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Equilibrium Seeking and Optimal Selection Algorithms in
Peer-to-Peer Energy Markets
Wicak Ananduta * and Sergio Grammatico

Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
* Correspondence: w.ananduta@tudelft.nl

Abstract: We consider a clearing problem in peer-to-peer energy markets, where prosumers can trade
energy among each other and with the main grid to meet their energy demands. By using a game-
theoretic formulation and exploiting operator-theoretic methods for generalized Nash equilibrium
seeking, we propose two variants of the state-of-the-art distributed market clearing mechanism with
improved convergence speeds. Furthermore, we design a third variant that allows for equilibrium
selection, i.e., computing a specific market solution based on a convex preference function of the
network operator, e.g., a congestion cost. We provide convergence guarantees and numerically show
the advantages of our proposed algorithms in terms of convergence speed up and obtaining reduced
grid congestion.

Keywords: economic dispatch; market clearing algorithms; operator-theoretic methods

1. Introduction

Peer-to-peer (P2P) energy trading is a concept that has recently gained tremendous
interest due to continuously increasing development and installation of distributed gener-
ation units, especially renewable sources [1]. In this context, prosumers, i.e., consumers
that have a power generation capability, can directly buy or sell energy from each other [2];
thus, they can actively participate in balancing the energy demand and supply of a local
electrical grid. Early studies, such as [1], show potential benefits of incorporating P2P
trading in the energy management of smart grid and electricity markets. Beside economical
advantages, P2P trading can help decreasing peak demand, reducing reserve requirements,
and curtailing network loss [3]. For an overview on enabling technologies and recent
developments of P2P energy trading, we refer to [2,4].

As each prosumer has its individual (economical) objective, one can use game theory
to study decision making in P2P energy markets [5]. For instance, the authors of [6,7]
formulate a demand-side management problem of a network that allows P2P trading
as a noncooperative game, where each active component aims at minimizing its energy
cost while the price depends on the net load of the network (an aggregative game). The
solution concept considered in these papers is a Nash equilibrium (NE), i.e., a point where
no player has incentive to unilaterally change its decision. Similarly, ref. [8] proposes
the economic dispatch problem in a P2P market as that of NE seeking. All these works
provide different algorithmic solutions that rely on standard assumptions of continuous
NE problems, i.e., convexity and compactness of local feasible sets as well as (strong)
monotonicity of the pseudo-gradient game mapping.

Recently, refs. [9–11] formulate the market clearing problem in prosumer networks as
a generalized Nash equilibrium problem (GNEP), where there are not only coupled cost
functions but also coupling constraints among the players, and propose distributed meth-
ods to compute a solution. In [9], a multilateral trading among prosumers is considered,
whereas [10,11] consider multi-bilateral ones. Furthermore, ref. [11] takes into account the
interaction between prosumers and a distribution network operator (DNO), responsible for

Games 2022, 13, 66. https://doi.org/10.3390/g13050066 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g13050066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://doi.org/10.3390/g13050066
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g13050066?type=check_update&version=1


Games 2022, 13, 66 2 of 13

maintaining the reliability of the electrical network. In addition, by incorporating physical
constraints in the formulation, a solution to this market problem is safe and thus acceptable
for the DNO.

The above developments are closely connected with that of GNE seeking methods
based on monotone operator theory [12]. Distributed equilibrium seeking algorithms
are typically designed by exploiting operator splitting, preconditioning, and consensus
techniques, see e.g. [13,14]. Specifically for monotone aggregative games, efficient semi-
decentralized and distributed algorithms are presented in [15,16]. Furthermore, equilibrium
selection methods for games with multiple equilibria have also recently been proposed
in [17]. The reader is referred to [12] for an extensive review.

In the context of P2P markets, refs. [10,11] propose a market clearing mechanism based
on the preconditioned proximal point (PPP) method [15], which essentially computes a
GNE. The algorithm is scalable and has a distributed structure, where prosumers must
exchange information with their trading partners and the DNO. Despite the effectiveness of
this algorithm, as our main contribution, we enhance its capabilities in two ways, namely,
we improve the convergence speed and add the option of selecting a preferred (e.g., optimal)
equilibrium.

To improve the convergence rate of ([11], Algorithm 1), we implement the inertial
and over-relaxed PPP methods ([15], Sect. IV) and tailor them to fit with the P2P game
setting. These two variants retain the convergence guarantee of ([11], Algorithm 1) and
use momentum-like steps to accelerate convergence. These extra steps have insignificant
computational efforts and do not need additional communication rounds but require
auxiliary variables of the size equal with that of the original decision variables. We perform
a numerical study to validate the performance of our algorithms.

