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Abstract

In recent years, the need for heritage preservation and reconstruction has become evi-
dent as many mature buildings face the risk of deterioration, damage or loss due to fac-
tors such as urban development, environmental weathering as well as outdated infras-
tructure. This urgency has created surges of significant interest to find sustainable meth-
ods of heritage preservation. The rise of emerging digital technologies has introduced
a multitude of innovative methods for storing, analysing, and showcasing building data.
Technologies such as 3D LiDAR scanning, and Building Information Modelling enable de-
tailed documentation and virtual exploration of heritage sites, while digital databases and
archives facilitate the easy access and use of historical records. This project will attempt
to address a new method of heritage preservation by using Gaussian Splatting in con-
junction with segmentation methods to create a visually accurate model while also incor-
porating semantic labels. The project’s outcomes and source code used can be found at
https://github.com/ShawnTew/Synthesis-Project-Group-4.

Key Words: Heritage, Gaussian Splatting, Building Information Modelling, Preservation,
Segmentation, 3D modelling
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1 Introduction

In 2019 a huge fire broke out in the Notre Dame in Paris. For the reconstruction process of
the Notre Dame a 3D Building Information Model (BIM) model was used based on a point
cloud. It helped the process by showing the cathedral’s structure, something that was miss-
ing from the old 2D drawings which were based on clay models from that era. But the model
also helped by facilitating efficient site logistics, helping to plan the placement of cranes and
worker access, while aiding in construction sequencing and risk management. Overall, these
technologies accelerated the reconstruction process. (Fausto-Robledo [2021])

The example above shows the importance of capturing a 3D model of a heritage building
such as the Notre Dame. Heritage buildings are significant parts of our history and culture.
They include buildings, structures, objects, and places that have historical, artistic, societal,
or architectural significance (Al-Sakkaf et al. [2020]). Documenting these buildings in 3D
helps preserve them for future generations while keeping their artistic and architectural
features intact (Khalil et al. [2021]). Additionally, 3D models allows the user to explore and
understand the building’s history more thoroughly (Khalil et al. [2021]).

The challenges in creating Heritage BIM include the need for new parametric modeling ap-
proaches, broader construction categories, specialised tools for heritage, enhanced informa-
tion accuracy, and flexible representation of historical transformations (Cursi et al. [2022]).
By using Gaussian ellipsoids, it enables rapid 3D reconstruction and real-time rendering,
thus facilitating low-cost, high-quality content creation (Wu et al. [2024]), which could make
it possible to capture the unique features of heritage buildings with high quality. Combining
the Gaussian splats with labels, representing their building part or other features, could be
used as a HBIM in a certain way. So creating a Smart Gaussian Splatted point cloud. This
leads to the following research question: To what extent can a segmented Gaussian splatted point
cloud support the heritage Building Information Modeling workflow?.

First, some key words are explained. BIM is a digital representation of the physical and
functional characteristics of a facility, serving as a shared knowledge resource for decision-
making throughout the lifecycle of a building, from design and construction to operation and
maintenance (Internationl [2013]). Gaussian splatting is a 3D technique that builds a scene
using small, overlapping shapes (Gaussian functions) to create a realistic view, refining the
scene to look as close to real life as possible (Wu et al. [2024]). Figure 1 shows an example of
a Gaussian splatted building. A segmented Gaussian splatted point cloud means the splats
are segmented into clusters.
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Figure 1: Example of a Gaussian splatted Church (Best viewed in Adobe Acrobat).

This report is structured as follows. The related work is covered in Chapter 2. Chapter
3 describes the methodology, it first explains the acquisition and preparation of the data,
following the use of Gaussian splatting, segmentation methods and the labeling. The section
ends with describing a visual- and label assessment. After the methods, the results of the
data collection, Gaussian splatting methods and the segmentation methods are presented in
Chapter 4. There will be an intermediate conclusion in that section followed by a chapter
about the validation of the results. Chapter 5 explains the discussion: the limitations of this
research and challenges are displayed here. And the final part, Chapter 6, is the conclusion
of this research. Which will also describe further research.

1.1 Research Sub-question

Main research question: To what extent can a segmented Gaussian splatted point cloud
support the heritage Building Information Modeling workflow?.

To address this research questions, the below five sub-questions give guidance. Each one
targets a specific topic that helps clarify how Gaussian splatting and semantic labels might
improve workflows in heritage BIM. The sub-questions are as follows:
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What are the current digital preservation methods for heritage buildings, and how effec-
tive are they?
This section will start by explaining what heritage buildings are and why it is important to
capture them using 3D models. It will explore what makes a 3D model of a heritage building
suitable for different purposes. Next, it will review the current digital preservation methods,
highlighting their strengths and weaknesses. By looking at these methods, a benchmark can
be set to compare the method developed in this research with existing ones. Additionally,
understanding the quality control of these methods will help in evaluating and testing the
research approach.

How do different data collection devices (e.g., GeoSLAM, stereo cameras, phone cameras)
impact the quality and usability of point clouds for heritage BIM restoration?
The data collection results may vary in terms of precision and capability as this research
attempts to use different devices. High end devices such as the GeoSLAM are used in
professional cases and can produce high-resolution and accurate point clouds. In contrast,
stereo cameras as well as smart phones may offer greater accessibility but will end up sacri-
ficing accuracy and detail, specifically when attempting to capture intricate details at larger
distances.

By comparing the outputs of these devices, the project will assess how the difference in
resolution, precision and depth capture can impact the overall quality of the output point
clouds. This will help determine whether more accessible devices can be reliably used for
capturing heritage buildings.

Does Gaussian splatting improve point cloud clarity and segmentation results compare
to traditional point cloud rendering and original parameters?
The traditional method of representing point clouds is point cloud rendering, where each
point is typically rendered with colour. However, these points may seem disconnected typi-
cally in regions of sparse point distribution. In contrast, Gaussian splatting treats each point
as the center of a Gaussian distribution, allowing for smoother transition between points this
may help improve overall visual clarity and reduce harsh edges or gaps seen in traditional
methods (Cai et al. [2024]).

Furthermore, adding layers of information such as Gaussian splatting parameters to the
dataset may enhance the categorical clarity of point clouds generated for classification such
as the spherical harmonic features. Through the incorporation of blind classification, this
research will aim to semantically label the point clouds according to specific heritage BIM
standards. This additional data will not only make the smart point cloud a visual tool but
also a source of semantic information allowing for a wider range of use and accessibility for
all possible stakeholders.(Poux et al. [2017]).

How can the appearance and precision of the smart point clouds be assessed?
To determine if a segmented Gaussian splat can effectively function as part of Heritage
Building Information Modeling (HBIM), the clusters and the visual quality of the Gaussian
splats will be evaluated. The assessment tries to find metrics or methods to see if the points
are clustered well and how well these splats represent the actual structure of the heritage
building.

How can the potentially improved point cloud be applied for HBIM preservation?
Improving clarity and classification performance of Gaussian Splatted point clouds can be
significant in the context of preservation and restoration for in the context of HBIM. By
smoothing transitions between points as well as reducing noise, Gaussian splatting can ease
the visualisation of heritage buildings clearly. This is crucial in the planning of restoration
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or preservation as it allows for conservators or architects to have a detailed understanding
of either the structural elements or design of a building (Cai et al. [2024]).

In addition, the interoperability of the produced smart point clouds is increased as it may
be integrated with BIM platforms to streamline workflows. The semantics added through
classification can aid in the conversion to parametric models which are important when
representing complex geometries of heritage structures (Thomson and Boehm [2015]).

1.2 Client Requirements

This research is in cooperation with two clients. The first client is Ying Wen Yu, a PhD stu-
dent at TU Delft. Ying Wen Yu, aims to use current technology and new digital innovations
to address and improve the process of the challenges in the infrastructure around 3D models
of heritage buildings. Below two of these challenges are mentioned, which will be useful for
this project.

1. One of the challenges mentioned in the research proposal of Ying Wen is the need for
high quality 3D models which is essential for the preservation, research, and educa-
tional purposes of the building (Megahed [2015]).

2. And another challenge is about effectively integrating with existing archives and datasets
while ensuring that the 3D models remain compatible, easily accessible, and retain
their integrity and detail (Shafique et al. [2020]).

This research is to help Ying Wen in the two mentioned challenges by using a Gaussian
splatting pipeline combined with semantic label —a novel method that offers improved
accuracy in point cloud reconstruction and classification. This approach aims to improve
accuracy and enhance the workflow for Heritage Building Information Modelling.

The secondary client is Florent Poux from 3D Geodata Academy. Florent is a geo data
specialist and has a large interest in point clouds as well as emerging digital technologies
in point cloud generation and processing. The team will provide Florent Poux with insights
and information on this pipeline, enabling him to share these advancements on his platform
about 3D graphics, point clouds automation. This collaboration will help others implement
similar techniques and address the second challenge of integrating new data with existing
datasets while maintaining accuracy and detail.
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2 Related Work

In this section, there are existing research related to Heritage Building Information Model-
ing (HBIM) in section 2.1 and 3D data acquisition for heritage conservation in section 2.2.
This section explore various methods for capturing and managing 3D data, including pho-
togrammetry, laser scanning, and Scan-to-BIM workflows, highlighting their significance
in documenting architectural heritage in section 2.3. This section further examine Gaus-
sian splatting and neural radiance field techniques, detailing their applications in enhancing
HBIM reconstruction and analysis in section 2.4 2.5 2.6. Finally, we discuss validation meth-
ods in section 2.7 for HBIM and point cloud segmentation, assessing approaches to ensure
accuracy and quality in heritage documentation.

2.1 Heritage Building Information Modeling

Building Information Models (BIM) are advanced modeling processes that generates, stores,
and manages data throughout a building’s lifecycle, from design to demolition (Penjor et al.
[2024]). It provides a digital representation of a building’s physical and functional charac-
teristics, serving as a reliable source for decision-making (Martinelli et al. [2022]). A BIM
is centered around a 3D model with a combination of the measurable, numerical informa-
tion and the descriptive information of the building (Martinelli et al. [2022]) (Penjor et al.
[2024]).

A significant challenge in conserving many heritage buildings is the absence of original
construction designs, which are crucial for effective restoration and reconstruction efforts
(Acierno et al. [2017]) (López et al. [2018]). To overcome this, technologies such as 3D
scanning and photogrammetry are used to capture detailed models of the structures. These
models are then processed and refined for integration into BIM platforms (López et al.
[2018]). With the help of various software tools such as Autodesk Revit, ArchiCAD, Rhino,
and Dynamo it is possible to convert these point cloud datasets and orthographic photos
into a rich 3D model (López et al. [2018]). The main difference between HBIM and BIM
is the intended purpose: BIM focuses on new construction, while HBIM targets existing
buildings for conservation, restoration, and rehabilitation (López et al. [2018]). Another big
difference is the huge popularity of BIM models and HBIM is still an emerging approach
(López et al. [2018]).

