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Abstract: The knowledge of the Effective wind speed (EWS) allows the designing of wind
turbine controllers that regulate power production and reduce loads on turbine components.
Traditional single-point measurements are known to suffer from high noise and poor correlation
with the EWS. As an alternative to overcome these problems, EWS estimators can be designed.
The main challenge is the high non-linearity of the wind speed influence on the drive-train
dynamics. Therefore, an estimator based on the unscented Kalman filter (UKF) is proposed
and compared against an extended Kalman filter (EKF) and the immersion and invariance
(I&I) technique. Simulation results are provided and show the superior performances attained
by the UKF. Furthermore, the usefulness of the estimated EWS is demonstrated by designing
a sliding mode controller (SMC) that can track a desired power reference. In addition, the
controller allows operating in sub-optimal conditions, where load reduction is attained at the
expense of power maximization. The proposed estimator’s and controller’s performances are
evaluated under wind farm wake conditions via high-fidelity simulations. The findings show
that UKF can outperform the EKF and the controller can reduce loads, except under highly
waked conditions.

Keywords: Nonlinear observers and filter design; Wind turbine control; Sliding mode control;

1. INTRODUCTION

The Kalman filter (KF) has been widely used to pro-
vide unbiased state estimations for linear systems using
a dynamic model and measurements from the system [9].
However, in many applications, the corresponding system
presents highly nonlinear behavior, as in the case of the
aerodynamics of a wind turbine [1]. The extended Kalman
filter (EKF) might be the most widely used estimation
algorithm for nonlinear systems. Although effective, it
shows some limitations, e.g. difficult implementation and
tuning, and reliability only for systems that are almost
linear on the time scale of the updates, i.e.“quasilinear”
problems. Many of these difficulties arise from the use
of linearization. To overcome some of the EKF limita-
tions, the unscented transformation (UT) was developed
to propagate the mean and covariance information. Us-
ing a deterministic sampling approach, a minimal set of
carefully chosen sample points of the previous estimate
are propagated to obtain approximations of the predicted
and corrected states. The unscented Kalman filter (UKF)
can be more accurate, is easier to implement - derivative-
free, and its computational complexity is in the same
order as the EKF [8, 25]. Since its introduction, several
implementations of the UKF have been proposed [14].

In a wind turbine, the anemometer on top of the nacelle
is usually used to measure the wind speed, called point-
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wise wind speed. Such wind speed information does not
fully represent the effective wind speed (EWS) since it
is impossible to represent the spatially three-dimensional
wind field on the swept rotor area by a unique measure.
Lately, LIDAR emerged as a promising technology to
measure the full wind speed profile [22]. However, in some
scenarios, e.g. upstream turbines, disturbances driven by
blade shadows and spatially varying turbulent effects can
still significantly affect the measurements, besides the high
cost of this technology.

In order to estimate the EWS, a large number of ap-
proaches have been developed in the literature. In [24],
the authors compare different well-established estimators
including the immersion and invariance (I&I) estimator
[15] and the EKF-based estimator [10]. In recent work,
an improvement of the I&I estimator is proposed in [12],
where the authors add an integrator to the correction
term enhancing its accuracy and stability. In the before-
mentioned EKF-based estimator, the tower fore-aft dy-
namics, besides the drive-train dynamics, as well as wind
turbulence, are modeled which may increase the estima-
tor’s accuracy. In [11], another EKF-based estimator using
the drive-train model is presented, where variations of the
power coefficient may lead to low performance or even
divergence of the filter. Recently, an adaptive estimator
based on the cubature Kalman filter - a version of the
UKF - is proposed in a hierarchical structure [18], which
explores, besides the superior performance, the robustness
against filter divergence through adaptive covariance ma-
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and corrected states. The unscented Kalman filter (UKF)
can be more accurate, is easier to implement - derivative-
free, and its computational complexity is in the same
order as the EKF [8, 25]. Since its introduction, several
implementations of the UKF have been proposed [14].

In a wind turbine, the anemometer on top of the nacelle
is usually used to measure the wind speed, called point-
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wise wind speed. Such wind speed information does not
fully represent the effective wind speed (EWS) since it
is impossible to represent the spatially three-dimensional
wind field on the swept rotor area by a unique measure.
Lately, LIDAR emerged as a promising technology to
measure the full wind speed profile [22]. However, in some
scenarios, e.g. upstream turbines, disturbances driven by
blade shadows and spatially varying turbulent effects can
still significantly affect the measurements, besides the high
cost of this technology.

