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1 Introduction 

1.1 Background & problem statements 

Partially as a result of the wide range of new technological possibilities, a trend towards the increased use of 

advanced geometry and computation can be observed within the fields of architectural and structural 

engineering (Coenders, 2006). Computation plays an important role in generating (complex) geometries and 

developing the (structural) design using design- and analysis software. Complex (structural) designs are often 

developed through an iterative process, consisting of design-, calculation- and production phases, driven by 

the possibility to exchange data (interfacing) between CAD programmes (Computer Aided Design) and FEM 

programmes (Finite Element Method) (Borgart, Hoogenboom, & De Leeuw, 2005). This sequence makes it 

possible to design, calculate and develop complex designs, resulting in for example free form architecture. 

During the conceptual stage of the design process, many important design decisions are made with regard to 

structural considerations,  laying the basis for the rest of the project.  The first structural setup is usually 

conceived at this stage. Qualitative- and global quantitative insight in the mechanical behaviour of the 

structure is therefore very important.  Qualitative insight in this respect refers to insight in the relation 

between parameters such as structural geometry, boundary conditions and materials properties and the 

resulting deformations and stress resultants (quantitative information). When such insight is obtained in the 

conceptual stage of the design process it could be employed for (structural) optimization purposes. 

Identifying the implications of specific design decisions with respect to esthetical appearance or 

constructability at an early stage, could lead to a reduction of risk and cost, and thus reduce problems during 

later stages. 

FEM based structural analysis programs might not be the most appropriate computational structural analysis 

tools in the conceptual design stage. Even though FEM calculation results offer sufficient quantitative insight 

in the magnitude of the forces and deformations that might occur in a structure, they do not always give the 

engineer qualitative insight in the mechanical behaviour. Additionally, these analysis programs require a 

rather detailed structural model and the results produced are unnecessarily precise for the conceptual design 

stage. Most of the existing software tools for structural analysis are oriented towards advanced users and 

require a detailed understanding of the program and its underlying principles. Moreover, the calculation 

procedures within FEM programs in combination with the necessary interfacing between different CAD 

programs decreases the speed and flexibility of the design and analysis process.  

In contrast to FEM programs, (classical) analytical methods offer, apart from quantitative insight, qualitative 

insight into the mechanical behaviour for a wide range of structural topologies. Graphic statics is a good 

example of such a method in which analytical relations between the structural geometry and the 

corresponding mechanical behaviour are used to generate a graphical representation of the flow and 

magnitude of forces. 

A recent development in the field of computational design are parametric associative design tools which 

capture design information by defining logical relations between (geometrical) components, controlled by 

parameters. These techniques offer a very flexible approach to exploring complex geometries and are, 

currently, mainly used within the field of architectural design. Despite the wide range of possibilities for 

linking geometry to structural analysis they still find very little application within the field of structural 

engineering at the moment. 
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The main thought behind this thesis is that the application of (simple) analytical methods into parametric 

software applications could help both the engineer and the designer. Both qualitative and quantitative insight 

in the relation between structural topology and the flow of forces could be assessed in a flexible manner 

during the conceptual design stage. Especially when implementing these relations in a computational model 

they offer a quick and precise insight in the (relations between) the above mentioned quantities. The obtained 

knowledge could be used to make thoughtful considerations with respect to the interwoven aspects of 

aesthetics and structure. In that way it might even be helpful to bridge the gap between the often separated 

fields of architecture and structural engineering. 

Some (academic) approaches towards the implementation of mechanical analysis methods into a parametric 

model are worth mentioning. One example is the Structural Components approach which was first described 

by J.L. Coenders. This approach is aimed at the assembly of a toolbox filled with structural components which 

can be used to compose a mechanical model. The model can subsequently be analysed with the implemented 

rules of the thumb and FEM methods.  Although this method is very flexible with regard to assembly and 

analysis of a structural topology, it does not give much qualitative insight in the flow of forces of plate 

structures as the structural analysis is not based on analytical methods. Another example is the recently 

developed application of the Thrust Network Analysis into a parametric model by Professor Block. This 

graphical method forms a very inspiring example of how analytical mechanics can give a designer both 

qualitative and quantitative mechanical insight in the flow and magnitude of forces in structures. 

Nevertheless, this graphical method is mainly confined to designing and analyzing masonry vaults.  

This thesis aims at developing a structural design tool by implementing simple structural analysis methods 

within a parametric environment, in a manner that differs from the above mentioned approaches. The 

intention is to introduce structural evaluation into the conceptual design process in an intuitive and flexible 

manner.  

Two problem statements, forming the incentive for writing this thesis, are deduced from this background: 

1) There is a deficiency of simple structural analysis tools, based on analytical relations, which give both the 

architect and engineer besides quantitative insight also qualitative insight in the (flow of) forces of 

structures during a conceptual design stage. 

2) Parametric design applications are not used to their full potential within the field of structural engineering. 
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1.2 Objectives & approach 

In this thesis, it will be assessed whether the premise holds that statement 2 contains the solution for 

statement 1.. This will be done by developing a computational structural design tool, based on analytical 

structural analysis methods, by using the parametric associative design approach. Consequently, the main 

objective is defined as: 

“Develop a structural design tool for architects and engineers, based on simple analytical structural 

analysis methods, which gives both quantitative and qualitative (real time) insight in the flow and 

magnitude of forces within a specific structure during a conceptual design stage.” 

To guide the development of this parametric structural design tool a series of secondary objectives is defined: 

1a Define a theoretical framework, by stating which- and how- analytical and numerical structural 

analysis techniques can be used to provide both quantitative and qualitative insight in the relation 

between structural geometry and the flow- and magnitude of forces and deformations within 

structures and have the potential to be implemented into a (parametric) computational tool. 

The presumption with respect to 1a is that simple analytical structural analysis methods, which have the 

potential to be developed further by combining, extending and applying them within a computational 

application, can contribute to insight into the mechanical behaviour of structures.  

1b Define which demands, concerning functionality- and usability, have to be fulfilled by the parametric 

structural design tool. 

With respect to 1b, the design tool is presumed to be used by both architects and structural engineers during a 

conceptual design stage. To be able to achieve objective 1b, a concise enquiry is held amongst experts from 

practice (Witteveen+Bos). 

1c Define an appropriate general outline and structure for the parametric structural design tool with 

respect to the demands concerning functionality and usability (see 1b). 

 

1d Implement the theoretical framework (see 1a) into the defined general setup (see 1c). 

 

1e Validate the produced calculation results in a qualitative- and a quantitative manner. 

In case these objectives are reached and have resulted in a parametric structural design tool, the main 

objective within the scope of this thesis is considered to be reached.  
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1.3 Scope 

Although there is a broad range of structural topologies, the scope of this thesis is confined to thin isotropic 

plates simply supported along their edges. Plates are considered as a logical starting point because: 

- Their mechanical behaviour is extensively described by (analytical) calculation methods which can be 

used to validate the calculation results provided by the envisioned structural design tool.  

- They form a very common structural component, which increases the practical relevance of this research.  

- Since the introduction of FEM calculation methods many students and even some engineers only have a 

superficial insight in their mechanical behaviour. This forms a great opportunity to regain insight and 

understanding on how plates transmit their loads by providing them with a useful design tool.  

The development of the envisioned structural design tool for thin plate structures is considered as a logical 

first step in the development of a parametric structural analysis tool which is applicable to a wider range of 

structural topologies. 

1.4 Outline of this thesis 

This thesis is structured in correspondence with the presented objectives. They will be the basis on which the 

design tool will be developed chronologically: 

Chapter 2 A description of the theoretical framework (referring to objective 1a) will be given by means of 

a concise explanation of the theory behind the different structural analysis methods. It will also 

be explained how the methods are used within this thesis. 

 

Chapter 3 First, the demands concerning functionality and usability will be defined (referring to 1b). 

Second, the conceived general setup of the parametric structural design tool will be described 

(referring to 1c). Third, it will be explained how the different components of the design tool 

function by implementing the structural analysis methods from the theoretical framework 

(referring to 1d). 

 

Chapter 4 The achieved calculation results, provided by the different components of the structural design 

tool, will be validated in a qualitative and a quantitative manner by comparing them to 

corresponding results produced by respectively FEM based software applications and 

analytical results (referring to 1e).   

 

Chapter 5 Conclusions will be drawn for this thesis project, defining whether and to what extend the 

main- and secondary objectives have been reached. Additionally, recommendations and 

suggestions are made for future development and improvement of the structural design tool. 
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2 Theoretical framework  

2.1 Introduction 

This chapter will elaborate on the theoretical framework, referring to objective 1a:  

“Define a theoretical framework, by defining which- and how- analytical and numerical structural 

analysis techniques can be used to provide both quantitative and qualitative insight in the relation 

between structural geometry and the flow- and magnitude of forces and deformations within thin plate 

structures and have the potential to be implemented into a (parametric) computational tool.” 

The theoretical framework forms the basis for the development of the structural design tool. In accordance 

with the approach as defined in chapter 1, it consists mainly of (classic) analytical structural analysis 

method(s) for plate structures. Analytical methods provide the exact relation between the structural 

geometry, boundary conditions and materials properties as parameters and the resulting deformations and 

stress resultants in an unequivocal way by exact algebraic equations. As a result, they provide an engineer 

with both qualitative and quantitative information on the mechanical behaviour of a structure.  

The emphasis within this thesis lies on the computational application of (classic) analytical theories 

preferably those that were not implemented into a (parametric) computational model before. It was 

presumed that implementation of these methods into the envisioned parametric structural design tool 

induces a faster and more flexible structural process than a FEM based calculation sequence, which is more 

appropriate for the conceptual design process.  The methods which were selected on basis of this approach 

are: 

1) Differential equations for thin plates 

2) Elastic membrane analogy 

3) Force Density method 

4) Rain flow analogy 

5) Curvature ratio method 

6) Finite difference method  

7) Sand hill analogy 

As mentioned before in the introduction, the scope of this thesis is (mainly) confined to thin isotropic plates 

simply supported along their edges, loaded perpendicular to their plane. Although the mentioned structural 

analysis methods are only used within this thesis for plate structures, some of them can be used for other 

structural topologies as well (e.g. wall or thin shell structures). 

In the upcoming paragraphs, a description of the theoretical framework will be given by means of a concise 

explanation of the theory behind the different structural analysis methods 1-7. In addition, it will be explained 

how the different methods are combined into several (novel) structural analysis sequences to obtain insight in 

the mechanical behaviour of thin plate structures.  
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2.2 Differential equations 

2.2.1 Introduction 

The classic analytical differential equations give an exact mathematical description of the mechanical 

behaviour of simply supported thin plate structures subjected to loads perpendicular to their plane. The 

equations are based on mathematical relations between the deformations, strains, stress resultants and loads 

by respectively kinematic-, constitutive-, and equilibrium-equations. 

The relations between the deformations and the degrees of freedom strains are expressed by kinematic 

equations. The relations between the deformations and the stress resultants represent the material behaviour 

and are expressed by constitutive equations. The relations between the stress resultant and the loads are 

expressed by equilibrium equations. For (thick and thin) plates, the relations between these quantities are 

presented in the diagram below (figure 1). 

 

Fig.1. Diagram illustrating the relations between the quantities 

The scope of this thesis is confined to homogeneous isotropic (rectangular) plates which are able to carry the 

applied loads in two directions to their supports (in contradiction to beams). The considered plates are simply 

supported along their edges loaded by a distributed load p perpendicular to its plane that is assumed to be 

positive in the positive z-direction. Since the ratio between the thickness of the plate and the span is assumed 

to be smaller than 1:5 (which is valid in many practical applications of plate structures) the plates can be 

indicated as thin. As a result, the shear deformations will be negligibly small compared to the bending 

deformations allowing the set of differential equations to be reduced and simplified in comparison with the 

corresponding equations for thick plates. 

The compressed procedure for deriving the differential equations for thin plates is mainly deduced from the 
Reader Plate Analysis written by J. Blaauwendraad, professor at the Technical University Delft (Faculty of Civil 
Engineering and Geosciences) (Blauwendraad, Plate Analysis, Theory and Application Volume 1, Theory, 
2006).   

Strains  Displacements Stress resultants Loads                     

Kinematic 

equations 

Constitutive 

equations 

Equilibrium 

equations 
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2.2.2 Deriving the differential equations 

Before the corresponding differential equations will be presented, several assumptions are made with respect 

to the mechanical behaviour of the plate. 

- No extensional forces (membrane forces) will occur due to the support constraints.  

- A straight line perpendicular to the mid plane of the plate in an unloaded state will remain straight after 

application of the load. 

- Stresses in the z-direction are negligibly small and therefore assumed to be zero 

- Possible small differences in the displacement over the thickness of the slab are neglected. 

For deriving the basic equations, an elementary block is considered with infinitesimal small dimensions    

and    with the height   of the plate (figure 2).  

 

Fig.2. Loads and stress resultants acting on the elementary plate part 

First, the kinematic equations will be given, followed by the constitutive equations and then the equilibrium 

equations. When these basis equations are derived they can be combined into the well known governing 

fourth order differential equation which expresses the relation between the displacements and the load.  

The kinematic relations between the displacement (degrees of freedom) and the deformations are given by 

the equations: 

2

2

2

2

21

2

x
xx

y

yy

yx
xy

w

x x

w

y y

w

x y x y










 
 

 

 
 

 

  
    

    

 (2.1) 



13 

 

The constitutive equations, representing the relation between the deformations and the stress resultants, are: 

( )

( )

(1 )

xx xx yy

yy yy xx

xy xy

m D

m D

m D

  

  

 

   

   

   

 (2.2) 

Within these equations (2.2) the constant   represents the plate stiffness which is defined as: 

3

212 (1 )

E t
D






 
 (2.2) 

The shear forces    and   on the elementary plate part can be expressed by: 

xyxx
x

yy yx

y

mm
v

x y

m m
v

y x


 

 

 
 

 
 

(2.3) 

Substitution of these equations (2.3) for the shear forces into the equilibrium equations (2.4), which describe 

the relation between the shear forces and the load, yields: 

2 22

2 2
2

yx

xy yyxx

vv
p

x y

m mm
p

x x y y

 
 

  
           

(2.4) 

Substitution of the kinematic equations (2.2) into the constitutive equations yields: 

2 2

2 2

2 2

2 2

2

(1 )

xx

yy

xy

w w
m D

x y

w w
m D

y x

w
m D

x y







  
     

  

  
     

  


    

 

 (2.5) 

Substitution of these equations into the equilibrium equations (2.4) yields: 

4 4 4

4 2 2 4
2

w w w
D p

x x y y

   
      

      

(2.6) 
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This fourth order differential equation (2.6) must be solved with respect to the governing boundary 

conditions. For a rectangular simply supported plate two boundary conditions per edge can be specified.  

2

2

2

2

0 0  

0 0  

xx

yy

w
w m

x

w
w m

y


   




   



along edges parallel to the x axis

along edges parallel to the y axis

 (2.7) 

As shown in (2.7), the displacements are zero on the edge and thereby the bending moments perpendicular to 

the edges are also zero.  

The support reactions along the edge consist of a combination of a shear force and a concentrated shear force. 

The concentrated shear force is a result of the torsional stresses induced by the varying slope perpendicular 

to the edge along the edge. As the torsional stresses vary linearly over the thickness of the plate they cannot 

act on the free edge and therefore they have to go round at the ends, resulting in a concentrated shear force. 

This happens within a distance from the edge which equals approximately half the thickness of the plate. 

From vertical equilibrium for an elementary plate part it can be deduced that the magnitude of the 

concentrated shear force equals the increase of the torsional moment over an elementary distance. The 

support reactions at the edges of the plate, as external distributed line load acting on the plate, can be 

expressed by: 

x

y

xy

w x x x

yx

w y y y

m
f v V v

y

m
f v V v

x


   




   

  

(2.8) 

It can be concluded that the torsional moment turns out to be resisted in the form of additional support 

reactions. In the corner of the plate, two simple supports come together and from equilibrium for an 

elementary plate part it can be deduced that the contribution of the distributed line load and p vanishes and 

thereby a concentrated support reaction in the corner occurs of which the magnitude equals the summation of 

both torsional moments. For isotropic plates it yields that         and therefore the corner reaction   

     . Depending on the sign convention this reaction force can be either compressive or tensile.  

