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Abstract

Sensitivity analysis and uncertainty quantification of nuclear reactors requires many expensive
high-fidelity simulations. To approximate the dynamics of such a time and parameter dependent
system efficiently and effectively, reduced order modelling (ROM) is used. In previous research, a
ROM was constructed which used a combination of proper orthogonal decomposition (POD) and
a locally adaptive sampling strategy based on sparse grids. To improve the representation of the
physics in local parts of the parameter domain, in this thesis, the previous ROM is altered to use
multiple local bases instead of one fixed global basis covering the entire parameter domain.

The spatially dependent local bases and local time dependent coefficients are interpolated sep-
arately in the parameter domain using the method of interpolation on a tangent space to the
Grassmann manifold (ITSGM). The separate interpolators of the local bases and local coefficients
are coupled in a space-time coupled approach. The algorithm based on sparse grids is modified so
that it can adaptively draw new tangent planes in the parameter domain in a hierarchical manner.
This results in the domain being split up into into smaller overlapping subdomains, each having
their own tangent plane, number of basis vectors, and interpolators that use radial basis functions
(RBF). The algorithm was tested on the Burgers Equation and the Molenkamp test which have an
analytical solution. Then, the algorithm was tested on a numerically solved 2D neutron diffusion
problem. First the parametric dependence of the modes and coefficients was analyzed, after which
the performance of the algorithm was evaluated on these models via different experiments.

The results of the experiments on the 1D Burgers equation and the 2D neutron diffusion prob-
lem showed that the algorithm can adaptively and hierarchically draw new tangent planes and
can accurately interpolate to new unknown solutions in the subdomains in both a 1D and 2D
parameter setting. Higher order non-linear modes and coefficients are harder to interpolate than
lower order modes and coefficients. The performance of the interpolator also depends on a combi-
nation of the chosen RBF and the size of the subdomains. The results from the Molenkamp test
showed that in the smooth setting the new algorithm achieved a higher error with a higher number
of evaluations, while in the steep setting the new algorithm performed on par with the previous
algorithm, only if the interpolation accuracy threshold is set lower. The results from the neutron
diffusion problem indicate that the first principal angle can act as an indicator of which parts of
the parameter domain contain more relatable physics than other parts of the domain.

The dependence of RBF interpolator on the subdomain size is caused by how the RBF values
scale for further distanced points from the point of interpolation interest. Also more higher order
modes than necessary can be included in the local basis interpolation method without worsen-
ing the interpolation accuracy of lower order modes, given that no numerical noise is present in
the local bases or coefficients. Interpolating the time-dependent behaviour can be easier in the
space-time coupled approach than in the approach based on the global basis. However, a lower
interpolation accuracy threshold should be chosen as full time evolutions are being interpolated
instead of single state vectors. The current interpolation method scales worse than the previous
algorithm, as the corner points of the parameter domain will always have to be sampled when
using the RBF interpolator compared to local linear basis functions. Additionally, far more data
is needed to represent this ROM compared to the ROM based on the global basis.

This research presented a method that generalizes reduced order modelling of time and param-
eter dependent problems on sparse grids, by using multiple local bases instead of a fixed global
basis to represent the underlying physics of a model. The novel local basis interpolation scheme
was competitive with the global basis approach on test problems, showing that manifold methods
such as ITSGM have great potential to be utilized in reduced order models. However, more re-
search on matrix interpolation methods is needed to improve the overall performance, scalability
and efficiency of the algorithm.
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1. Introduction

Large-scale complex systems, like nuclear reactors, can have multi-physics interactions on dif-
ferent length and time scales, which can depend on many different input parameters. To be able
to capture all the relevant dynamics of such a nuclear reactor, high fidelity models are evaluated.
However, as these models are expensive to evaluate, multiple repeated evaluations of them are not
possible, which is needed in applications like uncertainty and sensitivity analysis. To approximate
the underlying dynamics of the system efficiently and effectively, reduced order models are used
(ROM). To build a ROM, a limited amount of high-fidelity model evaluations is required for vari-
ous combinations of input parameters. These evaluations are then used to build the ROM in the
offline phase after which new unknown solutions over the full range of input parameters can be
rapidly and cost effectively approximated in the online phase.

There are many different ROM methods that have their advantages and disadvantages depend-
ing on the model that it is built from. For instance, applications of proper orthogonal decomposition
(POD) are used to study unsteady flows and model turbulence, while alterations of rational inter-
polation and balanced truncation methods are used in a wide range of topics such as circuit theory,
to analyze and predict signal propagation and interference in electric circuits or structural mechan-
ics, and to study vibration suppression in large structures or behavior of micro-electromechanical
systems. The main problem in building a ROM for a large-scale complex non-linear system like a
nuclear reactor, is the curse of dimensionality, which is the exponential increase of computational
resources and high-fidelity calculations as the parameter space dimension gets larger. Therefore,
according to a survey that reviewed most of the existing ROM methods [1], for non-linear systems,
the ROM method of POD is most suitable. The main use of POD in physics is to decompose a
set of precalculated high fidelity snapshots, i.e. an ensemble of solution fields, into a set of basis
functions and coefficients [2]. In essence, each basis function carries a fraction of the energy of the
ensemble and the ROM is constructed by finding the smallest possible set of basis functions which
can be used to reconstruct each snapshot of the ensemble with a high enough accuracy. An example
is a set of state vectors like flux ¢ or temperature T that depend on different system parameters
and time, which can be decomposed into spatially dependent basis functions and respective pa-
rameter and time dependent coefficients. The advantage of using POD is that it can be used in
a data-driven way where no knowledge of the governing equations of the system is needed. Thus,
it operates in a non-intrusive way where the model is seen as a black box and the POD model
only operates on the inputs and outputs. This is advantageous in for instance nuclear reactor
simulations, in which most of the time no analytical solutions are available in the neutronics and
fluid dynamics calculations.

For instance, in [3], a reduced basis method was used to model control rod movement for a
nuclear reactor core. A multi-group neutron diffusion equation was used to calculate the neutron
kinetics which is parameterised by the height of the control rod. From a full-order model of
dimension 133,810, a reduced model was built which reached a computational speedup of a factor
of 30,000, while the neutron flux distribution could be reproduced with a relative accuracy of 1074,
In [4], a ROM based on POD was built in combination with a locally adaptive sampling strategy
based on sparse grids for a model of a molten salt fast reactor. The main idea of these sparse
grids is that the high-fidelity model is only evaluated at points in the input parameter space that
improve the overall ROM by a high enough value and represent most of the behaviour in the
system. An example of how such a ROM is build up and used can be found in [5]. Only between
462 and 4495 points were evaluated in a parameter domain with dimension 27, and new neutron
multiplication factors and flux solutions could be approximated within an accuracy of 5-107°
and 1% respectively. In [6], the method of POD was combined with artificial neural networks.
A reduced basis was extracted from a collection of high-fidelity solutions via POD, after which
multi-layer perceptrons were used to accurately approximate the coefficients of the reduced order
model. The POD+ANN method was then tested on the nonlinear Poisson equation and driven



cavity viscous flows, described by steady incompressible Navier—Stokes equations. A local basis
approximation approach was developed recently in [7], where POD is combined with a manifold
interpolation approach where the local POD basis matrices themselves are interpolated in the
parameter domain. This method was first tested on a shear-frame structure, and then on a more
complex 3D numerical case study of an earthquake-excited wind turbine tower. More background
information on ROMs can be found in papers [8-16].
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Figure 1: Example of a sparse grid in which the model is only evaluated at specific parameter values over the

parameter domain. The important points are the ones that in the end are added to the ROM.

Every input parameter can have a different effect on the overall state of a system. For instance,
for some parameters, transients can occur because of a change in one of these parameters in the
system, after which the reactor again goes to a new stable or unstable state. Some sets of parame-
ters in the overall parameter domain will have a similar effect and some groups of parameters will
have a different effect. A simple example of this could be a fission cross-section value, where a
higher fission cross-section might result in the reactor becoming critical while a lower fission-cross
section might leave the reactor at a sub critical state. The physics in these critical or sub critical
domains might be completely different from each other, meaning that the basis vectors representing
the system could also change between these regions. In previous research [4], a global basis that
represents the basis vectors spanning the full parameter domain was used. The first problem with
this global basis is that the global basis coefficients are more non-linear than local coefficients. The
second problem is that some modes are only needed locally. The main cause of these problems
is that the physics is being represented with more information, in this case global basis vectors,
than is necessary in some parts of the parameter domain, where only local basis vector might be
needed. Moreover, using local bases instead of a fixed global basis is a more generalized approach,
in which not only the coefficients of the basis vectors are interpolated, but the actual local bases
that represent the physics are interpolated as well. Therefore, in this research, local bases from
multiple sets of local snapshot sets are constructed. A method to interpolate the local bases, is
based on interpolation on a tangent space to the Grassmann manifold (ITSGM). In general, the
main goal of this research is to combine a local basis interpolation method that can be used in a
time and parameter dependent setting, with the locally adaptive sparse grid sampling scheme and
test the performance of this algorithm.

The report is structured in the following way: Chapter 2 comprises all background information
and needed theory. Then, in Chapter 3, different models on which the algorithm is tested, are
described in detail with their respective experiments. Afterwards, the results are shown in Chapter
4, which is split up in a section where the modes of the local bases are analyzed and another section
in which the performance of the algorithm is examined in context of the experiments. In Chapter
5 some of the results are discussed that are unexpected and require attention. In Chapter 6 a
conclusion is made which will be the end of the thesis. The references and an appendix with extra
plots are provided at the end of the report.



2. Theory

In the following chapter, the essential background theory is explained in detail. In Section 2.1,
proper orthogonal decomposition and the locally adaptive sampling strategy based on sparse grids
will be described. In Section 2.2, basic theory about manifolds is given that includes important
details about the Grassmann and Stiefel manifold. In Section 2.3, the method of interpolation of
local bases on a tangent plane to the Grassmann manifold will be explained, which also includes a
space-time coupled approach. Afterwards, the full algorithm is described that combines the local
basis interpolation method with the locally adaptive sparse grids in Section 2.4.

2.1 Reduced order modelling

2.1.1 Proper orthogonal decomposition

Let f(x) be a function, depending on a vector x € 2 C R™=, that is going to be approximated.
f(x) can then be written as a linear combination of N,, basis functions ¢*(x) with coefficients ¢;

Ny, 4
F6 = e () (1)

The following minimization problem results in the best approximation of f(x):
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is the L2 norm. The basis functions of f(x) are required to form an orthonormal set

k1 k2 _ 1 ki=ke
tﬂw“”<”“‘ﬂ)m¢m’ ()

which leads to a formula for the coefficients c;:
o= [ 1o (5)

In Equation , each coefficient ¢; only depends on its own basis function ¢*(x), which can be
explained by the orthogonality of all the basis functions. Each set of basis functions must abide
Equation , which means that each set of basis functions results in a minimum error in the
approximation of f(x). There are different ways to construct such a POD basis. As in this
work the data will not be represented by functions f(x), but by matrices S(x), the Single Value
Decomposition-approach (SVD) is used to find the solution to the minimisation problem, using
the method from [17].

The singular value decomposition is a matrix decomposition method that can be used to decompose
any arbitrary matrix S € R™*" into a product of matrices U € R™*" 3 € R™"*" and V € R"*"
given by Equation @

S =uxv” (6)

The elements on the diagonal of X are called the singular values o; and are ordered in a decreasing
fashion along the diagonal in the following way: o1 > 09 > ... > 0, > 0 with rank n = min(m, n).



The columns of matrix U and V in Equation @ represent the left and right singular vectors. U is
often called the basis, and the product of X and V is called the matrix of expansion coefficients. It
is important to note that the matrices U and V are orthonormal matrices. For a singular value o
of matrix S, there exist vectors u with length m and vector v with length n both with unit-length,
such that

Sv = ou and STu = ov. (7)

An approximation of matrix S can be made by keeping only the first left N, singular values. To
make sure the dimensions in the SVD match the matrices are truncated resulting in Uy, € R™*Nm
3 € RVmXNm and V. € R»*Nm_ The approximation of S is then given by:

S~ S =U,X, V], (8)

In the case where POD is applied on a vector function, Equation becomes

N,

y(x) & ) ci(x)u;, 9)

3
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where the outputs y(x) are approximated with basis vectors u; and the amplitudes ¢;. Placing p
number of output vectors y(x) of length d in a matrix, where each vector defines the state for a
different parameter combination, leads to the following:

M=y (x1),y (x2),...,¥ (xp)] € RTP. (10)

In this case the minimization problem of Equation becomes:

P Non
HtlllinE:H}llin z:l y(xj)—z;Ci (x;) u, , (11)
J= = Lo

where E represents the error. To produce an approximation of M, only the first N, left singular
vectors are taken as a set of basis vectors for the reduced basis. Then, by using the orthogonality
of the basis functions from Equation , the amplitude ¢;(x;) can be calculated by projecting each
output vector /solution onto the reduced basis:

ci (x5) = (w,y (x5)), (12)

where (-,-) is a dot product operation between two vectors. The number of POD modes or basis
vectors IV, in the reduced basis is directly tied to the dimensionality of the ROM: using more
vectors is computationally more expensive but is more accurate. To determine the number of
modes N, that are needed for a certain approximation error, the following truncation error can
be calculated:

EZ:N,,LJA ‘71%

> i1 0%
It is important to note that the truncation error is defined for the approximation of the whole
matrix M, not of the individual vectors y(x;). So it could be that the approximation error of an
individual vector is larger or smaller than the given truncation error. In previous research [4], an
SVD was done on a single snapshot matrix M representing the states over the whole parameter
domain, including time as a parameter as well. M consists of all local snapshot matrices S;,
which contain the snapshot vectors for a certain input parameter vector A\; with a certain time
discretization t. S; is defined in the following way:

ey = < Yr, YNy € [1,...1]. (13)

S; = [y(Ai,h),...,y(Ai,tNt)] ERN“XNt, i=1,..., Ny, (14)

after which M is formed by concatenation of these snapshot matrices S;:

M =[S}, Ss,...,Sy,] € RNeX(VaxNe), (15)



Each snapshot vector y (A;,t,) € RY+ represents the state of a physical field for a certain input
parameter vector A; at a certain time point and has length N, which is the number of degrees of
freedom in the system given by its spatial discretization x. Applying the SVD from Equation (@
on the matrix M results in the following:

M = Uglobalz(V(A))Tﬂ (16)

where Ugjopar € RN=x(NxxNe) ig o global basis with basis vectors that represent the physics in the
entire parameter domain and V() is defined by:

V()‘) = [v(/\lvtl)a s 7V()\17tNt)7 o 7V(>‘N>\7t1)v s V()\NA?tNt)] € R(NAXNt)X(N)\XNt)v (17)

where the vectors v € RV XNt contain the time and parameter dependent coefficients of the all
the basis vectors in Ugjopq:. The truncation error in Equation that is used to calculate the
number of modes needed for a certain maximum approximation accuracy, is valid only for the
approximation of the full snapshot matrix and not the single state vectors in the snapshot matrix.
The issue with this comes into play when dealing with systems in which the physics can change very
abruptly in a small part of the parameter domain. As that small part of the parameter domain will
only account for a small fraction of the state vectors in the full snapshot matrix, the basis vectors,
or physics that these state vectors add to the global basis U gope(x) will be minimal compared
to the basis vectors that represent the rest of the parameter domain. When truncating the global
basis based on the truncation error, only the N, left singular vectors are taken that represent
most of the physics in the full snapshot matrix, leading to the potential removal of basis vectors
that represent that important small part of the parameter domain. Another problem is that the
dependence of the coefficients of the modes in the global basis can be much more complex than
those of a local basis, as local solutions for certain parameter and time combinations are being
represented with more information, in this case basis vectors, than is necessary in some parts of
the parameter/time domain. Furthermore, using local bases rather than a fixed global basis is a
more generalized technique, since it interpolates not only the coefficients of the basis vectors, but
also the actual local bases that describe the physics.

Therefore, in this research, local bases from multiple sets of local snapshot matrices S; are con-
structed, where each set of snapshots represents the time dependent physical field at only one
parameter combination. Doing an SVD on these snapshot matrices leads to:

S (X)) = U)Z()(V(A))T (18)

where U(X\;) are the local parameter dependent basis matrices, with their respective expansion
coefficient in the product of 3(A;) and V(X;). In previous research, only the expansion coefficients
in Equation were interpolated, but in this research 3 different interpolators are built for the
U(N\), 2(\;) and V(\;) matrices.

2.1.2 Locally adaptive sampling on sparse grids

In physical models that are characterized by many different input parameters, the accuracy and
efficiency of the POD method will be highly dependent on the parameter sampling scheme. More-
over, it is required that the sampling scheme results in a ROM which can accurately represent the
dynamics of the full-order model with as few high-fidelity simulations as possible. Sampling the
points randomly in the parameter space is not the best strategy, as there is a chance that some
physical behaviour might be missed. Sampling the whole domain with small intervals through
each dimension is also not an option, as this is too computationally expensive due to the curse
of dimensionality. The best solution would be to use sparse grids, which are built by following a
hierarchical tree in which the distance between nodes becomes smaller and smaller as the depth of
the tree increases. The values in the tree are scaled by mapping the parameter space to a space
with a range of [0; 1]. In Figure [2} the layout of this tree is shown, where the tree starts at the
first node at level ¢ = 1 with value 0.5 and grows out as ¢ increases. In a 1D parameter domain,



each node at a level ¢ has one father point at level ¢ — 1 and two children at level ¢ + 1 except for
t = 2 where the nodes onlv have one child.
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Figure 2: The tree structure that the sparse grid is based on. Each level i contains a set of equidistant nodes [4].