In order to estimate the EWS, a large number of ap-
proaches have been developed in the literature. In [24],
the authors compare different well-established estimators
including the immersion and invariance (I&I) estimator
[15] and the EKF-based estimator [10]. In recent work,
an improvement of the I&I estimator is proposed in [12],
where the authors add an integrator to the correction
term enhancing its accuracy and stability. In the before-
mentioned EKF-based estimator, the tower fore-aft dy-
namics, besides the drive-train dynamics, as well as wind
turbulence, are modeled which may increase the estima-
tor’s accuracy. In [11], another EKF-based estimator using
the drive-train model is presented, where variations of the
power coefficient may lead to low performance or even
divergence of the filter. Recently, an adaptive estimator
based on the cubature Kalman filter - a version of the
UKF - is proposed in a hierarchical structure [18], which
explores, besides the superior performance, the robustness
against filter divergence through adaptive covariance ma-
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1. INTRODUCTION

The Kalman filter (KF) has been widely used to pro-
vide unbiased state estimations for linear systems using
a dynamic model and measurements from the system [9].
However, in many applications, the corresponding system
presents highly nonlinear behavior, as in the case of the
aerodynamics of a wind turbine [1]. The extended Kalman
filter (EKF) might be the most widely used estimation
algorithm for nonlinear systems. Although effective, it
shows some limitations, e.g. difficult implementation and
tuning, and reliability only for systems that are almost
linear on the time scale of the updates, i.e.“quasilinear”
problems. Many of these difficulties arise from the use
of linearization. To overcome some of the EKF limita-
tions, the unscented transformation (UT) was developed
to propagate the mean and covariance information. Us-
ing a deterministic sampling approach, a minimal set of
carefully chosen sample points of the previous estimate
are propagated to obtain approximations of the predicted
and corrected states. The unscented Kalman filter (UKF)
can be more accurate, is easier to implement - derivative-
free, and its computational complexity is in the same
order as the EKF [8, 25]. Since its introduction, several
implementations of the UKF have been proposed [14].

In a wind turbine, the anemometer on top of the nacelle
is usually used to measure the wind speed, called point-
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wise wind speed. Such wind speed information does not
fully represent the effective wind speed (EWS) since it
is impossible to represent the spatially three-dimensional
wind field on the swept rotor area by a unique measure.
Lately, LIDAR emerged as a promising technology to
measure the full wind speed profile [22]. However, in some
scenarios, e.g. upstream turbines, disturbances driven by
blade shadows and spatially varying turbulent effects can
still significantly affect the measurements, besides the high
cost of this technology.

In order to estimate the EWS, a large number of ap-
proaches have been developed in the literature. In [24],
the authors compare different well-established estimators
including the immersion and invariance (I&I) estimator
[15] and the EKF-based estimator [10]. In recent work,
an improvement of the I&I estimator is proposed in [12],
where the authors add an integrator to the correction
term enhancing its accuracy and stability. In the before-
mentioned EKF-based estimator, the tower fore-aft dy-
namics, besides the drive-train dynamics, as well as wind
turbulence, are modeled which may increase the estima-
tor’s accuracy. In [11], another EKF-based estimator using
the drive-train model is presented, where variations of the
power coefficient may lead to low performance or even
divergence of the filter. Recently, an adaptive estimator
based on the cubature Kalman filter - a version of the
UKF - is proposed in a hierarchical structure [18], which
explores, besides the superior performance, the robustness
against filter divergence through adaptive covariance ma-

trices. Apart from this recent work, the UKF technique
for the problem of wind speed estimation has been not
investigated in depth to the best of the author’s knowledge,
even though it presents a great potential for performance
improvement.

The knowledge of the EWS is of relevant importance for
advanced wind turbine (or farm) control design. Essen-
tially, it determines the current operating point of the wind
turbine plant, which is required for gain-scheduling control
[23], feed-forward control [16], maximum power tracking
and optimal control [17]. In wind farms, for example, the
thrust force information as a general assessment of the
loads can be considered in the wind farm control [2, 21],
in which it can be estimated using the EWS estimations.
Moreover, a basic solution for guaranteeing power genera-
tion and structure safety is to operate the wind turbine
at a sub-optimal operating point [5, 20]. Even though
power generation decreases in such cases, loads can be
significantly reduced allowing the turbines to maintain
high safety levels and extend their lifetime.

This paper presents the application of the UKF in wind
turbines for EWS estimation. The UKF is compared to the
EKF-based, I&I, and improved I&I estimators in a high-
fidelity simulation environment. High-waked scenarios of
a two-turbine wind farm and structural (elastic) dynamic
models are used for validation. In addition, the estimated
EWS is leveraged to design a sliding mode controller
(SMC) that achieves a desired load reduction in sub-
optimal operation conditions.

The remainder of this paper is organized as follows. First,
the simplified turbine model and its general formulation
are presented in Section 2. Then, the description of the
UKF and the SMC are provided in Section 3 and Section 4,
respectively. After that, Section 5 shows the performance
of the proposed estimator and sub-optimal controller in
several scenarios. The paper is concluded in Section 6.