The workflow of HBIM still contains challenges in every step. During data acquisition,
various data sources must be integrated, often facing challenges such as inconsistencies in
formatting and a lack of standardisation (López et al. [2018]). Besides that, the process of
converting point clouds to parametric models has its limitations: library limitations, manual
modeling and lack of detailed information (Radanovic et al. [2020]). Semantic interoperabil-
ity is hindered by the absence of standardised ontologies (López et al. [2018]). The modeling
process also struggles with the complexity of certain features (López et al. [2018]). And lastly,
the quality assessment, now point clouds are a lot of times compared to models which are
not the ground truth (Radanovic et al. [2020]).
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2.2 3D Data Acquisition Methods for Heritage Buildings

In recent years, 3D data acquisition methods such as digital photogrammetry, laser scanning,
and the Scan-to-BIM methodology have become fundamental for documenting and preserv-
ing architectural heritage. These technologies enable high-resolution, accurate representa-
tions of heritage structures, allowing for detailed digital records that support conservation
efforts. By capturing complex geometries and textures, they facilitate monitoring, restora-
tion, and impact assessment, thus offering invaluable tools for maintaining and studying
historical buildings with precision and efficiency.

According to the study of Moullou et al. [2023], digital photogrammetry and laser scanning
have become core tools for data acquisition and heritage management in archaeology. These
methods are categorised into image-based, non-image-based, and hybrid techniques, each
with distinct advantages. Image-based methods, such as UAV (Unmanned Aerial Vehicle,
commonly known as a drone) photogrammetry, provide high-resolution 3D models with
realistic textures; non-image-based methods, like terrestrial laser scanning, capture precise
geometric data rapidly; and hybrid methods combine both strengths to achieve accurate
geometry and detailed textures. With the advancement of technology, low-cost equipment
and streamlined processes have made high-quality 3D modeling more accessible, offering
new possibilities for the digital documentation and preservation of cultural heritage.

Similarly, the Scan-to-BIM methodology offers substantial benefits for architectural heritage
conservation. Based on Rocha et al. [2020]’s research, by integrating photogrammetry and
laser scanning into the BIM workflow, it enables accurate documentation of historical struc-
tures in their current state, which is essential for preservation efforts. This digital approach
enhances the preservation of architectural heritage, making it possible to maintain, restore,
and study historical buildings with greater precision and care.

As demonstrated by Kerbl et al. [2023], high-quality 3D scene representations can now be
generated from sparse point clouds produced during camera calibration, such as Structure
from Motion (SfM) data. This approach maintains continuous volumetric radiance fields for
optimised scene capture.

2.3 Data pre-Processing and Management

The proliferation of LiDAR and photogrammetry in heritage documentation has led to chal-
lenges in managing and processing large point cloud datasets. Several authors have high-
lighted key issues in this area.

Rocha et al. [2020] emphasise the importance of data cleaning and preparation of heritage
point clouds prior to analysis. In their case study, they found that pre-processing steps like
noise reduction and removal of unnecessary elements resulted in an optimised point cloud
with 12.6% fewer points, reducing computational requirements for subsequent modeling.
They used Autodesk Recap for this cleanup process, removing artifacts, extraneous objects,
and internal furniture. The management and organisation of large heritage point cloud
datasets is another significant challenge. Moullou et al. [2023] note that while abundant
point cloud data is now available for heritage sites, effectively managing this information
remains difficult. They argue this has created a need for specialists focused on data man-
agement and IT infrastructure in heritage studies.
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Proper data storage is critical for long-term preservation and reuse of heritage point cloud
data. Rocha et al. [2020] highlight that the shift to digital acquisition has moved much of
the data management burden from the field to the office, necessitating robust storage and
organisation systems.Moullou et al. [2023] stress the importance of metadata and paradata
in managing heritage point cloud data, arguing that this contextual information is crucial
for ensuring research transparency and reproducibility.

2.4 Gaussian Splatting

This report will use Gaussian Splatting as a core component of HBIM reconstruction and
preservation, this is crucial when capturing and documenting culturally significant struc-
tures. The application of Gaussian splatting in this context aims to improve the efficiency
and quality of HBIM applications through smart point clouds.

2.4.1 Gaussian Splatting Overview

Gaussian splatting is a relatively new technique used to create a smooth continuous visual
representation from discrete point clouds by converting each point with a Gaussian kernel.
This method addresses some limitations of traditional point based rendering such producing
hard edges and non-continuous visual representation.

This process begins with point conversion, where each point in the cloud is transformed into
a Gaussian function, this allows each point to represent more than a fixed point position.
Each Gaussian function provides information about the points position and the surrounding
space. Following this, key parameters are defined for each Gaussian, including, the point’s
mean which determines its central location. The covariance matrix is used to define the
shape, size, and orientation of the Gaussian. The colours of the Gaussian splat are deter-
mined by the spherical harmonic variables. These spherical harmonic attributes store light
information and changes the colour based on the orientation of the splat relative to the light
source. Opacity will also be defined as its own attribute, giving the points a transparency
value. The overall parameters will influence the shape, appearance, and distribution of each
Gaussian in space. This leads to the kernel definition stage where the points are converted
into splats formed by the parameters to create smoother groups from a discrete point cloud
that can be generated from images with SfM.(Bao et al. [2024]).

As the Gaussian splats are defined in the previous stage, they can now be projected onto a 2D
image plane. This projection translates 3D point cloud data into a 2D space for rendering
where their continuity allows for a smooth blending process, compared to harder edges
seen in discrete point based rendering. Furthermore, point cloud rendering cannot create
regions in the point cloud from unreconstructed areas in the SfM process. The continuity
of the splats allows a blending that process takes overlapping Gaussians to create smooth
transitions between points (Kerbl et al. [2023]).

Finally, the splats are rendered to generate a final, high quality 3D representation. By com-
bining the Gaussian splats into an overall image, the method enables fine detail in high-
density point regions. This makes Gaussian splatting well suited for complex scenes. This
ability to handle point clouds efficiently can create a variety of real time applications in
HBIM with high quality visualisations (Wu et al. [2024]). An example of this can be seen
below in figure 2 and figure 3 from Kerbl et al. [2023].
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Figure 2: Sparse Point Cloud

Figure 3: Gaussian Splat Example

2.4.2 Neural Radiance Field

NeRF (Neural Radiance Fields) is a method of creating high quality photorealistic views
of complex 3D scenes. The overall NeRF process utilises a continuous volumetric scene
function from a sparse set of input images with known camera poses. The scene is then
represented using a fully connected deep neural network that takes 5D coordinates as input
(3D spatial location as well as 2D viewing direction). The output of the network includes
both volume density and the emitted radiance at each point in space. Queries are then
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used on the 5D coordinates in combination with rendering techniques, a synthesised highly
accurate view of the scene can be created. Mildenhall et al. [2020]

NeRFs are traditionally a computationally expensive process. However, when used in com-
bination with Gaussian Splatting, the NeRF approach for visualisation becomes more effi-
cient. Gaussian splats in this case, replace the neural networks reliance on volumetric ray
marching with 3D Gaussian splats, which are representing the scene as discrete Gaussians
that are directly projected onto the image plane. (Kerbl et al. [2023]). This is important as
the readily available tools that will be used later in the methodology of this paper make use
of this process.

2.5 Gaussian splatting Post Processing

Before point cloud segmentation, processing steps are crucial for improving segmentation
accuracy and efficiency. In existing research, a series of processing steps are typically applied
to point cloud data before segmentation. These steps include denoising, filtering, and down-
sampling, aimed at enhancing point cloud quality and reducing the computational burden
of subsequent processing. For example, Rusu and Cousins [2011] proposed a statistical
outlier removal algorithm that effectively eliminates noise points from point clouds. Wang
and Shan [2009] developed a voxel grid-based downsampling method that significantly re-
duces data volume while preserving the main features of the point cloud. Furthermore,
Weinmann et al. [2014] introduced a multi-scale feature extraction method that enhances the
expressiveness of point clouds by computing local geometric features, laying a foundation
for subsequent segmentation tasks.

In indoor point cloud scenarios, identifying transparent elements (such as glass doors and
windows) is an important and challenging task. Currently, there are two main approaches
to address this issue. The first approach is based on geometric and reflective properties.
For instance, Koch et al. [2016] proposed a method combining laser reflection intensity and
geometric features to detect glass surfaces. The second approach leverages deep learning
techniques, which typically rely on specialised datasets containing annotated transparent
elements. For example, Funk et al. [2018] constructed a large-scale indoor scene point cloud
dataset with labeled transparent elements, including glass doors and windows, and de-
veloped a deep learning model to identify these elements based on this dataset. Another
emerging method utilises multi-modal data fusion, such as combining RGB images with
point cloud data. Research by Yang et al. [2016] demonstrates that this approach can signif-
icantly improve the accuracy of transparent object recognition.

However, directly applying Gaussian splatting techniques for point cloud segmentation is a
relatively new research direction. This method first requires exporting Gaussian splats into
standard point cloud formats, such as PLY files (Jurski [2024]). According to Kerbl et al.
[2021], each Gaussian splat contains the following feature information:

• Position: represented as a 3D vector

• Rotation: represented as a quaternion

• Scale: represented as a 3D vector

• Opacity: represented as a real number between 0 and 1

• Direction-dependent color: represented as spherical harmonics
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This representation method provides rich geometric and visual information for point cloud
segmentation tasks, potentially improving the accuracy and robustness of segmentation. But
the splat dataset for classification and segmentation is still not yet proposed.

2.6 Gaussian Splatted Point Cloud Semantic Classification

This section lays out the existing research that has been done into how pointclouds in general
can be enhanced using deep learning techniques.

Semantic SLAM Systems Using Gaussian Splatting Zhu et al. [2024] introduced SemGauss-
SLAM, which integrates semantic feature embedding with 3D Gaussian splatting for en-
hanced scene understanding in dense SLAM systems. Their work highlights the impor-
tance of semantic information in improving the accuracy of traditional SLAM systems. A
key lesson learned is that incorporating multi-view semantic constraints reduces drift dur-
ing tracking, resulting in more accurate map generation. Additionally, they demonstrate
that feature-level loss optimisation can improve semantic segmentation without negatively
affecting geometric reconstruction, emphasising the effectiveness of targeted optimisation
techniques.

Similarly, Ji et al. [2024] presented NEDS-SLAM, a dense semantic SLAM framework that
also leverages 3D Gaussian splatting. Their research focuses on the semantic consistency re-
quired for accurate mapping and pose estimation. The integration of semantic information
greatly improves map quality, allowing for a richer environmental understanding, which is
critical for robotics and augmented reality. Moreover, they emphasise efficiency in process-
ing, using lightweight models and efficient algorithms to balance high performance with
minimal computational cost—essential for real-time applications.

Feature Relevance and Optimisation in 3D Point Clouds Kumar et al. [2019] explored fea-
ture relevance in 3D point cloud classification using deep learning, emphasising that using
features from multiple search radii and neighborhood statistics enhances the accuracy of
classification compared to single-point features. This approach allows for better local fea-
ture extraction, which is critical for improving the generalisation of classification models.

Maturana and Scherer [2015] introduced VoxNet, a 3D convolutional neural network (CNN)
for real-time object recognition, but their approach shows limitations in handling dense
splatted point clouds. Although voxelisation can be useful for sparse point clouds, it is
less effective for dense splats, as it may reduce the resolution of the classification output,
requiring double voxelisation at the cost of higher computational complexity.

Semantic Segmentation Techniques in 3D Point Clouds Tchapmi et al. [2017] proposed SEG-
Cloud, a pipeline for semantic segmentation of 3D point clouds. While their method of-
fers a robust process for interior object classification, it does not outperform other similar
techniques and does not leverage Gaussian splatting. However, SEGCloud provides useful
insights into stepwise improvements in semantic segmentation pipelines.

