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Abstract This review provides an in-depth exami-
nation of machine learning applications in assessing 
concrete durability from 2013 to 2024, with a particu-
lar focus on critical degradation mechanisms, includ-
ing carbonation, chloride-induced deterioration, sul-
fate attack, frost damage, shrinkage, and corrosion. It 
underscores the field’s heavy reliance on laboratory-
based data and notes the limited use of field data and 

the scarcity of newly generated datasets. The review 
reveals that most studies utilize existing literature-
based datasets, with few contributing novel data and 
limited open access to these databases, which ham-
pers broader validation and application. The review 
classifies the features analyzed in studies into catego-
ries such as mixture proportions, engineering proper-
ties, exposure conditions, test parameters, and chemi-
cal compositions, highlighting a growing emphasis on 
chemical compositions. Modeling approaches are pre-
dominantly standalone, though ensemble and hybrid 
models are increasingly prevalent, with ensemble 
models showing particularly strong performance in 
recent years. High accuracy is observed across stud-
ies, with ensemble models, neural networks, and 
hybrid models leading in performance. Furthermore, 
the review stresses the growing importance of model 
explainability, noting that model-agnostic methods 
like SHAP are frequently used and that the focus on 
explainability has increased. To propel the field for-
ward, the review advocates for the development of 
diverse new datasets that include both the chemical 
and physical properties of various mix ingredients 
and improved data-sharing practices. It recommends 
adopting a multi-task learning approach to simulta-
neously address multiple deterioration mechanisms, 
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which can yield deeper insights and support the crea-
tion of more durable concrete structures.

Keywords Machine learning · Carbonation · 
Chloride attack · Frost damage · Shrinkage · 
Corrosion
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recurrent unit
AdaBoost  Adaptive boosting
ALO  Ant lion optimization
ANN  Artificial neural network
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BPNN  Backpropagation neural network
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MDI  Mean decrease impurity
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RRHC  Random restart hill Climbing
SHAP  Shapley additive explanations
SOA  Seagull optimization algorithm
SOFM  Self-organizing feature map
SRC  Standardized regression coefficient
SSA  Sparrow search algorithm
SSIs  Sobol’ sensitivity indices
SVM  Support vector machines
TBFI  Tree-based feature importance
TPE  Tree-structured parzen estimator
TWSVM  Twin support vector machines
VAF  Variation account factor
WNN  Wavelet neural network
WOA  Whale optimization algorithm
XGBoost  Extreme gradient boosting

1 Introduction

The durability of reinforced concrete (RC) infrastruc-
ture is of vital importance for the construction sec-
tor. Besides the strong correlation between durability 
and structural reliability, durability performance also 
affects long term maintenance costs as well as con-
tributes to  CO2 emissions. In the United States alone, 
only for maintaining reinforced concrete decks due to 
poor durability the annual direct cost comes to a stag-
gering $2 billion [1]. Similar figures are being spent 
in Europe as well [2]. Assessing the durability of 
concrete is essential for ensuring the sustained perfor-
mance and safety of infrastructure during its lifetime. 
Concrete, as the predominant construction mate-
rial, undergoes various environmental stressors and 
loading conditions during its service life, leading to 
deterioration and potential structural concerns [3–5]. 
Hence, precise assessment techniques are imperative 
for detecting potential durability issues and imple-
menting suitable remedial measures.

The assessment of concrete durability typically 
involves a series of standardized laboratory tests, 
including chloride permeability, water absorption, 
sulfate resistance, carbonation, freeze–thaw resist-
ance, alkali-silica reaction, and abrasion tests, con-
ducted in the early ages [6]. These tests employ 
diverse methodologies to evaluate essential durability 
aspects of concrete. Leveraging these laboratory tests 
in the early stages, engineers obtain valuable data 
to inform material selection, optimize mix designs, 
and implement construction practices conducive to 

enhancing the durability and longevity of concrete 
structures.

However, conducting multiple tests to evaluate 
durability performance is resource-intensive and 
time-consuming. Hence, empirical models offer a 
pragmatic complement to reduce laboratory tests for 
assessing concrete durability. Derived from statisti-
cal analyses of experimental data, these models pro-
vide simplified methodologies for estimating concrete 
properties and behaviors without extensive testing. 
Nonetheless, it is crucial to acknowledge that empiri-
cal models have limitations and may not capture all 
aspects of cement-based composite behavior. Fur-
thermore, with the increasing utilization of various 
cementitious and other materials in concrete, empiri-
cal models face added complexity [7–9].

To address these challenges, the integration of 
machine learning techniques has emerged as a prom-
ising avenue [10, 11]. Machine learning offers a data-
driven approach that uncovers complex relationships 
between input features and concrete performance. By 
leveraging large datasets, machine learning models 
can predict durability properties while considering 
the influence of various pertinent factors. This ena-
bles the development of highly accurate and scalable 
predictive models, capable of capturing the intricate 
effects of different mix components and compositions 
on concrete durability.

This review aims to provide a comprehensive 
overview of the current landscape of machine learn-
ing applications in the field of concrete durability 
assessment. Focusing on developments over the past 
decade, it synthesizes existing research and high-
lights key advancements in applying machine learn-
ing techniques to this field. By elucidating potential 
benefits, challenges, and future directions of employ-
ing machine learning techniques in evaluating con-
crete durability, this review seeks to catalyze further 
advancements in the field.

2  Machine learning in concrete durability 
assessment

2.1  Machine learning basics

Machine learning, a subset of artificial intelligence, 
focuses on developing algorithms and techniques 
that allow computers to learn from data and make 
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predictions or decisions without being explicitly 
programmed [12, 13]. At its core, machine learning 
revolves around the idea of building models that can 
automatically learn and improve from experience. 
This process typically involves training these mod-
els on datasets, where patterns and relationships are 
extracted to enable the model to make accurate pre-
dictions on new, unseen data.

Machine learning is underpinned by fundamen-
tal principles encompassing diverse learning para-
digms—including supervised, unsupervised, semi-
supervised, and reinforcement learning—tailored to 
distinct scenarios and objectives [12, 14]. Among 
these, supervised learning stands out, wherein algo-
rithms are trained on labeled datasets, each input 
paired with a corresponding output. This setup ena-
bles the algorithm to learn patterns and relationships 
between input features and target labels, making it 
suitable for tasks such as classification and regression 
[15, 16]. Unsupervised learning offers a contrasting 
approach, operating on unlabeled datasets to uncover 
hidden structures, patterns, or relationships within 
the data. Without explicit guidance, unsupervised 
learning algorithms autonomously identify clusters 
of similar data-points or reduce the dimensionality of 
complex datasets. Clustering algorithms group data-
points based on inherent similarities, while dimen-
sionality reduction techniques simplify data represen-
tations. Unsupervised learning is valuable for tasks 
such as customer segmentation, anomaly detection, 
and exploratory data analysis, where the underlying 
structure of the data is unknown [17].

Semi-supervised learning amalgamates elements 
of both supervised and unsupervised learning, lever-
aging a blend of labeled and unlabeled data during 
model training. This hybrid approach proves advanta-
geous when labeled data is scarce or costly to obtain. 
By harnessing additional unlabeled examples, semi-
supervised learning algorithms enhance model per-
formance and generalization [18]. In both supervised 
and semi-supervised learning, two primary interpre-
tations are commonly applied: (i) learning the opti-
mal predictor based on the available data distribution, 
and (ii) estimating the coefficients of a known struc-
tural relationship while leveraging the underlying 
structure. Reinforcement learning, though less com-
monly applied, represents an increasingly prominent 
paradigm. It furnishes a distinct framework for train-
ing agents to engage with environments and optimize 

cumulative rewards. Through iterative experimenta-
tion, reinforcement learning agents refine optimal 
strategies, guided by feedback in the form of rewards 
or penalties based on their actions [19, 20].