2. MATHEMATICAL MODEL

A simplified model of the wind turbine is used by con-
sidering only the mechanical dynamics and neglecting the
electrical ones, assuming they are quite faster in compari-
son. Hence, the dominant dynamics of the system can be
obtained by applying Newton’s second law to the drive-
train components. Neglecting friction and higher-order
terms it can be written as

JTω̇r = Ta − ηgTe, (1)

where Ta and Te ≥ 0 are respectively the aerodynamic
and generator torque, JT is the inertia of the combined
rotating parts, ηg is the gear-box ratio, and ωr is the
angular velocity of the blades. An expression for the
aerodynamic torque [17, 1] parametrized by the air density
ρ and the rotor radius R can be obtained by exploiting the
momentum theory as

Ta = 0.5ρπR2 v
3
w

ωr
CP

(
Rωr

vw
, θ

)
, (2)

where CP represents the wind turbine power conversion
efficiency. It is a function of the wind speed vw, the angular
velocity of the blades ωr, and the collective blade pitch
angle θ in a pitch-controlled wind turbine. The following

assumption - verified in practice - is used to formulate the
proposed estimator.

Assumption 1. The measurements of the generator torque,
the collective blade-pitch angle, and the angular velocity
of the rotor are available.

Moving from continuous-time to discrete-time domain, the
first-order Taylor series is considered as

ωr,k+1 = ωr,k + ω̇r,k∆t+ wp,k, (3)

where k and ∆t are respectively the discrete time index
and the sampling time. Also, the process noise wp is added,
moving from the deterministic to a stochastic framework.

To implement the unknown input estimator, a random
walk model is considered to represent the wind speed
development in time, as the following.

vw,k+1 = vw,k + wv,k, (4)

where wv is considered as a process noise. Replacing (1)
and (2) into (3), we augment the obtained model with (4)
by considering the wind speed as a dynamic state of the
system. Then, the augmented state space formulation can
be written as [

ωr,k+1

vw,k+1

]
=


ωr,k +

∆t

JT
0.5ρπR2

v3w,k

ωr,k
CP

(
Rωr,k

vw,k
, θk

)
−

∆t

JT
ηgTe,k

vw,k


+

[
wp,k

wv,k

]
. (5)

As the angular velocity of the rotor is directly measured,
we have the following linear measurement process.

ωm,k = [1 0]

[
ωr,k

vw,k

]
+ vk, (6)

where vk is a random variable representing the measure-
ment noise. The general nonlinear formulation with pro-
cess and measurement noise is obtained as

xk+1 = f (xk, uk) +wk, (7)

zk = h (xk, uk) + vk, (8)

where, in particular, xk = [ωr,k vw,k]
T , uk = [Te,k θk]

T ,
wk = [wp,k wv,k]

T , zk = [ωm,k], and vk = [vk].

Assumption 2. wp,k, wv,k and vk are uncorrelated zero-
mean white noise signals.

Then, the noise covariance matrix is diagonal:

Qk = cov(wk) ≈
[
σ2(wp)∆t 0

0 σ2(wv)∆t

]
, (9)

Rk = cov(vk) ≈ σ2(v)∆t; (10)

where σ2(a) = E [(a− µa)] [(a− µa)]
T

is the second
central moment of the vector signal a, with µa = E [a]
being the expectation value of a. The σ2(wv) > 0 herein
is a scaling parameter to be chosen, which determines the
spread of the random walk model.

3. UNSCENTED KALMAN FILTER

The UKF is based on the Unscented Transformation (UT),
which approximates the mean ẑk ∈ Rm and the covariance
P zz

k = E〈[zk − ẑk(+)][zk − ẑk(+)]
T 〉 ∈ Rm×m of a random
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trices. Apart from this recent work, the UKF technique
for the problem of wind speed estimation has been not
investigated in depth to the best of the author’s knowledge,
even though it presents a great potential for performance
improvement.

The knowledge of the EWS is of relevant importance for
advanced wind turbine (or farm) control design. Essen-
tially, it determines the current operating point of the wind
turbine plant, which is required for gain-scheduling control
[23], feed-forward control [16], maximum power tracking
and optimal control [17]. In wind farms, for example, the
thrust force information as a general assessment of the
loads can be considered in the wind farm control [2, 21],
in which it can be estimated using the EWS estimations.
Moreover, a basic solution for guaranteeing power genera-
tion and structure safety is to operate the wind turbine
at a sub-optimal operating point [5, 20]. Even though
power generation decreases in such cases, loads can be
significantly reduced allowing the turbines to maintain
high safety levels and extend their lifetime.