Qi et al. [2017a] introduced PointNet, a seminal work in 3D point cloud segmentation that
only utilises raw 3D coordinates (x, y, z) without additional benefits from Gaussian splat-
ting. This method is notable for its ability to handle planar segmentation and its reliance on
large training datasets, making it a promising approach for future improvements in SLAM
applications . Building on this, PointNet++ Qi et al. [2017b] emphasised the importance of
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hierarchical feature learning and adaptability to non-uniform data, showcasing how process-
ing point sets at multiple scales improves performance by capturing both local and global
features.

Challenges in Feature Selection and Data Representation The work by Poux et al. [2016]
on smart point clouds highlights the importance of feature selection in 3D data classifica-
tion. Their research found that multiple search radii help in generalisation, while balanced
training data is essential for reducing misclassification, particularly in complex urban envi-
ronments.

Lastly Jurski [2024], the Semantic 3D Segmentation of 3D Gaussian Splats research explores
the challenges of obtaining ground truth data for new techniques like 3D Gaussian splatting.
Since segmented point clouds may lack texture, scale, and images, it becomes difficult to
compare results with traditional point cloud methods. Additionally, variations in covariance
matrix representation across different methods suggest the need for standardising these
representations for consistency in performance evaluation.

2.7 Validation

Al-Bayari and Shatnawi [2022] computes the accuracy of its scan-to-BIM process by com-
paring the measurements obtained from the laser scanner with those collected from a total
station. Sewasew and Tesfamariam [2023] developped a HBIM of a heritage building in the
port city of Massawa, Eritrea, by using an image-based method. The HBIM was validated
by architectural drawings from 1927. They compared f.e. Window Sill Height, the overall
width and the column capital height.

Laparra et al. [2016] show an image quality metric which might be interesting to assess the
visual quality of the Gaussian splats compared to the point cloud. In their research they use
a normalised Laplacian pyramid, which breaks an image into parts based on luminance and
local contrast at multiple scales, aiming to capture image features more similarly to how
humans perceive them.

Zhang et al. [2019] used the following indicators to evaluate the quality of deep learning-
based semantic segmentation for point clouds: (1) execution time, (2) space complexity, (3)
mean intersection over union, which looks at how well each category is labeled, and (4)
overall accuracy, which counts the total number of correctly labeled points.

2.8 Intermediate Conclusion

This chapter highlights recent advancements in HBIM and 3D data acquisition for heritage
conservation. HBIM, supported by methods like photogrammetry and laser scanning, en-
ables precise digital documentation of historic structures but faces challenges in data integra-
tion and standardization. Gaussian splatting emerges as a promising technique, providing
smooth, high-quality visualizations from point clouds, which is valuable for HBIM applica-
tions. Despite ongoing challenges in data management and validation, these advancements
offer powerful tools for the detailed and sustainable preservation of cultural heritage.

18



3 Methodology

The primary method will be introduced in this section before being validated against 2
datasets produced later in section 4.5. Figure 4 below shows the overall workflow of how to
create a Gaussian splatted point cloud from different sources. The different methods using
different tools will produce multiple point clouds, these will be compared against each other
before selecting the Gaussian splatted point cloud used for validation. In sections 3.1, 3.2,
3.3, and 3.4 further details are described of how each process will be carried out.

Figure 4: Overall Synthesis Project Workflow
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3.1 Data Acquisition

Data will be collected manually using multiple devices, namely the GeoSLAM (Geographical
Simultaneous Localisation and Mapping) and a mobile phone camera (iPhone 12 Pro). The
GeoSLAM is a mobile LiDAR scanner that was created for both indoor and outdoor mapping
and surveying, while the iPhone has built-in LiDAR scanners. SCANIVERSE (mobile phone
LiDAR scanning application) was also considered. However, the iPhone LiDAR scanner has
a limited range and did not allow for the scanning of a full building facade.

The iPhone camera utilises a 12 MP (Megapixel) camera to produce high quality images at
a resolution of 3024x4032 pixels as well as a built in LiDAR scanner to produce point clouds
with a range of 5 meters.

Meanwhile, the GeoSLAM, produces images at a resolution of 3840x1920 in a panaromic,
fish eye perspective. The LiDAR scanner of the GeoSLAM produces a point cloud with a
range of 100 meters.

The building chosen for this project is the Bouwpub, located behind the faculty of architec-
ture building. Not only is it a heritage building (Gemeente Delft [nd])but it also contains a
variety of different building parts on one facade. This allows for the segmentation methods
later in the project to be tested.

The GeoSLAM device requires a specific method of capturing the data where the start and
end positions need to have the same correct orientation and position. This means that the
user will have to circle back to the start position at the end of each scan. This ensures an
accurate trajectory path when creating camera poses as well as the overall image and point
cloud files.

3.2 Data Cleaning and Management

The data cleaning process for the heritage point cloud of the Bouwpub involved several steps
using COLMAP, and RealityCapture. This multi-step approach was designed to address the
unique challenges presented by the complex structure of the bouwpub and the various data
acquisition methods employed.

3.2.1 COLMAP Processing

COLMAP (Schönberger and Frahm [2016]), an open-source SfM and Multi-View Stereo
(MVS) algorithm, was used for the initial processing of images. The workflow included:

• Image Input: The input images include still photographs taken on-site (including
mobile phone photos and GeoSLAM fisheye panoramic photos) and frame extractions
from video footage.

• SfM Processing: COLMAP performed SfM to generate sparse point clouds and camera
pose estimations.

• Output: The results were saved in binary(bin) file format.

20



3.2.2 RealityCapture Processing

RealityCapture is a photogrammetry software used to generate 3D models and obtain pre-
cise camera pose information from a series of overlapping images. In this project, Reality-
Capture was utilised to process input images, align them, and export a CSV file containing
the camera poses. This section details the steps involved in the processing workflow with
RealityCapture and explains the outputs relevant to further analysis.

3.2.3 Image Alignment and Sparse Point Cloud Generation

The first step in RealityCapture processing is the alignment of photos, where the software
detects and matches common features between images to estimate the relative camera posi-
tions and orientations. This step produces a sparse point cloud, representing the structure
of the scene based on key points detected in the images. The sparse point cloud provides a
rough spatial structure and aids in verifying the quality of alignment between images.

3.2.4 Exporting Camera Poses

After image alignment, RealityCapture calculates the position and orientation (pose) of each
camera in relation to the scene. These poses are crucial for applications requiring precise
spatial registration, such as point cloud reconstruction and scene mapping. The camera
poses, which include parameters such as camera location (X, Y, Z) and orientation (rotation
angles or quaternion), are then exported as a CSV file. This CSV file serves as input for
subsequent processing steps, allowing for accurate 3D transformations and further data
integration.

3.2.5 Additional Data Preparation

In addition to the sparse point cloud and camera poses, RealityCapture provides options for
exporting additional metadata and camera calibration parameters. These options facilitate
integration with other tools or custom workflows that rely on consistent camera models.
For projects involving dense reconstruction, RealityCapture’s processing pipeline can also
be extended to create dense point clouds and 3D meshes, though these were not covered in
this project.

3.2.6 File Format Management

The diverse software tools and methods used in this research required careful management
of different file formats. To ensure consistency throughout the workflow, a standardized
output format was adopted: BIM models were stored in .ifc format, while point clouds
and Gaussian splat data were standardized to the .ply format. These file formats serve not
only as data storage but also as core representations for analysis and documentation.

For format conversion between different tools, several methods were implemented. Gaus-
sian splat data was converted to .ply format using custom scripts to retain point attributes
and spatial relationships. COLMAP outputs, which could be generated in either binary
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(.bin) or text (.txt) format, were handled according to specific tool requirements—the IN-
RIA method utilized binary files, while LOD3DGS required text format. COLMAP’s built-in
conversion functionality facilitated seamless transitions between these formats.

Additionally, custom code was developed to integrate GeoSLAM camera data and trajecto-
ries into the Gaussian splatting pipeline by transforming trajectory data into camera poses
using quaternion rotations and translations. This transformation aligned the data with the
expected input format for Gaussian splatting, as detailed in SectionSection 4.2.4. This stan-
dardized approach to file management ensured compatibility across different stages of the
pipeline while preserving data integrity.

3.2.7 Coordinated and Alignment

The IFC model was constructed based on the LiDAR point cloud, ensuring they share the
same coordinate system. However, the coordinate system from the SfM process in COLMAP
differs significantly from this reference frame, primarily due to the arbitrary scale and orien-
tation inherent in SfM reconstruction. This discrepancy needed to be addressed before any
meaningful comparison or integration could be performed. To resolve these coordinate sys-
tem differences, A point-to-point registration method was employed utilising Singular Value
Decomposition (SVD). This approach relies on manually selected corresponding points be-
tween the two datasets, followed by a direct SVD-based solution to compute the optimal
transformation matrix. The registration workflow consisted of three main steps:

1. Point Correspondence: Key points were manually identified in both datasets, ensuring
accurate and reliable correspondence between the SfM-derived point cloud and LiDAR data.
Let P = {pi}n

i=1 and Q = {qi}n
i=1 denote the corresponding point sets from SfM and LiDAR

data respectively.

2. SVD-based Scale and Transformation: First, The point sets were centered by subtracting
their centroids:

p̄ =
1
n

n

∑
i=1

pi, q̄ =
1
n

n

∑
i=1

qi

p′i = pi − p̄, q′i = qi − q̄

The covariance matrix was then constructed and decomposed using SVD:

H =
n

∑
i=1

p′iq
′T
i = UΣVT

The diagonal values in Σ provided the scaling factors, and the rotation matrix was computed
as:

R = VUT

The translation vector was then calculated as:

t = q̄ − sR p̄

where s is the scale factor derived from Σ.
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3. Final Registration: The complete transformation for any point p can be expressed as:

ptrans f ormed = sRp + t

This direct mathematical solution provided superior accuracy compared to iterative methods
like ICP, as it avoids the risk of converging to local minima.

3.3 Gaussian Splatting

In this section, the cleaned point cloud will be Gaussian Splatted using readily available
tools. Currently avaiable tools are Jawset Postshot, Polycam, Scaniverse, as well as a Inria
Tool developed for real time radiance field rendering in combination with Gaussian Splatting
(Kerbl et al. [2023]).

3.3.1 Inria Tool

The tool developed by Kerbl et al. [2023] applies memory efficient training using NeRF and
Gaussian Splatting as one integrated program. The utilisation of NeRF is used to gener-
ate high quality 3D scene reconstructions from input data such as sparse point clouds and
images. NeRF uses a volumetric approach to model complex geometries and lightning con-
ditions using deep learning techniques. However, with Gaussian splatting, this replaces the
ray marching process in NeRF reducing computational costs with 3D Gaussians as men-
tioned in 2.4.1.

Processing Software Input Format Files Required Notes

COLMAP *.bin, *.txt
cameras.bin, images.bin,
points3D.bin, or their
*.txt equivalents

Must include intrin-
sic/extrinsic camera
parameters and
sparse points.

Table 1: Input format for Command Line tool

As an output, it produces a .ply file and can be visualised in two ways, one with the system
for image based rendering (SIBR) as well as a real time viewer, specifically designed for this
Gaussian splatting process.

