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A B S T R A C T

In finite element analysis, nonlinear time-history analysis is a realistic and accurate
analysis type for dynamic or seismic analysis due to its solutions contain wealthy
data and complete response time-history. The most commonly used method, prob-
ably the only practical procedure, in nonlinear time-history analysis is the direct
time integration method. It solves the governing equations of the system in time
domain incrementally. In general, every direct time integration method could be
classified as either an implicit method or an explicit method. Each category has
its advantages and disadvantages in different aspects, e.g., stability, accuracy and
computational costs. Understanding the differences between the two categories in
both theoretical and practical aspects is very important for engineers to make the
best analysis strategy for a specific dynamic or seismic analysis.

In this treatise, the fundamental theory of the direct time integration methods
and several well-known methods will be reviewed. Many published comparisons,
either in theoretical or practical level, will be briefly covered. Then, the most pop-
ular method in each category, i.e., implicit Newmark method and explicit central
difference method, will be introduced and used in transient analyses and results
comparisons. In total, five cases studies are included in this thesis, including three
cases with linear elastic materials and two cases with quasi-brittle masonry material.
These five cases are studied to answer the main research questions of this research:

What differences can be observed in comparisons of solutions obtained
from implicit and explicit methods for linear elastic material in tran-
sient analysis and for quasi-brittle material under seismic load? Also,
how are the performances of both methods with respect to the stability
and accuracy aspects?

The finite element models of all cases are built up in DIANA FEA 10.3, and
transient analyses with both implicit and explicit methods are performed as well.

The first three cases with linear elastic materials include a simply supported beam
under a harmonic point load, a double cantilever beam under point transient load
,and a simply supported thin plate under transient distributed load. The remaining
two cases with quasi-brittle masonry material are the seismic analyses of a masonry
wall model and a full-scaled URM house model (finally simplified), and they are re-
ferred from the experimental tests conducted by Graziotti et al. [2016] and modified
in this thesis. Different analyses schemes are set for each case in order to investigate
the influence of the adopted time step in each method. Finally, the comparisons are
made between implicit and explicit method solutions concerning displacement re-
sponses for linear elastic material, and additionally cracks patterns and capacity
curves for masonry material.

Based on the comparisons, the conclusions can be drawn to answer the main
research questions.

For linear elastic materials

• The results show that both methods generally could accurately reproduce the
displacement responses with proper time step. Few differences are observed
in the displacement or stress responses of high frequency contents. The im-
plicit method was strongly influenced by the adopted time step to ensure
the accuracy of the high frequency vibration responses. Though the implicit
method is unconditionally stable, a large time step could make high frequency
information lost in the solution.
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• The explicit method once satisfies the stability condition (called CFL stability
condition), which means the time step used for the algorithm to proceed is
smaller than the minimum natural period of all elements (called critical time
step), the high frequency responses will always be accurately calculated, with
regardless of large output time intervals. Moreover, the accuracy and stability
could both be guaranteed once the CFL condition is satisfied, which means
further decrement in time step is not necessary in the explicit method. How-
ever, since the critical time step is usually very small, rather long computation
time is needed.

For quasi-brittle masonry material

• The comparisons show that the implicit and explicit solutions generally have
a good agreement with each other in terms of displacement response, hys-
teresis curves, and crack patterns. The critical time step, determined by CFL
based on the linear elastic phase of structure, could guarantee the accuracy
and also stability for the material, which has a softening behavior, e.g., quasi-
brittle masonry material. Similarly, no further reduction for critical time step
is needed.

• The implicit method shows some difficulties to reach the convergence, as a
result, there are some chaotic results in hysteresis curves of displacement ver-
sus base shear. Non-converged or hardly converged iteration procedures in
implicit method could lead to inaccurate predictions of nonlinear behaviors.

• The explicit method has good results with smooth transitions in hysteresis
curves, which benefit from no iteration involving. This advantage of the ex-
plicit method could be more significant when highly nonlinear behaviors are
involved in the analysis. However, the disadvantage is that the explicit method
needs a very small time step. For a complex model, the critical time step will
be extremely reduced due to irregular-shaped mesh and connections with vol-
umes close to zero.

• Mass scaling technique could be used to speed up the explicit method by
adding artificial mass on specific elements to increase the available critical
time step for the whole FE model. However, great caution is needed to use
this technique. Generally speaking, the ratio between added mass and total
mass should smaller than 10%. Slightly larger values could be allowed only
with a detailed check of positions and properties of the elements with added
mass.

According to the conclusions, the explicit method should be preferable in either
one or several of the following situations:

• Short duration transient analysis, e.g., impact loading analysis.

• The high frequency vibrations are of interest, e.g., seismic analysis of high-rise
buildings.

• Highly nonlinear behaviors are included in the model, which may cause enor-
mous difficulties for convergence of the iteration process, e.g., severe cracking,
local failure or crushing.

• The target structure has a regular geometry and a well-meshed FE model.

For other situations, the implicit method should be recommended due to its rela-
tively large time step and unconditional stability.
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1 I N T R O D U C T I O N

1.1 motivation

The finite element method (FEM) is the most popular and efficient tool in engi-
neering research and industrial simulation. For dynamic problems, especially the
nonlinear dynamic time-history analysis, the direct time integration is the most
commonly used and may be the only practical procedure to solve the governing
equations of the finite element assemblage. There are several methods available for
direct time integration procedure. In general, these methods could be classed as
either implicit or explicit, and they both solve the dynamic governing equations in
time domain incrementally.

The implicit methods are commonly unconditionally stable, which means no re-
striction in the time increment for the analysis. However, the solution to a set of
equations involves iteration until the convergence norm is satisfied.

The explicit methods are usually conditionally stable, so the time increment needs
to be small enough, specifically smaller than a critical time step, to ensure the so-
lution will not blow up. However, the explicit methods could solve the equations
directly and determine the solution at the end of each time increment without iter-
ation.

The computational cost, stability, and many other properties of implicit and ex-
plicit methods are different. To save the computational effort and ensure the relia-
bility of solutions, it is important to understand the advantages and disadvantages
of these methods and evaluate their performances for particular problems. For this
purpose, many comparisons have been made by either studying the fundamental
theories or analyzing specific problems. However, most of the reported practical
works are focusing on the quasi-static nonlinear problems, such as metal forming
(Soltani et al. [1994], Choi et al. [2002]), solid mechanics (Harewood and McHugh
[2007]), or the dynamic contact problems with linear elastic material property(Sun
et al. [2000]). Seldom comparisons have been found about nonlinear material for
dynamic problems or about the real structural dynamic response.

All these considerations form the motivation of making further comparisons of
implicit and explicit methods for dynamic responses of structures with linear elastic
material under transient load conditions and the seismic responses of structures
with quasi-brittle material, i.e., masonry.

1.2 research questions and scope

Due to the reasons mentioned above, it is helpful to make comparisons of implicit
and explicit methods in dynamic or transient analysis for both linear and nonlinear
cases, then evaluated the performances and results of them.

The comparisons and evaluations are achieved by performing dynamic time-
history analysis using both implicit and explicit methods for the same finite element
model. The dynamic time-history analysis could provide a wealth of data that in-
cludes complete response of displacements, stresses, strains, or crack patterns for
the model at each time step. According to this, the main research question could be
raised as:

1
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What differences can be observed in comparisons of solutions obtained
from implicit and explicit methods for linear elastic material in tran-
sient analysis and for quasi-brittle material under seismic load? Also,
how are the performances of both methods with respect to the stability
and accuracy aspects?

To approach the main research question, the following sub-questions can be formu-
lated:

For linear elastic materials,

A) What differences in displacement responses could be observed between the two meth-
ods?

B) What is the influence of different time steps to the displacement solutions in implicit
and explicit methods?

For quasi-brittle materials,

C) What are the differences in nonlinear behaviors of the model between implicit and
explicit solutions?

D) How do the adopted time step and the critical time step of explicit method influence
the stability and accuracy of solutions?

Since in direct time integration, the governing equations will be solved in the time
domain, the most crucial parameter is the time step used for the integration scheme.
Therefore, the main scope of this thesis will be the influences of the adopted time
step on stability and accuracy of solutions.

1.3 approach
To make comparisons and answer the research questions, five dynamic cases are
selected, including three cases with linear elastic materials and two cases with quasi-
brittle masonry material. The first three linear elastic materials cases are:

1) The steady-state response of a simply-supported beam to a point, sinusoidal
in time force.

2) The response of a double cantilever elastic beam to a transient point force.

3) The response of a simply-supported thin plate to an out-of-plane transient
distributed force (Maguire et al. [1993]).

Two masonry material cases include:

1) The response of a masonry wall subjected to in-plane cyclic load (Graziotti
et al. [2016]) and in-plane seismic load.

2) The response of a full-scale masonry house on shaking table tests (Graziotti
et al. [2016]).

All the numerical models and analyses are carried out in the finite element soft-
ware DIANA FEA 10.3. It provides both implicit Newmark method and explicit
central difference method, and also takes into account the transient effect of the
dynamic load. For masonry material cases, DIANA FEA 10.3 offers engineering
masonry material model to simulate the nonlinear behavior of the masonry struc-
ture. To answer the research questions, comparisons will be made mainly in aspects
of displacement response for linear cases, and for masonry material cases, extra as-
pects of crack patterns and capacity curves will also be considered.
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1.4 synopsis
This thesis has 6 chapters. Chapter 1 gives an introduction to this research work,
including the motivation and research questions. Next, chapter 2 presents the liter-
ature review of the relevant studies about the definition and classification of direct
time integration schemes and some well-known methods. Attention was also paid
on some reports about comparisons of implicit and explicit methods in particular
problems, as well as the recent development of the direct time integration methods.
Then, the methodology is introduced in chapter 3, including the adopted implicit
and explicit methods in this thesis, and also a brief overview of important features
of them in the DIANA FEA 10.3.

The cases studies start with building finite element models for five studied cases
in chapter 4. The outlines of transient analysis schemes for each case are also pre-
sented in detail in this chapter. Chapter 5 shows the results of all analyses; the
comparisons and discussions are made to answer the research questions. Finally,
conclusions are drawn, and the recommendations for future research are given in
chapter 6.





2 L I T E R AT U R E R E V I E W

2.1 overview
This chapter will cover the literature review of the direct time integration meth-
ods in nonlinear dynamic time history analysis. First, some general definitions of
nonlinear dynamic time-history analysis and classifications of the direct time inte-
gration methods are reviewed. Second, few well-know and widely used direct time
integration methods in finite element analysis are introduced. Attention is paid to
some published comparisons between the performances of these methods for cer-
tain problems. Moreover, recent development of direct time integration methods
are presented as well.

2.2 nonlinear dynamic time-history analysis

2.2.1 Definition

Nonlinear analysis capability was firstly needed in the aerospace industry few
decades ago, due to the demand of using new configuration components and in-
creasing use of brittle material (Felippa and Park [1979]). The continuous devel-
opments of the nonlinear analysis benefit a lot from the progress in solution tech-
niques in finite element codes as well as the growing computational capacity of
the software. These developments brought the nonlinear analysis into other appli-
cations, such as civil engineering. The ”nonlinear” refers to the structural model
that has nonlinear force-displacement relationships or geometrical nonlinearities or
even both. In seismic analysis, The nonlinear analysis allows designers to more
closely follow the response of the structure under seismic loading until the ultimate
or collapse limit states (Mourad and Sabah [2015]).

The dynamic analysis has very significant advantage compared to the static anal-
ysis, because the former one takes into account the inertial effect. Neglecting such
effect may leads to conservative results. Also, for the structure under impact load,
the inertial effect is the deterministic factor to generate the real response of the struc-
ture. However, the dynamic analysis is more expensive. In fact, with the increasing
computational capacity, the nonlinear static analysis could be finally embedded in
the nonlinear dynamic analysis (Felippa and Park [1979]).

In nonlinear dynamic time-history analysis, the external load is considered to
generate a complete response history for any place on the structure. The results
of the nonlinear time-history analysis will be a wealth of the data, that includes
the complete response of displacements, stresses or strains in time-history for the
any point of interest on the structure. Especially in seismic analysis, this complete
response is an obvious advantage of nonlinear dynamic time-history analysis when
compared to another important type of seismic analysis, nonlinear pushover anal-
ysis. For instance, the latter one usually provides the force-displacement capacity
curves, such as maximum base shear for a given maximum target displacement of
the earthquake signal. However, the time history information has been lost, such
as the time needed to reach the maximum base shear under certain seismic input
and possibility of that maximum base shear might be reached multiple times un-
der different value of top displacement (Mourad and Sabah [2015]). Hence, the
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nonlinear dynamic time-history analysis could be seen as the most realistic and ac-
curate analysis method to study the structures under seismic loading (Lagaros et al.
[2015]).

2.2.2 Classification of direct time integration methods

For nonlinear dynamic time-history analysis, the only practical solution procedure
is direct time integration. Direct time integration is directly integrating the equation
of motions (EOMs) of the system in time domain without any transformation of the
EOMs into different form. The essence of direct time integration is that the EOMs
are satisfied instead of at any time t, they are only satisfied at discrete time intervals
∆t apart. Therefore, all solution techniques employed in static analysis can probably
also be used in direct time integration (Bathe [1982]).

In finite element analysis, the direct time integration algorithms could be gener-
ally classified into two categories: implicit time integration methods and explicit
time integration methods. The classification is based on using the equilibrium con-
ditions at different time to solve the EOMs of the system to get solution at time
t + ∆t. The implicit methods using the EOMs at time t + ∆t while the explicit meth-
ods using ones at time t to get the target solution at time t + ∆t. Based on this
property, they can also be distinguished by that the implicit methods will solve the
matrix system of the EOMs one or more times per step to advance the solution,
and the explicit methods may be advanced without storing a matrix or solving a
system of equations (Hughes et al. [1979]). Implicit methods generally have uncon-
ditionally stability, which means no time step restriction to attain stability. Explicit
methods, on the other hand, always require very small time step to ensure the sta-
bility of the algorithms. However, due to the fact the there is no need to solve the
matrix system, the explicit methods take less computational cost per time step than
the implicit methods. In general, the choice of the direct time integration methods
really depends on the type of problem. There is no optimal approach for all cases
(Belytschko [1976]).

2.3 widely used direct time integration methods
To apply the direct time integration methods, the governing equations of the system
need to be derived first. In principle, the basic idea and procedures of direct time
integration is the same for governing equations of linear and nonlinear systems, so
it is convenient to start with equations of equilibrium governing the linear system.
The well-known governing equations in finite elements analysis could be written as
Equation 2.1.

MÜ + CU̇ + KU = R (2.1)

where M, C and K are the mass, damping, and stiffness matrices; R is the external
load vector; U, U̇ and Ü are the displacement, velocity and acceleration vectors of
the finite element assemblage. In principle, the only difference between dynamic
analysis and static analysis is the former one takes into account the effect of inertia
force and damping force, which are the first term and second term in Equation 2.1
respectively.

The generalized derivation of the governing equations for nonlinear systems
could be found in Felippa [1977], in which two extra terms are added into the
equations: nonlinear damping operators C(u, u̇) and nonlinear stiffness operators
S(u). These two terms could generate state-dependent corrective force vectors. For
the structural analysis in civil engineering, we could also consider the stiffness ma-
trix K and damping matrix C in Equation 2.1 are changing over time to include the
physical nonlinearity of the system.
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2.3.1 The Newmark Method

The Newmark integration schemes are the most commonly used time integration
schemes in structural mechanics. The Newmark integration scheme could be im-
plicit or explicit according the choice of parameters, and choosing proper parame-
ters could yield to different well known integrators.

The basic assumptions of Newmark scheme is given as following (Newmark
[1959]):

t+∆tU̇ = tU̇ + [(1− γ)tÜ + γt+∆tÜ]∆t (2.2)

t+∆tU = tU + tU̇∆t + [(
1
2
− β)tÜ + βt+∆tÜ]∆t2 (2.3)

where the t+∆tU̇ represents unknown the velocity at time t + ∆t, similar for the
unknown displacement and acceleration. All the terms of quantities at time t are
known. The parameters γ and β are to be chosen to determine the properties of the
algorithm.

When 2β ≥ γ ≥ 1/2, the Newmark method is an implicit method and it is
unconditionally stable. Specially, when the β = 1/4 and γ = 1/2, the method
is called constant-average-acceleration method (also called trapezoidal rule). This
method is unconditionally stable and has accuracy of O(∆t2). Under this condition,
no numerical damping is introduced to the analysis. To using this method, the
EOMs in Equation 2.1 need to be considered at time t + ∆t. The detailed algorithm
using implicit Newmark method is given in Chapter 3, or one can refer to the book
written by Bathe [1982].

2.3.2 The Wilson θ Method

Compared to the Newmark constant-average-acceleration method, the Wilson θ
method is an extension of linear acceleration method. It assumes a linear variation
of acceleration from t to t + θ∆t, where θ ≥ 1 (Wilson et al. [1973]). The assumption
of Wilson θ method for the acceleration is:

t+τÜ = tÜ +
τ

θ∆t
(t+θ∆tÜ−t Ü) (2.4)

where the τ denotes the increase in time and 0 ≤ τ ≤ θ∆t. When the θ = 1,
the methods is linear acceleration scheme. However, it is known that for only when
τ ≥ 1.37, the method is unconditionally stable, and it is usually employed as θ = 1.4.
For a more clear view, the assumption of Wilson θ method and Newmark constant-
average-acceleration is shown in Figure 2.1.

Figure 2.1: Assumption of Wilson θ method and Newmark method (Bathe [1982])

Wilson θ method is also an implicit integration method. Since the linear accel-
eration variation is assumed, the EOM is considered at time t + θ∆t instead of at
time t + ∆t. It is also worthy to note that using Newmark parameters γ = 1/2 and
β = 1/6 corresponds to the Wilson θ method with θ = 1, which are both linear
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acceleration method (Bathe [1982]). This close relationship between these two meth-
ods makes it possible to implement both methods in one single computer program
(Bathe [1978]).

2.3.3 The Houbolt Method

The Houbolt integration method employs two backward-difference formulas (Houbolt
[1950]):

t+∆tÜ =
1

∆t2 (2
t+∆tU− 5tU + 4t−∆tU− t−2∆tU) (2.5)

t+∆tU̇ =
1

6∆t2 (11t+∆tU− 18tU + 9t−∆tU− 2t−2∆tU) (2.6)

The Houbolt integration method has errors of order (∆t2). It is also an implicit
algorithm and the EOMs in Equation 2.1 are considered at time t + ∆t. The time
step has no restriction because it is unconditionally stable.

