
 
 

Delft University of Technology

The use of inverse methods for response estimation of long-span suspension bridges with
uncertain wind loading conditions
Practical implementation and results for the Hardanger Bridge
Petersen, Øyvind Wiig; Oiseth, Ole; Lourens, Eliz-Mari

DOI
10.1007/s13349-018-0319-y
Publication date
2018
Document Version
Accepted author manuscript
Published in
Journal of Civil Structural Health Monitoring

Citation (APA)
Petersen, Ø. W., Oiseth, O., & Lourens, E.-M. (2018). The use of inverse methods for response estimation
of long-span suspension bridges with uncertain wind loading conditions: Practical implementation and
results for the Hardanger Bridge. Journal of Civil Structural Health Monitoring, 9(1), 21-36.
https://doi.org/10.1007/s13349-018-0319-y
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13349-018-0319-y
https://doi.org/10.1007/s13349-018-0319-y


Journal of Civil Structural Health Monitoring manuscript No.
(will be inserted by the editor)

The use of inverse methods for response estimation of long-span suspension bridges with
uncertain wind loading conditions
Practical implementation and results for the Hardanger Bridge

Øyvind Wiig Petersen · Ole Øiseth · Eliz-Mari Lourens

Received: date / Accepted: date

Abstract Structural health monitoring (SHM) seeks to assess the condition or behaviour of the structure from measurement
data, which for long-span bridges typically are wind velocities and/or structural vibrations. However, in the assessment
of the wind-induced response effects, models for the actual loads must be adopted, which introduces uncertainties. An
alternative is to apply model-based inverse methods that consider the input forces unknown, and estimate these forces
jointly together with the system states using limited vibration data. This article presents a case study of implementing
Kalman-type inverse methods to a long-span suspension bridge in complex terrain, with the objective of estimating the
full-field response. Previous studies have shown the local wind field is complicated, leading to uncertain load effects. We
discuss the key challenges faced in the use of the methodology for the long-span bridges and present the results for a
six hour storm event. The analysis show that the dynamic response contribution from the 14 lowermost bridge modes
(up to 3 rad/s or 0.5 Hz) can be reconstructed with decent accuracy. The estimated response magnitude differs from the
predicted response from design specifications, pointing to initial load model uncertainties that can be reduced to give greater
confidence in the assessment of wind-induced fatigue, wind-resistant performance or other response effects.

Keywords Suspension bridge · structural monitoring · inverse methods · response estimation

1 Introduction

Bridges are an important part of societal infrastructure, and it is vital that these structures can operate with sufficient
structural safety. The past two decades have witnessed improvements in computational and sensor technology, leading to
increasing interest in structural health monitoring (SHM) using in-situ measurements as a tool for assessing the condition
of a structure.

For long-span bridges, which are generally of the cable-supported type, it is common to use measured vibration data
from ambient excitation, such as traffic or wind. The vibration data are typically acquired in the form of accelerations or
strains but can be supplemented by additional measurements, such as temperature, GPS, wind velocity or local traffic. The
review in [16] outlines many of the trends in SHM of large-scale bridges. A more recent state-of-the-art review with a
focus on cable-stayed bridges is provided in [18]. The survey on vibration-based SHM in [4] collects many of the success
stories but also points to one of the difficulties in classic damage detection in large bridges: the global modal characteristics
are not sensitive to local damage, and the measurements will always contain natural variations in the modal data due to
circumstantial causes such as wind, traffic and temperature. Although (numerical) studies have focused on frameworks for
elimination of environmental effects through novelty detection by principal component analysis [7,8] or neural networks
[17,27], the authors of this paper still believe that vibration-based direct detection of damage remains highly difficult for
in-operation suspension bridges due to the number of environmental conditions that remain unknown or uncontrollable.
Therefore, this paper considers the improvement of response estimation for reliable analysis of response effects in long-
span bridges, that could be developed as a tool for the assessment of condition of the structure.

In SHM frameworks, the assessment of bridge response effects may take several forms, depending on the type of
available data. The works in [12,36] considered buffeting-induced fatigue damage based on a probabilistic distribution of
wind velocities and directions from on-site wind data. An observation recognized in these studies is that the complexity
and inaccuracy of the joint probabilistic distributions could lead to serious errors the estimated fatigue damage. Another
approach to fatigue life assessment is to use direct strain data collected under various wind and traffic conditions [6,38],
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i.e. creating a long-term statistical response model. In [39] it was addressed the stochastic characterization of the local wind
field from wind monitoring data, with the aim to facilitate the structural performance evaluation of long-span bridges under
wind action. Although many of the current SHM systems feature wind measurements and provide information on common
wind field parameters (mean velocity, turbulence, direction, angle of attack, spectral shape, correlations), the wind loads
are not directly measured, as pointed out in [37].

