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An open-source reproducible
chess robot for human-robot
interaction research

Renchi Zhang, Joost de Winter*, Dimitra Dodou,
Harleigh Seyffert and Yke Bauke Eisma

Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands

Recent advancements in AI have accelerated the evolution of versatile robot
designs. Chess provides a standardized environment for evaluating the impact of
robot behavior on human behavior. This article presents an open-source chess
robot for human-robot interaction research, specifically focusing on verbal
and non-verbal interactions. The OpenChessRobot recognizes chess pieces
using computer vision, executes moves, and interacts with the human player
through voice and robotic gestures. We detail the software design, provide
quantitative evaluations of the efficacy of the robot, and offer a guide for its
reproducibility. An online survey examining people’s views of the robot in three
possible scenarios was conducted with 597 participants. The robot received
the highest ratings in the robotics education and the chess coach scenarios,
while the home entertainment scenario received the lowest scores. The code is
accessible on GitHub: https://github.com/renchizhhhh/OpenChessRobot.
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1 Introduction

Robots are becoming increasingly common across a variety of traditionally human-
controlled domains. Examples range from automated mowers that maintain community
lawns to robots on assembly lines and in agricultural settings. Recent advancements in AI
have created new opportunities for intelligent sensing, reasoning, and acting by robots. In
particular, the rapid development of large language models, such as ChatGPT and vision-
language models, has lowered the barrier to human-robot communication by transforming
text and images into interpretable actions or vice versa.

As technology advances, robots will likely attain greater capabilities and be able to
tackle tasks previously within the exclusive realm of human expertise. This ongoing
evolution may also lead to closer and more productive interactions between humans and
robots. At the same time, integrating different AI-based robotic components remains
a challenge, and the human-robot interaction (HRI) field lags in terms of endorsing
reproducibility principles (Gunes et al., 2022). Encouraging transparent and reproducible
research, therefore, remains an ongoing task.

The use of chess as a testbed for evaluating the effect of technology on human perception
and behavior dates back to the 18th-century chess automaton Mechanical Turk (Standage,
2002). Furthermore, chess has played an important role in advancing the field of AI, starting
with Claude Shannon’s chess-playing algorithm (Shannon, 1950) to the success of IBM’s
Deep Blue (Campbell et al., 2002) and DeepMind’s self-play learning algorithm (Silver et al.,
2018). In this paper, we incorporate AI algorithms into the design of a chess-playing robot
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to be used for studying HRI. HRI research may benefit from a chess-
based setup because the game of chess provides a controlled, rule-
based environment in which the impact of robots on human players
can be precisely measured.

HRI-oriented studies with chess robots have typically used them
to imitate human behaviors and assess their resulting impact on
the human opponent. Pereira et al. (2008) and Leite et al. (2013)
used the social robot iCat to play chess with children. This robot
relies on an electronic chessboard as input and emits emotional
responses and verbal utterances, guided by an emotion model.
Sajó et al. (2011) developed Turk-2, a multimodal chess robot
with human-like communication skills, while LC et al. (2021)
explored human-robot and robot-robot-human interaction using
artistic intervention, where expressive robot arms played chess and
embodied distinct personalities.

When an electronic chessboard is not used, a camera is needed
to determine if a move has been made and, if so, which move it was.
A common solution is a monocular top-view camera, which has
the advantage of not experiencing perspective-induced occlusion,
making it relatively easy to identify any changes in the chess position
(Golz and Biesenbach, 2015; Kołosowski et al., 2020; Larregay et al.,
2018; Luqman and Zaffar, 2016; Mac et al., 2023; Srivatsan et al.,
2020; Thanh Tra et al., 2018). An exception to this concept is the
Gambit chess robot byMatuszek et al. (2011), which does not require
a top-down view but uses a stereo camera instead. This robot is
unique because it classifies the pieces by type and color, whereas
other robots identify and track move-by-move changes from the
starting position (e.g., Golz and Biesenbach, 2015; Kołosowski et al.,
2020; Larregay et al., 2018; Siraj, 2017).