On the other hand, as multiple equilibrium solutions may exist in this market clearing
game, we allow the DNO to provide a preference on the solutions to the game. To this end,
we formulate an equilibrium selection problem where the DNO can set a convex preference
function that is minimized over the set of (variational) GNE of the game. Then, we modify
further the over-relaxed PPP method to obtain an equilibrium selection algorithm. The
adjustment is based on the hybrid steepest descent method (HSDM) for fixed-point selection
in generalized games [17,18]. We prove convergence under the original assumptions and
showcase the efficacy of our equilibrium selection algorithm via numerical simulations
where the DNO aims at minimizing some line congestion levels.

The rest of the paper is structured as follows. In Section 2, we provide the GNEP
formulation of P2P markets. Then, Section 3 explains the PPP-based market clearing
algorithms that have faster convergence rates than the state-of-the-art. Afterward, Sec-
tion 4 discusses the proposed equilibrium selection algorithm and its advantages. Finally,
Section 5 concludes the paper.

Notation

We denote by R (R≥0) and N the set of (non-negative) real numbers and that of natural
numbers, respectively. Furthermore, 0 (1) denotes a matrix/vector with all elements equal
to 0 (1). The Kronecker product between the matrices A and B is denoted by A⊗ B. For a
matrix A ∈ Rn×m, its transpose is A>. For symmetric A ∈ Rn×n, A � 0 (< 0) stands
for positive definite (semidefinite) matrix. For any x ∈ Rn, ‖x‖2

A = x>Ax, with square
symmetric matrix A � 0. The operator col(·) stacks its arguments into a column vector,
whereas diag(·) creates a (block) diagonal matrix with its arguments as the (block) diagonal
elements. For an operator T , fix(T ) := {x ∈ dom(T ) | x ∈ T (x)} and zer(T ) := {x ∈
dom(T ) | 0 ∈ T (x)} denote the sets of fixed points and zeros, respectively.

Operator Theory

Let C be a nonempty subset of Rn. A single-valued operator T : C → Rn is (i) non-
expansive if, for all x, x′ ∈ C, ‖T (x)− T (x′)‖ ≤ ‖x− x′‖; (ii) attracting nonexpansive if
T is nonexpansive with fix(T ) 6= ∅ and ‖T (x)− z‖ < ‖x− z‖, for all z ∈ fix(T ) and all
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x /∈ fix(T ); and (iii) α-averaged nonexpansive, for α ∈ (0, 1), if there exists a nonexpansive
operatorR : C → Rn such that T = (1− α)Id + αR.

2. Peer-to-Peer Energy Markets as a Generalized Nash Equilibrium Problem

We consider the game-theoretic P2P spot market formulation in ([11], Sect. II), where
N prosumers, connected in a distribution network, can trade energy directly with each
other. In a spot market, e.g., a day-ahead or an intra-day market, each prosumer aims at
economically optimizing its decision variables, i.e., how it wants to meet its energy de-
mands, over a certain time horizon,H := {1, 2, . . . , H}. Let us denote the set of prosumers
by I := {1, . . . , N} and represent their trading network by an undirected graph denoted
by Gt := (I , E), where E ⊆ I × I denotes the set of links. The link (i, j) ∈ E implies that
prosumers i and j can exchange energy. Therefore, we denote the set of trading partners of
prosumer i by Ni := {j | (i, j) ∈ E}. Trading between two prosumers may occur if one of
them has an excess of generated power and its trading partner is willing to buy this power.
Furthermore, we suppose that (some) prosumers have local dispatchable components,
which can be a distributed generator and/or a battery. Additionally, these prosumers can
also buy energy from the main grid at a certain price, which varies depending on the total
energy consumption of the network.