Once a solution for the displacements (displacement field) is found, the bending and torsional moments can 

be calculated by the equations (2.5) which describe the relations between the displacements and the stress 

resultants. Subsequently the shear forces can be calculated by using equations (2.3), describing the relations 

between the moments and the shear forces.  

As can be observed in equation (2.3), the shear forces are directly related to the moments. Therefore the shear 

forces can (similar to the moments in (2.5)) also be expressed in the displacements   as shown in (2.9) and 

(2.10) below:  
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3 3 3
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3 3
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(1 )
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mm w w w
v D D

x y x x y x y
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v D

x x y

 
     

            
       

  
    

     

(2.9) 

3 3 3

3 2 2

3 3

3 2

(1 )
yy yx

y

y

m m w w w
v D D

y x y y x y x

w w
v D

y y x

 
     

            
       

  
    

     

(2.10) 

From the principle of the corrected sum of bending moments as defined in (2.11), it can be derived that the 

shear forces are also related to the bending moments in the following manner: 

(1 )

xx yym m
M







 (2.11) 

nv M
n


 


 (2.12) 

xv M
x


 


 (2.13) 

yv M
y


 


 (2.14) 

When we consider an elementary triangular plate part as is shown in figure 3 with the shear forces acting on 

its edges we can determine the relation between the principle shear forces    and their components    and    

in the x- and y-direction. We can see the top of the arrow (a point) or the back (a cross). An arrow coming 

towards the reader (the point is seen) indicates shear forces on faces with a negative normal vector; an arrow 

moving away (the cross is seen) indicates shear forces on faces with a positive normal vector. 

 

Fig.3. Vertical equilibrium of an elementary plate part 

From the equilibrium of this plate part it follows: 

cos sinn x yv v v    (2.15) 

sin cost x yv v v     (2.16) 
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The magnitude of the principle shear force in an arbitrary point on the plate can be calculated by: 

2 2

2 2

,max
2 2

x y

n x y

x y

v v
v v v

v v


  


 

(2.17) 

The principle direction of this principle shear force equals: 

tan
y

x

v

v
   (2.18) 

A graphical method for determining the shear forces in a specific point on the plate is the so called shear force 

circle. Such a circle gives a direct insight in the magnitude of a shear force in all directions. The plane 

perpendicular to the shear force represents the considered section on the surface. 

The first order differential equations of (2.12 – 2.14) can be used to construct a direction field which 

represents the direction of the principle shear forces in a plate for a series of grid of points with a proper 

density (Weisstein, Vector Field). Such a direction field is in fact a graphical representation of the solution of 

the differential equations and gives the engineer a qualitative insight on how the shear forces flow to the 

supports. The direction of the shear forces can be calculated by: 

2

2
tan

y

x

v y

v x



 


 (2.19) 

A small line segment is drawn from each point. The direction of these lines is equal to the solution of the 

equation in the associated grid point.  

When the correct values for    ,     and     are obtained, the principle moments    and    can be 

calculated with Mohr’s equations: 

2

2

1
2 2

xx yy xx yy

xy

m m m m
m m

  
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 
 (2.20) 

2

2

2
2 2

xx yy xx yy

xy

m m m m
m m

  
   

 
 (2.21) 
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2.3 Elastic membrane analogy 

2.3.1 Introduction 

The ‘elastic membrane analogy’, also known as the ‘soap-film analogy’, is based on the fact that the second 

order differential equation for the deflection surface of a homogeneous membrane, subjected to uniform 

lateral pressure and a uniform surface tension, is similar to the equation for the sum of curvatures surface 

belonging to thin plate structures (Prandtl, 1903).  

2.3.2 Deriving the elastic membrane analogy  

As we have seen in the previous chapter, the corrected (with respect to Poison’s ratio:    ) sum of bending 

moments M can be represented by:  

1

xx yym m
M D w




   


 (2.22) 

This corrected sum of bending moments is invariant with respect to the rotation of the x-y coordinate system 

about its origin. The plate stiffness   is again defined as: 

3

212 (1 )

E t
D






 
 (2.23) 

From the kinematic equations (2.1) and the constitutive equations (2.2) follows: 

2 2

2 2

yx w w
M D D

x y x y

      
        

       

(2.24) 

The fourth order differential equation (2.6) for plates was defined as: 

2 2 2 2 4 4 4

2 2 2 2 4 2 2 4
2

p w w w w w

D x y x y x x y y

         
         

            

(2.25) 

By making use of the sum of bending moments (2.22) this equation can be parsed into two second order 

differential equations: 

2 2

2 2

M w w

D x y

 
  

 
 (2.26a) 

2 2

2 2

M M
p

x y

 
  

 
 (2.26b) 
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Fig.4. Elementary membrane part Fig.5. Vertical equilibrium along section A-A Fig.6. Physical membrane shape 

For an elementary part (figure 4,5) of an air inflated membrane (figure 6), which is equally tensioned in all 

directions, the vertical equilibrium situation can be represented as follows:  

0
yx

x x y yT dy T dx dy T dx T dy dx p dxdy
x y


   

 
                   

    

(2.27) 

This formula can be rewritten as: 

yx p

x y T

 
  

   

(2.28) 

By expressing the rotations    and    in the displacement   , the equation can be rewritten as: 

2 2

2 2

m mw w p

x y T

 
  

 
 (2.29) 

It is clear that this equation (2.29) has exactly the same structure as the earlier presented second order 

differential equations (2.26a/b). Therefore, as an analogy, the sum of bending moments surface also 

represents an air inflated membrane. It must be noted that this analogy is only true for small curvatures, 

whereas         and       .  

2.3.3 Membrane analogy and the sum of bending moments surface 

In both equations (2.26 & 2.29) the plate stiffness   and the membrane force   take the same position. In case 

the plate stiffness   is set to one, the curvatures are equal to the bending moments and the sum of curvatures 

is thereby equal to the sum of bending moments. When the same is done for the membrane equation (2.28), 

by setting the membrane force   to 1, the membrane surface is equal to the sum of bending moments surface, 

as shown in the equation (2.30). The vertical deflection of the surface in an arbitrary point is equal to value   . 

2 2

2 2
; ( 1)m mw w

M w p D
x y

 
     

 
 (2.30) 
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2.4 Force Density method 

2.4.1 Introduction to form finding 

Membrane structures have a very distinguishing esthetical appearance, which is a direct expression of their 

(efficient) structural behaviour. Due to the small structural dimensions, with an infinitesimal small bending 

stiffness, the structure can only react to external forces and loads by extensional forces (often referred to as 

membrane forces). An equilibrium of these membrane forces results geometrically in the characteristic 

double curved surfaces. Finding the equilibrium shape of these pure tension or compression structures is 

geometrically a non-linear problem and consists of determining the membrane geometry which is compatible 

with a set of given pre-stress conditions and boundary conditions starting from an initial geometry. The 

process of determining the equilibrium shape is known as form finding.  

The first form finding methods relied on building physical models based on for example chain models, soap 

bubbles, hanging fabric and air inflated elastic membranes. These experimental methods helped greatly in 

visualizing and understanding the structural behaviour of tensile structures. A disadvantage was however, 

that the creation, measuring and structural analysis of these models took a considerable amount of time 

restraining the number of design variants that could be explored in the design process.  

Computational techniques, which were developed several years later, provided a more flexible approach to 

form finding. Several computational form finding techniques were developed through the years relying on 

different mathematical techniques leading to the equilibrium geometry of a pre stressed membrane subjected 

to a certain load case and a set of predefined boundary conditions. The main methods which are used in 

practice are the force density method (Schek, 1973) and the dynamic relaxation method. The application of 

these methods seems to be geographically determined (Veenendaal, 2008). Other methods like the update 

reference strategy, spring particle system are until this moment only used within academic circles. It must be 

noted that although these computational techniques offer great advantages with respect to flexibility, 

precision and interfacing possibilities with other CAD programs they do not directly contribute to a more 

intuitive understanding of the structural behaviour of membrane structures, which is induced to a greater 

extend by working with physical methods. Moreover, at this moment, the aspect of manufacturability is often 

not implemented within these form finding applications (Veenendaal, 2008).  

For the purposes of this thesis, the choice was made to use the Force Density form finding method based on 

various arguments. First, a set of comprehensive sources was found explaining the principles of Force Density 

method which simplified the process of apprehension and subsequently the computational computation. 

Second, the Force Density method is assumed to be faster than Dynamic Relaxation method within the scope 

of this thesis. This assumption is based on the facts that the linear Force Density calculation for a relative 

simple square mesh within the concerned rectangular boundary shapes will lead to an advantage with respect 

to computational efficiency and CPU usage, determined by the number of computation steps resulting in the 

total calculation time. Finally, there is no need for a series of intermediate solutions provided by iterative 

calculation methods which suggest a dynamic structural behaviour of the structure until it approaches its 

equilibrium shape.  

The following paragraphs will start with a condensed description of the mathematical theory of the Force 

Density method, largely based on the paper written by H. Scheck in 1975 (Schek, 1973). Schek and Linkewitz 

together proposed the method in 1972 when it was used for determining the membrane shape of the Olympic 

stadium in Munich.  
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2.4.2 Force Density method for form finding 

The force density method calculates the equilibrium state of a predefined initial net structure by transforming 

a system of non-linear equilibrium equations into a system of linear equilibrium equations by prescribing a 

constant force- density value. In order to do this, the membrane surface is transformed into a discrete cable 

nest system where the cable elements represent parts of the membrane. The force density method is based on 

the mathematical assumption that the ratio between the length and tension within each cable element is a 

constant value (Lewis 2003). The mathematical sequence of deriving the equilibrium equations is not 

presented within this paragraph since it is not of direct significance within the context of this thesis. Only the 

necessary steps in assembling and solving the equilibrium equations will be described as this is of direct 

significance for implementing the method into the envisioned computational model. For more information 

regarding the mathematical background of the Force Density method refer to the paper of H. Scheck. 

As input for the force density method an initial mesh (net structure) is formed which consists of a series of 

points (nodes), connected by lines (branches). This mesh topology is mathematically described by using a 

branch node matrix by setting the connectivity between the points and braches. For this reason all points    

are numbered from 1 to   and the braches from 1 to  . For later application it is advisable that first the free 

points   are declared and afterwards the fixed points   , so that        . The usual branch-node matrix   

is defined by: 

1 for ( ) 1

( , ) 1 for ( ) 1

0 in other cases

i j

c i j k j

 

    (2.31) 

The branch node matrix    has   rows and    columns. According to the classification of the points into free 

and fixed points the matrix can be divided into respectively two sub matrixes   and   : 

1 1 111 1

1 1

n nn s

m mp m mp

f ff f

f f f f

c cc c

c c c c


 
 

   
 
 

f

s f

C C

C C + C
 (2.32) 

An example of the assembly of a branch node matrix (figure 8) for a arbitrary mesh topology (figure 7) is 

shown on the next page. The free points are indicated as dashed molecules and the fixed points as molecules 

with a continous line.  
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Fig.7. Mesh topology Fig.8. Branch node matrix 

The next step is to form several matrixes containing force-density values, point coordinates and loads, which 

are necessary for the assembly of the system of equilibrium equations. Firstly, three     dimensional 

coordinate matrixes,   ,    and    are formed by specifying the x-, y- and z-coordinates of the fixed points: 

1 1 1

n n n

f f f

f f f

x y z

x y z

     
     

       
     
     

f f fx y z  (2.33) 

Secondly, three   dimensional matrixes are formed by specifying the loads in respectively the x-, y- and z-

direction for the free points  . 

1 1 1

n n n

x y z

x y z

p p p

p p p

     
     

       
     
     

x y zp p p  (2.34) 

Thirdly, a diagonal     dimensional force density matrix   is formed by specifying the constant force 

density values: 

11 0 0

0 0

0 0 mm

q

q

 
 


 
  

-1q = L ×s

Q

 

(2.35) 
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Now all the necessary matrixes are determined, the three systems of linear equilibrium equations can be 

assembled for the x, y− and z−direction which are defined as: 

t t

f f x

t t

f f y

t t

f f z

C QCx + C QC x = p

C QCy + C QC y = p

C QCz + C QC z = p

 (2.36) 

We can simplify these equations by: 

t

t

f f

f f x

f f y

f f z

D = C QC

D = C QC

Dx + D x = p

Dy + D y = p

Dz + D z = p

 (2.37) 

Since we want to calculate the new coordinates of the points as part of the equilibrium mesh we can rewrite 

the equilibrium equations as: 

-1

x f f

-1

y f f

-1

z f f

x = D (p - D x )

y = D (p - D y )

z = D (p - D z )

 (2.38) 

By solving the three systems of linear equilibrium equations, the ‘new’ coordinates of the free points are 

obtained. By using the branch node matrix the points the corresponding mesh can be constructed making the 

membrane shape clearly visible. Two examples are shown which were produced by H. Scheck (Schek, 1973). 

  
Fig.9. Membrane shape Fig.10. Membrane shape 
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2.4.3 Additional boundary conditions 

Up to this point, the initial mesh points are classified based on of their freedom of movement in free points 

and fixed points. It could also be interesting to see what happens if (some) points are only allowed to move in 

a certain direction or plane as it introduces more possibilities to manipulate the form finding process.  

As shown before, the branch node matrix describes the connectivity between the points and branches within 

the mesh topology. This branch node matrix    was divided into two sub matrixes; a matrix   for the free 

points and a matrix    for the fixed points. Since the movement of the points was either totally fixed or totally 

free in all directions this branch node matrix could be used for all equilibrium equations. But in case some 

points are only free to move in certain directions, the branch node matrixes for the corresponding directions 

are different too. Therefore, in these cases it is necessary to assemble multiple branch node matrixes: 

s f

s f

s f

x x x

y y y

z z z

C = C + C

C = C + C

C = C + C

 (2.39) 

As a result, three sub matrixes for   and    matrixes are needed as well: 

f f f ff f

tt t
y y yx x x z z z

t tt
x x x z z zy y y

D = C QCD = C QC D = C QC

D = C QC D = C QCD = C QC
 (2.40) 

This transforms the equations into: 

f

f

f

x x f x

y y f y

z z f z

D x + D x = p

D y + D y = p

D z + D z = p

 (2.41) 

 
The equilibrium equations eventually have the same structure as the ones for a collection of totally free points 
and fixed points and can be solved in the same way to obtain the coordinates of the moved points. 
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2.5 Rain flow analogy 

2.5.1 Introduction 

The rain flow analogy (Beranek, 1976) can be used in combination with the sum of curvatures surface to 

determine continuous principle shear force trajectories along which the shear forces will flow to the supports. 

W.J. Beranek, emeritus professor of structural mechanics in the architectural department of Delft University of 

Technology, introduced the shower analogy to illustrate the phenomenon of the direction of the load 

discharge.  

2.5.2 Principle shear force trajectories 

Within the rain flow analogy, one imagines the (distributed) load   as a rain shower of constant intensity 

falling down on a surface which represents the sum of curvatures (or the sum of bending moments, in case 

   ) surface of the plate. The stream lines which a single drop of water describes from the moment it hits 

the surface towards a support, by flowing down in the direction of the steepest descent, is the same trajectory 

as the flow of the principle shear force   . The amount of water passing through a section is directly related to 

the angle of surface (which determines the flow speed) and thereby gives an indication of the magnitude of 

the principle shear force. All shower water between two trajectories flows parallel to the trajectories and does 

not pass trajectories (stream lines). It is important to notice that the analogy only works if the influence of the 

speed accumulation along the trajectory and the change of direction due to collisions between drops are 

neglected. 

2.5.3 Magnitude of principle shear forces 

The magnitude of the principle shear force    in a certain section in the plate can be determined graphically 

by integrating the associated load which flows between two trajectories, corresponding to the start and end 

points of the section, towards the section. Both rain flow trajectories end up in a (local) maximum which is the 

highest point on the sum of bending moment surface. By dividing this integral value through the length of the 

section, the concentrated principle shear force in the section can be calculated. There is a direct relation 

between the length of the section and the accuracy of the determined principle shear force: the smaller the 

length of the section, the more accurate the results will be. As is shown in figure 11 and 12 (Beranek, 1976), 

the magnitude of the support reactions, excluded the concentrated shear forces, can be determined by 

defining a series of sections along the plate edges.  
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Fig.11. Shear force trajectories and support reactions Fig.12. Integration of the load between two trajectories 

In the examples presented above, the considered sections are part of the contour lines of the sum of 

curvatures or sum of bending moments surface and thereby we know that the direction of the principle shear 

force vector is perpendicular to this section. In case a particular section is chosen which is not (part of) a 

contour line, the direction of the principle shear force vector is not perpendicular to the section. In these cases 

the direction of the shear forces can be determined by using equation (2.11) which is derived in paragraph 

2.2.  