These foundational principles constitute the back-
bone of machine learning, yielding a versatile toolkit 
for tackling an array of challenges across various 
domains. In the context of concrete science, super-
vised learning predominates, presenting opportunities 
to enhance the efficiency, sustainability, and durabil-
ity of concrete infrastructure through predictive mod-
eling, optimization, and advanced monitoring tech-
niques. In the subsequent sections, the focus shifts to 
the application of machine learning, emphasizing its 
contribution to aiding concrete durability assessment.

2.2  Review of machine learning models

To comprehensively review the literature on the 
application of machine learning models for predicting 
values for durability indicators of cementitious mate-
rials, a systematic methodology was employed. Ini-
tially, databases such as Web of Science, Scopus, and 
Google Scholar were queried using a combination of 
keywords including “machine learning”, “durability 
prediction”, “cementitious materials”, “concrete”, 
and other specific durability phenomena names. The 
search was restricted to peer-reviewed articles pub-
lished between 2013 and 2024 to capture the latest 
advancements. It is important to note that while the 
review encompasses literature up to 2024, all rel-
evant articles were collected by the end of March 
2024. Titles and abstracts of the retrieved papers were 
screened for relevance, followed by a full-text review 
of the selected articles. Inclusion criteria focused 
on studies that specifically utilize machine learn-
ing techniques for durability assessment, excluding 
those with purely theoretical or non-machine learning 
approaches. The selected papers were then catego-
rized based on the specific durability properties they 
addressed—such as alkali-silica reaction, carbona-
tion, chloride-induced degradation, sulfate attack, 
frost damage, shrinkage, corrosion, and thermal 
cracking—the type of machine learning models used, 
and the characteristics of the dataset employed. For a 
focused and robust evaluation, only durability mecha-
nisms explored in at least ten machine learning-based 
studies were included. These mechanisms comprised 
carbonation, chloride-induced degradation, corrosion 
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of steel reinforcement, frost damage, shrinkage, and 
sulfate attack, representing the most extensively 
studied areas, as illustrated in Table  1. Key metrics 
for model performance, such as  R2 value on the test 
set, were extracted and analyzed to identify trends, 
strengths, and gaps in the current research landscape. 
Among the most frequently addressed features in the 
models are those related to the concrete mix design 
and exposure aggressiveness, with varying impact 
levels (Fig.  1). This systematic approach ensured a 
thorough and unbiased synthesis of existing knowl-
edge, facilitating a clear understanding of the state-
of-the-art and guiding future research directions in 
the field.

2.2.1  Carbonation

Carbonation is a process by which carbonic acid, 
formed through the interaction of atmospheric 
 CO2 and moisture, chemically interacts with alka-
line phases in hardened concrete forming carbonate 
phases. In terms of durability, this process lowers the 
pH of concrete, which is critical for maintaining the 
protective passivation layer on the steel reinforce-
ment. The prediction of the carbonation depth of con-
crete over time allows an estimation of the initiation 
time for corrosion when the limit state is defined as 
the depassivation of the reinforcement. Currently, 
researchers are developing prediction models to esti-
mate concrete carbonation-related test results from 
the perspective of carbon uptake by concrete struc-
tures. This relates to the need to estimate the environ-
mental impact of structures in terms of their global 
warming potential. For this reason, the prediction of 
the carbonation depth is not sufficient, and the alka-
line reserve of concrete needs to be addressed as well. 
The present review focuses on the durability aspects 
of the carbonation of concrete, but comments are 
largely valuable for  CO2 uptake approaches, as well.

The estimation of natural carbonation during the 
service life of field concrete is relatively complex 
due to the influence of several factors. These factors 
include the mix constituents (e.g., types of cement 
and supplementary cementitious materials (SCMs), 
chemical admixtures), the mixture design (e.g., rela-
tive contents of binders, water-to-binder ratio (w/b), 
air content, aggregate gradation), structural design 
and construction techniques (e.g. concrete cover 
depth, curing, compaction), environmental exposure 

and climatic conditions (e.g., indoor, outdoor shel-
tered, outdoor unsheltered, temperature, humidity, 
precipitation) [53]. The prolonged process of natu-
ral carbonation imposes substantial costs and further 
complicates the quantification of carbonation in field 
concrete. To overcome the complexity induced by 
time constraints, accelerated carbonation tests have 
been employed to expedite the investigation of vari-
ous influential parameters on concrete carbonation. 
Most machine learning models found in the literature 
rely on data from these accelerated tests to predict 
carbonation depth [54–63]. While many studies focus 
on predicting carbonation depth as the model output, 
a few (e.g., [64] and [54]) have explored the use of 
the carbonation coefficient as the output variable.

Table  2 summarizes the research papers that 
employed different machine learning models to pre-
dict carbonation depth and rate of a wide range of 
concrete technologies. Accordingly, most models 
for the prediction of accelerated carbonation depth 
focused on binary blended concrete mixtures incorpo-
rating fly ash (FA). While these models have achieved 
high prediction accuracy, certain limitations highlight 
the need for further research to develop more gen-
eralized models. For instance, FA as supplementary 
cementitious material demonstrates significantly dif-
ferent carbonation behaviour depending on whether 
it is siliceous fly ash (class F according to ASTM 
C618) or high-calcium fly ash (class C according 
to ASTM C618) [65]. Considering no distinction or 
clarification on the type(s) of FA used for the train-
ing implies the possibility of some bias in the model 
towards one of the types or a weighted average 
between both. Another important aspect is the range 
of  CO2 concentrations in the database. It has been 
reported that accelerated carbonation at ratios higher 
than 3–4% diverges very substantially from the natu-
ral carbonation of concrete under service (occurring 
at  CO2 concentrations of 0.03–1%, depending on the 
type of surrounding environment) [66]. The median 
of the dataset of 6.5%  CO2 is very much above this 
threshold, posing difficulties for the application of 
the model to the prediction of natural carbonation of 
concrete.

In addition to binary blended concrete mixtures 
incorporating FA, some studies proposed models to 
predict the carbonation depth of concrete with other 
SMCs including ground granulated blast furnace slag 
(GGBFS), steel slag powder (SSP), metakaolin (MK), 
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and silica fume (SF). These studies include Wei et al. 
[59], Duan and Cao [60], Khan and Javed [67] and 
Taffese et  al. [68]. For instance, Taffese et  al. [68] 
used a comprehensive dataset that incorporates six 
types of cement and three types of SCMs.

In contrast to the majority of studies that focus 
on accelerated carbonation, Majlesi et  al. [69] 
developed a model to predict the carbonation depth 
of concrete exposed to long-term (up to 10  years) 
corrosive environments. They utilized a dataset 
of 110 instances and incorporated six input fea-
tures for model development using the ANN algo-
rithm. These features encompassed descriptions of 
exposure time, concrete quality (capillary absorp-
tion, calcium oxide content (CaO)), annual aver-
age environmental parameters (temperature and 
relative humidity), and accumulated precipitation 
(APP) at the time of carbonation depth measure-
ment. The authors reported a validation accuracy 
of 0.910. Furthermore, they compared the perfor-
mance of their model with other machine learning 
models of DT and MLR on the entire dataset. ANN 
exhibited a high accuracy with an  R2 value of 0.950, 
while DT and MLR achieved accuracy of 0.790 and 
0.710, respectively. An important limitation of the 
model is that it was trained with data from concrete 
made with unblended cement only (CEM I as from 
EN 197–1), with uncertain applicability to the more 

commonly used blended cements nowadays. To 
address such limitations, Marani et  al. [53] devel-
oped a probabilistic neural network trained with 
2165 data measurements to predict natural carbona-
tion depth of low-carbon concrete incorporating 
Portland cement and five different types of SCMs. 
Their model captured the effect of different types 
of SCMs indicating that FA and limestone and cal-
cined clays accelerate the rate of natural carbonation 
more significantly compared to ground GGBFS. 
Additionally, their model successfully learned the 
effect of regional/geographical climatic exposure on 
natural carbonation of low-carbon concrete.