The equations that represent the sampling scheme are given by:

. 1 ifi=1
mz:{ ifi=1, (19)

2141 ifi> 1,

XNo=q ) (20)

mi—1

0.5 for j =1 if mi =1,
/ for j=1,2,...,m" ifm*>1,

where m; represents the number of nodes at level 7, j represents the index of a point in a level and
)\2 represents the scaled parameter value between 0 and 1 of node j at level i. A generalisation can
also be made for the multidimensional case, where each parameter point is multidimensional. In
this case index 7 represents the level in the tree for a single dimension, index [ represents the level
of a point in multiple dimensions. In multiple dimensions every node is surrounded by ¢ (number
of dimensions) backward points or fathers. These fathers have all but one parameter the same as
their child which is connected to a value higher up in the tree. Every point also has 20 forward
points or children, again with all but one parameter the same which is connected to a value one step
lower down the tree. Nodes at level [ = 2 are an exception, as these have fewer forward points. It
is also important to note that in multiple dimensions a node can be reached from several backward
points. An example of such a point is [0;0.25], which can be reached from [0;0] or [0.5;0.25]. In
Figure [3| the evolution of the sparse grid is shown for a 2D parameter domain:
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Figure 3: Sparse grid points in a 2D setting for different levels 1 |4].

An example of how locally adaptive sampling on a sparse grid works in 1D is as follows: First the
parameter space is mapped to a space with a range of [0; 1]. The algorithm starts by sampling one
point in the middle of the domain at [0.5], which is level ¢ = 1. Then it extrapolates the solution
to the ’children’ of 0.5 which are points 0 and 1 in level i = 2 and samples the true high-fidelity
solutions at these points. The approximation error of the extrapolation at these points is then
checked and if the error is larger than a certain threshold, the next children of these points are
sampled. For this example, it is assumed that the extrapolation error at 0 and 1 is higher than



a certain threshold. This results in the children of points 0 and 1 being sampled, which are 0.25
and 0.75 at ¢ = 3. If the interpolation at a point, for instance 0.25, is deemed accurate enough,
the children 0.125 and 0.375, will not be simulated in the next iteration to save up time, while the
children of 0.75, so 0.625 and 0.875, are sampled. In short, points at subsequent levels are checked
by interpolating the results from the important points of previous generations.

The adaptivity comes into play when the errors are checked according to a threshold error. If
the error of a certain point is too high, that point is deemed important, and its forward points
(children) are generated. To sample the children, a forward operator is used that acts on a set of
points, in this case & = {A4|s = 1,..., Ny}, and returns all forward points for the points in S as
follows:

F(S) = {()\f,la RN )\f)g) | di,s: b()\f,i) =Xsi NAf;=Xs; Vi #1,s€ [1, . ,NS],j,i S [1, .. 5]} ,

(21)
where b(Ay) is a function that returns the father of a child node Ay from the tree. A backward
point can also be defined for A which is a point with a parent node along one of the dimensions of
A. From this, a backwards operator B can be defined that operates on the set S and returns the
set of all backward points and can be defined as:

B(S) = {()\b,la - ,)\b’g) | E"L,S : b()\s,z) = )\b,i A\ )\b,j = )\57]' VJ 7é i, s € [1, . ,NS],_].JJ S []., e 5]} .

(22)
By applying the backward operator successively, a set of ancestor points S for all points A in S
can be defined via:

L
r@)=J® (), (23)
s=1

where (B)" (S) = (0.5,...,0.5). After iteration k — 1, there is a set of important points ZF~1 =
{A¢c|¢ =1,...,N.} and an unimportant/inactive set Z*~1. The points in the test set 7% = {\,|r =
1,..., N, } for the next iteration are selected via the forward operator F applied on the old set of
important points Z*¥~! which is defined as:

TF = F(2F Y. (24)

The data at the important points Z*~! are then interpolated to approximate the solutions at
the testing points 7%, leading to N, interpolated snapshot matrices Sint,r containing interpolated
snapshots [yint(Ar,t1), - -+, Yint(Ar, tn,)]. Afterwards, at each parameter combination in 7% the
interpolation accuracy is checked by calculating the following error over time:

_ || (YtTue()\m tT) - yint()\ra tT)) ||L2
Iy trueArstr)l|L, + 1)
where Yirue(Ar, tr) are the true snapshot vectors for a certain time and parameter combination.

7 is an offset that is added for state vectors that have a near zero magnitude. Afterwards, the
maximum of the error is taken in time for each parameter combination in 7%, which is defined by:

R T:1,...7Nt,r:17-~-7NT7 (25)

T,T

e =max {&,7=1,....,N}, r=1,...,N,. (26)

€r
If the error €, at a given point in 7% is higher than a chosen error threshold, then the point is not
estimated accurately enough by the interpolant from the last iteration. This means that this point
needs to be included into the set of important points Z* at iteration k. In short, Z* is given by:

Zk = {AT € Tkler > ’Yint}% (27)

where ;,; is the threshold for the maximum error between the true and approximated solution at
the testing point. For a multivariate sparse grid, there is also a greediness parameter p that can be
set, which is the minimum percentage of fathers of a child, on which the interpolation error should
be higher than ~y;,; for the child to be sampled. For example, in a 2D setting each child point
after level 1=2, has 2 fathers. If u is set to 50% then only at one of the fathers the error should be



higher than +;,;, meaning that only one of the fathers should be included as an important point in
Z* for the child to be sampled in the new test set 7**!. Maximally greedy results in less points
being sampled.

2.2 Manifold theory

2.2.1 Basic concepts of differential geometry

The simplest way to think about an abstract concept as a manifold is to look at our own planet
Earth as a sphere, which is a three-dimensional geometric object. Yet, it is possible to make two-
dimensional representations of earth, which are the flat maps that constitute an atlas and are used
to navigate on a local patch on earth. To understand the meaning of flatness the following example
is used. The sum of the angles of a triangle on a sphere is not equal to 180°, as a sphere is not a
flat space. However, locally, a patch on the sphere can be approximated as a flat space on which
the sum of the angles is almost equal to 180°. In mathematical terms, the local flat patch is a
Euclidean space with no curvature, while the whole sphere is not a Euclidean space as it is curved.
To make a full two-dimensional image of the surface of earth, multiple maps must be essentially
glued together and at the edges of the maps there must be a transition from one map to the other.

Figure 4: Visualization of how the angles inside a triangle change in a Euclidean and non-Euclidean space [18].

In mathematical terms [19], a manifold is a topological space built up of local regions, with each
local region being homeomorphic to a subset of Euclidean space of dimension R™. A local region
contains a subset of all points that constitute the manifold. Homeomorphic means that points
from the manifold can be mapped to a subset of Euclidean space via so called charts, which are
invertible maps (invertible continuous functions) between a local region of the manifold and the
Euclidean space. So, a chart is a combination of a local patch on the manifold and its respective
map, and the collection of charts that cover the manifold constitute an atlas. For a sphere, a chart
allows for a coordinate transformation of a coordinate on the sphere to a coordinate on a local
Euclidean space that the chart represents.

In Figure [5| the local patches P, and Pg have their respective maps ®, and ®g, leading to charts
(Pa, ®4) and (Ps, ®g). Note that P, and Ps share a region on the manifold. If there are two charts
in an atlas that map two partly overlapping regions to Euclidean space, and there is a smooth in-
vertible function ®5 o ® ! that can represent the coordinates of that overlapping region in both
Euclidean spaces, then mathematically speaking, the charts are said to be locally compatible with
each other. The symbol o denotes a function composition, for example (g o f)(z) = g(f(z)). If
all the charts are locally compatible with each other, one can define directions and differentiable
functions on the manifold, which results in a differentiable or smooth manifold [20,21]. These
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Figure 5: Coordinate functions can be used to do a coordinate transformation of points on the manifold to the
FEuclidean space and vice versa. Overlapping local regions on the manifold require that the individual charts are
compatible with each other.

manifolds are generalizations of curves and surfaces to arbitrary dimensions and are locally similar
enough to a vector space which allows one to do calculus. To each point in a differentiable manifold
a tangent plane can be assigned, which is also an n-dimensional 'flat’ Euclidean vector space that
consists of tangent vectors of the curves that run through that point on the manifold. The useful
thing about this tangent space is that due to the Euclidian nature there is no curvature to be dealt
with, which makes interpolating in this space much easier.

A special class of differential manifolds is a Riemannian manifold, in which on every point there is
a tangent space that is equipped with an inner product, which varies smoothly from point to point.
This inner product allows one to define the length, area, curvature, and divergence of vector-fields.
An important problem in differential geometry and data processing on manifolds is to determine
the shortest path between two points on the manifold. The length of a curve in Euclidean space
defined by ¢ : [a,b] = R™ is L(c¢) = f: [|é(t)||dt, where ¢ is the velocity on the curve and ¢ can be
associated with 'time’. However, in the manifold setting, the inner product for tangent vectors is
needed that is consistent with the manifold structure. Let M be a manifold with a point p on the
curve ¢(t) € M and 7,M a tangent plane at point p with a tangent vector v. This situation is
presented in Figure [6]

Figure 6: Visualization of a manifold, represented by the curved surface with the tangent space 7, M attached at
point p. The tangent vector v = ¢(0) € T M is the velocity vector of a curve ¢ : t — c(t) € M .



The length of a tangent vector v € 7, M on a point p € M is then defined by |[v||, == \/(v,v)p,
where (v,v), defines a dot product between vectors in the tangent space at point p which is a
vector space. The length of a curve on a manifold then becomes [22]:

b b b
L(e) = / ollpdt = / 16(0) ooyt = / ), €)oot (28)

At every point p € M the Euclidean space R™ can be decomposed into an orthogonal direct sum:
R" = T,M & T,M™*, (29)

where T, M~ is the orthogonal complement of T}, M. The orthogonal complement of the subspace
T, M of a vector space in R", equipped with a bilinear form B, is the set Tp./\/lL of all vectors in
R"™ that are orthogonal to every vector in 7, M. The dot product is an example of a bilinear form
which is a function that is linear in both arguments of the dot product and the orthogonality is
defined with respect to the inner product on R".

For a curve on a manifold that is embedded in Euclidian space, the orthogonal projection of the
directional derivative along the curve onto the tangent space of the manifold is called the covariant
derivative. In simple terms, it is the part of the directional derivative that someone living on the
manifold can see. In mathematical terms, let %(t) denote the covariant derivative in the direction
of t and let II,, : R" — T, M denote the orthogonal projection onto the tangent space at p. The
covariant derivative of a vector field v(t) € T, )M along a curve c(t) is then the tangent component

of ©(t), which can be written as % (t) = IL.(;)(9(t)). In terms of the curve ¢(t) this would be:

D21) = 11 @00, (30)
On a manifold M, a curve ¢ : [a,b] = M is called a geodesic, if the curve is a uniquely defined
path with the shortest distance between two points on the manifold and the covariant derivative
of its velocity vector field vanishes, i.e. the geodesic equation:

Dy — 0 vt € [a,b), (31)

dt
holds. So, it can be stated that the geodesics on Riemannian manifolds are the constant-speed
curves with acceleration vectors orthogonal to the corresponding tangent spaces, i.e., é(t) €
T. C(t)/\/ll and the metric of these geodesics is induced by the Euclidean inner product. An ex-
ample of a geodesic is a great circle on a unit sphere. When considered as curves in R3, the
velocity vector along the great circle is always perpendicular to the acceleration vector pointing to
the center of the sphere. When viewed as entities on a 2D surface S2, the curves do not experience
any acceleration, as they are just straight lines on a surface.

For a given starting point ¢(0) = p € M and a starting velocity ¢(0) = v € Ty M, the geodesic
equation in Equation can be translated to an initial value problem of second order with
guaranteed existence and uniqueness of a solution. Using this, a tangent vector v € 7, M can be
mapped to the endpoint of a geodesic that starts from p € M with velocity v. This mapping is
done back and forth via so-called exponential and logarithmic maps [22]. In simple terms, the
exponential map takes a tangent vector to the manifold at a certain point and runs along the
geodesic starting at that point for a unit time. Naturally, the distance traveled over the manifold,
depends on the velocity. The exponential map is formalized as follows:

Explj)\/1 ToMDB(0) > M, vigq:= Exp;\/l(v) = cpo(1). (32)

Here, t — ¢p o (t) is the geodesic that starts from p with velocity v and B.(0) C T, M is the open
ball with radius € with center 0 in the tangent space. An open ball of radius ¢ is a collection of
points with a distance less than € from a fixed point in Euclidean space. To clarify, the Riemannian
exponential map provides a local parameterisation of a small region around a location p € M in
terms of coordinates of the flat vector space T, M, which is referred to as representing the manifold
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in normal coordinates. Normal coordinates are defined in a way such that the Riemannian distance
between p and ¢ = Expﬁ/l(v) is the same as the length of the tangent vector ||v||, as measured in
the metric on T, M. This is only valid given that v is contained in a neighborhood of 0 € T, M,
where the exponential map is a diffeomorphism between B.(0) and an open domain on D, C M
around the point p. A diffeomorphism is defined as a smooth, differentiable, invertible map between
manifolds. This means that the exponential map has a smooth invertible map that is only valid
locally, because the tangent plane only linearises the manifold in a small area around the point of
tangency. The inverse map is called the Riemannian logarithm and is defined as:

logh' : M DD, = B.(0) C T, M, g+ v:=(Expi®) (q), (33)

where v satisfies ¢, ,(1) = ¢. So, the logarithmic map, sends a point ¢ on the manifold to a tangent
vector defined on the tangent space at a different point p on the manifold. The workings of the
exponential and the logarithmic map are shown in Figure|7] The Riemannian exponential depends
on the Riemannian metric that defines the length of the geodesics. This Riemannian metric is
defined by inner product on the tangent plane. Different manifolds can have different metrics,
which leads to different geodesics and thus to different exponential and logarithm maps.

@<= Exp, (u)

Tangent space — manifold mappings

Figure 7: Visualization of the exponential and logarithmic maps. The exponential map sends tangent vectors at
point zo to the end points = of the geodesic curves and the logarithmic map does the opposite [23].

2.2.2 The Grassmann and compact Stiefel manifold

The Grassmann manifold G(k,p) is the manifold in which each point represents a k-dimensional
linear subspace in R? and each element of G(k,p) is non-uniquely spanned by the columns of a
full-rank orthonormal p X k matrix which constitute the Stiefel manifold St(k,p) [24/25]. The
following example can be used to make this clear: G(1,p) is the set of all lines through the origin,
while St(1, p) is the set of all possible basis vectors, which can also be seen as a sphere. G(2,p) is
the set of all planes while St(2, p) is the set of all 2-frames in RP. A k-frame is a set of k orthonor-
mal linearly independent vectors in a vector space. An example of this is shown in Figure It
is possible to define the exponential map on the entire tangent space if and only if the manifold
is complete, which means that starting at any point p, a ”straight” line can be drawn indefinitely
along any direction. Therefore, in this research, the compact Stiefel manifold St¢(k,p) is used,
which is complete.

In the Grassmann manifold given by G(k,p), each point on the manifold is a subspace m and is
represented by a p X k orthonormal matrix Y. This is not a unique representation as any matrix
YP in the set of orthogonal transformations of Y, where P € O(k) are orthogonal square matrices

of degree k, can represent the same subspace. This is given by:

{YP, P c O(k)}, O(k) := {P c R*>** PTP = [, }. (34)

11
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Figure 8: Points on the Grassmann and Stiefel manifold. The linearly independent basis vectors in R? spanning
the red and blue 2D planes of G(2,3) correspond to points in St(2, 3) .

An example of an orthogonal transformation is the rotation of the unit vectors X and y in the
Cartesian plane. From this, a map 7 can be established for which it holds that for each subspace
m, there is a basis Y. As 7 is a function that maps a basis Y to every subspace m, 7 is a surjective
function, which is given by:

m:Y € St°(k,p) = m(Y)=m:={YP, P OKk)} € G(k,p). (35)

The set of all matrices that represent the same point m is called the fiber of 7 at m and is given
by:

7~ Ym)={YP, PecO(k)} (36)

A visualization of a fiber on the Grassmann manifold is given in Figure [0

7~ m)

Y 1
Y (o) St(p,n)
D e . . » -
Y, S Lifted geodesic on the Stiefel manifold
Y, 2
— T Geodesic
‘

ey my
~..__~ 1113 ,

""-- -
| Grassmann manifold
G(p,n)

Figure 9: Visualization of fibers on the Grassmann and Stiefel manifold . The lines defined by 7~ (m) represent
the fibers. The geodesic in the Grassmann manifold is lifted into the Stiefel manifold along the fibers.