2.5.4 Rain flow analysis for shell structures 

Shell structures are known for their structural efficiency, resulting in slender and elegant structures with a 

large span to thickness ratio. The structural performance of a shell relies on the curvature of the surface, 

which means that the loads are transferred to the supports mainly by extension forces and only small 

(corrective) bending moments will occur. This principle is called shell behaviour (figure 14).  

  
Fig.13. Shell structure (Heinz Isler) Fig.14. Shell behaviour 

Geometrically regular curved surfaces can be described by analytical mathematical functions which can be 

used subsequently to derive a set of (differential) equations for describing their mechanical behaviour. For 

irregular curved surfaces there are very little analytical equations available, thereby it is more difficult to 

derive (differential) equations which describe the relation between their mechanical behaviour. 

Computational structural analysis programs, based on FEM, can be used for calculating the stress resultants 

and deformations within shell structures to obtain a quantitative insight in their mechanical behaviour. 

Nevertheless, due to the calculation techniques based on solving large matrixes, no qualitative insight is 
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obtained about the relation between for example the structural geometry and mechanical behaviour (Borgart, 

Hoogenboom, & De Leeuw, 2005). 

A recent theory is an extension of the previously described rain flow analysis for plates to shell structures, 

first introduced by A. Borgart. The hypothesis of this theory states that the sum of curvatures surface can be 

replaced by the shell surface itself. The rain flow trajectories then visualize again how the load flows to the 

supports by following the steepest descent.  

2.5.5 Computational application of the rain flow analogy 

A computational application of the rain flow analysis was developed by M. Haasnoot as part of his master 

thesis at the Faculty of Architecture at the TU Delft. This application generates the rain flow trajectories by 

using the dynamics-engine provided by the three dimensional animation software package Maya. The rain 

flow trajectories are generated by tracking the paths of a series of particles which are released above- and 

subsequently flow down on an arbitrary surface within a simulation involving physical effects as gravitation 

and friction.   

2.5.6 Case study 

This computational application is used to test the rain flow hypothesis for shell structures by using it within a 

case study to generate the rain flow trajectories for a free form shell structure for an indoor ski-slope which 

was designed by H. Hanselaar (student of the TU Delft Faculty of Architecture) (Hanselaar, 2003). Two 

pictures (figure 15 and 16) of the achieved results are shown below.  

 
Fig.15. Rain flow trajectories on the free form shell structure Fig.16. Rain flow trajectories directed to support by edge shape 

The results of the case study showed that the generated rain flow trajectories can provide a designer or 

engineer with important information on the relation between the shell geometry and the structural 

performance of free form shell structures. The surface shape influences how the loads flow to the supports 

and thereby what type of stress resultants and deformations will occur. In case of a well designed shell 

structure (from a structural point of view) these forces will be mainly extensional (membrane forces) forces 

and little corrective bending moments or hoop forces which have to ensure that the pressure surface 

converges with the system surface. Within the case study several undesirable and desirable situations with 

respect to the structural performance are distinguished.  
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Desirable situations are surface parts with a steep slope which induce a quick flow of extensional forces 

towards the supports. Another beneficial effect was noticed at raised edges with an anticlastic curvature 

(figure 16), where the shape of the edge directs the forces towards the supports. Along the lines of the rain 

flow analogy one can compare this with a natural gutter by which the rain water is transferred towards the 

supports. In these cases the load is carried by membrane forces, which is more desirable than a situation 

where the load is carried by concentrated shear forces, which will contribute to the development of bending 

moments along the edges.  

Three types of undesirable situations were distinguished within the aforementioned case study. The first 

situation occurred at free edges where the rain water flows over the edges as a result of the edge shape. This 

indicates that the loads could not be transferred to the supports by compression forces and hoop forces or 

corrective bending moments have to carry the loads of which the latter is an undesirable situation as this 

might result in increased structural dimensions. The second situation occurred at ditches where multiple 

trajectories merge into one drain curve. It was noted that such drain curves can transfer loads by membrane 

forces under certain conditions depending on to what extend the drain shape is anticlastic or the surface slope 

(see figure 15). The last situation are surface parts which are nearly horizontal inducing a slow flow of forces 

and  
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2.6 Curvature ratio method 

2.6.1 Introduction 

During this research it was found that the ratio between the curvatures of the membrane surface (so that 

       and       ) itself and the sum of bending moment values (same as the displacements of the 

membrane surface in case     and    ) can be used for determining the bending moments     and    . 

2.6.2 Definition of curvature 

The concept of extrinsic curvature, for objects embedded in another space (Euclidean space) relating to the 

radius of curvature of oscillating circles that touch the object, is used within this thesis to determine the 

curvature of the membrane surface in the x-, y- and principle directions. The curvature of a curve is by 

definition the reciprocal of the radius of the osculating circle. The curvature is taken to be positive if the curve 

turns in the same direction as the surface's chosen normal and otherwise negative. The directions of the 

normal plane where the curvature takes its maximum and minimum values are always perpendicular (Euler, 

1767), and are called principal directions (Weisstein, Principal Curvatures). 

The planar (sectional) curvatures     and     of a on the surface that lies in a single plane in the x- and y-

direction in a particular point on a surface can be determined by using the radius of the associated oscillating 

circles   in these directions as follows: 

1 1
;xx yy

xx yyR R
    (2.42)

 

These planar curvatures can also be determined by using the tangential angle   and the arc length  : 

;
yx

xx yy

x y

dd

ds ds


    (2.43)

 

The principle curvatures    and    in a point on the surface can be determined by:  

1 2

1 2

1 1
;

R R
    (2.44)

 

These principle curvatures can also be determined again by using the tangential angle   and the arc length  : 

1 1
1 2

1 2

;
d d

ds ds

 
    (2.45)

 

The aforementioned oscillating circles are graphically displayed for an elementary surface part in the figures 

17 and 18.   
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Fig.17. Oscillating circles in the x- and y-direction  Fig.18. Oscillating circles for principle curvatures 

The summation of either two principle curvatures (     ) or two planar curvatures in the orthogonal x- and 

y-directions (       ) will by definition lead to an equal value sum of curvatures value    which means that 

the curvature is invariant with respect to rotations of the xy-coordinate system about its origin.  

Curvature lines can be used to visualize the surface curvature directions. These lines are by definition the 

integral curves for the direction fields and in each surface point tangent to a principal or planar curvature 

direction (they are). There will be two lines of curvature through each non-umbilic point and the lines will 

cross at right angles. 

2.6.3 Bending moments in x- and y-direction 

By determining the ratio between the curvatures in respectively the x- and y-direction (    and    ) and the 

sum of curvatures (       ) of the membrane surface and subsequently multiplying this ratio with the sum 

of bending moments value   , the bending moments     and     can be calculated as shown in the formula 

(2.xx). For reasons of clarity, the Greek curvature symbol kappa   is changed into the symbol  . This is to 

avoid confusion between the curvature of the deflection field of plates and the curvature of the membrane 

surface.  

;
yyxx

xx yy

xx yy xx yy

kk
m M m M

k k k k
   

 
 (2.46) 

2.6.4 Principle moments 

Because the sum of the bending moments value    is invariant with respect to the rotations of the xy-

coordinate system about its origin, the ration between principle curvature values    and    and the sum of 

bending moments value    could in theory be used in the same way to determine the principle moments     

and     by: 
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1 2
1 2

1 2 1 2

;
k k

m M m M
k k k k

   
 

 (2.47) 

Nevertheless this turns out not to be possible as the sum of bending moments value   , being a summation of 

two moment values in orthogonal directions, can consist of either two positive or two negative values or out 

of one negative and one positive value. In the case of two positive or two negative values the summation 

delivers a results bigger (or equal, in case one of the values is zero) than the single values with the same sign. 

Both     and     are positive and therefore their sum can be used to calculate the ratio between one of the 

values and the sum as is show before in equation (2.xx). In the case of a summation of one negative and one 

positive value the result is smaller (or equal, in case one of the values is zero) than the single values with 

either a positive or negative sign. Therefore the ratio between the curvatures of the scaled sum of bending 

moment surface cannot be used to determine the      and     out of the sum of bending moments   , as we 

know that the values for      and     can have an opposite sign.  

For example, along the edges of a simply supported isotropic rectangular plate both     and     equal zero 

and      and     have the same absolute value as     and    , but their signs are opposite. As a result their 

sum equals zero. This can also be shown by using (rewritten) Mohr’s equations:  

22

1 2

2 2

xx yy

xy yx

m mm m
m m

  
    

   
 (2.48) 

2

1 2
1 2 ( 0; 0)

2
xy xx yy

m m
m m m m m

 
     

 
 (2.49) 

1 2 0m m   (2.50) 

It must be noted that for a twistless plate, without torsional stiffness, the proposed method can be used 

directly to determine the principle bending moments in a simply supported plate. 
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2.7 Finite difference method 

2.7.1 Introduction 

The Finite Difference method (FDM) is a classical mathematical technique for approximating the solutions of 

differential equations by replacing them by finite difference equations (Blauwendraad, Plate Analysis, Theory 

and Application Volume 2, Numerical Methods, 2006). The FD-method is often seen as the predecessor of the 

widely used Finite Element Method (FEM).  

Within the FD-method a grid is applied over the region (in this context formed by the boundaries of the plate) 

and the Partial Differential Equations are solved for each grid point (node) by approximating the derivatives 

via the Taylor series expansion and using the differences as an approximation. Solving the set of linear 

equations leads to an approximate solution of the problem, a solution which becomes more accurate as the 

mesh is chosen finer. The approximation error is exactly known in terms of the remainder from the Taylor 

series expansion of the derivatives.  

For the FD-method it is important that a uniform grid is applied over the region to reduce the errors by the 

differencing method. Finite Difference methods are thus less robust for irregular shaped bodies than finite 

element methods which divide the region into separate arbitrary shaped elements to fit the region and use a 

variational approach to solving the partial differential equations. Furthermore, FEM-methods offer advantages 

to FD-methods with respect to modelling boundary conditions and abrupt changes in thickness are easier to 

deal with. The concept of springs and shear panels implemented into a computational model by J. Witteveen 

(Beranek, 1976) provides an elegant way to overcome the latter type of difficulties. 

Reasons for using the FD-method instead of the FEM-method within this thesis are that this method offers a 

more straightforward formulation of the solution to the specific problem for which it is applied. This makes it 

easier to understand and implement into the envisioned parametric computational application. Furthermore, 

the advantages offered by FEM-methods with respect to modelling boundary conditions and the flexible 

approach in generating meshes within free form boundaries are not important as the scope of this thesis is 

confined to rectangular plates which are simply supported along their edges. Moreover, the equations for 

nodes which are not influenced by boundary conditions are similar to those found in the classical Finite 

Difference Method and, as will be explained in the upcoming chapters, the FD-method in cases where it is not 

necessary to model boundary conditions.   

The next paragraphs first explain the finite difference method by deriving the (partial) finite difference 

equations for plates which are simply supported along their edges. Thereafter, it will be explained how the 

finite difference method is used for structural analysis purposes within this thesis.  
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2.7.2 Deriving the (partial) finite difference equations for plates 

The first step in deriving the (partial) finite difference equations from the differential equations for simply 

supported plates is to transform the continuous displacement field into a discrete mesh consisting of a series 

of straight elements connected by nodes (grid points). An element of this mesh is shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

Fig.19. Part of the square calculation 
mesh  
 
Fig.20. Discrete displacement curve along 
x-axis 

De partial difference equation for respectively the generalised rotation  , curvature  , shears force   and load 

  for each grid point     in the x- and y-direction are derived by taking the     order derivatives of the 

displacement field for the x- and y-direction, analogously to the method for deriving the differential equations.  
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From the picture it can be concluded that the generalised rotations    and    in the x-direction of the 

elementary field elements   and   and the generalised rotations    and    in the y-direction of the 

elementary field elements   and   can be expressed in the displacements   by: 

, 1, 1, ,

1 1
( ) ; ( )a i j i j b i j i jw w w w 

 
      

 

(rotations in x-direction) (2.51) 
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(rotations in y-direction) (2.52) 

The generalised rotations in the x- and y-direction in point     are the first derivatives of the displacement 

field and can be expressed in the displacements   of the neighbouring grid points by: 
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The second derivative in a grid point      of the displacement field is defined as the curvature. This curvature is 

equal to the angle between the rigid rotations of the adjoining elements as is shown below: 
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The torsional curvatures can be defined as: 
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Fig.21. Curvature in x-direction Fig.22. Curvature in y-direction Fig.23. Torsion (plate of Nadai) 

The shear forces in the x- and y-direction in point     are defined as the third derivative of the displacement 

field and thereby equal to the difference between the above determined curvatures of the grid points adjacent 

to the considered grid point     and therefore can be calculated as shown below: 
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 (2.59) 

The distributed load   is the fourth derivative of the displacement field and can be expressed in the 

displacements   for the x- and the y-direction by: 
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(2.61) 

By combining these partial finite difference equations for respectively the x- and y-direction, the fourth order 

finite difference equation can obtained as shown in the equation below: 
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A molecule notation is a graphical representation of the derived equations for each grid point as finite 

difference quotients. The circles indicate the considered (surrounding) net points and the numbers inside 

them represent the quotients of the displacements of these points. The quotients shown in the middle 

represent the distance between the grid points. 
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2.7.3 Boundary conditions 

For points on the edge or next to the edge some of the ‘molecules’ fall outside the boundaries of the plate, four 

types of such situations are indicated in figure 24. Therefore, the finite difference equations for these points 

must be modified by eliminating the points outside the plate boundaries on basis of the associated boundary 

conditions. Since this thesis is confined to plates which are simply supported along their edges, the 

displacements   along the edges are equal to zero (and so in points A and C) and only the finite difference 

equations for points B and D have to be modified. For points B and D, the points outside the plate boundaries 

are eliminated by applying the applying the boundary conditions as specified in equation (2.71 and 2.72). 

 

  

 0Aw A  (2.69) 

 0Bw C  (2.70) 

2

2

2

2

0

0

xx

yy

w

x

w

y





 
 


 
  

 

B  (2.71) 

2

2
0xx

w

x

 

  


D  (2.72) 

  

Fig.24. Points on the edge (A and C) and next to the edge (B and D) Fig.25. Boundary conditions in point A-D 

This results in the modified partial difference equations for point B (2.73) and D (2.74) shown below: 
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These equations (2.73 and 2.74) can be used to modify the molecules which relate the load   to the 

displacements   as is shown in equations (2.55) and (2.56). 
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2.7.4 Solving the system of linear equations 

The finite difference equations for each grid point for which     expresses the loads in the quotients of the 

considered, and several surrounding, points together form a system of   linear equations with   unknown 

displacements. By solving this system, the displacements for the considered grid points can be obtained, 

which subsequently can be used to calculate the stress resultants by using the partial difference equations.  

The set of linear finite difference equations can be displayed in matrix notation by specifying a quotient matrix 

 , a column matrix   and another column matrix   as shown below: 

A×w = p  (2.77) 

Since the displacements   for the edge points of a simply supported plate are equal to zero, the corresponding 

rows and columns can be left out of the matrix by which the matrix size is reduced and simplified into a 

square       matrix which can be solved by: 

1A ×p = w  (2.78) 
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2.8 Sand hill method 

2.8.1 Introduction 

Physical sand hill models can be used to determine the yield lines of plates with different support conditions. 

The models are produced by dropping fine grained dry sand on a plate with high edges with openings 

corresponding to the support conditions (Beranek, 1976). The sand grains will flow partially off the plate 

through the openings until the produced sand hill doesn't change anymore. The ridges of the sand hill figures 

represent the discrete yield lines of the considered plate structure. An example of such a sand hill model for a 

plate structure is shown in figure 26. The correspondence between the ridges of the sand hill model and the 

yield lines can be recognized by comparing figures 26 and 27. 