This paper presents the application of the UKF in wind
turbines for EWS estimation. The UKF is compared to the
EKF-based, I&I, and improved I&I estimators in a high-
fidelity simulation environment. High-waked scenarios of
a two-turbine wind farm and structural (elastic) dynamic
models are used for validation. In addition, the estimated
EWS is leveraged to design a sliding mode controller
(SMC) that achieves a desired load reduction in sub-
optimal operation conditions.

The remainder of this paper is organized as follows. First,
the simplified turbine model and its general formulation
are presented in Section 2. Then, the description of the
UKF and the SMC are provided in Section 3 and Section 4,
respectively. After that, Section 5 shows the performance
of the proposed estimator and sub-optimal controller in
several scenarios. The paper is concluded in Section 6.

2. MATHEMATICAL MODEL

A simplified model of the wind turbine is used by con-
sidering only the mechanical dynamics and neglecting the
electrical ones, assuming they are quite faster in compari-
son. Hence, the dominant dynamics of the system can be
obtained by applying Newton’s second law to the drive-
train components. Neglecting friction and higher-order
terms it can be written as

JTω̇r = Ta − ηgTe, (1)

where Ta and Te ≥ 0 are respectively the aerodynamic
and generator torque, JT is the inertia of the combined
rotating parts, ηg is the gear-box ratio, and ωr is the
angular velocity of the blades. An expression for the
aerodynamic torque [17, 1] parametrized by the air density
ρ and the rotor radius R can be obtained by exploiting the
momentum theory as

Ta = 0.5ρπR2 v
3
w
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CP
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, θ

)
, (2)

where CP represents the wind turbine power conversion
efficiency. It is a function of the wind speed vw, the angular
velocity of the blades ωr, and the collective blade pitch
angle θ in a pitch-controlled wind turbine. The following

assumption - verified in practice - is used to formulate the
proposed estimator.

Assumption 1. The measurements of the generator torque,
the collective blade-pitch angle, and the angular velocity
of the rotor are available.

Moving from continuous-time to discrete-time domain, the
first-order Taylor series is considered as

ωr,k+1 = ωr,k + ω̇r,k∆t+ wp,k, (3)

where k and ∆t are respectively the discrete time index
and the sampling time. Also, the process noise wp is added,
moving from the deterministic to a stochastic framework.

To implement the unknown input estimator, a random
walk model is considered to represent the wind speed
development in time, as the following.

vw,k+1 = vw,k + wv,k, (4)

where wv is considered as a process noise. Replacing (1)
and (2) into (3), we augment the obtained model with (4)
by considering the wind speed as a dynamic state of the
system. Then, the augmented state space formulation can
be written as [

ωr,k+1

vw,k+1

]
=
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−

∆t

JT
ηgTe,k

vw,k


+
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. (5)

As the angular velocity of the rotor is directly measured,
we have the following linear measurement process.

ωm,k = [1 0]

[
ωr,k

vw,k

]
+ vk, (6)

where vk is a random variable representing the measure-
ment noise. The general nonlinear formulation with pro-
cess and measurement noise is obtained as

xk+1 = f (xk, uk) +wk, (7)

zk = h (xk, uk) + vk, (8)

where, in particular, xk = [ωr,k vw,k]
T , uk = [Te,k θk]

T ,
wk = [wp,k wv,k]

T , zk = [ωm,k], and vk = [vk].

Assumption 2. wp,k, wv,k and vk are uncorrelated zero-
mean white noise signals.

Then, the noise covariance matrix is diagonal:

Qk = cov(wk) ≈
[
σ2(wp)∆t 0

0 σ2(wv)∆t

]
, (9)

Rk = cov(vk) ≈ σ2(v)∆t; (10)

where σ2(a) = E [(a− µa)] [(a− µa)]
T

is the second
central moment of the vector signal a, with µa = E [a]
being the expectation value of a. The σ2(wv) > 0 herein
is a scaling parameter to be chosen, which determines the
spread of the random walk model.

3. UNSCENTED KALMAN FILTER

The UKF is based on the Unscented Transformation (UT),
which approximates the mean ẑk ∈ Rm and the covariance
P zz

k = E〈[zk − ẑk(+)][zk − ẑk(+)]
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vector zk ∈ Rm obtained by zk = h(xk, uk). The state
xk ∈ Rn has mean x̂k ∈ Rn and covariance P xx

k = E〈[xk−
x̂k(+)][xk − x̂k(+)]

T 〉 ∈ Rn×n known by hypothesis. In
this way, a set of deterministic vectors χj, k ∈ Rn with
j = 0, ... , 2n, called sigma points, is introduced. Then,

2n∑
j=0

γ
(m)
j χj, k = x̂k and

2n∑
j=0

γ
(c)
j [χj, k − x̂k][χj, k − x̂k]

