas less than one-third (31.51%)
generate their own datasets (Fig. 5). Notably, 74% of
these studies do not provide open access to their data-
bases. This lack of data transparency is slightly more
common in studies using their own data compared
to those using curated data. Specifically, only 1 in 5
studies that employ their own experimental data offer
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open access databases, whereas 1 in 3 studies using
data from literature. This trend remains surprisingly
low even for studies that use data compiled from pre-
vious studies. While some data may be sensitive and
require confidentiality, it is noteworthy that privately
funded research on concrete durability is uncommon,
making the reasons for closed access to these data-
bases unclear. However, maintaining closed access to
data could potentially mitigate the positive publica-
tion bias that is quite prevalent in the field of concrete
durability research.

4 Modeling approaches

4.1 Feature types

The first step in the modeling phase involves select-
ing different features that can be used by the mod-

els to describe the durability phenomenon. In
machine learning studies focused on the durability

of cementitious materials, these feature types can be
categorized into five groups: mixture proportions,
engineering properties, exposure conditions, test
parameters, and chemical compositions, as illustrated
in Fig. 6. It is clear that the majority of the studies
primarily consider mix proportions, i.e., mass frac-
tions of constituents, exposure conditions such as
temperature and external solution concentration, and
test parameters such as concrete age at the start of the
test or the test duration. Fewer studies have consid-
ered engineering properties, such as specimen size
and geometry, or the chemical composition of con-
stituents such as cement. However, a notable shift has
emerged in recent years, with increasing emphasis
on the inclusion of chemical composition in predic-
tive models. Research has demonstrated that models
incorporating binder chemistry significantly outper-
form those relying solely on cement type, offering
deeper insights into material behavior [134]. Despite
this advancement, a substantial gap remains in lever-
aging constituent chemical composition for specific
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durability challenges such as carbonation, chloride
ingress, sulfate attack, corrosion damage, and shrink-
age. Addressing this gap presents a crucial opportu-
nity to enhance the predictive accuracy and reliability
of durability models.

4.2 Modeling algorithms

As discussed in preceding sections, machine learning
studies on concrete durability have employed a vari-
ety of models, which can be classically categorized as
standalone, ensemble, and hybrid. Standalone models
operate independently, making predictions based on
a single algorithm. Ensemble models combine mul-
tiple standalone models to improve prediction accu-
racy by leveraging the strengths of each model and
mitigating individual weaknesses. Hybrid models
integrate different types of algorithms or techniques,
such as combining machine learning with statistical
methods, to enhance model performance and pro-
vide more comprehensive insights into the problem
under investigation. Most models used in these stud-
ies (148 out of 259, or 57%) fall into the standalone
category. Approximately one-third of the models (78
out of 259, or 30%) are ensemble models, and the
remainder are classified as hybrid models (33 out of
259, or 13%). A notable trend is the increasing use
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Fig. 5 Publication of data sourced from literature and experi-
ments

of ensemble models over time, particularly after
2020, as depicted in Fig. 7. This shift coincides with
the advent of explainability tools, such as the SHAP
library, which has enhanced the transparency and
understanding of model predictions. It is worth not-
ing that the number of models in 2024 appears to be
lower compared to 2023. This is because the present
review only includes studies collected by the end of
March 2024. It is anticipated that the number of mod-
els for 2024 will surpass those from previous years
once the entire year’s data is accounted for.

Figure 8 provides a breakdown of standalone
algorithms utilized in concrete durability research.
Neural networks and deep learning methods domi-
nate, appearing 56 times (38%). Kernel methods and
probabilistic models are also widely used, with 45
instances (30%). Tree-based methods are used in 21
cases (15%), and regression methods appear 10 times
(7%). Other techniques, including instance-based
learning, evolutionary algorithms, spline-based meth-
ods, density estimation, and clustering, are used less
frequently. This diverse array of algorithms highlights
the researchers’ efforts to explore various approaches
to tackle concrete durability issues, with 90% of
the standalone algorithms falling into four main
categories.

Figure 9 provides a comprehensive overview of
the diverse range of algorithms utilized, including
standalone, ensemble learning, and hybrid methods.
Ag the standalone algorithms, BPNN leads with 15%
(40 instances) of the total, followed by SVM with
12% (32 instances) and DT with 6% (15 instances).
In the ensemble learning methods category, RF is the
most commonly used with 24 instances, followed by
GB and XGBoost, each with 15 instances. Regard-
ing hybrid models, ANNs are most frequently used
in conjunction with other algorithms for optimiza-
tion, followed by SVM optimized using various algo-
rithms. Despite the rapid evolution of new machine
learning and deep learning algorithms, many studies
have not yet adopted these state-of-the-art methods.