The absence of direct load data inevitable necessitates a set of adopted load assumptions, which may be an obstacle
to the reliability of the assessment. This has driven the development of the class of inverse methods that that consider
the excitation forces unknown, and estimate these forces jointly together with the system states (displacements/velocities),
using a system model and measured vibration data. Several different techniques have already been implemented in real-
life structures. As already proposed by researchers, this can be applied to, for example, monitor fatigue in wind turbine
foundations in [14,15,23] and off-shore jackets [32], to study wind forces on tall buildings [41] and ice forces on lighthouses
[28]. In these cases, the environmental (wind, wave or ice) forces present are uncertain, either due to their inherent stochastic
nature or because the mechanics behind the load interaction is unclear.

The use of the inverse methods has however seen little exploration for long-span bridges, which is what this paper
focuses on. Although the general methodology applied in this contribution is well-known [1,20,25], the application to
long-span bridges under environmental loading is new, where the wind loads are governed by the local wind field and
the aerodynamic properties of the structure, both of which are not always well-known. Local wind measurements at bridge
sites often indicate a variability (non-deterministic scatter) in the parameters used to described the wind field [11,13], which
sometimes also deviates from recommended values in design specifications [3,35]. This leads to a discrepancy between the
measured and predicted response, as observed in [9,34]. Due to the structural size, the spatial properties of the wind field is
also an important but often uncertain aspect due to the limited number of points at which the wind is measured, especially
before the bridge is built. Inverse methods could therefore be used to reduce the response effect uncertainties in long-span
bridges by making use of the measurement data rather than relying on predictions from a generic load model. Calibration
of existing load models is also a possible opportunity. This will in turn lead to a more reliable representation of the dynamic
behavior, which is key in assessments of wind-induced fatigue and wind-resistant design.

In reliability-based design, uncertainties are generally met with conservative measures, but in practice, this is also
balanced with cost and design feasibility. The uncertainties play a role in assessment of structural safety, serviceability and
maintenance strategies of the infrastructure. This points to the knowledge gain from monitoring these structures through
their lifetime.

This paper presents a case study on a suspension bridge, the Hardanger Bridge, extending some of the results from [30].
The bridge case-study is representative for other (existing or future) bridges located in complex terrains, for example in
fjord-mountain or strait-island areas. A shared trait for these structures is that the load effects from wind are challenging to
characterize accurately. Results from the monitoring at Hardanger Bridge shows that the numerical predictions of buffeting
response based on design wind spectra are underestimated compared to the measurements [9]. The same study also showed
that the wind-related parameters turbulence intensity, length scales, angle of attack and coherence decay coefficients had a
considerable variability, which is typically is not considered in design predictions. The predicted dynamic behaviour also
relies on aerodynamic models calibrated from wind tunnel experiments using scale section models [31], an exercise that
also involves simplifications and uncertainties that may not match the real-life behaviour of the structure at full scale.

This article presents the implementation and feasibility of full-field response estimation in long-span bridges. Although
the focus is on the results from the wind-induced response of the Hardanger Bridge, many of the presented concepts and
drawn conclusions are applicable to cable-supported bridges in general.

2 Theoretical framework

2.1 Governing system equations

This section presents the relevant equations for the linear motion of bridges. The linear system formulations in this section
are well-known, but is still presented to clarify how the system model and external forces are defined, since the equations
of bridge dynamics can be formulated in several ways, depending on the desired application and underlying assumptions.
Consider a discretized system description of a suspension bridge modelled with nDOF degrees of freedom (DOFs). The
structural response u(t) ∈ RnDOF is given by the equations of motion:

M0ü(t) + C0u̇(t) + K0u(t) = f(t) (1)

where M0, C0 and K0 ∈ RnDOF×nDOF are the mass, damping and stiffness matrices related to the structure only. The total
load vector f(t) ∈ RnDOF here consists of the wind excitation, and the vector can generally be expanded as follows:

f(t) = Caeu̇(t) + Kaeu(t) + fB(t) + fv(t) + fs (2)

Here, the first two terms on the right-hand side represent the motion-induced forces. There is no direct assumption imposed
on the content of the aerodynamic matrices Cae and Kae ∈ RnDOF×nDOF ; they can be constant (quasi-steady theory) or
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frequency dependent (unsteady theory). fs is the static wind load, which is disregarded here since the focus is on the
dynamic vibrations. fB(t) is the buffeting wind load due to turbulence, and fv(t) is the vortex-induced load, which is
typically not important unless the mean wind velocity is low enough for vortex shedding lock-in vibrations to occur in the
bridge deck.

Through the truncation u(t) = Φz(t), the dynamic response is represented as contributions from a limited number of
modes. z(t) ∈ Rnm is the vector of still-air modal coordinates, and Φ ∈ RnDOF×nm contains the nm corresponding mass-
normalized mode shapes φj ∈ RnDOF , which is solved from the still-air eigenvalue problem:

(K0 − ω2
jM0)φj = 0 (j = 1 . . . nm) (3)

It is common to assume that the structural damping C0 can be approximated as proportional and then define Ω =
diag(ω1, ω2, . . . , ωnm) and Ξ = diag(ξ1, ξ2, . . . , ξnm); ωj and ξj are the undamped natural frequency and damping ratio for
mode j, respectively. The modal truncation transforms the equations of motion (Eq. 1) and now reads as follows:

z̈(t) + 2ΞΩż(t) + Ω2z(t) = ΦTf(t) = p(t) (4)

where p(t) ∈ Rnm are the modal forces, which in general are unknown. Since the locations of the forces on the bridge are
not confined to a few discrete points, but distributed across the whole structure, a formulation using modal equivalent loads
is the best alternative to account for the response of the structure [19]. Although the ambient wind loads are expected to
dominate the load term, in principle, any other type of excitation on the structure, such as traffic loads, is contained within
the modal load vector.