  

Fig.26. Physical sand hill figure Fig.27. Yield lines of structure  

The support conditions modelled as openings determine how the sand will flow of the plate and thereby the 

corresponding sand hill geometry. The openings are modelled in this way: 

- a simply supported edge is modelled by a free plate edge  

- an unsupported edge is modelled by a high edge  

- a line support is modelled by a slotted hole  

- a point support is modelled by a hole 

Due to the mechanical behaviour of the fine dry sand grains, the resulting sand hill models will have slopes of 

approximately 45 degrees, which is the natural slope of sand hills. This will even be the case with inclined 

plate surfaces as is shown by the examples shown in figure 28. 

 

Fig.28. Sand hill models for horizontal and inclined surfaces 
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2.8.2 Resemblance between sand hill models and Voronoi diagrams 

The planar yield lines for plates represented by the crests of the physical sand hill models show a clear 

resemblances with  mathematical equidistance diagrams (often referred to as Voronoi tessellations, named 

after Gregory Voronoi or a Dirichlet tessellation after Lejeune Dirichlet) for a planar set of points or lines 

(collection of points) on the boundaries of the plate (Weisstein, Voronoi Diagram). Such a Voronoi diagram 

represents a partitioning of the plane into regions of equal nearest neighbours. The segments of the Voronoi 

diagram are all the points in the plane that are equidistant to the two nearest sites. The Voronoi nodes are the 

points equidistant to three (or more) sites. The dual graph for a Voronoi diagram corresponds to the Delaunay 

triangulation for the same set of points P. 

Mathematical definition:  

Let   be a set of   distinct points (sites) in the plane. The Voronoi diagram 

of   is the subdivision of the plane into   cells, one for each site. A point q 

lies in the cell corresponding to a site pi  P if  Euclidean_Distance( q, pi ) < 

Euclidean_distance( q, pj ), for each pi  P, j  i. 
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2.9 Application of the theoretical framework  

2.9.1 Introduction 

The just described structural analysis methods will be used in two steps to obtain insight in the mechanical 

behaviour of thin plate structures, in correspondence with objective 1a and the corresponding approach as 

defined within chapter 1. The first step is to implement the different methods in their original form into 

different parametric computational components. The next step was to combine methods into (novel) 

structural analysis sequences. This resulted in the following analysis sequences: 

a) Force Density method(3) + Elastic membrane analogy(2)   

b) Force Density method(3) + Elastic membrane analogy(2) + Differential equations(1)  

c) Force Density method(3) + Elastic membrane analogy(2) + Rain flow analysis(4) 

d) Force Density method(3) + Elastic membrane analogy(2) + Curvature ratio method(5) 

e) Force Density method(3) + Elastic membrane analogy(2) + Finite Difference method(6) +  

Differential equations(1) 

A combination between the sand hill method and other structural analysis methods was considered not 

feasible. The potential with respect to this method lies mainly in the computational application and extending 

its functionality (e.g. by exploring the relation between sand hill models and Voronoi tessellations). For these 

reasons this method is conceived as standalone structural analysis sequence.  

In the upcoming paragraphs it will be explained how the different structural analysis sequences will 

presumably contribute to determining/calculating the deformations and the flow- and magnitude of forces 

within thin plate structures.  

2.9.2 Elastic membrane analogy & Force Density method 

The elastic membrane analogy will be used in combination with the Force Density form finding method to 

generate sum of bending moment mesh for    by generating the corresponding membrane mesh on basis of 

the theory presented in paragraph 2.xx. By applying a NURBS surface interpolation a sum bending moments 

surface is obtained, which is subsequently used to determine deformations and flow- and magnitude of forces 

by establishing the before mentioned structural analysis sequences b, c, d and e.  

2.9.3 Elastic membrane analogy, Force Density method & Differential equations  

The sum of bending moments surface (determined within sequence a) and the analytical equations which 

define the relation between the sum of bending moments and the shear forces (2.12-2.14) will be combined to 

calculate the magnitude- and direction of the (principle) shear forces   ,    and   . 

2.9.4 Elastic membrane analogy, Force Density method & Rain flow analysis 

The sum of bending moments surface (determined within sequence a) will be used in combination with the 

rain flow analogy to generate rain flow stream lines which represent the trajectories the principle shear forces 

  . Subsequently, these trajectories will be used to determine the principle shear forces in arbitrary sections 

within plate structures by integrating the load between two trajectories towards the associated section or 
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support. Furthermore, the rain flow analogy (again in combination with the sum of bending moments surface) 

will be used to generate 3D principle shear force    diagrams by simulating the load accumulation analogous 

to x- and y-components of the rain flow vectors in a series of points.  

2.9.5 Elastic membrane analogy, Force Density form finding method & Curvature ratio method 

The sum of bending moments surface (determined within sequence a) will be used in combination with the 

novel curvature ratio method to determine the bending moments in the x- and y-direction (    and    ).  

2.9.6 Elastic membrane analogy, Force Density method, Finite Difference method & Differential 

equations 

The sum of bending moments surface (determined within sequence a) in combination with the Finite 

Difference method is used to determine the displacement field and the magnitude of the stress resultants.  

The displacements in a grid of points will be calculated by assembling a system of linear partial finite 

difference equations, which relate the concerning displacements to the sum of curvature values   , as shown in 

equation (2.79). 
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In case the plate stiffness    , both bending moments     and     are equal to the curvatures     and     

in the corresponding directions and thereby the sum of curvatures    is equal to the sum of bending 

moments   . Therefore, the sum of bending moments can be expressed by combining the before derived 

partial finite difference equations for     and     as shown in equation (2.80) 
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This equation can be represented graphically by using the molecule notation as shown in (2.81). 
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(2.81) 

By solving the obtained set of linear equations and relating the displacements   of the grid points to the sum 

of bending moment values   , the displacement field is obtained. This displacement field is subsequently used 

to determine the stress resultant in the points by solving the partial difference equations (2.55), (2,56) and 

(2,57) for each grid point.  



42 

 

The concentrated shear forces   will be calculated by taking the first derivative of the torsional moments 

along the edges on basis of differential equation (2.8). Finally Mohr’s equations for the principle moments 

(2.20 & 2.21) will be used to determine the principle moments    and    .  

2.9.7 Sand hill models and Voronoi tessellations 

The principles which determine the formation of physical sand hill models (defined on basis of experiments 

with these models), will be used to construct a computational application which can be used to generate sand 

hill models. Furthermore, it will be investigated if (and if yes, to what extend) inverted sand hill diagrams can 

be used as (discrete) principle shear force diagrams. This will be tested by using them to determine the 

corresponding bending moments along an axis by numerical integration methods. Moreover,  

The presumed relationship between sand hill models and Voronoi tessellations will be used to determine the 

magnitude of principle shear forces along the edges of simply supported plates.  

2.9.8 Application of the structural analysis sequences  

Since the just described structural analysis sequences are mainly unprecedented it is not known in advance 

what their individual contribution will be with respect to obtaining insight in the flow- and magnitude of 

forces within thin plate structures. The actual contribution of the just described structural analysis sequences 

will be explored by implementing them into a series of parametric structural analysis components as part of 

the development of the covering structural design tool. The development of the different components will be 

explained in next chapter. In figure 2.xx a flow chart of the conceived structural analysis sequences, as part of 

the theoretical framework, is shown. 

 

 

Fig.29. Flow chart of the conceived theoretical framework 
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3 Parametric structural design tool 

3.1 Introduction 

This chapter will elaborate on the development of the parametric structural design tool for thin plate 

structures, which was guided by the objectives 1b, 1c and 1d. First, the demands for the parametric structural 

design tools will be discussed in chapter 3.2, with respect to functionality and usability from the perspective of 

the envisioned users (objective 1b). Second, the general outline and structure of the structural design tool will 

be defined (objective 1c) within chapter 3.3 by giving a description of the parametric associative design 

approach, the software framework (and its functionality) and the structure of the conceived structural design 

tool which directly relates to the theoretical framework (defined in chapter 2). Third, it will be explained in 

chapter 3.4 how the theoretical framework was implemented into the conceived general structure of the 

design tool (objective 1d) by describing how the different structural analysis methods were applied within the 

corresponding structural analysis components. It will also be mentioned how each component relates to 

structural analysis sequence of which it forms a part. The actual contribution of the concerned structural 

analysis sequences will be given in the form of the output results generated by the different components. 

Fourth, the total performance of the structural design tool will be evaluated within chapter 3.5 with respect to 

the demands concerning functionality and usability (defined within paragraph 3.2).  

3.2 Functionality and usability 

In correspondence with objective 1b, it will be defined which demands concerning functionality and usability 

have to be fulfilled within the parametric structural design tool on basis of a concise enquiry amongst experts 

from practice (Witteveen+Bos). The objective was stated as: 

“Define which demands, concerning functionality- and usability, have to be fulfilled by the parametric 

structural design tool.” 

3.2.1 Users 

As mentioned in paragraph 1.3, the envisioned users of the structural design tool are both the architect and 

the structural engineer. As they have both a different task within- and approach to the design process, it is 

important to identify how they might use the parametric structural design tool within a conceptual design 

process. This knowledge can subsequently be used to create a parametric structural design tool that may even 

contribute to the collaboration between the architect and the structural engineer by introducing structural 

evaluation into the conceptual design process.  

3.2.2 Characteristics of the conceptual design stage 

During a conceptual design stage, both an architectural- and a structural conceptual design must be conceived 

in a relative short time. A series of different design concepts will be generated and evaluated with respect to 

architectural, technical, economical and legal feasibility within a cyclic design process. Within this design 

stage, the architect is mainly concerned with achieving a certain aesthetical appearance as part of an 

architectural concept and the structural engineer is more concerned with the structural feasibility determined 

on basis of information on for example stress distribution and deformations as part of a structural concept. 

The considerations made by both parties should converge into conceptual design in which both architectural 
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and structural aspects are taken into account: an integrated design. The architectural quality and structural 

performance of this design is directly depended on the collaboration between the architect and the structural 

engineer. The parametric structural design tool, developed within this thesis project, is supposed to assist 

within this process by providing necessary information on the relation between form and forces (within plate 

structures) which can be used to make informed architectural- and structural design decisions and/or to 

perform manual optimizations.  

The envisioned role of the parametric structural design tool, regarded from the perspective of both users, in 

combination with the just described character of the conceptual design stage has led to several demands 

concerning functionality and usability.  

3.2.3 Functionality 

The functional demands are directly related to the calculation procedures- and results (output) and how they 

contribute to quantitative and qualitative insight into the structural behaviour of thin plate structures. 

Concerning the quantitative insight the structural analysis tool must at least be able to calculate the numerical 

magnitudes of the following quantities: 

- Shear forces (        ) 

- Bending and torsional moments (           ) 

- Concentrated shear forces ( ) 

- Principle moments (     ) 

- Displacements  ( )  

Qualitative insight relates, at least within this thesis, to the relationship between the different structural 

aspects: structural geometry, flow of forces, magnitude of forces and deformations. This is illustrated in figure 

3.1, shown below.  

 

Fig.30. Relationships between the different structural aspects 

Achieving this kind of insight in the mechanical behaviour of structures plays an important role within this 

thesis project, as mentioned within paragraph 1.1 concerning the background of this thesis project: this kind 

of information is often not obtained by using the widely used FEM methods (Borgart, Hoogenboom, & De 

Leeuw, 2005).    

Flow of forces  Magnitude of forces             

Deformations             

Structural geometry 
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3.2.4 Usability 

The envisioned flexible and intuitive process of exploring different design alternatives and/or (simultaneous) 

manual optimization demands a fast and flexible structural analysis procedure, characterized by several 

features concerning its usability:  

- The structural design tool should be able to provide real-time results during the (architectural) design 

(modelling) process by which the influence of the structural parameters can be assessed.  

- Ability to change the structural geometry, load cases, support conditions or material properties  

- Ability to compose geometrical and analysis components in such a way that compose user defined 

structural analysis sequences  

- Ability to define which- and how calculation results are presented 
- Ability to extend the functionality of the structural design tool by adding (parametric) components or 

procedures 

3.3 General outline and structure of the structural design tool 

In correspondence with objective 1c, it will be explained within this paragraph how the general setup for the 

parametric structural design tool is conceived by giving a description of the software framework (and its 

functionality) and the structure of the conceived structural design tool which directly relates to the theoretical 

framework (defined in chapter 2). The objective was stated as: 

“Define an appropriate general software framework and structure for the parametric structural design 

tool with respect to the demands concerning functionality and usability.” 

3.3.1 Parametric associative design approach 

The parametric design approach is ideally suited to a simultaneous process of exploring and optimizing 

(complex) geometries as part of an architectural and structural design. The aim of parametric associative 

design is to capture a design into logical definitions, related by geometrical, mathematical or logical 

associations which are controlled by parameters.  

3.3.2 Software framework 

As software framework for the implementation of the structural analysis methods (part of the theoretical 

framework) a parametric design application named Grasshopper running within the 3D modelling 

environment Rhinoceros is presumed to be a good option. The main reason for choosing Grasshopper 

amongst other software applications is that this programme offers in comparison to other parametric design 

applications (for example Generative Components) a more intuitive, and thereby a very user friendly 

approach for building parametric models. At the moment only a work-in-progress version of the applications 

exists, features and procedures are added and or changed very often, but it is already being used by thousands 

of people world-wide.  

Parametric models within Grasshopper can be set up by using either predefined components consisting out of 

a wide range of geometrical, mathematical and logical definitions and operations. In the case it is not possible 

to achieve certain functionality by using the pre-defined components, custom script components can be 
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composed, based on the programming languages VB.NET or C#. The possibility of programming extends the 

possibilities of the Grasshopper application enormously as every procedure can be performed as long as it is 

programmable. Another argument to use scripted components instead of an assembly of pre-defined 

components could be reducing the size of the total model and thereby the apprehension. A disadvantage of 

scripted components is that the user must be familiar with the programming language used, in order to gain 

insight in the routines and algorithms.  

As it was sometimes necessary to solve systems of linear equations, an external matrix class library for basic 

linear algebra computations was used, named Mapack for .NET, developed by Lutz Roeder (Roeder, 2002). 

The Mapack library can be accessed by referencing from within the script components to the external library, 

this was very useful since it was not necessary to incorporate the source code into the script.   

3.3.3 Conceived general outline and structure of the structural design tool 

The conceived general outline and structure of the parametric structural design tool, in correspondence with 

the software framework and demands concerning functionality and usability is shown in figure 3.xx. The 

structure of the design tool is build up analogous to the flow chart of the structural analysis sequences 

presented (theoretical framework) (figure 30) which was derived at the end of the previous chapter. 

Additions to this flowchart are made by defining which operations take place in the two software programs 

(Rhinoceros & Grasshopper). As can be seen in figure 31, a mesh component is added which generates the 

necessary calculation mesh within the boundary curves defined within Rhinoceros (representing the outlines 

of the structural geometry) for the structural analysis components.  

 
 
Fig.31. General outline and structure of the parametric structural design tool  
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3.4 Implementation of the theoretical framework 

Within this paragraph is will it will be explained how the theoretical framework was implemented into the 

conceived general structure of the design tool (see paragraph 3.3.3), by describing how the different 

structural analysis methods were applied within the corresponding structural analysis components in 

association with objective 1d:  

“Implement the theoretical framework into the defined general setup.” 

For each component it will be explained how the concerned component relates to structural analysis sequence 

of which it forms a part. The actual contribution of the concerned structural analysis sequences will be given 

in the form of the output results generated by the different components.   
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3.5 Mesh Component 

3.5.1 Introduction 

The mesh component generates a mesh within a set of curves representing the boundaries (edges) of the 

concerned plate structure which are defined within the Rhinoceros environment and imported into 

Grasshopper as reference curves. The generated mesh is subsequently used in almost every other component.  

3.5.2 Generating the mesh 

For calculation purposes a square grid consisting of a grid of points connected by lines of the same length 

seemed the most appropriate as it considerably simplifies the numerical calculation sequence within both the 

(reverse) finite difference component and the numerical calculation methods. Although there are some 

predefined meshing and grid generating components present with the Grasshopper application these 

components were not considered as useful since their output, a series of closed polygons (grid cells) and 

points, turned out to be less convenient than a square grid of points connected by single lines. For these 

reasons a scripted grid component was developed. 

The generation of (free form) meshes is performed in three steps. First, the domain of the planar curve was 

determined to generate a rectangular grid covering the curve’s region. Second, the grid lines located totally 

outside the domain were deleted. Third, the grid lines intersecting the boundary curves were trimmed using 

the intersection point between the boundary curve and the concerned grid line.  