The collection of all fibers at different points m on the manifold is called the fiber bundle, which is
defined by £. On each point on a fiber in the Stiefel manifold a tangent plane can be drawn. The
collection of all these tangent planes is called a tangent bundle which is vector space that can be
decomposed into an orthogonal direct sum as in Equation . The tangent vectors in this bundle
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can be subdivided into a set of vectors that are tangent to the fibers and a set of vectors that are
orthogonal to the tangent vectors to the fibers. The former set is called the vertical bundle and the
latter is called the horizontal bundle, which are built up of vertical spaces and horizontal spaces
respectively at the points on the fibers.

In mathematical terms, if 7 : &€ — M defines a fiber bundle over a smooth manifold M and on the
fiber &,, going through point p € M, there is a point e € &£, with m(e) = p, then the vertical space
V. at e is defined as a vector subspace of the tangent space to the fiber &, at point p = w(e). This
vertical space contains tangent vectors to the fiber, which is given by V. C T, (€,). A horizontal
space H. is then defined by choosing a subspace of T.(&,), such that 7.(&,) is the direct sum of
V. and H. defined by:

7-6(51)) = Ve 2 He € an (37)

in which every vector in V. is orthogonal to every vector in H.. The horizontal and vertical space
are visualised in Figure

St°

Figure 10: Visualization of the horizontal and vertical space in context of the Grassmann and Stiefel manifolds [27].
The horizontal space is the orthogonal complement to the vertical space, which is the tangent space along the fiber.

Let ¢(t) be a curve in M that runs through the point p = ¢(0). A lift of ¢(¢) through e is a curve
¢é(t) in &, such that

¢(0) = e, and 7(é(t)) = c(t). (38)
So, a horizontal lift is defined as a lift in which every tangent velocity vector of the curve ¢(t) lies
in the horizontal space of the fiber &,:

&(t) € Moy (39)

The horizontal lift is path-dependent. Namely, when two smooth curves in M that coincide at
¢1(0) = ¢2(0) = p and also intersect at another point ¢ € M, are lifted horizontally to £ through
the same point on the fiber e € 771(p), then it holds that they will pass through different points
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of 77 1(q).

For the Grassmann manifold, the horizontal space is defined by:
Hory = {Z e RP* ZTY =0}, (40)

in which the matrices Z are called the horizontal lifts. To link the horizontal lift to the velocity
vectors in the tangent space, we define the following properties of the horizontal space:

1. The tangent space at a point m given by TG (k, p) is isomorphic to any horizontal space Hory
with Y such that 7(Y) = m. Isomorphic means that the topological spaces are topologically
equivalent, meaning that they can be morphed into each other. The isomorphism is given
by:

ATy |Hory : Hory = TmG(k, p), (41)

where dmy|fory 18 the directional derivative of the map 7 at Y in a certain direction in the
horizontal space at Y. This direction is related to the velocity along a lifted curve ¢(¢t) given

by il (m(E(1)))-

2. For any velocity vector v € TpG(k, p), there is a unique matrix Z € Hory, which is called the
horizontal lift. This horizontal lift is linked to the velocity vector by the following mapping:

dry - Z = wv. (42)

3. For any other orthogonal transformation P € O(k), ZP is another horizontal lift of v. This
horizontal lift belongs to the vector space Horyp and is given by:

d’lTYP -ZP = . (43)

To elaborate on these properties, in Figure [0} there is a direct connection between the geodesic in
the Grassmann and Stiefel manifold via the fiber bundle. In Figure this connection is estab-
lished by the fact that the horizontal space is isomorphic to the tangent space of the Grassmann
manifold. In essence, the horizontal lift can be regarded as the measure of how a curve on the
Grassmann manifold is lifted into the horizontal space of a point e on a fiber that goes through a
reference point on the Grassmann manifold. The tangents along this curve all lie in the horizontal
space at e, meaning that the curve does not move in the directions defined by the vertical space
at e. In essence, the lift of the geodesic on the Grassmann manifold to the horizontal space of a
point on a fiber, leads to a unique curve of orthonormal matrices Y, of which the velocity vector
v is represented by Z. By setting up logarithmic maps and exponential maps, transformations can
be made between the Z and Y matrices.

First, a definition of a distance (Riemannian metric) on the Stiefel manifold is given by:

(v1,v9) := (Z1, Z2)v, (44)
in which the inner product is defined by:
(Z1,Z5) :=tr(ZTZ]), Z,,Z, € RPF. (45)

where Z; and Z, are both horizontal lifts of respectively velocity vectors vy and vy. This inner
product is essential for the exponential and logarithmic map as now a measure of distance is
available to define unique geodesics. The geodesic equation that represents a unique minimal
geodesic between points m; and ms on the Grassmann manifold is given by [24}28]:

Y+Y (YTY) ~0. (46)

Next, through the geodesic equation, a logarithmic map can be established. Let mg be a point on
the Grassmann manifold where a tangent plane is drawn and m; be another point close to my.
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These points have their respective bases Yy € RP*F and Y; € RP**. The logarithmic map can

then be used to calculate the horizontal lift Z; of a geodesic going from mg to my, which is defined
by [26]:

—1
Y, (YOTYl) Yo =&,0,%7 (SVD), (47)
Z, = ®; tan () ¥T. (48)

where ®; € RP** and ¥, € RF*F are respectively the matrices with left and right singular vectors
of the horizontal lifts Z;. The values in the diagonal matrix tan~!(€2;) € R¥** are referred to as
the Jordan’s principal angles, which are a set of minimized angles between Yy and Y; that are
invariant under any orthogonal transformation of Yy and Y;. The exponential map Expm,(v)
can then be used to map the horizontal lift back to Y gzp 1, which is defined by:

Z,=®, 0,9%" (SVD), (49)
Yrop1 = [YoPicos(®;) + ®;sin(@)] 7. (50)

where ©®1 = tanfl(ﬂl) and the principal angles are given by 61 > ... > 6, > 0. It can be checked
that the exponential map satisfies the geodesic equation. It should be noted that in general
Y gzp,1 # Y1. The reason for this is that the basis matrices representing a certain subspace are
not unique, so there could be any other orthogonal transformation of Y that comes out of the
Exponential map. Another important point to note is that the radius of the open ball in which the
exponential map is a diffeomorphism, resulting in a valid inverse logarithmic map, is connected to
the principal angles [24}25]. This is because the principal angle is a measure for the length of the
geodesic [29130]. The following holds for different values of the first principal angle:

(a) If the largest principal angle 6; < 7/2, then the geodesic is unique minimizing.
(b) If the largest principal angle #; = 7/2, then the geodesic is non-unique minimizing.

(c) If the largest principal angle 61 > 7/2, then the geodesic is not minimizing.
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2.3 Local basis interpolation

2.3.1 Interpolation on a tangent space to the Grassmann manifold (ITSGM)

The information in Section 2.2 can now be used to obtain an interpolation curve between points
my,...,my, on the Grassmann manifold G(k, p), where each point m; corresponds to a parameter
combination A;. The ITSGM algorithm is outlined as follows:

e First, a reference point mg € {my,...,my, } is chosen on which the tangent plane is drawn.

e Then, the logarithmic map Log,, is used to linearize around my, in order to define velocity
vectors v; := Logy,, (m;) on the tangent plane 7m,G, by calculating the horizontal lifts Z;
using the Logarithmic map in Equations and . This leads to a set of parameter
combinations A and corresponding Z matrix pairs given by {A;, Zi}f\]:*17 where Z; € RP*k,

e An interpolated curve XA — v(A) is set up between vectors v;, by interpolating horizontal lifts
Z; using for instance Lagrangian polynomials or radial basis functions (RBF) resulting in:

’U()\i)zvi, Vizl,...,N. (51)

e Using the exponential map Exp,, , an interpolated curve between the curves running from
my to m; on G(p, k) can be converted back using:

A= m(A) = Expy, (v(A)), (52)

so that

Another but similar way to think about this problem is to define curves on the compact Stiefel
manifold St¢(k,p) instead of the ones defined on the Grassmann manifold G(k,p). The start-
ing point is a set of orthonormal matrices Y1,..., Yy, € RP** in the compact Stiefel manifold
Ste(k, p), corresponding to parameter values A1, ..., Ay. Once a reference parameter value Ag has
been chosen, a curve is obtained:

A Y(A) (54)
Y (XN) #Y; (55)

As the exponential map gives back an orthogonally transformed version of the original orthogonal
matrix, it holds that Y (A;) # Y;. So, such a curve will not be an interpolation curve between
the matrices Yi,...,Yn,. For the interpolation method to work it is important that the first
principal angle between Y, and Y; is lower than m/2, else the geodesic equation will not have
a unique solution and the logarithmic map will not be valid. In short, a reference parameter
combination is chosen on which to draw a tangent plane. Then the horizontal lifts Z; are calculated
using the Logarithmic map in Equations and . The horizontal lifts are interpolated to
a new parameter combination A and the resulting horizontal lift Z(\) is mapped back using the
exponential map in Equations (49) and , resulting in an interpolated orthonormal matrix Y ().

2.3.2 Space-time coupled local basis interpolation

There are many different tangent space interpolation methods that have been developed in re-
search for both only parameter and parameter-time dependent problems. For non-time dependent
problems, one of the earliest research projects in which tangent space interpolation was applied, is
a paper by D. Amsallem and C. Farhat [31], in which the ROMs (truncated basis matrices) of a
high-fidelity aeroelastic computational model of an F-16 Block 40 aircraft were interpolated to new
free-stream Mach numbers. In a paper by D.G. Giovanis and M.D. Shields [32], research was done
in uncertainty quantification, in which Delaunay triangulation was used to refine the probability
space into simplex elements. For every simplex, the high-dimensional solutions corresponding to its
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vertices (sample points) are projected onto the Grassmann manifold and an approximation of the
solution (ROM) within each element was obtained by interpolation on the Grassmann manifold.
This method was applied to study the probability of shear band formation in a bulk metallic glass.

For time dependent problems, in a paper by S. Pawar |33], the interpolation of the basis matri-
ces and the POD coefficients were separated, where the basis matrices were interpolated on the
Grassmann manifold, while the POD coefficients were predicted using a long short term memory
neural network that was trained in the offline stage. This model was tested on the one-dimensional
Burgers equation and the two-dimensional vorticity transport equation. Combined space time in-
terpolation was also applied in a paper by Y. Lu in [34], where both the bases U and coefficients
V were interpolated on the Grassmann manifold and 3 matrices were interpolated using Lagrange
polynomials. The interpolation method was combined with a sampling scheme that subdivided the
parameter domain hierarchically into cuboids of which the vertices were then used to interpolate
to the center of the cuboid at which the error was checked. More background information and
methods on Grassmann interpolation schemes can be found in papers [35H39]. The interpolation
method that is used in this research is based on [26] and uses a space-time coupling approach,
which is explained in the next part.

Let S; € RN=*Nt be the snapshot matrices, representing a space and time-dependent physical
field given by [y(Ai,t1),...,y(Xi,tn,)], for a particular parameter combination A\; € R®, with
1 =1,...,Nyx. N, is the number of spatially discretized points and N; the number of points in
time. The goal is now to:

1. Apply an SVD on all S; given by Equation (@, resulting in orthogonal matrices with left
singular vectors U; € RN=*Nt matrices with singular values ¥; € RV+*N¢ and orthogonal
matrices with right singular vectors V; € RV+*N¢ The matrices are then truncated, where
only the N,, left column vectors are kept in the matrices, leading to U, 4 (A;) € RNw XN
2 € RV XN and 'V, 4, € RN *Nm and finally S; 4.

2. The spatial and temporal bases U and V are only unique up to sign within the SVD, meaning
that multiplying both respective basis vectors in U and V of the same order with a minus
sign does not lead to change in the matrix product defined by the SVD. So, a unique matrix
representation for orthonormal matrices fji,t,« € St°(Np, N;) and VHT € St°(Ny, Ni) must
be found. For clarity, the unique truncated matrices will just be denoted as U; and V.

3. Choose a parameter combination Ag € {A;,..., Ay} on which a tangent plane is drawn.
Use the ITSGM Algorithm to get interpolated curves:

A= UR), Ao VA (56)

with U()\;) # U; and V(X;) # V;. The Z matrices of U and V are respectively ZU and ZV .
It is important to note that the number of modes is fixed for a certain tangent plane, as the
dimension of the manifolds are linked to the number of modes.

4. Find an interpolation curve X — S(A) between matrices Sq¢r, ..., SN, tr, using curves ob-
tained by Equation . The interpolated snapshot matrix will be denoted by S;,:(A) with
physical field vectors given by [Yint(Xist1),- -, Yint (A, tn,)]-

Point 2 can be solved by making an intrinsic choice on the orientation of the vectors in the spatial
and temporal bases. First, any couple of vectors (u,v) is defined modulo £1, and v is obtained
in a unique way from u. A choice of orientation is then made by taking the first column vector y
in S =[yi,...,yn,] for which holds that the scalar product (y,u) is non zero and the sign that
is imposed is the sign of that same scalar product. This so called oriented SVD is summarized as
follows:

1. Compute an SVD of S, truncate and obtain spatial unit vectors uy,...,uy,, and temporal
unit vectors vi,...,vn,,.
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2. Consider the column vectors yi,...,yn, of S.

3. Fori=1,...,N,, define - >
Y w;),u
= Ty (w), w) &7

|’
where y (u;) is the first column vector of S such that (u;,y) #
4. For i =1,..., N,,, make sign replacement
u; < €;1;, V; < E;V;.

Finding an interpolation curve for the full solution A — S(A), is also still a problem. Recall that
the SVD is a product of the U, ¥ and V matrices. As the interpolation of U and V are done
separately and it holds that U(X;) # U; and V(\;) # V,, it is not guaranteed that the product
U(X) X, V(A;) will give back the original matrix S; .. Therefore, an extra step is being done where
the ¥ matrices are recalculated by projecting the S; , matrices on U(A;) and V(A;) that come out
of the exponential maps, which gives leads to the following coupling matrix:

C,=UMN)"SiuV(N), (58)
which leads to the following interpolation curve:
A C(A) € RVm > Nm, (59)

The final interpolation curve for S is then defined by:
A= S(A) == UXNCA VAT (60)

2.3.3 Radial basis function (RBF) interpolation

To clarify, 3 separate interpolators are built for the matrices ZY, C and ZV. It is important to
note that in the space-time coupled approach, all the values in the Z and C matrices will have to
be interpolated. There are two ways to go about this, either entry-by-entry interpolation or full
matrix interpolation via a linear combination of weights. The problem with entry by entry inter-
polation is that first of all, for systems that have a very large spatial discretization, which means
that NN, is large, it is very impractical and expensive to interpolate the ZY matrices that have the
same dimensions as the U € R¥=*Nm  Secondly, it is theoretically possible with entry-by-entry
interpolation that the interpolant leaves the tangent space, even if all sample points are contained
in it. This can be checked by calculating the tangency constraint of the horizontal space ZTY = 0.
Therefore, in this research RBF interpolation was applied to interpolate full matrices.

There are multiple ways to interpolate full matrices instead of single coefficients. In [7] and
[40], multivariate Lagrange polynomials and inverse distance weighting were used as interpolation
methods. However a more accurate approach to interpolation would be to use radial basis functions
(RBF) [41): Given N, sample parameter combinations defined by A;, with corresponding matrices
Q;, where i =1,..., N). The RBF interpolant at a new parameter combination A* then reads:

Q") =(Q1,-...Qn,) DA (XY). (61)

Here, D € RM ¥ is the quadratic radial distance matrix with entries D; ; = rbf (| Ai— Ajl|) 4,
1,...,r, and d (A*) is a radial distance vector d (A*) = (rbf (]]A1 — X*||),...,rbf (]| AN, — /\*||)
R". The radial basis function is denoted by rbf: R>¢y — R and common ChOlCGb of RBFs are:

‘ linear cubic multiquadric =~ Gaussian  thin plate spline
rbf(x) ‘ x z3 V14 22 exp (—?) 22 log(x)

The RBF weights vector is then given by w (A*) := D~!d (A*), which can then be used in the
RBF interpolant as coefficients in a linear combination with the sample matrices. This linear
combination is given by:
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Ny
Q) =D wi(A) Q). (62)
i=1

In this research the multiquadric RBF was used primarily. All information is now available to build
a locally adaptive algorithm based on sparse grids that uses the local basis interpolation method.

2.4 Local basis interpolation on sparse grids

There are 2 important issues of the local interpolation method that must be resolved. The first
issue is the combination of a fixed number of modes that can be used per tangent plane and
a changing number of modes needed for a certain approximation accuracy over the parameter
domain. The problem is that if only one tangent plane were to be used over the full parameter
domain, the number of modes used at the tangent plane will be too low or too high in a certain
part of the domain. If the number is too low, then there are not enough modes to approximate
the solution with a high enough accuracy, while if the number is too high, higher-order modes are
included in the ROM that represent noise. Another issue is that for the interpolation method to
work properly, the principal angle must stay below 7/2, meaning that the matrices in U; (and V)
should be related to each other to a certain degree. A simple example of this is a laminar flow
versus a turbulent flow, where the modes can change drastically from one flow domain to another.
Moreover, the number of modes to represent these flow domains will also be completely different.
A turbulent flow is much more complex than a laminar flow, meaning that more modes need to
be used to represent this turbulent flow. To resolve this issue, the algorithm should be able to
adaptively draw new tangent planes. When an interpolation is done to a new test point, only the
closest available tangent plane must be used for the interpolation. This leads to a so-called Voronoi
diagram where the domain is split up in subdomains where all the points in a subdomain have the
same closest point:

Figure 11: Example of a Voronoi diagram in which the domain is split up in subdomains where all the points in
a subdomain have the same closest point [42].