Because the system model is eventually used to process digital data, the discrete time state-space representation of Eq. 4
is used with xk ∈ R2nm as the modal state vector:

xk+1 = Axk + Bpk, xk =

[
z(tk)
ż(tk)

]
, pk = p(tk) (5)

Here, the time axis is discretized in increments of∆t such that tk = k∆t(k = 0, 1, . . . Nt−1), whereNt is the number
of samples. In the discretization, the forces are kept constant within each time step. It can be shown that the state transition
matrix A ∈ R2nm×2nm and input matrix B ∈ R2nm×nm are then given by:

A = exp
([ 0 I
−Ω2 −2ΞΩ

]
∆t
)
, B = (A− I)

[
0 I
−Ω2 −2ΞΩ

]−1 [
0
I

]
(6)

The system output vector d(t) ∈ Rnd consists of accelerations and/or displacements at selected DOFs of the structure:

d(t) = Saü(t) + Sdu(t) (7)

where Sa and Sd ∈ Rnd×nDOF select these DOFs. The output equation can also be formulated in state-space form:

dk = Gxk + Jpk (8)

with the following output influence matrix G ∈ Rnd×2nm and direct transmission matrix J ∈ Rnd×nm :

G =
[
SdΦ− SaΦΩ2 −SaΦ2ΩΞ

]
, J =

[
SaΦ

]
(9)

The stochastic-deterministic forms of Eqs. 5 and 8 read as follows:

xk+1 = Axk + Bpk + wk (10)
dk = Gxk + Jpk + vk (11)

where the zero-mean vectors wk ∈ R2nm and vk ∈ Rnd are white noise vectors representing the process error and measure-
ment error, which are assumed to have the following known covariance matrices:

E[wkw
T
l ] = Q δkl, E[vkv

T
l ] = R δkl, E[wkv

T
l ] = S δkl (12)
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Fig. 1 The Hardanger Bridge viewed from the east. Photo: NTNU/T.M. Lystad

2.2 Methods for system inversion

In this section, we summarize the prevailing stochastic-deterministic methods for system inversion. The methods combine a
system model and measurement data to estimate the system states (x̂k) and input forces (p̂k); the hat indicates an estimated
quantity. The methods may be classified as methods that make no assumption on the force evolution [20,22,25] and those
that model the forces as a random walk [1,21]. The random walk equation is given as follows:

pk+1 = pk + ηk (13)

where ηk ∈ R2nm is a white noise vector with the covariance E[ηkη
T
l ] = QPδkl working as the tuning parameter. In this

paper, we employ two of the aforementioned methods: a joint input-state estimation algorithm (JIS) [20] and a dual Kalman
filter (DKF) [1]. Both of these methods are Kalman-type filter algorithms, but only the latter models the forces by Eq. 13,
whereas the JIS makes no specific evolution assumptions. Extensions to the filters in the form of time-delayed smoothers
rather than non-instantaneous inversion have also been developed [22], but such extensions are not considered here since
they mainly provide benefits when the unknown forces are strongly non-collocated.

It is not practically possible to perform direct measurements at all critical components of a structure. The number of
installed sensors can be limited by cost, and the sensor locations can also be subjected to practical restrictions. As already
utilized by several researchers [23,14] one of the possible solutions to this problem is the full-field response estimation
using an extrapolated output equation:

d̂′k = S′dûk + S′a ˆ̈uk = G′x̂k + J′p̂k (14)

Here, G′ and J′ are constructed as defined in Eq. 9 using S′d and S′a to select the set of extrapolated DOFs. It is also
possible to use Eq. 14 to predict any linear response variable, such as strains, stresses, or cross-sectional forces. This can
be of interest in the indirect monitoring of fatigue or assessment of local structural demand/capacity.

The theoretical limitations and requirements for filters with instantaneous system inversion can be found in [24]. This
may be summarized as three requirements concerning the observability, stability, and direct invertibility of the system. How
these conditions play out for the presented case study is discussed in Section 3.3.

3 Practical implementation for the Hardanger Bridge

3.1 The Hardanger Bridge monitoring project

The Hardanger Bridge (Fig. 1) is a suspension bridge located in Norway with a main span of 1308 m. The monitoring of
this bridge is part of a larger research project related to development of the E39 Coastal Highway Route, an upgrade of the
main highway along the Norwegian west coast.

In this section, the focus is on the implementation of the mentioned inverse methods for the case study of the Hardanger
Bridge. The methodology has both practical and theoretical limitations that must be considered; the most important points
to consider are given attention.