2.3.4 The Central Difference Method

The central difference method is somewhat related to the Houbolt method, and
it uses standard finite difference expressions to approximate the acceleration and
velocity in terms of displacement (Collatz [1966]). It is assumed that:

tÜ =
1

∆t2 (
t−∆tU− 2tU + t+∆tU) (2.7)

tU̇ =
1

2∆t
(−t−∆tU + t+∆tU) (2.8)

The central difference method is an explicit method since the solution of displace-
ment t+∆tU is calculated based on the EOMs at time t. In another words, it is
possible to express the t+∆tU in terms of quantities at time t and earlier time, which
are known. The error of the central difference method is of order (∆t)2. The central
difference method has an advantage that the solution can essentially be carried out
on the element level, because there is no stiffness and mass matrices of complete
element assemblage need to be calculated if the mass matrix is diagonal, and the
stiffness matrix is not required to inverse for each step (Bathe [1982]). However, the
disadvantage is that the central difference method requires the time step smaller
than a critical value to remain stable. This condition is called Courant, Friedrichs
and Lewy (CFL) stability condition (Courant et al. [1928]). More attention will be
payed to this method in Chapter 3.

2.4 review of comparisons made between implicit
and explicit finite element methods

As mentioned above, the direct time integration methods in finite element analy-
sis could be generally classed as either implicit or explicit. In the implicit method,
there is no restriction for adopted time step, however for each time increment, the
solution procedure involves the factorization of stiffness matrix and iteration pro-
cess until the solution satisfies the convergence norms. In the explicit method, the
equations are reformulated and can be solved directly at the end of the time incre-
ment, without iteration, while a time step smaller than a critical value is needed for
explicit method, and in some cases, this critical value may be very small and too
many steps need to be taken over the analysis process.

To assess the performance and make the optimal choice for certain type of prob-
lem, many studies have been made comparing and discussing the pros and cons of
these two methods.
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2.4.1 Stability and Accuracy of direct integration methods

To compare these integration schemes, two fundamental concepts are considered:
stability and accuracy. The stability means that the initial conditions for the equa-
tions with large value ∆t/T (ratio between time step size and natural period of the
system) must not be amplified artificially and thus make the integration of the lower
modes worthless, also, any errors in the resulting quantities due to the round-off in
the computer do not grow in the integration (Bathe [1982]).

Nickel [1971] investigate the stability of the Newmark method and Wilson aver-
aging method, and they are found to be unconditionally stable for all values of time
step size. Specially, the Newmark constant-average-acceleration method was found
contains no artificial attenuation, though some vibration period error occurs in the
solution. Lax and Richtmyer [1956] examined the stability properties of central dif-
ference method and Johnson [1966] proved the stability of Houbolt method. It is
found that Houbolt method is also an unconditionally stable method, however it
contains both artificial attenuation and period error which are functions of the time
step size and natural frequencies of the system.

Similarly, many stability studies based on invoking one of the established theo-
rems are published and many comparison were given by studying the single degree-
of-freedom system. However, in dynamic analysis for complex structures, the par-
ticipation of all modes in the solution is not desirable in most cases, therefore the
accuracy is not required for all modes of the complex structure, and the comparison
based on the single degree-of-freedom my be not a proper basis for the comparison
(Bathe and Wilson [1972]). For this reason, a systematic and fundamental procedure
was proposed by Bathe and Wilson [1972] for the stability and accuracy analysis of
the direct time integration methods in structural dynamics. They derived an approx-
imation operator A and a load operator L which are related explicitly the unknown
required variables at time t + ∆t to previous calculated quantities. For the stability
criterion, the spectral decomposition of A is investigated, and the spectral radii of
A is defined as ρ(A) = max|λi|, where λi is the eigenvalues of the A. The stabil-
ity criterion is that ρ(A) ≤ 1. According to this, many well-known methods are
investigated, the results are shown in Figure 2.2. Similar conclusions can be drawn
compared to the studies mentioned above. Moreover the spectral radii of approx-
imation operator of central difference method is also shown in this figure, and to
satisfy the condition ρ(A) ≤ 1, it is required that ∆t/T ≤ 1/π.

Figure 2.2: Spectral radii of approximation operators, ξ = 0.0 (Bathe [1982])

Also the accuracy analysis was reported in the paper of Bathe and Wilson [1972].
the period elongation and amplitude decay caused by the numerical integration
method effect are given in Figure 2.3. The curves show that, in genera, the numerical
integration using any of the methods are accurate when ∆t/T is smaller than about
0.01, while when this ratio is large, various characteristics are shown in different
integration methods.
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(a) (b)

Figure 2.3: (a) Percentage period elongations; (b) Amplitude decays (Bathe and Wilson
[1972])

2.4.2 Comparisons in several practical problems

There are several studies have been published comparing two methods in practical
problems by using finite element method.

Many of these studies focus on the quasi-static process (e.g. metal forming, thin-
wall structure buckling) (Soltani et al. [1994], Choi et al. [2002], Rebelo and Nagte-
gaal [1992], Kugener [1995], Kugener [1995], Rust and Schweizerhof [2003]).

Soltani et al. [1994] studied the blade forging problem by using implicit elastic-
plastic FE code NIKE2D and explicit dynamic FE code DYNA2D. The comparison
shows that the effective plastic strain results of two methods have good agreement
with each other. While, explicit method is less expensive compared to the implicit
method, because the implicit method involves lots of matrices factorization in the
iterations, whereas the equations in explicit method are independent.

Choi et al. [2002] made the comparisons of two methods for the hydroforming
process. In this study, the influence of mass scaling, which is commonly used in
order to save computational time of explicit method is investigated.

Rebelo and Nagtegaal [1992] found that the implicit method is preferable im
smaller 2D problems and explicit method has advantages in the contact problems.
The reason has been investigated in many studies (Choi et al. [2002], Rebelo and
Nagtegaal [1992], and Sun et al. [2000] etc.), and it turns out that the implicit
method has severe converging problem when the model involves large deforma-
tion or surfaces contact. This superiority was illustrated by Kugener [1995] in his
study about metal crimping simulation using implicit FE code ANSYS and explicit
FE code OPTRIS. He also pointed out the importance of choosing a improper sim-
ulation method can lead to undesirable, lengthy calculation procedure (Kugener
[1995]).

In solid mechanics, comparisons were made between implicit and explicit method
using crystal plasticity under various 2D and 3D loading conditions by Harewood
and McHugh [2007]. It concludes that for directly applied deformation load, the
implicit method solves more quickly, this leading is approximately doubled in 3D
than 2D problem. Again, the priority of explicit method in contact and element
large deformation conditions is mentioned. One interesting found in this paper is
when a rate-independent material is used in 2D tension analysis, the small time
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step in explicit method could ensure the high nonlinear material behavior is dealt
with (Harewood and McHugh [2007]).

Few studies about comparisons in dynamic problems has been found, one of
them is given by Sun et al. [2000]. They perform the analysis for the dynamic impact
problems of an elastic bar and a cylindrical disk on a rigid wall. The materials
adopted in this paper are all linear elastic. The conclusions were drawn that for
fast linear impact problems, the cost of explicit method is much less than implicit
method. For slow impact case, due to the stability condition, the explicit method
needs much smaller time step. If the whole procedure is very long, it will take lots of
time increments to finish the analysis. Therefore, the implicit method has advantage
for this situation, moreover, implicit method can provide numerical damping to
remove the noise and keep results more accurate.

2.5 recent development of the direct time inte-
gration

The difficulty in making the choice of the time integration methods lies in combin-
ing efficiency, accuracy and stability of the algorithm. Implicit methods require iter-
ations but unconditionally stable, On the contrary, explicit methods avoid iterations
and convergence problems, but require small time step to remain stable. Therefore,
development has been made to take advantage from both families of integration
methods.

One way to make the development is to shift from a family to another during the
analysis. This could starting with implicit methods in some time intervals which
involve only slow dynamic problems with fewer nonlinearities, and when the con-
vergence problem appears, it will shift to an explicit method (Jung and Yang [1998]),
in which the time of transition is fixed by user. The automatic shifting criteria is
also developed by Noels et al. [2004] for impact problem. Initial conditions, when
shifting from explicit to implicit, are also defined to avoid loss of stability and con-
vergence.

Besides, some studies proposed modified explicit or implicit or combined meth-
ods to improve the efficiency and ensure the accuracy and stability [Rostami et al.
[2012], Shojaee et al. [2015], Albostan et al. [2017]]. The basic idea behind these
methods can still be classified as implicit or explicit algorithms. The improvements
made by now is still restricted in a certain type of dynamic problems or quasi-
static problems, and some improved methods have requirement of programming
and computer knowledge to users. Therefore, the knowledge about implicit and ex-
plicit methods, as well as their advantages and disadvantages, is still fundamental
to the future development of direct time integration.





3 M E T H O D S A N D TO O L S

3.1 overview
This chapter elaborates the adopted methods and FE tool in this thesis. First, de-
tailed mathematical expressions for implicit and explicit algorithms are presented.
Next, the step-by-step solution procedures for applying the algorithms to linear
EOMs are given. Then, some important properties and principles to apply the
methods in nonlinear problems are mentioned. Finally, a brief overview of impor-
tant features of two methods in adopted FE software DIANA FEA 10.3 are given.

3.2 implicit newmark method
The basic assumptions of Implicit Newmark scheme is, as mentioned above (New-
mark [1959]):

t+∆tU̇ = tU̇ +
[
(1− γ)tÜ + γt+∆tÜ

]
∆t (3.1)

t+∆tU = tU + tU̇∆t +
[
(

1
2
− β)tÜ + βt+∆tÜ

]
∆t2 (3.2)

where the t+∆tU̇ represents unknown the velocity at time t + ∆t, similar for the un-
known displacement and acceleration. Rearranging the above equation to express
the acceleration and the velocity at time t + ∆t as:

t+∆tÜ =
1

β∆t2 (
t+∆tU− tU)−

tU̇
β∆t
−

tÜ
2β

+ tÜ (3.3)

t+∆tU̇ = tU̇ + ∆t
(
(1− γ) tÜ + γ

(
1

β∆t2

(
t+∆tU− tU

)
−

tU̇
β∆t
−

tÜ
2β

+ tÜ
))
(3.4)

The above equations are substituted into the EOMs at time t + ∆t:

Mt+∆tÜ + Ct+∆tU̇ + Kt+∆tU = t+∆tR (3.5)

in which t+∆tR represents the external load vector at time t + ∆t. Rearranging the
resulted equation in such a way that the unknown displacement t+∆tU only shows
on the left-hand side, and all known quantities show on the right-hand side. It
finally yields:(

M
1

β∆t2 + C
γ

β∆t
+ K

)
t+∆tU = t+∆tR + M

( tU
β∆t2 +

tU̇
β∆t

+
tÜ
2β
− tÜ

)
+ C

((
γ

β∆t
− 1
)

tU̇ +

(
γ

2β
− γ− ∆t + ∆tγ

)
tÜ +

γ

β∆t2
tU
) (3.6)

For convenience, Equation 3.6 could be written in short notation as:

K̂t+∆tU = t+∆tR̂ (3.7)

where the K̂ and t+∆tR̂ are called effective stiffness matrix and effective loads matrix
at time t+∆t, respectively. In most cases, since the stiffness matrix K is not diagonal,

13
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the effective stiffness matrix K̂ is not diagonal either. Therefore, the solution of
the Equation 3.7 requires solving a system of equations, in matrix calculation, the
inverse of effective stiffness matrix K̂ or other factorization of it is needed.

The choices of parameters β and γ have been mentioned in Section 2.3.1. Addi-
tionally, numerical damping could be introduced by using γ > 1/2, to eliminate
the undesirable spurious high frequency noise in the solution. However, under this
condition the accuracy of the method is reduced to first order O(∆t).

3.2.1 Step-by-step solution procedure

A generalized implementation for step-by-step procedure of the implicit Newmark
method is given in Algorithm 3.1.

Algorithm 3.1: Step-by-step implicit Newmark method solution proce-
dure
1 Initial calculation

input : K, M, C, 0U, 0U̇, 0Ü, ∆t, β and γ (γ ≥ 0.5, β ≥ 0.25(0.5 + γ)
output : K̂ = LDLT

2 begin

3 Form effective stiffness matrix: K̂ =

(
M

1
β∆t2 + C

γ

β∆t
+ K

)
;

4 Triangularize K̂: K̂ = LDLT ;
5 end
6 Calculation in each time step

input : tU, tU̇, tÜ, t+∆tR
output : t+∆tU, t+∆tU̇, t+∆tÜ

7 begin
8 Calculate the effective loads matrix:

t+∆tR̂ = t+∆tR + M
( tU

β∆t2 +
tU̇
β∆t

+
tÜ
2β
− tÜ

)
+

C
((

γ

β∆t
− 1
)

tU̇ +

(
γ

2β
− γ− ∆t + ∆tγ

)
tÜ +

γ

β∆t2
tU
)

;

9 Solve for t+∆tU: LDLTt+∆tU = t+∆tR̂ ;
10 Calculate t+∆tÜ and t+∆tU̇ according to Equation 3.3 and Equation 3.4;
11 end

3.2.2 The implicit integration of nonlinear equations in dynamic analysis

The Algorithm 3.1 shows the solution procedure using implicit Newmark method
for linear EOMs. For nonlinear dynamic analysis, this integration scheme can also
be employed, however, with iterations to be performed. The obtained results, i.e.,
displacement, velocity or acceleration, at time t + ∆t must be checked if they can
satisfy the equilibrium equations. If equilibrium equations are satisfied, the analysis
will move to next time increment, otherwise, iteration of current time step must
continue.

Typical equilibrium equations, ignoring the damping effect, of implicit dynamic
analysis at time t + ∆t could be written as:

Mt+∆tÜ(i) + KNL∆U(i) + t+∆tF(i−1) = t+∆tR (3.8)

where, M is the time-independent mass matrix; t+∆tÜ(i) represents the solution of
acceleration at time t + ∆t after ith iteration; t+∆tF(i−1) represents the nodal point
forces at time t + ∆t after (i − 1)th iteration. ∆U(i) is the increments in the nodal
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point displacements in ith iteration. The relation of displacement solution between
each iteration can be expressed as:

t+∆tU(i) = t+∆tU(i−1) + ∆U(i) (3.9)

The nonlinearity of the dynamic system is shown in KNL, which is chosen based
on the iteration method. The commonly used iteration methods include Regular
Newton-Raphson method and Modified Newton-Raphson method, as shown in
Figure 3.1. In the former one, KNL is evaluated for every iteration step, so it can
be written as KNL = t+∆tKNL

(i−1) in Equation 3.8. In the latter one, KNL is eval-
uated only at the start of every time increment, in another words, KNL = tKNL in
Equation 3.8 for every iteration within time increment t + ∆t.

Figure 3.1: Regular and Modified Newton-Raphson iteration methods

To get an insight view of the iteration procedure, one can using Equation 3.9,
Equation 3.3 and Equation 3.4 to express the acceleration solution for each iteration
step at time t + ∆t, and then substitute it into Equation 3.8 to obtain the ∆U(i) for
each iteration step. Specially, for the first increment ∆U(1) in current time increment
t + ∆t, the calculation involves index i− 1 = 0, the quantities with this index equal
the respective quantities from the solution of previous time increment, which have
the index of t.

Combined with Algorithm 3.1, the solution procedure, including the iteration
process, for nonlinear dynamic analysis could be summarized as Algorithm 3.2.

An important note is that in the iteration step i = 1 for time step t + ∆t, ∆U(1)

was simply calculated as stated above and accepted as an accurate approximation
to the actual displacement increment from time t to time t + ∆t (HAISLER et al.
[1971]). However, it was shown later that this may have a significant influence on
the solution for nonlinear dynamic analysis, as it is highly path-dependent. This
is because any error admitted in the incremental solution at a particular time directly af-
fects in a path-dependent manner the solution at any subsequent time (Bathe and Wilson
[1974]). Therefore, the nonlinear dynamic analysis requires more stringently conver-
gence tolerance in the iteration (Bathe [1982]). An illustration example of a simple
pendulum is also given by him, it concludes that if the convergence tolerance is not
tight enough, the energy of the system will be lost, by the way, if the iteration is not
adopted, the predicted response may blow up.
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Algorithm 3.2: Implicit Newmark method iteration procedure for nonlin-
ear dynamic analysis

1 Initial calculation (see Algorithm 3.1)
2 Calculation in each time step including iteration process

input : tU, tU̇, tÜ, t+∆tR, tF, KNL
output : t+∆tU, t+∆tU̇, t+∆tÜ

3 begin
4 t+∆tF(0) = tF ;
5 t+∆tÜ(0) = tÜ ;
6 t+∆tU̇(0) = tU̇ ;
7 t+∆tU(0) = tU;
8 Start from i = 0 ;
9 for i ≤ maximum iteration number (predefined) do

10 if Mt+∆tÜ(i) + KNL∆U(i) + t+∆tF(i−1) = t+∆tR then
11 t+∆tU = t+∆tU(i);
12 End the loop and return t+∆tU;
13 else
14 i← i + 1;
15 Update KNL according to the adopted iteration method;
16 Calculate ∆U(i) using updated stiffness matrix KNL;
17 t+∆tU(i) = t+∆tU(i−1) + ∆U(i);
18 Calculate t+∆tÜ(i) and t+∆tU̇(i) according Equation 3.3 and

Equation 3.4;
19 end
20 end
21 Calculate t+∆tÜ and t+∆tU̇ according to Equation 3.3 and Equation 3.4;
22 end

3.3 explicit central difference method
As mentioned in Section 2.3.4, the explicit central difference method is using stan-
dard finite difference expression to approximate the acceleration and velocity in
terms of displacement (Collatz [1966]):

tÜ =
1

∆t2 (
t−∆tU− 2tU + t+∆tU) (3.10)

tU̇ =
1

2∆t
(−t−∆tU + t+∆tU) (3.11)

The error in above expansion is of order (∆t)2. The solution for time t + ∆t is
obtained by considering the EOMs at time t:

MtÜ + CtU̇ + KtU = tR (3.12)

By substituting Equation 3.10 and Equation 3.11 intoEquation 3.12 and rearranging
in such a way that the unknown displacement t+∆tU only shows on the left-hand
side and all known quantities show on the right-hand side, the result reads:(

1
∆t2 M +

1
2∆t

C
)

t+∆tU = tR−
(

K− 2
∆t2 M

)
tU−

(
1

∆t2 M− 1
2∆t

C
)

t−∆tU

(3.13)

It can be seen that the calculation of t+∆tU is only based on known previous dis-
placements tU and t−∆tU. Also, there is no requirement for factorization or cal-
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culation of inverse of the stiffness matrix, which is usually not a diagonal matrix.
Equation 3.13, therefore, can be written in a short format:

M̂t+∆tU = tR̂ (3.14)

where M̂ is called effective mass matrix, which represents the coefficients of un-
known displacement t+∆tU on the left-hand side, and tR̂ is called effective loads at
time t, which represents the right-hand side of Equation 3.14.