In essence, the algorithm should be able to split up the domain in subdomains, depending on how
the tangent planes are placed, and use the tangent plane assigned to a certain subdomain when
using ITSGM within that domain. New tangent planes are added if the number of modes is not
compatible with the previous closest tangent plane or if the first principal angle between the basis
at the tangent plane and a point in the respective subdomain is too high. In the next part a
rundown of the algorithm will be given as an example to get a better understanding of how the
algorithm works.
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The algorithm starts of with iteration k¥ = 1 by sampling the first point [0.5;0.5] in the middle of
the domain and draws the first tangent plane on that point. This first point is then added to the
set of points with tangent planes TP = {A¢]§ =1,..., Ny}, where Ny, is the number of tangent
planes. Then this point is added to the set of all points X! and to the set of important points
Z = {X¢|¢ =1,...,N.}, where N, is the number of important points. The error that is used
to determine how many modes are needed for a certain approximation accuracy is based on the
approximation of the single physical field vectors, instead of the full time evolution of the physical
field. So, the number of modes that is chosen for a tangent plane will be based on the following
error criteria: i

eévimﬁ — ||ytrue()‘§7 tT) - me’S ()‘57 t"’)”Lz L r=1,....N,, (63)

’ (ly e, t-)llz, +m)

* N*
where yVm.e (A¢, tr) are the approximated physical field vectors in matrices S; ™ with Nﬁu& modes
at a parameter combination A¢ in the set 7P. 7 is an offset that deals with state vectors that
have near zero magnitude. The number of possible modes N7, ¢ for the tangent plane at A¢ is then
given by:

N N
Ny e = {Nn elec 1 < €tot,man Y7 Amax(e 7)) > €rot,min }y (64)

where the errors for all time steps should be below the maximum error tolerance €;o; mqz and the
maximum error over all time steps should be above the minimum error tolerance €01, min. The
reason for the minimum error tolerance is to not include modes that represent numerical noise.
Then the number of modes for tangent plane & = 1 is given by Ny, 1 = :;;;([%Da where end
specifies the last index of the array N7, ;. Then in iteration k = 2, the forward points are sampled
based on point [0.5;0.5], which are added to X? and the new points are checked as a test set 7 2.

A visualization of the beginning of the sparse grids is given below:

0.5 .

0
0 05 1

Figure 12: Second iteration of the sparse grid with a tangent plane (star) in the middle at [0.5;0.5] and points of
the test set 72 given in black.

The next step is determining what the closest tangent plane is of the points in the testing set
T2. The closest tangent plane is simply calculated based on Euclidean distance in the parameter
domain. In this case, there is only one tangent plane [0.5;0.5], which results in a set of important
points Crest1 = {Ap, 1| =1,..., Niest1} C T2 where Niest,1 is the amount of test points with the
same closest tangent plane with index £ = 1. As the RBF interpolator does not work with a single
sample point, the testing set is immediately included into the important points Z2 and results in
a set of training points with the same closest tangent plane Cirqin,1 = {Ay1lx =1,..., Nerain,1} C
Z?2, where Nicst.1 is the amount of training points with the same closest tangent plane with index
¢ = 1. This results in the a distribution of points in Figure [I3] where the color of the points
matches its respective tangent plane.
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Figure 13: Second iteration of the sparse grid with the first tangent plane domain Cirqin,1 defined in red.

The next step is determining for the points in Ctrqin,1 Whether the number of modes Ny, 1, used
at their closest tangent plane, leads to an accurate approximation of their own time evolutions.
This is done by again checking the same error in Equation . If the number of modes is not
compatible for a set of points R = {X,|p =1,...,N;} C Ctrain,1, then new tangent planes must
be added. Afterwards, it is also checked if the first principal angles between the subspaces at the
tangent plane and the points in Cirqin,1 are lower than a tolerance 0 ;0. If the first principal
angle is not compatible for a set of points R C Cirgin,1, then again new tangent planes must be
added in a hierarchical way. To check the first principal angles, the matrices Zgg (X¢), sz()\g)
and C¢¢(A¢) are calculated for all important points with index ¢ and tangent planes, where in
this case there is only one tangent plane with index £ = 1. The steps that are taken when new
tangent planes are added are given in Algorithm 1.

For this example, it is assumed that no new tangent planes were added in this iteration. Then in
iteration k = 3, first the forward points are calculated based on the important points Z? resulting
in the testing set 72, and their closest tangent plane is determined, which leads to the situation

in Figure [T4]

0_50 s & e @ 0_50 e * o ¢
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Figure 14: Third iteration of the sparse grid where the closest tangent plane is determined for the new points in
the test set 73, which are colored in black on the left.

Then the closest tangent planes of the test points are calculated. As there is only one tangent
plane there is only one set of points Cics,1 With one closest tangent plane. The matrices Zgl()\c),
ZZl(AC) and C¢ 1(X¢) of the points in Cpqin,1 are then interpolated to the points in Ciest1 C T°
and the time evolutions S;,:(A,) with state vectors y;n: (A, ¢;) are reconstructed. The errors are
then calculated according to Equations 7 and . Now, as an example, it is assumed
that for some of the newly added important points, there is an incompatibility with the closest
tangent plane. As a result, new tangent planes are added according to Algorithm 1 which leads
to a distribution of tangent planes with a subsequent division of the parameter domain, which is
shown in Figure
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Algorithm 1: Addition of new tangent planes.

Input: All sampled points X, important points Z*, unimportant points Z¥~1, points
A, € R that are incompatible in case of: (A) incompatible modes or (B) high first
principal angle 6, the current set of tangent planes 7P, error tolerances €to,min
and €tol,max-
Output: the new set of tangent planes 7P, the new set of important points Z
1 Initialize: TPpew = {0}, R = {2}

2 while R # {&} do

3 for A, € R do

4 Calculate the ancestors of A, from X using Equation .; Include ancestors with
highest ancestry without a tangent plane to
TPrew = {Agnew lgnew =1,..., th,new}~

5 For the new points with coordinates A¢,,,, € 7 Ppew, calculate the required number
of modes Ny, ¢, with Equations and (64).

6 end

7 R ={o}

8 TP =TPUTPnew

9 Find unimportant points with new tangent plane: Z"% = {X¢ e € ZF71 }.

10 Zk — Zk U Znew7 Ik—l — Ik—l/znew

11 Calculate new sets of points with the same closest tangent plane
Ctra'm,i = {)‘X,§|X = 1, cee 7Ntrain,£}7v£~

12 | In case (B): Calculate the ZY . (A¢), ZY  (A¢) and C¢ g(A¢) matrices.
13 Calculate new possible incompatible points R that are in Z*.

14 Case (A): Evaluate the following error:

Ex, &7 = HytruE(Ax,ﬁvtT) _me’g ()‘X,évt‘r)HLz
T (Iytrue(Ay.e: t-)ll Lo +m)

, T = 1,. . .,Nt, VAXf S Ctrain,fav§

(65)
where Ny, ¢ is the number of modes that a point is approximated with, which is equal
to the number of modes of the closest tangent plane. Then R is given by:

R={A¢€ Zk/TP | ElT(ei{Zf > €tol,maz) N max(e;\igf) < €tol,min ) (66)
Case (B): R is given by:
R = {)‘X@ S Z/TP | 917)(»5 > 6‘17150[}. (67)

where 6; is calculated using the Logarithmic map in Equation in line 13.
15 end
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Figure 15: Third iteration of the sparse grid in which 2 new tangent planes are drawn, resulting in 3 different
subdomains with their respective tangent planes given by the colour red, blue and green. The black dashed lines
represent the boundaries of the subdomains similar to the Voronoi diagram.

This leads to sets Cirain,1, Ctrain,2 and Cirain,3 With new matrices Zgg (Xe), Zgé()\g) and C¢ ¢(A¢).
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It can be observed that there are points that have 2 closest tangent planes at the same time. If
there is a point A¢,, ,, in Algorithm 1 with multiple closest tangent planes, then the compatibility
is checked separately for each tangent plane. In a case where a test point is on the edge of a
parameter subdomain, the interpolation on that point will be carried out using the tangent plane
with the highest number of modes. In iteration k = 4, the sparse grids look as follows in Figure
Lol
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Figure 16: Fourth iteration of the sparse grid where the closest tangent plane is determined for the new points in
test set T4, which are colored in black in the middle. Points on the boundaries of the subdomains have multiple
colors.

Specifically for the RBF interpolator, it is very important to consider how the training samples
are distributed. When interpolating to a new testing point, for instance [0.5;0.875] in the blue
subdomain, the algorithm takes all the important points in Z2 that are in and on the boundary
of the blue subdomain as training points that are used in Equation . This is specifically done
to reduce the amount of SVD calculations that have to be done with the logarithmic mapping.
However, this definition of the training points leads to a problem for points such as [0;0.75]. As
this point is on the boundary of the subdomain and is not ’surrounded’ by training points, due to
the nature of the RBF interpolator, the interpolation accuracy at this point will be suboptimal.
Therefore, important points of neighbouring tangent planes are also included as training points
for the target subdomain. This essentially leads to overlapping subdomains. As the refining of
tangent planes follows the sparse grid hierarchy there is a straightforward way to calculate the
neighbouring tangent planes. This is done as laid out in Algorithm 2.

The overlap can also be chosen larger by choosing the coordinates of the second closest neighbour
or even third closest neighbour. The training points for a subdomain are then picked by finding
all important points that are within the subdomain ranges, which leads to the square or cuboid
subdomains for the training points, while the subdomains for the test points (to where an interpo-
lation is done), are still defined following the Voronoi diagram. This will result in all testing points
being 'surrounded’ by training points leading to optimal interpolation performance. After apply-
ing Algorithm 2 the sets Cirqin,1, Ctrain,2 @0d Cirgin,3 are updated and the new matrices ZCU{ (Ae),

DZ:%E ¢(A¢) and C¢g(A¢) are calculated, which results in the distributions of training points in Figure
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Figure 17: Fourth iteration of the sparse grid where the training points are shown for each tangent plane as a
results of the overlap between subdomains.
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Algorithm 2: Overlap of subdomains

Input: The set of tangent planes 7P, all important points Z*, index v representing the
h
" neighbouring tangent plane closest to another tangent plane.
Output: The parameter subdomain ranges for each dimension § for each tangent plane in
TP denoted by [Aiesi, Aright]e, where Xjese and Apigpe are a 6-dimensional
. . . .. . . th
vector with each dimension containing the coordinate of the respectively v left

and right closest neighbour in that dimension.
1 for A € TP do

2 foro=1:6do
3 Find all tangent planes with all coordinates the same expect for dimension o.
th
4 Find v left and right closest neighbour tangent planes with coordinates
)\left,neighbour and )‘right,neighbour~

5 if Xjeyr = {2} then

6 )\left,g,o =0

7 else

8 ‘ /\left,é,o = )\left,neighbow“,o

9 end

10 if Arignt = {@} then

11 ‘ )\left,g,o =1

12 else

13 ‘ A7'1'ght,§,o = )\'r'ight,neighbour,o

14 end

15 end
16 end

For the points in 7%, the closest tangent planes are determined which results in sets Cyest 1, Ctest,2
and Ciest,3. The matrices ZggO‘C)v Zg,g()‘() and C¢¢(A¢) in sets Cirain,1s Cirain2 and Cirain,3
are then interpolated to the points in Ciest,1, Crest,2 and Ciest,3 respectively, which leads to the
distribution in Figure
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Figure 18: Fourth iteration of the sparse grid where the training and test points are shown for each subdomain.

For instance, an interpolation of the training data at the red points is done to all the black points
in the red subdomain and the interpolation error is checked at these test points according to
Equations , and . This is also done similarly for the rest of the subdomains. In the
subsequent iterations of the algorithm all preceding steps are repeated until all the errors at the
new test points are below the error tolerance ~;,;. To summarize and finalize Chapter 2, the full
algorithm is described in Algorithm 3.
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Algorithm 3: The Locally adaptive sampling algorithm based on local basis interpolation.

N 0 G

®

Input: Interpolation accuracy threshold ;,:, minimum and maximum error tolerance for
the number of modes €1, min and €t01,maz, the number of neighbours v, the first
principal angle tolerance 6, +0;, the greediness parameter (.

Output: The grid points X*, the important points Z* denoted with index ¢, the points
with tangent planes 7PF denoted with index &, number of modes at each
tangent plane N, ¢, the horizontal lifts Z ., ZY, and the coupling matrices
C¢,¢ of the important points,

Initialize: k = 1, Aporm = (0.5,...,0.5), X1 = Z1 = {X,om}, oriented SVD: U(Anom),

E<Anom)7 V(Anom)

Calculate number of modes N, 1 needed to approximate S(A,om) using Equations (63))

and and add to TP.

Calculate Zgl € RNaXNm1, ZKl € RNexNma and Cpq € RVNmaXNma yging the

Logarithmic map from Equations and .

k = 2, sample forward points and form test set 72 = F(Z1).

Calculate S(\,) and apply oriented SVDs: U(X,.), £(A,) and V(A,.), VA, € T2.

Z2=2Z'uT?

Check compatibility of modes for 22 and draw new tangent planes using Algorithm 1A if

incompatibility.

Calculate point sets with same closest tangent plane from Z2, leading to sets Cirain.¢-

9 Check 6, for 22 and draw new tangent planes using Algorithm 1B if incompatibility.

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

Calculate point sets with same closest tangent plane from Z2, leading to sets Ce train-

Calculate the overlap in 7P using Algorithm 2 and update Craine-

For all tangent planes £ and important points ¢, calculate Zgg, ZZE and Cg¢.

€1 = inf.

while any €, > ;¢ do

k=k+1.

TH=F(ZF1).

Calculate snapshot matrices S(\,.) VA, € T*.

Determine sets of points with closest tangent plane &, resulting C¢ test-

For all tangent planes ¢ interpolate Z¢ ., ZY, and C¢ ¢ to points C ses; using points in
Ce¢ train With the RBF interpolator in Equation .

Reconstruct the interpolated snapshot matrices S;p:(A,).

Determine the interpolation errors €, using Equations (25)), and (27).

Test points with too high error: ¥ = {X\, € T | ¢, > Yint }.

zZk =zl Kk

Add missing ancestors of points in ¥ with partial ancestry in greedy case.

Repeat line 7-12, with the new set Z*.

end
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3. Experimental Method

The algorithm based on local bases is tested on time-dependent problems with analytical and
numerical solutions. The first model is a 1D nonlinear advection—diffusion problem with 1 input
parameter. The second problem is a 2D advection-reaction problem with 5 different input parame-
ters, of which results from the algorithm based on the global basis are available. The third problem
is a 2D neutron diffusion problem that is solved numerically, which has 2 input parameters. In the
next parts the ranges for the input parameter are given for each problem and more details about
the experiments are provided.

3.1 The 1D Burgers equation

The one-dimensional Burgers equation is an example of a nonlinear advection—diffusion problem.
It is obtained as a result of combining nonlinear wave motion with linear diffusion. The problem
is dependent on the Reynolds number Re and can be written as [33]:

ou N ou 1 0%u
R Uy — = — ——
ot Ox  Re 0z?
of which the exact solution, when the perturbation term II = 0, is given by:

+10, x€0,1], te[0,1.5] (68)

il ,  to=exp(Re/8). (69)

u(@,t) = t+1 2
]. + W exp Re m

For higher values of é the wave-breaking is suppressed, and shock discontinuities are smoothed
out resulting in a smooth solution. However, in the inviscid limit, where the diffusion term ﬁ
becomes low, the smooth viscous solution converges to a discontinuous shock wave. The data
snapshots are generated using this analytical solution and the algorithm is tested for a Reynolds
number range of Re = [20,1000]. The analytical solution for different Reynolds numbers can be

seen in Figure
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Figure 19: Time evolution of the analytical solution of the Burgers equation in Equation for different Reynolds
numbers.
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For higher Reynolds numbers the wave front becomes more discontinuous. It will be interesting to
see what the effect of this discontinuity is on the number of modes that is needed to represent the
analytical solution as this is important for the placement of tangent planes in the algorithm.

The spatial discretization that was used for the Burgers problem was 100 points in the range
x € [0,1] and the temporal discretization contained 100 time points in the range ¢ € [0,1.5]. The
interpolation accuracy ;n: is set to 1 - 1072 and the maximum error tolerance for the number
of modes is set to €to1,maz = 9.9 - 10~3. This is done to prevent cases where the approximation
accuracy for a certain mode is very close to 7;,; which might lead to the model not converging
when sampling. To see the effect of the approximation tolerance range [€io,min, €tol,maz) OD the
number of tangent planes that are drawn, 3 experiments are carried out where €0 min is set to
1-1073,5-10* and 1-10~%. This is repeated 6 times in which the number of neighbours that are
used to calculate the subdomains for the training points is set to 1, 2 or 3, and the RBF function
is set to multiquadric or cubic. The values that are used in these experiments are tabulated in
Table [l

Table 1: The values that are of importance for the algorithm, for the different experiments. MQ stands for the
multiquadric RBF. The same experiments are repeated for the Cubic RBF where CU indicates the cubic RBF.