3.2 Initial key points

Monitoring system. The bridge must be equipped with a robust and operational long-term monitoring system with either
continuous data acquisition or a triggering solution that saves data from the events of interest. The monitoring system at
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Fig. 2 Positions of sensors installed on the bridge superimposed on an FE model: anemometers (A) and accelerometers (H). The compass shows the
definition of the wind direction
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Fig. 3 Sample time series of the (a) along-wind velocity, (b) wind direction and (c) vertical wind velocity from anemometer A6

the Hardanger Bridge consists of 20 triaxial accelerometers and nine sonic anemometers at the locations shown in Fig. 2.
We refer to the description in [11] for the system specifications.

Fig. 3 shows a time series (300 s window) from the midmost anemometer (A6), during a storm event that is later used as
an example. For most cases, the wind approaches the bridge deck at an angle in the sectors [60◦, 150◦] or [250◦, 300◦] since
the surrounding mountains make the wind travel along the fjord. Fig. 4 shows the simultaneously measured acceleration in
the mid-span of the bridge (sensor pair H5W/H5E), transformed into lateral, vertical and torsional components.

Observed response characteristics. It is essential to have an initial overview of the dynamics of the structure under consid-
eration. Fig. 5a-c shows the power spectral density (PSD) of a 30 minute long acceleration time series. A clear multi-modal
dynamic behaviour is observable, which is a common characteristic of long-span bridges. This behaviour has implications
on the number of modes needed in a system model to explain the observed data. The lowest modes tend to contribute the
most to the response, however. Fig. 5d shows the acceleration variance accounted for up to a given frequency limit ωlim,
from the fraction:

σ2
ωlim,n

σ2
tot,n

=

∫ ωlim

0
Sünün(ω) dω∫∞

0
Sünün(ω) dω

, n = {y, z, θ} (15)

where Sünün(ω) is the (positive) PSD of the acceleration in the lateral (y), vertical (z) or torsional (θ) DOF. For
example, the spectral content below ωlim = 3 rad/s accounts for approximately 75% of the total acceleration variance for all
three components. In terms of displacements, the fraction is greater than 99% for the same limit, indicating that low-order
models can approximate the response with decent accuracy.
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Fig. 5 Power spectral density (estimated by Welch’s method) of the (a) lateral, (b) vertical and (c) torsional accelerations at the mid-span from 30 minutes
of measurement data. d) Variance contribution up to the frequency limit ωlim

Placement of sensors. Optimal sensor network design for SHM is a well-studied problem, which may be formulated with
various objectives. Loosely speaking, the idea is to determine sensor locations, and possibly sensor types, such that the
usefulness of the limited amount of data is maximized. For inverse methods that employ instantaneous system inversion,
the design of the sensor network is discussed in [24]. Another direct approach is to distribute the sensors with an objective
of minimizing the theoretical uncertainty of the state or force estimates in the filtering algorithms [40]; however, the result is
dependent on the (assumed) noise statistics (Eq. 12), which may be incorrect or non-stationary. A basic rule of thumb is to
allocate the sensors such that data are not repeated, i.e. avoiding a linear dependence between the outputs, and that all modes
excited by the input should be observed. For our case, the placement of the accelerometers in Fig. 2 is already established
and is not altered in this work. Note that this sensor configuration was not designed specifically for inverse problems,
which leads to some shortcomings. For example, the pair-wise allocation of the sensors causes a linear dependence in the
two lateral (y) components, meaning that one of the signals in each pair must be discarded because it provides no additional
information. One could also argue that the (almost) symmetric accelerometer placement in Fig. 2 is not optimal since many
of the modes are (almost) symmetric.

3.3 Theoretical requirements and limitations

We now discuss the most important theoretical conditions for system inversion mentioned in Section 2.2 in relation to the
case study. The conditions originate from the theoretical limitations in control theory.

Observability. The observability requires that rank((Sa +Sd)φj) = 1 for all j = 1 . . . nm [24]. In general, the observability
is hardly a problem since the considered modes are global and thus captured by one or more sensors in the girder.

Stability. The stability is related to the transmission zeros of the state-space model, i.e. solutions λ ∈ C of the equation:
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Fig. 6 Pictures of the FE model of the Hardanger Bridge.

[
A− λI B

G J

] [
x0

p0

]
=

[
0
0

]
(16)

where |λ| > 1 and |λ| < 1 denote unstable and stable zeros, respectively. λ = 1 is the special case of marginal stability
that always occurs when Sd = 0 [24]. In the case of acceleration output only (Sd = 0, Sa 6= 0), we experience that for
most configurations of the state-space model (i.e. variations of the sensor network and modes in the system model), λ = 1
is present but no unstable zeros occur. Note that due to numerical precision, λ will strictly not be equal to unity; thus, its
numerical value will fall in the stable or unstable region. This is normally not a significant issue unless data series with an
extreme number of time steps are handled. Without installation of additional static-sensitive sensors, some practical options
are available to overcome the problem of marginal stability:

(i) Use acceleration output only and accept the marginally stable zeros. The instability typically manifests as a low-
frequency drift in the estimated states and forces, as observed by researchers in [2,20,21]. A high-pass filter can be
applied to the time series in the post-processing of the results. A notable exception here is the DKF, which can avoid
the drift under optimal regularization conditions.