Other research focuses on the development of computer-vision
methods for the detection of the chessboard, and the subsequent
classification of the pieces on it, without always linking these
computer-vision methods to a chess robot (Christie et al., 2017;
Czyżewski et al., 2020; Ding, 2016; Koray and Sümer, 2016;
Ranasinghe et al., 2023; Schwenk and Yuan, 2015; Xie et al., 2018).
The detection of the chessboard typically involves line- or edge-
detection techniques (Chen and Wang, 2019; Czyżewski et al., 2020;
Srivatsan et al., 2020; Wölflein and Arandjelović, 2021; Xie et al.,
2018), while the classification of chess pieces commonly uses
convolutional neural networks (CNN) (Mallasén Quintana et al.,
2020; Shin et al., 2023; Wölflein and Arandjelović, 2021). Challenges
in both cases lie in testing for robustness under various conditions.
A common technique to improve classification performance is
to verify if the move/position is legal or plausible according to
a chess engine. With such methods, it is possible to let the
algorithm home in on the most probable classification outcome
(e.g., Czyżewski et al., 2020; Mallasén Quintana et al., 2020;
Ranasinghe et al., 2023). Currently, a state-of-the-art method
is that of Wölflein and Arandjelović (2021), which used a diverse set
of neural network models and achieved a per-square classification
accuracy of 99.8%.

Our contribution centers on a software platform that others
can reproduce using open-source robotics middleware. The chosen
robot arm is widely available in research, while other hardware
components can be substituted if required. The OpenChessRobot
can detect pieces using computer vision and execute moves. For
verbal interaction, we rely on large language models. Specifically, by
connectingChatGPT to the chess engine output, our robot interprets

strategies and explains them to humans in natural language. Non-
verbally, the robot is able to express its evaluation of the game by
either nodding or shaking its end-effector. Supplementary Material
Part A provides a comparison of the OpenChessRobot with other
chess robots designed for HRI studies.

This paper first presents the hardware and software design
of the chess robot. It then provides an outline of its core
modules, which include Perception, Analysis and Evaluation,
Motion Planning and Execution, and Interaction. Module-specific
experiments for performance evaluation are presented as well.
Next, the paper reports findings from two human evaluations:
an interview with an expert chess player who played two games
with the robot, and an online study of 597 participants, which
investigated perceptions of a talking robot equipped with AI
in three different scenarios. Finally, the paper concludes with a
discussion of the robot’s limitations andoutlines directions for future
research in HRI.

2 Hardware and software architecture

Our chess-playing robot (Figure 1A) consists of the following
hardware components (Figure 1B):

• A Franka Emika Panda robot arm (Franka Emika, 2020)
equipped with a Franka Hand and a customized 3D-printed
robot gripper. The robot arm has 7 degrees of freedom and
is a widely used collaborative robot, suited for safe human
interaction. It operates on firmware version 5.4.0

• A ZED2 StereoLabs camera (StereoLabs, 2020)
• A keyboard
• An external microphone and a speaker, connected to the PC
• An NVIDIA Jetson Nano (NVIDIA, 2019)
• A Linux PC with Ubuntu 20.04, running a real-time kernel. It

is equipped with an Intel I7-8700K processor and an NVIDIA
RTX 2080 graphics card.

Our setup includes a number of accessories. These comprise a
chessboard (48 × 48 cm), a set of chess pieces (model: Staunton
No. 4; ranging in height from 4 to 7.8 cm and in width from 2
to 4 cm), and four printed ArUco markers. Considering the robot
arm’s range, the chessboard should be positioned so that the farthest
rank remains within 65 cm of the robot. In Figure 1B, the distance
between the closest edge of the board and the robot is 16 cm.

The robot arm, the Jetson Nano, and the Linux PC connect
to a local network via a router. Communication between the arm
and the control PC is realized through the Franka Control Interface
(Franka Robotics GmbH, 2023) by integrating the Libfranka (0.9.2)
library for low-level control and the franka_ros package for the
Robot Operating System (ROS) (Quigley et al., 2009). The ZED2
camera is attached to the Franka Hand via a custom mount, and it
interfaces with theNVIDIA JetsonNano through aUSB connection.
The Jetson Nano streams the camera view to the PC through ZED
SDK v3.5. Considering that our setup uses images from a single
camera, the ZED2 camera and Jetson Nano can be substituted with
more economical monocular alternatives.

The software architecture of the OpenChessRobot is
built upon ROS Noetic (Open Robotics, 2020), which offers
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FIGURE 1
The system at a glance. (A) The robot at a demonstration event during which attendees could interact with it. (B) The complete system, comprising a
Franka Emika Panda robotic arm, a ZED2 stereo camera, and an NVIDIA Jetson Nano computing board.

FIGURE 2
The software architecture of four modules and inter-module communication. Within the Perception module, the camera images are used to
determine the 3D positions of the squares on the chessboard and identify individual pieces. The identified game position is analyzed through the chess
engine wrapper, yielding the best next move and an evaluation of the current board position. The OpenChessRobot then enacts the chess move.
Additionally, the robot is capable of responding through posture and speech.

common robotics data formats and message-passing among
software modules. Figure 2 provides an overview of the
software architecture, divided into four modules: Perception,
Analysis and Evaluation, Motion Planning and Execution, and
Interaction.