Another observation is that to calculate t+∆tU, the displacement t−∆tU is required.
This will require a special starting procedure to start algorithm from t = 0s. It can
be done by using initial conditions at t = 0s of the system and combined with
Equation 3.12, Equation 3.10 and Equation 3.11. Then −∆tU can be calculated and
used to start the explicit time integration:

−∆tU = 0U− ∆t0U̇ +
∆t2

2
0Ü (3.15)

It is also worth to mention that if the mass matrix and damping matrix are both
diagonal, there is no matrix factorization is involved to solve the Equation 3.13, only
matrix multiplications are required to get right-hand side tR̂. In another words, it
is not necessary to assemble either stiffness matrix, mass matrix or damping ma-
trix. The required calculation for effective load vector tR̂ can be carried on element
level by summing the contributions from each element. Then the whole algorithm
procedure could be carried out on the element level, in short notations:

t+∆tUi =
tR̂i

1
m̂ii

(3.16)

However, this advantage of effectiveness of central difference method only shows
up when diagonal mass and diagonal damping matrix are adopted. In practice, this
really depends on the problems to be solved.

The most important consideration in using the central difference method is that
adopted time step should be smaller than a critical time step. This condition is
called Courant, Friedrichs and Lewy(CFL) stability condition, which will be intro-
duced in Section 3.3.2.

3.3.1 Step-by-step solution procedure

The step-by-step solution procedure of central difference method is given Algo-
rithm 3.3, with general mass and damping matrices (i.e. no requirement for diago-
nal property). If the the mass and damping matrices are both diagonal, triangularize
of the effective mass matrix M̂ is not needed, and element level calculation can be
carried out according the Equation 3.16.

Compared to the implicit Newmark method solution procedure in Algorithm 3.1,
besides the different input parameters, a special start procedure is added in the ini-
tial calculation for the central difference method. Moreover, the adopted time step
∆t must be smaller than the critical time step ∆tcrit according to the CFL stability
condition.

3.3.2 The critical time step and CFL stability condition

The critical time step and CFL stability condition are utmost important considera-
tions in using of explicit central difference method. It is required that adopted time
step ∆t must be smaller than a critical value ∆tcrit to obtain the stability of the algo-
rithm. For each single element, this stability condition, called Courant, Friedrichs
and Lewy(CFL) stability condition (Courant et al. [1928]), can be written as:

∆t ≤ ∆tcrit =
2

ωh
e

(3.17)
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Algorithm 3.3: Step-by-step central difference method solution procedure

1 Initial calculation
input : K, M, C, 0U, 0U̇, 0Ü, ∆t, ∆t ≤ ∆tcrit
output : M̂ = LDLT

2 begin

3 Perform start procedure: −∆tU = 0U− ∆t0U̇ +
∆t2

2
0Ü ;

4 Form effective mass matrix: M̂ =

(
1

∆t2 M +
1

2∆t
C
)

;

5 Triangularize M̂: M̂ = LDLT

6 end
7 Calculation in each time step

input : tU, t−∆tU, tR
output : t+∆tU (if needed tU̇, tÜ)

8 begin
9 Calculate the effective loads matrix:

tR̂ = tR−
(

K− 2
∆t2 M

)
tU−

(
1

∆t2 M− 1
2∆t

C
)

t−∆tU;

10 Solve for t+∆tU: LDLTt+∆tU = tR̂ ;
11 If needed, calculate tÜ and tU̇ according to Equation 3.10 and

Equation 3.11;
12 end

where the ωh
e is the highest natural frequency of element e (i.e. the smallest natural

period Te). In another words, the critical time step ∆tcrit for a single element is
calculated based on the highest natural frequency of it. For the whole finite element
assemblage, ∆t should be smaller than the minimum critical time step min{∆tcrit}
of all elements.

The basic idea behind this condition is that if a wave a is moving cross discrete
spatial grid, to calculate its amplitude at discrete time step of equal duration, then
this duration must be less than the time for the wave to travel to adjacent grid
points. Therefore, if the spatial coordinate of the grid is discrete and placed at
regular distance, called interval length, and the time is also discrete and divided
into equal duration, called time step, then the CFL condition defines the length of
the time step as a function of the interval lengths of each spatial coordinate and
of the maximum speed that information can travel through the grid space (Courant
et al. [1928]). As an example, for linear element, ∆tcrit could be calculated according
to the dilatational wave speed, c, and the length of the element, L:

∆t ≤ ∆tcrit =
2

ωh
e
=

2
2c/L

=
L
c
=

L√
E/ρ

(3.18)

In finite element analysis, this critical value ∆tcrit can be calculated from the mass
and stiffness properties of the element. Specifically, the highest natural frequency
of each element ωh

e could be calculated from characteristic equation of each single
element: det

(
K−ω2M

)
.

However, one can foresee the disadvantage caused by CFL stability condition,
that is in some analysis the critical time step ∆tcrit may be unduly small calculated
from the Equation 3.17. Especially for system with large degrees of freedom, the
∆tcrit would be very sensitive to the element properties. For example, in a large
finite element model, if the mass of the element that has the smallest value of ∆tcrit,
which usually is the element with smallest size, has been further reduced to close
to zero, in another words, the mesh size changes even smaller, the value of ∆tcrit
calculated according to the characteristic equation of this element will approach to
zero. This means unduly smaller time step is required according to CFL stability
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condition. However, since the system has large degrees of freedom and this element
size is very small, the influence on the dynamic response of the whole system would
be hardly observed. Therefore, even one element mass reduction of the system may
heavily reduce the viable time step to be used for the analysis, and similar situation
happens when stiffness changes (Bathe [1982]).

3.3.3 The explicit integration of nonlinear equations in dynamic analysis

In nonlinear dynamic analysis, the equilibrium for the finite element system is con-
sidered, similar to the linear analysis, at time t to calculate the displacement at time
t + ∆t. For illustration purpose, the damping effect is ignored again. In each time
step, the equilibrium reads:

MtÜ + tF = tR (3.19)

where the tF is the nodal force at time t. The displacement solution t+∆tU is ob-
tained by substitute Equation 3.10 into Equation 3.19.

The advantage of the central difference method compared to the implicit New-
mark method in nonlinear dynamic analysis is no iteration process involved, also,
as mentioned above, once the mass matrix (and damping matrix, if consider the
damping effect) is diagonal, no triangular factorization of the coefficient matrix is
needed.

The problem lies in the CFL stability condition. For linear elastic material, the
stiffness properties of the element remain the same during the whole analysis, while
for nonlinear material, they are changing during the analysis process. It means the
actual critical time step for each element is changing as well, however, the adopted
constant time step is calculated based on the initial condition of the system, which
assumes material is linear elastic. Therefore, in some nonlinear force-displacement
relationships (i.e. a stiffening curve), the time step may not satisfy the CFL stability
condition during the analysis.

However, though the time step is slightly larger than the critical value and the
algorithm is no longer stable, the error accumulation is quite different from what
is observed in linear analysis. In linear cases, once the time step is larger than the
critical time step, the error will accumulate rapidly and the results will blow up
quickly. In nonlinear cases, the error accumulated without an obvious instability in
the solution and the response is grossly in error but doesn’t blow up. This may lead
to severe problems when the high frequency modes of system are oscillated and
dominant, since the significant error will accumulated but can hardly be observed
(Bathe [1982]).

3.4 important features of direct time integra-
tion methods in diana fea 10.3

The adopted FE tools in this thesis is the FE software DIANA FEA 10.3, in which
both implicit Newmark method and explicit central difference method are imple-
mented. In DIANA FEA 10.3, the dynamic analysis is conducted by including the
transient effects of the load on the system. This section will introduce some worth-
mentioned properties of the adopted direct time integration methods in transient
analysis of DIANA FEA 10.3.

3.4.1 Numerical damping in Newmark method

In the implicit Newmark method, Newmark parameter pair β and γ could be de-
fined separately, the basic rule for selection of Newmark parameters has been dis-
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cussed in Section 3.2. Also by choosing Newmark parameter pair, numerical damp-
ing could be introduced into the system in order to damp out the noise, for example,
a commonly used pair is β = 0.3025 and γ = 0.6.

3.4.2 Iteration method and convergence criteria

There are several iteration methods available in DIANA FEA 10.3, the one adopted
in this thesis is the Regular Newton-Raphson method, as shown in Figure 3.1. Also,
some special techniques could be applied for the iteration process, i.e. continuation
method and line search algorithm, one can refer to the DIANA FEA documentation
(DIANA FEA BV [2019]) to have detailed information about them.

Convergence criteria are crucial to control the iteration process. According to the
iteration process introduced in Section 3.2.2, when the results obtained from the
iteration process have satisfied the equilibrium conditions, so-called convergence,
the iteration process must be stopped. To detect this convergence, several norms
are provided including displacement norm, force norm and energy norm. The
convergence could be detected when either multiple norms are satisfied at the same
time or one of them is satisfied. The choice of the proper norm, as well as the value
of the convergence criterion are important to an analysis.

Generally, the displacement norm should not be used when prescribed displace-
ment is applied. Similarly, the force norm is less useful when the structure is very
flexible so that the inertial force is hard to generate. The value of the convergence
criterion should be chosen according to the accuracy requirement of the analysis.
Moreover, In some cases when accuracy is highly required, very strict convergence
criteria or multiple convergence norms should be adopted at the same time.

Besides, there is another way to stop the iteration procedure, which is a prede-
fined maximum iteration number. It is used to prevent infinite iterations when the
analysis is too hard to converge due to some unexpected reasons. However, when
the iteration stopped due to reaching a large maximum number, the problem prob-
ably occurs in the finite element model aspect rather than the iteration method.

3.4.3 Mass and damping matrices

For finite element assemblage, the mass matrix and damping matrix could be either
consistent or lumped. In practice, lumped or diagonal mass matrix is often used,
because they are economic in computation, however, lumped mass may results in
inaccurate results due to coarse meshes or irregular element shapes. For implicit
Newmark method, both consistent and lumped mass matrix could be used, how-
ever, for explicit central difference method, only lumped mass matrix is available in
DIANA FEA 10.3.

As for damping matrix, the viscous damping, specifically the Rayleigh damping,
is used in this thesis for both methods. The damping matrix C can be given in form:

C = aM + bK (3.20)

where the coefficients a and b are determined by given damping ratios. Similarly
to the lumped mass matrix, only lumped damping matrix could be used in central
difference method. Moreover, the Rayleigh damping coefficient for stiffness matrix,
which is b in Equation 3.20, must be zero, and only damping on mass could be
applied.

3.4.4 Start procedure of explicit method and time step definition

As mentioned in Section 3.3, a special start procedure is needed for explicit method.
In DIANA FEA 10.3, this start procedure is perform using implicit integration.
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In the implicit Newmark method, the time step size is used to define the time
increment for the algorithm to proceed, as well as to define the time points for
which output could be generated.

For the explicit central difference method in DIANA FEA 10.3, there are different
parameters to define either explicit time increment for algorithm or output time
points. Their functions and symbols which will be used in this thesis are given in
Table 3.1.

Parameters Function Example value

∆tO The output time interval e.g. 0.01s

”dtlim”
(∆tlim)

The smallest time increment allowed
for explicit algorithm

10−15s

”dtred”
(∆tred)

The reduction factor to be multiplied
with critical time step in order to

define the actual used time increment
0.95

”dtubs”
(∆tubs)

The largest time increment allowed
for explicit algorithm

10−3s

Table 3.1: Central difference method parameters

In DIANA FEA 10.3, the critical time step ∆tcrit of each element is calculated
according to the Equation 3.17 at the start of the analysis. Then, min{∆tcrit} is mul-
tiplied with a reduction factor ∆tred in order to determine the actual time increment
used in the analysis, written as ∆tex. After that, ∆tex is compared with lower bound
value ∆tlim and upper bound value ∆tubs. If ∆tlim ≤ ∆tex ≤ ∆tubs, the explicit algo-
rithm will proceed with time increment ∆tex. However, if ∆tex exceeds the ∆tlim or
∆tubs, the analysis will proceed with the upper bound value or lower bound value,
depending on which one is exceeded. Finally, the output will generated in a time
interval of ∆tO. Moreover, ∆tO will define the number of explicit sub-cycles Nsub by
simply divided by ∆tex.

3.4.5 Limitation of element order and mass scaling in explicit method

In most cases, the smallest critical time step min{∆tcrit} for the central difference
method in a finite element model is usually quite small, therefore hundreds even
thousands of explicit sub-cycles may need to be performed for one ∆tO. To fully
exploit the efficiency of the explicit method, the internal nodal forces tF in Equa-
tion 3.19 should be calculated very fast. Therefore, only linear interpolated elements
should be used in the central difference method.

An important technique used in the explicit time integration for finite element
analysis is the mass scaling. The mass scaling technique is activated when ∆tex is
smaller than the predefined lower bound value ∆tlim, as described in Section 3.4.4.
In this situation, the explicit algorithm will adopt the ∆tlim as the actual time incre-
mental to proceed the analysis. However, it means the critical time steps of some
elements ∆tcrit are smaller than ∆tlim, in another words, the explicit algorithm is
no longer stable. To achieve the stability condition, artificial mass is added to these
elements which have ∆tcrit < ∆tlim in order to increase the smallest natural period
of the element to at least equal to ∆tlim.

Though, the mass scaling is an effective way to avoid unduly small required
time step for the explicit algorithm to reduce the computational cost, it only works
when the number of problematic elements is low and the mesh sizes and locations
of them have almost neglectable influence to the overall dynamic property of the
system. However, this may not be the common case. In some complex finite element,
especially the model including irregular geometry or many connection parts, the
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problematic element may occur in very critical location where added mass will
significantly influence the dynamic properties and responses. In this situation, if
the element size is small and unimportant to the desired solution, one can directly
remove this element.

Moreover, the added artificial mass should not be large compared to the total
mass of the model. In practice, the ratio between added artificial mass and total
mass, represented as

rM =
Madded
Mtotal

(3.21)

should not larger than 10%.

3.4.6 Stability control in explicit method: energy balance

The stability of the explicit method in every time increment is controlled and checked
via energy balance. The variation of the total energy of the system in every time
increment is calculated and measured with respect to a reference energy value, writ-
ten in mathematical expressions:

Wtotal = |Wkinetic + Wdamping + Winternal −Wexternal |
|δWtotal | < p ·Wre f

(3.22)

where the lower index indicate the which type of energy is included in total energy.
The reference energy value Wre f is calculated according the kinetic energy of the

system due to the gravity acceleration, i.e. Wre f =
1
2

Mtotal(g · ∆tex)2, and p is an
abort tolerance parameter.



4 C A S E S S T U D I E S : F I N I T E E L E M E N T
M O D E L A N D A N A LY S E S S C H E M E S

4.1 overview

In this chapter, the numerical models of 5 different cases are built up in the DIANA
FEA 10.3. The transient analyses using implicit and explicit direct integration meth-
ods, as described in previous chapters, are performed. The details of each model,
the input signals and all analyses schemes are given for each case.

Three cases with linear elastic material are presented in Section 4.2 to Section 4.4.
In Section 4.5, the FE model of a masonry wall are built up. Two sub-cases are
considered for this case. The first one is the quasi-static cyclic in-plane shear-
compression test, which is performed in the laboratory in Italy by Graziotti et al.
[2016]. It is used to verify the material model and parameters. The second sub-case
is the in-plane seismic analysis, in which the transient analysis is performed. Sec-
tion 4.6 is the masonry house model which is also tested by Graziotti et al. [2016]
in a shaking table test. The FE model is built up and corresponding seismic signal
is applied. However, due to the limitations of hardware and software, unexpected
long time is needed to finish the whole analysis. Therefore, simplifications and
modifications are applied to the original structure, and only a short duration load
is considered. The main purpose of the last case is to illustrate the theoretical viabil-
ity to perform both implicit and explicit methods in practical real structure seismic
analysis.

4.2 case 1: a simply-supported beam subjected
to a harmonic point load

4.2.1 Case description

In this case, a simply-support beam is subjected to a point, sinusoidal in time load.
The beam has linear elastic material property. The geometry of the beam is shown
in Figure 4.2, as well the FE model.

The harmonic force is applied at a point on the beam, its amplitude is given in
expression: f = Psin(Ωt), with P = 1N and Ω = 30rad/s. The load duration is 1s,
and the load scheme is shown in Figure 4.1. The analytical steady-state response of
the beam could be calculated as the reference solution to be compared with the solu-
tions obtained from implicit and explicit time integration methods. However, since
the finite element analysis of the beam will include the transient effect, Rayleigh
damping is applied to the beam model to damp out the free vibration modes and
make it comparable to the analytical steady-state response.

4.2.2 Finite element model

The FE model of this case is quite straightforward, as shown in Figure 4.2. The
geometry information is summarized in Table 4.1.

23
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Figure 4.1: The harmonic load scheme of the simply-supported beam

Figure 4.2: Finite element model of the simply-supported beam

Geometry
Length L

[m]
Point load

location x0 [m]
Cross-section
area A [m2]

Moment of
inertia I [m4]

Case 1 1 0.7 0.02 4.55× 10−7

Table 4.1: Geometry of the simply supported beam

The element type adopted for the beam is L6BEN in DIANA FEA, which is 2-
node linear interpolated 2D straight Class-I beam element based on classical Euler-
Bernoulli beam theory, as shown in Figure 4.3. Since the polynomial of deflection
in y direction uy is cubic, the integration scheme is chosen as 2 points Gauss inte-
gration to get exact polynomials. The material and mesh properties, together with
other model information, are given in Table 4.2.

