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Human-centric computational urban design: 
optimizing high-density urban areas to enhance 
human subjective well-being
Joppe van Veghel1, Gamze Dane1*  , Giorgio Agugiaro2   and Aloys Borgers1 

Abstract 

Urban areas face increasing pressure due to densification, presenting numerous challenges involving various stake-
holders. The impact of densification on human well-being in existing urban areas can be both positive and nega-
tive, which requires a comprehensive understanding of its consequences. Computational Urban Design (CUD) 
emerges as a valuable tool in this context, offering rapid generation and evaluation of design solutions, although it 
currently lacks consideration for human perception in urban areas. This research addresses the challenge of incor-
porating human perception into computational urban design in the context of urban densification, and therefore 
demonstrates a complete process. Using Place Pulse 2.0 data and multinomial logit models, the study first quantifies 
the relationship between volumetric built elements and human perception (beauty, liveliness, and safety). The find-
ings are then integrated into a Grasshopper-based CUD tool, enabling the optimization of parametric designs based 
on human perception criteria. The results show the potential of this approach. Finally, future research and develop-
ment ideas are suggested based on the experiences and insights derived from this study.

Keywords Urban perception, Generative area design, Subjective well-being, Computational urban design, 
Optimization, Densification

1 Introduction
The world’s population has grown significantly in recent 
decades and is projected to continue increasing, with 
a substantial portion residing in urban areas (UNDESA 
Population Division, 2019). This trend is particularly evi-
dent in densely populated regions where the demand for 
housing and land is rising (Duin et al., 2018; Groenemei-
jer et  al., 2020). The current intensive land use already 
poses pressure on the green and water infrastructure and 
biodiversity, therefore dealing with these threats requires 

safeguarding natural and rural areas. As a result, the scar-
city of available land for city growth is prompting a shift 
towards densifying existing cities.

The proposed solution of densification, on the other 
hand, results in challenges to maintain and improve the 
livability of urban areas, which encompasses aspects 
such as human well-being (Nabielek et al., 2012). In the 
existing literature, the relationship between urban design 
practices and the well-being of inhabitants has already 
been firmly established and examined (Martin and March, 
1972, Lynch, 1972, Fisher-Gewirtzman, 2017, Weijs-Perrée 
et  al., 2019). In recent years, street view imagery has 
been utilized as an efficient source of data to understand 
the impact of various built environment characteristics 
on human perception (i.e., Biljecki and Ito, 2021; Liang 
et  al., 2023). Compared to text-based surveys, surveys 
that utilize street view imagery datasets provide (i) accu-
rate visual data to avoid biases based on the respondents’ 
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imagination and interpretation of the text, (ii) fine spatial 
coverage, and (iii) understanding of people’s perception 
based on large data sets (Dubey et al., 2016).

The built environment characteristics such as the 
amount of green and water elements (Van Vliet et  al., 
2021), the height of buildings, and the size of open 
spaces (Karimimoshaver and Winkemann, 2018; Jogle-
kar et al., 2020), particularly in densely populated areas, 
play a critical role for increasing livability and support-
ing the well-being of inhabitants (Bardhan et  al., 2015) 
as such attributes influence how people perceive their 
environment in terms of safety, beauty, liveliness, etc. 
Poorly designed dense areas can lead to negative percep-
tions such as noise, dirt, and lack of safety, and therefore 
they can reduce the subjective well-being of inhabitants. 
Merely densifying by constructing new neighborhoods is 
therefore insufficient. Urban design practices that explic-
itly acknowledge and enhance inhabitants’ well-being 
should be therefore emphasized (Haifler and Fisher-
Gewirtzman, 2022).

The design and development of urban areas typically 
involve a range of stakeholders, such as planners, design-
ers, developers, communities, and public authorities. 
In recent years, there has been a shift in responsibilities 
from public authorities to the market parties such as real 
estate and urban developers, thereby making private par-
ties undertake a leading role in the urban area develop-
ment process while ensuring public interests are upheld 
(Heurkens, 2012). However, public interests such as 
inhabitants’ well-being might not be a core interest for 
private parties. Therefore, at the initial design phase of 
urban areas, various stakeholders should work together 
to set a shared vision and objectives. In order to navi-
gate the complexities and responsibilities associated with 
urban design and development while maintaining or 
increasing the livability of urban areas, there is a need for 
supportive tools that provide insights into the effects of 
urban design decisions on the overall human perception 
and therefore their well-being.

A branch of such supportive digital tools is gener-
ally classified as Computational Urban Design (CUD) 
tools. They allow for a shift of the traditional design pro-
cess from designing geometries to designing based on 
shared-decision variables and desired outcomes. Instead 
of manually drawing structures, a CUD tool generates or 
adjusts geometries based on an algorithm where dimen-
sions, volumes, design-decision variables and outcomes 
are set either as design constraints or as targets. The val-
ues of design variables are derived from the analysis of 
the existing urban system and are therefore based on evi-
dence. The resulting design outputs provide various sce-
narios to understand the impact of design decisions on 
the overall urban system. CUD tools can rapidly generate 

designs based on data, providing an overview of poten-
tial design scenarios and their consequences. This makes 
CUD tools particularly effective in the early stages of 
urban area design.

Current CUD tools lack the ability to include human 
perception of the built environment, especially in terms 
of the influence of design decisions (i.e., the height of 
buildings, or the amount of green) on people’s well-being. 
While the impact of the built environment characteris-
tics on human perception (i.e., safety, beauty, liveliness) 
is acknowledged in urban design and planning studies 
(Weijs-Perrée et  al., 2020, Birenboim, 2018), CUD tools 
currently do not incorporate this aspect. In this article, 
we explore how computational urban design can support 
the early design phase of an urban area by incorporating 
human perception to design a liveable dense area that 
will eventually support people’s well-being. In order to do 
that, we will first investigate the influence of volumetric 
built environment characteristics on the perception of 
safety, liveliness, and beauty as indicators of subjective 
well-being. This will be done by analyzing a large data-
set that consists of indicated perceptions of street view 
images. The findings of this analysis will then represent 
the input for a CUD tool that can computationally gen-
erate an optimal urban neighborhood design to maxi-
mally align to perceived beauty, liveliness, and safety, as 
an output that can support the subjective well-being of 
inhabitants.

The remainder of the article is structured as follows. 
First, in Sect. 2, we describe the previous relevant work, 
then in Sect. 3 we introduce the developed methodology 
and describe the required intermediate steps. Section  4 
provides some details on the implementation and shows 
some results obtained with different optimization strate-
gies. Finally, Sect. 5 contains the final remarks as well as 
some reflections for future improvements.