Now, let us denote the decision vector of prosumer i ∈ I by ui := col
(

pdc
i , pmg

i , (ptr
(i,j))j∈Ni

)
,

where pdc
i ∈ Rni H , pmg

i ∈ RH , and ptr
(i,j) ∈ RH , for all j ∈ Ni, denote the dispatched powers

from local dispatchable components, the power traded with the main grid, and the power
exchanged with its trading partners in Ni, respectively. Note that ni ≥ 0 indicates the
number of dispatchable components. Furthermore, we denote by u−i the collection of the
decision variables of all prosumers except prosumer i. Each prosumer i ∈ I considers the
following cost function:

Ji(ui, u−i) := ‖pdc
i ‖

2
Qdc

i
+ (qdc

i )>pdc
i + f tr

i ({ptr
(i,j)}j∈Ni )︸ ︷︷ ︸

f loc
i (ui)

+ f mg
i (pmg

i , σmg(ui, u−i)), (1)

where Qdc
i � 0 and qdc

i are the cost parameters of dispatchable powers [19,20]. The trading
cost f tr

i is defined by [21,22]

f tr
i

(
{ptr

(i,j)}j∈Ni

)
= 1>H ∑

j∈Ni

(
ctr
(i,j)ptr

(i,j)+cta|ptr
(i,j)|

)
,

with ctr
(i,j) and cta being the trading price and tariff, respectively, whereas the cost of buying

energy from the main grid, f mg
i , is defined by [20]

f mg
i

(
pmg

i , σmg
)
= ∑

h∈H
(dmg

h σ
mg
h ) pmg

i,h ,

where dmg
h > 0, for all h ∈ H, are the price parameters and σmg = col((σmg

h )h∈H) denotes
the aggregate power on the grid, i.e.,

σmg(ui, u−i) = ∑
j∈I

pmg
j .

We note that dmg
h σ

mg
h defines the energy price, which is set by the main grid and is

assumed to be proportional with the total consumption. Therefore, most components of Ji
depend only on the local variable ui (denoted by f loc

i ), except for f mg
i , which couples the

decision variables of all prosumers.
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Due to the components’ operational limits, storage dynamics, trading limits, and the
power balance of each prosumer, i.e.,

(1> ⊗ IH)ui = pd
i , (2)

where pd
i ∈ RH denotes the power demand of prosumer i, we let ui be constrained by

a local constraint set, denoted by Ui. We note that, based on (2), the power demand of
each prosumer can be satisfied (partially) by direct P2P trading. Furthermore, there exist
coupling constraints among the prosumers, as follows:

ptr
(i,j) + ptr

(j,i) = 0, ∀j ∈ Ni, i ∈ I , (3)

pmg ≤ σmg ≤ pmg, (4)

where the equalities in (3) are the reciprocity constraints for all trading partners whereas (4)
defines the bounds on the aggregate power traded with the main grid with pmg and pmg

being the lower and upper bounds.
Naturally, when we model this P2P market as a game, prosumers become the play-

ers. However, here, we also consider a distribution network operator (DNO) as an addi-
tional player (player N + 1), whose objective is simply ensuring a safe operation of the
physical network, i.e., the satisfaction of all physical constraints, which include (linearly
approximated) power flows, bounds on the voltage angles and magnitudes of the busses,
and quadratic constraints on the real and reactive powers. By representing the physical
network as another undirected graph denoted by Gp := (B,L), where B and L denote
the set of busses and that of power lines, respectively, we compactly write the physical
variables (the decision variables of the DNO) as

uN+1 := col
(
(ψy, vy, ptg

y )y∈B , (p`(y,z), q`(y,z))(y,z)∈L

)
∈ UN+1, (5)

where ψy and vy denote the voltage angle and magnitude of bus y, ptg
y denotes the injected

power from the main grid, while p`(y,z) and q`(y,z) denote the active and reactive powers
that flow between busses y and z. The set UN+1 is defined by the aforementioned physical
constraints. Additionally, there also exist coupling constraints between the prosumers and
the DNO, as follows:

∑
i∈N b

y

ηi − ptg
y = ∑

z:(y,z)∈L
p`(y,z), ∀y ∈ B, (6)

σmg = ∑
y∈B

ptg
y , (7)

where (6) represents the power balance at all busses, withN b
y denoting the set of prosumers

connected to bus y and ηi := col((ηi,h)h∈H) denoting the power injection by prosumer i,
i.e.,

ηi = pd
i − (1>ni

⊗ IH)pdc
i , (8)

whereas (7) guarantees the aggregate power traded with the main grid is equal to the total
injected power by the main grid to the busses in the physical network. Thus, by considering
the set of all players I+ := I ∪ {N + 1} and denoting u := col((ui)i∈I+), the coupling
constraints in this game can be compactly represented by the following affine set:

C := {u | (3), (4), (6), and (7) hold}. (9)
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Now, we can write the generalized Nash equilibrium problem (GNEP) in P2P energy
markets as follows:

∀i ∈ I+


minui Ji(ui, u−i)

s.t. ui ∈ Ui,
(ui, u−i) ∈ C,

(10)

where Ji, for all i ∈ I , is defined in (1) while JN+1 = 0, as the DNO is indifferent to the
market outcome, and C is as defined in (9). A set of strategy (u∗1 , . . . , u∗N , u∗N+1) is a GNE if
it simultaneously satisfies (10), i.e., no player can decrease its cost by unilaterally deviating
its strategy ([23], Sect. 2). In this work, we focus on finding a variational GNE—that is,
a GNE where all players share equal marginal loss in satisfying the coupling constraints.
Finally, we impose the following assumption on the GNEP in (10).