Figure 4.3: 2D Class-I beam element: L6BEN and its polynomial of deflection in y direction

4.2.3 Analyses schemes

Transient analyses with implicit Newmark method and explicit central difference
method were performed based on the FE model of the beam. An eigenvalue anal-
ysis was performed before the transient analyses, it turns out the first natural fre-
quency of the beam is 49.69Hz. According to the experience, the time interval to
generate the outputs for both methods are set to be 0.01s, which is 1/10 of the first
natural period, to ensure the first vibration mode of the system could be generated
accurately.
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Property Parameter Unit Value

Elastic Material
Young’s modulus E N/m2 2.2× 106

Mass density ρ kg/m3 500

Load f = Psin(Ωt), with P = 1N and Ω = 30rad/s

Boundary conditions Simply supported

Rayleigh damping
mass coefficient a 1/s 30

stiffness coefficient b s 0

Element type 2D Class-I straight line (L6BEN)

Integration scheme 2-point Gauss integration

Mesh size ∆x m 0.1

Number of nodes 11

Number of elements 10

Table 4.2: Summary of the information of simply-supported beam FE model

Implicit Newmark method scheme

Since the Rayleigh damping is applied to the model, no numerical damping from
implicit algorithm is considered. Therefore, the Newmark parameters are chosen as
β = 0.25 and γ = 0.5. The iteration method is chosen as Regular Newton-Raphson
method, and the convergence norm is displacement or force, with tolerance of 0.01.
The time step for implicit method, written as ∆tIm, is 0.001s for a 1s duration har-
monic load. The transient analysis scheme for implicit method is summarized in
Table 4.3.

Direct time integration
method

Implicit Newmark method

Newmark parameter β = 0.25 , γ = 0.5

Time step ∆tIm 0.001s

Total steps NIm 1000

Iteration method Regular Newton-Raphson method

Convergence norm Displacement or force

Convergence tolerance 0.01

Maximum iteration number 10

Line search Yes

Table 4.3: Transient analysis scheme for implicit Newmark method

Explicit central difference method scheme

A pretest of the explicit central difference method was made before the complete
transient analysis. The aim is to identify min{∆tcrit}, which is the smallest criti-
cal time step of all the elements, and the result is min{∆tcrit} = 1.50756× 10−5s.
Therefore, to have a preliminary understanding of how the explicit method is con-
trolled by the input settings, two sub-cases are performed. The transient anal-
yses schemes of these two cases are given in Table 4.4. The Sub-case 1 takes
∆tex,1 = min{∆tcrit} × ∆tred as the actual time increment for the explicit algorithm,
because the value condition is ∆tlim ≤ (min{∆tcrit} × ∆tred) ≤ ∆tubs,1. However, in
Sub-case 2, since (min{∆tcrit} × ∆tred) > ∆tubs,2, as a result, the actual time incre-
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ment ∆tex,2 = ∆tubs,2, which is a time increment further smaller than the critical
time step.

Sub-cases Sub-case 1 Sub-case 2

min{∆tcrit} 1.50756× 10−5

∆tO 0.001

∆tlim 10−15s

∆tred 0.95

∆tubs,i 10−3s 10−5s

∆tex,i 1.43218× 10−5s 10−5s

Nsub,i 70 100

Table 4.4: Transient analyses schemes for explicit method

4.3 case 2: a double cantilever beam subjected
to a transient point load

4.3.1 Case description

In case 2, a benchmark analysis from ABAQUS was performed with both implicit
and explicit method, and the solution obtained from ABAQUS was selected as ref-
erence solution. It concerns the response of an elastic beam, built-in at both ends,
subject to a suddenly applied load at its mid-span. The geometry of the beam is
similar to the Case 1 except a transient load is applied at the mid-span, and it is
shown together with the FE model in Figure 4.5.

The reference solution was obtained from ABAQUS implicit inegration operator:
Hilbert-Hughes, with slightly numerical damping, and with three different time
steps: 25µs, 50µs and 100µs. Therefore, to make better comparisons, the similar
schemes are also adopted in this thesis with two time integration methods.

The magnitude of the transient load is 2846.7N and is applied at the beginning of
the analysis. To simulate this transient load, the load scheme in Figure 4.4 but with
a duration of 5× 10−3s is considered in this case.
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Figure 4.4: The transient load applied on the double cantilever beam
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4.3.2 Finite element model

Figure 4.5 gives the finite element model of the beam, the double cantilever bound-
ary conditions are modeled by double fixed boundary conditions. The geometry of
the model is included in Table 4.5.

Figure 4.5: The finite element model of the double cantilever beam

Geometry
Length L

[mm]
Point load

location

Cross-section
thickness t

[mm]

Cross-section
height h [mm]

Case 2 508 Mid-span 25.4 3.2

Table 4.5: Geometry of the double cantilever beam

The element type is using the same one as Case 1, which is 2D Class-I straight line
beam element (L6BEN). Considering that slightly numerical damping is included in
the reference case, however, the explicit integration method can not include numer-
ical damping, to make a fair comparison, neither numerical damping nor Rayleigh
damping is included in implicit and explicit methods. Therefore, the results ob-
tained in this thesis may slightly differ from the reference solution, even though,
they are still comparable. The material and mesh properties are presented in Ta-
ble 4.6.

Property Parameter Unit Value

Elastic Material
Young’s modulus E GPa 206.8

Mass density ρ kg/m3 2710.42

Load Transient load (Figure 4.4), with duration of 5× 10−3s

Boundary conditions Double fixed

Damping Not included

Element type 2D Class-I straight line (L6BEN)

Integration scheme 2-point Gauss integration

Mesh size ∆x mm 6.35

Number of nodes 81

Number of elements 80

Table 4.6: Summary of the information of simply-supported beam FE model

4.3.3 Analyses schemes

In the reference case, three different time steps are used to performed analysis with
implicit method. Hence, in this section, there are 3 sub-cases for both implicit
analysis scheme and explicit analysis scheme.
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Implicit Newmark method scheme

For implicit Newmark method, three sub-cases are using the same time steps as the
reference case, which are 25µs, 50µs and 100µs. Neither numerical damping nor
material damping is included in all sub-cases. The transient schemes for implicit
method are shown in Table 4.7. The lower index of the symbol [Im, i] indicates that
it is of the implicit Sub-case i, similar symbol used in the rest of the thesis.

Sub-cases Sub-case 1 Sub-case 2 Sub-case 3

Time step ∆tIm,i 25µs 50µs 100µs

Total steps NIm,i 200 100 50

Newmark
parameter

β = 0.25 , γ = 0.5

Iteration method Regular Newton-Raphson method

Convergence
norm

Both displacement and force

Convergence
tolerance

0.01

Maximum
iteration number

50

Line search Yes

Table 4.7: Transient analyses schemes for implicit Newmark method

Explicit central difference method scheme

To identify the minimum critical time step of all elements, a pretest was made
before the full analysis. The result shows that min{∆tcrit} = 7.21291× 10−7s. It
is already smaller than any of the time steps in the reference case, therefore, the
explicit settings are remain default except using three different output time intervals.
The analyses schemes are shown in Table 4.8, note that no damping is considered
here either.

Sub-cases Sub-case 1 Sub-case 2 Sub-case 3

min{∆tcrit} 7.21291× 10−7s

∆tlim 10−15s

∆tred 0.95

∆tubs 10−3s

∆tex 6.85226× 10−7s

∆tO,i 25µs 50µs 100µs

Nsub,i 37 73 146

Table 4.8: Transient analyses schemes for explicit method
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4.4 case 3: a simply-supported thin plate under
out-of-plane transient distributed load

4.4.1 Case description

In case 3, a benchmark from the publication of NAFEMS Selected Benchmarks for
Forced Vibration (Maguire et al. [1993]) was selected. The benchmark describes a
simply supported square plate subjected to various load conditions, one of them is
out-of-plane transient uniform distributed load over whole plate with a magnitude
F0 = 100N/m2. This load condition will be performed in this case. The geometry
of the plate is 10m× 10m with thickness t = 0.05m. The plate is simply supported
on the edges and free to deform in out-of-plane direction. The material of the plate
is linear elastic with Young’s modulus E = 200× 109N/m2, Poisson’s ratio ν = 0.3
and density ρ = 8000kg/m3.

In the report of Maguire et al. [1993], several reference solutions are provided
for this benchmark, including analytical peak displacement, solution from modal
analysis using FE code ANSYS and ASAS, and solution from direct time integra-
tion method using aforementioned two codes. However, only values of peak dis-
placement, peak stress and static displacement are provided in the report, and the
solution obtained from the FE codes are the average value of two codes. One can
refer to the report of Maguire et al. [1993] to see more detailed information, but the
focus of this case in this thesis is to investigate the performances of the different
direct time integration methods.

4.4.2 Finite element model

The finite element model of the plate are shown in Figure 4.6. Since only out-
of-plane behavior is interested for this case, all nodes are constrained in x and y
directions.

Figure 4.6: The finite element model of the thin plate

The element type adopted for this model is the four-node quadrilateral isopara-
metric curved shell element Q20SH, as shown in Figure 4.7 together with the poly-
nomials of the linear interpolation. The transient load as shown in Figure 4.6, is
applied over the whole plate. The load-time curve is similar to the Figure 4.4 but
with a magnitude of 100N/m2. The Rayleigh damping parameters are already given
in the benchmark, which are a = 0.299 and b = 1.339× 10−3. However, due to the
limitation of the explicit method, as introduced in Section 3.4, the parameter b must
be set to be zero. The information of the finite element model of the plate is sum-
marized in Table 4.9.
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Figure 4.7: The four-node quadrilateral isoparametric curved shell element Q20SH

Property Parameter Unit Value

Elastic Material
Young’s modulus E GPa 200

Poisson’s ratio ν 0.3
Mass density ρ kg/m3 8000

Load Transient distributed force, with F0 = 100N/m2

Boundary conditions Simply supported

Rayleigh damping
mass coefficient a 1/s 0.299

stiffness coefficient b s 0

Element type Four-node regular curved shell element (Q20SH)

Integration schemes
Over element area 2× 2 Gauss integration

Over thickness 3-point Simpson integration

Mesh size ∆x m 1

Number of nodes 121

Number of elements 100

Table 4.9: Summary of the information of simply-supported plate FE model

4.4.3 Analysis schemes

Since the benchmark report provides few natural frequencies and mode shapes of
the thin plate, to verify the dynamic properties of the FE model, the eigenfrequency
analysis should be performed first. Then according the first natural period of the
system, which is about 0.4s, the output time step of the direct time integration
methods is chosen as 0.01s, which is smaller than 1/20 of the first natural period.
Moreover, the reference solution of the direct time integration method in the report
is obtained using a time step of 0.002s, to make a better comparison, this time step
is also used for the analysis but with a shorter load duration of 2s.

Implicit Newmark method scheme

Due to Rayleigh damping is already included in the FE model of the plate, no
numerical damping is introduced in implicit method. The transient schemes for
implicit method are shown in Table 4.10.

Explicit central difference method

The pretest using explicit method shows that min{∆tcrit} = 1.4597× 10−4s, and the
actual adopted time increment for explicit algorithm is ∆tex = ∆tred×min{∆tcrit} =
1.38672× 10−4s. The transient analyses schemes for central difference method are
presented in Table 4.11.
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Sub-cases Sub-case 1 Sub-case 2

Time step ∆tIm,i 0.01s 0.002s

Total steps NIm,i 500 1000

Newmark parameter β = 0.25 , γ = 0.5

Iteration method Regular Newton-Raphson method

Convergence norm Both displacement and force

Convergence tolerance 0.01

Maximum iteration
number

50

Line search Yes

Mass Matrix and
damping matrix

Lumped

Table 4.10: Transient analyses schemes for implicit Newmark method

Sub-cases Sub-case 1 Sub-case 2

min{∆tcrit} 1.4597× 10−4s

∆tlim 10−15s

∆tred 0.95

∆tubs 10−3s

∆tex 1.38672× 10−4s

∆tO,i 0.01s 0.002s

Nsub,i 73 15

Table 4.11: Transient analyses schemes for explicit method

4.5 case 4: the in-plane loading tests of ma-
sonry wall ec-comp2-3

4.5.1 Case description

Case 4 is a masonry specimen from the laboratory test program of Experimental cam-
paign on a clay URM full-scale specimen representative of the Groningen building stock
performed by EUCENTRE (Graziotti et al. [2016]). In this test program, several
full-scale unreinforced clay masonry wall were tested under in-plane cyclic shear-
compression load. This in-plane component test is fundamental in calibrating reli-
able numerical models for the masonry wall, as well as the full-scale URM house
model in shaking table tests.

In this report, one of the specimens EC-COMP2-3 was selected and will be used
for further seismic analysis to investigate the performance of direct time integra-
tion method for quasi-brittle material. For this purpose, the in-plane cyclic shear-
compression test will be performed in FEA first. The result of it will be compared
with that from experimental test to validate the finite element model of the speci-
men EC-COMP2-3. Then a seismic signal, which is used in the later shaking table
test from the same test program (Graziotti et al. [2016]), will be applied to this
model as base excitation. The seismic analysis will be performed using implicit and
explicit methods and the results will be compared to evaluate the performance of
both methods in seismic analysis for masonry material.
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Therefore, this section is divided into two parts. The first part introduce the
in-plane cyclic shear-compression test. The second part will describe the seismic
analysis of the specimen.

4.5.2 In-plane shear-compression test

The specimen EC-COMP2-3 is a full-scaled clay masonry wall, the dimension of the
specimen is given in Table 4.12. The wall was made of clay bricks with unit size
208× 100× 50mm and mortar joints. In the in-plane shear-compression test, the
wall was subjected to a vertical compression stress of σv = 0.86MPa. The boundary
condition of the specimen is double fixed, the bottom edge of the wall is rigid
connected to a Reinforced-Concrete (R.C.) footing, the top edge of the wall is fixed
to composite steel/R.C. beam, which is connected to two vertical actuators. Two
vertical actuators can apply simultaneously a force equal to the required vertical
load and a moment corresponding to the maximum resisting moment at the top
section. The horizontal load is applied by a horizontal actuator connected to the
top composite steel/R.C beam. More detailed description could be found in the
report of Graziotti et al. [2016]. The geometry of the specimen and test set-up for
this specimen are shown in Figure 4.8.

Specimen l [m] t [m] h [m]
σv

[MPa]
Boundary
condition

EC-COMP2-3 1.2 0.208 2.71 0.86
Double-

fixed

Table 4.12: The masonry wall specimen for cyclic in-plane shear-compression test

(a) Geometry of the specimen

(b) Test set-up

Figure 4.8: Finite element analysis results of simply-supported thin plate

Finite element model

The finite element model according to the geometry and test set-up was built up, as
shown in Figure 4.9. The element type is using 8-node quadrilateral isoparametric
plane stress (CQ16M), because the out-of-plane stress is zero (σzz = 0) in this in-
plane test. It is based on quadratic interpolation and Gauss integration, the typical
displacement polynomial is presented in Figure 4.10. The element and mesh used
in this model is summarized in Table 4.13. The nodes on the bottom edge of
the model is fixed in x and y direction, note the nodes of CQ16M has no rotation
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Figure 4.9: FE model of the specimen EC-COMP2-3

Figure 4.10: 8-node quadrilateral isoparametric plane stress (CQ16M)

Element type
8-node quadrilateral

isoparametric plane stress
element (CQ16M)

Integration scheme 2× 2 Gauss integration

Mesh size 0.2m

Element thickness 0.208m

Number of nodes 293

Number of elements 84

Table 4.13: The finite element used in the FE model for the masonry wall
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degree of freedom. To simulate the top edge of the specimen, which is constrained
in rotation but can still move in horizontal and vertical direction, a tying is used
in the model. The master nodes of tying is located at the top left corner and fixed
in x and y direction and the rest nodes on the top edge are tied to this nodes,
which means they have exactly the same displacement during the analysis, in this
way, rotation of the top edge is prevented, but horizontal and vertical motions are
allowed.

The self-weight of the structure is considered in this model. The vertical com-
pression load is applied through equally distributed force in 2-dimension, which is
q = 178880N/m. To apply the horizontal prescribed displacement on the top edge,
a virtual horizontal support is added to the master node, in this way, applying the
prescribed displacement on the master node is equal to apply it on the top edge.

Engineering Masonry material model (DIANA FEA BV [2019])

The Orthotropic material model Engineering Masonry model in DIANA FEA 10.3
is selected to simulate the quasi-brittle behavior of the masonry. This section will
briefly introduce the constitutive laws of Engineering Masonry material model, one
can also refer to the DIANA FEA 10.3 Documentation (DIANA FEA BV [2019]) to
learn more detailed information about it.

The Engineering masonry model is based on the smear cracking concept. It con-
siders the anisotropy of the masonry resulting from different stiffness in directions
of the bed joints and head joints. There are four predefined cracks in the plane of
the element, which are in the direction of bed joint, in the direction of head joint
and in two diagonal directions.

The tensile crack is assessed in the direction either normal to the bed joint or to
the head joint, and secant nonlinear unloading and reloading behavior is assumed.
The crushing is also assessed in the direction normal to the bed joint or to the head
joint, and the unloading and reloading behavior is considered to be non-secant,
in order to simulate highly nonlinear behavior of the masonry. The shear failure
mechanism is based on the standard Coulomb friction failure criterion.

The constitutive laws for Engineering Masonry model in tensile cracking, com-
pressive crushing and shear behavior are presented as shown in Figure 4.11. It
describes the unloading behavior more realistically by strong stress decay with the
original linear stiffness. Therefore it is recommended for static nonlinear cyclic or
transient dynamic nonlinear analyses of components and full structure (DIANA
FEA BV [2019]).

Figure 4.11: The constitutive laws for Engineering Masonry model in tensile cracking, com-
pressive crushing and shearing (DIANA FEA BV [2019])

According to the laboratory tests and experience, the following (Table 4.14) mate-
rial parameters are used in the FE model.