Vollpracht et  al. [70] used a dataset of 1044 
cases, including both concrete and mortar mixes for 
both natural and accelerated carbonation. Among 
the binder types, various types of cement and 
SCMs are considered, with CEM I, CEM II/B-L, 
CEM II/B-V, CEM II/A, CEM III/B, siliceous FA, 
GGBFS, and calcined clay being the most present. 
The XGBoost algorithm was used to derive the per-
mutation feature importance and the SHAP values. 
This obviously depicted time as the most dominant 
parameter governing the progression of carbona-
tion depth, followed by CO concentration, concrete 
strength, clinker content, reactive CaO content, rel-
ative humidity, and curing time.

Fig. 1  Comparative impact levels of common features across various deterioration mechanisms
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2.2.2  Chloride attack

Chloride-induced deterioration is one of the most sig-
nificant threats to the durability of RC structures, par-
ticularly those exposed to marine environments and 
deicing salts. In its natural state, concrete provides a 
highly alkaline environment that fosters the forma-
tion of a passive layer on the surface of reinforcement 
bars, effectively protecting them from corrosion. 
However, when chloride ions penetrate the concrete 
and accumulate beyond a critical threshold at the 
reinforcement level, depassivation occurs, compro-
mising the protective layer and triggering corrosion. 
This process ultimately undermines the structural 
integrity, serviceability, and durability of RC struc-
tures [75].

In recent years, machine learning has emerged 
as a transformative tool in modeling and predicting 
chloride transport behavior. Table 3 provides a sum-
mary of machine learning applications over the past 
decade. Most studies primarily use input features 
related to mix proportions, with some incorporating 
environmental conditions and fundamental material 
properties.

Studies utilizing field datasets predominantly aim 
to predict surface chloride concentrations in marine 
environments [76–78], whereas those utilizing labo-
ratory data emphasize modeling chloride ion diffusiv-
ity, chloride ion penetration resistance, and chloride 
profiles. These assessments employ various standard-
ized test methods, including the rapid chloride per-
meability test [67, 79–83] and the rapid migration 
test [84–88]. The investigations encompass diverse 
concrete types, including self-compacting concrete 
(SCC) [80, 81], high-performance concrete (HPC) 
[89], and recycled aggregate concrete (RAC) [79].

While most studies concentrate on mix propor-
tions, Tran [85] took a more comprehensive approach 
by incorporating tricalcium aluminate  (C3A) content 
of the cement and the specific surface area of fly ash 
as input features, alongside seven mix-related fea-
tures, for predicting the chloride diffusion coefficient 
[90]. Given that  C3A plays a crucial role in chlo-
ride binding by reducing ion mobility and delaying 
chloride transport, its inclusion enhances predictive 
accuracy. Many laboratory-based studies employing 
migration tests tend to overlook the chloride bind-
ing capacity, particularly when SCMs such as slag 
and FA are involved. However, a notable limitation in 

Tran’s study lies in its insufficient distinction between 
apparent diffusion coefficients derived from two types 
of accelerated migration tests and those obtained 
from natural diffusion tests.

Beyond chloride penetration, a select number 
of studies have embraced a more comprehensive 
approach by simultaneously predicting multiple dura-
bility- or strength-related properties. For instance, 
Delgado et al. [83] developed models to capture both 
chloride penetration depth and diffusion coefficients 
in concrete subjected to drying–wetting cycles. Khan 
and Javed [67] expanded this scope by predicting 
chloride permeability, compressive strength, and car-
bonation resistance. Meanwhile, Wang et al. [82] and 
Taffese and Espinosa-Leal [91] modeled both chlo-
ride penetration rate and compressive strength, albeit 
through different methodologies—the former relying 
on passed electric charge, while the latter utilized 
chloride migration coefficients. These studies under-
score the growing shift toward integrated predictive 
frameworks, paving the way for more robust durabil-
ity assessments in concrete materials.

Despite regression-based machine learning mod-
els being widely utilized in chloride transport stud-
ies, classification-based approaches remain under-
explored. Typically, chloride transport indexes are 
used for a qualitative assessment of the concrete 
performance, yet predictive tools based on classi-
fication rather than direct numerical values could 
offer improved accuracy. For instance, Marks et  al. 
[88] and Taffese and Espinosa-Leal [84] developed 
machine learning models to classify the chloride 
resistance levels of concrete. Both studies utilized 
classification models based on chloride migration 
coefficients obtained under the Nordic standard NT 
Build 492 [32]. The former categorized concrete into 
four resistance classes—Very Good, Good, Accept-
able, and Unacceptable—while the latter refined the 
classification into five levels: Low, Moderate, High, 
Very High, and Extremely High. These efforts high-
light the potential of classification-based machine 
learning models in providing more interpretable and 
application-driven assessments of chloride resistance 
in concrete.

2.2.3  Sulfate attack

Sulfate attack in concrete occurs when sulfate ions 
from external or internal sources, such as soil, 
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seawater, or industrial effluents, penetrate the cemen-
titious matrix and react with hydration products, 
leading to chemical transformations that weaken the 
structure. The primary mechanisms of deteriora-
tion include the formation of gypsum and secondary 
ettringite, which result from the reaction of sulfate 
ions with calcium aluminate hydrates (C-A-H) and 
monosulfate phases. These reactions induce expan-
sion, cracking, and loss of cohesion within the mate-
rial. In aggressive environments, magnesium sulfate 
can also contribute to deterioration by transforming 
calcium silicate hydrates (C-S-H) into magnesium 
silicate hydrates (M-S-H). Additionally, under pro-
longed exposure and in the presence of carbonates at 
low temperatures, thaumasite formation may occur, 
leading to further degradation.

A high concentration of sulfates in the pore solu-
tion can also lead to physical attack, this is not a 
chemical attack but a physical deterioration process 
instead. Sulfates dissolved in water penetrate unsatu-
rated concrete pores via capillary action (wicking). 
During drying cycles, water evaporates, concentrat-
ing on the sulfate solution until salts crystallize. The 
crystallization pressure from expanding salts (e.g., 
mirabilite → thenardite) generates internal stresses, 
leading to fracturing of the concrete matrix. Repeated 
wetting–drying cycles replenish sulfates and amplify 
crystallization damage without requiring chemical 
reactions with cement phases. This mechanism is 
particularly observed in sulfate-laden environments 
with fluctuating moisture, such as coastal zones or 
groundwater-exposed structures. Machine learning 
models have been applied to predict key deteriora-
tion parameters in sulfate-exposed concrete, including 
strength degradation, mass loss, and expansion. The 
following subsections provide a detailed review of the 
algorithms and datasets used for these predictions.

Table  4 summarizes machine learning models 
used over the past decade to predict durability indi-
cators related to sulfate attack. Most studies focus on 
strength deterioration, while some model mass loss or 
expansion. All models use mix proportions and expo-
sure conditions as inputs, with some incorporating 
clinker composition (notably C₃A content), engineer-
ing properties, or sample geometry.