  
Fig.32. Rectangular mesh over free form boundary curve Fig.33. Trimmed mesh within free form boundary curve 

Apart from the generation of a mesh, the grid component also assembles a list containing the free points, fixed 

points and semi free points. This subdivision is useful for streaming the output of the grid component into the 

form finding component which will be shown later. An extra option which was later added to the grid 

component makes it possible to generate diagonal lines between the grid points by which every point is 

connected to eight other points, instead of four.  
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3.6 Force Density component 

3.6.1 Introduction 

The form finding component, based on the force density method (Schek, 1973), generates the equilibrium 

state of a predefined net structure by transforming a system of non linear equilibrium equations into a system 

of linear equations. This is done by prescribing a constant “force density” value, an optional load case and a 

series of boundary conditions concerning the geometrical constraints. The resulting equilibrium meshes are 

mainly used within this thesis as part of a calculation sequence for determining the stress resultants and 

deformations in thin plate structures within a series of structural analysis components. In order to achieve 

this, it was in necessary to incorporate the possibility to interpolate a mesh through the equilibrium mesh. 

Apart from this, the forming component could also be used as standalone design tool for membrane and shells 

structures. 

3.6.2 Development process 

The form finding component was developed by implementing the force density method in a component by 

scripting an algorithm in the VB.NET programming language following the steps as presented in chapter two. 

Since this method is mainly based on performing a series of matrix operations, two options were considered 

for performing this kind of mathematical operations. The first option was to incorporate the essential 

numerical matrix calculation algorithms into the parametric component itself. Several attempts were made to 

implement the required matrix operations within the component based on several numerical algorithms 

(Press & William, 2007 ). Since a lot of time is involved with this method, it was decided to use an external 

matrix class library named Mapack (Roeder, 2002) to perform the matrix operations by using it as an external 

reference assembly.  

Whereas the first version of the component could only generate the equilibrium mesh for a collection of fixed 

points and free points by defining the force density ratio and an optional distributed load, the second version 

of the parametric component also offered the possibility of defining points with a limited degree of freedom. 

Within the third version of the component it was made possible to implement diagonal connections (lines) 

between the points and the fourth version also allows the definition of point loads with a certain magnitude.  

3.6.3 Generating the equilibrium mesh 

The geometrical input for the force density component consists of two lists containing collections of points 

and lines which together describe the initial mesh topology. Besides this, two additional point lists are 

required, containing the free points and fixed points. The first structural parameter consists of the magnitude 

and direction of the external loads (lumped in the mesh nodes) which have to be defined by specifying the 

load components for the x-,y- and z-direction, together forming a load vector. The second structural 

parameter is the force-density ratio.  

After defining the inputs, the force density algorithm assembles the necessary matrixes as specified in chapter 

two and uses these matrixes to assemble the equilibrium equations for the x-,y- and z-direction. These 

equilibrium equations are then solved yielding the equilibrium coordinates. Afterwards, the branch node 

matrix is used to generate the corresponding equilibrium mesh.  On the next page, the force density algorithm 

inside the parametric form finding component is presented as flow chart (figure 34). The gray hatched boxes 

represent the parameters.
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Fig.34. Flowchart of the force density form finding component 
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3.6.4 Equilibrium mesh results 

Below, the form finding procedure is illustrated graphically for a rectangular mesh with fixed points along the 

edges, subjected to a distributed vertical load. It can be seen that first the equilibrium positions of the free 

points are calculated by solving the system of linear equilibrium equations and subsequently a corresponding 

mesh is generated for the initial mesh. 

   

Fig.35. Initial grid with distributed load Fig.36. Equilibrium position of points Fig.37. Mesh generation  

In the pictures below the influence of the freedom of movement is illustrated by varying them for the points 

along the edges of the mesh (except from the corner points). In figure 38 the points along the edges are fully 

fixed, in figure 39 the points along the edges are totally free and in figure 40 the points along the edges are 

fixed into a vertical plane, determined by the direction of the edge and the vertical z-direction.  

   

Fig.38. Fully fixed points along edges Fig.39. Fixed corner points Fig.40. Points along edges free in z- 
direction, fixed corner points 

The influence of the position of the fixed points is illustrated by figure 41 which shows the equilibrium mesh 

for a membrane between four corner points at different heights of which the shape is only determined by 

internal forces. Figures 42 and 43 show the equilibrium meshes for membranes which are respectively 

subjected to a concentrated load and a combination of a concentrated load and a distributed load acting in 

opposite directions. 
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Fig.41. Fixed corner points Fig.42. Point load in mid point Fig.43. Load combination 

 
The square meshes generated by the mesh component within free form planar boundary curves can also be 
used as input for the form finding component in the same way as was done for the rectangular geometries as 
is shown in picture 44. 
 

 

Fig.44. Equilibrium mesh for a free form membrane subjected to a distributed load and three concentrated loads  
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3.6.5 Surface interpolation 

As explained in chapter two, the membrane analogy describes the relation between the sum of bending 

moments surface and the displacement field of air inflated membranes when the force density ratio is 

specified as 1 (analogous to the plate stiffness  ). This knowledge is used within this thesis to generate 

membrane surfaces which are equal to sum of bending moments surfaces. These surfaces are subsequently 

used as the basis for the derivative component, the rain flow analogy component, the curvature ratio 

component and the finite difference component.  

An interpolated NURBS surface is generated on basis of the equilibrium mesh. The generation of this NURBS 

surface can be achieved for surfaces with a rectangular or right-angle polygon base by using the predefined 

surface interpolation component provided by the Grasshopper application. For membrane surfaces generated 

based on a free form boundary curve this surface interpolation component cannot deliver an appropriate 

result, because this component requires a rectangular grid of UV points. An alternative for generating a 

continuous surface based on of a free form membrane mesh was found by developing a script component 

which exports the membrane mesh to Rhinoceros, generates a surface by utilizing the surface patch function 

and subsequently imports the generated surface back into Grasshopper. The resulting surface for a membrane 

geometry fixed along its edges is shown in figure 3.xx. 

  

Fig.45. Equilibrium mesh Fig.46. Surface interpolation  

3.6.6 Validation of the results 

The output of the form finding component was compared to the output provided by an established software 

package named EASY, which is also based on the force density method. The exact similarity of the two 

equilibrium meshes generated from the same boundary conditions and parameters validated the output of the 

parametric component.  
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3.7 Derivative component 

3.7.1 Introduction 

The derivative component calculates the magnitude and direction of the principle shear forces (and its 

components in the x- and y-direction) based on the analytical relation between the sum of bending moment 

surface and the shear force: the shear force in a certain direction in a particular point is the first derivative of 

the sum of bending moments surface in that direction (see paragraph 2.2). Several display components have 

been developed for rendering the results.  

3.7.2 Development of the derivative component 

The derivative component is developed by combining a set of predefined components provided by the 

Grasshopper application for mathematical and geometrical operations, which together provide the solution to 

the differential equations (2.12), (2.13) and (2.14). The hereafter presented solutions all relate to a simply 

supported rectangular plate subjected to a distributed load.  

The required input for derivative component consists of the sum of bending moments surface (provided by 

the form finding component) and a grid of points (provided by the mesh component). The magnitude and 

direction of the principle shear force in a series of grid points is determined by calculating the derivative 

(slope) of the sum of bending moments surface in the direction of the steepest descent. First, the steepest 

descent direction is determined by using the surface normal vector. By multiplying this normal vector with 

the global z-vector the cross vector is obtained, which is subsequently used to rotate the normal vector 

around over 90˚ and thereby becomes the steepest descent vector. The steepest descent vector is tangential to 

the sum of bending moments surface in the considered point and points in the direction of the steepest 

descent. The resulting vector collection plotted on the sum of bending moments surface is shown in figure 48. 

The vector collection can also be represented by a planar vector field as shown in figure 47. 

  

 

Fig.47. Vector field with directions of 
principle shear forces (simply supported 
rectangular plate subjected to a distributed 
load) 

Fig.48. Steepest descent vectors on sum of 
bending moments surface 

 

Next, the magnitude of the principle shear force is calculated by calculating the slope (derivative) of the 

steepest descent vector. Subsequently the shear forces in the x- and y-direction are calculated by determining 

the corresponding planar components of the principle shear force as illustrated in figure 49. 
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3.7.3 Results 

The output of the derivative component consists of the direction and magnitude of the (principle) shear force 

for a grid of points. Two display components are designed for displaying the numerical and graphical 

information concerning the shear forces.  

The first display component generates a planar vector field in which the direction of the (principle) shear 

forces is indicated by a small arrow and the magnitude of the shear force is represented by the thickness of 

the arrow. This is illustrated in figures 49, 50 and 51. 

   

Fig.49. Principle shear force represented 
as scaled arrows  (simply supported 
rectangular plate subjected to a distributed 
load) 

Fig.50. Shear force in x-direction 
represented as scaled arrows  (simply 
supported rectangular plate subjected to a 
distributed load) 

Fig.51. Shear force in y-direction 
represented as scaled arrows  (simply 
supported rectangular plate subjected to a 
distributed load) 

The second display component generates a 3D mesh or surface which represents the magnitude of the shear 

forces. This is done by translating the initial grid of points in the z-direction over a distance equal to the 

magnitude of the shear force and optinally generating a mesh or (NURBS) surface through these points. The 

3D meshes are presented in figures 52, 53 and 54. 

   

Fig.52. Principle shear force represented 
as 3D mesh  (simply supported rectangular 
plate subjected to a distributed load) 

Fig.53. Shear forces in x-direction 
represented as 3D mesh  (simply supported 
rectangular plate subjected to a distributed 
load) 

Fig.54. Shear forces in y-direction 
represented as 3D mesh  (simply supported 
rectangular plate subjected to a distributed 
load) 
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3.8 Curvature ratio component 

3.8.1 Introduction 

The curvature ratio component is based on the curvature ratio method (see paragraph 2.xx) which was 

developed during this thesis. This method determines the bending moments in the x- and y-direction in a 

series of grid points by using the ratio between the curvatures in the corresponding directions of the scaled 

sum of bending moments surface (for which ... is true) multiplied by the sum of bending moment value.   

3.8.2 Development of the curvature ratio component 

The input required for the curvature ratio component involves a surface (provided by the surface 

interpolation component), the sum of bending moments values (provided by the form finding component) and 

a grid of points (provided by the mesh component). Since the Grasshopper application offers all the required 

components which are needed for the calculation sequence no scripting was necessary in this case.  

The first step in the calculation sequence consists of determining the (planar) curvatures of the scaled 

membrane surface in the x,z- and the y,z-plane for a set of grid points on the surface (vertical projections of 

the planar grid points). These curvatures can be determined by generating iso-curves (mathematical 

intersection events for a surface and a (vertical) plane) on the surface. The curvature in the examined points 

can subsequently be determined with the predefined curvature analysis component. With the curvature ratio 

and the sum of bending moments value, the bending moments in the x- and y-direction can be calculated by 

using equation (2.47). 

3.8.3 Results 

The result of the curvature ratio component is a series of numerical bending moment values corresponding to 

a series of grid points. For Several display components could be used to display the calculation results of the 

curvature ratio component. First, a 3D mesh or surface which represents the magnitudes of the bending 

moments could be used as shown in figures 55 and 56.  

  

 

Fig.55. Bending moments in y-direction 
represented as 3D mesh 

Fig.56. Bending moments in x-direction 
represented as 3D mesh 

Fig.57. Contour plot sum bending 
moments in x-direction (   ) 
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Second, for a planar representation of the calculation results, a component which generates a contour plot on 

the basis of the interpolated NURBS surface could be used as shown in figure 57. 

3.9 Rain flow analogy component 

3.9.1 Introduction 

The rain flow analogy can be used to determine continuous principle shear force trajectories along which the 

principle shear forces will flow to the supports in plate structures. These trajectories can subsequently be 

used to determine the magnitude of the principle shear forces in sections in a graphical manner by integrating 

the associated load, which is equal to the surface area between two trajectories (the part of the load which 

flows to the section). Another method for calculating the principle shear forces in a grid of points on the plate 

is by simulating the discrete accumulation of loads by using the steepest descent vectors in the grid points. 

3.9.2 Gradient descent algorithm 

The rain flow analogy component generates ‘continuous’ rain flow trajectories on a surface by using the 

gradient descent algorithm. This algorithm starts from a predefined starting point and iteratively determines 

the steepest descent vector on the considered surface and defines the next point by translating the start point 

over a (very small) distance in this direction. The sequence is repeated until a local (or global) minimum is 

reached or a predefined stopping condition is met.  

Mathematical definition 

An algorithm for finding the nearest local minimum of a 

function which presupposes that the gradient of the function 

can be computed. The method of steepest descent, also called 

the gradient descent method, starts at a point    and, as many 

times as needed, moves from    to      by minimizing along the 

line extending from    in the direction of        , the local 

downhill gradient until a local minimum is reached. This 

process is illustrated in the picture to the right. Here   is 

assumed to be defined on the plane, and its graph to have a 

bowl shape. The dotted lines are the contour lines along which 

the value of   is constant. An arrow originating at a point    

shows the direction of the negative gradient at that point. Note 

that the (negative) gradient at a point is orthogonal to the 

contour line going through that point. 

 

The steepest descent algorithm was implemented in the rain flow analogy component by using scripting 

components within Grasshopper. The steepest descent vector is determined by using the associated normal 

vector in a point on the surface, which can be easily determined with a Rhinoceros command. By multiplying 

this normal vector with the (vertical) global z-vector, the result is the cross vector, which is perpendicular to 

the plane containing the two input vectors. When the normal vector is rotated over 90 degrees around the 

cross vector it points in the direction of the steepest descent. By scaling this factor to a length which equals 

the step size (sampling accuracy) as defined by the user it can be used to translate the start point into this 

direction. Subsequently, the point is pulled back to the surface and forms the starting point for the next 



58 

 

iteration (which is a repetition of the just described procedure). By this means a collection of points is defined 

which is used to generate a polyline which represents the rain flow trajectory.  

It is important to determine a stopping criterion for the algorithm to prevent it from endlessly continuing to 

reach the exact position of the local minimum, which is often impossible due to the finite constant step size, 

resulting in an endless process of overshooting the exact mathematical minimum (often referred to as the 

‘ping pong effect’). Three stopping criterions are specified within the designed algorithm to prevent this: 

1) Surface normal vector is (almost) vertical 

2) Point       is outside 3D bounding box of surface  

3) Iteration number is larger than predefined maximum number of iterations 

Since the surface angle in the steepest descent direction (as principle derivative) in each point on the sum of 
bending moments surface is directly related to the magnitude of the principle shear force an extension was 
made to the rain flow analogy component which indicates the descent along the trajectories by applying a 
colour gradient to the trajectory. Along the lines of the rain flow analogy, the colour indicates the flow speed 
of the rain water and thereby forms a measure for the relative magnitude of the principle shear force.  

At the end of this chapter, on page xx, a flowchart of the rain flow analogy algorithm is shown which illustrates 

the steps performed within the rain flow analogy component.  

3.9.3 Rain flow trajectories 

The output results of the rain flow analogy component for an arbitrary surface are shown in figures 60 to 61.  

 

 

 

       

 
Fig.58. Planar rain flow trajectories and contour 
lines 

 
Fig.59. Rain flow trajectories plotted on arbitrary s surface Fig.60. Planar rain flow stream directions 

indicated along trajectories 
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3.9.4 Principle shear force trajectories 

When a series of rain flow trajectories is plotted on a sum of bending moments surface, corresponding to a 

collection of equally spaced division points along the edges of a plate, excellent insight can be obtained on how 

the principle shear forces (loads) flow to the plate supports (as illustrated by professor Beranek). The sum of 

bending moments surfaces are generated by using the form finding component (paragraph 3.4) based on the 

analogy between these surfaces and air inflated membranes (paragraph 2.3). The rain flow analogy 

component is subsequently used to generate the principle shear force trajectories.  

In figure 63, the generated principle shear force trajectories are generated for a collection of evenly 

distributed points along the edge of the sum of bending moment surface belonging to a simply supported 

plate, subjected to a distributed load. In figure 64, the planar trajectories are displayed together with the 

contour lines of the same sum of bending moments surface. In this picture it can be clearly seen that the 

principle shear force trajectories are always perpendicular to the contour lines. When this picture is 

compared to figure 11 in paragraph 2.5, it can be concluded that the shape of the trajectories is correct. 