2  Related work
This section will present some relevant literature related 
to human perception (perceived beauty, liveliness, and 
safety) in the built environment and the measurement 
of human perception through the help of street view 
imagery. Next, we will discuss the literature on the inter-
section of human perception and computational urban 
design.

2.1  Human perception in relation to the built environment
It is widely recognized that well-being is closely linked 
to the built environment (Fathi et al., 2020). One crucial 
aspect influencing well-being is how individuals perceive 
their surroundings in the built environment (Mouratidis, 
2021; Smith et  al., 2015). Studies (i.e., Birenboim, 2018; 
Weijs-Perrée et  al., 2020) have examined how various 
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characteristics of the built environment affect people’s 
perception in terms of safety, liveliness, and beauty, 
which then stimulate the positive and negative emotional 
states of individuals such as happiness, sense of secu-
rity, comfort, and annoyance (Dane et al., 2019). In these 
studies, emotional states are found to have an impact on 
both the momentary and long-term subjective well-being 
of individuals.

Various built environment characteristics influence the 
perception of beauty, liveliness, and safety. In this study, 
we aim to explore the incorporation of human percep-
tion into computational urban design, therefore we will 
focus on the volumetric elements, such as the main shape 
of the buildings, street, and trees, and exclude the non-
volumetric elements such as building function and façade 
objects.

Regarding perceived beauty, in the skyline, landmarks, 
and tall buildings are in general perceived as beautiful 
(Quercia et al., 2014a, Karimimoshaver and Winkemann, 
2018), while this perception changes at the street (eye) 
level, and in general, at the street level, the presence of 
buildings negatively influences perceived beauty (Ros-
setti et al., 2019). It can be concluded that tall buildings 
and landmarks in the skyline can have a positive influ-
ence on the perceived beauty of a skyline view. At street 
level, the presence of any type of building generally nega-
tively influences perceived beauty. In terms of vegetation, 
greenery contributes positively to perceived beauty, with 
the amount of greenery being the most influential fac-
tor (Joglekar et  al., 2020; Quercia et  al., 2014a; Rossetti 
et al., 2019; Weber et al., 2008; Zhang et al., 2018). Gar-
dens, trees, and grass are associated with beautiful street 
scenes (Joglekar et  al., 2020; Zhang et  al., 2018). Build-
ings with incorporated vegetation are generally preferred 
over those without incorporated vegetation such as green 
facades (White and Gatersleben, 2011). Broader streets 
are negatively related to the perception of beauty, while 
small paths are positively related (Joglekar et  al., 2020). 
Less sky view in the street scene is associated with more 
beautiful scenes (Joglekar et  al., 2020; Rossetti et  al., 
2019). Sense of order and uniform arrangement in the 
urban form are considered aesthetically pleasing, with 
low to medium complexity being associated with beau-
tiful scenes (Weber et  al., 2008; Karimi, 2012; Joglekar 
et al., 2020).

With respect to perceived liveliness, greenery is found 
to have a negative influence on liveliness, while infra-
structure and vehicles have a positive influence (Zhang 
et al., 2018., Verma et al., 2020). However, these conclu-
sions are based on studies that include both urban and 
rural street views, with rural environments typically 
having more greenery (Dubey et  al., 2016). To obtain a 
more accurate understanding of the relationship between 

greenery and perceived liveliness, it would be beneficial 
to focus solely on urban street views. For instance, trees 
can enhance detailing and shading in streets and can pos-
itively affect perceived liveliness (Mehta, 2007).

Although crowd density is also found as one of the sig-
nificant indicators of perceived liveliness, the direct link 
between crowd density and volumetric built-environ-
ment characteristics such as greenness, openness, enclo-
sure, walkability, and imageability is not straightforward 
(Tao et  al., 2022). For instance, walkability and dense 
road networks are positively associated with higher con-
centrations of people on the street (Zhang et  al., 2019). 
The subdivision of building masses into visually distinc-
tive segments or parts significantly influences the pedes-
trians’ visual engagement. The presence of more plinths, 
defined as distinct segments in the building mass, leads 
to longer visual engagement with the ground floor of the 
building mass (Simpson et al., 2022) and might result in 
livelier perceived environments.

Finally, in terms of perceived safety, the presence of 
buildings in the street view generally has a negative influ-
ence, while the presence of greenery, specifically trees, 
and grass, has a positive influence (Jansson, 2019; Harvey 
et al., 2015; Mouratidis, 2019b; Zhang et al., 2018). Veg-
etation taller than 2.5 m is found to positively affect per-
ceived safety (Li et  al., 2015). Additionally, the presence 
of sidewalks, roads, and paths, as well as the separation 
of walking infrastructure from the road and the width of 
the sidewalk, are associated with higher perceived safety 
(Zhang et al., 2018; Kweon et al., 2004; Al Mushayt et al., 
2021).

The urban form also plays a role in perceived safety, 
with open spaces, clear sightlines, and refuges being posi-
tively related to perceived safety (Jansson, 2019; Rahm 
et al., 2021; Loewen et al., 1993). Moreover, the subdivi-
sion of the built environment and the presence of indi-
vidual buildings are positively associated with perceived 
safety (Harvey et  al., 2015). Furthermore, the ratio of 
building height to street width is found to be significantly 
related to perceived safety, with a higher ratio indicat-
ing a greater sense of enclosure and increased perceived 
safety (Stamps, 2005;  Alkhresheh, 2007; Harvey et  al., 
2015). A visible horizon, depth of the street, open sides, 
and visible sky have a negative influence on the feeling 
of enclosure and, subsequently, perceived safety (Harvey 
et al., 2015). The street width and building height, as well 
as density and street-wall continuity, do not significantly 
influence perceived safety (Mouratidis, 2019).

Overall, the existing literature mentions various built 
environment elements to influence perceived beauty, 
safety, and liveliness. The volumetric built environment 
elements that influence human perception can be cat-
egorized as (i) building (i.e. building height, visibility); (ii) 
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vegetation (i.e., amount of visible greenery), (iii) street 
(i.e., width of streets and sidewalks, visibility of roads) 
and (iv) urban morphology (i.e., order/uniformity, den-
sity of street networks).