(ii) Use both accelerations and displacements in the output vector, where the displacement data are synthesized by twice
numerical integration of the accelerations and subsequently high-pass filtering to avoid the integration drift. This results
in a stable system without zeros for our case.

(iii) Using dummy displacement measurements [26].

Options (i) and (ii) both imply a loss of information on any low-frequency behaviour due to the high-pass filtering. This
can be a drawback for long-span bridges, where the wind-induced response can have some low-frequency components.

Invertibility. The direct invertibility requires that the rank of J is equal to the number of unknown forces [24]; thus,
rank(SaΦ) = nm when modal forces are used. This is a heavy implication for the number of modal loads that can be
identified since a limited number of (linearly independent) acceleration measurements is available. As already discussed in
Section 3.2 and shown in Fig. 5, a high number of modes contributes to the wind-induced response in suspension bridges.

3.4 Sensor network

The following outputs are included in the sensor network:

(i) The z-signals from all sensors in the girder, except H2W.
(ii) The y-signals from sensors H1E, H3E, H4E, H5E, H6E, H7E, H8E, H9E, T1E, and T2E.

(iii) The difference in x-signals from all sensor pairs in the girder, e.g. ux,H1W (t)−ux,H1E(t) for the first pair. This output
is proportional to the rotation about the z-axis at the local section.

The remainder of the signals are discarded either because they are redundant, too small in modal amplitude, or used as
a reference output for validation. In total, 32 acceleration outputs are used. For the JIS, the displacement output obtained
by numerical integration is also included; thus, nd = 2 × 32 = 64. For the DKF, only acceleration output data are used
(nd = 32).

3.5 System model

The modal system model should, from a practical perspective, represent the observed dynamics of the structure while also
conforming to the theoretical requirements discussed in Section 3.3. The system vibration modes in Eq. 3 are obtained
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Table 1 List of modes in the model and their correspondence with identified modal quantities denoted with an overbar. H=horizontal bending, V=vertical
bending, T=torsion. MAC indicates the Modal Assurance Criterion

Mode no. j Mode name ωj [rad/s] ω̄j [rad/s] ξ̄j [%] MAC(φj ,Re(φ̄j))

1 H1 0.321 0.324 0.65 0.999
2 H2 0.657 0.663 0.77 0.993
3 V1 0.707 0.748 1.77 0.989
4 V2 0.890 0.893 0.65 0.995
5 H3 1.161 1.151 0.77 0.993
6 V3 1.273 1.294 0.27 0.992
7 V4 1.332 1.335 0.35 0.997
8 V5 1.737 1.735 0.26 0.998
9 H4 2.001 1.997 0.63 0.990
10 V6 2.088 2.093 0.25 0.995
11 T1 2.331 2.352 0.41 0.964
12 V7 2.517 2.519 0.24 0.997
13 H5 2.911 2.915 1.56 0.704
14 V8 2.938 2.960 0.26 0.991

from an FE model of the bridge pictured in Fig. 6. The global modal characteristics of suspension bridges from FE models
generally have decent accuracy when the main bridge geometry is properly modelled and reasonable values for mass and
stiffness are provided. Since it is desired to keep the model errors to a minimum, a high-fidelity model is employed, where
shell elements are used for the girder and towers. In particular, this makes the torsional stiffness and inertia properties of
the girder easier to model than for a beam model because the shell geometry avoids the need for conjectures on equivalent
beam cross-section coefficients. Beam elements are used for the main cable and the hangers. The modes of the bridge below
6.3 rad/s or 1 Hz can generally be classified into three categories:

(i) Bending or torsion modes with a large girder response, i.e. shapes with a classic n-sine half-wave pattern. These are
commonly regarded as the "main" modes of suspension bridges.

(ii) Modes with mainly cable response, which here are deemed insignificant because they are unobservable by the sensors.
(iii) Tower modes, which we also discard here.

Covariance-driven stochastic subspace identification (Cov-SSI) is used to estimate the true natural frequencies (ω̄j),
damping ratios (ξ̄j) and mode shapes (φ̄j) of the bridge in operational conditions with low wind velocity (3-6 m/s) so that
still-air modal properties is a fair approximation; see [29] for details. It is assumed that the effect of small time-variations in
the modal properties due to for example changes in temperature can be neglected. Note that in the system formulation used
(Eq. 1 and 2), the aerodynamic stiffness and damping are considered as load effects, and so does not influence the still-air
modal properties.

The FE model is calibrated in a classic sensitivity-based model updating scheme [29], with the objective of matching
the mode shapes and natural frequencies of the model to the identified ones. Herein, the following model parameters are
adjusted: the densities and elastic stiffnesses of the girder, towers and main cable; the non-structural mass on the girder; the
shear stiffness of the girder; the hanger tension; and spring-elastic stiffnesses representing the bearings in the girder-tower
connection.