3.3.2 Jawset Postshot

Jawset Post Shot is a software created for fluid dynamics and visual effects (VFX) in 3D
rendering workflows Computing [2024]. Additionally, it utilises a similar method where
Gaussian Splatting and NeRF is used in combination in order to produce a visually appeal-
ing output. Jawset Postshot can intake a variety of inputs as shown in table 2:

PostShot uses images and a combination of other related files in order to produce a Gaussian
Splatted Point cloud as an output with the file extension a .ply. These input files can be
created with preprocessing methods discussed in 3.2.
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Processing Software Input Format Files Required Notes

COLMAP *.bin, *.txt
cameras.bin, images.bin,
points3D.bin, or their
*.txt equivalents

Must include intrin-
sic/extrinsic camera
parameters and
sparse points.

Reality Capture *.csv, *.ply *.csv (camera poses)
*.ply (sparse point cloud) Export camera poses

and point cloud sep-
arately. Ensure cor-
rect settings for ver-
tex colors and ASCII
export.

Table 2: Input Formats for Jawset Post Shot

In the case of this project, the input images can be combined with the other input files such
as .csv, .bin and .ply and imported into Postshot. In the case that only images are imported,
the program first starts with a camera tracking step. This is where Postshot will calculate
the image poses and create a sparse point cloud in order to begin the Gaussian splatting
and NeRF process. After the camera tracking step, the training for NeRF begins. Here it
is able to select the number of training steps to complete for training. In this project, the
number of training steps were set to 30,000 as a starting point recommended by the Postshot
user guide and the output can directly be viewed in Postshot. Results of this can be seen in
section 4.2.

3.3.3 PolyCam

PolyCam offers a web-based implementation and viewer of Gaussian splatting for 3D scene
reconstruction. The input consists of a set of overlapping images (.jpg or .png) or a video
(mp4) from different angles. By taking closer shots of the objects, the resulting 3D model
can have more fine-grained details. The process begins with Structure from Motion, which
estimates the camera positions and generates a sparse set of 3D points. This input is used to
generate a 3D splat model. Each image helps refining the scene by updating the parameters
of each 3D Gaussian. This is done by minimising the error between the rendered image and
the input image through back-propagation. This way, the scene is matched with the ground
truth images. The implementation of Gaussian Splatting in PolyCam is based on the article
of Kerbl et al. [2023]. (Polycam [2023])

It is not possible, at least for the free version, to (de)select any parameters. In addition,
PolyCam allows users to visualise the result directly in their web browser and making it
possible to measure distances in the scene. Besides that, it also provides the option to export
the 3D reconstruction in a traditional 3D mesh format when you have a payed subscription,
this costs $26.99 for one month. (Polycam [2023])

24



3.3.4 Scaniverse

Scaniverse is a mobile scanning application that require devices equipped with LiDAR sen-
sors or advanced depth sensors Niantic [2024]. Users can capture their surroundings record-
ing an object, and the app displays the scan in real-time, making it possible to do on-the-fly
adjustments. After scanning, the app generates a cloud of Gaussians and optimises them to
fit the scene. Users can then view the result and further improve the scan by retraining the
model using the ’Enhance’ button. The final scan can be shared directly through Scaniverse
or exported as a video.

3.4 Segmentation

The fourth step of the pipeline is to take the best result from step 3 Gaussian splatting and
segment the results. This segmentation was tested for both the dense point collected using
the GeoSLAM and the sparse Gaussian splatted point cloud. A total of four methods of
segmentation have been tried of which three methods have been passed on to the last step
of the pipeline which is the labeling. The section starts with discussing the attributes present
in a point cloud and the extra attributes calculated by Gaussian splatting. Then towards the
end of the section each method gets explained.

3.4.1 Attributes of a Point Cloud

Segmentation often occurs based on a set of features or attributes that are associated with the
segmentable elements of the object. In this case the object in question is a point cloud which
when collected using a camera equiped GeoSLAM scanner or through the SfM process with
the Phone camera has attributes assigned to each vertex. These attributes are as follows:

• X: Refers to the vertex position along the x-axis within a local coordinate system.
• Y: Refers to the vertex position along the y-axis within a local coordinate system.
• Z: Refers to the vertex position along the z-axis within a local coordinate system.
• R: Refers to the strength along the red color channel.
• G: Refers to the strength along the green color channel.
• B: Refers to the strength along the blue color channel.
• Intensity: Can be described as the brightness of the returned signal based on the

specular, diffuse and ambient as pect of the captured point (only present with the
GeoSLAM).

• Time: Refers to the time in which on of the reflected signals is returned with a valid
distance (only present with the GeoSLAM).

These attributes tend to show patterns when visualised in an n-D space. These patterns can
then be utilised by the segmentation methods to group them based on likeness.
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3.4.2 Attributes of Gaussian Splat

As explained before Gaussian splatting uses sparse point clouds. However the training
process does lead to an increase in the number of features present on each vertex. This
increase in number of attributes leads to an increase in complexity due to the number of
feature combinations. This set of attributes is not necessarily fixed as the .ply format allows
for more columns to be created using scalar values. This is merely a list of attributes that
are common to the Gaussian splatting methods that were applied during the research. For
the visualisation in Blender further discussed in 3.6 a new attribute was added to signify the
labeling. This labeling was created after the segmentation and does not impact the labeling
itself. The attributes used for the segmentation are as follows:

• X: Refers to the vertex position along the x-axis within a local coordinate system.
• Y: Refers to the vertex position along the y-axis within a local coordinate system.
• Z: Refers to the vertex position along the z-axis within a local coordinate system.
• NX: Refers to the length of the normal vector along the x-axis. The combined normal

vector is orthogonal the the geometricially visualised splat. The software outputs these
as zero.

• NY: Refers to the length of the normal vector along the y-axis. The combined normal
vector is orthogonal the the geometricially visualised splat. The software outputs these
as zero.

• NZ: Refers to the length of the normal vector along the z-axis. The combined normal
vector is orthogonal the the geometricially visualised splat. The software outputs these
as zero.

• F_DC
• F_REST
• Opacity: Sometimes also referred to as the alpha value which defines the see-throughness

of a splat in case of the captured point having opacity.
• Scale X: Refers to the scaling of the splat along the x-axis.
• Scale Y: Refers to the scaling of the splat along the y-axis.
• Scale Z: Refers to the scaling of the splat along the z-axis.
• Rotation X: Refers to the rotation of the splat around the x-axis.
• Rotation Y: Refers to the rotation of the splat around the y-axis.
• Rotation Z: Refers to the rotation of the splat around the z-axis.

As stated previously both the pointcloud and Gaussian splatting attributes are to be seg-
mented using four different segmentation algorithms. The results of which are shown in
section 4.

3.4.3 Segment Anything Model (SAM)

The Segment Anything Model (SAM) is a versatile and powerful image segmentation model
designed to segment objects within an image efficiently. It leverages an extensive pre-trained
foundation model that can handle a wide variety of segmentation tasks with minimal need
for fine-tuning. SAM operates on the principle of promptable segmentation, where user-
defined prompts, such as bounding boxes, key points, or free-form text, guide the seg-
mentation process. The model uses a combination of convolutional and transformer-based
architectures to extract detailed features and contextual relationships in the image, gener-
ating precise and high-quality segmentation masks. This allows SAM to be robust across
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diverse image datasets and adaptable to varying object scales and complexities. The hyper-
parameters for SAM include the size of the input image, the type of prompt provided for
segmentation, and parameters controlling the fidelity and resolution of the segmentation
masks.

This process first started with creating a spherical image of the point cloud as seen in figure
5. This was then followed by using the Segment Anything Model Automatic Mask generator
with set parameters to create a mask of the segments over the image shown in figure 6. 3
model checkpoints were available with basic, large, and huge. The huge model checkpoint
was selected in order to have the most accurate segments. The mask of the image was
then reprojected back to the points using pixel mapping created during the creation of the
mask and spherical image. However, this only reprojected points back onto the main face
of the point cloud. Points that were behind the main face were not coloured. Initially, it
was attempted to create 2 masks, one for the back face and one for the front face of th
point cloud, before merging it into one. However, this caused many problems as the mask
created for the front and the back did not align and different segments were created. To
solve this, a simple nearest neighbour method was employed using raycasting to colour all
corresponding unsegmented points. Results of this segmented point cloud can be seen in
section 4.3.

Figure 5: Spherical Image of Point Cloud
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Figure 6: Segment Anything Model Mask Projected onto the Spherical Image

3.4.4 k-Means Clustering

K-means is an iterative process that projects the points onto a nD-space and then using ran-
domly assigned groups determines a mid point and tries to minimise the distance between
the mid point centroid and the clusters. This when done on the same groups can be con-
sidered as a deterministic process meaning that it will always lead to the same results. The
hyper parameters for a method like this are the number of clusters to be calculated and
possible a stopping criteria based on the minimisation function.

3.4.5 Gaussian Mixture

Gaussian mixture refers to an iterative process that tries to estimate the Gaussian likely
hood of a point based on point that have been projected onto an nD-space which then gets
assigned to a set of Gaussian clusters. Each iteration the clusters and their assigned points
get slightly adjusted. The hyper parameters for the method are the number of clusters, The
covariance for the Gaussians width, the likelihood probability of a certain class and possible
a stopping criteria based on the Gaussian density function.

3.4.6 Density Based Clustering

Density-Based Clustering (DB Clustering), often implemented through algorithms like DB-
SCAN (Density-Based Spatial Clustering of Applications with Noise), is a method used to
identify clusters in a point cloud by examining the density of data points in the space. In-
stead of relying on a predetermined number of clusters, DB Clustering works by grouping
together points that are closely packed while marking points in low-density areas as outliers
or noise. The process begins by selecting an arbitrary point in the dataset and exploring its
neighborhood to determine whether it has sufficient nearby points to be considered a core
point. If so, a cluster is initiated, and all density-reachable points are recursively added to
this cluster. This continues until no more points meet the density criteria. Key hyperpa-
rameters for DB Clustering include the radius of the neighborhood (e) and the minimum
number of points required to form a dense region (minPts).
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3.5 Semantic Labeling

After the segments are created, each segment is assigned a label based on the building part
it represents in the IFC model (e.g., wall, roof, stairs, door, window, or canopy). Labeling
will be applied to a total of ten models:

• Results from k-Means clustering on the best Gaussian Splatting model, one with 7 and
one with 14 clusters.

• Results from Gaussian Mixture on the best Gaussian Splatting model, one with 7 and
one with 14 components.

• Results from k-Means clustering on the dense GeoSLAM point cloud, one with 7 and
one with 14 clusters.

• Results from Gaussian Mixture on the dense GeoSLAM point cloud, one with 7 and
one with 14 components.

• Results from the SAM method applied to both the best Gaussian Splatting model and
the dense GeoSLAM point cloud.

This labeling is done manually by looking at the precision and recall scores for each cluster
and each building part, as explained in Section 3.6.1.

3.6 Visualisation and Assessment

To address the third sub-question—whether Gaussian Splatting can improve point cloud
clarity and segmentation results compared to traditional point cloud rendering and original
parameters—two assessments will be conducted:

1. Label Quality: This assessment evaluates the accuracy of labels assigned to the points
in both the Segmented Gaussian Splats and the Segmented GeoSLAM Point Cloud,
where the GeoSLAM point cloud represents the traditional method. A ground truth,
created by Yingwen Yu, is used to verify label accuracy. This ground truth is based on
an IFC model of the Bouwpub’s front facade, derived from the GeoSLAM point cloud.
Details on calculating the label quality score are provided in Section 3.6.1.