To measure human behavior, experiences, and percep-
tion in the built environment through surveys, various 
methods can be employed, such as virtual environments 
(Evers et  al., 2023; Birenboim et  al., 2021; Echevarria 
Sanchez et  al., 2017; Johnson et  al., 2010; Lee and Kim, 
2021; Leite et al., 2019; Lu et al., 2021), real images and 
videos (Alhasoun and Gonzalez, 2019; Chen et al., 2022; 
Ye et al., 2019), and the tracking of real behavior (Al Mushayt 
et al., 2021; Batool et al., 2021; Liu et al., 2021).

When studying perception rather than experience or 
behavior, images of the built environment are often a 
cost-effective and accurate means of measuring human 
perception. In perception studies, realistic images such 
as street view imagery are preferred to minimize the dif-
ference between actual and visualized environments. The 
widespread availability of street view images over the 
past decade has provided researchers with abundant vis-
ual data on existing environments that can be presented 
to respondents in a cost-effective manner. The use of 
street view images has yielded meaningful and interest-
ing results (Biljecki and Ito, 2021). However, street view 
images alone may not be sufficient for understanding 
human perception, as input from individuals indicating 
their perceptions and preferences is necessary.

The Place Pulse 2.0 dataset has been widely used in 
the literature to study the relationship between the built 
environment and human perception (Dubey et al., 2016). 
This dataset consists of a large collection of street view 
images, which have been used to train deep learning 
models (Zhang et  al., 2018). These street view images 
were presented to respondents for pairwise comparisons 
regarding perceptions of safety, liveliness, and beauty. 
However, in the study from Zhang et al. (2018), the deep 
learning model predicting human perception scores of 
new images used only image segmentation data, consid-
ering only the percentages of major built environment 

elements visible in the images. It did not include other 
characteristics found in the literature, such as absolute 
height and distance values. Given the size and availability 
of the Place Pulse 2.0 dataset and the usefulness of street 
view imagery for studying human perception, it is a valu-
able resource for the scope of this current research. Addi-
tionally, using image segmentation to extract analyzable 
data from street view images provides valuable insights 
into human perception (Zhang et  al., 2018), although it 
may not capture all relevant built environment elements.

2.2  Human perception and computational urban design
Recent studies have highlighted the usefulness of Com-
putational Urban Design (CUD) in supporting the devel-
opment of urban areas (Çalışkan, 2017; Fusero et  al., 
2013; Nagy et al., 2018; Steinø et al., 2013; Y. Zhang and 
Liu, 2021). CUD has proven to be effective in generat-
ing conceptual designs quickly while considering the dif-
ferent interests of stakeholders and the complexities of 
existing urban environments (Steinø et  al., 2013; Nagy 
et al., 2018; Wilson et al., 2019).

As can be seen in Table  1, recent existing literature 
on CUD that pertains to densification and optimization 
problems, often focuses on specific design problems (i.e., 
mobility, economical/financial and environmental sus-
tainability, adaptive master plan) and fails to address the 
full range of disciplines in urban design. While CUD is 
acknowledged as a valuable tool for stakeholder involve-
ment and management, CUD tools (i) do not include 
human perception in design problems and (ii) rarely 
incorporate comprehensive sets of key performance indi-
cators (KPIs) (Nagy et  al., 2018). This lack of inclusive-
ness currently limits the effectiveness and scope of CUD 
tools.

To address these limitations, future research should 
aim to develop CUD tools that incorporate multiple KPIs 
(i.e.; subjective well-being) and consider human percep-
tion of the built environment. By broadening the scope 
and comprehensiveness of these tools, their effectiveness 
in supporting urban design processes can be enhanced.

Table 1 Main application topics found in the literature on computational urban design

Reference article Main KPI’s Theme Output of the Tool

Rakha and Reinhart (2012) Level of Densification & Walkability score Mobility Urban form

Nagy et al. (2018) Cost and revenue of the development project & Potential energy genera-
tion of solar panels attached to each building

Economic and Environ-
mental Sustainability

Urban form

Vidmar and Koželj (2013) Compliance with the planning regulations Adaptive Master Plan Building volumes

Chi et al. (2021) Outdoor Thermal Comfort & Shaded Area Adaptive Urban Shading Urban objects

Çalışkan and Barut (2022) Urban growth & Integration of new urban development in the current 
morphology

Adaptive Master Plan Urban form

Di Filippo et al. (2021) Optimal solar radiation while complying with design goals Building physics Building volumes
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As the CUD is a data-driven process, it is important 
to generalize and quantify human perception in order to 
incorporate it into CUD effectively. Nonetheless, rely-
ing solely on generalized subjective relations can lead 
to overly generic designs that may have negative conse-
quences for human well-being (Altomonte et  al., 2020). 
Creating generic designs and retrieving fast insights into 
design options are especially advantageous when a CUD 
tool is used during the exploration and vision-setting 
phase of urban design. In summary, quantifying human 
perception, generalizing its influence, and considering 
the level of detail in design phases are all crucial aspects 
to be addressed in the context of CUD.

3  Methods
This section describes the data and the methodology used 
for this study. Firstly, we explain the use of the Place Pulse 
2.0 dataset and the retrieved auxiliary built environment 
data from other resources in order to explain the relation 
between the volumetric built environment and human 
perception, which was done by means of multinomial 
logit analysis. Further, it is explained how these findings 
were utilized as input for and integrated into a CUD tool.

3.1  The influence of the volumetric built environment 
characteristics on human perception: Analyzing 
the street view images based survey

3.1.1  Data and data processing
The aim of this step is to describe the relationship 
between perceived beauty, liveliness, and safety, and the 
built environment characteristics. Moreover, the built 
environment characteristicsshould represent the volu-
metric built environment elements and the data should 
allow these elements to be quantified and measured. To 
achieve this, a big data approach has been employed, ini-
tially using street view imagery and human perception 

choices from the Place Pulse 2.0 dataset (Dubey et  al., 
2016). Place Pulse 2.0 contains over 110,000 Google 
Streetview images along with one metadata dataset con-
taining 1,223,649 choices of people between two images 
based on their preference in relation to human percep-
tion categories. The choice data of the MIT Place Pulse 
2.0 dataset was gathered in 2016 using crowdsourcing, via 
a website where a pairwise comparison of street photos 
was presented to respondents. In total, 81,630 individuals 
responded to the survey. For each pairwise comparison, 
a respondent had to choose an image perceived as the 
more beautiful, lively, safe, etc., as can be seen in Fig. 1. 
The dataset does not contain any data about respondent 
characteristics, so the choice of a respondent cannot be 
related to the personal characteristics or experiences of a 
respondent.