Cyclic loading scheme

The cyclic load is introduced through the horizontal actuator by imposing the pre-
scribed displacements to the top edge of the masonry wall. In the FE model, the
cyclic prescribed displacement is applied on the master node of tying on the top
edge of the model using displacement control.
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Property Parameter Unit Value

Elasticity
Young’s modulus

Perpendicular to head
joints Ex

Mpa 4916.5

Perpendicular to bed
joints Ey

MPa 9833

Shear modulus Gxy MPa 3933.2
Mass density ρ kg/m3 1979

Cracking

Head joint failure
type

Tensile strength head joint defined by friction

Tensile strength
Bed-joint strength fty MPa 0.23
Minimum head-joint

strength ftx
MPa 0.69

Fracture energy in tension G f t N/m 15
Stepped diagonal crack angle α Degree 45

Crushing

Compressive strength fc MPa 6
Fracture energy in compression G f c N/m 40000

Factor to strain at compressive strength n 4

Unloading factor λ 0.4

Shear
Friction angle Φ Degree 26

Cohesion fv0 MPa 0.18

Table 4.14: Material properties for Engineering masonry model

In the laboratory tests, the cyclic load protocol includes 16 cycles in total and each
cycle has three identical runs. Since the test was conducted in quasi-static condition,
no transient effect was included in the FE analysis, and the number of identical runs
for each cycle was reduced to two, in order to save computational time. The target
amplitude of displacement for each cycle in test protocol and applied prescribed
displacement for each cycle in FE model are given in Table 4.15, and the cyclic
scheme with a time dependent factor is shown in Figure 4.12.

Cycle
Target loading

amplitude [mm]
FE analysis loading

amplitude [mm]
1 1 0.41 0.4
1 3 0.85 0.8
1 4 0.99 1
1 D 1.32 1.2
2 D 2.10 2
3 D 2.68 2.6
4 D 4.10 4
5 D 5.44 5
6 D 6.82 6.5
7 D 8.20 8
8 D 10.89 10.5
9 D 13.59 13.5

10 D 16.35 16.2
12 D 21.89 21.6
13 D 27.40 27
14 D 34.28 34.2

Table 4.15: Cyclic loading protocol in laboratory test and FE analysis
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Figure 4.12: Time history of the cyclic loading in FE analysis

Quasi-static analysis scheme

The purposes of performing quasi-static analysis are to validate the material param-
eters in the FE model and also identify the the nonlinear behavior of the masonry
wall.

Therefore, a monotonic pushover loading with maximum magnitude of prescribed
displacement of 34.2mm was first applied on model in order to investigate the load
bearing capacity softening behavior of the masonry material. Moreover, few eigen-
frequency analyses are performed during the monotonic pushover procedure, these
analyses will provide valuable information about how the material nonlinearity in-
fluences the natural frequency of the structure, which is important to determine
the critical time step in explicit method. The monotonic pushover analysis scheme
and the corresponding eigenfrequency analyses are given in Table 4.16. Note both
physically and geometrically nonlinear effects are considered.

Load steps
Self-weight 1

Vertical compression 1
Monotonic pushover 100

Iteration method Regular Newton-Raphson

Maximum iteration number 50

Line search Yes

Convergence norm Both displacement and force

Convergence tolerance 0.01

Eigenfrequency check Every 10 pushover load steps

Table 4.16: Monotonic pushover analysis scheme and corresponding eigenfrequency analy-
ses schemes

Then the cyclic loading scheme presented in Table 4.15 is applied and results will
be compared with the experimental results. The analysis scheme for cyclic loading
test is shown in Table 4.17. The transient effect is ignored in FEA, and the cyclic
load is applied using displacement control via several load steps.

4.5.3 In-plane seismic analysis

The in-plane seismic analysis is based on the previous quasi-static analysis of the
masonry wall specimen, but taking into account the transient effect of the seismic
loading and using direct time integration method to obtain the dynamic response
of the structure.
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Load steps
Self-weight 1

Vertical compression 1
Cyclic pushover 1866

Iteration method Regular Newton-Raphson

Maximum iteration number 50

Line search Yes

Convergence norm Both displacement and force

Convergence tolerance 0.01

Table 4.17: Cyclic pushover analysis scheme

The material parameters of the Engineering masonry is using the validated ones
through quasi-static analyses, given in Table 4.14. However, since the masonry wall
is quite stiff for in-plane base acceleration load, some modifications are applied to
the model to increase the inertial effect generated by the base acceleration on the
wall.

Modified finite element model

First, the real masonry wall is usually simultaneously carrying the dead weights and
inertia forces of the upper structures, such like floor and roof, in the seismic events.
To simulate this loading condition, a large density (ρ = 160000kg/m3) linear elastic
beam is added on the top of the masonry wall to provided extra vertical loading
and increase the inertia force. The length of the beam is the same as the width of
the masonry wall, which is 1.2m. The cross-section of the beam has thickness of
0.208m and height of 0.2m. Above all, the total mass of beam is 7.9872t.

Second, considering the element limitation for the explicit method, which is only
linear interpolated element is available, to ensure the accuracy of the results, the
mesh size is reduced to half of the value in Table 4.13, and linear plane stress ele-
ment type Q8MEM is adopted. The new element properties are given in Table 4.18.

Masonry wall Beam

Element type
4-node quadrilateral
isoparametric plane

stress element (Q8MEM)

2D Class-I straight line
beam element (L6BEN)

Displacement
polynomial

ui (ξ, η) =
a0 + a1ξ + a2η + a3ξη

uy (ξ) =
b0 + b1ξ + b2ξ2 + b3ξ3

Integration scheme 2× 2 Gauss integration 2-point Gauss integration

Mesh size 0.1m 0.1m

Element thickness 0.208m 0.208m

Total number of
nodes

364

Total number of
elements

336

Table 4.18: The finite element used in the FE model for the masonry wall

Third, the tying at the top of the model is removed because the load is no longer
applying on the top edge. Also, the virtual support at the top left node of the model
is removed, because external load is not prescribed displacement. Instead, a seismic
acceleration load is applied at the base of the wall.
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Last, the Rayleigh damping with damping ratio of 5% is added to the model to
eliminate the undesired high frequency noise. The Rayleigh parameters are calcu-
lated from two selected frequencies. The first frequency is the first non-zero natural
frequency, and the second one is the highest frequency that has the cumulative
effective mass percentage larger than 90% in the seismic load direction. Through
these two parameters, a low level of damping would be introduced for the zone
between the selected two frequencies. The resulting Rayleigh damping parameters
are a = 5.5 and b = 2.5× 10−4. Again, since lumped mass is adopted for direct
time integration, b is set to be zero.

The modified FE model of the masonry wall is presented in Figure 4.13.

Figure 4.13: FE model of the specimen EC-COMP2-3 for seismic analysis

Input seismic signal

The input signal was given in the Graziotti et al. [2016], the one adopted for this
model is the signal SC2 400%, which is scaled from the original signal SC2 to 400%.

The signal SC2 is obtained from the experiment data of base acceleration his-
tory. It has a peak ground acceleration (PGA) of 0.140335g. Correspondingly, the
SC2 400% has PGA value of 0.56134g. The acceleration time history of SC2 400% is
given in Figure 4.14a. Since the accelerations after 10s are relatively small and have
minor influence on the overall nonlinear behavior of structure, to save the compu-
tational time, the interval between 1s− 10s was adopted as actual input, as shown
in Figure 4.14b. Moreover, normalized Fourier spectrum of the signal SC2 400% is
calculated and presented in Figure 4.15.
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Figure 4.14: Input signal for seismic analysis
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Figure 4.15: Normalized Fourier spectrum of seismic signal SC2 400%

Analysis schemes

First an eigenfrequency analysis was made to identify the dynamic property of the
structure. It turns out the first eigen frequency of the structure is 10.71Hz, therefore,
to ensure the first eigen mode could be generate accurately, the output time interval
of the results are chosen as 0.005s, which is about 1/20 of the first natural period.

Both physical nonlinearity and geometry nonlinearity are included in the tran-
sient analysis. Since the Rayleigh damping is already included in the structure,
no extra numerical damping is introduced. In both implicit method and explicit
method, the self-weight is first applied on the structure through one load step, and
then vertical compression is applied, finally the seismic base acceleration with a
duration of 9s.

The transient analysis scheme using implicit Newmark method is presented in
Table 4.19.

Implicit method Newmark method

Time step ∆tIm 0.005s

Total steps NIm 1800

Newmark parameter β = 0.25 , γ = 0.5

Iteration method Regular Newton-Raphson method

Convergence norm Energy

Convergence tolerance 0.0001

Maximum iteration number 200

Line search Yes

Mass Matrix and damping matrix Lumped

Table 4.19: Transient analyses schemes for implicit Newmark method

Moreover, since the eigenfrequency of the structure may change when the nonlin-
ear behavior is activated, therefore, eigenfrequency analyses were performed every
0.5s during the implicit method procedure.

For explicit method, the min{∆tcrit} is first identified as min{∆tcrit} = 4.50268×
10−5s. Then two sub-cases are performed with the first sub-case using min{∆tcrit} =
4.50268× 10−5s and the second one using ∆tex = 5× 10−6s. The transient analysis
using explicit central difference method is given in Table 4.20
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Sub-cases Sub-case 1 Sub-case 2

min{∆tcrit} 4.50268× 10−5s

∆tlim 10−15s

∆tred 0.95

∆tubs,i 10−3s 5× 10−6s

∆tex,i 4.27754× 10−5s 5× 10−6s

∆tO 0.005

Nsub 1800

Table 4.20: Transient analyses schemes for explicit method
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4.6 case 5: the urm full-scale building tests

4.6.1 Case description

Case 5 is the full-scale building on the shaking table test conducted by Graziotti et al.
[2016] in laboratory test program of Experimental campaign on a clay URM full-scale
specimen representative of the Groningen building stock. The test performed a shaking
table test on a single-story full-scale clay Unreinforced Masonry (URM) building
at the EUCENTRE laboratory in Pavia (Italy), in order to investigate the seismic
behavior of typical pre-1940 URM Dutch residential building.

In this section, the geometry of the full-scale house will be introduced first, then
the finite element model was built up and the weakest seismic signal was applied
on the model. Few preliminary analyses were performed using the linear elastic
material property. However, due to the limitations of the hardware and software,
extremely long computational time is required for the explicit method. So, some
simplifications and modifications are applied to the model, as well as a short du-
ration of seismic load is adopted. The nonlinear material properties and strong
seismic signal are considered then in the analysis of of Simplified model. These
simplifications may lead to the results of the finite element analyses not quite com-
parable to the experiment results, but the the comparison between results from im-
plicit and explicit methods can still provide valuable information about differences
between these two methods.

Therefore, the main purpose of this case is to illustrate the theoretical viability
and also provide some insight views of differences in the results of both method for
real structure seismic analysis. Moreover, this case also gives important information
about the mass scaling technique in the complex structure seismic analyses.

4.6.2 Geometry and general characteristics of the house

The house is a single-story full-scale structure built up with clay-brick masonry
bricks and a timber floor and roof structure. The house has plan dimensions of
5.33m× 5.77m, and the height of 6.23m. The house plan is not symmetric, because
a re-entrant corner exists in one of the longitudinal masonry walls (west side wall).
The irregular plan with re-entrant may magnify the torsional effects when uniaxial
seismic excitation is applied at the base.

A plane view of the house at the ground floor level is given in Figure 4.16. Fig-
ure 4.17 shows the elevation views from four lateral sides of the house. The overall
view of the house at the end of the construction works is given in Figure 4.18.

The timber floor and roof structure are shown in Figure 4.19. The connections
between floor beams to the east and west wall are using steel anchors which are
embedded in the masonry wall, and the ends timber floor beam are also partially
embedded in the masonry wall. The floor-wall connections basically prevent both
relative displacement and rotation of the floor beam, therefore it could be modeled
as rigid connections, i.e. shared nodes, in the FE model. Some pictures of the
connections are shown in Figure 4.20. The connections between roof structure and
the longitudinal walls are shown in Figure 4.21. These connections of the wall plate
embedded in mortar are modeled by share nodes with masonry wall in the FE
model. The connections between orthogonal roof beams, which are nailed together,
could be modeled as short stiff elastic beam.
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Figure 4.16: Plan view of the house at ground floor level (in cm) (Graziotti et al. [2016])

Figure 4.17: Elevation views of the house from four lateral sides (in cm) (Graziotti et al.
[2016])
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Figure 4.18: The test house at the end of the construction works (Graziotti et al. [2016])

Figure 4.19: The timber floor and roof structure (Graziotti et al. [2016])

Figure 4.20: Connections between floor beams and masonry walls (Graziotti et al. [2016])

Figure 4.21: Connections between Roof beams and longitudinal walls (Graziotti et al. [2016])

Above the roof timber beam structure, 18mm× 200mm timber roofing boards are
placed. However, these boards are light in weight and have almost no contribution
to the loading capacity of the house, therefore, they are not included in the FE
model.

Moreover, there are 8 laminated rubber blocks are placed on the first floor to
provide extra load. The total mass of the blocks are 1.31t, including six 600mm×
700mm blocks with 200kg, and two 350mm× 400mm blocks with 55kg. The list of
masses contributing to the total mass of the specimen are given in Table 4.21.
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Mass of masonry 28.96

Total mass of the roof 1.87

Total mass of the floor 1.78

Total mass of the house 32.61

Table 4.21: List of masses contributing to the total mass of the house (unit:[t])

Additionally, a rigid steel frame has been built and fixed on the shaking table.
The steel frame is firmly bolted to the surface of the shaking table. The columns
of the steel frame pass through the first floor of the house without any connection
or contact between them. The main purpose of this steel frame is to establish the
reference points and place instruments for measurement. Therefore, it will not
included in the FE model either.

4.6.3 Finite element model

The full FE model of the test-house was built up in DIANA FEA 10.3, as shown in
Figure 4.22. The full FE model is consisted by masonry wall structure model, first
floor structure model and roof structure model. All nodes on the bottom edge of
the model are fixed and prescribed uniaxial acceleration in x direction (north-south
direction) is applied to all of them.

Figure 4.22: Full FE model of the test-house

Limitations for modeling strategy

Before introducing the details of this FE model, it is important to mention some
limitations for modeling strategy in DIANA FEA. Due to the fact that the critical
time step of explicit method is calculated based on the natural frequency of each
element in the model, zero-volume (i.e zero-mass) element types could not be used
in the model, otherwise, the critical time step is close to zero and explicit algorithm
can’t successfully proceed. Besides, the tying can’t properly function in explicit
algorithm either. Therefore, all the necessary connections are modeled as rigid
connections in this model.
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Model of masonry wall

The model of the masonry walls is shown in Figure 4.23a. The element type adopted
for the masonry wall is the four-node quadrilateral isoparametric curved shell ele-
ment (Q20SH), because the curved shell element could represent both in-plane and
out-of-plane deformations of the wall. Each node of the element has 5 degree of
freedoms: three displacements ux, uy, uz and two rotations Φx and Φy.

Additionally, due to limitation of explicit method, only first order element type
is adopted. The four-node quadrilateral curved shell element Q20SH has linear
interpolations in both displacement and translations. The element topology and
polynomials are shown in Figure 4.23b. The integration over element are is regular
2× 2 Gauss integration, and in the direction of thickness the 3-point Simpson is
used by default. However, few three-node triangular isoparametric curved shell
elements T15SH occur in the FE model, this is because the irregular geometry of
the structure. Since not more than 20 of this kind of element included in the model,
compared to total number of more than 10000 elements, the influence of them is
neglected.

To have better accuracy, the mesh size is set to be 0.1m and the thickness of
the element is aligned with the length of the brick which is 208mm. The effect of
presence of timber lintel is modeled with liner elastic 3D 2-node first order Class-I
beam element L12BE, and the cross-section is assigned with 100mm× 50mm.

(a) Geometry of FE model of masonry
walls (b) Element type for masonry walls

Figure 4.23: FE model for masonry wall structure

Model of first floor structure

The model of the first floor is composed of first floor beams, north-south direction
girder, anchors, laminated rubber mass blocks and the timber floor panel. The FE
model of entire floor structure and models of components are presented in Fig-
ure 4.24. The floor panel and mass blocks are using the same element type as the
masonry wall, i.e. Q20SH. The thickness of the first floor panel 24mm. The four
rectangular holes on the floor panel is used for the rigid steel frame to pass through.
The mass of each block is corresponding to the experiment report.

The floor beams and anchors are modeled with 3D 2-node first order Class-I beam
elements L12BE, based on the classical Euler-Bernoulli beam theory. The girders are
using the 3D 2-node Class-III beam element L12BEA, based on Mindlin-Reissner
theory, to take into account the shear deformation by assuming the displacements
and rotations of the beam axis normals are independent and are respectively inter-
polated from the nodal displacements and rotations. The cross-section dimensions
of these beam elements are aligned with the dimensions in the report of Graziotti
et al. [2016]. Both aforementioned 3D beam elements have six degree of freedoms
at each node, which are three displacement along three axes and three rotations
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around three axes. Since the class-I beam is based on Euler-Bernoulli beam theory,
the polynomials for transverse deformation are cubic and 2-point Gauss integration
is adopted. The 3D class-III beam element has independent rotation and displace-
ment, therefore the polynomials are both linear and 1-point integration scheme is
used.

Figure 4.24: FE model of first floor of the house

Model of roof structure

The Figure 4.25 shows FE model of roof structure. The model reproduce the real
roof beam structures for the test-house. All the beams are built up in the FE model
according to the information provided in the report. The 3D 2-node class-III beam
element L12BAE is adopted for all rafters, struts and purlins components, and class-
I beam element L12BE is adopted for connection components of the roof structure.
According to the experiment report, different cross-section dimension and proper-
ties are assigned to different pert of the roof beams, e.g. purlins, rafters and connec-
tions. The roof structure is connected to and supported from the masonry walls by
timber plate panel embedded in mortar of the longitudinal east and west walls and
also by roof struts fixed on the first floor. Both connection types are modeled with
rigid connection, i.e, sheared nodes. Besides, the connections between roof rafters
and roof purlins, which are nailed together in real structure, are modeled with very
short and stiff elastic beam elements.

Overview of element type and properties

An overview of used finite element type and mesh properties are summarized in
Table 4.22.

The masonry walls are modeled with Engineering masonry model, with the ma-
terial properties exactly the same as used in Section 4.5 for the masonry wall, as
shown in Table 4.14. The other parts of the model are assumed to be linear elastic.
The linear elastic material properties of different components of the model are given
in Table 4.23.