2. Visual Clarity: This assessment scores the clarity of the point cloud to determine if
Gaussian Splatting enhances visual clarity compared to traditional methods. A metric
is described in 3.6.2.

3.6.1 Label Quality

To evaluate the accuracy of the point cloud model, a cluster-based analysis was used by
examine how well the points in each cluster correspond to predefined building parts of an
IFC model. From the IFC model, a set of building parts are defined. In this use case, the 6
parts are canopy, door, window, stairs, wall and roof, to match the IFC’s Classes.

Following this, for each point in a cluster, the point’s 3D location is observed and cross
referenced to determine if it is inside one of the building parts. This is done by finding the
closest boundary point and comparing the normal vector at the point with the normal vector
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of the boundary. If the normal vector aligns with the normal vector of the boundary, it is
inside the boundary. Conversely, if the normal vectors are misaligned, it is outside.

To validate label quality, precision and recall metrics are used. Precision indicates, for all
points classified as a particular building part (e.g., wall), how many of these points are
accurately classified as that building part (wall). Recall shows, for all points that should
be classified as a particular building part (e.g., window), how many are correctly classified
as that building part (window). In addition, the clusters will also be displayed visually to
show the segmentation results. Higher percentages indicate more accurate clustering and
segmentation.

3.6.2 Visual Clarity

Laplacian Filters

To assess and compare the output quality of the GeoSLAM point cloud and the Gaussian
splatted point cloud, a laplacian filter will be employed to analyse the visual features of each
output.

According to Fisher et al. [1996], the Laplacian filter, a second-order derivative operator,
is particularly effective in highlighting areas of rapid intensity change, such as edges and
fine details. It enhances high-frequency components in the data, making it a suitable tool
for evaluating the sharpness and clarity of point cloud visualisations. The Laplacian filter
will be applied onto the image where it calculates the second derivative at each pixel. This
results in a new matrix where each value represents the change in intensity at that pixel.
The variance is then calculated on the Laplacian output to calculate the overall Laplacian
variance score.

The OpenCV package used approximates the Laplacian of an image using a discrete convo-
lution kernel.

For an image I at pixel location (x, y), the discrete Laplacian is generally computed as:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 . (1)

Where:

• L(x, y) is the Laplacian value at pixel (x, y)

• ∂2 I
∂x2 and ∂2 I

∂y2 represent the second partial derivatives of I with respect to x and y

These derivatives highlight areas of rapid intensity change, detecting edges in the image.
However, rather than computing the Laplacian directly from this formula, OpenCV applies
a convolution kernel to approximate it. The kernel used by OpenCV can be shown as
(Bradski [2000]):

 0 −1 0
−1 4 −1
0 −1 0

 .
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The Laplacian values for each pixel is stored as an array before applying the variance for-
mula to find the overall variance of the image.

σ2 =
1
N

N

∑
i=1

(Li − µ)2. (2)

Where:

• σ2 is the variance of the Laplacian values

• N is the total number of pixels in the Laplacian-filtered

• Li is the Laplacian value at each pixel i

• µ is the mean of all Laplacian values, calculated as µ = 1
N ∑N

i=1 Li.

Visualisation of Gaussian Splats and IFC

To further analyse the outputted point clouds visually, Blender was used to show Gaussian
splats by installing the 3D Gaussian Splatting Blender Addon (Carlier [2023]). This addon
processes attributes like position, opacity, scale and orientation, to construct a material us-
ing Bender’s node system and shade system to define how each splat should be rendered.
Since this research is working with segmented Gaussian splats, the Gaussian Splat add-on
is modified so the label attribute remains and can be selected in Blender.

The other add on which was needed in Blender was Bonsai to be able to import an IFC
object into Blender.

Besides Blender, also SuperSplat is used to visualise Gaussian Splats.

3.7 Intermediate Conclusion

This chapter explored advanced methods for capturing, processing, and segmenting 3D
data for heritage building conservation, focusing on Gaussian splatting as an innovative
approach. By combining traditional point cloud techniques with segmentation and valida-
tion methods, such as k-means, Gaussian mixture models, and SAM, we achieved enhanced
clarity and segmentation accuracy. These improvements, supported by visualization tools
like Blender and SuperSplat, demonstrate the potential of Gaussian splatting to create high-
quality, semantically rich 3D models. This approach holds promise for more detailed and
effective digital documentation, essential for preserving cultural heritage sites.
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4 Results

The fourth section consists of results from the methodology introduced in section 3. The
three main subsections that will be covered are Data Collection in subsection 4.1, Gaussian
splatting in subsection 4.2 and Segmentation in subsection 4.3. Each subsection provides
insights into the processing stages, from data acquisition to detailed analysis of segmentation
techniques. The subsequent section will focus on validating these results, establishing a
foundation for further discussion and interpretation.

4.1 Data Collection

In this subsection, the results of the discussed methodology in subsection 3.1 will be shown.
Namely, the data collected from manual photography as well as LiDAR point cloud scans.
This section presents the data collection methods used to obtain a comprehensive 3D model
of the Bouwpub’s front-facing structure. Two primary techniques were employed: GeoSLAM
scanning and manual photography. GeoSLAM provided a 3D point cloud through a SLAM-
based approach, along with geolocated panoramic images for spatial context. Additionally,
standard 2D photos were taken with an iPhone 12 to capture finer visual details and miti-
gate fisheye distortion. These combined data sources form the foundation for the subsequent
analysis and processing steps.

4.1.1 GeoSLAM

The GeoSLAM scanner was used to create a 3D point cloud model of the Bouwpub’s front-
facing structure through a Simultaneous Localization and Mapping (SLAM) approach. This
method allows the device to generate the 3D model in real-time by combining pose esti-
mation (localization) and mapping. Specifically, the SLAM process involves the continuous
estimation of the scanner’s position and orientation as it moves, while concurrently building
the 3D map of the scanned environment, which here results in the point cloud model shown
in figure 8. During the scanning process, GeoSLAM’s panoramic camera captured two 180-
degree panoramic images, which showed in figure 7. The two 180-degree panoramic images
provided a full 360-degree visual context of the surroundings. These panoramic images are
geolocated, meaning they are accurately positioned within the spatial model based on the
scanner’s location data. This geolocation is essential because it allows the visual and spatial
data to be integrated precisely, enabling more accurate and context-aware analysis of the 3D
point cloud model.
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Figure 7: Panoramic Photo from the GeoSLAM

Figure 8: GeoSLAM Generated Point Cloud of Bouwpub’s front-face

4.1.2 2D Photos

To compensate for the distortion of GeoSLAM’s fisheye images, the Bouwpub front-face was
also photographic captured by an iPhone 12, obtaining images from various angles around
the structure, the examples are showed in figure 10.
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(a) Photo 1 of Bouwpub’s Front-Face (b) Photo 2 of Bouwpub’s Front-Face

(a) Top view photo 1 of Bouwpub (b) Top view photo 2 of Bouwpub

Figure 10: 2D Images of Bouwpub’s front-face
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4.2 Gaussian Splatting

This subsection discusses four different approaches to Gaussian splatting for 3D reconstruc-
tion of a heritage building. Three of these approaches - Polycam, the original Inria imple-
mentation, and Jawset Postshot - utilise a traditional image-based pipeline, processing 124
high-resolution photographs captured with an iPhone. In contrast, the fourth approach,
LOD 3DGS, explores a different methodology by incorporating LiDAR point cloud data
alongside either panoramic images or high-resolution photographs. This fundamental dif-
ference in input data types represents two distinct paradigms in Gaussian splatting: pure
image-based reconstruction versus LiDAR-assisted reconstruction.

4.2.1 Polycam

Polycam is a mobile application for iOS and Android devices as well as a web-browser based
platform that leverages cloud-based computation for advanced Gaussian splatting process-
ing. The project’s implementation utilised an iPhone 12 Pro to capture 124 high-resolution
images (3024x4032 pixels) of the heritage building. While the app facilitates convenient
on-device capture, its key strength lies in its seamless integration with powerful cloud com-
puting infrastructure.

Although the cloud-based processing system does not allow for manual parameter fine-
tuning, Polycam’s pre-configured parameters have been extensively optimised through rig-
orous testing on their high-performance servers. These default parameters significantly
outperform what is typically achievable on local desktop systems.

As shown in Figure 12, the reconstruction achieved exceptional visual quality. The ge-
ometric reconstruction exhibited remarkable accuracy, with superior preservation of fine
architectural details. Despite the lack of manual parameter adjustment options, the cloud-
based processing consistently produced better results that could achieve through manual
parameter tuning on local desktop systems.

4.2.2 Inria tool

The original Gaussian splatting implementation from Kerbl et al. [2023] offers the most
flexible parameter customisation among all tested tools. A total of 124 iPhone images were
processed through COLMAP to generate the required input files (cameras.bin, images.bin,
and points3D.bin). The implementation was run on a laptop equipped with an NVIDIA
GTX 4060 GPU.

During initial testing, a significant amount of processing time was experienced due to the
high resolution of the original images (3024x4032 pixels). The full-resolution images would
have resulted in training times extending to several tens of hours, making it impractical
for the research timeline. To address this limitation, A downsampling strategy was im-
plemented in the parameter settings, reducing the image resolution to 25% of the original
size.

The modified configuration ran for 30,000 training steps with the following key parame-
ters:

• Image resolution: 1512x2016 pixels (downsampled from 3024x4032)
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• Testing split percentage: 0.2

• Densification until iteration: 200,000

• Resolution down sampling: 2

A crucial parameter in the setup was setting –densify_until_iter to 200,000, which determines
the iteration threshold for the densification process. This extended densification window
allows the algorithm to continue adding new Gaussians to undersampled regions through-
out the training process, resulting in better coverage of complex geometric features and
improved detail preservation. While the actual training ran for 30,000 steps, the high densi-
fication threshold ensures the model maintains the ability to add new points where needed
throughout the entire training process.

Figure 11 shows the results of this tool. This balanced approach allowed for the leveraging
of the tool’s flexibility while managing computational resources effectively. The down sam-
pling strategy, combined with the extended densification window, proved crucial in achiev-
ing practical processing times without severely compromising the reconstruction quality.

4.2.3 Postshot

Jawset Postshot represents an interesting implementation in the comparative analysis, build-
ing upon INRIA’s foundational work while offering distinct advantages in workflow and vi-
sualisation. The tool integrates SfM and Gaussian splatting into a streamlined pipeline, with
its key differentiator being real-time visualisation of the training process. In the analysis,
The following parameters were utilised:

• Image resolution: Downsampled to 1600 pixels

• Training steps: 30,000

• Maximum splats: 3,000,000

The real-time visualisation capability proves particularly value for parameter optimisation,
allowing immediate adjustments and training restarts based on observed results. This rep-
resents a significant workflow improvement over tools like INRIA’s implementation, which
requires complete training completion before results can be assessed. This interactive ap-
proach can substantially reduce the overall time needed for achieving optimal results. How-
ever, Postshot does present notable limitations. The tool offers a restricted set of adjustable
parameters, primarily confined to:

• training time steps,
• image downsampling levels,
• maximum splat count.

This limited parameter space constrains fine-tuning capabilities, as users cannot adjust other
potentially important variables. Furthermore, the analysis indicates that Postshot’s recon-
struction quality, while competent, does not definitively surpass INRIA’s implementation,
instead producing comparable results (see Figure 13).