In our study, the images in the dataset were segmented 
to extract the volumetric built environment data visible 
in the images, while the location data of these images 
was used to gather the extra volumetric built environ-
ment data surrounding the image locations. In order to 
calculate the shares of the volumetric built environment 
element in the images, image segmentation techniques 
were used. More specifically, the PSPnet-50 model pre-
trained on the Ade20k dataset (Zhao et  al., 2017), was 
applied to every image in the Place Pulse 2.0 dataset. 
This pre-trained model was selected based on the follow-
ing criteria. First of all, the model should be able to find 
the relevant built environment elements in the image, 
namely: buildings, roads, trees, and sky, as accurately as 
possible. The study of Zhang et  al. (2021) which com-
pares several image segmentation algorithms on street 
view images, shows that PSPnet performs better than 
other algorithms to recognize the built environment ele-
ments. The second criterion was that the application of 
the model should be well-documented and open source. 

Fig. 1 Example of a choice that a respondent had to make between two street view images according to the perception of safety (Dubey et al., 
2016)
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Using PyTorch and Google Colab, the pre-trained PSP-
net50-Ade20k model was applied to all 110,998 images. 
Using the segmented image data, the share of the rele-
vant built environment elements was calculated for every 
image. These shares are used as attributes in the analysis. 
Figure 2 shows some examples of segmented images.

The Place Pulse 2.0 dataset contains images taken both 
in urban and non-urban areas. However, this dataset 
also contains images that are fully focused on one build-
ing or one row of buildings. Therefore, such images do 
not fully represent an urban streetscape. In addition, the 
images taken on highways can be classified as non-urban 
streetscapes. In this current study, such images were fil-
tered out from the dataset by looking at the calculated 
shares of built environment elements in the images as 
a result of the image segmentation. Therefore, the pair-
wise comparisons that included such an image were also 
excluded from our dataset.

For every image, the geographical position where it 
was taken is known in the dataset as latitude and lon-
gitude coordinates. This means that, in addition to the 
segmented data of the image, more elements can be 
gathered using auxiliary data from the built environment 
around the position of the image. These auxiliary data-
sets can be categorized as datasets containing building 
data (OpenStreetMap contributors, 2021) and datasets 
containing street network data (Boeing, 2017). How-
ever, these auxiliary datasets are not available for every 

location. Therefore, we also filtered the images for which 
no auxiliary datasets were present.

As a result of the above-described filtering conditions 
(filtering images of non-urban areas and filtering images 
with non-available auxiliary datasets), 7,158 images from 
the Place Pulse 2.0 dataset were chosen, resulting in 6,522 
choices that are used in this research.

For every remaining image, multiple independent 
attributes describing volumetric built environment ele-
ments were retrieved from the datasets. In addition to 
the retrieved data on the shares of built environment ele-
ments in the images, data on the building height of sur-
rounding buildings, data on the footprint and volume 
of surrounding buildings, and data related to the street 
on which the image is taken were retrieved. A complete 
overview and description of the retrieval process of the 
volumetric built environment data from auxiliary data-
sets can be found in Van Veghel (2022). For example, 
the facade length index was derived by dividing the total 
length of the buildings adjacent to the street segment 
around the image by the total length of the street seg-
ment. The footprint area index is the share of the area 
of all building footprints within a 100-m buffer around 
the image. The volume index is the share of all building 
volumes within a computed volume around the image, 
with the volume around the image being a 100-m buffer 
around the image multiplied by a set reference height 
of 40  m. Furthermore, the number of street segments 
represented the number of segments in the dataset 

Fig. 2 Examples of segmented images
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(Boeing, 2017) that were available within a buffer of 50 m 
of the images.

The conclusive list of volumetric built environment ele-
ments derived from segmented images of Place Pulse 2.0 
Data and the auxiliary datasets can be found in Table 2.

3.1.2  Analysis results
For the data analysis, the dependent variable is the 
respondents’ choice between two street view images 
(perceived as safer/livelier/more beautiful). The inde-
pendent variables in our analysis are the volumetric built 
environment elements derived from the segmentation of 
street view images and auxiliary datasets. As the depend-
ent variable concerns the choice between two street view 
images, discrete choice models are appropriate mod-
els for analysing respondents’ preferences. The models 
are based on Random Utility theory which assumes that 
individuals choose the alternative that yields the high-
est utility (see e.g., Henscher, Rose, and Greene, 2015). 
An alternative’s utility consists of a structural part and a 
random part. According to the multinomial logit model 
(MNL), the structural part is a weighted summation of 
a selection of the built environment elements listed in 
Table 2. The probability that one of the two alternatives 

is chosen is equal to  pi = exp(Vi)/(exp(V1) + exp(V2)), with 
 Vi = Σk βkXik.  Vi represents the structural utility of alter-
native i (i = 1,2);  Xik is the value of the  kth built environ-
ment element of alternative i and βk measures the impact 
of the  kth built environment element. The βk’s are esti-
mated by optimizing the probability of the chosen alter-
natives. The multinomial logit model is the most basic 
discrete choice model and has been applied to quantify 
the relationship between volumetric built environment 
elements and human perception by utilizing the selected 
choice data from the Place Pulse 2.0 dataset and the 
retrieved volumetric built environment data.

The dataset has been used both as a whole dataset and 
as split subsets, i.e. only for high-density and only for 
low-density areas. The Chi-square p-values for Likeli-
hood Ratio Statistics (LRS) show that the performance 
of the models estimated on the split datasets is signifi-
cantly better than the performance of the model esti-
mated on the complete dataset (See Appendix A Table 6). 
In other words, there is a significant difference between 
the relationship between perceived safety, liveliness, and 
beauty and the volumetric built environment elements in 
higher-density environments and in lower-density envi-
ronments. Moreover, the elements that have been found 

Table 2 Volumetric built environment elements derived from street view imagery and open spatial datasets

Categories Volumetric built environment elements

Image share Tree share

Sky share

Building share

Road share

Buildings height Height mean

Height median

Height standard deviation

Height minimum

Height maximum

Absolute height difference

Buildings footprint & volume Façade length index

Footprint area index

Area mean

Area median

Area standard deviation

Area coefficient of variation (expressed as standard deviation/mean)

Volume index

Street perspective & other Number of street segments

Two or more street segments

Offset distance median

Offset coefficient of variation (expressed as standard deviation/mean)

Offset height ratio

Urban complexity factor (expressed as height coefficient of variation 
* area coefficient of variation * offset distance coefficient of variation)
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to have a significant influence on perception vary per 
dataset.