4.6.4 Input seismic signal

During the test, the house is subjected to three different typologies of motion: a
random white noise (RNDM), and two types of earthquake signals (SC1 and SC2).
The purpose of signal RNDM is for table calibration and structural identification,
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Figure 4.25: FE model of roof structure of the house

Structure
components

Masonry wall
& floor panel &

mass blocks

Roof rafters,
struts & floor

girders

Other timber
beams

Element type
Curved shell

element
(Q20SH)

Class-III beam
element

(L12BEA)

Class-I beam
element
(L12BE)

Integration
scheme

2× 2× 3 1-point 2-point

Mesh size 0.1m

Number of
elements

9727 873 666

Total Number of
nodes

10631

Total number of
elements

11266

Table 4.22: List of used element types and mesh properties

Elasticity
Young’ modulus

[N/m2]
Poisson’s

ratio

Mass
density
[kg/m3]

Floor beams 1.1× 1011 0.3 450

Floor
anchors

2× 1011 0.3 7800

Roof beams 1.1× 1010 0.3 450

Roof
connections

2× 1010 0.2 540

First floor
Ex = 1.1× 1010

0.3 540Ey = Ez = 4.5× 108

Gxy = 2× 106

Table 4.23: List of used linear elastic material properties
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so it is not included in the FEA. The characteristics of two earthquake signals are
summarized in Table 4.24.

Input PGA [g]
Waveform

name

5− 75%
significant

duration [s]

SC1 −0.096 00201L 0.39

SC2 0.155 01703L 1.73

Table 4.24: Characteristics of selected earthquakes signals

The input earthquake signals for the FE model are obtained from the accelerome-
ters data placed on the shaking table. The accelerations time history of input signals
are shown in Figure 4.26. In the later tests, the signals will be scaled to 50%, 150%
etc, named as the original signal names plus the scale factor, e.g., SC2 400%. The
acceleration response spectra are provided in the report, as shown in Figure 4.27.
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Figure 4.26: Acceleration time history of selected input earthquake signals

Figure 4.27: Acceleration response spectra comparison (Graziotti et al. [2016])

4.6.5 Preliminary analyses and results

Eigenfrequency analysis

The first preliminary analysis would be the eigenvalue analysis to identify the dy-
namic characteristics of the structure. The first 5 eigenfrequencies and their corre-
sponding vibration mode shapes are calculated in DIANA FEA 10.3.The results are
given in Table 4.25, and the corresponding mode shapes are shown in Figure 4.28.
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Mode Eigenfrequency [Hz]

1 9.5622

2 13.141

3 15.7

4 19.052

5 21.649

Table 4.25: First 5 eigenfrequencies of the model

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5

Figure 4.28: Mode shapes of the model

The first egigenfrequency of the undamaged structure is 9.5662Hz from numer-
ical analysis, and the experiment report gave the value of 10Hz. From the mode
shape #1, it can be observed that the first mode is governed by the flexible roof
structure vibration, and it agrees with the experiment observation, which is shown
in Figure 4.29.

(a) First mode shape from numerical re-
sult

(b) First mode shape from exper-
iment

Figure 4.29: Comparison of the first mode shape of the model

The second mode shaped identified from the numerical results is a torsional mo-
tion due to irregular plan geometry of the structure. This mode is most likely
excited by the seismic input in the east-west direction. Since uniaxial north-south
direction seismic signal is the only input signal, this mode is not identified in the
experiment.



50 cases studies: finite element model and analyses schemes

The third mode of the numerical result was identified during the experiment.
In this vibration mode, not only the flexible roof structure, but also the masonry
walls, influence the mode shapes. The frequency identified in experiment is 18Hz
and the numerical result is 15.7Hz. The difference may come from the fact that
the real structure is stiffer than the FE model at the first floor level in the north-
south direction due to additional anchors installed on the floor beams. Though, the
overall vibration mode, which involves significant deformation of masonry walls of
north and south sides, is similar, as shown in Figure 4.30.

(a) Second mode shape from numerical
result

(b) Second mode shape from ex-
periment

Figure 4.30: Comparison of the second mode shape of the model

Seismic analysis in linear elastic phase

The preliminary seismic analyses using direct time integration methods are per-
formed. The main purposes of these analyses are to have a first sight of the valida-
tion of the model as well as the viability of two interested direct time integration
methods: implicit Newmark method and explicit central difference method.

For such a complex structure, it is suggested to start with linear elastic material
property. According to the experimental results, when the structure subjected to the
signal SC1 100%, no visible crack and obvious nonlinear behavior were observed
on the house, hence it can be assume that the house is almost remaining linear
elastic. Therefore, all the materials, including masonry, are assumed to be linear
elastic, and the signal SC1 100% was adopted. The Rayleigh damping was added
to the model according to the eigenvalue analysis and the cumulative effective mass
method mentioned in Section 4.5.

According to the experimental results, the following results are investigated: the
displacement time history of the first floor (East and West sides) and of roof level;
the positive and negative displacement envelopes recorded at first floor (East and
West sides) and at roof level; the hysteretic response in terms of base shear vs first-
floor average displacement. As marked in Figure 4.31, the displacement of East side
is obtained by taking average value of nodes #5599 and #5619, and for West side,
nodes #7174 and #5678. The roof displacement is obtained from node #10314.

First, the unconditionally stable implicit method is used. Consider the complexity
of the structure, the time step is selected to be 0.05s, and the total analysis time to
be 20s. Slightly numerical damping is included in the Newmark method (β =
0.3025, γ = 0.6). The displacement time history of first floor East side is shown in
Figure 4.32. The other results of the implicit method are shown in Appendix A.
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Figure 4.31: Target nodes to obtain interested results
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Figure 4.32: Comparisons of displacements time history of the first floor East side

The results comparisons of the preliminary analysis using implicit method show
that results from numerical results generally agree with the experimental results.
The displacement responses have very similar trends in both results. However, the
numerical results have slightly lower peak values for the first floor displacement re-
sponse on both East and West sides, which can be also observed from the displace-
ment envelope comparison, this is because the linear elastic material properties are
assumed for the model while in the experiment nonlinear properties of the material
influence the response even without obviously visible crack. This can be proved by
the hysteretic curves of base shear versus average first floor displacement results,
and it can be observed that much more energy was dissipated due to the nonlinear-
ity in the experimental results than the numerical solution. Therefore, calibrations
of the model are still needed, but in general, the comparisons between results from
the implicit method solution and the experimental solution verify the validity of the
FE model.

Then, the explicit method was adopted for the analysis. However, due to the
irregular geometry of the model and also high density meshes, it turns out that
min{∆tcrit} is extremely small. Therefore the parameter in the explicit method
∆tlim is used to force the time step adopted for the algorithm to become larger. As
a result, this will add artificial mass on the model and may change the dynamic
property of the model.

Few analyses with different ∆tex were performed. The results of relative displace-
ment response at first floor east side are given in Figure 4.33.
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Figure 4.33: Explicit method solution vs Experimental results

It can be observed that the results are unacceptable for explicit method. The
displacement is much larger than the experimental results, because the added mass
is too large compared to the original model mass. The artificial added mass ratios
for different ∆tex, including a extra smaller one 5× 10−6, are shown in Figure 4.33.
It shows that with decreasing added mass ratio, the solution of explicit method
is becoming better and better. However, the smallest explicit time step ∆tex =
5× 10−6 shows that the ratio between artificial mass and total mass of the model
is 64%, which is unacceptably large, and the solution of such a time step is either
unreasonable. Additionally, to investigate how is the distribution of elements which
have added mass with time step ∆tex = 5× 10−6, positions of these elements are
checked in FE model, some typical added mass elements are shown in Appendix B.

All of these preliminary analyses results and discussions above turn out the ne-
cessity of a simplified model of the house as well as a shorter duration of the load,
in order to make explicit method run faster.

4.6.6 Simplified model

The simplifications will change the original properties of the structure. But con-
sidering that the implicit method can obtain a reasonable results for the seismic
analysis, as well as the main focus of this research is compare the solutions from
implicit method and explicit method, the comparisons for the simplified model will
be made between the solutions obtained from implicit method and explicit method.

The first simplification is removing the roof structure, because the roof structure
provides limited loading capacity to the structure which is subjected to the base
acceleration. Also, the roof structure is relatively light-weighted and unimportant
to study the nonlinear behavior of the quasi-brittle masonry material.

Then, parts of masonry walls above the first floor level is removed too, because
the out-of-plane stiffness of these walls are very low due to the absence of roof
structure and the out-of-plane failure of these walls will always occur as one can
expect. Moreover, these masonry walls have irregular shapes, removing them is
also good for a regular meshing.

Finally, the mesh size is increased to 0.2m to speed up the analysis. Particularly,
the first floor structure is re-meshed in order to generally increase the mass (in the
term of mesh size) of these elements.

The simplified model of the house is shown in Figure 4.34. The other aspects of
the model remain unchanged. The nonlinear behavior of the masonry is considered
in analyses for the rest of the part of this thesis. A list of element type and number
are shown in Table 4.26
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Figure 4.34: Simplified model of the house

Structure
components

Masonry wall
& floor panel &

mass blocks
floor girders

Other timber
beams

Element type
Curved shell

element
(Q20SH)

Class-III beam
element

(L12BEA)

Class-I beam
element
(L12BE)

Integration
scheme

2× 2× 3 1-point 2-point

Mesh size 0.2m

Number of
elements

2301 379 15

Total Number of
nodes

2481

Total number of
elements

2695

Table 4.26: List of used element types and mesh properties in simplified model

Modified input seismic signal

The input signal is also modified so that the most interested nonlinear behavior
of the structure could be activated. According to the report, obvious cracks are
observed after the signal SC2 400%, where the building experienced a substantial
level of damage. Hence, the signal SC2 400% was adopted in this case. Similar
to the Case 4 in Section 4.5, the input acceleration time history was selected to
be the interval between 1s− 10s of signal SC2 400%, because the most significant
strong acceleration is included in this interval and the rest part of the signal has
limited influence on the nonlinear behavior of the structure. Therefore, the input
acceleration time history is the same as one in Case 4, as shown in Figure 4.14b.

Analyses schemes

For the simplified model, the eigenfrequency analysis is needed to have a insight
view of the dynamic property of the structure. Also, according to the eigefrequency
analysis, the Rayleigh damping parameter and the output time interval could be
determined. The first natural frequency of the model is 13.4Hz, and the Rayleigh
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parameters, according to the cumulative effective mass method, are chosen as a =
8.1 and b = 0. The output time interval is selected as 0.005s, which is much smaller
than the first natural period of the structure.

Then implicit method with lumped mass and damping matrices and no intro-
duced numerical damping is used to perform the transient analysis with a load
duration of 9s. The analysis scheme using implicit Newmark method is listed in
Table 4.27.

Implicit method Newmark method

Time step ∆tIm 0.005s

Total steps NIm 1800

Newmark parameter β = 0.25 , γ = 0.5

Iteration method Regular Newton-Raphson method

Convergence norm Displacement or force

Convergence tolerance 0.01

Maximum iteration number 200

Line search Yes

Mass Matrix and damping matrix Lumped

Table 4.27: Transient analyses schemes for implicit Newmark method

The minimum critical time step in the simplified model is min{∆tcrit} = 1.8485×
10−6s. Since this time step is still pretty small, few analyses with slightly larger
explicit time steps ∆tex are performed, and one analysis with this min{∆tcrit} is
performed finally. The analyses schemes are given in Table 4.28

Sub-cases Sub-case 1 Sub-case 2 Sub-case 3 Sub-case 4

min{∆tcrit} 1.8485× 10−6s

∆tlim,i 5× 10−5s 10−5s 5× 10−6s 10−6s

∆tred 0.95

∆tubs 10−3s

∆tO 0.005s

∆tex,i 5× 10−5s 10−5s 5× 10−6s 1.756× 10−6s

Nsub,i 100 500 1000 2847

Table 4.28: Transient analyses schemes for explicit method



5 C A S E S S T U DY: R E S U LT S
C O M PA R I S O N S A N D D I S C U S S I O N S

5.1 overview
In this chapter, the numerical solutions of the transient analyses described in the
Chapter 4 for every case are presented. The comparisons between the solution
of implicit and explicit method are made. For convenience, a list of the analyses
schemes for each case is reviewed again. The comparison for linear cases are mainly
in terms of displacement response, and for nonlinear cases additional aspects, such
as crack patterns, hysteretic curves, are also considered. Necessary discussions were
made to have a better understanding and interpretation of the results. Finally, these
results and discussions will form the answers to the research questions proposed at
the start of this thesis.

5.2 case 1
In Case 1, the mid-span (node #8) deflection of the beam is selected as the interested
results, as shown in Figure 5.1. The deflection time history of node #8 will be com-
pared between analytical solution, implicit method solution and explicit solution.

Figure 5.1: The interested point (node #8) on the simply-supported beam

5.2.1 Analytical solution

The reference solution of the steady-state response of the beam is obtained by solv-
ing the classical governing equation of the beam.

The equation of the motion of the beam is:

ρA
∂2y
∂t2 + EI

∂4y
∂t4 = 0 (5.1)

The boundary conditions are:

x = 0 : y− = ∂2y−/∂x2 = 0

x = L : y+ = ∂2y+/∂x2 = 0
(5.2)

The interface conditions are:

x = x0 : y− = y+

∂y−/∂x = ∂y+/∂x

∂2y−/∂x2 = ∂2y+/∂x2

EI(∂3y+/∂x3 − ∂3y−/∂x3) = Psin(Ωt)

(5.3)

55
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The steady-state solution is assumed to be:

y(x, t) = Y(x)sin(Ωt) (5.4)

By substituting the assumed solution into governing equations, we can get the gen-
eral solution in the frequency domain as:

Y−(x) = A−cosh(βx) + B−sinh(βx) + C−cos(βx) + D−sin(βx)

Y+(x) = A+cosh(βx) + B+sinh(βx) + C+cos(βx) + D+sin(βx)
(5.5)

where β is defined as β4 =
ρA
EI

Ω2.

Equation 5.5 has 8 unknowns, by substituting these general solution into 4 bound-
ary conditions and 4 interface conditions, they can be solved. Then, according to
the equation 5.4, the analytical solution y(x, t) can be obtained for any location on
the beam at any time. The Figure 5.2 shows the steady-state response of mid-span
of the beam in 1 seconds duration.
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Figure 5.2: The analytical solution for mid-span deflection time history

5.2.2 Numerical solutions

Review of analyses schemes

Analyses Damping ∆tO [s] min{∆tcrit} [s] ∆tex [s]

Implicit No 0.001 − −
Explicit

Sub-case 1
No 0.001 1.50756× 10−5 1.43218× 10−5

Explicit
Sub-case 2

No 0.001 1.50756× 10−5 10−5

Table 5.1: Review of transient analysis scheme for Case 1

Solutions

First, a simple eigenfrequency analysis was performed to identify the natural fre-
quency of the beam.The result turns out the first natural frequency is 49.69Hz.

The implicit method solution at mid-span (node #8) according to the analysis
scheme in Table 4.3 is plotted in Figure 5.3a. The explicit method solutions ac-
cording to analysis scheme Table 4.4, which include two sub-cases, are plotted in
Figure 5.3b.
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(a) The implicit method solution
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(b) Two explicit sub-cases’ solutions

Figure 5.3: Numerical solutions for mid-span deflection time history

5.2.3 Comparison of the solutions

Since it has been observed that the two explicit sub-cases have exactly the same
result, the sub-case 1 which uses the minimum critical time step was used for the
following comparisons. The three solutions obtained from different methods are
compared together with zooming in different time history intervals, as shown in
Figure 5.4.
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Figure 5.4: Comparison of the solutions in different time intervals

It can be observe that both direct time integration methods accurately reproduce
the steady-state displacement response at the mid-span in a short time after the
load was applied. In the time interval 0− 0.2s slight differences are observed in
numerical solutions. This is the first vibration mode of the beam, corresponding to
the first natural frequency 49.96Hz. Since the steady-state response needs time to
reach, the transient effect shows up at the beginning of the analysis. In the time
interval 0.6− 0.9s, three solutions are fully overlapped due to the damping effect.

Moreover, the same results of two explicit method sub-cases shows that once
the stability condition is reached in the linear elastic system, which means the
min{∆tcrit} is used for the explicit algorithm, the explicit method could accurately
generate the displacement response of the structure, the further decrement for the
explicit time step is not necessary.

5.3 case 2

In Case 2 (Section 4.3), the mid-span (node #1) is selected for the results compari-
son. The node #1 is the node on which the transient load was applied, as shown
in Figure 5.5. Three different time steps are used to generate the output of the
displacement response of the node #1, which are 25µs, 50µs and 100µs. The anal-
yses schemes are described in Table 4.7 and Table 4.8. The reference solutions are
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calculated in ABAQUS using implicit solver with slight numerical damping. The
comparison of each case is made in the following section.

Figure 5.5: The interested point (node #1) in FE model

Review of analyses schemes

Analyses Damping ∆tO [µs] min{∆tcrit} [s] ∆tex [s]

Implicit
Sub-case 1

No 25 − −

Implicit
Sub-case 2

No 50 − −

Implicit
Sub-case 3

No 100 − −

Explicit
Sub-case 1

No 25 7.21291× 10−7 6.85226× 10−7

Explicit
Sub-case 2

No 50 7.21291× 10−7 6.85226× 10−7

Explicit
Sub-case 3

No 100 7.21291× 10−7 6.85226× 10−7

Table 5.2: Review of transient analysis scheme for Case 2

5.3.1 Sub-case 1: solutions of time step 25µs

The solutions of sub-case 1 from different methods with using output time step of
25µs are given in Figure 5.6.
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Figure 5.6: The displacement response at node #1 with time step 25µs

With output time step 25µs, the solution are accurately generated in all methods,
the results are quite close to each other and no obvious difference is observed.

5.3.2 Sub-case 2: solutions of time step 50µs

A larger output time step is used in sub-case 2, which is 50µs. The comparison of so-
lutions are shown in Figure 5.7 The results are still match each other in general, but
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Figure 5.7: The displacement response at node #1 with time step 50µs

slight difference starts to show up in the comparison. A larger amplitude of high
frequency component is contained in the explicit solution. The implicit and refer-
ence solution are more closer to each other. However, since the reference solution is
also calculated by implicit method, this can be expected to happen.

5.3.3 Sub-case 3: solutions of time step 100µs

A much larger time step of 100µs is used for sub-case 3. The results are shown in
Figure 5.8. Even with much coarser resolution of the solution, the explicit solution
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Figure 5.8: The displacement response at node #1 with time step 100µs

still remains the information about high frequency components. However, in the
implicit solutions, these information has been mainly lost.