Assumption 1. For each i ∈ I , the local feasible set Ui is compact and affine whereas UN+1 is
compact and convex. The global feasible set Ω :=

(
∏N+1

i=1 Ui

)
∩ C is nonempty and satisfies

Slater’s constraint qualification ([24], Eq. (27.50)).

Remark 1. A detailed formulation of Ui, for each i ∈ I+, satisfying its assumption, is provided in
([11], Sect. II). The second part of Assumption 1 is intended to ensure the existence of equilibria.

3. Market Clearing Mechanism with Improved Convergence speed

In this section, we revisit a distributed market clearing algorithm presented in [11].
The algorithm is based on the preconditioned proximal point (PPP) equilibrium seeking
method for generalized aggregative potential games. The PPP method is obtained by
evaluating the Karush–Kuhn–Tucker (KKT) optimality conditions of a variational GNE,
and thus, suitably designing fixed-point iterations based on the resolvent ([24], Chapter 23)
of the KKT operator with a preconditioning technique (see [15] for technical details).

As highlighted in ([15], Sect. IV-B), two variants of the PPP method that can boost
the convergence rate are available. These variants use momentum-like steps, i.e., using a
linear combination of two consecutive iterations for updates, similar to the heavy ball [25]
or Nesterov’s acceleration method [26] for unconstrained convex optimization (c.f. [27],
Equations (3) and (4)). We numerically test these two variants, namely, the inertial and over-
relaxed PPP methods, tailored for our P2P energy market model, and evaluate whether we
can indeed obtain such an improvement.

3.1. Market Clearing Algorithms Based on the Preconditioned Proximal Point Method

Let us start by presenting the PPP-based market clearing mechanism and its variants.
To this end, we first introduce the dual variables µ

mg
(i,j) for all j ∈ Ni and i ∈ I , λmg; µ

pb
y ,

for all y ∈ B; and µtg associated with the coupling constraints in (3), (4), (6), and (7), respec-
tively. We compactly denote these dual variables by ρ := col(µtg, (µpb

y )y∈B , ((µtr
(i,j))j∈Ni )i∈I ,

λmg). We also need to introduce auxiliary variables associated with all the primal and dual
variables, denoted by the accent ˜(·), i.e., for each i ∈ I+, ũi is associated with ui, and ρ̃ is
associated with ρ. The PPP-based market clearing mechanism and its variants are then
summarized in Algorithm 1 and its subroutines in Algorithms 2 and 3, where we consider
Assumption 2.
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Algorithm 1 PPP-based Market Clearing Mechanism
Initialization:

• For all prosumers i ∈ N : set µtr
(i,j)(−1) = 0, ∀j ∈ Ni.

• DNO: set λmg(0)=0, µtg(0)=0, µ
pb
y (0)=0, ∀y∈B.

Iterate in parallel until convergence (k = 0, 1, . . .)
A. For DNO:

• Central update via Algorithm 2:
– Set (uN+1(k+1), ũN+1(k+1)) as in Al-

gorithm 2.a.
– Set λmg(k+1), λ̃mg(k+1), µtg(k+1),

µ̃tg(k + 1), and {µpb
y (k + 1), µ̃

pb
y (k +

1)}y∈B as in Algorithm 2.b.

• Broadcast:
– σmg(k + 1), σ̃mg(k + 1), λmg(k +

1), λ̃mg(k+1), µtg(k+1), µ̃tg(k+1) to
all prosumers in I .

– (µ
pb
y (k + 1), µ̃

pb
y (k + 1)) to all pro-

sumers in N b
y , for all y ∈ B.

B. For all prosumers i ∈ I :
• Local update via Algorithm 3:

– Set {µ(i,j)(k), µ̃(i,j)(k)}j∈Ni as in
Algorithm 3.a.

– Set ui(k+1) as in Algorithm 3.b.