As this article focuses on densifying cities, we will 
look closer into the findings from the high-density data-
set (in case the readers are interested in the comparison 
of high and low-density datasets, we refer them to Van 
Veghel (2022)). The significant attributes are the outputs 
of this first analysis step and will be the input for the 
following step of the CUD tool. The results of the esti-
mations are presented in Table 3. In social sciences, the 
expected model fit is usually 0.2 or higher (Hensher and 
Greene, 2003). In this study, the relatively weak perfor-
mance (expressed by McFadden’s rho square) of the MNL 
models for perceived beauty, liveliness, and safety high-
lights that the built environment elements have limited 
influence on human perception. This could indicate that 
considering only objective aspects such as built environ-
ment elements is not enough to understand human per-
ception and it may require adding more person-related 
characteristics to the estimation (i.e.; socio-economic 
background, personality, and mood). However, the Place 
Pulse 2.0 dataset does not contain data on person-related 
characteristics.

Regarding perceived safety and considering the high-
density dataset, sky share, building share and area coef-
ficient of variation have a negative influence on perceived 
safety, whereas height median and offset distance ratio 
have a positive influence. In terms of perceived liveli-
ness, tree share, absolute height difference, and façade 
length index have a significant positive influence on per-
ceived liveliness while offset distance height ratio has a 
negative influence. This set of attributes indicates that 

an environment with green and with buildings of vary-
ing heights and lengths is perceived as livelier. Regard-
ing perceived beauty, the positive impact of tree share, 
along with the negative impact of offset distance height 
ratio, align with previous research highlighting the sig-
nificance of enclosure-related elements in enhancing per-
ceived beauty (Joglekar et al., 2020; Karimi, 2012; Rossetti 
et  al., 2019; Weber et  al., 2008). Additionally, the build-
ing height variation has a negative influence on perceived 
beauty which can be explained by previous findings that 
highlight the positive impact of uniformity on perceived 
beauty (Karimi, 2012). Overall, looking at the results for 
perceived beauty, liveliness and safety, the above analysis 
reveals the significant influence of trees, building com-
position, building height, and street width on human 
perception.

3.2  Incorporation of human perception 
into computational urban design

For the integration of the found relationships between 
human perception and the volumetric built environ-
ment elements into the design process of a high-density 
neighborhood, a CUD tool has been set up. It enables the 
analysis and optimization of a volumetric urban design 
also including human perception. The CUD tool has been 
developed starting from a set of already existing tools, 
originally developed at TU Delft and here simply called 
TUD-CUD for the sake of simplicity (García González, 
2019; Agugiaro et al., 2020; Doan, 2021). The core of the 
tool is developed using Grasshopper for Rhinoceros and 
allows to integrate, via several interfaces, static GIS data. 
Existing buildings, roads, parcels, and vegetation in and 

Table 3 MNL estimation results

a Significant at 0.1 level
b Significant at 0.05 level
c Significant at 0.01 level

Dependent variable Volumetric built environment elements β-estimate McFadden’s 
Rho square

Perceived safety Sky share -2.557c 0.044

Building share -1.073b

Height median 0.014b

Area coefficient of variation -0.259b

Offset distance height ratio 0.132a

Perceived liveliness Tree share 1.101b 0.034

Absolute height difference 0.005a

Façade length index 1.470c

Offset distance height ratio -0.119b

Perceived beauty Tree share 4.393c 0.12

Height coefficient of variation -0.846b

Offset distance height ratio -0.130a
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surrounding the study area are imported from a seman-
tic 3D city model, and can be used together with 3D data 
generated parametrically within Grasshopper, such as 
new buildings, new streets and new vegetation within 
the study area. The purpose of the tool is to support 
the designer in the definition of a number of alternative 
solutions, called scenarios, in which several volumetric 
designs are proposed in order to comply with existing 
planning regulations. Not only buildings but also streets 
are considered and adapted in the different output sce-
narios. The output of the TUD-CUD tool consists there-
fore in different combinations of two main urban object 
classes: building blocks and streets. The former can either 
take the shape of a solid block or of a solid block with 
a courtyard in it, while the latter is composed of strips, 
each having a function such as a pedestrian path, green 
strip, or road meant for cars. An example is provided in 
Fig. 3, while Fig. 4 provides an alternative, cross-section 
view of a resulting street strip.

The TUD-CUD output represents the starting point 
for the integration of human perception within a CUD 
tool in order to optimize a high density urban area 
design scenario. Firstly, a design scenario generated 
through TUD-CUD, is imported into Grasshopper 
using the Urbano plugin (Dogan et  al., 2020). For this 
part of the study, Grasshopper was chosen due to its 
well-known suitability for architecture-related proce-
dural modeling capabilities. In order to allow for design 

optimization, the additional design variables in the cre-
ated Grasshopper model have been set (as those listed 
in Table 4) so that they are aligned as much as possible 
to the volumetric built environment elements that were 
found to influence human perception in high-density 
areas (as in Table  3). Additionally, for realistic design 
scenarios, requirements that would be representative of 
a high-density neighborhood (in the Netherlands), have 
been included in the process, such as, for example, the 
maximum building height and the minimum required 
amount of square meters.

The final set of design variables for a high-density 
neighborhood that is defined in Grasshopper can be 
subdivided into three main categories: i) building 
height, ii) building footprint, and iii) street perspective 
& typology. Every design variable can either be adjusted 
per building, for all buildings, for all streets, or for all 
plots. The plots will eventually define the footprint type 
(courtyard or solid) and size of a building. Table 4 pre-
sents the different design variables that were included 
in the CUD tool to incorporate human perception. 
There is no explicit design variable for the placement of 
trees. The design variable ‘vegetation strip outer width’ 
automatically defines the amount of trees that are gen-
erated in the design: if every street contains one green 
strip, then it contains fewer trees than two green strips. 
Intuitively, the wider the strip is, the more trees per 
strip will be added to the proposed design.