The (updated) modes that are finally included in the state-space model are listed in Table 1 (nm = 14), together with
the identified frequencies and damping ratios. Twelve of these modes are shown in Fig. 7. Most of the errors in natural
frequencies are less than 1%, but a notable outlier is mode V1 (ω3 = 0.707 rad/s), which is underpredicted by 5.8%. In
general, the mode shapes in the model also match well with the identified ones, as shown by the modal assurance criterion
(MAC). The highest system frequency considered is ω14 = 2.94 rad/s. A system model which includes even higher modes
is found to be infeasible for use in the inverse algorithms, as it leads to an ill-conditioned system inversion and severe errors
in the results. In accordance with the invertibility criterion in Section 3.3, a system with 14 modes is below the number of
modal loads that could theoretically be identified. For a system model with more than 14 modes, however, the condition
number of the matrix J (= SaΦ) significantly increases, indicating close to linear dependencies in the acceleration data.
This could be linked to the sensor layout, and again to the pairwise sensor allocation. In essence, a decisive modal cut-off
here becomes an effort of trial and error, with the development of more generic guidelines considered as future work.

4 Response estimation results for the Hardanger Bridge

4.1 Measurement data

A set of six hours of continuous measurement data starting on the 29th of January, 2016, at 13:00 is utilized, corresponding
to 36 consecutive ten minute events. These data are acquired during the "Storm Tor" striking Northern Europe and also the
Norwegian west coast. The wind field characteristics at the Hardanger Bridge during this storm were investigated in [10],
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Fig. 7 A selection of twelve modes from the FE model
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Fig. 8 Mean wind velocities for the six hour period recorded by anemometers A1-A8 located along the bridge span. The grey lines show all values for all
anemometers, and the black line shows the values for the individual anemometer
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Fig. 9 Statistics of the 36 ten minute events: (a) mean and standard deviation of the along-wind velocity at anemometer A6. (b)-(d) show the standard
deviations of the measured lateral, vertical and torsional acceleration responses at the mid-span.

where it was recognized that the wind recordings showed non-stationary features, although admitting that the testing for
non-stationarity was not very robust. As shown in Fig. 8, the recorded mean wind velocities varied between 14.7 and 31.8
m/s in the considered six hour period. The measured response levels are also varying, as shown by the mid-span response
statistics in Fig. 9.

The Chebychev II filters in Fig. 10 are applied to the output data, which are resampled to ∆t = 0.1 s (Nt = 216× 103

time steps). It can be expected that the dynamics of the modes close to the cut-off frequency become slightly misrepresented
since the natural frequencies of suspension bridges are very closely spaced and it is difficult to design a filter that fully
includes the dynamics in the band of the highest mode of the model (ω14 = 2.94 rad/s) but fully excludes the next modes.
It is also important that the high-pass filter (Fig. 10b) has a narrow transition band to remove the low-frequency integration
drift due to noise accumulation in the numerical integration, without removing the dynamic content in the band of the
lowest mode (ω1 = 0.32 rad/s). As mentioned earlier, the lack of directly acquired static vibration data generally means
that any information on the quasi-static behaviour is missing; thus, the analysis here focuses on the dynamics above 0.3
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Fig. 10 Absolute values of the frequency-domain digital filter transfer functions: (a) low-pass filter applied to the output data, and (b) high-pass filter
applied in the numerical time-integration
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Fig. 11 Estimated and measured accelerations for the period t ∈ [1800, 3600] s in (a) the lateral direction in the girder (H2W y), (c) the vertical direction
in the girder (H2W z), and (e) the longitudinal direction in the tower (T2E x). The subfigures (b), (d) and (f) show time snippets of the three signals

rad/s. The pre-processing of the measurement data means that the filter applications here are not online; however, the data
could still be processed in batches in an automated system after the acquisition.

4.2 Response prediction

The dynamic response of the bridge is now predicted at unmeasured locations using the two filtering algorithms in com-
bination with Eq. 14. In the analysis, Q is set to 10−2 × I. The measurement error covariance R is set to 10−6 × I,
corresponding to approximately 10−4 times the variance of the output signals. We observe that the first-order sensitivity of
the solution with respect to these covariance matrices is generally low. The force step error covariance QP is set to 10× I.
This is the highest order that the parameter can attain before low-frequency drift occurs. More sophisticated calibration
methods are also possible, but this parameter mostly influences the force magnitude rather than the states, which is mainly
focused on here.

The signals H2Wy and H2Wz in the girder and T2Ex in the tower are used as a set of reference DOFs for the response
prediction. Fig. 11 and Fig. 12 show the estimated accelerations at these 3 DOFs in the time domain for the thirty minutes
t ∈ [1800, 3600] s. To provide a realistic image of the actual performance obtained, the reference output data shown are not
filtered. The estimated displacements in the same DOFs are also shown in Figs. 13 and 14. The estimates from the JIS and
DKF are in general quite similar.