Experiment RBF Yint €tol,max €tol,min  FF neighbours
MQ.A1 multiquadric 1-1072 9.9-107% 1-1073 1
MQ.B.1 multiquadric 1-1072 9.9-10=2 5-107% 1
MQ.C.1 multiquadric  1-1072 9.9-1072 1-10~* 1
MQ.A.2 multiquadric  1-1072 9.9-1072 1-1073 2
MQ.B.2 multiquadric 1-1072 9.9-1072 5.107% 2
MQ.C.2 multiquadric 1-1072 9.9-1072 1.107% 2
MQ.A.3 multiquadric 1-1072 9.9-10=2 1-1073 3
MQ.B.3 multiquadric  1-1072 9.9-1072 5.107* 3
MQ.C.3 multiquadric  1-1072 9.9-1072 1-10=* 3

These same experiments are carried out with the cubic RBF and the experiments are named
CU.A.1 for example. To check the performance of the resulting ROM, 1000 new Reynolds numbers
are sampled using LHS (Latin hypercubic sampling), that constitute the set of check points CH =
{Xs|k =1,..., Nepecr }. For these new Reynolds numbers, the true analytical solution is calculated
over time t using equation , which leads to 1000 different time evolutions defined by snapshot
matrices Strye, . This leads to 10° snapshots Virue(Ax, tr) in total. Afterwards, an interpolation
is done to the new Reynolds numbers in the check set using the sampled important points from
the algorithm and calculates U(A,), C(Ax) and V(A;) and reconstructs the interpolated time
evolutions S(A,) containing interpolated snapshots y;n:(Ax,t-). Then the interpolated solutions
Vint(Ag, t-) are compared with the true solutions y;rue(Ax, t-) by calculating the Lo error over all
time and parameter combinations.

rue Anat‘r — JYin Anvtr
enr = 1trueQuestr) = Vit tDllze oy N1 N (70)

(¥ true(Ax, tﬂ')”Lz +1)

after which the maximum Lo error is taken over all time and parameter combinations given by:

€Ls,mas = MaX {err,7=1,...,Ny, k=1,..., Neheck }- (71)

K, T

The individual interpolation accuracy of U, C and V will also be analyzed. This is done by taking
the Lo error between the interpolated columns of U(A,), C(Ax) and V(A,) and the true columns
in Ugrye,rs Crrue,s ad Vipye . These errors are given by:
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€Lyu = H(utrue,n,z uznt,z( /{)HL2’ i=1,..., Ny =1,... ’ Noheoks (72)

||utrue,m,i |L2
c i — Cint.i(A L .
€Lo,c,i = H( tru&‘ll{gt mAt|’|lL( K))” 27 i=1,..., Ny, s =1,..., Neheck, (73)
rue,r,i|| Lo
Vi i (N
ELg,v,i = H(Vtru&fi’z V”ltﬂ( R))”LQ Y Z = 17 ctt NWLy R = 17 crt NC}LCCk; (74)

Hvtrue,m,i ||L2

where the vectors Wirye w,iy Ctrue,s,i @Nd Vipye i are the true columns of Ugrye s Cirye,n and
Viruer, and Wint i(Ak), Cint.i(Ax) and vine i(Ay) are the interpolated columns in U(A,), C(Ax)
and V(Ax). €L,.maz, the number of evaluations and the number of drawn tangent planes are
included in the results.

3.2 The Molenkamp test with a 5-dimensional parameter
domain

The Molenkamp test represents a two-dimensional advection problem, where the exact solution
can be seen as a Gaussian cloud of material moving in a circular path without changing its shape.
In this research, a slight modification is made to the function by adding a reaction term, resulting
in the amplitude of the solution to decay over time. The dimensionless equation representing the
Molenkamp problem is given by [4]:

dq(x,y,t) +u3q(x,y,t) +U3q(w,y,t)

A ,y,t) =0, ,y) € |—1,1], 75
- " D () =0, @y el-11) (1)
with initial condition given by:
> 1\?

Q($7y7 0) = )\10_01)\2h(x,y,0) ) h($7ya 0) = (aj - >\4 + 2) + (y - )\5)2' (76)

u and v describe a solid body rotation where u = —2 and v = 2. The exact solution to this
boundary value problem is given by:

4y, 1) = 0.0 A, (77)

1 ? 1 ?
hz,y,t) = \/<x -+ 5 cos 27rt> + (y — X5 + 3 sin 27rt> . (78)

The problem has a 5-dimensional parameter space in which the input parameters are denoted by
Ai for i =1,...,5. The parameter \; is a linear coefficient that represents the scaling of the cloud.
Increasing As results in the solution having a steeper gradient (spike-like). A is the decay constant
of the cloud and lastly, A4 and A5 control the initial coordinates of the center of the cloud with
respect to the center of the Cartesian plane. The exact solution for different time steps is shown
in the Figure It shows a Gaussian cloud initially centered at z = —0.5 and y = 0, which moves
counter-clockwise in a circle completing a full rotation at t = 1. As the cloud also decays to reach
a near-zero magnitude after a full rotation. For a higher s value the Gaussian cloud becomes
steeper and that the cloud amplitude decays much faster for a larger decay constant As.

The ROM based on the global basis was also tested on the Molenkamp problem. By testing the
ROM based on local bases on this problem with similar input parameters and comparing the
results, it can be determined how well the new algorithm performs relative to the old algorithm.
Therefore, most input parameters to the algorithm are kept the same to have a fair comparison.
The analytical solution is evaluated on a Cartesian uniform 100 x 100 grid, which translates to
10000 degrees of freedom. The amount of time points is set to 11 in a range of ¢ € [0,1]. The
interpolation accuracy 7in: is set to vine = 1-1073 and the maximum error tolerance for the number
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Figure 20: Time evolution of the analytical solution of the Molenkamp problem in Equation (78] for different
steepness values Ag and different decay constants As.

of modes is set to €o1,maz = 9.9 - 10~%. The algorithm is set to sample maximally greedy, where
/1 in this case is equal to 1. In this experiment, €;o; min is neglected and instead the first mode
that results in an error below €;o;maz is taken. The reason for this is that the amount of time
points that are used in these experiments results in the approximation error to change between
1-1073 and 1-107'6 with only one mode, which effectively leads to only one tangent plane being
drawn over the full parameter domain. This allows for an interesting experiment to see what the
true performance is of this interpolation method without any of the added issues of drawing extra
tangent planes. The algorithm will be tested on two different domains for the parameter Ay, which
are the smooth and steep domain. The parameter ranges for these domains in the Molenkamp
problem are shown in Table

Table 2: The range for the input parameters in the Molenkamp test.

Parameter Lower bound Upper bound
A1 1 20
Ao 0.1 (2 for steep setting) 0.2 (4 for steep setting)
A3 1 5
Vi —0.1 0.1
As —0.1 0.1

Just like in the experiment with the algorithm based on the global basis, 1000 different parameter
combinations are sampled using LHS. 1000 check points are not enough to cover the whole para-
metric dependence of the Molenkamp problem in the full parameter domain and the error variance
can be large depending on which random check points were chosen. As the Molenkamp problem
is a 2D problem, an absolute relative percentage difference will be used instead of the Lo error
to show the error of the individual entries in the interpolated state vectors y;n:(Ax,t,) and the
matrices U(A;) and C(A,), which is defined by:
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_ |ytrue (Afm t‘r) - yint(A/m t‘r)|

%y = max (Ytrue()‘m tT)) ’ (79)
— |Ut7'ue,m — U()‘N)I

6%’U B max (Utrue,n) ’ (80)

€%.Cc = |Ctrue,n — C</\”>|. (81)

max (Ctrue,fc)

€L,,maz, the number of evaluations, but also the ratio of important points over the total amount of
sampled points and the percentage of snapshots at which the interpolation error was higher than
Yint, are included in the results.

3.3 A 2D neutron diffusion problem with a fixed source

For the following problem a 1-group time dependent neutron diffusion equation is solved in a
2-dimensional geometry, which is given by :

%%:’t) =V (DY) - Ta (MO 70 +vS (MO FH+S T, (82)
where @ (7,t) denotes the flux, D (7) is the diffusion coefficient, ¥, and X, are the absorption and
fission cross sections and S (7, ¢) is an additional external source. v denotes the amount of neutrons
released per fission event. This continuous PDE problem is converted to a discrete problem by
applying linear constraints which are determined by a finite set of basis functions. The resulting
mesh is built using continuous triangular elements. The geometry and mesh are shown in Figure
The geometry consists of 3 different materials (M1, M2, M3) that represent an arbitrary fuel,
absorber, and moderator, where the materials have a respectively high fission, capture, and scatter
cross section. Domain F3 contains the fuel M1, domain F1 contains the moderator M2 and domains
F4 and F2 contain absorber material M3. A high initial flux in domain F4 is chosen which will then
diffuse throughout the full domain where it eventually approaches the fuel in F3. The boundary
conditions are Dirichlet for boundary E2 and Neumann for E3-E7. The main parameters that are
perturbed in this problem, are the source term S in domain F3, the fission cross section of the
fuel material o ps1 and the capture cross section of the absorber o, ps3. A built-in PDE solver in
Matlab is then used to discretise and solve the problem using Newton’s method. The goal is
to simulate 2 different operating domains that contain different modes.
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Figure 21: On the left, the 2D geometry is shown that is used for the 1-group neutron diffusion experiment. On
the right, the resulting mesh is shown that is used for the numerical solver. The numbers F1-F4 denote the material
domains, with their own specified parameters such as cross sections terms. E2-E13 denote the edges of the different
domains.

It is expected that the added source in region F3, will lead to a very different looking solution. In
Figure 22| the flux solution is plotted for different time points, where the upper row represents the
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flux with no source and minimal o and the lower row represents the flux with added source and
maximal oy.
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Figure 22: Time evolution of the numerical solution of the flux in the neutron diffusion problem for different source
term values and cross sections o.

It can be observed that the time evolution of the flux is different between the situation with and
without the source term. In the upper middle and right plot, the flux slowly diffuses from the
absorber to the fuel, while in the lower middle and right plot, the flux at the fuel completely over-
rules the flux at the absorber. The middle graphs clearly show that if the source term is added,
the flux at negative y-values increases faster because of the added source term than the diffusion
of the initial flux at the absorber to the fuel rod.

The maximum size for the triangular elements of the mesh was set 0.05, which led to 13423 degrees
of freedom in the flux. The amount of time points was set to 221, where 6 time points were chosen
for the range t; € [0.5,1] - 107>, 145 time points were chosen in the range t € [1.1:30]- 107> and
70 points were used in the range t3 € [3.1: 10]-107%, leading to t = [t1, t2, t3]. The reason for t; is
to make sure the numerical solver is stable in the early time steps. In range to most of the changes
in time were happening, while fewer dynamics happened in t3, which is why to has more time
points. The interpolation tolerance ~;,; is set to 5 - 1072 and the minimum and maximum error
tolerance, €io1 min and €iol,maz, are set to 1 - 1072 and 4.95 - 10~2. The algorithm is set to sample
minimally greedy, where p in this case is equal to 0. The number of neighbours is set to 1 and the
chosen RBF is the multiquadric function. 4 experiments are done where 2 parameters, the source
and the fission or capture cross sections, are perturbed with different perturbation percentages.
Additionally, different principal angle tolerances 6, ;,; are used which allows to see which parts of
the parameter domain are more related to each other than other domains. The experiments are
listed in Table [Bl
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Table 3: The input parameters that are perturbed in the neutron diffusion problem. S stands for the source term
and o stands for either the fission or the capture cross sections of respective materials M1 or M3. 6y ;,; represents
the tolerance for the first principal angle when drawing tangent planes.

Experiment Chosen parameters Perturbation % 01 tol
S.UﬁMl.A S, Of M1 [—100,0}, [—100,100] 7T/2
S.ormi-B S, 050 [-100,100], [-100,100] /2
S.o¢m1.C S, of.Mm1 [-100,100], [-100,100] 2x/5
S.0¢ M3 S, e, M3 [-100,100], [-50,400] /2

For this 2D parameter domain, 100 check points are sampled that represent different perturbation
percentages for the source term and the cross sections o or .. The main parameters that are
tracked are the same as the Molenkamp problem, but in this case also the number of tangent planes
is tracked. In Chapter 4, first an analysis is made of the modes for each of the three problems,
after which the actual performance of the algorithm is examined.
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4. Results

4.1 Dependencies of the modes and coefficients on the pa-
rameters of the models.

In this section an analysis will be made of the modes and coefficients in connection with the input

parameters for each individual problem. As a local basis and coefficient interpolation is done, it is

important to now the dependence of the modes on the parameters in the problems. Multiple plots
will be given in which the modes and coefficients are shown and are afterwards discussed.

4.1.1 Influence of the Reynolds number in the Burgers equation.

In Figure modes 1, 5, 10, 15 and 20 of the analytical solution for the Burgers equation in
Equation are plotted for different Reynolds numbers.
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Figure 23: Different modes that represent the physics of the Burgers equation at different Reynolds numbers.

First, as the Reynolds number increases, the frequency of the modes increases and the oscillatory
behaviour becomes sharper, which is expected. Namely, as the Reynolds number increases, the
wavefront becomes sharper, meaning that higher frequency modes are needed to approximate the
sharp part of the solution. At mode 15 and 20 of Re = 20 and mode 20 of Re = 40 noisy
behaviour occurs. The reason for this is that for lower Reynolds numbers, the solution is smooth
and simple meaning that not many modes are needed to represent the analytical solution. In this
case, the higher order modes do not represent the physics of the model, but instead represent the
numerical noise coming from the SVD calculation. As the number of modes, needed for a certain
approximation accuracy, increases as a function of the Reynolds number, an analysis is made of
the number of tangent planes that will have to be drawn over the Reynolds number domain. The
noisy behaviour is also expected to occur in the coefficients which are plotted in Figure
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Figure 24: The coefficients v;(t) that represent the time-dependent behaviour of different modes ¢ for solutions of
the Burgers equation at different Reynolds numbers.

Similarly to the modes, the coefficients become more oscillatory as the mode order increases. Noise
occurs starting from the same modes 15 and 20 respectively at Reynolds numbers of 20 and 40.
The wave-like pattern of the coefficient is tied to the fact that the solution to the Burgers equation
is a positive moving wavefront. This means that the oscillatory modes and the coefficients are
counterbalancing each other to produce a positive solution over the full domain. As the frequency
of the modes is higher than their respective coeflicients it will be interesting to see if for this
problem the interpolation of the modes is more difficult than the coefficients.

4.1.2 Effect of the steepness and decay constant in the Molenkamp test.

In Figure modes 1 to 4 are plotted for the Molekamp solution in Equation in the smooth
setting with a steepness value Ay of 0.1 and 0.2 and an exponential decay constant A3 of 1 and 5.

’ Mode1,)«2=0.1,,\3=1 ' Mode 2, A2=ﬂ.1,/\3=1 ] Mode 3, /\2=U.1,/\3=1 ; Mode 4, /\2=0.1,A3=1
5 0.015 0.015 0.02
& 0.01 001
05 e 05 05 05 001
0.005 0.005
Y
> 0 % > 0 ] > 0 0 - 0 0
-10 -0.005 -0.005
05 - 05 05 05 001
0.01 0.0
12
0,015 r
. A = L ] 0.015 ol 0.02
El 05 0 05 1 x10? -1 05 0 05 1 -1 05 0 05 1 Bl 05 0 05 1
X X X X
Mode 1, )«2=0.Z, ’\3=5 s Mode 2, /\2=0.Z, /\3=5 ; Mode 3, /\Z=[|‘2, /\3=5 ; Mode 4, /\Z=ﬂ‘2, /\3=5
2 0015 0.015 0015
-4
05 e 05 0.01 05 ke
&
0.005 0.005 0.005
8
> 0 S > 0 - 0 0
-10 N
0.005
12 +0:005) -0.005
-05 05 05 001
14 i K - .
2 1 J -0.015 4 R :
-1 05 0 05 1 x10? ] 05 0 05 1 A 05 0 05 1 A 05 0 05 1
X X X X

Figure 25: Different modes that represent the physics of the analytical solution for the Molenkamp test in the
smooth setting with respective low and high steepness and decay constants.
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The first mode becomes smaller and is shifted to the left. The reason for this is that as the steepness
value increases, the gas cloud covers less area of the Cartesian plane. To represent this gas cloud,
the modes must become more localized as well. This can be seen more clearly for mode 2 and 3,
where instead of the mode covering the almost half of the plane, the mode covers only a corner.
In Figure in the Appendix, mode 5 until 8 are plotted. The coefficients for modes 1-4 are also

plotted in Figure 2]
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Figure 26: The coefficients that represent the amplitude of the modes in time for the Molenkamp test in the
smooth setting with respective low and high steepness and decay constants.

For higher order modes the coeflicients become less smooth and start to become oscillatory. This
behaviour is similar to the Burgers equation, where in this case the modes and the coefficients coun-
terbalance each other to form the positive rotating Gaussian cloud. For a high decay constant,
the coefficients decrease to zero, which is expected, as for a higher decay constant the full solu-
tion should go to zero faster. The coefficients of modes 5-8 are given in Figure in the Appendix.