• Communication:

– ηi(k+1), pmg
i (k+1)→ DNO.

– ptr
(i,j)(k+1)→ prosumers j ∈ Ni.

Algorithm 2 Central update of DNO

Step sizes: set αN+1 < 1/(3+ N maxh∈H dmg
h ), γmg < 1/N, βtg < (|N |+|B|)−1, and β

pb
y <

(1+2|N b
y |+|By|)−1, for all busses y∈B.

a. Primal update (grid physical variables):

ψ(k) = col
((

0, µ̃tg(k) + µ̃
pb
y (k), (µ̃pb

y (k), 0)z∈By

)
y∈B

)
uN+1(k + 1) = projUN+1

(ũN+1(k) + αN+1ψ(k)) (11)

ũN+1(k + 1) = τ1uN+1(k + 1) + τ2νN+1(k) (12)

b. Dual update (operational feasibility):

λmg(k + 1) = projR2H
≥0

(
λ̃mg(k) + γmg[ 1

−1
]
⊗ (2σmg(k+1)−σ̃mg(k))−

[
pmg1H−b
−pmg1H+b

])
,

λ̃mg(k + 1) = τ1λmg(k + 1) + τ2φmg(k),

ζtg(k + 1) = σmg(k+1) + b− σtg(k+1),

ζ̃tg(k + 1) = σ̃mg(k+1) + b− σ̃tg(k+1),

µtg(k + 1) = µtg(k) + βtg(2ζtg(k + 1)− ζ̃tg(k)),

µ̃tg(k + 1) = τ1µtg(k + 1) + τ2φtg(k),

ζ
pb
y (k + 1) = ∑i∈N b

y
ηi(k+1)− ptg

y (k+1)−∑z∈By p`(y,z)(k+1),

ζ̃
pb
y (k + 1) = ∑i∈N b

y
η̃i(k+1)− p̃tg

y (k+1)−∑z∈By p̃`(y,z)(k+1),

µ
pb
y (k + 1) = µ

pb
y (k) + β

pb
y (2ζ

pb
y (k+1)− ζ̃

pb
y (k)),

µ̃
pb
y (k + 1) = τ1µ

pb
y (k + 1) + τ2φ

pb
y (k),


∀y ∈ B.
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Algorithm 3 Local update of prosumer i ∈ I
Step sizes: For each i ∈ I , set αi < 1/(3 + N maxh∈H dmg

h ), βtr
(i,j) = βtr

(j,i) < 1/2, for all
j ∈ Ni.

a. Dual update (trading reciprocity):

ζtr
(i,j)(k) = ptr

(i,j)(k) + ptr
(j,i)(k), ζ̃tr

(i,j)(k) = p̃tr
(i,j)(k) + p̃tr

(j,i)(k),

µtr
(i,j)(k) = µ̃tr

(i,j)(k− 1) + βtr
(i,j)

(
2ζtr

(i,j)(k)− ζ̃tr
(i,j)(k−1)

)
,

µ̃tr
(i,j)(k) = τ1µtr

(i,j)(k) + τ2φtr
(i,j)(k− 1).

b. Primal update (main decision variables):

ψi(k) = ũi(k)− αi · col
(
− 1ni ⊗ µ̃

pb
y (k),

[
IH
−IH

]>
λ̃mg(k) + µ̃tg(k),

(
µ̃tr
(i,j)(k)

)
j∈Ni

)
ui(k + 1) =

argmin
ξ∈Rni

Ji
(
ξ, ũ−i(k)

)
+ 1

2αi
‖ξ − ψi(k)‖2

s.t. ξ ∈ Ui,

ũi(k + 1) = τ1ui(k + 1) + τ2νi(k).

Assumption 2.

a. (Inertial PPP variant) τ1 = 1 + θ, τ2 = θ, θ ∈ (0, 1
3 ), νi = ui, for all i ∈ I+,

and (φtg, (φpb
y )y∈B , ((φtr

(i,j))j∈Ni )i∈I , φmg) = (µtg, (µpb
y )y∈B , ((µtr

(i,j))j∈Ni )i∈I , λmg) = ρ;

b. (Over-relaxed PPP variant) τ1 = θ, τ2 = 1− θ, θ ∈ (1, 2), νi = ũi, for all i ∈ I+,

and (φtg, (φpb
y )y∈B , ((φtr

(i,j))j∈Ni )i∈I , φmg) = (µ̃tg, (µ̃pb
y )y∈B , ((µ̃tr

(i,j))j∈Ni )i∈I , λ̃mg) = ρ̃.