4.3 Models’ performance

Figure 10 presents the accuracy (R?) on the test set
of the best regression models reported in the studies
for each degradation mechanism. Most of these best
R? values, ranging from 0.88 to almost 1, are excep-
tionally high in studies that consider both field and
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laboratory data. However, these impressive accu-
racies sometimes seem too good to be true. This
skepticism is heightened by the fact that most of
the studies reporting top accuracies— highlighted
in red—only compared a limited number of mod-
els (typically 1 to 3). Such potential discrepancies
in reported accuracy might stem from the consider-
able variation in data preparation methods, training
strategies (e.g., splitting on formulations, others on
data-points), the performance evaluation (with or
without cross-validation), and the size of the data-
base used. Notably, for field experiments, model
performance was reported exclusively for chloride
attack and carbonation, as these were the only deg-
radation phenomena modelled using machine learn-
ing techniques.



Materials and Structures (2025) 58:145

Page 350f46 145

Fig. 8 Categories of standalone algorithms used in the studies

Figure 11 illustrates the types of best models
reported across the studies. Ensemble models rep-
resent about a third of the best models (36%), while
neural networks account for 27%, and hybrid mod-
els make up 22%. By comparing this figure with the
overall distribution of models used in the studies,
it becomes evident that the ensemble models often
outperform neural networks, given that their repre-
sentation among the best models exceeds their share
in the total model population. Furthermore, hybrid
models also demonstrate significant efficiency, as
their share among the best models exceeds their
share in the total model population. This indicates
a notable trend where hybrid models, though less
commonly used, deliver superior performance in
predicting concrete degradation mechanisms.

4.4 Models’ explainability

While ensuring accuracy in models is crucial for
practical applications, model explainability is
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equally vital. Model explainability in machine
learning can be divided into two primary types:
model-agnostic methods and model-specific
methods [135-138]. Model-specific methods are
designed to align with the unique characteristics of
specific machine learning models or groups of mod-
els, utilizing their internal structure and properties
to create explanations. In contrast, model-agnostic
methods are versatile techniques that can be applied
to any machine learning model, irrespective of its
architecture or underlying algorithm. Figure 12
illustrates the variety and frequency of explainabil-
ity methods adopted in studies focusing on concrete
durability.

Model-agnostic  methods are predominant,
accounting for 85% of the total (33 instances),
compared to 15% for model-specific methods (6
instances). Among model-agnostic techniques, SHAP
is the most frequently used, appearing in 25% of the
studies. SHAP combined with ICE is also notable,
utilized in 15% of the studies. Other model-agnostic
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Fig. 9 All types of algorithms used in the studies

methods include PFI (15%), GRA, RReliefF, and
p-value analysis (each at 5%), SSIs, GSA, OAT, RF-
RFE, and GCV. In contrast, model-specific methods
are less diverse and less frequently employed. Among
these, SRC is used in 50% of the model-specific stud-
ies but appears in only 8% of the total studies, which
includes both model-agnostic and model-specific
methods. Methods such as MDI, GI, and TBFI are
each used even less frequently. This preference for
model-agnostic methods underscores their flexibility
and general applicability in explaining the influence
of various features on model predictions, highlighting
their importance in advancing the field of concrete
durability.

Figure 13 illustrates the extent of model explain-
ability, which can be categorized by global and
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combined global-local explainability, applied to vari-
ous concrete degradation mechanisms. In the earlier
years of the examined period, model explainability
was not a prominent feature in studies. It was not until
2017 that global model explainability started to gain
traction, with a significant increase in studies consid-
ering this aspect from 2021 onwards. Unsurprisingly,
there are no studies prior to 2022 that incorporate
explainability at both the local and global levels. The
number of features considered in these models varies
significantly, with recent studies tending to incorpo-
rate more features, reflecting increased model com-
plexity. Carbonation and chloride studies frequently
use global methods with larger feature counts. Studies
related to sulfate, frost, and shrinkage employ com-
bined methods, while corrosion studies favor only
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global methods with diverse feature counts. This trend
highlights the growing importance of comprehensive
model interpretability and the increasing complexity
of models in concrete durability research. Given the
flexibility and broad applicability of model-agnostic
approaches like SHAP, these methods are likely to
remain the preferred choice for explaining complex
models in the field, enabling deeper insights into deg-
radation mechanisms and model predictions.