Early models for strength degradation prediction 
primarily employed ANNs trained on laboratory data. 
Diab et  al. [95] compiled data from 38 studies con-
taining compressive strength, expansion, and weight 

loss records. Their ANN model, using cement con-
tent, water-to-cement ratio (w/c), C₃A content, sulfate 
concentration, initial strength, and time, achieved an 
 R2 of 0.942. Tanyildizi [96] used machine learning 
models to predict the compressive strength of light-
weight cement mortar with SF and FA, with the best 
ANN model reaching  R2 = 0.935. Chen et  al. com-
pared ANN and SVM models for sulfate-exposed 
mortars using 638 samples from accelerated tests, 
with ANN performing best.

Recent studies applied ensemble models. Liu 
et  al. [97] used machine learning models to predict 
sulfate resistance in RAC, with XGBoost achieving 
 R2 = 0.957, outperforming standalone models (ANN, 
GPR, SVM, DT). Sun et al. [98] analyzed low-carbon 
concrete data from 20 references, finding that GWO-
optimized SVM performed best  (R2 = 0.972), high-
lighting water-to-cement ratio (w/b) ratio and wet-dry 
cycles as key variables.

Few studies addressed mass loss and expansion. 
Akyuncu et  al. [99] used ANN to assess durabil-
ity in 39 concrete mixtures with Class C and F fly 
ash, showing improved sulfate resistance regardless 
of type. Hilloulin et  al. [100] compiled 336 expan-
sion curves from literature, interpolated to 5294 data 
points. XGBoost, optimized via TPE, best predicted 
expansion curves based on mix proportions, clinker 
composition, geometry, sulfate solution, and exposure 
conditions  (R2 = 0.933 on training, 0.788 on test).

In summary, few papers have considered  C3A 
content, whereas it has been shown experimentally 
to have a huge influence on the degradation mecha-
nism. Furthermore, in real life, concrete exposed to 
sulfate-laden environments suffers deterioration due 
to salt crystallization, which is particularly more pro-
nounced under wet-dry cycles. The inclusion of wet-
dry cycles in machine learning studies would help 
to provide better predictive results for field applica-
tions. Notably, no public database exists yet, though 
explainability tools are emerging to help analyze pre-
dictions and enhance model interpretability.

2.2.4  Frost attack

In cold regions, frost damage progresses through 
cumulative mircrocraking and surface spalling. When 
pore saturation in concrete exceeds the saturation 
threshold, freezing water generates hydrostatic pres-
sure in the pore structure and potential microcrack 
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propagation. Over time, successive freeze–thaw 
cycles accumulate microcracking, leading to progres-
sive degradation. This deterioration affects mechani-
cal properties and increases permeability, making the 
concrete more susceptible to environmental damage 
from harmful substances [102, 103]. Machine learn-
ing principles have been explored to identify trends 
and potentially fast prediction of cement-based com-
posites’ performance under such exposures. Table  5 
summarizes machine learning models used over the 
past decade to predict durability indicators related 
to frost attack. Three main types of applications can 
be distinguished: direct prediction of durability indi-
cators based on concrete mix proportions, damage 
degree assessment thanks to the analysis of nonde-
structive tests and image analysis to qualify air-void 
system or damage due to freeze–thaw test.

Concerning image analysis, Tian et  al. [104] 
experimentally studied the effect of freeze–thaw 
action on the internal microstructure of concrete. 
They used X-ray computed tomography technology 
(X-ray CT) with deep convolutional neural network 
for 3D reconstruction of three-phase segmentation. 
Based on the 3D reconstruction, they studied the 
effect of freeze–thaw action on the damage evolution 
in the hydraulic concrete. Additionally, they proposed 
the formulation for predicting the freeze–thaw life as 
a function of damage variables. Similarly, Hilloulin 
et  al. [105] proposed a model to segment air-voids 
in concrete microscopic images to calculate the pro-
tected paste volume and showed it is proportional to 
scaling during freeze–thaw test.

Concerning nondestructive tests results machine 
learning-mediated analysis, Lian et  al. [106] 
investigated the effect of freeze–thaw cycles on the 
fracture behavior of concrete using nondestructive 
testing techniques such as acoustic emission (AE), 
digital image correlation, and nuclear magnetic 
resonance techniques. The acoustic emission 
parameters were used to classify the fracture 
behavior by employing K-means clustering method. 
These findings gave valuable insights into the 
influence of freeze–thaw cycles on the mechanical 
behavior of concrete. Liao et  al. [107] automated 
the assessment of the freeze–thaw damage in 
concrete by combining the piezoelectric-based 
active sensing and deep learning techniques. 
Two concrete specimens, under no-load and 
bending states, respectively, were exposed to 

freeze–thaw cycles. They acquired the stress wave 
using PZT transducers which were later converted 
into time–frequency maps using continuous 
wavelet transform to obtain the dataset. A novel 
deep learning model, referred to as the DSC-
ACGRU algorithm, was developed for automatic 
feature extraction. This model combined depth-
wise separable convolution, convolutional gated 
recurrent units, and an attention mechanism. The 
proposed DSC-ACGRU model exhibited superior 
efficiency, precision, and accuracy compared to 
traditional machine learning models (SVM, DT, 
BPNN) and other deep learning models (CNN, 
CNN-LSTM).

Several machine learning models have been 
applied to predict concrete frost resistance based on 
mix compositions. Liu et  al. [108] investigated frost 
durability in RAC using ANN, GPR, and MARS, with 
ANN achieving the highest accuracy  (R2 = 0.951). 
Air entrainment was identified as the dominant factor. 
Wu et  al. [109] developed a hybrid RF-RFE model 
for predicting high-performance concrete frost resist-
ance, outperforming RF, SVM, PB, and GBDT, with 
an  R2 of 0.958. Dai et  al. [110] evaluated multiple 
machine learning models on a dataset of 7088 sam-
ples, finding nonlinear models more effective. GBDT 
performed best for relative dynamic elastic modulus 
 (R2 = 0.780), while CatBoost excelled in mass loss 
rate prediction  (R2 = 0.840). Atasham ul Haq et  al. 
[111] estimated the deteriorated compressive strength 
(DCS) after freeze–thaw cycles using ANN, RF, and 
SVM, all achieving  R2 > 0.900, with ANN perform-
ing best  (R2 = 0.924). Sensitivity analysis highlighted 
the importance of initial concrete strength, lower 
w/c, and air entrainment. Qiao et al. [112] compared 
eight models for predicting freeze–thaw damage in 
dune sand fiber-reinforced concrete (DSFC), where 
XGBoost emerged as the best  (R2 = 0.965). Esmaeili‐
Falak et al. [113] optimized SVM with ALO, GWO, 
and HGSO, with HGSO-SVM achieving the best per-
formance  (R2 = 0.997), revealing cement and sand 
as key factors. Gao et  al. [114] assessed rubberized 
concrete frost resistance, with XGBoost outper-
forming DT, ANN, SVM, RF, and stacking methods 
 (R2 = 0.960). Qin et  al. [115] studied freeze–thaw 
cycles, showing GBM significantly outperformed RF 
 (R2 = 0.990 vs. 0.930), while GLM and GAM had 
lower accuracy. The study emphasized the need to 
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improve frost resistance, particularly for regions with 
more than 200 freeze–thaw cycles.

These findings highlight the increasing use of 
ensemble learning techniques, particularly XGBoost, 
GBDT, and RF, in predicting concrete frost resist-
ance, while sensitivity analyses confirm the impor-
tance of mix proportions, air entrainment, and w/c 
ratio in enhancing durability.