 
 

Fig.61. Rain flow trajectories plotted on sum of bending moment 
s surface (plate simply supported along edges subjected to 
distributed load) 

Fig.62. Corresponding contour plot of sum of bending moments 
surface with rain flow trajectories 

It is interesting to see what happens if the plate is shaped as a polygon with 90 degree edges instead of a 

rectangle. In these cases the global maximum of the sum of bending moments surface is no longer clearly a 

single point but rather a ridge along which the slope is nearly zero degrees. This is shown in figures 65 and 66. 
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Fig.63. Rain flow trajectories and sum of bending moment 
surface (plate simply supported along edges subjected to distributed 
load) 

Fig.64. Rain flow trajectories and sum of bending moment 
surface (plate simply supported along edges subjected to distributed 
load) 

Depending on the shape of the shape of the plate boundaries it is even possible that instead of one, two local 

maxima occur in the sum of bending moments surface as is shown in figure 67 below. The influence of a point 

support placed in the midst of the plate on the shape on the sum of bending moments surface and the 

corresponding principle shear force trajectories is shown in figure 68. 

  

   
Fig.65. Rain flow trajectories and sum of bending moment 
surface: 2 local maxima (plate simply supported along edges 
subjected to distributed load) 

Fig.66. Rain flow trajectories and sum of bending moment 
surface: point support in midst of plate (plate simply supported 
along edges subjected to distributed load) 
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The effect of a point support on the sum of bending moments surface shape and the corresponding principle 

shear force trajectories is shown in figure 68. 

  

   
Fig.67. Rain flow trajectories and sum of bending moment 
surface: (plate simply supported along edges subjected to point load 
in midst of plate) 

Fig.68. Rain flow trajectories and sum of bending moment 
surface: plate supported in corners (plate simply supported along 
edges subjected to distributed load) 

In figures 69 the relation between the sum of bending moments surface and the corresponding principle shear 

forces trajectories for a simply supported plate subjected to a point load. Furthermore, the generated sum of 

bending moments surface for a plate (subjected to a distributed load) supported in its corners and the 

corresponding principle shear force trajectories are shown in figure 70. With respect to such topologies it was 

found that a different force density ratio   for respectively the edges and the midfield must be specified to 

obtain a correct sum of bending moments surface. This ratio was approximately 1:3.  

3.9.5 Magnitude of shear forces 

The membrane surface geometry in combination with the principle shear force trajectories can be used to 

determine the magnitude of the shear forces in a collection of points or sections. In order to achieve this, two 

different algorithms are developed and implemented into a parametric component to calculate the magnitude 

(and direction) of the principle shear forces.  

The first algorithm was developed in an early stage of this thesis project. It determines the x- and y-

components of the principle shear force in a collection of grid of points by simulating the accumulation loads 

in the x- and y-direction towards the supports in compliance with the corresponding components of the 

steepest descent vector. First, in each grid point the steepest descent (on the sum of bending moment surface) 

is determined in the same way as was done within the rain flow analysis. Next, the x- and y-components of this 

vector are determined. The ratio between the lengths of these components is used to determine which part of 

the load acting on this grid point will be carried in the corresponding directions: 
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When it is known which part of the load will be carried in the x and the y direction, this load is added to all 

points which are located in the corresponding direction; from the concerned grid point towards the edge of 

the plate. This procedure is conducted for each grid point. With this, it is essential that the grid points are 

examined in an order determined by the height of the points, where the highest is examined first and the 

lowest point last, as this directly influences the outcome of the calculation. If this order is not followed, then 

the summation is incorrect and so will be the outcome of the calculation.  

  

Fig.69. Calculation procedure for a set of grid points 
within rain flow component (method 1) 

Fig.70. Summation of load in the x- and y-direction for an arbitrary 
point (method 1, rain flow component) 

The output of the algorithm consists of a shear force value for each grid point. This information can be 

represented graphically as 3D mesh or a contour plot as presented in figures 73 and 74. 

 

 

Fig.71. Output of rain flow component (method 1): 3D mesh 
representation of principle shear forces 

Fig.72. Output of rain flow component (method 1): Contour plot of 
principle shear force distribution  

 
The second algorithm for determining the magnitude of the principle shear force in a certain section is based 
on the integration of the load flowing towards a particular section as indicated in figure 75. This method 
requires a user defined section on the plate surface as input, generates the shear force trajectories associated 
to the start and end point of a series of sub sections, then generates a planar surface between these curves and 
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determines the area of this surface. This surface area value is subsequently used to generate a principle shear 
force vector with the magnitude of the principle shear force pointing in the direction of the steepest descent of 
the sum of bending moments surface. The results for some sections on a plate supported along its edges are 
shown in figures 76, 77 and 78. 
 

  
Fig.73. Sections with associated load between trajectories Fig.74. Output of rain flow component (method 2): arbitrary section 

with associated load between trajectories and shear force vectors 

  
Fig.75. Output of rain flow component (method 2): arbitrary 
straight angle section with associated load between trajectories 
and shear force vectors 

Fig.76. Output of rain flow component (method 2): arbitrary free 
form section with associated load between trajectories and shear force 
vectors 

On the next page a flow chart is presented of the conceived rain flow algorithm (figure 79). 
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Fig.77. Flowchart of the rain flow analogy component  
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3.10 Finite difference component 

3.10.1 Introduction 

In this thesis the numerical finite difference method is used for plates, simply supported along their edges and 

subjected to a distributed load, in two steps. First, it is used to determine the displacements in a series of grid 

points for which the sum of bending moments is provided by the form finding component. Through 

assembling and solving a set of linear partial finite difference equations and relating the displacements of the 

grid points to the sum of bending moment values in the grid points, the displacement field is obtained. 

Subsequently this displacement field is used to determine the stress resultant in the point by solving the 

partial difference equations. Finally, the concentrated shear force is determined by taking the derivative of the 

torsional moments along the edges of the plate. Several options are developed to display the numerical output 

of the component. 

3.10.2 Development of the finite difference component 

The finite difference method was implemented into the finite difference component by programming in the 

VB.NET language. Since the method also involves a series of matrix operations Mapack  (Roeder; 2002) was 

used as external reference library. The theoretical aspects of the implementation process were mainly 

facilitated by a reader written by professor Beranek, which features a comprehensive description of the finite 

difference method.  

The finite difference component requires a planar square calculation mesh as input, which is provided by the 

mesh component. For calculation purposes it is important to determine the point conditions of the mesh 

points. For the considerd, simply supported, plate this means that there are three types (collections) of grid 

points  , mid points, edge points and corner points as illustrated in figure 60.  

 
Fig.78. Calculation mesh used for the finite difference component 
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The sum of bending moment values for all grid points   are required, this data is provided by the form finding 

component. Also a calculation mesh width  , equal to the mesh width of the input mesh, should be specified 

which determines the accuracy of the calculation results (a finer mesh leads to more accurate results).  

The first step within the algorithm consists of assembling a branch node matrix (see paragraph 2.xx) which is 

a mathematical description of the mesh topology. This branch node matrix is used in a later stadium to 

generate meshes which represent the calculation results. Within the next steps, matrixes   and   (3.xx) are 

assembled relating to the    grid points, part of equation (3.2).  

1

2
4 

  


 
 
 

m Q w  (3.2) 

The initial     dimensional quotient matrix   contains the coefficients of the displacements of all grid 

points. In contradiction to the collection of mid points  , the points along the edges are fixed and their 

displacement   equals zero. Therefore, the size of matrix   can be reduced to an     dimensional matrix, 

containing the coefficients for the displacements of the mid points only. The   dimensional matrix   contains 

the sum of bending moment values for the corresponding collection of mid points.  
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(3.3) 

Now, the necessary matrixes   and   are assembled, the displacements of the mid points   can be calculated 

by using equation (3.4). 

2
(4 )


   

1
w m Q

 

(3.4) 

The displacements of the mid points and the edge- and corner points together form the displacement field of 

the plate. This displacement field can subsequently be used to calculate the stress resultants with the partial 

finite difference equations (because    , the curvatures of this displacement field are equal to the 

corresponding stress resultants) , the bending moments in the x- and y-direction     and     (equations 2.55 

and 2.56) and the torsional moments     (equation 2.57). With this, it is important to pay extra attention to 

edge points and corner points as these require a modified partial finite difference equation (see paragraph 

2.7.3).To achieve this, the finite difference algorithm is designed in such a way that it recognizes these points 

by determining the number of surrounding grid points and subsequently uses a modified partial finite 

difference equation to calculate the stress resultants. The torsional moments    , in contradiction to the 

bending moments     and    , are not zero along the simply supported edges which leads to the modified 

molecule notations of (3.5). 
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When the bending- and torsional moments    ,     and     are calculated for each grid point, the principle 

moments    and    can be calculated by using Mohr’s equations (2.20 and 2.21). Next, the concentrated 

shear forces    for the edge points are calculated by taking the derivative of the torsional moments in 

directions parallel to the edges. For respectively the edges parallel to the x-axis and the edge parallel to the y-

axis yields: 
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We know that the concentrated shear force in the corners    is equal to:       . 
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There are three options for calculating the shear forces in the x- and y-direction in a certain grid point. The 

first option is to calculate the summation of the derivatives of the bending moment and the torsional moment 

(equation 2.3). This results in the following partial finite difference equations (3.8) for mid points: 
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(3.8) 

For points on the edges, the finite difference equations are modified as: 
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The second option is to use the partial finite difference equation of (3.10). This method is slightly more 

difficult as it also requires modifications to the finite difference equations for points next to the edges. The 

third option is to determine the derivative in the x- and y-direction of the sum of bending moments mesh/field 

instead of the displacement field to determine the shear forces in the corresponding direction (similar to the 

derivative method) by using equations (3.13) and (2.15). 

, ,
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m m m m
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 
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As all of the before mentioned methods are based on a discrete mesh instead of an interpolated surface, the 

principle shear forces cannot be determined directly, therefore equations (2.15) and (2.16) must be used. 

The conceived finite difference component is represented as a flow chart in figure 81. 
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Fig.79. Flow chart of the finite difference component   
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3.10.1 Results 

In order to display the output values (stress resultants and deformations) of the finite difference component, a 

separate display component was developed out of predefined components provided by the Grasshopper 

application. This component offers different options for displaying the numerical calculation results: 

(coloured) 3D mesh, 3D (interpolated) surface, contour plots and value tags. Below the results for a simply 

supported plate (plate stiffness                            ) subjected to a distributed load       

are displayed as 3D meshes. 

   

Fig.80. Displacement field     Fig.81. Bending moments in x-direction 
      

Fig.82. Bending moments in y-direction 
      

   
Fig.83. Shear forces in x-direction      Fig.84. Shear forces in y-direction      Fig.85. Torsional moments       

 
 

 
 

 

Fig.86. Minimum Principle moments 
     

Fig.87. Maximum Principle moments 
     

Fig.88. Concentrated shear forces      
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The same results can also be displayed as contour plots with value tags as shown below: 

   

Fig.89. Displacement field     Fig.90. Bending moments in x-direction 
      

Fig.91. Bending moments in y-direction 
      

   

Fig.92. Shear forces in x-direction      Fig.93. Shear forces in y-direction      Fig.94. Principle shear forces      

   

Fig.95. Torsional moments       Fig.96. Maximum Principle moments 
     

Fig.97. Minimum Principle moments      
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Another case study was performed for a simply supported plate subjected to a point load       , 

positioned in the centre of the (plate stiffness                            ). The resulting stress 

resultants and deformations are shown below as 3D meshes. 

   

Fig.98. Displacement field     Fig.99. Bending moments in x-direction 
      

Fig.100. Bending moments in y-direction 
      

   

Fig.101. Shear forces in x-direction      Fig.102. Shear forces in y-direction      Fig.103. Torsional moments       

   

Fig.104. Minimum Principle moments 
     

Fig.105. Maximum Principle moments 
     

Fig.106. Concentrated shear forces      
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3.11 Sand hill & Voronoi component 

3.11.1 Introduction 

The sand hill component generates parametric sand hill models for plate structures. These sand hill diagrams 

can be used to determine the yield lines in plates (analogous to the ridges of the sand hill models). During this 

research it was found that by inverting and translating these sand hill diagrams an accurate representation is 

obtained of the principle shear force diagrams for rectangular plates without torsional stiffness (twist-less 

case) along the lines of symmetry. By integrating planar sections of these diagrams along the lines of 

symmetry, bending moment diagrams can be obtained. Furthermore, a similarity between sand hill models 

and Voronoi tessellations is recognized. A Voronoi component is developed which generates Voronoi 

tessellation, which can be used as discrete principle shear force trajectories to obtain insight in the flow of 

forces and to determine the magnitude of the principle shear forces along the edges.  

3.11.2 Development of the sand hill component 

The sand hill component was developed by implementing two mathematical principles which determine the 

shape of the sand hill diagrams. These principles were defined by a series of experiments with physical sand 

hill models. The implementation was realized through a set of predefined components, provided by the 

Grasshopper application. The two principles are: 

1) Sand particles flow to the nearest hole or plate edge 

2) The slope is approximately 45 degrees 

The sand hill component requires as input a mesh (consisting of a collection of grid points and lines, provided 

by the mesh component) which represents the plate surface and set of curves/lines and points which 

represent respectively the supported plate edges (or internal line supports) and the holes through which the 

sand grains can flow of the plate (analogous to the support conditions).  

When these inputs are provided, the sand hill component first determines, from each grid point, the closest 

Euclidian distance to the provided collection of lines and points according to the first principle, by using the 

two “closest point on curve” and “closest point” components provided by the Grasshopper application. From 

the second principle it can be concluded that the height of the sand hill model in a grid is equal to the closest 

distance (figure 109). This knowledge is applied by translating the initial grid points over this distance in the 

global z-direction. As the before mentioned components also calculate the distance between the concerned 

grid point and the closest point, this value can be used directly to translate the initial grid point in the z 

direction. The result is collection of translated points which together represent the shape of the sand hill 

diagram. When a mesh of sufficient density is used, the shape of the sand hill becomes clearly visible as is 

illustrated in figure 110. The collection of points can also be used to generate a 3D mesh (figure 111).  
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3.11.3 Results 

The generation procedure and the results produced by the sand hill component for a simply supported plate 

are shown in the figures below.   

   

Fig.107. Generation procedure for sand 
hill model 

Fig.108. Sand hill model represented by 
dense grid 

Fig.109. Sand hill model represented by 
3D mesh 

The influence of the support conditions for the shape of the sand hill models for a rectangular plate structure 

is shown in the figures below. 

    
Fig.110. Parametric sand hill 
model: 2 edge supports 

Fig.111. Parametric sand hill 
model: 4 corner supports 

Fig.112. Parametric sand hill 
model: edge supports and 1 free 
edge 

Fig.113. Parametric sand hill 
model: 2 edge- and 2 point 
supports 

 
The output of the parametric sand hill component is validated by comparing them to physical sand hill models 
for a configuration of points as shown in pictures 116 and 117. 
 

  

 

Fig.114. Parametric sand hill model:    
configuration of point- and line supports 
& physical sand hill model 

 

Fig.115. Parametric sand hill model:       
configuration of point- and line supports 
& physical sand hill model 
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3.11.4 Principle shear force diagrams and bending moment diagrams 

During this research it was explored how (and to what extend) inverted and translated sand hill models can 

be used as a structural analysis tool to generate 3D principle shear force diagrams, determine the trajectories 

of the principle shear forces and to generate bending moment diagrams for simply supported plate structures 

(subjected to a distributed load  ) by developing a series of extensions to the sand hill component which 

perform these operations. First, the inverted and translated sand hill diagrams were generated by performing 

two mathematical vector operations on the initial mesh (figure 111) of the sand hill model, which results in 

the 3D principle shear force diagram as shown in figure 118.  

   
Fig.116. Mesh representation of 3D 
principle shear force diagram (inverted and 
translated sand hill model). 

Fig.117. Principle shear force diagram for 
(isotropic) simply supported plate, subjected 
to a distributed load    , generated by the 
derivative component. 

Fig.118. Differences between both 
principle shear force diagrams. 

Similar to sand hill diagrams, the slope of these diagrams is equal to 45°. Because the first derivative of the 

shear force diagram is equal to the load   (see paragraph 2.2), it can be concluded that the distributed load   

is equal to one. The sand hill diagram can be adapted to different magnitudes for the distributed load   by 

adjusting the slope   of the sand hill diagram, which can be easily achieved by calculating the height   of the 

diagram in the grid points by using the required slope   and the closest distance   as shown in equation 

(3.11).  