In Figure [27] the modes 1 to 4 are plotted for the Molenkamp solution in the steep setting with a
steepness value Ay of 2 and 4 and a exponential decay constant A3 of 1 and 5. As was already stated
for the smooth setting, the modes become even more localized as the steepness value increases.
Already at modes 2, 3 and 4 the rotational character of the Molenkamp problem can be noticed.
The frequency of the rotating wave pattern also increases with the steepness parameter Ao, which
can be seen even more clearly in modes 5-8 that are plotted in the Appendix in Figure [A3]
In the problem with the Burgers equation, similar behaviour was seen where a more non-linear
discontinuous shockwave led to more non-linear modes being needed to represent the solution.
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Figure 27: Different modes that represent the physics of the analytical solution for the Molenkamp test in the
steep setting with respective low and high steepness and decay constants.
The coefficients of these modes are plotted in Figure 2§ and Figure [A4] in the Appendix.
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Figure 28: The coefficients that represent the amplitude of the modes in time for the Molenkamp test in the steep
setting with respective low and high steepness and decay constants.

Again, for a high decay constant the coefficients decrease to zero. The coefficients look very similar
to the coefficients in the smooth setting, which is expected. As there is a clear distinction in the
dependence of the modes and coefficients on the different parameters, it will be interesting to see
how many unique points the algorithm will sample for each parameter A; and how the interpolator
behaves as a function of these parameters.
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4.1.3 Dependence on the source and fission cross section in the neutron
diffusion problem.

In Figure modes 1, 2, 3 and 4 are plotted of the flux that is calculated via the 1 group time-
dependent neutron diffusion code. The modes 4-8 are plotted in the appendix in Figure These
modes are plotted for the situation with and without source where the fuel had respectively the
minimum and maximum number of fission cross section within the domain.

Mode 1, T -100%, Source ~100 % Mode 2, T -100%, Source ~100 % Mode 3, T -100%, Source ~100 % Mode 4, T -100%, Source ~100 %
0.04
0.015
0.05 0.03 0.05 4
0.04 - 0.02 1
0.02
0.02 4 0.04 oifly
0.03 - 0.01 A 0.01
0.005 0
0.015 0.03 0.02 07
. 5 | -0.01 04
0.01 | 0.02 : -0.01 0.02 L
. 0 R -0.005 002 -0.03
0.005 -| pungl 0.01 el o4
i B 0017 _05/4-0.01 -0.03 -1

0 B 0 -0.05

0 - 1 0 7 5 p -0.05 +

-2 0 2 X 2 -1 0 1 X -2 0 2 X -2 0 2 X
y y y y
Mode 1, ot 100%, Source + 100 % Mode 2, ot 100%, Source + 100 % Mode 3, ot 100%, Source + 100 % Mode 4, ot 100%, Source + 100 %

0.005 0

| 0.04
-0.04 & 1 0. Tt
-0.01 4 -0.01 ! I %08
0 -0.06 -

0
1
2 7 0 2 0 2 x
y y y y

(=}

0.06
0.02
0.06
.0 0.05
o 0.04 0.05 4 0.01
0.04 4
0.04 oid -
0.01 0.015 0.02 q . g 0.02 4
3 ‘ 0.03 0.03 )
0.005 4 L ol it 5
0.01 0.02 0. o
‘ 0.02
Q1 0.01
-0.02 7 : 1-0.02 -0.02 4
-0.005 -| 0.01
i i i
0 0 0
1 1 1
0 2 x 2 x 0 2 x

2

Figure 29: Different modes that represent the physics of the numerical solution for the 2D neutron diffusion
problem in cases with and without a source term at the fuel rod with respective minimum and maximum o .

The main difference of all 4 modes between the upper and lower row is the presence of the fuel
rod, whether it be a peak or a trough in the graph. This can also be deduced from the solution
in Figure 22] where the middle graphs clearly show that if the source term is added, the flux for
negative y-values increases faster because of the added source than the diffusion of the initial flux
at the absorber to the fuel rod. This explains why already the first mode looks very different, as the
source flux peak will be present throughout many of the state vectors in the time evolution with
the source term compared to the time evolution without the source term. As the modes between
the situation with and without source term are very different, it will be interesting to see how the
principal angle behaves over the domain, as the principal angle could be an indicator that shows
how relatable the physics is in certain regions of the domain. One detail that must be noted is
the number of noise that occurs in the higher order modes in Figure The coefficients of these
mode are given in Figure
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Figure 30: The coefficients that represent the amplitude of the modes 1-4 in time for the neutron diffusion problem.

The most important detail to notice from the coefficients is that over time, most of the coefficients
go to zero while the first mode of the situation with the source term does not go to zero. This
happens because without any fission cross section and source term, the system is not able to
produce any flux on its own. This leads to a very subcritical system in which the system slowly
goes to zero flux. For the situation with the source term, the system can produce some flux which
means that after a certain time the system reaches steady state where only the first principal mode
will represent the system as there is no change in time anymore.
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4.2 Algorithm performance analysis

In this section the main results of all experiments mentioned in Chapter 3 will be tabulated and
discussed. For experiments with the highest interpolation error €r,, mq., the interpolation accuracy
will be analyzed more in-depth, in which for instance also the interpolation accuracy of U(Acheck ),
C(Acheck) and V (Acpeck) will be checked. Moreover, in certain occasions, extra plots will be given
that are used to show key details about the interpolation method.

4.2.1 Results of the experiments on the Burgers equation

The errors for the experiments done on the Burgers equation using the multiquadric RBF are
tabulated in Table @ The €12maz is given, with the respective Reynolds number at which that
value was obtained. Then, the number of evaluations or number of unique sampled parameter
combinations and the number of tangent planes is provided.

Table 4: Results of the experiments for the Burgers equation. The multiquadric function is the chosen RBF,
Remax,error indicates the Reynolds number at which €72 /42 Was obtained.

Experiment  €12maz (%] Remaz,error  # evaluations # tangent planes

MQ.A.1 0.97 13 35 12
MQ.B.1 0.97 43 35 11
MQ.C.1 0.95 43 29 8
MQ.A.2 0.92 326 35 12
MQ.B.2 0.91 111 35 11
MQ.C.2 1.44 179 33 8
MQ.A.3 2.11 233 33 12
MQ.B.3 2.11 233 33 11
MQ.C.3 3.48 571 31 8

The €1, ,maz Over the 10% snapshots is lower than 7;,; = 1-1072 for the upper half of the experiments
in Table [4] while the lower half is at maximum 3.5 times as high. The difference in the number of
evaluations between the different experiments is small with only a large difference in evaluations
between experiment MQ.B.1 and MQ.C.1. However, it is difficult to say whether this is solely
due to the number of tangent planes or not. The number of tangent planes drops from 12 to 8
over experiments labeled A, B and C. This is expected as the error tolerance range for the chosen
number of modes at a tangent plane increases over these experiments, which results in a larger
range of different numbers of modes that are compatible with the approximation error requirement
over the parameter domain. This can be seen when looking at the resulting sampled sparse grids
for experiment MQ.A.1 and MQ.C.1, which are shown in Figures [31] and [32}

i 1.0e-03, # neighbours =1, # evaluations =35, # tangent planes =12
oea oo hosos o 4 oo 4 " ! " & d
20 1425 265 387.5 510 632.5 755 877.5 1000
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Figure 31: The resulting sampled grid of experiment MQ.A.1 for the Burgers equation.

B B 1.0e-04, # neighbours =1, # evaluations =29, # tangent planes =8
hBE o o o4 ! " & ! & "
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Figure 32: The resulting sampled grid of experiment MQ.C.1 for the Burgers equation.
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The green points are the important points that are included in the ROM, the blue points are
the inactive points where the interpolation error was low enough and the red points indicate a
tangent plane. The first thing to note is the workings of the hierarchical sparse grid, where each
unimportant point is surrounded by an important green point that is included in the full ROM
and that the sampling around an unimportant blue point stops as the interpolation error was low
enough there. The density of sampled points in general is higher at lower Reynolds numbers. This
is expected as in Figure there is a larger transition in dynamics in the lower Reynolds range
20-100 than in the higher Reynolds number range 100-250, which is more difficult to interpolate.
The density of tangent planes is also higher for lower Reynolds numbers than for higher Reynolds
numbers. These tangent planes were solely drawn because of the difference in modes needed to
stay within the error tolerance range. This can again be deduced from the analytical solutions of
the Burgers equation which becomes a sharp shock wave very fast in the lower Reynolds number
range, after which the sharpness does not increase very much anymore. The €1, 14z increases when
the error tolerance range increase and when more neighbours are used to calculate the overlapping
training subdomains. The former can be deduced from the error increase from experiment MQ.B.2
to MQ.C.2 and from MQ.B.3 to MQ.C.3. The latter is mostly visible in the results of experiment
MQ.C.1, MQ.C.2 and MQ.C.3, where the error equals 0.95%, 1.44% and 3.48%. What is notable
is that for experiments where 1 neighbour was used, the value at which the highest error was
achieved, Remagz,error = 43, typically lies in a much smaller training subdomain compared to the
higher Renqz,error values in experiments where more than 1 neighbour was used. These findings
indicate that it is preferred to use smaller training subdomains when using the multiquadric RBF.
The results from the experiments using the cubic RBF are provided in Table [f]

Table 5: Results of the experiments for the Burgers equation. The cubic equation is the chosen RBF.

Experiment €12 max (%] Rémaz,error  # evaluations # tangent planes

CU.A1 2.16 65 31 12
CU.B.1 2.16 65 33 11
CU.C.1 2.18 112 23 8
CU.A2 1.16 24 33 12
CU.B.2 0.91 112 33 11
CU.C.2 0.71 387 27 8
CU.A3 0.92 326 33 12
CU.B.3 0.91 112 33 11
CU.C.3 0.75 24 27 8

€L,.maz 1S Within an acceptable range, which means that the algorithm can successfully provide a
well performing ROM as well, using the cubic RBF. The lowest and highest achieved errors are
0.71% and 2.18%, with 27 and 23 evaluations in experiment CU.C.2 and CU.C.1 respectively. The
difference in the number of evaluations compared to the results of the multiquadric equation is
very small. The dependence of €1, maz on the training subdomain size is opposite compared to
the situation with the multiquadric RBF, as €1, ma» decreases as both the number of neighbours
increases and as the number of tangent planes decreases, resulting in larger subdomains. The
former can be seen in general by observing that the error of experiments A, B and C with 1
neighbour are almost twice as high as the experiments with 2 and 3 neighbours. The latter can be
seen most clearly in experiments CU.C.1, CU.C.2 and CU.C.3 where the error decreases from 2.18%
t0 0.71% and 0.75%. These findings indicate that larger subdomains are preferred when using the
cubic RBF. In general, the difference in error and evaluations is quite small, so it can be stated
that both RBFs are proper candidates to be used in the algorithm, depending on the amount and
distribution of the tangent planes in the parameter domain. For the experiment MQ.C.3, which
had the largest error, a more in depth analysis is made. Figure [33]shows a histogram of the errors
over all interpolated state vectors in experiment MQ.C.3 and the plot of the solution with the
maximum error are plotted below.
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Figure 33: Overview of the results from experiment MQ.C.3.

For a substantial number of state vectors, the interpolation error is above the interpolation thresh-
old of 1%, but the average is well below ~v;,;. When looking at the interpolated solution it can be
see that the interpolated solution has some wave like noise with a small amplitude, which could
point to a relatively high error in the higher order modes or the coefficients of these modes. To
know how the error evolves over time Figure |34 shows a 3D histogram where the counts are given
for a certain error to occur in period of time.

7000 -
6000
5000 ~
w 4000 -
5
S 3000 F
2000 -r-P....
S0
1000 - =SSN
SRS <=
= 5 "I"-x.’-rq
T ST [T
0L e o e R T

W
M

y
| o‘:t
R

time .
% Relative L2 norm error

Figure 34: 3D histogram that shows the counts of a certain error to occur in a period of time.

The highest errors occur at the beginning of the time evolution. This high error can be explained
by looking at how the high order modes are interpolated as these are necessary to approximate the
sharp wavefront at the start of the time evolution. Therefore, in Figure the relative maximum
L2 errors are plotted for the individual columns in the interpolated U, C and V matrices.
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Figure 35: The relative L2 errors are plotted for the individual columns in the interpolated U, C and V matrices of
the solution with the highest error €z, mas- mode on the x-axis indicates the index of the column in these matrices.

According to expectations, for both the modes and the coefficients, it is more difficult to interpolate
the higher order non-linear modes and coefficients than the low-order ones. The interpolation of
the modes is more difficult than the interpolation of the coefficients, which was expected from
the mode analysis of the Burgers equation. It is also interesting to note that for the Burgers
equation the interpolation error of the coupling coefficients does not increase with the order of the
modes. This could indicate that each of the coupling coefficients in the coupling matrix C might
have a different dependence regardless of the order of the column or mode that is looked at. The
interpolated modes 11 until 14 and the respective coefficients are plotted in Figure
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Figure 36: Plots of the true and interpolated modes 1 to 14 with the respective coefficients of the interpolated of
the interpolated solution with the highest error €1, maz-

As the order of the mode increases, the modes and coefficients become more nonlinear, and it

42



% Relative L2 norm error

10?

10

10°

becomes harder to accurately interpolate them. From Equation and , it was explained
that the resulting orthonormal matrix that comes out of the exponential map is an orthogonally
transformed version of the same matrix. This can be substantiated by comparing the interpolated
columns of U(Remaz,error) and V(Repmaz error) Of the solution with highest error to the columns
of the true matrices Usv D, Reman.error @M VSVD Remas.error that come out of the SVD and the
true columns that come out of the exponential map Uypye(Remaz,error) and Vipye(Remaz, error)-
These errors are plotted in Figure
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Figure 37: Comparison of the error between the interpolated modes and coefficients and the true modes and
coefficients from the SVD and the exponential map.

The errors are not identical, as Ujpye (Remaz,error) a0d Vipye (Remagz,error) are orthogonally trans-
formed compared to Usy D Repman.error @A VSV D Remas.error Lhe error difference becomes smaller
and smaller for higher order modes and coefficients, which is unexpected. As it is not of great
importance for the overall performance of the algorithm, and as this effect is just a byproduct of
the exponential map, this will not be brought up in the discussion.

To check whether the distance of a tangent plane to a point of interpolation interest influences
the interpolation performance, 2 extra experiments were done where the minimum of the error
tolerance range € min is neglected. In this case, the lowest number of modes was chosen that
results in an approximation error lower than €;o; maqy. The cubic RBF is used, [€io1,min; €tol,maz] 1S
set to [0,9.99 - 1073], 01 to1 is set to T and ;¢ is set to 1 - 1072, In this case, the first modes is

2
taken that results in an approximation error lower than €;o; maqe. The resulting grid is shown in

Figure 38
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Figure 38: Resulting sampled grid of an experiment of the Burgers equation where €;o;,min is neglected and
€tol,maz €quals 9.9 - 1073.

The algorithm was not able to converge, as it kept sampling points at the left edge of the domain.
As expected, there are no tangent planes on the left half of the domain, meaning that only the
tangent plane at Re = 510 is used to interpolate in the left part of the domain. However, what is
interesting to see is that despite having such a far placed tangent plane relative to the left edge
of the domain, the interpolation method can still accurately interpolate to a Reynolds number
of around 30. Comparing the inactive points in Figure to the inactive points in Figure
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it can be seen that from Reynolds number 30 and onward, the same points are labeled inactive.
This indicates that including more higher order modes, which are not numerical noise, does not
deteriorate the interpolation. The fact that no tangent plane was drawn on the left side also
indicates that the first principal angles were below 7. In the second experiment €0/ maz is reduced
t0 9.9 - 1074, This is done to make sure that the number of modes chosen at the tangent plane at
Re = 510 is within numerical noise range at the left part of the domain. The resulting sparse grid
is shown in Figure
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Figure 39: Resulting sampled grid of an experiment of the Burgers equation where €0/ min is neglected and
€tol,maz €quals 9.9 - 1074,

The algorithm also did not converge in this case, as it kept sampling points on the left side of the
domain. Only one tangent plane was drawn in this case, meaning that the number of modes needed
to stay within the approximation range [€o1,min, €tol,maxz] d0oes not change on the right side of the
domain. At this tangent plane 21 modes were needed, which is well within numerical noise range
according to Figure 23] The number of points being marked important span a much larger part
of the Reynolds number domain compared to Figure This indicates that numerical noise does
deteriorate the performance of the ITSGM method. In Figure plots are given of the horizontal
lifts ZY at Re = 20 from the 2 experiments.

100

20
column 0 o X column 0 o

Figure 40: Plots of the values in the matrices representing the horizontal lifts ZU at Re = 20 for a tangent plane
at Re = 510. €;01,maq is set to 9.99 - 10~3 and 9.99 - 10~ for left and right plot respectively.