2.2.5  Shrinkage

The prediction of autogenous and drying shrink-
age properties in cementitious materials is a crucial 
aspect of concrete technology, as these properties sig-
nificantly influence the long-term performance and 
durability of concrete structures. Shrinkage can lead 
to cracking and reduced structural integrity, mak-
ing accurate prediction essential for engineers and 
researchers in the field. While traditional empirical 
models have provided some insights into shrinkage 
behavior, they often fall short in capturing the com-
plex interplay of various influencing factors, such as 
moisture loss, temperature fluctuations, and the inher-
ent material characteristics of the concrete mix.

In recent years, there has been a growing inter-
est in leveraging machine learning techniques to 
enhance the prediction of shrinkage properties. Few 
machine learning models have been developed to 
predict autogenous or drying shrinkage properties of 
cementitious materials. Table 6 summarizes machine 
learning models used over the past decade to predict 
shrinkage.

For drying shrinkage prediction, ANN was 
deployed by Bal and Buyle-Bodin [116] and 
Mermedaş and Arbili [117]. The former applied 
ANN to predict drying shrinkage in normal concrete 
using a database of 296 specimens, considering 
11 parameters related to mix properties, sample 
geometry, environmental conditions, and 28-day 
mechanical strength. An  R2 of 0.967 was achieved. 
On the other hand, Mermedaş and Arbili [117] used 
experimental data comprising 586 data points from 
five studies on binary and ternary formulations 
incorporating silica fume and fly ash. Their results 
indicated that higher mineral admixture content leads 
to increased shrinkage strain, with the ANN model 
accurately predicting experimental values  (R2 = 0.954 
on the test set). More recently, ensemble models 
have been used by Hilloulin and Umunnakwe [118] Ta
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and Ocak et  al. [119] to predict drying shrinkage in 
mortar and concrete formulations, incorporating mix 
compositions, environmental conditions, geometric 
features, and aggregate properties. Hilloulin and 
Umunnakwe reported that Extra Trees Regression 
performed best and provided additional insights 
through SHAP analysis, while Ocak et  al. reported 
CatBoost was the best model and successfully 
predicted crack widths due to shrinkage.

Concerning autogenous shrinkage prediction, 
Liu et  al. [120] developed an SVM model for con-
crete with SF and FA, using eight input parameters. 
The model outperformed ANN but slightly under-
estimated shrinkage, showing potential for further 
improvement. Hilloulin and Tran [121] used ensem-
ble learning on a dataset of 437 studies to predict 
autogenous shrinkage in cementitious materials with 
superabsorbent polymers and a broad range of SCMs 
(calcined clay, slag, FA, SF). XGBoost achieved high 
accuracy  (R2 = 0.954), and SHAP analysis identified 
key parameters. A follow-up study [122] showed the 
optimized model can outperform analytical models 
(B4, CEB). Similarly, Li et al. [123] used 11 factors 
to predict autogenous shrinkage in ultra-high-perfor-
mance concrete (UHPC), with GB providing the best 
accuracy  (R2 = 0.890). Cement, SF, and water content 
were most influential, but conflicting results on SF 
effects suggest variability in its composition.

Finally, Wang et  al. [124] predicted nonuniform 
shrinkage (NUS) in steel–concrete composite slabs 
using machine learning models. A database of 782 
data points from six studies was built, with five input 
features: relative distance, slab depth, relative humid-
ity, age, and compressive strength. GB emerged as the 
best model  (R2 = 0.927), and SHAP analysis identi-
fied key influencing parameters.

2.2.6  Corrosion of steel reinforcement

Corrosion of reinforcement bars is a major concern in 
reinforced concrete structures. It typically arises when 
the protective alkaline environment of the concrete is 
compromised, allowing aggressive agents to penetrate 
the concrete and reach the steel reinforcement. Two 
key parameters characterize the corrosion process 
in reinforced concrete: the corrosion potential 
and the corrosion rate. The corrosion potential 
(electrochemical or half-cell potential) indicates 

the likelihood of corrosion occurring, reflecting the 
thermodynamics of the process. Meanwhile, the 
corrosion rate measures the speed at which corrosion 
progresses, representing the kinetics of the process.

As the deterioration advances, a third critical fac-
tor comes into play: the development of cracks in the 
concrete cover. In addition to its chemical protection, 
the intact concrete cover serves as a physical barrier 
for the reinforcement bar. However, when cracks form 
due to the pressure exerted by the expansive corro-
sion products, the reinforcement becomes signifi-
cantly more exposed, leading to a rapid acceleration 
in the corrosion rate.

Zhang et  al. [125] used six algorithms, including 
BR and RF, to predict the integrity of the concrete 
cover during accelerated corrosion due to chlorides 
of reinforced concrete with various rubber contents, 
finding all models except the linear one accurate in 
estimating cracking due to corrosion.

Nikoo et  al. [126] predicted corrosion rate (as 
obtained from linear polarization resistance) in rein-
forced concrete using SOFM. It is mentioned that the 
reinforced concrete was corroded ‘naturally’ but it is 
unclear if this was a result of carbonation or chloride 
ingress, implying a big limitation to the utility of the 
results. Liu et  al. [127] evaluated sulfide corrosion 
rates and initiation times using a hybrid GPR model, 
which outperformed MLR and RBF models. Sulfide 
corrosion is comparable to chloride corrosion more 
than carbonation corrosion, and it implies reinforce-
ment corrosion accelerated by acid attack of cover 
concrete. Güneyisi et  al. [128] used GA and ANN 
to predict the time from accelerated corrosion initia-
tion to cracking in RC elements, with the ANN model 
showing higher accuracy. Xu and Jin [129] employed 
ANN to predict reinforcement corrosion levels, find-
ing the RBF model more accurate than the BP model.

Ji and Ye [130] employed RF, SVM, XGBoost, 
and ANN to predict corrosion rates in carbonated 
cementitious mortars, finding SVM to be the most 
accurate. Salami et  al. [131] used LR, ANN, SVM, 
KNN, and RF to predict corrosion initiation times 
in steel embedded in SCC exposed to sodium chlo-
ride, with RF as the most effective model. Zounemat-
Kermani et al. [132] compared neural network-based 
models (MLP & RBF) and tree-based models (RF, 
CHAID, & CART) for predicting concrete corrosion 
in sewers, finding RF superior. Sadowski and Nikoo 
[133] combined ANN with ICA and GA to predict 
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corrosion current density, with the ICA-ANN model 
demonstrating enhanced accuracy.

3  Data

3.1  Data source

A detailed examination of the aforementioned 
machine learning studies reveals some trends regard-
ing the origin of the data. More specifically, as illus-
trated in Fig. 2. Figure 2, most of the studies (79%) 
used experimental data from a laboratory environ-
ment, while only 14% of the studies reported the use 
of data from field experiments and the remaining 7% 
did not mention the origin of the data. The predomi-
nance of laboratory studies is unsurprising, as natural 
degradation mechanisms unfold over extended peri-
ods, often spanning decades, making long-term field 
studies impractical. To circumvent this limitation, 
researchers frequently employ accelerated testing 
in controlled environments, enabling them to simu-
late long-term deterioration within feasible research 
timelines.