Remark 2. The standard PPP-based mechanism ([11], Algorithm 1) is obtained by setting θ = 0
for the inertial variant (Assumption 2a) or θ = 1 for the over-relaxed variant (Assumption 2b).
In this setup, all the auxiliary variables (ũ, ρ̃) are essentially redundant copies of the primal and
dual variables.

Remark 3. The derivations of the inertial and over-relaxed algorithms are analogous to those of
([15], Algs. 6 and 6B), with the addition that we must appropriately design the preconditioning
matrix to exploit the structure of the coupling constraints.

Proposition 1. Let Assumptions 1 and either 2a or 2b hold. Then, the sequence (u(k))k∈N
generated by Algorithm 1 converges to a variational GNE of the game in (10).

Proof. The proof is analogous to that of ([11], Prop. 1). When Assumption 2a holds, we can
apply ([15], Thm. 2) whereas when Assumption 2b holds, convergence follows immediately
from ([24], Prop. 5.16).

3.2. Rate Improvement Evaluation

We evaluate the convergence rate of the inertial and over-relaxed variants via numeri-
cal simulations. To this end, we use the modified IEEE 37-bus and IEEE 123-bus distribution
networks with realistic demand profiles ([11], Sect. IV). The former is radial while the latter
is larger and has a weakly meshed structure. We perform all simulations in MATLAB with
OSQP solver for the primal update step of prosumers. For all variants, we use the same step
sizes of the DNO and prosumers (satisfying the requirements in Algorithms 2 and 3) while
we set θ = 0.3 for the inertial variant and θ = 1.8 for the over-relaxed variant, satisfying
Assumption 2. For each network, we run Monte Carlo simulations by varying the number
of prosumers N and generating 30 random instances for each N. Figure 1 shows the plots
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of the number of iterations needed to satisfy the stopping criterion. We can observe from
Figure 1 that the inertial PPP variant converges the fastest while the over-relaxed variant
also converges faster than the standard PPP. On average, the rate improvements by im-
plementing the inertial and over-relaxed variants are 40.8% and 28.3%, respectively. We
note that, at each iteration, these variants require extra computations whose effect to the
computational time is almost negligible.

(a) On the IEEE 37-bus network.

(b) On the IEEE 123-bus network.

Figure 1. Convergence rate performances of the standard, over-relaxed, and inertial PPP algorithms.
Each point in the solid lines represents the average over 30 random instances (shaded areas).

4. Equilibrium Selection as Preferred by the Network Operator

The GNEP of P2P energy markets might have infinitely many solutions as its pseudod-
ifferential game mapping is merely monotone ([11], Appendix A). Furthermore, the equi-
librium seeking algorithms discussed in Section 3 can only find an arbitrary variational
GNE (Proposition 1). Meanwhile, the DNO might have some preferences on the game
equilibrium. For instance, in order to maintain the longevity of the physical network,
the DNO prefers a GNE that minimizes power flows. At the same time, the DNO does
not want to interfere the game by introducing a non-zero objective or cost function, which
corresponds to its preference, in the game. We note that modifying the definition of JN+1
in (10) changes the definition of the game in the P2P market and, in turn, may change the
set of GNEs. In this section, we pose the problem of selecting an equilibrium of the P2P
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market in (10) that meets the preference of the DNO as an optimal GNE selection problem.
Then, we provide a modification of the equilibrium seeking algorithms in Section 3 into
that of equilibrium selection.

4.1. Formulation of Optimal Equilibrium Selection Problem

We can formulate the equilibrium selection problem as an optimization problem
of a preference function over the set of variational GNEs. Let us denote the preference
function of the DNO that will be minimized by the real-valued function uN+1 7→ ϕ(uN+1).
For instance, to have minimum power flows (in some lines), as discussed earlier, ϕ can be
defined by the following congestion cost:

ϕc(uN+1) := ∑
y∈L
‖p`y‖2

2 + ‖q`y‖2
2, (13)

where L ⊆ L is the set of important power lines chosen by the DNO. By using Ω∗ to denote
the set of variational GNEs of the game in (10), we want to solve the following optimization
problem: {

min
u

ϕ(uN+1)

s.t. u ∈ Ω∗.
(14)

Assumption 3. The preference function ϕ in (14) is convex and continuously differentiable.

By the construction of the GNEP in (10) and Assumption 1, the set of variational
GNEs Ω∗, which we do not know in advance, is convex and compact. Therefore, given
Assumption 3, Problem (14) is convex.