Number of models

5 Discussion
5.1 Benefits and contributions

The utilization of machine learning models to pre-
dict the values for durability indicators of cementi-
tious materials offers several significant benefits that
revolutionize the field of civil engineering. One of the
foremost advantages is their high accuracy in predict-
ing key durability controlling factors such as carbona-
tion, chloride-induced degradation, sulfate attack,
frost damage, shrinkage, and corrosion by leverag-
ing vast datasets and advanced algorithms. This level
of accuracy surpasses traditional methods, enabling
more reliable assessments of concrete structures’ lon-
gevity and integrity. Moreover, the explainability of
these models is a critical feature. The adaptation of
explainable machine learning techniques allows engi-
neers to understand the underlying reasons behind
the predictions. This transparency is essential for
gaining trust in the models and for making informed
decisions about concrete durability. Additionally,
machine learning models offer a practical alternative
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Fig. 12 Methods adopted for model explainability

to time-consuming and resource-intensive laboratory
tests. Traditional durability assessments often require
extensive sample preparation, long-term exposure
studies, and complex testing procedures, all of which
consume significant time and resources. In contrast,
machine learning models can rapidly analyze large
datasets and provide accurate predictions without
the need for extensive physical experimentation.
This efficiency not only accelerates the assessment
process but also reduces costs associated with dura-
bility testing. These models are also instrumental in
aiding engineers in designing durable concrete struc-
tures. By accurately predicting potential degradation
mechanisms, engineers can tailor concrete mixtures
to mitigate these effects, leading to the development
of more resilient infrastructure capable of withstand-
ing environmental stresses.

Furthermore, once trained, machine learning
models operate faster than conventional numerical
models. Numerical simulations, while powerful,
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often involve complex computations that can be time-
consuming. In contrast, machine learning models,
having undergone the initial training phase, can
quickly process new data and provide immediate
predictions. This speed is particularly advantageous
for delivering prompt predictions that expedite the
decision-making process in construction projects.
Overall, the adoption of machine learning in this
context leads to more efficient, cost-effective,
and accurate durability assessments, ultimately
contributing to the development of infrastructure with
extensive service life.

5.2 Current challenges and limitations

Despite the numerous benefits, machine learning
models for predicting the values for durability
indicators of cementitious materials face several
challenges and limitations. One major limitation is
that these models often do not account for the various
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types of binders used in concrete, potentially limiting
their applicability across different formulations. They
also tend to consider a limited range of concrete
types, which may not fully represent the diversity
encountered in real-world applications. Most models
are trained with lab databases collecting results from
accelerated tests. Such tests offer a good qualitative
assessment, but they may fail in predicting the long-
term performance of real structures when in service.
For instance, a study examining the factors affecting
chloride penetration in concrete demonstrated
that the relative influence of key features evolves
over time [139]. Effects of moisture variations
(including dynamic equilibria with the ambient
relative humidity, and wetting—drying cycles), frost
cycles, chloride deposition rate, CO, atmospheric
concentration, and thermal cycles may need
adaptations for the results from lab-based models.
The lack of sufficient field data covering multiple
factors is one of the main limitations for developing
more comprehensive models. Additionally, the
scarcity of substantial open data hampers researchers’
ability to effectively train and validate their models,
obstructing replication efforts and hindering
collaborative scientific progress. Furthermore, the

Number of features

generalization capacity of these models is almost
always not reported, particularly for concrete with
high contents of SCMs, raising concerns about their
robustness in diverse scenarios. Another critical
challenge is that these models rarely incorporate
fundamental physics or chemistry principles, which
are essential for a deeper understanding of material
behavior. However, there are promising examples
of physics-informed machine learning in the field
of porous media that could be adapted for concrete
technology [140-142]. Addressing these challenges is
crucial for advancing the reliability and applicability
of machine learning models in predicting the values
for durability indicators of cementitious materials.

5.3 Recommendations for future work

To enhance the accuracy and effectiveness of
durability experiments as inputs for machine learning
models, several best practices should be followed. It
is essential to comprehensively report all material and
specimen properties, along with detailed descriptions
of the experimental conditions. Expanding the
availability of field experiment data—particularly
those addressing sulfate and frost attack, shrinkage,
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and corrosion of reinforcement—would provide
invaluable real-world insights that can be used to
train, validate, and refine predictive models.

Data reusability should be a primary focus, with
researchers encouraged to present readable tables
and graphs that are easy to interpret and repurpose
for future studies. Beyond individual efforts, col-
laborative initiatives should focus on developing a
comprehensive, standardized data repository, ena-
bling the aggregation of diverse datasets. Such an
initiative would significantly advance the field, foster-
ing the development of more robust and generalizable
machine learning models capable of capturing the
complex interactions influencing concrete durability.
Additionally, precise quantification of experimental
dispersion is crucial, as it enables the development of
models capable of providing uncertainty estimation.
This, in turn, enhances the reliability and confidence
of predictive models, pushing the boundaries of cur-
rent research in durability and predictive modeling.
Future research should further emphasize the inte-
gration of physical and chemical properties of mix
constituents, as such an approach enhances predic-
tive accuracy and ensures broader applicability across
diverse concrete formulations [134, 143].