While laboratory experiments offer precise control 
over influencing factors, they rely on accelerated test-
ing conditions that do not always correlate perfectly 
to real exposure conditions. Field exposure provides 
more real results, but the specific exposure condi-
tions are not always relevant for other environments. 
Moreover, field data frequently originates from struc-
tures already exhibiting signs of degradation, as 
well-performing structures are rarely the subject of 
durability studies. This introduces an inherent bias: 
subpar concrete structures in the field tend to be made 
with mixes below minimum standards, while labora-
tory studies often use high-quality concrete mixes to 
ensure broad applicability of results. Consequently, 
the predictive capabilities and reliability of machine 
learning models can be inadvertently skewed depend-
ing on whether they are trained on field or laboratory 
data. Furthermore, laboratory tests are performed 
under controlled conditions that cannot fully rep-
licate the effects of moisture content and transport 
(e.g., variations in relative humidity, wetting–drying 
cycles). As a result, the importance of moisture con-
tent and transport may be underestimated by models 
trained solely with lab data. Regardless of whether 
the studies used experimental data from lab or field 

environments, the majority obtained their data from 
literature sources. For example, of the 79% of stud-
ies reporting the use of laboratory data, about half 
(50%) used data published in the literature and only 
28% based their model partially or entirely on their 
own experiments. Databases consisting of their own 
results tend to be smaller in size compared to data-
bases constructed from literature. It could be expected 
that models using field experimental data from litera-
ture provide predictions that tend to be more univer-
sal but less precise.

Regarding the main temporal trends, the number of 
machine learning studies focusing on concrete dura-
bility has increased over the years, especially since 
2019, as shown in Fig. 3. To an extent this is expected 
as the state-of-the-art machine learning tools have 
developed significantly in the last 5 years as well. 
This upsurge is accompanied by an increase in both 
the number of features and instances in these studies. 
Initially, most databases contain tens or hundreds of 
instances. However, most recent studies have lever-
aged databases with thousands of instances, reflecting 
a significant expansion in the scope of data utilized.

The number of features incorporated in these stud-
ies has varied significantly, ranging from a few as 3 
to as many as 37, with a median of 8. Recent research 
commonly employs between 5 and 15 features. Nota-
bly, studies leveraging the largest databases tend to 

Fig. 2  Dataset sources for the machine learning models
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incorporate feature sets exceeding the median, ena-
bling models to more effectively capture and charac-
terize the complex mechanisms governing concrete 
durability.

In recent years, there has been a noticeable 
increase in the duration of experiments, measured in 
the square root of days, considered in machine learn-
ing studies focused on concrete durability, as shown 
in Fig.  4. Conventionally, studies based on labora-
tory data typically report experiment durations rang-
ing from tens to hundreds of days, often driven by 
accelerated testing protocols. However, the exposure 
times reported in more recent research utilizing field 
data have documented exposure times extending into 
thousands of days, with the longest reported dura-
tion reaching 18,250 days. In contrast to the trend of 
using more features in larger databases, recent stud-
ies with long exposure times do not typically include 
more than the median number of features. This could 
be because the existing descriptors are sufficient or 
because accessing additional descriptive features is 

challenging. Moreover, despite being relatively newly 
published, these documents should not be considered 
always universally relevant for current construction 
practices because they are sometimes based on data 
that is decades old (especially those containing field 
data). An important aspect to consider is the evolu-
tion of binder types, which makes models trained on 
data that includes only CEM I (or OPC) less up to 
date.

3.2  Data availability

A significant portion of machine learning studies on 
concrete durability (68.49%) rely on previously pub-
lished data, whereas less than one-third (31.51%) 
generate their own datasets (Fig. 5). Notably, 74% of 
these studies do not provide open access to their data-
bases. This lack of data transparency is slightly more 
common in studies using their own data compared 
to those using curated data. Specifically, only 1 in 5 
studies that employ their own experimental data offer 

Fig. 3  Number of input features and instances over different years
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open access databases, whereas 1 in 3 studies using 
data from literature. This trend remains surprisingly 
low even for studies that use data compiled from pre-
vious studies. While some data may be sensitive and 
require confidentiality, it is noteworthy that privately 
funded research on concrete durability is uncommon, 
making the reasons for closed access to these data-
bases unclear. However, maintaining closed access to 
data could potentially mitigate the positive publica-
tion bias that is quite prevalent in the field of concrete 
durability research.

4  Modeling approaches

4.1  Feature types

The first step in the modeling phase involves select-
ing different features that can be used by the mod-
els to describe the durability phenomenon. In 
machine learning studies focused on the durability 

of cementitious materials, these feature types can be 
categorized into five groups: mixture proportions, 
engineering properties, exposure conditions, test 
parameters, and chemical compositions, as illustrated 
in Fig.  6. It is clear that the majority of the studies 
primarily consider mix proportions, i.e., mass frac-
tions of constituents, exposure conditions such as 
temperature and external solution concentration, and 
test parameters such as concrete age at the start of the 
test or the test duration. Fewer studies have consid-
ered engineering properties, such as specimen size 
and geometry, or the chemical composition of con-
stituents such as cement. However, a notable shift has 
emerged in recent years, with increasing emphasis 
on the inclusion of chemical composition in predic-
tive models. Research has demonstrated that models 
incorporating binder chemistry significantly outper-
form those relying solely on cement type, offering 
deeper insights into material behavior [134]. Despite 
this advancement, a substantial gap remains in lever-
aging constituent chemical composition for specific 

Fig. 4  Exposure time in days for studies using lab and field data over different years
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durability challenges such as carbonation, chloride 
ingress, sulfate attack, corrosion damage, and shrink-
age. Addressing this gap presents a crucial opportu-
nity to enhance the predictive accuracy and reliability 
of durability models.

4.2  Modeling algorithms

As discussed in preceding sections, machine learning 
studies on concrete durability have employed a vari-
ety of models, which can be classically categorized as 
standalone, ensemble, and hybrid. Standalone models 
operate independently, making predictions based on 
a single algorithm. Ensemble models combine mul-
tiple standalone models to improve prediction accu-
racy by leveraging the strengths of each model and 
mitigating individual weaknesses. Hybrid models 
integrate different types of algorithms or techniques, 
such as combining machine learning with statistical 
methods, to enhance model performance and pro-
vide more comprehensive insights into the problem 
under investigation. Most models used in these stud-
ies (148 out of 259, or 57%) fall into the standalone 
category. Approximately one-third of the models (78 
out of 259, or 30%) are ensemble models, and the 
remainder are classified as hybrid models (33 out of 
259, or 13%). A notable trend is the increasing use 

of ensemble models over time, particularly after 
2020, as depicted in Fig. 7. This shift coincides with 
the advent of explainability tools, such as the SHAP 
library, which has enhanced the transparency and 
understanding of model predictions. It is worth not-
ing that the number of models in 2024 appears to be 
lower compared to 2023. This is because the present 
review only includes studies collected by the end of 
March 2024. It is anticipated that the number of mod-
els for 2024 will surpass those from previous years 
once the entire year’s data is accounted for.

Figure  8 provides a breakdown of standalone 
algorithms utilized in concrete durability research. 
Neural networks and deep learning methods domi-
nate, appearing 56 times (38%). Kernel methods and 
probabilistic models are also widely used, with 45 
instances (30%). Tree-based methods are used in 21 
cases (15%), and regression methods appear 10 times 
(7%). Other techniques, including instance-based 
learning, evolutionary algorithms, spline-based meth-
ods, density estimation, and clustering, are used less 
frequently. This diverse array of algorithms highlights 
the researchers’ efforts to explore various approaches 
to tackle concrete durability issues, with 90% of 
the standalone algorithms falling into four main 
categories.

Figure  9 provides a comprehensive overview of 
the diverse range of algorithms utilized, including 
standalone, ensemble learning, and hybrid methods. 
Ag the standalone algorithms, BPNN leads with 15% 
(40 instances) of the total, followed by SVM with 
12% (32 instances) and DT with 6% (15 instances). 
In the ensemble learning methods category, RF is the 
most commonly used with 24 instances, followed by 
GB and XGBoost, each with 15 instances. Regard-
ing hybrid models, ANNs are most frequently used 
in conjunction with other algorithms for optimiza-
tion, followed by SVM optimized using various algo-
rithms. Despite the rapid evolution of new machine 
learning and deep learning algorithms, many studies 
have not yet adopted these state-of-the-art methods.