(tan ) ;
h

h a p
a

    (3.11) 

The differences between both diagrams of the principle shear forces, respectively generated by the sand hill 

component and the derivative component are shown in figure 3.xx. These figures indicate that the sand hill 

component gives a reasonable representation of the magnitude of the principle shear forces along the lines of 

symmetry, but is less accurate towards the corners (where large deformations occur). At first, the deviations 

in the magnitude of the principle shear forces were devised to the effect of torsional forces on the shear force 

distributions on basis of equations (2.3) which indicate that the magnitude of the shear forces in the x- and y-

direction are a summation of the derivatives of the bending moments     and torsional moments    . These 

torsional moments     are zero along the lines of symmetry and reach a maximum value in the corners of the 

plate. Therefore, the hypothesis was stated that the principle shear force diagrams could be seen as 

representations of the shear force distribution within plates without torsional stiffness (twistless-case).  
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This hypothesis was tested by generating the corresponding bending moment diagrams for several plate 

sections. To achieve this, a section of the 3D principle shear force was used as 2D shear force diagram to 

calculate the corresponding bending moment diagram by integration (within this thesis the rectangle method 

is used) of a section of the principle shear force diagram along a line. This procedure is shown in figures 121 

to 123. 

   
Fig.119. Sections of the sand hill model Fig.120. Inverted and translated sections Fig.121. Bending moment diagram 

After comparing the obtained 2D bending moment diagrams with calculation results produced by a FEM 

based structural analysis program, it was validated that the bending moments give an accurate presentation 

of the bending moment in the x- and y-direction along the lines of symmetry for orthotropic plates without 

torsional stiffness. For example, the maximum value of the bending moments obtained by both calculation 

methods in the center of a simply supported plate subjected to a distributed load         is         (in both 

the x- and the y-direction). In other plate sections the deviations were too large to be considered as useful 

representation of the bending moment values.  

3.11.5 Principle shear force trajectories and Voronoi tessellations 

The analogy between sand hill diagrams and principle shear force diagrams was further explored within the 

scope of simply supported plates by assuming that the principle shear forces will flow to the supports 

analogously to the sand grains. With regard to the latter, it was again assumed that each sand grain will flow 

in the direction of the closest point on the plate edges, and follows a straight (planar) trajectory. These flow 

paths are illustrated for a grid of points in figure 124. 

Furthermore, as explained in paragraph 2.8, a relation exists between sand hill models and Voronoi diagrams 

as they are both based on the ‘closest point principle’. The predefined Voronoi-component, provided by the 

Grasshopper application is used to generate a Voronoi tessellation for a collection of equally spaced points on 

the edges of the plate. The similarity between the flow paths based on a sand hill models and Voronoi 

tessellations can be seen by comparing picture 124 and 125. By comparing the Voronoi tessellation to the 

principle shear force trajectories (generated by the rain flow component) associated with the same points it 

can be seen that the Voronoi tessellation can be considered as discrete principle shear force trajectories.  
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Fig.122. Flow paths sand grains Fig.123. Voronoi tessellation Fig.124. Principle shear force trajectories 

The obtained Voronoi cells resulting from the collection of points on the plate’s edge can be used directly to 

determine the magnitude of the shear forces along the edges of the (simply supported) plate, in the same way 

as before by using the rain flow trajectories (produced by the rain flow component, figure 126). The 

magnitude of the principle shear force in the considered points equals the surface of the Voronoi cell. 

Although this method gives a good indication of the discrete principle shear force diagram, it is less accurate 

than the results obtained from the membrane analysis (figure 128), the Voronoi component can be used to 

generate discrete shear force trajectories for free form plate geometries as is showed in figure 127. 

  
Fig.125. Discrete trajctories and magnitude of principle shear 
forces along the plate edges (produced by the Voronoi component) 

Fig.126. Trajctories and magnitude of principle shear forces along 
the plate edges (produced by the rain flow component) 

 

 

 

 

  

Fig.127. Discrete principle shear force trajectories (Voronoi component) Fig.128. Sand hill model          
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3.12 Conceived structure and layout of the parametric structural design tool 

In figure 5.5 the final layout of the design tool is presented as flowchart. In this diagram it can be seen which 

calculation results (H) can be achieved by providing a structural geometry (outlines of a plate geometry) by 

composing a structural analysis sequence out of a series of structural analysis components (B,C,D,E,F and 

G)and the mesh component (A). Furthermore, it is illustrated how the calculation results (H) can be displayed 

in the 3D environment of Rhinoceros by attaching one or more display components (I). It can also be noticed 

that the Force Density component can also be used solely as form finding tool for generating membrane/shell 

structures. Subsequently to this form finding process the generated geometry can be developed further in 

Rhinoceros. 

 
Fig.129. Flowchart of the final setup of the parametric structural design tool 
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4 Validation 

4.1 Introduction 

In this chapter the calculation results for a series of stress resultants, produced by the structural analysis 

sequences in combination with the display components, are both quantitatively and qualitative validated to 

evaluate of the performance of the developed parametric structural design tool. This relates to objective 1d, 

which was defined as: 

 “Validate the produced calculation results in a qualitative- and a quantitative manner.” 

The qualitative comparison evaluates the distribution of the stress resultants by comparing the contour plots 

produced by the parametric components to the corresponding contour plots, provided by a FEM based 

software package SCIA. The quantitative comparison evaluates the numerical accuracy of the produced 

resultants by comparing a series of analytical solutions (Czerny, 1959), related to grid points along plate 

sections, to the corresponding analytical results. 

A thin simply supported (along its edges) rectangular plate, subjected to a distributed load   is used as case 

study for the validation. The geometry of the plate is shown in figure 132.  

 

 

  = 1,4m 

  = 1,0m 

  = 1 

  = 1kN/m2 

  = 0 

   = 0,1m 

   = 0,1m 

  

Fig.130. Sections for quantitative evaluation  

The calculations performed within the parametric components and SCIA are both based on a square mesh as 

in indicated in figure 132. Quite a large mesh size was used for the calculation (0,1m) because this induces a 

fast and sufficiently accurate structural analysis and thus contributes to real time structural evaluation, which 

is considered as being more important than accuracy within a conceptual design process. However, it must be 

mentioned that it is possible to improve the accuracy of the calculation results by applying a mesh refinement, 

a possibility which is provided by the mesh component.  
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4.2 Shear forces 

The contour plots for the (principle) shear forces    are shown below (figures 133 to 134). The plots were 

produced by respectively SCIA, the derivative component (figures 136 to 138) and the rain flow component 

(figure 139). 

   

Fig.131. Derivative component (  ) Fig.132. Finite element method (  ) Fig.133. Finite element method (  ) 

   

Fig.134. Derivative component (  ) Fig.135. Finite element method (  ) Fig.136. Derivative component (  ) 

 

 

  Fig.137. Rain flow component (  ) 

 
A clear resemblance can be noticed between the three contour plots produced by the derivative component 
(figures 136 to 138) and SCIA (figures 133 to 135) with respect to the shear forces in the x- and y-direction 
(   &   ) and the principle shear forces (  ). This is not the case for the contour plot of the principle shear 

forces produced by the rain flow component (figure 139). Although some similarities can be noticed with the 
results of SCIA, the presented distribution of shear forces deviates significantly in regions close to the lines of 
symmetry. With regard to this, it should be noted that the results for the principle shear forces    are more 
accurate near the edges parallel to the x-axis than for the edges parallel to the y-axis of the global coordinate 
system. A reason for this phenomenon could be the way in which the load accumulation (analogous to a 
discrete version of the rain flow analogy) is simulated within the rain flow component.   
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The procentual deviation between the magnitudes of the principle shear forces   , calculated by both the 

derivative component and SCIA, and anylicatal solutions (based on tables provided by Czerny) for a set of 

points along the Y1- and Y2-axis are peresented in figures 140 and 141. 

 
Fig.138. Procentual deviation between analytical calculation results and the corresponding solutions provided by the finite difference 
component and SCIA for   , in a series of grid points along the Y1 axis.  

 

 
Fig.139. Procentual deviation between analytical calculation results and the corresponding solutions provided by the finite difference 
component and SCIA for   , in a series of grid points along the Y2 axis.  

 
The average deviation between the output of the derivative component and the analytical results for    is 
1,5% along the Y1-axis and 1,6% along the Y2-axis. The maximum deviation between the results of the 
derivative component and the analytical results occurs in point 5 (nearby the corner of the plate). The 
procentual deviation at this location is 6,1%, which is still more than twice as accurate as the result provided 
by SCIA (14,7%). In general, it can be said that the derivative component produces more accurate results for 
the principle shear forces    than SCIA along the Y1 axis. The opposite is true for the Y2 axis where the results 
produced by SCIA are more accurate.  
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4.3 Bending- and torsional moments 

Below, the contour plots are shown for the bending moments in the x- and y-direction (    and the shear 

forces in the x- and y-direction (   &   ), produced by respectively the finite difference component (figures 

145 to 147), the curvature ratio component (figures 148 and 149) and SCIA (figures 142 to 144).  

   

Fig.140. Finite element method (   ) Fig.141. Finite element method (   ) Fig.142. Finite element method (   ) 

   

Fig.143. Finite difference component 
(   ) 

Fig.144. Finite difference component 
(   ) 

Fig.145. Finite difference component 
(   ) 

  

 

Fig.146. Curvature ratio component (   ) Fig.147. Curvature ratio component (   )  

When comparing the contour plots for    ,     and    , produced by the finite difference component and 

SCIA, a clear resemblance can be noticed. This proves that the finite difference component presents an 

accurate representation of moment distribution within the plate. With respect to the results produced by the 

curvature ratio component for     and    , by comparing the contour plots with the ones provided by SCIA, 

both similarities and differences can be identified. In general it can be said that although the general moment 

distribution within the plate is represented accurately, it deviates along the lines of symmetry.  The contour 

plot of the bending moments in the x-direction     show two distinct local maxima located adjacent to the 

plate centre, where a local minimum occurs. It was found that a similar phenomenon occurs within the results 

produced by SCIA, although less distinct, and that the derivative component in fact exaggerates this 

phenomenon. A possible explanation for the deviation between the results, produced by the curvature ratio 
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component and the analytical calculation results could be the geometrical characteristics of the NURBS 

surface interpolation, which is generated within the form finding component. Since the mathematical 

principles by which the NURBS surfaces are created have no physical meaning, this could contribute to an 

incorrect curvature ratio and thus incorrect bending moment values. Despite the lower accuracy compared to 

the finite difference component, the calculations within the curvature ratio component are performed much 

faster (in case of the considered rectangular plate, approximately 3 times faster). 

The procentual deviation between the magnitudes of the bending moments        , calculated by the finite 

difference component, and anylicatal equations (based on tables provided by Czerny) for a set of points along 
the Y1- and Y2-axis are peresented in figures 150 and 151. 
 

 
Fig.148. Procentual deviation between analytical calculation results and the corresponding solutions provided by the finite difference 
component for    , in a series of grid points along the Y1 axis. 

 

 
Fig.149. Procentual deviation between analytical calculation results and the corresponding solutions provided by the finite difference 
component for    , in a series of grid points along the Y1 axis. 

The results shown in figures 150 and 151 prove that the finite difference component provides very accurate 

numerical results for both the bending moments in the x- and the y-direction. The average deviation for the 

bending moments     is 0,6% procent and 0,1% for    . With respect to the bending moments in the x-

direction    , the largest deformations occur in point 2, next to the centre of the plate. The accuray increases 

towards the edges of the plate. With respect to the bending moments in the y-direction    , the procentual 

deviations have an irregular progression and the largest deformations occur in point 3.   
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The procentual deviation between the magnitudes of the torsional moments    , calculated by repsectively 

the finite difference component and anylicatal equations (based on tables provided by Czerny) for a set of 
points along the Y2-axis is presented in figure 152. 
 

 
Fig.150. Procentual deviation between analytical calculation results and the corresponding solutions provided by the finite difference 
component for    , in a series of grid points along the Y2 axis. 

The average deviation between the output of the finite difference component and the analytical solutions is 

2,3%, which indicates that the produced results are quite accurate. In figure 4.xx it can be seen that the 

maximum deviation of the torsional moments     is 4,5% in the corner point of the plate.  
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5 Conclusions 

5.1 Introduction 

In this chapter it will be evaluated how (and to what extend) the main and secondary objectives have been 

achieved. In chapter 1 (§1.3) the main objective of this thesis, based on two related problem statements (§1.2) 

was stated as:  

“Develop a structural design tool for architects and engineers, based on simple analytical structural 

analysis methods, which gives both quantitative and qualitative (real time) insight in the flow and 

magnitude of forces within a specific structure during a conceptual design stage.” 

The scope of this thesis is confined to a specific structural element: simply supported (rectangular) isotropic 

thin plate structures, subjected to a loads perpendicular to their plane (§ 2.4). The approach  developing the 

structural design was to implement analytical structural analysis methods into a parametric application 

(Grasshopper) within a 3D modelling environment (§ 2.3).  

The development of the parametric structural design tool toachieve the main objective, was guided by a set of 

secondary objectives. Within chapters 2,3 and 4 these objectives were achieved by respectively defining a 

theoretical framework, developing the parametric structural design tool and validating the produced 

calculation results. In the following paragraphs 5.2, 5.3 and 5.4 it will be evaluated, analogous to chapters 2,3 

and 4, whether (and to what extend) the secondary objectives have been reached within this thesis. Finally, 

within paragraph 5.5 it will be determined whether the main objective has been reached, on basis of the 

secondary objectives. 
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5.2 Theoretical framework 

The theoretical framework was defined in correspondence with secondary objective 1a: 

“Define a theoretical framework, by defining which- and how- analytical and numerical structural 

analysis techniques can be used to provide both quantitative and qualitative insight in the relation 

between structural geometry and the flow- and magnitude of forces and deformations within structures 

and have the potential to be implemented into a (parametric) computational tool.” 

A theoretical framework was defined in chapter 2 by selecting several analytical and numerical structural 

analysis methods for obtaining both quantitative and qualitative insight in the relation between structural 

geometry and the flow- and magnitude of the forces and deformations within structures (§ 2.2): 

8) Differential equations for thin plates (§2.2) 

9) Elastic membrane analogy (§2.3) 

10) Force Density method (§2.4) 

11) Rain flow analogy (§2.5) 

12) Curvature ratio method (§2.6) 

13) Finite difference method (§2.7) 

14) Sand hill analogy (§2.8) 

Within paragraphs 2.2 to 2.8, the theory behind these methods is briefly explained. Within paragraph 2.9, the 

mentioned structural analysis methods were combined into a series of (novel) structural analysis sequences 

a-f which provide a contribution in determining the structural quantities as shown in figure 153. 

                                                    

a) 3 + 2          √    

b) 3 + 2 + 1 √ √ √          

c) 3 + 2 + 4 √           √ 

d) 3 + 2 + 5    √ √        

e) 3 + 2 + 6 + 1 √ √ √ √ √ √ √ √ √ √ √  

f) 7 √           √ 

 

Fig.151. Overview of structural analysis sequences and their contribution to determining the different stress resultants (within thin plate 
structures) 

Paragraphs 2.9.2 to 2.9.7 explain the use of the different structural analysis methods within the structural 

analysis sequences to calculate/determine the different quantities. In paragraph 9.8, the relations between the 

different structural analysis sequences a, b, c, d, e and f was explained, which resulted in a flow chart of the 

total theoretical framework, which is shown in figure 154. 
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Fig.152. Flow chart of the conceived theoretical framework 

5.2.1 Conclusions 

The following conclusions can be drawn with respect to the structural analysis sequences within the 

theoretical framework: 

a) The elastic membrane analogy (§ xx) can be used in combination with the Force Density method to 

determine the shape of sum of bending moments      surfaces for plate structures by making the plate 

stiffness   equal to 1.  

b) Differential equations (1) (see §2.2) can be used in combination with the sum of bending moments 

surface (provided by sequence a) to determine the direction and magnitude of (principle) shear forces in 

a grid of points. 

c) The rain flow analogy (4) can be used to determine the principle shear force    trajectories based on the 

sum of bending moments surfaces (provided by sequence a), which can subsequently be used to 

determine the magnitude of the principle shear forces. 

d) The curvature ratio method (5) is a novel structural analysis method, developed during this thesis project, 

which can be used to determine the bending moments     and     by using the ratio between the 

extrinsic curvatures     and    of a scaled version of the corresponding sum of bending moments surface 

(for which it must yield that:        and       ) and sum of bending moment values    for grid of 

points. This method cannot be used to determine the principle moments    and    in case the 

summation of bending moments consist out of two values with an opposite sign.  

e) The numerical Finite Difference method (6) can be used in combination with the displacements   of the 

sum of bending moments mesh (provided by sequence a) to determine the displacement field of plates by 

solving a system of linear finite difference equations. This displacement field   can subsequently be used 

to determine the stress results    ,     and     by solving partial finite difference equations for a set of 

grid points.  

f) The sand hill method (7) is conceived as a standalone structural analysis sequence, because a 

combination between this method and other structural analysis methods was not considered to be 

feasible. A mathematical relationship between sand hill models and Voronoi tessellations was noticed, 

which was devised to the principle of closest distance (see § xx).  