The tool’s automated camera parameter optimisation during the SfM phase and view-
dependent rendering optimisation continue to function effectively, maintaining reasonable
color reproduction accuracy and consistency across viewpoints. However, these results
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should be viewed within the context of the tool’s constraints and its relationship to the
original INRIA implementation.

Figure 11: (a) Inria tool Gaussian splatting results

Figure 12: (b) Polycam Gaussian splatting results

Figure 13: (c) Postshot Gaussian splatting results

4.2.4 Level of Detail 3-Dimensional Gaussian Splatting (LOD 3DGS)

The implementation of LOD 3DGS was based on the methodology presented in "LetsGo:
Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives"(Cui
et al. [2024]). This approach differs from traditional Gaussian splatting by utilising LiDAR
point clouds as input instead of SfM-generated sparse point clouds, theoretically offering
higher geometric accuracy. The overall workflow can be seen in figure 14.
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Figure 14: LOD3DGS Workflow

In the first approach, the GeoSLAM LiDAR point cloud was used as input along with camera
poses obtained from GeoSLAM panoramic images. These images were transformed through
cube mapping and re-projection.

To improve upon these results, a second approach was tested, combining the GeoSLAM
LiDAR point cloud with high-resolution iPhone photographs. Since the coordinate system
obtained from the camera’s SfM differs from the one generated by GeoSLAM’s built-in IMU
sensor, this approach requires registering the GeoSLAM LiDAR point cloud to the camera
motion coordinate system before applying Gaussian splatting.This method involved several
preprocessing steps:

Using Structure-from-Motion (SfM) to process iPhone images and retrieve both camera poses
and a sparse point cloud. This sparse point cloud served as the target alignment for the
LiDAR point cloud, allowing it to be registered within the iPhone camera coordinate system.
Cropping the GeoSLAM LiDAR point cloud to retain only the main structure of the building,
thereby reducing computational overhead. Aligning the LiDAR point cloud with the SfM-
derived sparse point cloud to ensure the LiDAR data was correctly positioned relative to the
iPhone camera poses. Although this second approach produced slightly better results than
the first (see Figure 15a and Figure 15b), the output still exhibited notable limitations. The
reconstruction displayed significant variations in clarity across different viewing angles, and
overall visual quality did not meet expectations.

38



(a) LiDAR Input with Images 0 (b) LiDAR Input with Images 1

(c) LiDAR Input with Panoramic Images 0 (d) LiDAR Input with Panoramic Images 1

Figure 15: LiDAR Points & Images Results

4.2.5 Edwardian Splatting

So one of the original goals of the research was to device a method that allows the use of
the much denser GeoSLAM point cloud in combination with Gaussian Splatting. Due to
the less then ideal results from LOD 3DGS visible in the previous subsection. This method
places the point cloud into Blender accompanied by the original camera positions. This is
visualised in Figure 16. To correctly transform the positions stored in a small bpy script used
to create a small cube at the given coordinates. Then using a blender plugin called Camera
Array Tool for Blender by Olli Huttunen a camera is added on the six faces of the cube thus
resulting in a cube map from each of the six cardinal directions. The added advantage of
this method verses the others is that it allows for the use of dense point clouds to be used
without the need for matching that point cloud with the images by simply taking images
of the point cloud. Figure 16 shows the setup in Blender as can be seen from the rendered
viewport. In the gif the positions are visualised as black fustrums and the point cloud is
added as a point cloud.
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Figure 16: Overview of the 3D reconstruction in Blender (Best viewed in Adobe Acrobat)

This result was then rendered using blender resulting in a roughly 1800 images. These
images were then brought into COLMAP and Postshot to create a Gaussian Splat. This is
not ideal as a more optimal method would be to link the point cloud and original images
directly as is done in Section 4.2.4. The result as shown in Figure 17 does show a better
reconstruction when compared to LOD 3DGS.

Figure 17: The resulting Edwardian splat (Best viewed in Adobe Acrobat)
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4.3 Segmentation

In this section, various segmentation methods are applied to both the point cloud models
and Gaussian splats to analyze and compare their effectiveness in isolating architectural
features. The segmentation aims to create distinct clusters of building components, which
will enable validation and comparison between Gaussian splatting techniques and tradi-
tional point cloud models. By using models such as the Segment Anything Model, k-Means
clustering, and Gaussian Mixture models, we evaluate each method’s ability to delineate
features like walls, windows, roofs, and other structural elements, providing insight into the
strengths and limitations of each approach.

4.3.1 Point Cloud

In this subsection multiple segmentation methods are performed on the point cloud models.
This is created in order to have a dataset that will allow for validation and comparison of
Gaussian splats to traditional point clouds

Segment Anything Model

Figure 18a shows the final results of the segment anything model applied to the point cloud
obtained by the GeoSLAM scanning device. The parameters used for the mask generator
can be seen below as:

mask_generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=64,
pred_iou_thresh=0.9,
stability_score_thresh=0.95,
crop_n_layers=1,
crop_n_points_downscale_factor=2,

)

From Figure 18a, it can be indicated that the Segment Anything Model was successful in
creating clear segments in the point cloud relative to the project’s goals. Out of al the
buildings parts that needed to be segmented, only one window can be seen as not properly
segmented. However, this was not segmented accurately in other methods that follow either.
This can be due to the fact that there was a poster on the window, potentially creating a
further segment, blocking out half of the window.

k-Means

Figure 18b and 18c show the results of performing k-Means clustering to the GeoSLAM
generated point cloud.

Figure 18b uses 7 clusters with randomly initiated centroids. This resulted in broad and gen-
eralised colour regions. However, the walls in this clustering are not segmented distinctly,
and are blending in with other structural elements as well as an issue of creating multiple
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segments for the wall split roughly in the center vertically. The lack of clear boundaries for
walls and uniform colour representation creates challenges in isolating the building parts
separately. Figure 18c uses 14 clusters with randomly initiated centroids to attempt to refine
it at a higher resolution. Similarly, the issues still persist where the wall has still not been
generated as one segment. On the other hand, it has segmented other building parts well,
as the doors, roofs, and certain windows are now better segmented.

Gaussian Mixture

Figure 18d and 18e show the results of applying Gaussian Mixture clustering to the GeoSLAM
generated point cloud.

Figure 18d shows the application of a Gaussian Mixture Model with 7 clusters on the
GeoSLAM point cloud. In this case, the segmentation results lack distinct boundaries,
with considerable overlap between features such as walls, windows, and other structural
elements. The limited cluster count struggles to differentiate between similar surfaces, re-
sulting in a blurred segmentation where key building components are not well-separated.
In Figure 18e, the number of clusters is increased to 14, providing a noticeable improvement
in segmentation clarity. With more clusters, distinct features such as walls, roof, doors, and
certain windows are better delineated. The additional clusters allow for finer segmentation,
capturing more specific surface characteristics and enhancing the visual distinction between
various architectural elements.

42



(a) Segment Anything Model applied to
GeoSLAM point cloud.

(b) k-Means clustering with 7 clusters applied to
GeoSLAM point cloud.

(c) k-means clustering with 14 clusters applied to
GeoSLAM point cloud.

(d) Gaussian Mixture with 7 clusters applied to
GeoSLAM point cloud

(e) Gaussian Mixture with 14 clusters applied to
GeoSLAM point cloud

Figure 18: Segmented GeoSLAM Point Cloud Results.

4.3.2 Gaussian Splats

In this section, the results of the segmented Gaussian splats are represented. Each cluster
is shown in a different color. The Gaussian splat files are imported into Blender using the
add-on, and more information is provided in subsection 3.6. By creating a new material in
the Shader Editor and changing the material in Set Material in the Geometry Node Editor, it is
possible to visualise the Gaussian splats using the colors of the clusters.
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Segment Anything Model

Figure 19a shows the final results of the segment anything model applied to the Polycam
Gaussian Splat.

The segmenting model divided the facade into a total of 10 segments. These segments do
not clearly outline the building parts. There is a noticeable diagonal division, and one main
cluster is visible. The uneven segment distribution may be due to two reasons: (1) the
spherical projection of the Gaussian splat did not produce good results, and (2) the point
cloud is sparse in some areas, such as inside the windows.

k-Means

Figure 19b and 19c show the results of performing k-Means clustering to the Polycam Gaus-
sian Splat.

Figure 19b shows the results of applying the k-Means model with 7 clusters to the Polycam
Gaussian Splatted file. Visualising each cluster individually in Blender reveals that building
parts are not segmented separately. Each cluster contains multiple building parts and even
includes the floor, which is not part of the building structure. Figure 19c shows the results
of applying the k-Means model with 14 clusters to the Polycam Gaussian Splatted file. Visu-
alising each cluster individually in Blender reveals a somewhat clear separation between the
ground and the building; however, the building parts are still not fully separated from each
other. There is slightly more separation between the wall and roof, but the canopy, stairs,
and windows remain grouped with either the wall or roof.

Gaussian Mixture

Figure 19d and 19e show the results of applying Gaussian Mixture clustering to the Polycam
Gaussian Splat.

Figure 19d shows the results of applying the Gaussian Mixture model with 7 clusters to
the Polycam Gaussian Splatted file. Visualising each cluster individually in Blender reveals
a clear separation between the ground and the building. The roof is also well-separated
from other building parts, but the window, canopy, and wall frequently appear together in
several clusters, as do the door, stairs, and parts of the wall. Figure 19e shows the results
of applying the Gaussian Mixture model with 14 clusters to the same file. Visualising each
cluster in Blender reveals a good distinction between building parts and the ground. This
time, the roof is even better clustered, as are the stairs. However, the model still struggles to
fully separate the window, canopy, and wall; while some clusters contain only wall points,
others combine all three of these elements.
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(a) Segment Anything Model applied to Gaus-
sian splats.

(b) k-Means clustering with 7 clusters applied to
Gaussian splats.

(c) k-Means clustering with 14 clusters applied to
Gaussian splats.

(d) Gaussian Mixture with 7 clusters applied to
Gaussian Splats.

(e) Gaussian Mixture with 14 clusters applied to
Gaussian Splats

Figure 19: Segmented Gaussian spaltted point cloud results.
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4.4 Intermediate Conclusion

Based solely on the visual inspection of the segmentation results, it is implied that the SAM
has provided the best results, followed by Gaussian mixture and lastly k-Means.

On the other hand, the segmented Gaussian splats visual inspection suggests that the Gaus-
sian Mixture model with 14 clusters achieved the most effective segmentation. Although not
perfect, this model provided the clearest division based on building parts.

Overall, there were some common challenges across both Gaussian splatted models as well
as point cloud models. Windows were generally difficult to distinguish due to gaps in the
Gaussian splats around window areas, while the roof was often successfully separated from
other parts in several models. However, the door remained challenging to separate distinctly
from other building parts. The door and window issues could be due to the fact that there
were posters or fliers pasted onto the windows, creating further segments each time.

4.5 Validation

This section presents the validation of the segmentation and quality of the point cloud mod-
els generated from GeoSLAM and Gaussian splatting methods. The validation process in-
volves both visual and accuracy assessments to evaluate the effectiveness of each approach.
In section 4.5.1, the Laplacian filter is applied to compare the sharpness and detail of the
models, using Laplacian Variance scores as a measure. In section 4.5.2, precision and re-
call metrics are calculated for specific building components to assess segmentation accuracy.
These evaluations provide insights into the suitability of each model for applications requir-
ing detailed and accurate representations, such as heritage building documentation.