Understanding concrete performance is crucial for
accurately predicting values of durability indicators
and service life of structures. Although most stud-
ies assess durability based on individual deteriora-
tion mechanisms, real-world conditions often involve
combined mechanical and environmental, complicat-
ing these evaluations [144, 145]. While sensors play
a significant role in monitoring concrete durability
environmental conditions [146—-149], yet no stud-
ies have fully leveraged real-time sensor data. By
integrating advanced machine learning techniques
with real-time data, researchers can uncover deeper
insights into the factors influencing durability. Future
research should focus on this innovative approach to
enhance the monitoring of concrete performance and
strengthen structural resilience.

5.4 Recommendations for machine learning models

When developing machine learning models for
predicting values for durability indicators of
cementitious materials, several key recommendations
should be considered. It is beneficial to use a variety

of feature types to capture the complex interactions
influencing material durability. Models should
account for the exact amount of SCMs in blended
cement to ensure accurate predictions. Proper train-
test splits should be performed at the specimen level
rather than the data-point level, as multiple data-
points can often be derived from a single formulation.
Additionally, models should be evaluated using cross-
validation to ensure robustness and generalizability.
As illustrated in the most recent studies, analyzing
results with both global and local model-agnostic
interpretation tools can provide deeper insights into
model behavior and the factors driving predictions,
thereby enhancing the transparency and reliability of
the machine learning approach in this domain.

In another perspective, most studies have concen-
trated on developing machine learning models to pre-
dict the outcomes of individual deterioration mecha-
nisms in concrete. However, in real-world scenarios,
these degradation mechanisms impact concrete dura-
bility both simultaneously and sequentially. It is well-
established that synergistic deterioration progresses
faster and more severely than any single degradation
process [150-152]. Thus, evaluating these combi-
natory and synergistic effects is crucial for compre-
hensively addressing concrete durability [153-156].
Current single-task approaches, while effective at pre-
dicting complex degradation mechanisms, have sig-
nificant limitations. Firstly, each task requires sepa-
rate datasets and models, which is resource intensive.
Secondly, these models lack scalability when dealing
with degradation influenced by multiple related tasks
simultaneously. Thirdly, they do not leverage shared
knowledge between related tasks, potentially miss-
ing out on performance improvements. A multi-task
learning approach is essential for overcoming these
limitations. By training a single model to predict mul-
tiple degradation processes simultaneously, multi-task
learning can enhance predictive capability, especially
when degradation mechanisms interact and influ-
ence one another, all without significantly increasing
model complexity. Since most input features, such as
concrete mix composition, are shared across multiple
tasks, only a few additional task-specific features are
required, making multi-task learning a computation-
ally efficient alternative to multiple independent mod-
els. This approach not only uncovers valuable insights
but also aids researchers in developing concrete that
better resists deterioration mechanisms.
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6 Summary

This review highlights the following key findings in
the application of machine learning to concrete dura-
bility from 2013 to 2024:

e Data sources and availability: A dominant reli-
ance on laboratory data (79%) underscores a gap
in real-world applicability, as only 14% of stud-
ies incorporate field data, with a notable 74% not
offering open access to their datasets. This limita-
tion hampers broader validation and the practical
application of findings, emphasizing the need for
more accessible and diverse data sources.

e Feature types: Recent trends reveal a growing
emphasis on chemical compositions in mode-
ling, suggesting a shift towards more holistic and
nuanced approaches. The integration of diverse
features, including mixture proportions, engineer-
ing properties, and exposure conditions, reflects
a more comprehensive understanding of concrete
durability.

e Modeling approaches: The adoption of ensemble
models has surged, with 33% of studies utilizing
them and a significant increase noted post-2020.
This shift towards ensemble and hybrid models
indicates a move towards more sophisticated and
robust predictive techniques, enhancing model
accuracy and reliability.

e Model performance: Top-performing models
exhibit exceptional accuracy, with R? values near-
ing 1 for various degradation mechanisms. Ensem-
ble models lead the pack in performance, followed
by neural networks and hybrid models, underscor-
ing their effectiveness in predicting values for con-
crete durability indicators.

o Explainability: There is a strong emphasis on
model explainability, with 85% of studies employ-
ing model-agnostic methods like SHAP. This
focus has intensified since 2017, particularly from
2021 onwards, highlighting the importance of
transparency in machine learning models for con-
crete durability.

e Recommendations: To advance the field, it is cru-
cial to develop new, diverse datasets that encom-
pass both chemical and physical properties of mix
ingredients. Enhanced data-sharing practices are
also essential. Additionally, adopting multi-task
learning approaches could provide deeper insights

by addressing multiple deterioration mechanisms
simultaneously, paving the way for more durable
and resilient concrete structures.
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