In general, reflecting on the ambition to provide both quantitative and qualitative insight in the structural 

behaviour of thin plate structures, it can be said that the defined theoretical framework provided a good 

foundation for the calculation of deformations and the flow and magnitude of forces within plate structures. 
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5.2.2 Recommendations 

With respect to the development of the different structural analysis sequences, as part of the parametric 

structural design tool the following recommendations are defined: 

a) - Further research is needed in determining the relation with respect to the application of the 

membrane analogy to plates with different support conditions and other structural topologies 

like shear walls and subsequently shell structures.  

d) - Further research is needed concerning the exact mathematical relation between the extrinsic 

curvature of the sum of bending moments surface and the stress resultants in plate structures. 

With this, especially the determining of the torsional moments is important, this is considered 

to be a crucial step leading to the possibility of deriving the remaining stress resultants like 

shear forces, principle moments and concentrated shear forces within thin plate structures on 

basis of the (partial) differential equations.  

 

5.3 Parametric structural design tool 

1.1.1. Functionality and usability 

A set of requirements was made with respect to functionally and usability, from the perspective of the 

envisioned users of the structural design tool: the architect and the structural engineer. These demands were 

defined within paragraph 3.2, in correspondence with objective 1b: 

 “Define which demands, concerning functionality- and usability, have to be fulfilled by the parametric 

structural design tool.” 

The envisioned role of the parametric structural design tool, regarded from the perspective of both users (§ 

3.2.1), in combination with the described character of the conceptual design stage (§ 3.2.2) has led to several 

demands concerning functionality (§ 3.2.3) and usability (§ 3.2.4). With respect to the functional demands, 

which relate directly to the structural output of the design tool, a distinction was made in demands concerning 

quantitative information and qualitative information, respectively shown below and in figure 155. 

Quantitative information: 

- Shear forces (        ) 

- Bending and torsional moments (           ) 

- Concentrated shear forces ( ) 

- Principle moments (     ) 

- Displacements ( )  
 

 Fig.153. Qualitative information 
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geometry 
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The demands concerning usability were defined as:  

- Real-time results during the (architectural) design (modelling) process. 

- Ability to change the structural geometry, load cases, support conditions or material properties  

- Ability to compose geometrical and analysis components into structural analysis sequences 

- Ability to define which- and how calculation results are presented 
- Ability to extend the functionality of the structural design tool by adding (parametric) components or 

procedures 

1.1.2. General outline and structure of the design tool 

The general outline and structure of the design tool was conceived within paragraph 3.3, by defining a 
software framework and the structure of the conceived structural design tool which directly relates to the 
theoretical framework (defined in chapter 2) (figure 154), in accordance with objective 1c: 

“Define an appropriate general outline and structure for the parametric structural design tool with 

respect to the demands concerning functionality and usability.” 

In correspondence with the decision to use parametric associative design techniques for the implementation 

of the theoretical framework (§ 1.4), an application named Grasshopper running within the 3D modelling 

environment Rhinoceros was adapted as software framework. The main reason for choosing Grasshopper 

amongst other software applications is that this programme offers a more intuitive, and therefore a very user 

friendly approach to building parametric models in comparison to other parametric design applications (for 

example Generative Components). Scripting techniques and an external matrix class library for basic linear 

algebra computations named Mapack (Roeder, 2002) are used to extend the functionally of application, 

making it applicable for the implementation of the different structural analysis routines.   

The general outline and structure of the parametric structural design tool was conceived in correspondence 

with the software framework and demands concerning functionality and usability (§ 2.2). The design tool was 

structured analogous to the flow chart of the structural analysis sequences (part of the theoretical framework, 

Chapter 2). Additions to this flowchart are made by defining which operations take place in the two software 

programs (Rhinoceros & Grasshopper), the inputs, a geometrical component for generating the calculation 

mesh and display components for visualizing the outputs or the structural design tool. In figure 156 a flow 

chart representation of the general outline and structure of the parametric structural design tool is shown. 
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Fig.154. General outline and structure of the parametric structural design tool  

1.1.3. Implementation of the theoretical framework 

As described in paragraph 3.4, the theoretical framework was implemented into the conceived general 

structure of the design tool (§3.3.3), by describing how the different structural analysis methods were applied 

(by using the functionalities provided by the software framework, §3.3.2) within the structural analysis 

components in correspondence with objective 1d:  

“Implement the theoretical framework into the defined general setup.” 

During the development process, it was simultaneously evaluated how each component contributes to 

calculating/determining the flow- and magnitude of forces and deformations within thin plate structures by 

presenting its output results. In figure 157 the final layout of the design tool is presented as flowchart. In this 

diagram it can be seen which calculation results (H) can be achieved by providing a structural geometry 

(outlines of a plate geometry) by composing a structural analysis sequence out of a series of structural 

analysis components (B,C,D,E,F and G)and the mesh component (A). Furthermore, it is illustrated how the 

calculation results (H) can be displayed in the 3D environment of Rhinoceros by attaching one or more display 

components (I). It can also be noticed that the Force Density component can also be used solely as a form 

finding tool for generating membrane/shell structures. Subsequently to this form finding process, the 

generated geometry can be developed further in Rhinoceros.  
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Fig.155. Flowchart of the final setup of the parametric structural design tool 
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5.3.1 Conclusions 

The parametric application Grasshopper, running within the 3D modelling environment of Rhinoceros, was 

found to be an appropriate and efficient computational framework for the implementation of the theoretical 

framework, because:  

- The Grasshopper application runs within the Rhinoceros 3D environment which means that no 

interfacing with an external 3D modelling program is needed for displaying the calculation results or 

further development of the (structural) geometry. 

- The geometrical functionalities of Rhinoceros can be used in combination with mathematical expressions 

to establish the link between geometry and structural performance.  

- Grasshopper offered an intuitive and flexible approach for developing the structural analysis components 

via predefined or scripting components within an attractive user interface. 

- A large amount of comprehensive resources and examples were available which aided in the development 

of the parametric components. 

With respect to the development of the different structural analysis components, as part of the parametric 

structural design tool the following conclusions can be drawn: 

A)  - The mesh component successfully generates square mesh topologies within a collection of 

rectangular or free form planar boundary curves.  

- The three-step-procedure for generating rectangular meshes within free form boundary 

curves might not be the most efficient solution. Especially with larger meshes the method 

becomes slow and less appropriate for a real time parametric associative structural analysis 

tool. 

B)  - The Force Density method was successfully implemented into the form finding component. 

The form finding component can generate equilibrium (membrane) meshes by prescribing an 

initial mesh (provided by the mesh component), an optional load case (a user defined 

collection of vectors with a certain magnitude and direction) and a force density value.  

- The output of the form finding component was compared to the output provided by an 

established software package named EASY (also based on the force density method), the exact 

similarity between the two equilibrium meshes generated on basis of the same mesh topology, 

boundary conditions and parameters validated the output of the parametric component.  

- With respect to the work flow concerning the modelling and generation of the membranes 

geometry it can be concluded  that the parametric form finding component offers a fast and 

flexible approach to exploring different geometrical alternatives induced by the possibility of 

altering the different parameters and boundary conditions. 

C)  - Several differential equations were successfully implemented into the derivative component to 

calculate the direction and magnitude of  (principle) shear forces based on the sum of bending 

moments diagram (provided by the form finding component).  

- The possibility to display the principle shear forces as vector field or as 3D shear force diagram 

contributes to insight in their flow and magnitude. A graphical display component was 

successfully developed for presenting (principle) shear forces as a grid of small arrows with a 

certain thickness. 
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D)  - Computational rain flow trajectories can be generated by implementing a gradient descent 

algorithm which iteratively performs small steps in the direction of the steepest descent.   

- The accuracy of the generated trajectories is strongly dependent on the step size. 

E)  - The novel curvature ratio method was successfully implemented in the corresponding 

curvature ratio component as part of structural analysis sequence d by which 3D bending 

moments diagrams for    and     where fruitfully obtained.  

F)  - The partial differential equations were successfully implemented into the corresponding finite 

difference component. 

- The finite difference component, when used as part of structural analysis sequence e, 

calculates the magnitude of all stress resultants and deformations within simply supported 

rectangular plate structures in a fast manner.  

G)  - A computational representation of the geometry of physical sand hill models was successfully 

achieved by implementing an algorithm, based on two principles extracted from physical 

experiments, into the parametric sand hill component.  

- The resemblance between physical sand hill models and the geometry produced by the 

parametric sand hill component shows that reality is approximated accurately.  

- An extension of the sand hill component was developed, which successfully extracts a 2D 

section out of the 3D sand hill diagram and subsequently calculates the corresponding bending 

moment diagrams along the lines of symmetry, belonging to plates without torsional stiffness, 

subjected to a distributed load.  

- Voronoi tessellations were successfully generated and used to calculate the magnitude of 

principle shear forces along the edges of simply supported plates, subjected to a distributed 

load. 

I) - The different display components can produce a wide range of options for visualizing the 

calculation results.  

- Especially the (coloured) 3D mesh visualisation was found to be a very effective solution to 

obtaining insight in the distribution and magnitude of stress resultants and deformations. 

5.3.2 Recommendations  

With respect to the development of the different structural analysis components, as part of the parametric 

structural design tool the following recommendations are defined: 

A) The functionality of the mesh component could be extended by making it possible to: 

- Generate meshes within non-planar boundary curves or on basis of surface geometries 

- Select different mesh options with respect to mesh topologies (e.g. triangulations) 

 

B) - Further research is needed with respect to implementing boundary conditions within the 

Force Density method (B) (part of structural analysis sequence a) to generate sum of bending 

moments surfaces for plates with other support conditions (e.g. clamped edges or point 
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supports) and other structural topologies like shear walls and subsequently shell structures. 

D) - The speed of the rain flow algorithm could be improved by making the step size dependent on 

the curvature of the surface. 

F) - The functionality of the component could be improved by making it possible to perform 

calculations for plates (or other structural topologies) with different support condition.  

 

5.4 Validation 

The calculation results, produced by three different structural analysis sequences within a parametric 

structural design tool, were qualitatively and quantitatively validated by respectively comparing them to the 

corresponding results produced by FEM based structural analysis software and the solutions of the analytical 

differential equations. This validation relates to objective 1e: 

“Validate the produced calculation results in a qualitative- and a quantitative manner.” 

A thin simply supported (along its edges) rectangular plate, subjected to a distributed load   is used as case 

study for the validation as explained within paragraph 4.1. The validation is performed with respect to the 

calculation results for the (principle) shear forces (      and    , the bending moments in the x- and y-

direction (    and    ) and the torsional moments (   ). 

5.4.1 Conclusions 

With regard to the qualitative validation of respectively the derivative component, the rain flow component 

and the curvature ratio component, the following conclusions can be drawn (§ 4.2 & §4.3): 

C) - The derivative component (C) (part of structural analysis sequence b) in combination with the 
display components (I) presents a very accurate distribution for both the shear forces in the x- 
and y-direction (   &   ) and the principle shear forces (  ).  

 
D) - The rain flow component (D) (part of structural analysis sequence c) in combination with the 

display components (I) presents a reasonable accurate distribution for the principle shear 

forces (  ).  

- The presented distribution of shear forces deviates significantly in regions close to the lines of 

symmetry and is more accurate nearby the edges parallel to the x-axis than for the edges 

parallel to the y-axis of the global coordinate system. 

E) - The curvature ratio component (E) (part of structural analysis sequence d) in combination 

with the display components (I) presents a reasonably accurate distribution for the bending 

moments in the x- and y-direction (    and    ). 

- The distribution of bending moments deviates mainly along the lines of symmetry. 

- There are two distinct local maxima, located adjacent to the plate centre, where a local 

minimum occurs. It was found that a similar phenomenon occurs within the results produced 

by SCIA, although less distinct, and that the derivative component in fact exaggerates this 
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phenomenon. 

- A possible explanation for the deviation between the results, produced by the curvature ratio 

component and the analytical calculation results could be the geometrical characteristics of the 

NURBS surface interpolation, which is generated within the form finding component. 

- The calculation speed of the curvature ratio component is faster than the calculation speed of 

the finite difference component (approximately 3x). 

F) - The finite difference component (E) (part of structural analysis sequence e) in combination 

with the display components (I) presents a very accurate distribution for the bending 

moments in the x- and y-direction (    and    ) and the torsional moments (   ). 

Concerning the qualitative validation of respectively the derivative component, the rain flow component and 

the curvature ratio component, the following conclusions can be drawn (§ 4.2 & §4.3): 

C) - The average deviation between the output of the derivative component and the analytical 

results for the principle shear forces    is 1,5% along the Y1-axis and 1,6% along the Y2-axis. 

- The maximum deviation between the results of the derivative component and the analytical 

results occurs in point 5 (nearby the corner of the plate), where the procentual deviation is 

6,1%, which is more than twice as accurate as the result provided by SCIA (14,7%)  

- In general, the derivative component produces more accurate results for the principle shear 

forces    than SCIA along the Y1 axis. The opposite is true for the Y2 axis where the results 

produced by SCIA are more accurate. 

D) - The finite difference component provides very accurate numerical results for both the bending 

moments in the x- and the y-direction (    and    ).  

- The average deviation for the bending moments     is 0,6% procent and 0,1% for    .  

- With respect to the bending moments in the x-direction    , the largest deformations occur in 

point 2, next to the midst of the plate, and the accuray increases towards the edges of the plate.  

- With respect to the bending moments in the y-direction    , the procentual deviations have 

an irregular progression and the largest deformations occur in point 3. 

 

5.5 Final conclusion 

Reflecting on the main objective for this thesis it can be said that it was successfully achieved within this 

thesis project: a parametric structural design tool for architects and structural engineers was developed by 

implementing a series of (mainly) analytical structural analysis methods into corresponding structural 

analysis components. The different structural analysis components can be used to obtain (specific) qualitative 

and quantitative (real time) insight in the magnitude (and trajectories) of forces and deformations within thin 

plate structures within a conceptual design stage.  
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List of symbols 

List of symbols used within this thesis: 

  Length 

b Width 

h Height 

  Thickness 

      Angles 

  Number 

      Length coordinates 

  Leverage arm 

  Radius 

  

  Displacements 

  Deformations 

   Deformation of membrane surface 

   Sum of curvatures of displacement field 

    Extrinsic curvature in the x-direction of the global coordinate system 

    Extrinsic curvature in the y-direction of the global coordinate system 

   Sum of curvatures 

   Curvature of sum of bending moments surface 

   Curvature of sum of bending moments surface 

   Sum of curvatures of sum of bending moments surface 

  Angle 

  Rotation 

  Strains 

  

  Normal tension 

  Shear tension 

  

  External force 

  Distributed load per surface area 

  Distributed load along a line 

  

   Sum of bending moments 

    Bending moment in the x-direction of the global coordinate system 

    Bending moment in the y-direction of the global coordinate system 

    Torsional moment 

  Reaction force 

  

  Modulus of elasticity 

  Poisson’s ratio 
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Appendix I 

Several physical models were produced during this thesis by using rapid prototyping techniques in 

combination with the parametric form finding component in collaboration with Arnoud Herder. Several 

results are shown in the pictures below.  

  
Fig.156. Grid shell structure on a square ground plan Fig.157. Grid shell structure on a square ground plan (close up) 

  
Fig.158. Grid shell structure on a free form ground plan Fig.159. Grid shell structure on a square free form base (close up) 

  
Fig.160. Grid shell structure on a square ground plan (laminated) Fig.161. Close up of the laminated grid shell structure 
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