Fig. 3 Example of the Graphical User Interface of the TUD-CUD tool in Grasshopper/Rhinoceros. On the left, a scenario consists of buildings 
(represented as solid blocks or solid blocks with courtyards) and streets strips. On the right, the Grasshopper window with information panels 
and data nodes. [Image source: Agugiaro et al., 2020]
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3.3  Evaluation of the human perception in the virtual 
urban scenarios

3.3.1  Taking virtual images
The first step is to evaluate and quantify the effect of a 
design scenario on human perception. For this, a simi-
lar approach is followed as described in Sect. 3.1 of this 
article. However, instead of analyzing “real” street view 
images as before, now the images are generated from 
the virtual urban scenario. In other words, sets of 3D 
isovists are generated automatically at selected posi-
tions in the streets of the virtual urban scenario, repre-
senting a set of views that a hypothetical person would 
experience when walking in that specific high-density 
urban area setting. For this reason, several points of 

analysis are generated in the design scenario. These 
points of analysis are comparable with the image loca-
tions mentioned before. Different sampling densities 
can be set for the points of analysis: very dense points 
will result in a more thorough and descriptive analy-
sis, however at the cost of a longer processing time. An 
example is given in Fig. 5.

At each point of analysis, 3D isovists are generated 
from which virtual images are extracted. Further-
more, identically to the data-gathering process used 
for the analysis on the relation between the volumetric 
built environment and human perception (Sect.  3.1.), 
a buffer is generated around the point of analysis and 
around the street segment belonging to the specific 

Fig. 4 Section of possible layout for outdoor spaces resulting from the TUD-CUD tool and visualised in Grasshopper/Rhinoceros. Note that the trees 
are actually not modeled in Rhinoceros/Grasshopper. They are added here only for visualization purposes. [Image source: Agugiaro et al., 2020]

Table 4 Design variables to incorporate human perception in the CUD tool

Categories Design variables Variation level

Building height Building height Individual building

Building footprint Plot division category All plots

Offset adjacent building All buildings

Offset street All buildings

Street perspective & typology Canal width All streets

Vegetation strip inner width All streets

Vegetation strip outer width All streets

Bike path width All streets

Pedestrian path width All street
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point of analysis in order to retrieve the additional vol-
umetric built environment data.

3.3.2  Scoring of virtual images
In Sect.  3.1 of this article, the analyses between human 
perception and the volumetric built environment in high-
density urban areas have been done resulting in a set of 
estimates (see Table 3) associated with the relevant fea-
tures. In the Grasshopper-based CUD tool developed 
for this current study, these estimates have been inserted 
in the Grasshopper-based CUD tool and, together with 
quantitative analysis from the isovists, they are used to 
compute the score of human perception categories (i.e. 
perceived beauty, liveliness and safety) at every point of 
analysis. Point-wise results are then aggregated at street 
element level, and up to the whole urban scenario level. 
The results can therefore also be visualized at different 
levels of spatial granularity: from the single point to the 
whole urban scene. The interactive visualization of the 
results helps the user, for example, to quickly identify 
weak and strong street segments. A schematic example 
is provided in Fig. 6. This drawing visually exemplifies the 
concept of isovists scores (represented here by points) 
aggregated at street level (represented here by means of 
lines). Growing values associated with the isovists and 
streets are represented here in simplified form by means 
of a red-yellow-green color scale, in which red represents 
low values, and green high values.

3.3.3  Optimization
The procedure explained in the previous section 
describes how a single urban design scenario can be 
defined in order to quantify the influence of a high-den-
sity urban area design scenario on human perception. 
The CUD tool actually takes advantage of the intrinsic 
capabilities of the Grasshopper environment to dynami-
cally change (interactively by the user, or automati-
cally) the urban design scenario based on the values of 
design variables of a high-density urban area presented 

in Table  4. In addition, for each new configuration, the 
scores of perceived beauty, liveliness and safety can be 
computed automatically.

The next step is therefore to check whether and how 
a high-density urban area design scenario can be opti-
mized based on human perception. The optimization 
can be carried out in different ways. First, singularly on 
each one of the three investigated categories of human 
perception (i.e. by means of a single-objective optimiza-
tion), then altogether, via a multi-objective optimization. 
In Grasshopper, a single-objective optimization is carried 
out using the Galapagos plugin (Rutten, 2013). For multi-
objective optimization, the Octopus plugin (Vierlinger 
et  al., 2018) is used. The multi-objective optimization 
includes the principle of Pareto efficiency and provides 

Fig. 5 [Left] Schematic representation of isovists created at different locations along the street network. [Right] Schematic representation of field 
view used to compute the isovist

Fig. 6 Schematic example of isovists scores (represented here 
by points) aggregated at street level (represented here by means 
of lines). Growing values associated with the isovists and streets are 
represented here in simplified form by means of a red-yellow-green 
color scale
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a design output that cannot be further improved on one 
human perception category score without decreasing the 
human perception score of another category.

During the optimization process, the design require-
ments of a high-density urban area are of importance. 
Since the included relations that score the design on 
human perception are linear relations, optimized designs 
that do not have to meet any requirements can take 
extreme (and unrealistic) forms, for example, the height 
of the buildings could become extremely high. Addition-
ally, the requirements incorporate other design objec-
tives such as a minimum amount of to-be-realized square 
meters of floor space.

The design variables are therefore influenced by the 
design constraints. If a design variable is set to a level that 
causes a design constraint not to be met, then the design 
variable is adjusted accordingly. For example, a too-high 
value for the building height will lead to an excessive and 
unacceptable amount of floor space. Therefore, if a cer-
tain building is set to a height that results in too many 
square meters of floor space, the height of the other 
buildings is lowered in order to respect the constraint on 
the maximum floor area space. Van Veghel (2022) exten-
sively describes how the design constraints are imple-
mented during the optimization process and how they 
interact with the design variables.

4  Implementation based on a test scenario
The methodology presented in the previous section has 
been implemented and tested on a test scenario. The test 
scenario focuses on high-density urban area develop-
ment as high-density urban environments are required 
to accommodate the increasing demand for urban living. 
For this reason, the usage of a CUD tool that generates 
design scenarios can contribute to understanding of the 
effects of different design choices on how these envi-
ronments will be perceived by people. This test scenario 
consists of four plots and the adjacent streets, as well as 

the surrounding urban “context”. Figure  7 visualizes the 
implementation steps in the CUD tool.

The resulting design in Grasshopper consists of core 
buildings and streets that can be modified as well as fixed 
surrounding buildings that are used to define the urban 
context. The urban context, i.e. the shape and position of 
buildings, cannot be modified by the Grasshopper-based 
CUD tool. In Fig. 8, the buildings that will be subject to 
optimization are depicted in color light azure, while the 
streets surrounding them can be easily recognized. The 
buildings representing the urban “context” are depicted 
in gray.

The scores on perceived beauty, livability and safety 
are calculated when the design variables have been first 
initialized, i.e. have been assigned values computed from 
the scenario used as a starting point and their weights are 
based on the estimates coming from Table 3. Then, in a 
second moment, the scores are recomputed by applying 
optimization algorithms to the predefined test scenario. 
In the following sub-sections, the main findings will be 
presented and explained.