T = P xx
k ,

(11)

where γ(m) and γ(c) ∈ R2n+1 are the weight vectors. Its
elements can be chosen as proposed in [25],

γ
(m)
0 �

λ

n+ λ
, γ

(c)
0 �

λ

n+ λ
+ (1− α2 + β),

γ
(m)
j � γ

(c)
j �

1

2(n+ λ)
, j = 1, ... 2n, (12)

where λ = α2(n + κ) − n is a scaling parameter. α
determines the spread of the sigma points around x̂k, κ is a
secondary scaling parameter, and β is used to incorporate
prior knowledge of the distribution of xk. A matrix of
sigma points χk �

[
χ0, k, χ1, k ...χ2n, k

]
∈ Rn×(2n+1) is

chosen as

χk = x̂k 11×(2n+1) +
√

n+ λ

[
0n×1 (P xx

k )1/2 − (P xx
k )1/2

]
.

(13)
The following notation is defined for simplification.

[γ(m), γ(c), χk] = ΨUT (x̂k, P
xx
k , α, κ, β). (14)

Instead of the propagation of the first and second statistic
moments through a linearised model, as in the EKF, the
sigma points are propagated through a nonlinear function
Zj,k = h(χj,k, uk) for j = 0, ... 2n, where

2n∑
j=0

γ
(m)
j Zj, k = ẑk e

2n∑
j=0

γ
(c)
j [Zj, k − ẑk][Zj, k − ẑk]

T = P zz
k .

Therefore, the KF equations are given by

[γ(m), γ(c), χk(+)] = ΨUT (x̂k, P
xx
k−1(+), α, κ, β), (15)

χj,k(−) = f(χj,k−1(+), uk−1), for j = 0, ..., 2n, (16)

x̂k(−) =

2n∑
j=0

γ
(m)
j χj, k(−), (17)

P xx
k(−) =

2n∑
j=0

γ
(c)
j [χj, k(−) − x̂k(−)][χj, k(−) − x̂k(−)]

T +Qk, (18)

Zj,k = h(χj,k(−), uk), for j = 0, ... 2n, (19)

ẑk(−) =

2n∑
j=0

γ
(m)
j Zj, k(−), (20)

P zz
k(−) =

2n∑
j=0

γ
(c)
j [Zj, k(−) − ẑk(−)][Zj, k(−) − ẑk(−)]

T +Rk, (21)

P xz
k(−) =

2n∑
j=0

γ
(c)
j [χj, k(−) − x̂k(−)][Zj, k(−) − ẑk(−)]

T , (22)

Kk = P xz
k(−)(P

zz
k(−))

−1, (23)

x̂k(+) = x̂k(−) +Kk [zk − ẑk(−))], (24)

P xx
k(+) = P xx

k(−) −KkP
zz
k(−)K

T
k . (25)

4. SUB-OPTIMAL SLIDING MODE CONTROL

The availability of an estimated EWS allows to design a
controller that tracks a desired tip speed ratio (TSR) λ.
For instance, maximum energy capture is obtained when

CP(λ
opt, θopt) = Cmax

P , (26)

where λopt and θopt are the TSR and collective blade-pitch
angles that maximize CP. For this purpose, θ must track
θopt, and the rotor speed ωr should track

ωopt
r =

λoptv̂w
R

, (27)

which indeed depends on the estimated EWS v̂w. A control
law for the generator torque Te to track ωopt

r via a quasi-
continuous first-order SMC [13] is given as

Te =
Ta(v̂w, ωm, θopt)− JTω̇

opt
r − a1s1 − α1sign(s1)

ηg
, (28)

which forces s1 = ωopt
r −ωm to zero, with a1 and α1 being

positive control parameters. Furthermore, the correspond-
ing thrust force coefficient CT(λ

opt, θopt) can be derived at
these optimal operation conditions. Accordingly, decreas-
ing the tip speed ratio from its optimum value causes a
significant reduction in thrust compared to its reduction
in power as seen in Fig.1. The curves were computed with
the identified steady-state turbine model. For example,
with a tip-speed ratio of approximately 6, the reduction
in power is about 10%, while the reduction in thrust is
20%. Therefore, from (27), we can freely decide a sub-
optimal operation condition λsub-opt that satisfies a desired
reduction of aerodynamic load and power, appropriately.
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Fig. 1. Power and thrust coefficients analysis of the DTU
10 MW RWT: corresponding power and thrust re-
ductions (the marked point represents the optimal
operation, λopt = 8)

Remark 1. Depending on the energy prices and the sav-
ings on lifetime extension due to load reduction, an opti-
mization problem can be formulated to find the appropri-
ate sub-optimal conditions. Also, sub-optimal conditions
could guarantee modified safety levels due to damage or
degradation. However, these are out of the scope of this
work.