To characterize the time-domain error, the following root mean square (RMS) error metric is used for each reference
output d(i):
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Fig. 12 PSD of estimated and measured accelerations for the period t ∈ [1800, 3600] s in (a) the lateral direction in the girder (H2W y), (b) the vertical
direction in the girder (H2W z), and (c) the longitudinal direction in the tower (T2E x)
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Fig. 15 RMS error in the predicted response in the three reference DOFs. The displacement errors for the first and last event are disregarded due to
transient filter content

Ei =

√√√√ 1

Nt − 1

Nt∑
k=0

( d(i)k − d̂(i)k
max(|d(i)|)

)2
(17)

Fig. 15 shows the RMS error for each event. Note that since both methods used (JIS and DKF) are time-recursive
estimators, the length of the data analyzed generally does not influence the accuracy of the estimates or possible errors.
Although some variations occur, the general error level can be observed. The accelerations consistently have larger errors
than the displacements. As shown in Fig. 12, the frequency content above 3 rad/s cannot be reconstructed as this primarily
originates from modes excluded from the model. The displacements (Fig. 14) are dominated by the lower modes and are
thus more adequately reconstructed by filter estimates using a low-order model, leading to a lower error. For the towers, for
example, the contribution from the lower modes is captured (Fig. 12c), but the accelerations are dominated by tower modes
in the range 3-6 rad/s, which are not included in the model. In wind engineering, however, it is typically the dynamics of
the bridge girder that is deemed most important, which appear to be well reconstructed.

It is clear that the response prediction works best in characterizing the global behaviour from a distributed network
of sensors. As a counter example, in cable-stayed bridges, it is often the vortex-induced vibration of the cable stays that
is the most critical concern with respect to early structural degradation or damage. The cable vibrations are a more local
phenomenon and thus require more direct measurements to be properly reconstructed, although it has been demonstrated
that the vortex-induced vibrations of the hangers at the Hardanger Bridge can be detected by the accelerometers as the
high-frequency cable vibrations transmit down in the girder [5].

As an illustration, the longitudinal strain is also estimated in the girder (in the section point P , see Fig. 6) at the
quarter (x = 328 m) and middle (x = 0 m) points of the span, as shown in Fig. 16. As a reference for comparison, the
strain is calculated from the design basis of the bridge based on classical multi-mode theory of buffeting response in the
frequency domain. The details behind this approach are provided in [9]. The most important equations and assumptions
can be summarized as follows:

A stationary and homogeneous wind field is necessary to adopt here. The design wind spectrum Svv(ω,∆x) ∈ R2×2

containing the along-wind and vertical wind velocity is of the Kaimal-type; see [9]. Only buffeting wind loads along the
girder bridge span are included (−L/2 ≤ x ≤ L/2, L = 1308 m), which can be considered unconservative. The modal
(design) buffeting load spectrum Spp(ω) ∈ Rnm×nm is calculated as follows:

Spp(ω) =

∫ L/2

−L/2

∫ L/2

−L/2
Φg(x1)TBqSvv(ω,∆x)BT

q Φg(x2) dx1dx2 (18)

This integral is evaluated by discretizing the span into equal segments of 4 m. The matrix Φg(x) ∈ R3×nm contains the
horizontal, vertical and pitching modal deflection of the girder along the span:

Φg(x) =

Φy(x)
Φz(x)
Φθ(x)

 (19)

The buffeting coefficient matrix Bq ∈ R3×2, assumed to have frequency-independent admittance, is set to:

Bq =
ρUB

2

2(D/B)C̄D (D/B)C ′D − C̄L
2C̄L C ′L − (D/B)C̄D

2BC̄M BC ′M

 (20)
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Table 2 Aerodynamic coefficients for the Hardanger Bridge obtained from wind tunnel experiments [31]

Parameter Value

C̄D 1.05
C′

D 0
C̄L -0.363
C′

L 2.22
C̄M -0.017
C′

M 0.786
B 18.3 m
D 3.25 m
ρ 1.25 kg/m3

1800 2000 2200 2400 2600 2800 3000 3200 3400

Time [s]

-4
-2
0
2
4

S
tr

a
in

 a
t 
L
/2

10 -5

1800 2000 2200 2400 2600 2800 3000 3200 3400

Time [s]

-5

0

5

S
tr

a
in

 a
t 
L
/4

10 -5
JIS DKF

a)

b)

Fig. 16 Estimated strain at the (a) quarter-span, and (b) mid-span for the period t ∈ [1800, 3600] s

where the coefficients are listed in Table 2. U is set as the mean wind velocity from anemometer A6 in the middle of the
bridge. The modal transfer function Hpz(ω) ∈ Cnm×nm , taking aerodynamic damping and stiffness into account, is defined
as:

Hpz(ω) = [−ω2I + iω
(
2ΞΩ− C̃ae

)
+ Ω2 − K̃ae]

−1 (21)

Quasi-steady theory is for simplicity assumed, meaning that the modal aerodynamic damping and stiffness become:

C̃ae =

∫ L/2

−L/2
Φg(x)TCaeΦg(x) dx, K̃ae =

∫ L/2

−L/2
Φg(x)TKaeΦg(x) dx (22)

Cae = −ρUB
2

2(D/B)C̄D (D/B)C ′D − C̄L 0
2C̄L C ′L − (D/B)C̄D 0

2BC̄M BC ′M 0

 , Kae =
ρU2B

2

0 0 (D/B)C ′D
0 0 C ′L
0 0 BC ′M

 (23)