5.3.4 Comparisons of solution from different time steps

The comparison between three implicit sub-cases are given in Figure 5.9a, and sim-
ilar comparison is made for three explicit sub-cases, shown in Figure 5.9b.
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Figure 5.9: Comparisons of solutions from different time steps
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It can be observed that the time step has very significant influence on the implicit
method solutions. The amplitude of the displacement response as well as the high
frequency components are changing due to the changes of the time step. The larger
time step used, the less of high frequency components are reproduced. This is
because the time step for implicit method is too large to capture the high frequency
wave traveling through the nodes, so the information is lost. Though, the implicit
method is unconditionally stable, the accuracy will be lost due to the large time
step.

While in the explicit method solution, almost no difference could be observed
in three sub-cases. This is because the explicit algorithm actually calculates the
solution at the min{∆tcrit} = 7.21291× 10−7s, which is determined to be able to
represent the highest frequency wave traveling through the element nodes, accord-
ing to the CFL stability condition. So, even with different output time step ∆tO, the
accurate response is always calculated, the only influence of ∆tO is the resolution
of the solution. Once the resolution is good enough to show the high frequency
vibration modes, the results could be considered to be accurate.

5.4 case 3
The Case 3 investigates the response of simply-supported thin plate to out-of-plane
transient distributed force, as described in Section 4.4. The reference solution is
given at the middle point (node #1) of the plate in Maguire et al. [1993], as shown in
Figure 5.10. The numerical solution of peak displacement in out-of-plane direction,
peak stress and their corresponding time points will be compared with the reference
solution in Maguire et al. [1993]. The analyses schemes are described in Table 4.10

and Table 4.11.

Figure 5.10: The interested point (node #1) in FE model

Review of analyses schemes

Analyses Damping ∆tO [s] min{∆tcrit} [s] ∆tex [s]

Implicit
Sub-case 1

Rayleigh
Damping

0.01 − −

Implicit
Sub-case 2

Rayleigh
Damping

0.002 − −

Explicit
Sub-case 1

Rayleigh
Damping

0.01 1.4597× 10−4 1.38672× 10−4

Explicit
Sub-case 2

Rayleigh
Damping

0.002 1.4597× 10−4 1.38672× 10−4

Table 5.3: Review of transient analysis scheme for Case 3
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5.4.1 Eigenfrequencies

The first eight eigenfrequencies and the corresponding mode shapes are identified
for the FE model, as shown in Figure 5.11. The comparison of the identified eigen-
frequencies and reference values are listed in Table 5.4. The results show good
agreement with the reference solution.

(a) Mode 1, 2.4026Hz (b) Mode 2 & 3, 6.1853Hz (c) Mode 4, 9.9345Hz

(d) Mode 5 & 6, 13.160Hz (e) Mode 7 & 8, 16.849Hz

Figure 5.11: First eight eigenfrequencies and the corresponding mode shapes

Eigenfrequencies
Reference

[Hz]
Identified

[Hz]

f1 2.398 2.4026

f2 & f3 6.1195 6.1853

f4 9.89 9.9345

f5 & f6 12.845 13.160

f7 & f8 16.582 16.849

Table 5.4: Identified eigenfrequencies vs reference values

According to the eigenfrequencies of the model, two output time steps which are
0.01s and 0.002s, the first one guarantees the first mode will be generated accurately
and the second one provides the possibility for up to eighth mode.

5.4.2 Displacement time history in out-of-plane direction

The solution of displacement time history of node #1 in out-of-plane direction from
implicit method is shown in Figure 5.12a and from explicit method is shown in
Figure 5.12b. Almost no difference could be observed in implicit sub-cases, neither
in explicit sub-cases. The displacement response could be calculated accurately in
both methods.

5.4.3 Stress σxx time history

The solution of displacement time history of node #1 in out-of-plane direction from
implicit method is shown in Figure 5.12a and Figure 5.12b show the stress σxx time
history solution at node #1 calculated by implicit and explicit method respectively.

In the stress results, differences are observed between implicit sub-cases, the so-
lution from different time steps show different high frequency contents. This may
imply that high vibration mode ares excited even though it doesn’t clearly show
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(a) Implicit sub-cases
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Figure 5.12: Comparisons of displacement time history of node #1 in out-of-plane direction
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(a) Implicit sub-cases
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Figure 5.13: Comparisons of stress σxx time history of node #1

in the displacement response. While, the explicit sub-cases have exactly the same
stress time history, but still, higher vibration mode is observed which isn’t repro-
duced in displacement response.

5.4.4 Comparisons and discussions

The peak displacement and peak stress values in implicit and explicit solutions are
compared with the reference solution, as well as the corresponding time points. The
results are given in Table 5.5.

Peak displacement Peak stress
δp (mm) tp (s) σxx (N/mm2)

Reference solution 3.507 0.216 2.484

Implicit solution 3.472 0.218 2.353

Explicit solution 3.463 0.210 2.355

Table 5.5: Comparison of peak response

The numerical solutions show good agreement with the reference solution. The
difference between the peak displacements is smaller than 1.5%, and the time points
for peak values are also very close. The peak stress has about 5% deviation, it
may cause from the influence of high frequency vibration mode in the numerical
solutions, but they are still very close to each other.

To investigate the difference in the stress σxx time history, the implicit solutions
and explicit solution are plotted together in Figure 5.14. In addition, the Fast Fourier
Transform (FFT) of the σxx time history is calculated and plotted in Figure 5.15.
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Figure 5.14: Comparison between implicit and explicit solutions of σxx
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Figure 5.15: Comparisons of FFT of stress σxx time history

Figure 5.14 shows that the explicit solution has very close results to implicit sub-
case 2, which has the smaller time step than implicit sub-case 1. Though, the ex-
plicit has a lower resolution of the solution, which is ∆tO = 0.01s, compared to
the implicit sub-case 2 with ∆t = 0.002s, it still contains accurate high frequency
information, which is better than the implicit sub-case 1.

The comparisons of FFT show that the dominant frequency component in the
stress time history is 2.333Hz, which is corresponding with the first natural free
vibration frequency 2.398Hz, the difference is come from the Rayleigh damping
included in the model. The different amplitudes at this frequency come from the
different resolutions of the signals, as a result lower resolution of the signal has
more leakage in the Fourier spectrum. It can be proved in Figure 5.15a and Fig-
ure 5.15b, the amplitudes of the first peak of explicit solutions are the same with
the corresponding resolution of implicit solution, in this case, the output time step.

However, another important peak value occurs at around 11.5Hz to 12.5Hz, which
is corresponding to the 5th and 6th vibration modes, again, the value is reduced
due to damping. The implicit sub-case 1 has peak value at 11.59Hz, the implicit
sub-case 2 at 12.12Hz, the explicit cases at 11.71Hz. This is the reason why different
high frequency vibrations occurred in stress response time history. It turns out that
with smaller time step, the implicit method could generate high frequency vibration
more accurately, while the explicit is not influenced by that. The larger time step in
implicit method tends to make this frequency shift towards left, i.e. smaller, which
will lead to inaccurate representation of high frequency mode vibration.

The reason why only first and 5th (or 6th) modes are excited is that transient
distributed load is applied on the all plate surface, so the symmetric modes are more
easily to be activated. However, since the energy contained in the high frequency
mode is so low, it is hard to observe it in displacement response.
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5.5 case 4

The results of the Case 4 (Section 4.5) will be presented in two parts, the first part
is the in-plane shear-compression quasi-static analysis results and the second part
is the in-plane seismic analysis results. The in-plane quasi-static analysis aims to
validate the material parameters in the FE model and study the nonlinear behavior
of the masonry wall. The seismic analysis will take into account the transient effect
of seismic loading and investigate the performance of implicit and explicit method
for nonlinear quasi-brittle material.

5.5.1 In-plane shear-compression test

As described in Section 4.5.2 and Figure 4.9, the wall is subjected to prescribed
displacement applied at the top edge. Since the typing is used in the model, the
prescribed displacement is directly applied at the master nodes, as a result, the base
shear force could be obtained either from reaction forces of nodes at bottom edges
or from the virtual support reaction force at the master node.

The in-plane tests include a monotonic pushover analysis with eigenfrequency
check and a cyclic pushover analysis. The results of capacity curves and hysteresis
curves are generated and compared to the experimental results. Also, the nonlinear
behavior of the model and its influence on the eigenfrequency are also discussed.

Monotonic pushover results

As shown in Table 4.16, a prescribed horizontal displacement of 34.2mm was ap-
plied at the master node on the model. The capacity curve in terms of displacement
versus base shear force is plotted in Figure 5.16a, and the first eigenfrequency evo-
lution during the monotonic pushover process is plotted in Figure 5.16b.
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Figure 5.16: Monotonic pushover results

The maximum shear capacity in numerical results is 94.67kN, which is quite close
to the reference value obtained from cyclic pushover test 92.52kN in positive direc-
tion and 92.55kN in negative direction. Moreover, the softening behavior is also
shown in the capacity curve due to the crack in the model. Hence, the stiffness of
the material is reduced and the natural frequency of the structure as well as the
element is decreased, as proved in the first frequency evolution result. The first
natural frequency drops from 201.3Hz to around 99.27Hz at the end. Few figures of
the crack width evolution during the pushover procedure together with the corre-
sponding first natural frequency are shown in Figure 5.17 to illustrate this softening
behavior.
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(a) (b) (c) (d) (e)

Figure 5.17: Crack evolution with corresponding top displacement Dx and frequency f : (a)
Dx = 3.428mm, f = 124.8Hz; (b) Dx = 13.712mm, f = 111Hz; (c) Dx =
27.424mm, f = 104.6Hz; (d) Dx = 34.28mm, f = 99.27Hz (e) The legend.

Cyclic pushover results

The cyclic pushover analysis scheme is given in Table 4.17. The hysteresis curve
of horizontal displacement versus base shear force are plotted in Figure 5.18 with
comparing to the experimental result.

Figure 5.18: The hysteresis curve of masonry wall

The numerical results have a good agreement with the experimental results. The
initial stiffness is almost the same. The maximum loading capacity in positive
and negative direction of numerical results are +93.45kN and −93.93kN, which
are slightly higher than experimental results of +92.52kN and −92.55kN, the dif-
ference is around 1%. The decrease of the capacity with increasing cycles and the
unloading-reloading curve of the numerical results match the experimental results
very well. However, the stiffness at the end of the loading shows some differences,
it might be caused by the fact the wall in the experimental test are exhibits intensive
toe crushing at the base in the end of loading cycles, so that the structure is unable
to carry load anymore. This failure of the wall can be observed from the curves
of last three cycles in the experimental results. Most of the energy is dissipated in
these three cycles as well.

The masonry wall model first cracked at the bottom edge and the bricks below
the wall-top beam. At this point, the pier has a pure rocking behavior, until the
first diagonal cracks appear above the base. Then the specimen exhibits intensive
toe crushing mechanism at the base. After that, diagonal crack appears in the top
half of the pier, rendering the wall is unable to carry vertical load anymore. The
failure mode is a hybrid failure mode, which means the rocking mechanism and
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toe crushing first happened and after the maximum flexural capacity of the pier
reached, then shear failure occurs. In general, this crack evolution and the failure
mode are shared between test results and numerical results. Few illustrations of the
crack width evolution are shown in Figure 5.19.

(a) +1mm (b) −1.44mm (c) +4mm (d) −5mm

(e) +6.5mm (f ) −8mm (g) +13.5mm (h) −27mm

(i) +34.2mm (j) −34.2mm (k)

Figure 5.19: Crack width evolution with corresponding top displacement
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5.5.2 In-plane seismic analysis

The Section 4.5.3 has given the detailed information about the modified FE model,
seismic input signal and the analyses schemes. The node #2 are selected to show
the results comparisons for this model, as shown in Figure 5.20.

Figure 5.20: The interested node #2 on the modified FE model for seismic analysis

Review of analyses schemes

Analyses Damping ∆tO [s] min{∆tcrit} [s] ∆tex [s]

Implicit
Rayleigh
Damping

0.005 − −

Explicit
Sub-case 1

Rayleigh
Damping

0.005 4.50268× 10−5 4.27754× 10−5

Explicit
Sub-case 2

Rayleigh
Damping

0.005 4.50268× 10−5 5× 10−6

Table 5.6: Review of transient analysis scheme for Case 4

Eigenfrequency analysis

The eigenfrequencies and mode shapes are first identified for the mode. Since
the double-fixed boundary condition was changed to free at top edge with a high
density steel beam, the eigenfrequency was reduced a lot compared to the model
in quasi-static analysis. The mode shapes and the corresponding eigenfrequencies
related to the vibration in seismic excitation’s direction are presented in Figure 5.21.

Compared with the Fourier spectrum of the input seismic signal (Figure 4.15), in
which most of the energy was contained by the frequency components below 12Hz,
it can be predicted that the response of the structure to this seismic input will be
governed by the first vibration mode.

Displacement responses of node #2

The transient analysis scheme using implicit method was performed according to
Table 4.19, and explicit method according to Table 4.20. The relative displacement
time history of node #2 with respect to the base is plotted in Figure 5.22a and
Figure 5.22b.
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(a) 10.707Hz (b) 85.240Hz (c) 217.050Hz

Figure 5.21: Eigenfrequencies and mode shapes
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Figure 5.22: Relative displacement time history of node #2 with respect to the base

Both methods produced reasonable displacement response. Two explicit sub-
cases with different explicit time step ∆tex provide the same solution again, because
they are both equal or smaller than the min{∆tcrit}, in another word, satisfy the CFL
stability condition. Differences could be observed in the results. The comparison
and discussion will be made later with referring to other aspects of the results.

Eigenfrequency evolution in seismic analysis

The first eigenfrequency of the masonry wall was checked every 0.5s through the
seismic analysis. Evolution of the first eigenfrequency is plotted in Figure 5.23,
together with the relative displacement of node #2 at every time point.
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Figure 5.23: Evolution of the first eigenfrequency of the structure and relative displacements
of node #2 at corresponding time points
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The results show that the first natural frequency didn’t surpass the value when
structure is in linear elastic phase. The values of the first natural frequencies dur-
ing the seismic analysis is calculated of the current deformation or crack state of
the material, which means at the moment when all cracks are closed, the natural
frequency reaches the value of linear elastic phase, and when cracks open again
the material has softer stiffness and frequency decreases. Therefore, it can conclude
that for material has softening behavior, the critical time step for explicit method
determined based on the linear elastic phase is always safe and satisfy the CFL
stability conditions.

Hysteresis curve of base shear force versus relative displacement of node #2

The base shear force are calculated by summing up the nodal reaction force at the
base edge of the model. The hysteresis curves of base shear force versus relative
displacement of node #2 are plotted in Figure 5.24.
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Figure 5.24: Hysteresis curve of base shear force versus relative displacement of node #2

The hysteresis curves from both methods have good agreement with each other
on maximum shear force, energy dissipation and reloading-unloading behaviors.
The explicit sub-cases show the same results again. However, the explicit solutions
show much smoother than the implicit solution, in which slightly chaos values oc-
cur after the largest hysteresis loop. This implies that it is hard for implicit method
to reach convergence criterion after the strong peak of the seismic signal.

5.5.3 Comparisons and discussions

Since the explicit sub-cases get the same solution, therefore the sub-case 1 is used
for the following comparisons.

First, the comparison of displacement obtained from implicit method and explicit
method are plotted together inFigure 5.25. Based on comparison, two time intervals
are zoomed in to show better views of the differences in response, plotted in Fig-
ure 5.26a and Figure 5.26b. Fast Fourier Transform (FFT) is also applied on both
solutions, as shown in Figure 5.26c.
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Figure 5.25: Comparisons between implicit and explicit method solutions of relative dis-
placement time history of node #2
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Figure 5.26: Differences in displacement responses and Fourier spectra

The differences show after the peak displacement response, the explicit solution
shows larger amplitude vibration after the peak response than the implicit solu-
tion, this can be observed either in time interval of 1.5s− 5s or 7.5s− 9s. Then, the
amplitude difference gradually disappears if no other peak arrives. This implies
that more energy was dissipated in implicit method solution for the strong base
acceleration than the explicit solution. This can be proved in the Fourier spectra
of the response. Compared with the spectra with the input seismic signal, both so-
lutions include the same dominant frequencies contents of the input signal, which
is between 1− 4Hz. Moreover, the responses also have the first natural frequency
content at around 9.5Hz, the value is slightly smaller because the damping is in-
troduced. That means the first natural mode was activated by the seismic signal,
however, the explicit spectrum has mush larger magnitudes around the first natu-
ral frequency than implicit spectrum. So, in total, the energy contained in explicit
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spectrum is larger, because the implicit dissipated more energy due to the nonlinear
behavior of the model.

To have a insight view of the nonlinear behavior in the seismic response, few
figures about crack pattern, which is indicated by the state parameter NCRACK = 1
(in this case red color), at different time point during the time interval 1.5s− 2.5s
are presented in Figure 5.27.

(a) 1.755s (b) 1.845s (c) 1.885s (d) 2.500s (e)

(f) 1.755s (g) 1.845s (h) 1.885s (i) 2.500s (j)

Figure 5.27: Crack patterns development during 1.5s− 2.5s: (a)-(d) implicit solutions; (e)-(h)
explicit solutions

It can be observed that the implicit solution has more cracks occur than explicit
solution during the strong peak acceleration of the seismic signal, therefore, more
energy is dissipated through these cracks for implicit solution.

The comparison of the hysteresis curves plotted in Figure 5.28 also show this
difference in energy dissipation. Though, the difference are not obvious, but still it
corresponds to the nonlinear behavior of the model.

Figure 5.28: Comparisons between implicit and explicit method solutions of hysteresis
curves of base shear vs relative displacement

In general, it can be concluded that for this masonry wall model with quasi-brittle
material properties, both implicit and explicit methods could generate reasonable
nonlinear dynamic response. The peak displacement responses are close to each
other for the solutions from both methods. Similar crack patterns were observed
during the seismic analysis. The energy dissipated due to the nonlinear behavior
can be represented in the hysteresis curves.
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However, slightly differences in nonlinear dynamic response under intense base
acceleration are observed. The explicit method solution show less cracks and less
energy dissipation than the implicit method solution, meanwhile, the displacements
responses after the peak displacement are also larger because less material cracked
or failed. The difference could be resulted from the fact that implicit method may
have problems to reach the convergence criteria when significant nonlinear behavior
was activated due to the strong motion of the base. The chaos part in the hysteresis
curve of implicit solution provide some clues for this reason. The explicit method
has no convergence problem for nonlinear behavior of the material, and its solutions
also show very smooth transitions for cracks and energy dissipation process. This
illustrates the advantage of the explicit method for the nonlinear dynamic problem.
However, the disadvantage is that very small time step is required, in this case,
with regular geometry and well-meshed model, the critical time step still reaches
min{∆tcrit} = 4.50268× 10−5s, as a result, it takes longer time to be finished than
implicit method.