Remark 2. The stability analysis is herein omitted and
provided in [13] for the controller. Still, if the wind esti-
mator has a slow convergence, it can affect the closed-loop
performance and lead to stall operation conditions [20].
In these conditions, un-modeled dynamics will be present
in (2), which can lead to instability. The in-depth closed-
loop performance and stability analysis are the aim of
further work.

5. SIMULATIONS

In this section, we assess the performance of the UKF-
based wind speed estimator via the high-fidelity Simulator
for Wind Farm Applications (SOWFA) developed by the
National Renewable Energy Laboratory (NREL) [3]. First,
the estimators are tested under a refined mesh model,
turbulent wind inflow, and high-waked scenario. Thus, in
Section 5.1, a two-turbine wind farm composed of the
DTU 10 MW reference wind turbine (RWT) with 5D
distancing is used with the actuator line model advanced
(ALMAdvanced) solver. Then, in Section 5.2, simulations
with FASTv8.16.00 [6], using BeamDyn, were conducted
to validate the use of the estimators, despite the non-
modeled structural dynamics. The single NREL 5 MW
RWT was used in turbulent conditions. Finally, the last
objective is to investigate the closed-loop system’s perfor-
mance with a controller. In Section 5.3, the optimal and
the proposed sub-optimal SMC that uses the estimated
EWS is tested in SOWFA. The sub-optimal SMC is pre-
sented herein as a solution for a required load reduction.
The adopted parameters are included in Table 1.

5.1 Turbulent Simulations in SOWFA

Realistic simulations of a two-turbine wind farm were
performed with a turbulent inflow field, approximately
TI=5-6%, and mean inflow wind speed of 15 and 12 m/s
at the hub height are performed using a “precursor” at-
mospheric large-eddy simulation (ABLSolver) with neutral
atmospheric stability. A cubic cell length of 2.5 m near the
rotors with a smearing factor of 5.0 m was used.

The proposed UKF-based estimator has presented better
root-mean-squared errors of the estimated EWS compared
with the other estimators over the entire simulation time -
see Table 2. In addition, the root-mean-squared error be-
tween the measured and the estimated rotor speed, called
innovation term or residual in the KF theory, is practically
maintained by the UKF-based estimator compared to the
EKF-based estimator. The result can also be visualized in
Fig. 2. Even though high performance is obtained by the
improved I&I technique, an important limitation has been
observed. In order to expand the mathematical model, for
instance, to include tower dynamics in the estimator, the
conditions for the I&I estimator consistency [15] have to
be further expanded, which is a non-trivial task to achieve.

Table 1. Estimator Parameters

Parameters Attributed Values

σ2(wp) [EKF; UKF] 1e-03 [rad2/s2]
σ2(wv) [EKF; UKF] 0.1 [m2/s2]
σ2(v) [EKF; UKF] 0.1 [rad2/s2]
α [UKF] 1.22
β [UKF] 0.5
κ [UKF] 0
γI&I [I&I] 5
γI&I [Improved I&I] 40
βI&I [Improved I&I] 10
∆t 0.2 (SOWFA) and 0.1 (FAST) [s]

Initial conditions Attributed Values

ω̂r(0) 1 [rad/s]
v̂w(0) 14 and 4 [m/s]
P xx
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Fig. 2. (a) and (c) estimated EWS and derived power of the
upstream; and (b) and (d) of the downstream DTU
10MW RWT at a mean inflow wind speed of 15 m/s
with ALMAdvanced solver

Moreover, we observed that the theoretical variance of
the estimated EWS, i.e P xx

k(+)(2, 2), from the UKF-based
estimator is smaller than from the EKF-based estimator,
depicted in Fig. 3. This is due to the nonlinear effects
by the UT against the linearization procedure into the
state covariance propagation and it elucidates the superior
performance of the UKF.
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Fig. 3. Estimated EWS variance of (a) the upstream and
(b) the downstream DTU 10MWRWT at mean inflow
wind speed of 15 m/s with ALMAdvanced solver

Since the true EWS is unknown, we will instead compare
the different filters by numerically evaluating the covari-
ance of the estimation error with respect to the measured
power signal Pm:

ēP,k =
1

m

k∑
t=k−m

eP,t, where eP,t = Pm(t)− P̂ (t); (29)
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5. SIMULATIONS

In this section, we assess the performance of the UKF-
based wind speed estimator via the high-fidelity Simulator
for Wind Farm Applications (SOWFA) developed by the
National Renewable Energy Laboratory (NREL) [3]. First,
the estimators are tested under a refined mesh model,
turbulent wind inflow, and high-waked scenario. Thus, in
Section 5.1, a two-turbine wind farm composed of the
DTU 10 MW reference wind turbine (RWT) with 5D
distancing is used with the actuator line model advanced
(ALMAdvanced) solver. Then, in Section 5.2, simulations
with FASTv8.16.00 [6], using BeamDyn, were conducted
to validate the use of the estimators, despite the non-
modeled structural dynamics. The single NREL 5 MW
RWT was used in turbulent conditions. Finally, the last
objective is to investigate the closed-loop system’s perfor-
mance with a controller. In Section 5.3, the optimal and
the proposed sub-optimal SMC that uses the estimated
EWS is tested in SOWFA. The sub-optimal SMC is pre-
sented herein as a solution for a required load reduction.
The adopted parameters are included in Table 1.