The modal response spectrum Szz(ω) ∈ Cnm×nm is then directly obtained:

Szz(ω) = Hpz(ω)HSpp(ω)Hpz(ω) (24)

The strain PSD matrix Sεε(ω) ∈ Cnε×nε is calculated using the strain modes Φε ∈ RnDOF×nm at the nε locations selected by
the matrix Sε ∈ Rnε×nDOF :

Sεε(ω) = SεΦεSzz(ω)ΦT
εS

T
ε (25)

Fig. 17 shows the (auto) PSDs of the strains for t ∈ [1800, 3600] s. Here, modes above 2 rad/s also significantly
contribute to the total strain because the curvature of the modal girder deflection increases with the square of the number
of half-waves (Fig. 7). Generally, the filters predict a larger strain contribution from the horizontal modes H1, H2 and H3
than the design-based estimate. If the wind loading on the cables and towers were also considered in the design prediction,
then a 10-20% increase in the response of the horizontal modes would be realistic [33]. For the vertical modes, there is a
better correspondence but still some discrepancies for V1, V2 and V8. However, it is not expected that the presented spectra
should be equal; the comparison is meant to show the variations that can be expected from the numerically predicted and
real-life behaviour of the bridge. Overall, the spectral characteristics from the two approaches appear similar.

The standard deviation of the strain along the span in the same 30 minute period is shown in Fig. 18, which for the design
prediction case can be calculated from the PSD matrix as the diagonal of [

∫∞
0

Sεε(ω) dω]1/2. The JIS gives larger strains
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Fig. 17 The PSD of the strain from filter estimates and the design-based prediction at the (a) quarter span, and (b) mid-span for the period t ∈ [1800, 3600]
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Fig. 18 Standard deviation of the girder strain along the span for the period t ∈ [1800, 3600] s

than the DKF and also indicates a non-symmetric distribution along the span, which could be an artifact from estimation
errors in the modal state vector. The DKF, which is the most moderate of the two estimates, still yields up to 50% higher
strain levels than predicted. This result is consistent with the earlier studies of the Hardanger Bridge in the duration of the
storm, finding that the measured RMS accelerations were higher than predicted for both the lateral, vertical and torsion
responses [10]. The magnitude of the stresses are highly influential in fatigue assessments, so the full-field estimation could
give a more certain prediction of possible fatigue damage.

An other point from observed from the measured wind data are inhomogenities in the wind field. For example, in Fig. 8
a consistent trend can be seen where mean wind velocities are decreasing from anemometer A1 to A8 by approximately
10-20%. Similar along-span variations can be seen for turbulence intensities. This shows a complexity of the wind field
which is difficult to model with great certainty, and promotes the advantage of inverse response estimation, where the load
model need not be known.

The observed discrepancies in Fig. 16-18 indicate that the response effects can be determined with greater confidence
compared with the prediction from design specifications. A more accurate representation of the response will lead to
improved assessment of the condition of the bridge, for example performance during strong winds, fatigue calculations
or evaluation of serviceability. Still, it is recognized that the application of inverse methods to long-span bridges require
further testing and development to ensure a robust performance.

4.3 Extensions of the research

A few points can be highlighted as possible extensions of this work:

(i) Input estimation. The research should be extended to input estimation of wind forces, assessing the identified forces in
light of the wind measurements.

(ii) Sensor network design. The current sensor network can be improved, either by installing additional accelerometers or
strain gauges.

(iii) Model uncertainties. Advancing the identification of the modal parameters to map the model uncertainties, for example,
by tracking the variation of natural frequencies and damping over a longer period.

(iv) Long-term response estimation. An interesting study is to estimate the response for a longer period and evaluate how the
response compares to the numerical (design) predictions under a variety of conditions, such as weak and strong winds,
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inhomogeneous wind, skew wind or non-stationary wind. This requires some type of automated batch processing of the
data while ensuring that the analysis is robust, which can be a challenge for the inverse-type problems.

5 Conclusion

This paper has presented the use of inverse methods for reconstruction of full-field responses in long-span cable-supported
bridges from measured vibration data and a reduced-order system model. Two well-established Kalman-type filtering algo-
rithms were used for the state and input estimation. The focus was on a case study of the Hardanger Bridge, a suspension
bridge with uncertain wind conditions. The major advantage of the methodology is that an established model for the wind
field or aerodynamic coefficients from wind tunnel experiments is not required, meaning the response effect uncertainties
related to the load assumptions can be reduced.

The results from the case study show that full-field response estimation using measured acceleration data is feasible,
with the limitation of only reconstructing the response contribution of the 14 modes below 3 rad/s (0.5 Hz) for the presented
case. In particular, it was found that the typical multi-modal behaviour of suspension bridges represent an issue because
the number of modal loads that can be identified are limited by the output data available. The practical use of the methods
requires an extensive sensor network, where prior to instrumentation a study on optimization of the sensor network should
preferably also be performed, which unfortunately was not possible here.

The response estimation could be helpful in assessments which requires the knowledge of various response effects in
long-span bridges, e.g. wind-resistant performance, fatigue calculations, serviceability evaluation.
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