4.1  Single-objective optimization results
By means of a single-objective optimization, the high-
density urban area design scenario shown in Fig.  8 has 
been optimized on perceived safety, liveliness and beauty, 
respectively. The following figures show the result of 
each optimization process and are provided with a short 
description of the findings.

In terms of perceived safety, the output of the single-
objective optimization (shown in Fig.  9) results in large 
building blocks along the streets, the buildings are posi-
tioned at some distance from the streets and the green 
strips in the street layout are relatively wide, resulting 
in many trees. Compared with the reference design in 
Fig. 8, the core buildings (in light azure) and the streets 
have been modified. This result can be explained based 
on the design degrees of freedom, the design variables 
along with the design constraints, and the incorporated 

Fig. 7 Steps taken in the CUD tool
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relationships that define the human perception score. The 
many trees as a result of the green strip width decrease 
the sky and building view as much as possible. The solid 
building mass additionally decreases the sky view as 
much as possible as building view has less negative influ-
ence than sky view on perceived safety. Furthermore, the 
buildings-offset from the street results in relatively high 
buildings due to the requirements in terms of required 
floor space area while it additionally decreases the offset 
distance height ratio variable. Overall, this is in line with 
some of the characteristics investigated before regarding 
the perceived safety in high-density urban areas.

When it comes to perceived liveliness, the optimization 
results (as in Fig.  10) show a greater variation in build-
ing heights, in the distance between the buildings and 
buildings that are positioned close to the streets. In par-
ticular, the streets are narrowed down by removing the 
canal, but still including several green strips to maintain 

a large share of trees in the street view. As a result, the 
absolute height difference between the tallest and low-
est building is large and the offset distance height ratio 
is relatively large due to the narrow streets. Tree share, 
absolute height differences and the façade length index 
positively affect the perceived liveliness, while the offset 
distance height ratio does not. This result also reflects 
the earlier findings regarding perceived liveliness in high-
density urban areas.

When optimizing in terms of perceived beauty, Fig. 11 
shows that, compared with the reference design, in par-
ticular, one building has been removed to meet the design 
constraints. Furthermore, the street offset becomes rela-
tively large, as well as the mean building height of the 
remaining buildings. The height difference between the 
buildings is relatively small and the green strips ensure a 
large amount of trees in the street view. This corresponds 
with some of the characteristics investigated before 

Fig. 8 3D visualization of the test scenario used as a starting point to investigate the effect of human perception in the design process

Fig. 9 Result of the single-objective optimization in terms of perceived safety



Page 14 of 19van Veghel et al. Computational Urban Science            (2024) 4:13 

regarding the perceived safety, i.e. tree share positively 
affects the perceived beauty, while the height coefficient 
of variation has a negative effect on the perceived beauty 
in high-density urban areas.

4.2  Multi-objective optimization results
Finally, the same reference design is optimized using 
multi-objective optimization. The multi-objective opti-
mization tries to improve the initial high-density urban 
area design scenario on multiple human perception cat-
egories. In this Grasshopper-based CUD tool, a Pareto-
front, consisting of many different design scenarios, is 
generated as an outcome of the multi-objective optimi-
zation. Any design output resulting in the Pareto-front 
cannot be further improved on one human perception 
category score without decreasing the human perception 
score of another category. Figure  12 presents a design 
scenario resulting from multi-objective optimization.

From the optimization results obtained with the 
test case, it can be concluded that the optimization 

methodology involves a high level of interaction 
between the design freedom, intended as the set of 
design variables and requirements that allow for the 
generation of alternative design scenarios, and the 
incorporated relations between the volumetric built 
environment and the different human perception cate-
gories in high-density urban areas. As a result, the out-
put can be explained on the incorporated relationships 
but only while taking the design freedom into account. 
A more flexible design freedom is likely to allow for 
more optimized designs. As expected, the most domi-
nant (design variable) volumetric built environment 
element that positively influences all the scores on all 
three human perception categories is the green strip 
width due to the fact that a wider green strip width 
results in more trees. This is, in accordance with the 
findings of the first part of the article, in which we 
found that greenery plays an important and positive 
role when it comes to human perception in high-den-
sity urban areas.

Fig. 10 Result of the single-objective optimization in terms of perceived liveliness

Fig. 11 Result of the single-objective optimization in terms of perceived beauty
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In summary, Table 5 provides an overview of the sin-
gle-objective and multi-objective optimization results. 
Including the values of the most relevant design variables 
that define the resulting output designs.

5  Discussions and conclusion
Densification and the creation of high-density urban 
areas have been proposed as solutions to the increas-
ing world population and diminishing earth resources. 
However, designing high-density urban areas comes 
with risks such as the possible negative impacts of high-
density areas on human subjective well-being. Reduc-
ing such negative impacts requires involving potential 
end-users together with the other stakeholders (i.e.; 
area developer, local government) in the early stages of 
the design process which is a challenge. Several Com-
putational Urban Design (CUD) approaches and tools 
already exist today that support urban designers in the 
process of generating several urban design alternatives 
(which in this article we call “scenarios”) from the very 

early stages. The reasons for the different scenarios are 
manifold. Each scenario may focus on or give particu-
lar relevance to certain aspects that are deemed impor-
tant in certain circumstances or may be dependent on 
whether – and to which extent – the designer decides 
to respect certain constraints, for example, either in 
terms of urban regulations, environmental characteris-
tics, social aspects, or economical goals. An advantage 
of creating several scenarios is the possibility of facili-
tating the following evaluation of the alternatives by the 
stakeholders and providing feedback that may lead to a 
further refinement of the design process. As a matter 
of fact, depending on the complexity of the project and 
the number of aspects to be considered (and thus for-
malized as design variables), the potential number of all 
possible design alternatives could lead to a sheer num-
ber of scenarios, de facto nullifying the original purpose 
of facilitating the understanding and feedback phases 
by the stakeholders. Therefore, optimization algorithms 
are often used in order to reduce the resulting number 

Fig. 12 Pareto-front design scenario resulting from the multi-objective optimization

Table 5 Results of single- and multi-objective optimization per most relevant design variables

Design variable Optimized on perceived 
beauty

Optimized on perceived 
liveliness

Optimized on perceived 
safety

Multi-objective 
optimization 
result

Parcellation category 0 1 1 2

Street offset (m) 14 3 16 2

Adjacent building offset (m) 21 9 0 3

Inner green strip width (m) 7 7 12 12

Outer green strip width (m) 10 10 15 20

Human perception score

 Perceived beauty 2.39 2.31 0.69 1.72

 Perceived liveliness 1.92 2.04 1.02 1.72

 Perceived safety -1.88 -1.80 -0.23 -0.94
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of scenarios in that either a single criterion or multiple 
criteria at the same time are optimized.