4.3  Models’ performance

Figure 10 presents the accuracy  (R2) on the test set 
of the best regression models reported in the studies 
for each degradation mechanism. Most of these best 
 R2 values, ranging from 0.88 to almost 1, are excep-
tionally high in studies that consider both field and 

Fig. 5  Publication of data sourced from literature and experi-
ments



 Materials and Structures          (2025) 58:145   145  Page 34 of 46

Vol:. (1234567890)

laboratory data. However, these impressive accu-
racies sometimes seem too good to be true. This 
skepticism is heightened by the fact that most of 
the studies reporting top accuracies— highlighted 
in red—only compared a limited number of mod-
els (typically 1 to 3). Such potential discrepancies 
in reported accuracy might stem from the consider-
able variation in data preparation methods, training 
strategies (e.g., splitting on formulations, others on 
data-points), the performance evaluation (with or 
without cross-validation), and the size of the data-
base used. Notably, for field experiments, model 
performance was reported exclusively for chloride 
attack and carbonation, as these were the only deg-
radation phenomena modelled using machine learn-
ing techniques.

Fig. 6  Categories of input features utilized for each machine learning model under the six degradation mechanisms

Fig. 7  Evolution of model categories
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Figure  11 illustrates the types of best models 
reported across the studies. Ensemble models rep-
resent about a third of the best models (36%), while 
neural networks account for 27%, and hybrid mod-
els make up 22%. By comparing this figure with the 
overall distribution of models used in the studies, 
it becomes evident that the ensemble models often 
outperform neural networks, given that their repre-
sentation among the best models exceeds their share 
in the total model population. Furthermore, hybrid 
models also demonstrate significant efficiency, as 
their share among the best models exceeds their 
share in the total model population. This indicates 
a notable trend where hybrid models, though less 
commonly used, deliver superior performance in 
predicting concrete degradation mechanisms.

4.4  Models’ explainability

While ensuring accuracy in models is crucial for 
practical applications, model explainability is 

equally vital. Model explainability in machine 
learning can be divided into two primary types: 
model-agnostic methods and model-specific 
methods [135–138]. Model-specific methods are 
designed to align with the unique characteristics of 
specific machine learning models or groups of mod-
els, utilizing their internal structure and properties 
to create explanations. In contrast, model-agnostic 
methods are versatile techniques that can be applied 
to any machine learning model, irrespective of its 
architecture or underlying algorithm. Figure  12 
illustrates the variety and frequency of explainabil-
ity methods adopted in studies focusing on concrete 
durability.

Model-agnostic methods are predominant, 
accounting for 85% of the total (33 instances), 
compared to 15% for model-specific methods (6 
instances). Among model-agnostic techniques, SHAP 
is the most frequently used, appearing in 25% of the 
studies. SHAP combined with ICE is also notable, 
utilized in 15% of the studies. Other model-agnostic 

Fig. 8  Categories of standalone algorithms used in the studies
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methods include PFI (15%), GRA, RReliefF, and 
p-value analysis (each at 5%), SSIs, GSA, OAT, RF-
RFE, and GCV. In contrast, model-specific methods 
are less diverse and less frequently employed. Among 
these, SRC is used in 50% of the model-specific stud-
ies but appears in only 8% of the total studies, which 
includes both model-agnostic and model-specific 
methods. Methods such as MDI, GI, and TBFI are 
each used even less frequently. This preference for 
model-agnostic methods underscores their flexibility 
and general applicability in explaining the influence 
of various features on model predictions, highlighting 
their importance in advancing the field of concrete 
durability.

Figure  13 illustrates the extent of model explain-
ability, which can be categorized by global and 

combined global–local explainability, applied to vari-
ous concrete degradation mechanisms. In the earlier 
years of the examined period, model explainability 
was not a prominent feature in studies. It was not until 
2017 that global model explainability started to gain 
traction, with a significant increase in studies consid-
ering this aspect from 2021 onwards. Unsurprisingly, 
there are no studies prior to 2022 that incorporate 
explainability at both the local and global levels. The 
number of features considered in these models varies 
significantly, with recent studies tending to incorpo-
rate more features, reflecting increased model com-
plexity. Carbonation and chloride studies frequently 
use global methods with larger feature counts. Studies 
related to sulfate, frost, and shrinkage employ com-
bined methods, while corrosion studies favor only 

Fig. 9  All types of algorithms used in the studies
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global methods with diverse feature counts. This trend 
highlights the growing importance of comprehensive 
model interpretability and the increasing complexity 
of models in concrete durability research. Given the 
flexibility and broad applicability of model-agnostic 
approaches like SHAP, these methods are likely to 
remain the preferred choice for explaining complex 
models in the field, enabling deeper insights into deg-
radation mechanisms and model predictions.

5  Discussion

5.1  Benefits and contributions

The utilization of machine learning models to pre-
dict the values for durability indicators of cementi-
tious materials offers several significant benefits that 
revolutionize the field of civil engineering. One of the 
foremost advantages is their high accuracy in predict-
ing key durability controlling factors such as carbona-
tion, chloride-induced degradation, sulfate attack, 
frost damage, shrinkage, and corrosion by leverag-
ing vast datasets and advanced algorithms. This level 
of accuracy surpasses traditional methods, enabling 
more reliable assessments of concrete structures’ lon-
gevity and integrity. Moreover, the explainability of 
these models is a critical feature. The adaptation of 
explainable machine learning techniques allows engi-
neers to understand the underlying reasons behind 
the predictions. This transparency is essential for 
gaining trust in the models and for making informed 
decisions about concrete durability. Additionally, 
machine learning models offer a practical alternative 

Fig. 10  R-square of the 
best performing models 
from each study

Fig. 11  Percentile share of the category of the algorithm 
yields best prediction performance
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to time-consuming and resource-intensive laboratory 
tests. Traditional durability assessments often require 
extensive sample preparation, long-term exposure 
studies, and complex testing procedures, all of which 
consume significant time and resources. In contrast, 
machine learning models can rapidly analyze large 
datasets and provide accurate predictions without 
the need for extensive physical experimentation. 
This efficiency not only accelerates the assessment 
process but also reduces costs associated with dura-
bility testing. These models are also instrumental in 
aiding engineers in designing durable concrete struc-
tures. By accurately predicting potential degradation 
mechanisms, engineers can tailor concrete mixtures 
to mitigate these effects, leading to the development 
of more resilient infrastructure capable of withstand-
ing environmental stresses.

Furthermore, once trained, machine learning 
models operate faster than conventional numerical 
models. Numerical simulations, while powerful, 

often involve complex computations that can be time-
consuming. In contrast, machine learning models, 
having undergone the initial training phase, can 
quickly process new data and provide immediate 
predictions. This speed is particularly advantageous 
for delivering prompt predictions that expedite the 
decision-making process in construction projects. 
Overall, the adoption of machine learning in this 
context leads to more efficient, cost-effective, 
and accurate durability assessments, ultimately 
contributing to the development of infrastructure with 
extensive service life.