5.5.4 Additional analysis: using the explicit critical time step in implicit method

According to the comparisons above, the most significant factor for difference ex-
isting between implicit and explicit solutions is the convergence problem in the
implicit method. The convergence problem will occur when nonlinear behavior
happens in a relatively large time step in the implicit method so that the equilib-
rium of the system is hard to satisfy in a limit number of iterations.

This convergence problem could be eliminated using very small time step in the
implicit method. When the time step is extremely small, the stiffness could be seen
as linear within each time step, so the iteration will converge very fast.

To compare the all converged solution in implicit method using very small time
step with the explicit method solution, which involves no iteration process, one
specially analysis using implicit method with time step equaling to explicit critical
time step value is performed.

However, in this way, the most important advantage of implicit method, which
is unconditional stability with large time step, is abandoned. Using such a small
time step will make implicit method run extremely long. One can expect a very
good agreement between implicit and explicit solution, since all iterations should
converge immediately, but this kind of implicit method strategy is neither economic
nor practical. Still, it could provide an insight view of influence of convergence dur-
ing iteration process. Hence, the detailed analysis scheme and results comparison
are presented in Appendix C.
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5.6 case 5
According to the preliminary analyses described in Section 4.6.5, the simplified
model of the masonry house is used for seismic analyses, as shown in Figure 4.34.
The transient analyses schemes are listed in Table 4.27 and Table 4.28. The eigenfre-
quencies of the model will be identified first. Then the displacement time history of
the first floor level and the hysteresis curves about base shear versus first floor av-
erage displacement will be checked. Also, the deformed shapes and crack patterns
will be compared between implicit and explicit method solutions.

Review of analyses schemes

Analyses Damping ∆tO [s] min{∆tcrit} [s] ∆tex [s]

Implicit
Rayleigh
Damping

0.005 − −

Explicit
Sub-case 1

Rayleigh
Damping

0.005 1.8485× 10−6 5× 10−5

Explicit
Sub-case 2

Rayleigh
Damping

0.005 1.8485× 10−6 1× 10−5

Explicit
Sub-case 3

Rayleigh
Damping

0.005 1.8485× 10−6 5× 10−6

Explicit
Sub-case 4

Rayleigh
Damping

0.005 1.8485× 10−6 1.756× 10−6

Table 5.7: Review of transient analysis scheme for Case 5

5.6.1 Eigenfrequency analysis

The eigenfrequency analysis was first performed to identify the dynamic properties
of the simplified model. The first four vibration modes in the direction of seismic
input were identified and shown in Figure 5.29.

(a) 13.414Hz (b) 27.939Hz (c) 29.480Hz (d) 38.538Hz

Figure 5.29: Mode shapes of the simplified model

Since the Fourier spectrum of seismic signal shows that most of energy is carried
below the 12Hz, the first vibration of the model will be the utmost important in seis-
mic analysis. Compared to the natural frequencies and mode shapes of full model
of the house, which are shown in Figure 4.28 and the similar mode shape in seismic
input direction is at frequency 15.7Hz, the simplified model doesn’t significantly
change the dominant vibration mode of the structure.

5.6.2 Added mass ratios

To save computational time, first three explicit sub-cases have time steps larger than
the critical value according to CFL condition. Therefore, extra artificial mass was
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added on the model depending on the actual adopted explicit time step. The results
of added mas ratio in each explicit sub-case are given in Table 5.8.

Explicit
sub-cases

∆tex,i [s]
Total mass

[kg]
Added mass

[kg]
Added mass

ratio

Sub-case 1 5× 10−5 8.47× 105 8.25× 105 97%

Sub-case 2 1× 10−5 5.23× 104 2.97× 104 57%

Sub-case 3 5× 10−6 2.76× 104 4.93× 103 18%

Sub-case 4 1.756× 10−6 2.26× 104 0 0%

Table 5.8: Added mass ratios in each explicit sub-case

The first sub-cases have more than 50% of added mass, so the overall dynamic
properties of the model might be significantly changed, one can predict that huge
differences may occur between implicit and explicit method.

The explicit sub-case 3 has relatively small added mass ratio, which is 18%. The
positions of these elements with added mass were checked. It turned out that the
mainly added mass was concentrated on the first floor level, including some beam
elements and curved shell elements. The reason is that first floor structure has
the material of timber, which has low density, also the timber floor is quite thin,
therefore, the masses of elements of the floor are small. As a result, the natural
periods of these elements are small compared to those of masonry wall elements.
However, this means the nonlinear behavior of the masonry wall will not be strongly
influenced. The results of implicit and explicit method may have differences, but
the magnitudes of them won’t be very large.

As for the explicit sub-case 4 with zero added mass, the model has completely
same properties as the original model, the similar solution should be expected for
implicit and explicit methods.

5.6.3 Relative displacement response at first floor

The relative displacement of the first floor level is obtained at the same locations
shown in Figure 4.31. The displacement solutions are compared between the im-
plicit method solutions and four explicit sub-cases solutions.

East side

The solutions of relative displacement at the east side of the first floor are plotted
in Figure 5.30a to Figure 5.30e, and in these figures, the implicit method solution is
selected as the reference.

Since the first three explicit sub-cases have ∆tex larger than the min{∆tcrit}, the
solutions of them have huge deviations from the implicit solution. However, the
explicit solutions are approaching the implicit solution with smaller explicit time
steps ∆tex. Finally, with ∆tex = 0.95× min{∆tcrit} = 1.75603× 10−6s in explicit
sub-case 4, the explicit method solution matches the implicit method solution for
the relative displacement at first floor east side.

West side

The solutions of relative displacement at the west side of the first floor are plotted in
Figure 5.31a to Figure 5.31e, the implicit method solution is selected as the reference
again.

The similar approaching process could be observed for west side relative displace-
ment as the east side. The explicit sub-case 4 finally has a very close solution to the
implicit method solution. Slight difference could be observed in the peak values of
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the response, the explicit sub-case 4 has higher amplitudes for these peaks than the
implicit solution. In general, they have a very good agreement.
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(a) Implicit method solution
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(b) Explicit sub-case 1
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(c) Explicit sub-case 2
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(d) Explicit sub-case 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Time [s]

-0.1

0

0.1

D
is

p
la

ce
m

en
t 

[m
m

] Relative displacement first floor East side

Implicit, t=5E-3

Explicit, sub-case 4: t
ex

=1E-6

(e) Explicit sub-case 4

Figure 5.30: Relative displacement response at first floor East side
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(b) Explicit sub-case 1
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(c) Explicit sub-case 2
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(d) Explicit sub-case 3
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Figure 5.31: Relative displacement response at first floor West side
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5.6.4 Hysteresis curves of base shear versus first floor average displacement

The first floor average displacement is calculated by taking average of east side
and west side displacements. The base shear forces are obtained by summing up
reaction forces at all base nodes in seismic input direction. The resulting hysteresis
curves of implicit method and explicit method solution are plotted in Figure 5.32,
and based on the displacement results, the explicit sub-case 4 is plotted for later
comparisons.
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Figure 5.32: Hysteresis curves of base shear versus first floor average displacement

It can be observed that both methods have a good agreement, while the explicit
method solution shows lower base shear forces for positive displacement on first
floor level and slightly higher energy dissipation than implicit solution.

5.6.5 Deformed shapes and crack patterns

The deformed shapes of the model are almost the same for both methods, the re-
sults from explicit sub-case 4 at the maximum positive and maximum negative
displacement moments aer shown in Figure 5.33.

(a) 1.795s (b) 2.005s

Figure 5.33: Deformed shapes of the model from explicit sub-case 4

The deformed shapes show that the first vibration mode in seismic input direction
mainly governs the dynamic response of the model.

The final crack patterns are shown in Figure 5.34a and Figure 5.34b. The similar
crack patterns were generated. The dominant cracks were at bottom edges of the
north and south wall due to the out-of-plane vibration, and these cracks also devel-
oped along the diagonal from bottom edge to the lower corner of the opening on
the wall. The cracks occur at the upper boundary of the wall is mainly due to the
beam and anchor connections, the self-weight of the floor and extra mass blocks
give large additional vertical load to this beam-wall point connections. The main
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difference in the crack pattern was at the north lower corner of west side wall, at
where the explicit has more cracks and larger crack widths.

(a) Implicit solution (b) Explicit sub-case 4

Figure 5.34: Final crack patterns of the model

5.6.6 Comparisons and discussions

The results from implicit method and explicit sub-case 4 generally match each other
very well. Minor differences were observed, such as the peak displacement response
on west side of first floor level, it also corresponds to the differences in crack pat-
tern and hysteresis curves. The possible reason is still from the different incremental
procedures of implicit and explicit methods. The implicit method has the risk of
no convergence problems when the nonlinear behavior happened. Especially un-
der strong base acceleration, the implicit might take lots of iterations to reach the
convergence.

Thanks to the mass scaling technique, few time steps larger than the critical value
could also be used in explicit method to improve the speed the the analysis. How-
ever, the influence of the mass scaling, as presented in displacement responses, is
significant. The percentage of the added mass ratio need to be controlled under a
small value. Otherwise the results cannot represent the real response of the struc-
ture. Moreover, once added mass ratio is using in the model, one should also check
th positions and properties of these elements which are applied added mass. If the
added mass was applied to the elements that has minor influence on the dynamic
properties of the structure, the results could be considered acceptable. On the con-
trary, if these elements are at critical part of the structure or around the interested
location, the mass scaling must be used carefully and its effect must be considered
in the analysis.

Besides the mass scaling technique, one can also consider directly removing the
elements that limit the critical time step for the explicit method. Again, this modi-
fication also need to be consider the influence of the removed elements and should
used with great care.

Overall, the Case 5 illustrate the theoretical viability of both implicit and explicit
method for real structure seismic analysis. For the structure with significant nonlin-
earity, the explicit method may be more preferable than implicit method due to no
iteration involved. To use the explicit method, the model of the structure model may
need modifications. With proper modifications and careful control of mass scaling
effect, the explicit method could reproduce the real response of the structure very
well.



6 C O N C L U S I O N S A N D
R E C O M M E N DAT I O N S

6.1 conclusions
In this research, the commonly used direct time integration methods in dynamic
time-history analysis, i.e., implicit Newmark method and explicit central difference
method, are used in five cases studies. The first three cases are using linear elastic
materials, and the last two cases with quasi-brittle nonlinear materials are selected
from the laboratory tests conducted by Graziotti et al. [2016]. The transient analyses
using implicit method and explicit method are all performed in finite element soft-
ware DIANA FEA 10.3. The results of the two methods are obtained and compared
in several aspects to investigate the differences and evaluate the performances of
both methods.

To perform the transient analyses, the finite element model of each case was
first built up. For the first three cases, the models include a simply-supported
elastic beam, a double cantilever elastic beam, and a simply-supported thin plate.
Then harmonic point, transient point load, and distributed out-of-plane transient
load are applied to the first three models, respectively. For the last two cases with
quasi-brittle nonlinear material properties, the finite element model was built up
according to the laboratory tests, including a masonry wall and a full-scaled clay
URM house. The quasi-static pushover analyses were first performed to validate the
finite element model. Then seismic loads were applied, and necessary modifications
were made to perform the analyses.

Then a series of analyses were performed in each case in order to investigate the
influence of the adopted time step, which is the most important parameter for the
direct time integration method.

Finally, comparisons were made between the results obtained from implicit method
and explicit method. The comparison was made mainly in displacement responses
for the first three cases, and also in crack patterns and capacity curves for the last
two cases.

From the analyses and results comparisons, the following conclusions can be
drawn to answer the sub-questions and finally reach the answer to the main re-
search questions of this thesis:

For linear elastic material:

• In all three cases, the displacement responses of the linear elastic material
could generally be reproduced accurately by using proper time steps in im-
plicit and explicit methods.

• In the explicit method, using the critical time step, determined by CFL stability
conditions (∆tex = min{∆tcrit}), could generate accurate responses of the sys-
tem. Further decreasing of the adopted time step, i.e., ∆tex < min{∆tcrit}, is
not necessary to improve the accuracy for explicit method solutions. Instead,
decreasing the output time step ∆tO is more likely to improve the resolution of
the results, as a result, provide more accurate presentations of high frequency
vibration modes.

• The adopted time step (∆t in implicit method and ∆tO in explicit method)
has a more significant influence on the solutions from implicit method than

79
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that from explicit method. This can be observed from comparisons in Case 2

and Case 3. The solution of implicit method with small ∆t has more accurate
displacement responses and more high frequency contents than the solution
from large ∆t. However, in the explicit method, the solution is the same for
different ∆tO. It means the explicit solutions always contain the same dis-
placement response and high frequency contents no matter how long is time
interval for output. However, this accuracy will be lost when the time step is
not small enough in implicit method. Since the unconditional stability of the
implicit method, these lost or changes of the accuracy in solutions are hard
to be detected, which could be a problem when high frequency vibrations are
important to the analysis.

• The above conclusion is also proved in the Case 3 stress comparisons. It also
illustrates that though the displacement responses have no visible difference
between implicit and explicit solutions, the stress responses could show dif-
ferent high frequency vibrations as well, and explicit method could maintain
the accuracy better than implicit method.

For quasi-brittle material

• In general, both implicit and explicit methods could reproduce the dynamic
responses of the structure with quasi-brittle material in terms of displacement
response, hysteresis curves, and cracks patterns.

• The results of eigenfrequency evolution analyses show that for quasi-brittle
material, which has softening behavior due to the nonlinearity, the critical
time step determined by CFL stability condition ∆tex ≤ min{∆tcrit} based on
the initial linear elastic stage will always satisfy the stability condition when
the nonlinear behavior is activated.

• Similarly to the conclusion in linear elastic material cases, further decreasing
of the adopted time step is not necessary to improve the accuracy for explicit
method solutions.

• Slight differences between implicit and explicit methods may exist for the
strong nonlinear behavior of the model. The implicit method could have diffi-
culties to reach convergence during the integration, especially when the time
step ∆t is relatively large. Non-converged iterations or hardly converged it-
erations could lead to structure cracking earlier or later than the real situa-
tion. The explicit method shows its advantage for no iteration involving. The
solutions of explicit method have smoother displacement transitions and hys-
teresis curves. For this reason, the explicit method should be recommended
for the analyses with nonlinear material properties. However, the disadvan-
tage is the limitation in critical time step. Both Case 4 and Case 5 require
very small time steps to keep explicit algorithm stable. As a result, very long
computational time is needed.

• The mass scaling technique could improve the speed of the explicit method
by adding artificial mass on specific elements and allowing ∆tex larger than
min{∆tcrit} of the original model. In this way, the finite element model is
changed. Therefore, one should carefully check the locations of mass-scaled
elements and evaluate the reliability of the results of explicit method.

6.2 recommendations
To have a general conclusion about in which situation either implicit or explicit
method should be recommended, more general and realistic cases are still needed
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to be studied. Based on the analyses and conclusion presented in this thesis, I
would like to give the following recommendations for future research:

• A series of sequenced incremental scaled seismic signals could be considered
to be applied to the model, in this way, the analyses could be performed with
consideration of accumulated damage of the structure.

• Other types of connections (e.g., structural interface, spring-dash connection),
rather than rigid connection, for the models of real structures could be consid-
ered in the analyses.

• Different types of nonlinear behaviors could be studied for implicit and ex-
plicit methods, such as stiffening or yielding.

• Other popular implicit and explicit time integration methods could also be
used for comparisons to show their advantages/disadvantages and give valu-
able recommendations.
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A A P P E N D I C E S

The interested preliminary results in Section 4.6.5 are shown in Figure A.1 to Fig-
ure A.4.
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Figure A.1: Comparisons of displacements time history of the first floor West side and roof
level
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Figure A.2: Comparisons of displacements time history of roof level
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(a) Displacement envelope for East side
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Figure A.3: Comparisons of displacement envelopes (Height level 0, 1, 2 represent ground,
first floor and roof levels respectively)
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Figure A.4: Comparison of Base shear vs first floor average displacement
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Some typical positions of added mass elements in preliminary explicit analysis in
Section 4.6.5 with explicit time step ∆tex = 5× 10−6 of original FE model, as de-
scribed in Section 4.6, are given below, note these figures only show some typical
elements which have added mass, not the all added mass elements in this model.

(a)

(b) (c)

Figure B.1: Typical locations of added mass elements

All elements of timber floor structure have added mass. The reason is that com-
pared to the masonry, the timber has much less density, therefore the elements of
timber floor structure has relatively small natural periods. Then, some irregular
shape elements and small volume have added mass, the reason is similar to above,
i.e., small volume will cause small mass, and finally small natural period of the
element.
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This appendix shows the additional analysis described in Section 5.5.4. This anal-
ysis is using the implicit method with a time step equaling to the explicit critical
time step value. The analysis scheme is shown in Table C.1.

Implicit method Newmark method

Time step ∆tIm 4× 10−5s

Total steps NIm 22500

Output time interval 0.005s

Table C.1: Analysis scheme for the additional implicit method

The solution of this additional analysis about relative displacement at top left
node of the masonry wall is compared with the original implicit analysis solution
and explicit analysis solution, as shown in Figure C.1 and Figure C.2.
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Figure C.1: Comparisons between additional implicit analysis and original implicit analysis
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Figure C.2: Comparisons between additional implicit analysis with explicit analysis

It can be observed that once the implicit method is using a very small time step,
e.g., critical time step for explicit method, the solution of implicit method will be
exactly the same as explicit method solution. Compared with the original implicit
analysis, which uses a large time step, it can conclude that extremely small time
step could overcome the convergence problem in implicit method for nonlinear
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behavior of the structure, and the fully converged solution completely agree with
the explicit solution. However, using very small time step in implicit method is
very expensive in computation, and also it abandoned the most important benefit
of using implicit method, i.e., unconditional stability which allows using large time
step to save computational effort. Above all, implicit method with very small time
step is not recommended, since it is neither economic nor practical.
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