Such CUD tools are essential for navigating the com-
plexities of the urban design process, especially consider-
ing the diverse needs of various stakeholders (including 
the end-users) while focusing on the enhancement of 
urban areas in terms of their liveability. However, involv-
ing end-users in the design generation and evaluation 
phases is not always an easy task which requires time, 
effort, and an inclusive approach. In that sense, big-data 
approaches (as in this paper) that contain human percep-
tion can support the involvement of end-users’ needs, by 
generalizing and quantifying them.

This article has explored the incorporation of human 
perception in CUD from the early stages of a high-den-
sity urban area design process, with the ultimate goal of 
generating design scenarios that can enhance the subjec-
tive well-being of end-users of a high-density urban area. 
In order to do so, the research work has been subdivided 
into two main steps. First, human perception aspects 
(such as perceived beauty, liveliness, and safety) in high-
density urban areas, as the indicators of subjective well-
being, have been investigated and quantified, leading to 
the identification of the most relevant urban characteris-
tics (volumetric built environment elements) for creating 
beautiful, lively, and safe high-density urban areas. In the 
following step, the results and findings from the first part 
have been implemented in a CUD tool and finally tested 
on a hypothetical high-density urban area setting.

The first part of the research has covered a literature 
review on the relationship between human percep-
tion and the built environment, focusing on perceived 
beauty, liveliness, and safety in high-density urban areas. 
Using a big-data approach with street view imagery data, 
respondents’ choices of street view imagery for their 
perception of safety, beauty and liveliness, and by utiliz-
ing the open built-environment data, a multinomial logit 
analysis (MNL) was applied to quantify the relation-
ships between volumetric built-environment elements 
and human perception in high-density urban areas. The 
analysis results reveal the significant influence of trees, 
building composition, building height, and street width 
on human perception.

For the second part of the study, a Grasshopper-based 
CUD tool has been developed, based on a generative 
design component built on top of a parametric urban-
design component and resulting in an overall CUD tool. 
This tool allows an urban designer to have optimized 
high-density urban area designs based on human percep-
tion by incorporating the relationships between volumet-
ric built environment elements and human perception 
found in the first part of the study. The incorporation of 
clear functions describing the relation between human 

perception and the volumetric built environment charac-
teristics in high-density urban areas is therefore essential 
for computational urban design.

The main contribution of this study is therefore to 
highlight the importance of addressing human subjective 
well-being in high-density urban area design through the 
incorporation of human perception, ultimately extend-
ing the possibilities of computational urban design to 
support the urban design and development process and 
including these aspects from the beginning in the initial 
discussion/evaluation process between designers, devel-
opers and potential end-users of an area. To the authors’ 
knowledge, no similar examples of CUD tools, espe-
cially that follow an empirical approach to incorporating 
human perception, therefore providing evidence-based 
design solutions, could be found in the existing literature.

In particular, when it comes to the first part of the 
study, the research outcomes underline the importance of 
considering the interplay between volumetric built envi-
ronment elements and human perception in high-density 
urban areas. Since we aimed to understand the rela-
tionship between the dependent and independent vari-
ables, the MNL model has proven suitable to highlight 
dominant attributes and to facilitate their incorporation 
into computational urban design. However, the model 
fits were low, especially for perceived safety and liveli-
ness. These results indicate that, when the relationships 
between the volumetric built environment elements and 
human perception were considered without any control 
variable (i.e., personal characteristics), this relationship 
was relatively weak. Therefore, volumetric built environ-
ment data (coming from street view imagery and open 
spatial datasets) should be complemented with additional 
datasets obtained through surveys or alternative meth-
ods, such as virtual environments. This holistic approach 
would be able to reveal more robust relationships. Addi-
tionally, results suggest studying the relationship between 
human perception and the built environment for spe-
cific urban typologies and gathering socio-demographic 
information from respondents to optimize designs for 
target groups. The inclusion of more detailed volumetric 
greenery elements, such as tree height and width, is also 
recommended, along with additional attributes describ-
ing variations in building shapes and a more detailed 
description of street typology.

When it comes to the second part of the work, the 
developed CUD tool, results and experiences collected so 
far have provided several recommendations for further 
improvement when incorporating human perception into 
computational urban design of high-density areas. For 
example, some of the current limitations should be over-
come, e.g. by allowing a building to have a different offset 
from the street depending on its height, or by allowing 
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the footprint of each building to be set independently. 
Secondly, there is still room for improvement in the pace 
of the design generation and analysis process. The current 
optimization tool generally requires several hours to find 
an optimal design and, since a fast optimization process 
is preferred in relation to its potential use in practice, the 
time of one design generation and analysis run should be 
minimized in order to lower the cost, expressed in time, 
of increasing the design freedom. However, this might 
itself lead to some disadvantages, as the amount of design 
freedom is directly related to the computation time and 
the number of resulting scenarios to be explored.

Finally, looking further into future possible improve-
ments, an ideal CUD tool should also incorporate the 
perception of a specific target group for a specific area or 
urban environment. Additionally, in order to increase 
its supportive function to incorporate human percep-
tion from the preliminary design process, the descrip-
tive power of the incorporated relationships could be 
increased. For example, in addition to using a big-data 
approach and the MNL analysis, other methods could 
also be added, such as machine learning and investigat-
ing perceived urban environments under experimental 
conditions. Furthermore, presenting generated urban 
designs in (immersive) VR settings can allow for testing 
how different groups of people would experience them 
(safe, lively, beautiful). This can also be a step forward in 
the human representation within urban digital twins.

Appendix A

Table 6 The performance of the models estimated on the split 
datasets and the Chi-square p-value for Likelihood Ratio Statistics 
(LRS)
Dependent 
variable

Dataset Rho Square Chi-square 
p-value for 
LRS

Perceived safety Complete dataset 0.046 0.001

Low density 
dataset

0.060

High density 
dataset

0.044

Perceived liveli-
ness

Complete dataset 0.051 0.022

Low density 
dataset

0.054

High density 
dataset

0.034

Perceived beauty Complete dataset 0.11 0.001

Low density 
dataset

0.12

High density 
dataset

0.12
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