There is substantially more noise in the horizontal lift that was calculated from the tangent plane
with 21 modes compared to the one with 14 modes. The noise is also present throughout the whole
matrix, instead of only up until column 14 which is equal to the number of modes at which noise
occurs at Re = 20. It seems that the noise in the modes carries over to the horizontal lifts, which
causes the interpolation of ZY at the left side of the domain to fail. It is also expected that this
occurred in the horizontal lift Z". In Figure 41| the horizontal lift ZU at Re = 23.82 for a tangent
plane at Re = 20 is shown from experiment MQ.A.1.
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Figure 41: Plot of the values in the matrix representing the horizontal lift ZU at Re = 23.82 for a tangent plane
at Re = 20.

There is no noise in any of the columns in the horizontal lift. In Figure the result of an
experiment is shown where the principal angle tolerance was set to 0.49997, which led to the grid

in Figure [12]
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Figure 42: Resulting sampled grid of an experiment of the Burgers equation where €;o;, min is neglected and 61 ;o
is set to 0.49997.

In this case the algorithm did converge. The first noticeable thing is that far more tangent planes
were drawn than any of the experiment in Table [ This is mainly caused by the fact that that
the principal angle at Re = 20 gets extremely close (1.57077) to the value of 7 for a very small
difference in Reynolds number. Then, because of the tangent plane at Re = 20, the rest of the
tangent planes were then drawn due to a difference in compatible number of modes. This is also
substantiated by the fact that there are small regions where there are multiple tangent planes to
the right of the higher hierarchical tangent planes. This happens because, to the right of the higher
hierarchical tangent planes, the number of modes will never be enough as the Reynolds number
keeps increasing, meaning that more modes are needed to stay below €;o;,mae- This is a direct
result of only taking the lowest number of modes that results in an error below €4 maqq, instead of
more modes.

4.2.2 Results of the experiments on the Molenkamp test

The errors for the experiments done on the Molenkamp problem are tabulated in Table [} The
interpolation accuracy tolerance and the maximum Lo error over the interpolated state vectors
€12,maz are provided. As it is a problem with a 5D input parameter space, more attention is put
on the number of evaluations, the ratio of important points and the number of interpolated state
vectors where the interpolation accuracy is higher than the tolerance ;.

45



Table 6: Results of the experiment done on the Molenkamp test.

% state vectors

Experiment ;¢ €r2,maz |J0]  # evaluations % important points with error > Yy
Smooth 1-107% 2.19 2957 81.1 10.6

Steep.A 1-1073  2.77 3833 83.4 9.95

Steep.B 5-107*  0.56 5086 85.3 9.3

When comparing the results to the ones that were achieved with the algorithm based on the global
basis in [4], it can be noted that for an interpolation accuracy tolerance 7;,; of 11072, the maximum
relative Lo error is much higher. More specifically, for the smooth setting, the algorithm with the
global basis only sampled 1379 different parameter combinations and achieved a maximum relative
Ly error of 0.17%, while the algorithm based on the local basis achieved an error of 2.19% with
2957 evaluations, which is more than twice as many. For the results of the smooth experiment,
the percentage of important points is the lowest, while the percentage of state vectors where the
interpolation error was higher than the tolerance ;,;, is the highest. Moreover, for the experiment
Steep.A the number of 3833 evaluations is much lower than the number of 5086 evaluations in the
algorithm based on the global basis. However, the error achieved with the algorithm based on the
global basis was 0.33% which is much lower than the error of 2.77% achieved by the algorithm
based on the local bases. In experiment Steep.B where a lower interpolation accuracy tolerance ;¢
was used, roughly the same number of 5086 evaluations was achieved as the 5093 evaluations with
the algorithm based on the global basis. It is hard to say for 1000 check points in a 5D parameter
domain, whether these error results are an accurate representation of the full interpolation error
over the full parameter domain. Moreover, in no values were given regarding the percentage
of important points and percentages of interpolated state vectors with an error higher than ;.
Nevertheless, in this setting it can be said that the difference in interpolation error of 0.59 and
0.33%, for these 1000 points is small enough to say that these algorithms can perform similarly
well in the steep setting of the Molenkamp problem. 85.3% of the parameter combinations were
regarded as important, which is the highest out of all the experiments and that the percentage
of interpolated state vectors with an error lower than ~;,; is the highest, which is expected as
the interpolation accuracy threshold is stricter. Moreover, the number of state vectors with an
interpolation error higher than the threshold ~;,; is also the lowest. The interpolated solution with
the highest Ly error in the smooth setting was at ¢ = 0.8 and is shown in Figure [43]

true solution Interpolated solution % difference mterpolated vs true

-0.5 0 0.5 1
X

Figure 43: The true and interpolated solution of the check point with the highest interpolation error for the
smooth Molenkamp problem are plotted on the left and middle respectively, The relative percentage difference for
each coordinate is also plotted on the right.

On the right of Figure the relative percentage error from Equation is used for the entries
of the interpolated state vector with the highest error. The overall difference between the true and
interpolated solution is at maximum 0.025%. It should be noted that this error is lower than the
Lo error as it is calculated on a single coordinate compared to the Lo error which is calculated over
the full solution. From this it can be stated that overall, the interpolation is done correctly. The
error is shaped differently compared to both solutions. To see what causes this, the interpolation
error of the individual matrices U, V and C of the interpolated solution with the highest error in
the smooth setting is given in Figure [#4] The interpolation error of the columns in the coupling
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matrices is higher compared to the error of the interpolated modes or the columns representing the
coefficients in V. The error does not increase as a function of the mode order. The reason for this
is that when looking at Figure [25] and the modes are quite similar in terms on smoothness, as
these modes have a similar function of representing the rotational movement of the gas cloud. It
is slightly harder to interpolate the modes compared to the coefficients in Figure [#4] From this it
can be deduced that the modes and coefficients in V were interpolated successfully in the smooth
setting.
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Figure 44: The relative L2 errors are plotted for the individual columns in the interpolated U, C and V matrices of
the solution with the highest error €z, /mae. mode on the x-axis indicates the index of the column in these matrices.

For confirmation that the modes and coefficients are interpolated successfully, the true and inter-
polated modes 1-4 and modes 5-8 are plotted with respective percentage differences in Figures
[46] and [A7]in the Appendix respectively.
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Figure 45: Plots of the true and interpolated modes 1 and 2 of the interpolated solution with the highest error
€L,,maz- Lhe percentage difference between the two is plotted on the right.
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Figure 46: Plots of the true and interpolated modes 3 and 4 of of the interpolated solution with the highest error
€L,,maxz- The percentage difference between the two is plotted on the right.

The percentage differences for all modes are much smaller compared to the error of the solution
itself. The same high interpolation accuracy can be seen in the interpolation of the coefficients of
these modes in Figure [I7] and [A8] From this it can be stated that the modes and coefficients are
interpolated successfully in the smooth setting of the Molenkamp problem.
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Figure 47: Plots of the true and interpolated coefficients of modes 1 to 4 of the interpolated solution with the
highest error €1, maz-
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% difference of interpolated coupling matrix coefficients

An analysis must be made of the relatively large error of the coupling matrix coefficients. First,
as the coupling matrix is approximately similar to the singular value matrices, in which all the
off-diagonal elements are zero, it could be argued that the errors at the diagonal elements overrule
the error at the off-diagonal elements in the Lo error calculation. Therefore, a plot is made of the
Ly error of the columns in the interpolated coupling matrix from Figure [{4] and of the columns in
the same interpolated coupling matrix where the diagonal elements are set equal to the diagonals
elements in the true coupling matrix. This plot is shown in Figure
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Figure 48: The Ly error of the columns in the interpolated coupling matrix from Figure@and the Lo error of the
columns in the same interpolated coupling matrix, where the diagonal elements are set equal to the true coupling
matrix.

There is a big difference in the Lo error of the very first column in the coupling matrix. Moreover,
this difference decreases with the order of the mode. This is expected as the singular values are
ordered in decreasing values along the diagonal of 32, so it expected that this holds for the coupling
coeflicients in general as well. Therefore, this leads to a relatively larger error for the lower order
modes than higher order modes. This indicates that, except for the first mode, the off-diagonal
elements are the issue. It is also interesting to see how the interpolation error of the coupling
coefficients would translate to the error of the amplitudes of the modes, if the coupling matrix
were to be multiplied with the matrix V. These amplitudes are basically the POD coefficients.
This is analyzed by looking at the percentage difference of the coupling coefficients and the resulting
POD coefficients when multiplying with the interpolated V matrix. This error is plotted in Figure
49
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Figure 49: The percentage difference of the coupling coefficients and the resulting POD coefficients when multi-
plying with the interpolated V matrix, of the interpolated solution with the highest error in the smooth setting.
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At t = 0.8, the error of the POD coefficients of mode 1 is relatively high, which could substantiate
why the shape of the percentage error in Figure [43|is the same cloud that is deformed to the left
lower side. Next, the plots of experiment Steep.A are given. The interpolated solution with the
highest error in the steep setting is at ¢ = 0.8 and is given in Figure
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Figure 50: The true and interpolated solution of the check point with the highest interpolation error the steep
Molenkamp problem are plotted on the left and middle respectively, The relative percentage difference for each
coordinate is also plotted on the right.

The overall shape of the interpolated solution is correct, and the percentage difference is quite
small. Also the rotating wavelike pattern of the modes appears in the error. To understand where
this comes from, the error of the interpolation of U, C and V is analyzed, which is plotted in

Figure [51]

101 . . : . : : :
—S—errorU
—E&—arror V [
100 £ error C| 4
S
s 107 g
g B
c % S— € -~
12— N@T_‘F__‘e;___—ﬂ____{q T Py = il
@ —a
= 2 T8
= Sl
© e e oy
o 10°¢ S =" ]
e N /
\\
107 ¢ A4 €
1 0—5 L | L L L L L L
1 2 3 4 5 6 4 8 9 10

mode

Figure 51: The relative Lo errors are plotted for the individual columns in the interpolated U, C and V matrices
of the solution with the highest error €r, maz- mode on the x-axis indicates the index of the column in these
matrices.

The error of the interpolation of the modes does not vary too much and the error of the coefficients
is lower than the error of the modes, which is very similar to the smooth case in Figure [#4] The
error of the coupling coefficients again becomes larger for higher order modes. From this, it can
be deduced that the modes and coefficients in 'V were also interpolated successfully in the steep
setting. For confirmation that the modes are interpolated accurately, the higher order modes 5-8
are plotted in Figure
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Figure 52: Plots of the true and interpolated modes 7 to 10 of of the interpolated solution with the highest error
€L,,maz- Lhe percentage difference between the two is plotted on the right.

There is a rotational wavelike pattern in the modes, which was expected from the mode analysis,
and the percentage error is again very small. The spherically rotating shape in the error of the
solution in Figure [50] can again be substantiated by looking at the percentage difference of the
coupling coefficients and the resulting POD coefficients when multiplying with the interpolated V
matrix. These are plotted in Figure
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Figure 53: The percentage difference of the coupling coefficients and the resulting POD coefficients when multi-
plying with the interpolated V matrix of the interpolated solution with the highest error in the Steep.A experiment.

The error of the POD coefficients of modes 6 to 10 is high at ¢t = 0.8, which is the time at which
the error of the physical solution was highest. From this, it can be deduced that the reason for
the shape of the percentage error in Figure [50] where a rotating wave can be seen in the left upper
corner, is the inaccurate amplitudes of modes 6 to 10 in Figure [I5] which represent the rotating
motion in the left upper corner of the domain. The last result to discuss is how many unique
parameter values were sampled in each separate parameter dimension. The unique amounts for
each parameter for all the experiments are tabulated in Table [7]

Table 7: Number of unique values per parameter that were sampled in various experiments on the Molenkamp
problem.

Number of unique values Number of unique values Number of unique values

Parameter in Smooth setting in Steep.A setting in Steep.B setting
A1 17 17 19
A2 13 15 17
A3 19 19 23
A4 13 17 17
As 13 17 17

The unique values achieved with the algorithm based on local bases are very different compared
to the ones achieved with the global basis in the time adaptive mode in , for both the smooth
and steep settings. As in the smooth setting much more evaluations were done with the algorithm
based on local bases, it speaks for itself that the number of unique values is much higher in general
and that is hard to compare the 2 algorithms. This also includes experiment Steep.A, in which
much less evaluations were done, but a higher error was achieved in the local bases case. However,
the results of experiment Steep.B can be used for comparison as in this case both achieved an al-
most similar error with a very small difference in the total number of evaluation. More specifically,
for the linear parameter A; and the steepness parameter Ao, the algorithm based on the global
basis only sampled 3 and 13 unique values, while the algorithm based on the local bases sampled
19 and 17 unique values in experiment Steep.B. However, the number of points sampled for the
decay constant Az of 19 and 23 is much lower than the 33 unique values that were needed in the
global case. Lastly, the number of unique values for the initial rotation parameters A4 and As,
are identical between the two algorithms. The reason for this large difference is clarified in the
discussion.
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4.2.3 Results of the experiments on the 2D neutron diffusion problem

The errors for the experiments done on the neutron diffusion problem are tabulated in Table

Table 8: Results of the experiment done on the Neutron diffusion problem.

; . important tangent state vectors
Experiment €7, maz [%] # evaluations % importan 7 tangen 7o vector

points planes with error > ;¢
S.o¢.A 1.47 41 51.2 1 11.3
S.0r.B 4.66 97 40.2 1 19.0
S.07.C 2.27 71 43.7 3 25.1
S.o. 2.72 169 44.4 8 11.3

For an interpolation threshold ~;,; of 5- 1073 the highest and lowest achieved maximum Ly errors
over all experiments is 4.66 % and 1.47%. For a set interpolation tolerance 7;,; of 5- 1073, the
maximum errors achieved in experiment S.o¢.A, S.0;.C and S.o. are acceptable. This is because the
error of the flux estimation is small enough to determine how the flux generally behaves for a new
parameter and striving for a higher accuracy would not be worth the extra numerical simulations
that would have to be made. This acceptance range is entirely problem dependent, where in
different problems a much higher accuracy would be required. The percentage of interpolated
state vectors with an error larger than 7, in S.o;.C is 25.1%, which is quite high. There is
a difference in achieved error between experiment S.oy.B and S.o;.C, which only differ in the
set tolerance for the first principal angle when drawing new tangent planes. As a result of this
tolerance difference, a higher number of tangent planes were drawn, thereby producing smaller
subdomains in which the multiquadric RBF interpolator performs better. To elaborate, the error
reduced from 4.66% to 2.27%, while simultaneously reducing the number of evaluations from 97
to 71. Judging from the error in experiment S.o;.C and S.o., the hierarchical placement of the
tangent planes and the overlapping of the subdomains was a success and that the interpolation
within these subdomains led to an acceptable result. This can be substantiated by looking at
the resulting sparse grids of experiments S.o;.B and S.0;.C and the error distribution of both
experiments which are plotted below.

Figure 54: The resulting sparse grid of experiment S.o;.B on the left, with the error distribution on the right.
The green points are the important points that are included in the ROM, the blue points are the inactive points
where the interpolation error was low enough and the red points indicate a tangent plane.
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Figure 55: The resulting sparse grid of experiment S.o;.C on the left, with the error distribution on the right.
The green points are the important points that are included in the ROM, the blue points are the inactive points
where the interpolation error was low enough and the red points indicate a tangent plane.

2 extra tangent planes were placed in the lower half of the domain. This is expected as the overall
solution changes the most when changing from zero source to positive source in Figure As a
result of the early added tangent planes in the lower half of the parameter domain, the resulting
errors in the upper half were lower due to a smaller upper subdomain. This led to less points
having to be sampled in the upper half of the domain than in the lower half in Figure |55 compared
to Figure [54] The error distribution is mostly uniform, where there is no clearly visible difference
in the error that is achieved in the different subdomains in Figure From this, it can also be
stated that the interpolation in the different subdomain is done successfully. The solution with the
highest errors for experiment S.o¢.B is plotted in Figure
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interpolated solution % error interpolated vs true
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Figure 56: The true and interpolated solutions of the flux with the highest interpolation error from experiment
S.o;.B are plotted on the left and middle respectively. The relative percentage difference for each coordinate is also
plotted on the right.

The overall shape of the interpolated solution is correct. However, the error at the fuel and the
absorber is high, and the flux minimum at the absorber is much sharper than the true solution. The
high error at the fuel and absorber is expected as the flux changes more abruptly in these regions
compared to the flux in the moderator. There also seems to be some noise in the interpolated
solution, which could be caused by the overall noise in the modes themselves. The reason as to
why the error and noise occur, will be made clear later when the interpolated modes and coefficients
are analyzed. The solution with the highest errors for experiment S.o;.C is plotted in Figure
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Figure 57: The true and interpolated solutions of the flux with the highest interpolation error from experiment
S.0.C are plotted on the left and middle respectively. The relative percentage difference for each coordinate is also
plotted on the right.

The overall shape of the interpolated solution is again correct, and the interpolation of the final
solution was more accurate than in experiment S.c¢.B. However, a small part of the flux peak
at the absorber is sharper than the true solution. There is no noise in the interpolated solution
compared to the interpolated solution of experiment S.o;.B. As the percentage of state vectors
with an error higher than -;,; is quite high, a histogram is plotted showing the counts of errors
in different parts of the time evolution in Figure 5§ For both problems the highest errors occur
mostly in the range of ¢ = [2-107%,3-107%]. This is expected as most of the change in the solution
happens at the early stages of the time evolution where the flux at the fuel increases because of
the source term and the initial flux at the absorber diffuses away. The dynamics in this time range
will change the most as a function of the source and oy compared to a different part of the time
evolution.
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Figure 58: 3D histogram that shows the counts of a certain error to occur in a period of time.