4.2. Optimal Equilibrium Selection Algorithm

We are now ready to show a modification of the market clearing mechanism in
Section 3 that can solve Problem (14). Specifically, let us consider the over-relaxed variant
of Algorithm 1, i.e., when Assumption 2b holds. While we keep using Algorithm 3 for the
local update subroutine of each prosumer, we modify the DNO subroutine in Algorithm 2
by substituting the primal variable update in (12) with

ûN+1(k + 1) = τ1uN+1(k + 1) + τ2νN+1(k), (15)

ũN+1(k + 1) = ûN+1(k + 1)− δ(k)∇ϕ(ûN+1(k + 1)), (16)

where uN+1(k + 1) is computed from (11), νN+1(k) = ũN+1(k) (as in Assumption 2b), and
the step size δ(k) follows Assumption 4. We note that δ(k) = δ0/kp, for any p ∈ (1/2, 1]
and δ0 > 0, satisfies this assumption.

Assumption 4. For the step size δ(k) in (16), it holds that limk→∞ δ(k) = 0, ∑k≥1 δ(k) = ∞,
and ∑k≥1(δ(k))2 < ∞.

The crucial change for equilibrium selection is the addition of a descent step using
the gradient of the selection function ∇ϕ and a vanishing step size δ(k) to update uN+1,
intuitively similar to the gradient descent method for unconstrained convex optimization.
This alteration is obtained by implementing the approach recently introduced in [17,18],
which combines fixed-point selection and operator splitting theories. Specifically, we recast
the optimization problem in (14) into that of fixed point selection. Then, we can show
that our algorithm is an instance of the HSDM [28] with the over-relaxed PPP operator,
and in turn, we can provide a convergence guarantee toward a solution to Problem (14),
as formally stated next.
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Proposition 2. Let Assumptions 1, 2b, 3, and 4 hold. Let the sequence (u(k))k∈N be generated by
Algorithm 1, where at each iteration, step A—the central update of DNO—follows Algorithm 2,
with (12) being replaced by (15) and (16), and step B—the local update of each prosumer i ∈ I—
follows Algorithm 3. Then, (u(k))k∈N converges to the set of solutions of Problem (14).

Proof. See Appendix A.

4.3. Equilibria That Minimize Line Congestion

Let us now show a numerical simulation study where we evaluate the proposed
equilibrium selection algorithm. We consider that the DNO prefers an equilibrium that
minimizes the real and reactive power flows throughout the whole network; thus, we
consider the selection function ϕ = ϕc as defined in (13) with L = L. Note that we
set N = 40 and randomly generate two test instances from the 37-bus and the 123-bus
networks, similarly to those in Section 3.2. We compare the standard PPP algorithm and
its counterpart for equilibrium selection discussed in Section 4.2. Additionally, we also
run a simulation with the standard PPP algorithm for a modified problem, i.e., the cost
function of the DNO in the game defined in (10) is the congestion cost function (JN+1 = ϕc).
Although the latter case is not realistic as typically the DNO cannot participate in the
market, here we consider it as an ideal benchmark. Figure 2 and Table 1 illustrate the
simulation results. We can observe that our equilibrium selection algorithm computes
a solution with a lower total congestion ϕ than the standard PPP method, as expected.
Remarkably, this solution has only at most 4% higher congestion than that of the case
when ϕ is directly imposed as the cost function of the DNO in the game in (10). Thus,
without modifying the game and by implementing an equilibrium selection mechanism,
the DNO can still reduce line congestions significantly well.

5 10 15 20 25 30 35
0

1,000

2,000

3,000

4,000

5,000

6,000

Figure 2. Apparent power at each line of the IEEE 37-bus network in the simulated scenarios.

Table 1. Normalized congestion costs ϕ in the simulated scenarios.