5.2  Current challenges and limitations

Despite the numerous benefits, machine learning 
models for predicting the values for durability 
indicators of cementitious materials face several 
challenges and limitations. One major limitation is 
that these models often do not account for the various 

Fig. 12  Methods adopted for model explainability
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types of binders used in concrete, potentially limiting 
their applicability across different formulations. They 
also tend to consider a limited range of concrete 
types, which may not fully represent the diversity 
encountered in real-world applications. Most models 
are trained with lab databases collecting results from 
accelerated tests. Such tests offer a good qualitative 
assessment, but they may fail in predicting the long-
term performance of real structures when in service. 
For instance, a study examining the factors affecting 
chloride penetration in concrete demonstrated 
that the relative influence of key features evolves 
over time [139]. Effects of moisture variations 
(including dynamic equilibria with the ambient 
relative humidity, and wetting–drying cycles), frost 
cycles, chloride deposition rate,  CO2 atmospheric 
concentration, and thermal cycles may need 
adaptations for the results from lab-based models. 
The lack of sufficient field data covering multiple 
factors is one of the main limitations for developing 
more comprehensive models. Additionally, the 
scarcity of substantial open data hampers researchers’ 
ability to effectively train and validate their models, 
obstructing replication efforts and hindering 
collaborative scientific progress. Furthermore, the 

generalization capacity of these models is almost 
always not reported, particularly for concrete with 
high contents of SCMs, raising concerns about their 
robustness in diverse scenarios. Another critical 
challenge is that these models rarely incorporate 
fundamental physics or chemistry principles, which 
are essential for a deeper understanding of material 
behavior. However, there are promising examples 
of physics-informed machine learning in the field 
of porous media that could be adapted for concrete 
technology [140–142]. Addressing these challenges is 
crucial for advancing the reliability and applicability 
of machine learning models in predicting the values 
for durability indicators of cementitious materials.

5.3  Recommendations for future work

To enhance the accuracy and effectiveness of 
durability experiments as inputs for machine learning 
models, several best practices should be followed. It 
is essential to comprehensively report all material and 
specimen properties, along with detailed descriptions 
of the experimental conditions. Expanding the 
availability of field experiment data—particularly 
those addressing sulfate and frost attack, shrinkage, 

Fig. 13  Level of model 
explainability achieved by 
each study
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and corrosion of reinforcement—would provide 
invaluable real-world insights that can be used to 
train, validate, and refine predictive models.

Data reusability should be a primary focus, with 
researchers encouraged to present readable tables 
and graphs that are easy to interpret and repurpose 
for future studies. Beyond individual efforts, col-
laborative initiatives should focus on developing a 
comprehensive, standardized data repository, ena-
bling the aggregation of diverse datasets. Such an 
initiative would significantly advance the field, foster-
ing the development of more robust and generalizable 
machine learning models capable of capturing the 
complex interactions influencing concrete durability. 
Additionally, precise quantification of experimental 
dispersion is crucial, as it enables the development of 
models capable of providing uncertainty estimation. 
This, in turn, enhances the reliability and confidence 
of predictive models, pushing the boundaries of cur-
rent research in durability and predictive modeling. 
Future research should further emphasize the inte-
gration of physical and chemical properties of mix 
constituents, as such an approach enhances predic-
tive accuracy and ensures broader applicability across 
diverse concrete formulations [134, 143].

Understanding concrete performance is crucial for 
accurately predicting values of durability indicators 
and service life of structures. Although most stud-
ies assess durability based on individual deteriora-
tion mechanisms, real-world conditions often involve 
combined mechanical and environmental, complicat-
ing these evaluations [144, 145]. While sensors play 
a significant role in monitoring concrete durability 
environmental conditions [146–149], yet no stud-
ies have fully leveraged real-time sensor data. By 
integrating advanced machine learning techniques 
with real-time data, researchers can uncover deeper 
insights into the factors influencing durability. Future 
research should focus on this innovative approach to 
enhance the monitoring of concrete performance and 
strengthen structural resilience.

5.4  Recommendations for machine learning models

When developing machine learning models for 
predicting values for durability indicators of 
cementitious materials, several key recommendations 
should be considered. It is beneficial to use a variety 

of feature types to capture the complex interactions 
influencing material durability. Models should 
account for the exact amount of SCMs in blended 
cement to ensure accurate predictions. Proper train-
test splits should be performed at the specimen level 
rather than the data-point level, as multiple data-
points can often be derived from a single formulation. 
Additionally, models should be evaluated using cross-
validation to ensure robustness and generalizability. 
As illustrated in the most recent studies, analyzing 
results with both global and local model-agnostic 
interpretation tools can provide deeper insights into 
model behavior and the factors driving predictions, 
thereby enhancing the transparency and reliability of 
the machine learning approach in this domain.

In another perspective, most studies have concen-
trated on developing machine learning models to pre-
dict the outcomes of individual deterioration mecha-
nisms in concrete. However, in real-world scenarios, 
these degradation mechanisms impact concrete dura-
bility both simultaneously and sequentially. It is well-
established that synergistic deterioration progresses 
faster and more severely than any single degradation 
process [150–152]. Thus, evaluating these combi-
natory and synergistic effects is crucial for compre-
hensively addressing concrete durability [153–156]. 
Current single-task approaches, while effective at pre-
dicting complex degradation mechanisms, have sig-
nificant limitations. Firstly, each task requires sepa-
rate datasets and models, which is resource intensive. 
Secondly, these models lack scalability when dealing 
with degradation influenced by multiple related tasks 
simultaneously. Thirdly, they do not leverage shared 
knowledge between related tasks, potentially miss-
ing out on performance improvements. A multi-task 
learning approach is essential for overcoming these 
limitations. By training a single model to predict mul-
tiple degradation processes simultaneously, multi-task 
learning can enhance predictive capability, especially 
when degradation mechanisms interact and influ-
ence one another, all without significantly increasing 
model complexity. Since most input features, such as 
concrete mix composition, are shared across multiple 
tasks, only a few additional task-specific features are 
required, making multi-task learning a computation-
ally efficient alternative to multiple independent mod-
els. This approach not only uncovers valuable insights 
but also aids researchers in developing concrete that 
better resists deterioration mechanisms.
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6  Summary

This review highlights the following key findings in 
the application of machine learning to concrete dura-
bility from 2013 to 2024:

• Data sources and availability: A dominant reli-
ance on laboratory data (79%) underscores a gap 
in real-world applicability, as only 14% of stud-
ies incorporate field data, with a notable 74% not 
offering open access to their datasets. This limita-
tion hampers broader validation and the practical 
application of findings, emphasizing the need for 
more accessible and diverse data sources.

• Feature types: Recent trends reveal a growing 
emphasis on chemical compositions in mode-
ling, suggesting a shift towards more holistic and 
nuanced approaches. The integration of diverse 
features, including mixture proportions, engineer-
ing properties, and exposure conditions, reflects 
a more comprehensive understanding of concrete 
durability.

• Modeling approaches: The adoption of ensemble 
models has surged, with 33% of studies utilizing 
them and a significant increase noted post-2020. 
This shift towards ensemble and hybrid models 
indicates a move towards more sophisticated and 
robust predictive techniques, enhancing model 
accuracy and reliability.

• Model performance: Top-performing models 
exhibit exceptional accuracy, with  R2 values near-
ing 1 for various degradation mechanisms. Ensem-
ble models lead the pack in performance, followed 
by neural networks and hybrid models, underscor-
ing their effectiveness in predicting values for con-
crete durability indicators.

• Explainability: There is a strong emphasis on 
model explainability, with 85% of studies employ-
ing model-agnostic methods like SHAP. This 
focus has intensified since 2017, particularly from 
2021 onwards, highlighting the importance of 
transparency in machine learning models for con-
crete durability.

• Recommendations: To advance the field, it is cru-
cial to develop new, diverse datasets that encom-
pass both chemical and physical properties of mix 
ingredients. Enhanced data-sharing practices are 
also essential. Additionally, adopting multi-task 
learning approaches could provide deeper insights 

by addressing multiple deterioration mechanisms 
simultaneously, paving the way for more durable 
and resilient concrete structures.
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