5.1 Turbulent Simulations in SOWFA

Realistic simulations of a two-turbine wind farm were
performed with a turbulent inflow field, approximately
TI=5-6%, and mean inflow wind speed of 15 and 12 m/s
at the hub height are performed using a “precursor” at-
mospheric large-eddy simulation (ABLSolver) with neutral
atmospheric stability. A cubic cell length of 2.5 m near the
rotors with a smearing factor of 5.0 m was used.

The proposed UKF-based estimator has presented better
root-mean-squared errors of the estimated EWS compared
with the other estimators over the entire simulation time -
see Table 2. In addition, the root-mean-squared error be-
tween the measured and the estimated rotor speed, called
innovation term or residual in the KF theory, is practically
maintained by the UKF-based estimator compared to the
EKF-based estimator. The result can also be visualized in
Fig. 2. Even though high performance is obtained by the
improved I&I technique, an important limitation has been
observed. In order to expand the mathematical model, for
instance, to include tower dynamics in the estimator, the
conditions for the I&I estimator consistency [15] have to
be further expanded, which is a non-trivial task to achieve.

Table 1. Estimator Parameters

Parameters Attributed Values

σ2(wp) [EKF; UKF] 1e-03 [rad2/s2]
σ2(wv) [EKF; UKF] 0.1 [m2/s2]
σ2(v) [EKF; UKF] 0.1 [rad2/s2]
α [UKF] 1.22
β [UKF] 0.5
κ [UKF] 0
γI&I [I&I] 5
γI&I [Improved I&I] 40
βI&I [Improved I&I] 10
∆t 0.2 (SOWFA) and 0.1 (FAST) [s]

Initial conditions Attributed Values

ω̂r(0) 1 [rad/s]
v̂w(0) 14 and 4 [m/s]
P xx
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Fig. 2. (a) and (c) estimated EWS and derived power of the
upstream; and (b) and (d) of the downstream DTU
10MW RWT at a mean inflow wind speed of 15 m/s
with ALMAdvanced solver

Moreover, we observed that the theoretical variance of
the estimated EWS, i.e P xx

k(+)(2, 2), from the UKF-based
estimator is smaller than from the EKF-based estimator,
depicted in Fig. 3. This is due to the nonlinear effects
by the UT against the linearization procedure into the
state covariance propagation and it elucidates the superior
performance of the UKF.
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Fig. 3. Estimated EWS variance of (a) the upstream and
(b) the downstream DTU 10MWRWT at mean inflow
wind speed of 15 m/s with ALMAdvanced solver

Since the true EWS is unknown, we will instead compare
the different filters by numerically evaluating the covari-
ance of the estimation error with respect to the measured
power signal Pm:

ēP,k =
1

m

k∑
t=k−m

eP,t, where eP,t = Pm(t)− P̂ (t); (29)
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Table 2. Signal Analysis of Turbulent Simulations

RMS(v̂w) [ms−1] RMS(ωm − ω̂r) [.10−4 rad/s]

Simulations [200-500 s] I&I Imp I&I EKF UKF Imp I&I EKF UKF

UpDTU10MW (15 m/s) 15.9217 15.9381 15.9281 15.9075 31 28 28
DownDTU10MW (15 m/s) 13.478 13.5145 13.4847 13.4539 46 43 42
UpDTU10MW (12 m/s) 12.4218 12.4215 12.4225 12.4039 12 19 19
DownDTU10MW (12 m/s) 8.4273 8.4274 8.4280 8.4058 24 29 29
(FAST)NREL5MW (15 m/s) 15.9968 16.0098 15.9864 15.9807 147 126 123
(FAST)NREL5MW (12 m/s) 12.2973 12.3273 12.3080 12.2982 113 95 92

covk(eP) ≈
1

m

k∑
t=k−m

[eP,t − ēP,t]
2, (30)

where P̂ is the estimated power using the corresponding
estimated EWS, and m = 100 s /∆t is the length of the
moving window used in the computation. The numerical
result, depicted in Fig. 4, shows an improvement of the
UKF over the EKF, even if it has been obtained by using
a single simulation.
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Fig. 4. Estimated power variance of (a) the upstream and
(b) the downstream DTU 10MWRWT at mean inflow
wind speed of 15 m/s with ALMAdvanced solver

Furthermore, the proposed UKF-based estimator has pre-
sented more robustness to initial conditions than the EKF-
based estimator. This problem is also seen, for instance,
in the spacecraft attitude estimation problem in [4].