4.5.1 Visual Validation

Figure 20 and 22 display a point cloud generated from the GeoSLAM and a Gaussian splat-
ted point cloud, respectively. The application of the Laplacian filter resulted in the processed
images shown in Figures 21 and Figure 23. The images were generated by taking screenshots
of the front face of each point cloud and removing all colours unrelated to the point cloud,
leaving only instances of the point cloud with no background. This allowed for a clear image
without any background noise to focus on the comparison of the prominent features of the
point clouds.

After applying the Laplacian filter, the GeoSLAM point cloud in figure 20 achieved a Lapla-
cian Variance score of 1181.53. In contrast, the Gaussian splatted point cloud in figure 22
attained a significantly higher score of 2021.88. This substantial difference indicates that the
Gaussian splatted point cloud contains more high-frequency information and sharper fea-
tures than the GeoSLAM point cloud. For reference, the BIM model being used as ground
truth receive a score of 3493.74.

Based on the study of Chao et al. [2021], a higher Laplacian Variance score for the Gaussian
splatted point cloud suggests that it provides a visualisation with enhanced detail and clar-
ity. This could be due to how Gaussian splatting effectively distributes point attributes over
a Gaussian kernel, which smooths noise while preserving edges and fine details. This results
in a point cloud that not only looks smoother but also retains critical structural information,
making features more discernible.
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Figure 20: Image of GeoSLAM Point Cloud in Greyscale

Figure 21: Laplacian Filter Applied to GeoSLAM Point Cloud
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Figure 22: Image of Gaussian Splatted Point Cloud in Greyscale

Figure 23: Laplacian Filter Applied to Image of Gaussian Splatted Point Cloud
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In summary, the Gaussian splatted point cloud demonstrates superior visualisation quality
compared to the GeoSLAM point cloud. The use of the Laplacian filter and the analysis
of the Laplacian Variance scores highlight the enhanced sharpness and feature definition
achieved through Gaussian splatting. This makes the Gaussian splatted point cloud more
suitable for applications that require high-resolution and detailed point cloud representa-
tions, such as precise modeling, inspection, and analysis tasks of heritage buildings. This
gives us an overall visual quality representation of both 3D models as the images were taken
directly from the specific 3D viewers.

4.5.2 Accuracy Validation

To evaluate the accuracy of the point cloud segmentation and labeling, precision and recall
metrics were calculated for each building part, including canopy, door, roof, stairs, wall,
and window. The precision heatmap in figure 24 shows the range of precision values across
building parts, where higher values indicate a greater proportion of accurate classifications.
For example, the GeoSLAM point cloud models tend to exhibit precision values ranging
between approximately 10% and 77% for different building parts like the wall and roof.
This range highlights effective identification of these elements in some configurations but
also shows lower precision for other parts, like the canopy, possibly due to its more complex
structure and fewer points.

The recall heatmap in figure 25 illustrates the percentage of points that should be classified
as each building part and are correctly identified as such. Here, GeoSLAM point cloud
configurations generally achieve higher recall values for the wall and stairs, indicating more
successful segmentation coverage of these building elements. This higher recall for the wall
may also be attributed to its higher point density, which provides more information for
clustering and classification. Conversely, Gaussian Splatting models tend to show lower
recall values, particularly for parts with fewer points, like the canopy, which can reduce
detection accuracy.

Figure 24: Heat Map for Precision Scores on all Methods.
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Figure 25: Heat Map for Recall Scores on all Methods.

The mean precision and recall bar chart in figure 26 provides an overview of these metrics
across all building parts, with error bars representing standard deviations. It is observed
that while Gaussian Splatting models demonstrate smaller standard deviations in precision
across all configurations, 3 out of 5 GeoSLAM configurations achieve greater mean recall
values. This suggests that GeoSLAM models perform more consistently in capturing a wider
range of building elements, though Gaussian Splatting provides steadier precision with less
variability.

Overall, these results suggest that while Gaussian Splatting methods offer a basic level of
segmentation with stable precision across parts, GeoSLAM point cloud models, particularly
with SAM configurations, achieve higher recall and are better suited for applications re-
quiring comprehensive and accurate labeling. This trend is beneficial for heritage building
documentation, where capturing extensive detail is crucial for effective segmentation and
classification.
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Figure 26: Barplot with Mean Precision and Recall with Error Bars on all Methods.

4.6 Intermediate Conclusion

This chapter demonstrates the effectiveness of Gaussian splatting and GeoSLAM techniques
for point cloud segmentation and heritage building documentation. Visual and accuracy
validations show that Gaussian splatting improves clarity, offering sharper detail through
higher Laplacian variance scores, while GeoSLAM provides higher recall, capturing a broader
range of building elements. Overall, Gaussian splatting enhances visual quality, making it
ideal for applications demanding high-resolution models, whereas GeoSLAM excels in de-
tailed labeling, supporting applications that require precise segmentation. These insights
highlight each method’s strengths, advancing digital documentation practices for heritage
conservation.

51



5 Discussion of Limitations

The sixth section discusses the draw backs and limitations of the current research. The
research was explorative in nature which led to trying a lot of different methods discussed
in the 3. Some of these methods were successful and are shown and discussed in Section
4 and 4.5. The unsuccessful methods are discussed below with reasoning as to why these
were unsuccessful. This section follows the MoSCoW as laid out in the Project Identification
Document (PID).

5.1 Challenges & Limitations

The goal of the research was to use already existing methods and show drawbacks and
gaps that are currently present within the pipeline. These challenges and limitations are
summarised here.

5.1.1 No BIM for Complex Buildings

The overview of the pipeline as discussed first in section 3 requires a BIM or HBIM model to
be present or created using software discussed in section 3 the research group was unfamiliar
with these types of software. Luckily one of the supervisors was able to model a facade using
BIM software.
The original intention was to scan three buildings. These buildings were laid out in the PID
and were as follow:

1. Windmill
2. Aula
3. Bouwkunde

After scanning these buildings the workflow was further refined which eventually led to
comparing against a HBIM as a baseline. As stated in section 3 this model would be used
as a form of ground truth against which the different methods would be tested as shown in
3. This would mean that all initially scanned buildings needed to be modeled in BIM. Due
to the complexity of the Windmill a simpler object was chosen. This leads to that one of
the limitations that the current workflow has is that a BIM model needs to be present to go
through it. This requires a substantial amount of work before hand.

5.1.2 Limited Range of Scaniverse

The second limitation that was originally set out in the PID was to use a variety of de-
vices/methods. One of these methods was to create the Gaussian splat through the use of
Scaniverse. As discussed in the Methodology Scaniverse is a mobile application for both IoS
and android that takes pictures to use for SfM and create a Gaussian splat. Further more on
Apple devices that are equipped with a LiDAR sensor also captures a LiDAR point cloud
which is then used as well.
The limitation with Scaniverse was the maximum range which is only 5 meters. This is both
a software and hardware problem as Scaniverse does not seem to use the LiDAR scanner for
its Gaussian splatting training similair to other Inria based reconstructors. This is simply not
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far enough to fully capture complex buildings at a larger scale. As such this limitation was
seen as being to great leading to the method being cast aside in favor of the more successful
methods shown in 4.5.

5.1.3 Limited Computational Power

One of the main hurdles faced during the project was the limited computational power
available on modern laptops as it comes to Graphical Random Access Memory (RAM). Cer-
tain methods discussed were abandoned based on the requirements exceeding availability.
This led to methods such as Edwardian splatting and Gaussian grouping not to be further
explored.

5.1.4 Using Video as Input

One of the more common methods for Gaussian splatting using SfM is to take a continuous
video of an object and split it up into separate frames of which a frame is picked at a given
interval thus leading to a set of images. During the initial collection of data this was tried
and it is introduced in section3. However, this did not lead to a better results using the same
camera versus individual images due to the introduction of movement blur the results could
from a visual point of view even be deemed to be lesser then statically shot images.

5.1.5 GeoSLAM to Splat

One of the original goals set out during the PID was to somehow use the GeoSLAM point-
cloud in addition to images to better reconstruct the Gaussian splat. Two approaches were
tested. The first approach involved using LOD 3DGS which produced results but suffers
from unusual artifacts in the Gaussian splat which results in less than ideal segmentation
results. This could be due to a variety of reasons. One main suspected cause being due to the
camera location on the GeoSLAM. However, trying to resolve this problem by using higher
quality photos from the mobile phone did not solve this problem. The second method to use
the GeoSLAM point cloud in Gaussian splatting was to load the .ply file in Blender and use
the actual picture positions in blender to generate a new set of rendered images. This was
first laid out in section 3. This did work but was not explored further during the research
phase of the project.

5.1.6 Planar Surface

The current approach very much relies on the scanning, processing and labeling of a planar
surface such as the Bouwpub. Initially the group had collected data for more intricate objects
such as the Aula or a Mill. This leads to the pipeline as it currently stands to be optimised
for planar surfaces such as a single facade but might not be necessarily be expanded to much
more complex objects.
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5.1.7 Gaussian Splatting not Deterministic

One of the challenges of Gaussian splatting is that running the process in the different
software packages, laid out in section 3.3 does not necessarily lead to the same result each
time the process is ran. This leads to the uncertainty that a Gaussian splat might not be
the optimal representation of that object. Since some methods were taking hours, we were
unable to run the same splat multiple times to determine which hyper parameter would be
best used. This might lead to the challenge for others that might want to apply the method
or recreate the results that their results might be entirely different. This stems from the fact
that the learning process taking place during splatting is not deterministic.

5.1.8 Alignment

The current algorithm used for alignment does not produce adequate results this is due
to the scaling factor that is present within SfM algorithms. This leads to less than ideal
fitting of the point cloud and Gaussian splat back onto the HBIM model. Due to time
constraints this was not further explored. Given the fact that all segmented results use the
same alignment so the effect it has on results is similar in all cases. In the future this could
be alleviated by either using targets that represent control points that are identifiable in each
of the segmented representations. This would still not be ideal but would result in a better
alignment as a whole.

5.1.9 Quality of Collection Methods

The current approach very much looks at the technical aspects of each collection method
but not necessarily at the output where one used for the whole pipeline. Currently only the
best from each step is used. It can be said that each method can be used for each step in
the process depending on the choices the user makes. However the research looks less into
the quality of the collection methods themselves. This is partially due to a lack in time and
processing resources.

5.1.10 Using Splats for Segmentation

One of the challenges that was faced during the segmentation process is that the three seg-
mentation methods explained in section 4 for the Gaussian splatting only works based on
the point cloud’s mean position and not the full splats. This means that only the added
features for each point are used in the segmentation and not their actual geometric repre-
sentation. The label accuracy is done by checking if the point clouds point position (x,y,z)
are laying inside the BIM building part. Same for the splat, the x,y,z is looked at. So it was
not considered when the Gaussian splat shape takes form. If it lies inside the building part
but just the x,y,z. This might not be a fully complete method.
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5.1.11 SfM from Gaussian Splatting Not Dense

The final challenge is closely related to the previous point. One of the aspects of Gaussian
splatting is that it creates a sparse point cloud through SfM and then fills the geometric space
with splats. Because the original point cloud is much denser even having the calculated
features might not be enough to overcome the segmentation on the Gaussian splatted point
cloud.