Next, in Figure [59| the error of the interpolation of U, C and V is given. The achieved errors in
experiment S.oy.B are higher than in experiment S.oy. The interpolation error of the modes is
higher than the error of the coupling coefficients or the coefficients in V. This is expected as the
time-dependent behaviour of the modes in Figure [30]is not very complex compared to the overall
shape of the modes themselves. For the 3 different interpolated matrices, it is harder to interpolate
the higher order modes and columns than the lower order ones. This could be attributed to the
fact that the higher order modes are noisier compared to the lower order modes, especially in this
numerically solved problem.
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Figure 59: The relative L2 errors are plotted for the individual columns in the interpolated U, C and V matrices
of the solution with the highest error €r, mas. The results of experiment S.o¢.B and S.o¢.C are shown on the left
and right respectively. mode on the x-axis indicates the index of the column in these matrices.

The true and interpolated modes 1-3 of the solution with the highest Lo error in experiment S.o;.B

are plotted in Figure
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Figure 60: Plots of the true and interpolated modes 1 to 3 of the interpolated solution with the highest error
€L,,max- The percentage difference is plotted on the right.

In all 3 modes, the error is highest at the absorber and the fuel, which is similar to the error
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of the solution itself in Figure The error of the interpolated mode 1 and 3 are substantially
higher than the error of mode 2. There is also noticeable noise in the first mode, which could have
been overlooked in the mode analysis chapter. Therefore, to check if that occurring noise is a true
property of the solution at that parameter combination, the true modes from the SVD are plotted
for this parameter combination in Figure 61}
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Figure 61: Plots of the true modes 1-3 that come out of the SVD of the true solution at the parameter combination
where the highest interpolation error was achieved.

The noise does not occur in the true modes, meaning that this is a byproduct of the exponential
map, which is the orthogonal transformation of the true basis. The product of the true orthogonally
transformed U, the true coupling matrix C, and the true orthogonally transformed matrix V does
give back the same solution as the product of the regular matrices from the SVD. This means that
the added noise does not actually pose a problem for the interpolation itself, as the combination
of these matrices will give back the same result. The accuracy of the interpolation is therefore
mainly dependent on the number of points that were sampled and the combination of the RBF
interpolator and the subdomain size. In Figure the interpolated POD coefficients are plotted
with the percentage difference.
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Figure 62: The true POD coefficients and the relative percentage error of the interpolated POD coefficients of the
solution with the highest error.

The interpolated POD coefficient of mode 1 is 3% lower than its respective true positive POD
coefficient, while the interpolated POD coefficient of mode 2 is more than 1% larger than its
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respective true positive POD coefficient. The percentage difference of mode 3 is relatively low,
which indicates that the sharp flux minimum in the interpolated solution in Figure is mainly
caused by the amplitude of mode 1 not being high enough to counterbalance the contribution of
mode 2 and 3, which cause the flux at the absorber to be reduced. The true and interpolated
modes 1-3 of the solution with the highest Ly error in experiment S.o¢.C are also plotted in Figure
0.
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Figure 63: Plots of the true and interpolated modes 1 to 3 of the interpolated solution with the highest error
€L,,maxz- The percentage difference between the two is plotted on the right.

The first mode does not contain any noise compared to the first mode in Figure This means
that the orthogonal transformation is different depending on the parameter combination and the
tangent plane. The error of the interpolated modes at the absorber is very low compared to
the interpolated modes in Figure even though the modes represent a solution with a positive
source, which can be seen from the first mode. This is completely opposite to the error of the
interpolated modes in Figure which represent the solution at a minimal source value. How-
ever, the error of the modes at the absorber is high in both the solution with a low and high source.

In Table [§] it can be observed that in experiment S.o., 8 different tangent planes were drawn.
These were drawn only because of different amounts of modes being needed in the parameter
domain. The resulting sparse grids and error distribution of experiment S.o. is given in Figure
[64 The number of modes in the lower left part of parameter domain changes, as multiple tangent
planes were drawn to stay within the range defined by [€o1,mins €tol,maz]- In this case the difference
between the number of modes at the tangent planes is only one mode. The distribution of tangent
planes follows the hierarchy of the sparse grids, where each tangent plane in each dimensions
has a neighbour that can be used to define the overlapping training subdomains. Even though
8 different tangent planes were drawn, the error distribution is still uniform, where there are no
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5. Discussion

5.1 Effect of subdomain size and noise on the interpolation
scheme

The findings in the experiments on the Burgers equation indicated that it is preferred to use smaller
training subdomains when using the multiquadric RBF and vice versa when using the cubic RBF.
This can be explained by looking at the shapes of the multiquadric and cubic RBF, which are
plotted in Figure

1.5 T T
1 . d
X
L
m
o
.//
Pz
0.5 - 3 4
= multiquadric
cubic
0 ! e L L L

0 0.1 02 03 04 05 06 07 08 0.9 1
X

Figure 65: Plots of the multiquadric and cubic RBF functions.

As the derivative of the multiquadric RBF increases very slowly compared to the cubic RBF, the
difference between the weights of points with increasing radial distance in the multiquadric RBF
is much smaller than the cubic RBF. This means that for larger subdomains, very far distanced
points to a point of interpolation interest will have a larger influence on the interpolation, com-
pared to the cubic RBF where the weight of the far distance points decrease very fast to zero.

The main reason for the interpolation failing in Figure at very low Reynolds numbers is that
the RBF interpolation method fails around that region. Namely, ill-conditioning can occur near
the boundaries as radial basis function interpolation relies on the radial symmetry of the basis
functions. Basis functions centered at points on or close to the boundaries of the interpolation
space become asymmetric. This mainly occurs when the density of training points is high on the
boundaries of the domain, resulting in the radial distance matrix D in Equation becoming
almost singular, which can lead to an inaccurate inverse matrix. This also happened during this
experiment. The interpolation failing in Figure [39| could be caused by the horizontal lift having to
represent a velocity vector of a geodesic that leads to a point in a region on the Stiefel manifold
that is very random due to the noise. It should be noted that the bases that include noise, still
are legitimate points on the Stiefel manifold. The noise therefore becomes input to the logarithmic
map in Equation , which results in a noisy horizontal lift matrix. It can be expected that
trying to interpolate such noisy data will lead to an inaccurate interpolation of the horizontal lift,
which then additionally must be mapped back via the exponential map in Equations and (50).

From Figure|38|it can be stated that it is possible to include more higher order modes than necessary
without making the tangent plane interpolation method more difficult. The interpolation of the
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lower order modes does not deteriorate as more higher order modes are added. However, Figure
indicates that if a too high number of modes is interpolated in a domain where that number
would be in a numerical noise range, then the interpolation completely deteriorates. Therefore, it
is possible to neglect €:;,min, given that no numerical noise is included into the matrices U and
V. However, a lower first principal angle tolerance 6; ;,; should be chosen to draw more tangent
planes leading to smaller subdomains for the RBF interpolator. A better choice would be to not
choose the lowest number of modes resulting in an approximation error below €;o; maq, but add
more modes to not draw too many tangent planes in Figure

5.2 Evaluation of the space-time coupled matrix interpola-
tion scheme in the Molenkamp test

The main cause of the high error in the Smooth and Steep.A experiment could be explained by
looking at the space-time coupled interpolation method itself and the previous method based on
the global basis. The main difference between the interpolators of both algorithms is that the
algorithm based on the global basis interpolates the individual time dependent coefficients of the
respective modes for each individual state vector, while the algorithm based on the local bases does
an interpolation of the coefficients for a whole-time evolution, by interpolating the full matrices
of U, V and C. This means that the choice of the interpolation accuracy threshold 7;,; should
be chosen lower, to be more forgiving of the fact that a full-time evolution is being interpolated
instead of the individual time steps in the algorithm with the global basis.

Another point to address is the large difference in sampled values of A3, which is a parameter that
leads to a decaying exponential dependence of the solution. The reason for this could be seen by
looking at how accurate the coefficients of V are interpolated in Figures and It seems to
be the case that the time dependent behaviour can be interpolated very easily in the space-time
coupled approach. As the coefficients in V are essentially part of the information in the POD co-
efficients and are split off and interpolated separately with high accuracy, it can be stated that the
coupling matrix coefficients in C are less complex than the POD coefficients. Interesting research
would be to also analyze the difference in number of points that are needed to separately inter-
polate the U, V and C matrices with a high enough accuracy. This allows for a clear distinction
in the dependence of these different matrices. Additionally, more analysis will have to be made
on the difference between the local and global basis in certain problems with regards to how the
overall physics is summarized over the whole parameter domain in the global basis compared to
how the physics is represented via the local basis interpolation scheme.

It cannot be expected that the coupling coefficients in C scale in the same way compared to the
values in the ZY and ZY matrices of which the interpolation should result in a velocity vector
representing a geodesic that stays within the manifold. Therefore, entry-by-entry interpolation
might the best solution for the coupling coefficients using local linear basis functions, instead of
interpolating the full coupling matrices using the RBF interpolator. Another benefit of the local
linear basis functions can be seen when looking at the difference in unique values of A\; and Ao,
which can be attributed to the way the RBF interpolator works compared to the one based on
local linear basis functions. The RBF weights are calculated based on radial distances without
considering any directions in the parameter domain. On the other hand, the algorithm based on
local linear basis functions draws linear hat functions at the sampled points in each parameter
dimension in the domain. These can then be combined to form a multivariate interpolant in which
the dependencies of the function on each separate parameter are combined. For instance, the local
linear interpolant would be able to do an extrapolation to the point [1; 1] by forming an interpolant
of two hat functions going from points [0; 0] to [0; 1] and [0;0] to [1;0]. This is not possible with an
RBF interpolation as the weights are only calculated based on a distance measure without taking
into consideration what the dependencies are in each parameter direction.

Another problem of the RBF interpolator is that the test points must be surrounded by training
points to have an accurate interpolation. This basically means that in every problem, no matter
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what dimensions the parameter domain has, the corners will have to be sampled, which leads to
a lot of extra evaluations being needed to cover the dynamics in the parameter domain. It can
also be argued that the RBF interpolator cannot recognise linear dependencies very well, as it
essentially draws RBF functions, between the sampled points that are not linear by themselves
such as multiquadric or cubic. An option would be to change the sampling strategy, by filling the
parameter space with cuboids in [34] in a hierarchical way. In this sampling strategy the algorithm
starts with training points at the vertices of the parameter domain and tests the middle points of
the domain. Then in subsequent iterations, the parameter domain is split up in smaller cuboids
in which an interpolation is done to the center of these smaller cuboids. As the vertices of the
corners of the cuboids can be used as training points, the test points will always be surrounded,
resulting in an optimal RBF. In this case, the tangent plane can be drawn on one of the vertices.
The question, however, is whether this would lead to more points being sampled compared to the
sparse grid.

5.3 Computational cost and scaling of the algorithm

With the inclusion of drawing tangent planes in a hierarchical manner and overlapping the sub-
domains, it could be argued that a lot of extra computational resources and steps are needed to
compute the ROM compared to the algorithm based on the global basis. Namely, in each sin-
gle subdomain, it is checked whether the number of modes or first principal angle is compatible.
Then, as new tangent planes are drawn and the subdomains are overlapped, many SVD calcula-
tions are made to calculate the horizontal lifts. However, the time needed to do these calculations
is negligible compared to the time that it takes to do the numerical simulations in a 2D neutron
diffusion problem. The main problem is the amount of data that is used to represent the full ROM.
Namely, at points that lie in multiple tangent plane training subdomains due to the overlap, as
many ZY matrices must be stored as the number of tangent planes that point is connected to.
For a high dimensional parameter domain this can be problematic. Moreover, each subdomain can
use a different number of modes, which leads to many horizontal lifts of different dimensions that
must be stored. Therefore, it is much harder to use conventional arrays to store the data com-
pared to in the situation where only a single global basis and a matrix of coefficient must be stored.

Another main problem with this algorithm is how it scales for problems in which there is a large
parameter domain with varying dependencies, from linear to very non-linear. As was already
stated in the discussion of the experiments on the Molenkamp test, the RBF interpolator does not
have any sense of direction in terms of being able to interpolate the separate dependencies in each
dimension. One could apply entry-by-entry interpolation for the coupling coefficients C and the
coefficients in ZV, but not for the values in ZY as the spatial discretization leads to too many
degrees of freedom compared to the temporal discretization. Therefore, future research should
investigate whether there is a matrix interpolation method that has the same property of as the
local linear basis functions, that takes into account the dependencies in different dimensions and
can be used to extrapolate to corner points of the domain.

The last thing to point out is that it is difficult to use the space-time coupled approach in a
time-adaptive way, instead of only in a parameter-adaptive way. With the algorithm based on the
global basis, all the parameter and time dependent information is in the POD coefficients which
can be interpolated separately using local linear basis functions. One idea would be to keep using
the previous algorithm based on the global ROM, but when a new parameter combination is being
sampled in time, the global basis can be locally enriched with new local basis vectors that are
interpolated to that new parameter combination. Another possibility would be to just use the
local interpolated basis at that new parameter combination and start sampling in time, with the
initial interpolated local basis. The first snapshot is then projected on this local interpolated basis
which essentially leads to local POD coefficients, instead of global POD coefficients. As more
snapshots are added in time at the new parameter combination, the local basis can be updated
with the true modes that come out of the SVD at that point.
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6. Conclusion & recommendations

6.1 Conclusion

In this research a local basis interpolation method for time dependent parametric problems was
successfully set up and combined with a locally adaptive sampling strategy based on sparse grids.
The resulting algorithm was tested on 3 different models.

As the maximally achieved interpolation errors in the experiments on the Burgers equation were
all low, it can be concluded that in a 1D parameter setting, the algorithm can adaptively draw
new tangent planes in a hierarchical manner and can accurately interpolate withing the overlap-
ping subdomains. Due to the fact that different radial basis functions scale differently for further
distanced points from the point of interpolation interest, it can be stated that the interpolation
performance of the RBF interpolator depends on the subdomain size, which is determined by how
many tangent planes are drawn and how much the subdomains overlap. As the interpolation accu-
racy of lower order modes does not deteriorate as more higher order modes are added, a conclusion
can be drawn that the minimum error tolerance, which is used to determine how many modes are
needed for the interpolation within a subdomain, can be neglected, given that no numerical noise
is included in the bases and coefficients.

Judging from the results on the Molenkamp problem, it can be concluded that the algorithm based
on the local basis performed worse than the algorithm based on the global basis, for an equally set
interpolation accuracy tolerance. The main cause of this is that full matrix interpolation is done
with the coupling coefficient matrices C, of which it cannot be guaranteed that the coupling coef-
ficient in the matrix scale similarly. Another cause of this is that the RBF interpolator is not able
to separate the dependencies in each parameter direction as it only relies on distances to do the
interpolation. However, it can also be concluded that the algorithm based on the local bases can
perform similarly well on the Molenkamp problem, given that the interpolation accuracy tolerance
is set lower than the algorithm based on the global basis. This is done to be more forgiving of the
fact that full matrix interpolation is being done.

The main conclusion that can be drawn from the 2D neutron diffusion problem is that also for
a 2D parameter setting in a numerically solved problem, the algorithm can adaptively draw new
tangent planes in a hierarchical manner and can successfully interpolate within the overlapping
subdomains. It can also be concluded that the first principal angle can act as an indicator of which
parts of the parameter domain contain more relatable physics than other parts of the domain.

This thesis demonstrated a novel method generalizing reduced order modelling of time and param-
eter dependent problems on sparse grids, by using multiple local bases instead of a fixed global
basis to represent the underlying physics of a model. The local basis interpolation scheme can
compete with the global basis approach on test problems, indicating that manifold methods such
as ITSGM have a lot of potential in reduced order models. However, more research is needed in
matrix interpolation methods to increase the algorithm’s overall performance, applicability, and
efficiency.

6.2 Recommendations

The first recommendation for future research is to develop a way to interpolate the horizontal
lifts ZY and Z" in a similar way to interpolating coefficients with local linear basis functions.
This should in turn reduce the number of evaluations that have to be made, due to being able to
interpolate to the corner points of the domain. Local linear basis functions could also be used to
interpolate the coupling coefficients entry by entry instead of the full matrices C themselves, which
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might result in a better interpolation accuracy, and therefore less points having to be sampled.
Another recommendation is to try the sampling scheme in which hierarchical cuboids are used
instead of the sparse grids. It would be interesting to see if the space-time coupled approach would
work better in the context of this sampling scheme. Another problem that will have to be resolved,
is the storage of the data that represents the ROM. This would allow for the algorithm to be tested
on larger problems like the Molenkamp problem with 101 time points or problems with higher
dimensional parameter domains, which would give more insight into the scaling and performance
of this algorithm. Also, more analysis will have to be done on the separate dependencies of the U,
C and V matrices throughout the domain and how the local basis really differs from the global
basis in certain numerical problems. The last suggestion would be to use local basis interpolation
in combination with the global basis by enriching the global basis with local basis vectors or using
only the local basis when the time points are sampled at new parameter combinations, thereby
leading to local POD coefficients instead of global POD coefficients.
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