5.2 Turbulent Simulations in FAST

In order to verify the effects of the tower dynamics, we
use FASTv8.16.00 simulator (FAST) at a time step of
0.001 s where the estimators are implemented keeping
the sampling time ∆t = 0.1 s. The obtained results
are also consistent at the inflow wind speed of 12 and
15 m/s and higher turbulence (approximately TI=11%)
using the Kaimal turbulence model [7]. The estimators
with the simplified model, i.e. Eq. (5) and Eq. (6), have still
presented consistency on the estimated EWS even though
more physics are coupled in the wind turbine dynamics,
as seen in Fig. 5.

5.3 Sliding mode control and sub-optimal operation

The SOWFA simulation results of the two NREL 5MW
RWT wind farm, at turbulent conditions (TI 5-6%) and
control parameters: a1 = 4, 326, 000 Nm/s and α1 =
1, 442 Nm, is illustrated by Fig. 6. The upstream turbine,
represented by the first-column plots, obtains the expected
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Fig. 5. Estimated EWS and varianve of the NREL 5MW
RWT at mean wind speed of 15 m/s with FAST

result by reducing the power and thrust accordingly.
However, in the downstream turbine, the performance
deteriorates due to the un-modeled wake effects on the
estimation and control. As a result, the optimal control
of the downstream turbine using SMC is producing less
power than the baseline controller, i.e. the classical ω2

r -
torque law, and the sub-optimal SMC reduces the loads
but not significantly.

Fig. 6. SMC (λopt = 7.55) and subSMC (λsub−opt = 6.795)
using the UKF-based EWS compared to the baseline
controller at mean inflow wind speed of 9 m/s: (a) the
upstream and (b) the downstream NREL 5MW RWT

6. CONCLUSIONS

The present paper has shown the advantages of estimat-
ing the effective wind speed via an unscented Kalman
filtering technique. Firstly, the consistency of the proposed

estimator is maintained in high-waked scenarios and non-
modeled structural dynamics. Secondly, the performance is
improved in high wind speeds against the EKF due to the
Unscented Transformation in the high nonlinear relation
of the wind turbine system. Furthermore, compared with
the I&I technique, the KF-defined residuals in the general
formulation can be used in the development of fault de-
tection algorithms. Also, the KF formulation can be easily
extended to include more complex models, e.g. structural
dynamics and even extra unknown inputs.

The knowledge of the wind speed, not required in the base-
line controller, allows a real-time load reduction according
to the current turbine operation. This might be beneficial
in a long term or when it is required as a safety measure-
ment. Yet, combining real-time estimation and control in
the presence of non-modelled dynamics, due to the high-
waked conditions, is shown to be an open challenge. In a
closed loop with the SMC, satisfactory results were ob-
tained for the upstream turbine as expected. However, at
the downstream turbine, the closed-loop system presents a
lower performance in terms of power production compared
with the baseline controller.

Future work will investigate the adaptation of the noise
statistics as in [19, 18] to increase the consistency of the
state estimations under waked conditions and the tuning
autonomy. Additionally, the presented methodology will
be extended to more complex models, including for in-
stance a flexible tower structure and sea wave dynamics.
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estimator is maintained in high-waked scenarios and non-
modeled structural dynamics. Secondly, the performance is
improved in high wind speeds against the EKF due to the
Unscented Transformation in the high nonlinear relation
of the wind turbine system. Furthermore, compared with
the I&I technique, the KF-defined residuals in the general
formulation can be used in the development of fault de-
tection algorithms. Also, the KF formulation can be easily
extended to include more complex models, e.g. structural
dynamics and even extra unknown inputs.

The knowledge of the wind speed, not required in the base-
line controller, allows a real-time load reduction according
to the current turbine operation. This might be beneficial
in a long term or when it is required as a safety measure-
ment. Yet, combining real-time estimation and control in
the presence of non-modelled dynamics, due to the high-
waked conditions, is shown to be an open challenge. In a
closed loop with the SMC, satisfactory results were ob-
tained for the upstream turbine as expected. However, at
the downstream turbine, the closed-loop system presents a
lower performance in terms of power production compared
with the baseline controller.

Future work will investigate the adaptation of the noise
statistics as in [19, 18] to increase the consistency of the
state estimations under waked conditions and the tuning
autonomy. Additionally, the presented methodology will
be extended to more complex models, including for in-
stance a flexible tower structure and sea wave dynamics.
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