Test Case ϕ (Normalized) of Algorithm 1
Baseline For Equilibrium Selection On Modified Game

37-bus 100% 74.6% 71.9%
123-bus 100% 75.6% 73.4%

5. Conclusions

The convergence speed of the PPP-based distributed market clearing mechanism for
P2P markets can be remarkably improved via two different types of momentum-like steps,
resulting in the inertial and over-relaxed variants. Furthermore, a simple modification based
on an equilibrium selection method allows the network operator to impose a preference on
the market clearing solutions. These two key results have been validated via numerical
studies. Future works include model refinement, e.g., where market aggregators also
participate in the game and relaxation of the assumptions on the price functions.
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Appendix A. Proof of Proposition 2

To establish the proof of Proposition 2, let us first rewrite the game in (10) as follows:

∀i ∈ I+



min
ui

Ji(ui, u−i)

s.t. ui ∈ Ui,

Eu = e,

Gu ≤ g,

(A1a)

(A1b)

(A1c)

(A1d)

where the equality constraint in (A1c) compactly represents (3), (6), and (7) while the
inequality constraint in (A1d) represents (4) with appropriate vectors e ∈ Rne , g ∈ Rne and
matrices E ∈ Rne×n, G ∈ Rne×n. We note that ne = H(∑i∈I |Ni|+ |B|+ 1) and ng = 2H.

Next, for each i ∈ I , let Ξmg
i ∈ RH×H(ni+1+|Ni |) be the matrix that selects pmg

i from ui,
i.e., pmg

i = Ξmg
i ui, and let us define D = diag((dmg

h )h∈H). The pseudodifferential mapping
of the game is defined by

col((∂ui Ji(u))i∈I+) := col((∂ui f loc
i (ui))i∈I , 0) + Cu, (A2)

where C is a symmetric matrix whose block component (i, j) ∈ I+ × I+ is defined by

[C]i,j =


2(Ξmg

i )>DΞmg
i , if i = j, ∀i, j ∈ I ,

(Ξmg
i )>DΞmg

i , if i 6= j, ∀i, j ∈ I ,
0, otherwise.

As shown in the proof of ([11], Prop. 1), the pseudo-differential mapping in (A2) is
maximallly monotone ([24], Def. 20.20).

Furthermore, supposing that Assumption 2b holds, we can show that the set of
Algorithms 1, 2, with (15) and (16) replacing (12), and Algorithm 3 is an instance of the

https://github.com/ananduta/P2P_eq_seeking_selection
https://github.com/ananduta/P2P_eq_seeking_selection
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HSDM [28] with the over-relaxed PPP operator, denoted by T , i.e., the algorithm can be
compactly written as

ω(k + 1) = T (ω(k))− δ(k)∇φ(T (ω(k))), (A3)

where ω(k) := ((u(k), ρ(k))), and

T (ω) := ((1− θ)Id + θT1)(ω),

T1(ω) := (Id + Φ−1(T2 + T3))
−1(ω),

T2 : ω 7→ col(Cu, e, g),

T3 : ω 7→∏
i∈I

(∂ui f loc
i + NUi )(ui)×NUN+1(uN+1)×Rne ×Rng

≥0 + Sω,

S =

0 −E> −G>

E 0 0
G 0 0

, Φ =

α−C −E> −G>

−E β 0
−G 0 γmg I

,

α = diag((αi Ini )i∈I+), β = diag(βtg IH , βpb IH , ((βtr
(i,j) IH)j∈Ni )i∈I ).

By the choice of the step sizes given in Algorithms 2 and 3, Φ is positive definite. We
note that the standard PPP operator is given by T1 where T2 and T3 are obtained from
the KKT optimality conditions of a variational GNE of the game in (10). In this regard,
for any primal–dual pair ω = (u, ρ) satisfying ω ∈ zer(T2 + T3), the primal variable u is a
variational GNE of the game in (10).

Moreover, T is the Krasnosel’skii–Mann operator associated with T1. By Assumption 1
and the maximal monotonicity of the pseudo-differential game mapping, T1 is 1

2 -averaged
with respect to the Φ-induced norm ‖ · ‖Φ [15]. Thus, T is also averaged, given that
θ ∈ (1, 2) (in fact, for any θ ∈ (0, 2)). We can now invoke ([29], Theorem 3) to state that
the HSDM iterations in (A3) with step size δ satisfying Assumption 4 converge toward the
solution set of the variational inequality (VI) problem:

find ω? s.t. 〈∇φ̃(ω?), ω−ω?〉 ≥ 0, ∀ω ∈ fix(T ), (A4)

where φ̃(ω) := φ(uN+1). Specifically, due to Assumption 3, ∇φ̃ is monotone. Moreover,
since T is averaged, it is attracting nonexpansive ([28], Sec. 2.A). In addition, fix(T ) is
bounded due to Assumption 1 and by following ([23], Prop. 12.11) and ([30], Prop. 3.3).
Finally, by noting that fix(T ) = fix(T1) = zer(T2 + T3), the VI in (A4) is equivalent to
Problem (14). Thus, the proof is complete.
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