Overall, the research pipeline as it currently stands is robust and leads to results but based
on the points discussed in this section it could be said that it does face limitations and that
certain challenges still need to be overcome.
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6 Conclusion

This section of the research report presents the conclusions based on the question stated in
section 1.

To what extent can a segmented Gaussian splatted point cloud support the heritage Build-
ing Information Modeling workflow?

The first conclusion relates to the use of different data collection devices. The GeoSLAM
captures the densest point cloud compared to the iPhone, while the smartphone captures
the clearest images. This is likely due to the sensor size present on modern telephone de-
vices. This allows for more detail to be captured through better light capture. The GeoSLAM
device, utilising LiDAR-based SLAM, produces a denser point cloud than the iPhone’s SfM-
based approach. This is attributed to the high frequency of laser pulses and the rotating
sensor in the GeoSLAM, which enables rapid and comprehensive spatial sampling. In con-
trast, the smartphone captures higher-resolution images with greater clarity, likely due to
advancements in sensor size and light sensitivity in modern mobile cameras, facilitating
more detailed visual information. These differences highlight the trade-offs between dense
spatial coverage in LiDAR systems and image clarity in vision-based systems, each offering
unique advantages for specific types of spatial data acquisition.

The second conclusion concerns the different Gaussian splatting methods that were applied
during the second step of the pipeline. Most current implementations stem from the Inria
base code, which uses COLMAP SfM positions for each photo along with the photos them-
selves. Among the methods tested, PolyCam produced the best reconstruction as visual
representation. LOD 3DGS, which used LiDAR and photos as input, had lesser results. A
drawback of PolyCam is the blackbox nature of the website and no available parameters to
tune, unlike other methods. Each method always outputs a .ply file.

Regarding the best segmentation method, the results are inconclusive due to the large spread
in the standard deviation for the different segmentation algorithms applied to all methods.
This is partially due to three limitations described in Section 5. (1) Where the alignment
plays a big role into the correctness of the results when compared to the HBIM ground
truth. (2) The HBIM is based on the GeoSLAM generated pointcloud. (3) Gaussian splats
are now simplified as points in the precision and recall metrics, but they are a distribution.
Besides that, since the segmentation was only applied to a single facade, the hyperparame-
ters were likely overfitted to the current use case. Based on this a conclusion about the best
segmentation method cannot be made.

For the visual validation a Laplacian filter was used to assess the edge sharpness, which
relates to a reconstruction of a building which itself is represented using sharp edges in the
real world. The results suggest that the Gaussian splatted point cloud performs better as it
better captures the real life facade.

For the final sub-question on improving HBIM preservation compared to a point cloud, it is
essential first to determine if the initial BIM criteria outlined in Section 2 are met.

• The first aspect refers to whether the model is in 3D. Which in the case of a Smart
Gaussian Splatted Point Cloud is in fact a three dimensional in space.
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• The second aspect is the model’s ability to provide measurable, numerical and descrip-
tive information to be derived about the building. The resulting splat can definitely be
measured and would in the case of better segmentation be possible to also allow for
descriptive information to be attained. However for the numerical information, such
as number of a certain building part, that would also need to be improved.

Overall, a colorised Gaussian splat is in fact better for the visual experience of the user, but
there are inconsistencies related splat size and IfcClass that a Gaussian splat can represent.

For the final conclusion related to the main question of the research, which concerns the ex-
tent to which a segmented Gaussian splatted could be used for the betterment of the heritage
Building Information Modeling workflow. Compared to a simple point cloud, a Gaussian
splatted model better captures the current state of the building. As it shows the results in
a more photogrammetic representation when compared to the singular color valued points.
One of the draw backs for Gaussian splatting, as it relates to the segmentation, which should
then be used for better understanding of the object. This is however not entirely possible
due to the singular label that can be assigned to a splat. A splat might be covering a larger
area.

Overall, the method does impact certain aspects of the workflow but does not necessarily
help in all aspects.

7 Further Research

In this research, only unsupervised learning methods are applied, but an alternative ap-
proach could involve supervised learning methods, such as VoxNet and PointNet++, as
discussed in section 2.6. Supervised learning could potentially yield better results by train-
ing the model to make specific predictions, rather than relying on random guessing, and
could allow for identifying patterns specific to each building component. PointNet++ archi-
tecture, for example, is particularly well-suited to directly process 3D point clouds through
its hierarchical feature learning structure. By capturing both global and local geometric fea-
tures with multi-scale grouping and sampling layers, PointNet++ is effective in identifying
building parts, such as walls, roofs, and windows, based on their geometric characteristics.

Furthermore, there are pre-trained models for semantic segmentation on point clouds, such
as RandLA-Net (Hu et al. [2020, 2021]) and TUM-FAÇADE (Wysocki et al. [2022, 2021]).
Investigating whether these models could be adapted to work with Gaussian splatted files
may provide additional insights into improving segmentation accuracy.

A second innovative approach integrates Large Language Models (LLMs) for semantic la-
beling. In this method, geometric features (such as planarity, verticality, and height) and
images of each segmented point cloud cluster are converted into natural language descrip-
tions, which are then processed by LLMs like GPT-4 via API calls. The LLM analyzes these
descriptions to classify building components based on its architectural knowledge. A poten-
tial workflow involves extracting cluster features, formatting them as prompts (e.g., “This
component has 0.95 verticality, 3.2m height, and is located on the building exterior...”), and
using the LLM’s response to assign semantic labels. This method, combined with tradi-
tional supervised models, could enhance the semantic enrichment of segmented building
point clouds.
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The current validation approach treats Gaussian splats similarly to point clouds, focusing
primarily on point-based metrics like precision and recall. However, this method does not
fully capture the unique properties and advantages of splats as continuous representations
rather than discrete points. A future validation method could directly analyze splat-specific
attributes, such as scale, orientation, and opacity, which are intrinsic to Gaussian splats.
By leveraging these attributes, validation metrics could be developed to assess not just the
accuracy of individual points but the smoothness and continuity of splat-based segments,
which would better reflect Gaussian splatting’s strengths in creating seamless, high-fidelity
models. Additionally, a splat-focused validation could incorporate metrics for evaluating
splat overlap and blending quality, allowing for a more nuanced assessment of visual clarity
and structural fidelity. This would be particularly beneficial for applications that require
high-resolution and realistic representations, such as heritage conservation.

Another possible direction for future research would be to explore effective ways of visual-
ising clusters in a Gaussian splatted file. Because Gaussian splats can overlap and some are
large enough to cover significant areas, such as large sections of a building, a single Gaussian
splat may encompass multiple building parts. In this research, Gaussian splats have been
labeled and visualized individually, treating them as points. However, they should ideally
be handled differently, as each splat is more than a point and represents a larger area.

To further improve the project, a method that could be used to store strings such as IfcClasses
are saving these as numeric scalar field attributes in the .ply file and having a separate file
such as a .json file or or any other separate metadata file to store the strings attached to the
numeric scalar field. Using this method will allow for the user to map each building part to
the correct IfcClass while adhering to the file format standards of Gaussian splats.

An alternative approach in segmentation is to consider creating meshes for each splat to use
in segmentation, rather than relying on the center points of each splat. While using center
points may be simpler, it does not accurately represent the unique shapes and overlaps of
individual splats. This simplification has impacted the accuracy of the segmentation method
used in this project for Gaussian splatting. A possible improvement could involve integrat-
ing mesh-based segmentation, such as Poisson reconstruction, to enhance the precision and
reliability of the segmentation process. Further exploration of this mesh-based approach
could yield better results.
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8 Task Distribution

Student name Responsibilities in the report
(e.g., responsible for chapter 3
or section 2.5, etc)

Role(s) performed (e.g., chair of
the team, secretary, editor, pro-
grammer, GIS specialist, data
acquisitionist, etc)

Marieke van Arnhem Introduction, 2.1, 2.7, 3.5, 3.6,
4.3, Further Research

Chair of the Team, Programmer,
Visualiser

Walter Kahn Discussion, Conclusion, Task
Distribution, 4.2, 3.4, 2.6

Data Acquisition, Processor, Ed-
itor

Shawn Tew Abstract, 1.1, 2.4, 3.1, 3.3, 3.6,
4.3, 4.5, Further Research

Data Acquisition, Programmer,
Editor, Processor

Qiaorui Yang Introduction for sections and
subsections, 2.2, 4.1, 4.5, 5.1

Data Acquisition, Secretary

Xiaduo Zhao Section 2.3, 2.5, 3.2, 4.2, Intro-
duction for subsection 3.2 and
4.2

Data Acquisition, Programmer,
Processor

Table 3: Task distribution between team members and roles in the project

The research took place during september, oktober and november of 2024 at the TU Delft.
The original scope was laid out in the Project Identification Document (PID) and was as
follows.

8.1 Scoping/ Managing Expectanations: MoSCoW

While conducting this research, multiple limitations have been identified that may impact
the overall study. Gaussian splatting is a relatively new technique and can present a mul-
titude of new challenges due to the limited availability of usable information and tools for
implementation. One major limitation is the inability to collect complete scans of a building,
particularly exterior roof surfaces, without the use of drones or advanced aerial scanning
methods. Furthermore, the classification process and the training speed of machine learn-
ing models applied to point clouds may be reduced by the computational power available,
particularly when handling large point cloud datasets of heritage buildings.

While data collection methods using devices like smartphones and stereo cameras offer ac-
cessibility and portability, they often fall short in precision compared to high-end laser scan-
ners, impacting model qual ity. Permission restrictions on scanning heritage buildings also
present obstacles to full reconstructions. To bridge these limitations and the requirements
for accurate, high-quality models, careful consideration of data collection methods, compu-
tational resources, and permissions is needed, along with leveraging Gaussian splatting’s
flexibility to enhance reconstruction quality.
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1. Must

• Perform literature review on each step of the pipeline

• Use 2 devices to collect input data for gaussian splatting.

• Use gaussian splatting on the collected building data.

• Clean the outliers and noise in the point cloud dataset.

• Perform semantic labelling approaches on a simple level of BIM standards. This
means the points are labelled in their building function. For instance, floor, wall
and roof.

• Compare the different devices, algorithms and classification methods.

• Capture the whole pipeline of the process. Either in film or with a different
method.

2. Should

• Use addition devices to collect a point cloud dataset.

• Clean the collected dataset by removing unnecessary components. These compo-
nents are moving objects such as people.

• Output a smart point cloud with semantics up to a higher level of BIM standards.
This means the points are labelled in for example their material type.

3. Could

• Show and share the Gaussian Splats on the web.

• Have the possibility to filter the semantics on the web display.

• Do semantically labelling approaches on a difficult level. This means the points
are labelled when they are added to the building.

4. Won’t

• Create a Gaussian splatting Algorithm and tool.

• Create an automated pipeline, it will have manual elements such as cleaning

• Creating a 3D viewer

• Scan outdoors, due to limitations of building heights

Most of the Must elements were achieved. The literature is shown in Chapter 2. Only two ac-
tual devices were used for the data capture. Both the GeoSLAM and the phone were capable
and show promising results for both the capture as well as the segmentation of the Gaussian
splat. This was part of the research as a variety of devices and types of software had to be
used to compare and contrast and this is currently all captured on the project’s outcomes
and source code used which can be found at https://github.com/ShawnTew/Synthesis-
Project-Group-4.
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