The Perception module uses the ZED2 camera SDK to capture
the chess game images and relies on a neural network-based
chess identifier to translate the game images into text descriptions.
The latter identifier requires PyTorch and CUDA runtime. The
Analysis and Evaluation module feeds the chess game annotation
to a chess engine in order to get predicted moves and their

corresponding scores. In the Motion Planning and Execution
module, the predicted move, accompanied by the 3D chessboard
localization results from the Perception module, is used by the
MoveIt! motion planner (Coleman et al., 2014) to plan and execute
chess moves.

The Interactionmodule takes the human inputs andmanages the
OpenChessRobot’s verbal and non-verbal feedback. For the verbal
feedback, a prompt wrapper, which combines the user request and
outputs from the Analysis and Evaluation module, serves as a client
of OpenAI’s ChatGPT API service and generates the responses to
talk with the human.
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FIGURE 3
Flowchart of the OpenChessRobot execution using the core modules. The robot uses computer vision to recognize the chessboard and pieces,
engages with a chess engine to determine moves, and executes chess moves for gameplay or data gathering. The chart splits into two key workflows:
one for collecting data to improve the robot’s perception of different chessboards and chess pieces, and another for playing chess with a human.

3 Modules

The Perception module uses computer vision to identify the
chessboard and the pieces; it can distinguish between occupied and
empty squares and recognize pieces and their color. The perceived
game position is sent to the Analysis and Evaluation module, which
interfaces with a chess engine to determine the best move. The
Perception module also calculates the chess squares’ real-world
locations, which are sent to the motion planner for planning the
robot’s end-effector trajectory to execute chess moves provided by
the Analysis and Evaluation module.

The OpenChessRobot runs a data collection pipeline
(orange box in Figure 3) and a human-robot gameplay pipeline
(yellow box in Figure 3). The data collection pipeline is used to
collect real-world data of chess pieces for retraining the Perception
module and adapting to a new chessboard. The basic gameplay
pipeline allows the robot to play the chess game with a human from
any game position.

3.1 Perception

The ability to perceive the chess pieces is a key function
of the chess robot. While the commonly used top-down view
resolves the issue of piece occlusion, its practicality is limited
by its narrow perspective on the pieces. Adopting lower camera
angles and dynamic camera positions to observe the game

supports the robot’s natural interaction with the human player (see
Figure 1). Additionally, our approach uses RGB images captured
by a single camera instead of point clouds (Matuszek et al.,
2011), improving the simplicity and reproducibility
of our setup.

Figure 4 shows the Perception module of the OpenChessRobot.
The module consists of two distinct classifiers, one for occupancy
and the other for piece classification.

3.1.1 3D chessboard localization
To manipulate the chess pieces, their 3D coordinates in the

real world need to be acquired. Four ArUco markers are used to
indicate the 3Dposition of the chessboard. An image capturing these
markers, along with the marker length and the camera’s intrinsic
and extrinsic parameters and distortion coefficients, allows for
the computation of the marker-to-camera translation and rotation
using OpenCV.

The 3D board localization is activated when the
OpenChessRobot is initialized. The robot moves to its Hovering
pose to observe the chessboard from above (blue box in Figure 3).
Although the robot typically operates with low camera positions
during the game, a vertical camera angle is used for 3D chessboard
localization to reduce errors caused by image distortion. Then, a
grid corresponding to the chess squares is formed based on the
actual square size, and a non-linear least squares algorithm is used
to optimize the grid corner positions to closely match the marker
positions.
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FIGURE 4
The Perception module of the OpenChessRobot relies on two distinct classifiers, one for occupancy and the other for piece classification. To train
these classifiers, we synthesized chess positions in the NVIDIA Isaac Simulator (Makoviychuk et al., 2021) based on previous chess games and assigned
ground truth labels, including the game positions represented in Forsyth–Edwards Notation (FEN) and pixel coordinates of board corners. In the
real-world setup, the robot collects game images from the predefined camera pose (Figure 3) after autonomously placing pieces on key squares and
replaying given games. These real-world images are then used to fine-tune the classifiers that were initially trained on synthetic datasets.

3.1.2 Chess piece detection
In the preceding section, we explained how the 3D coordinates

of the squares are estimated. The next task is to identify the chess
pieces on each square.

The piece detection model is an extension of a CNN-based
model from Wölflein and Arandjelović (2021). We complemented
their method by using a different synthetic dataset as well as a
real-world dataset to fine-tune the pretrained models in order to
effectively handle our real-world chess set.

To synthesize images of chess pieces on a board, we varied
backgrounds, lighting conditions, camera poses, and piece locations.
A total of 5,000 game positions, randomly selected from games
played by grandmaster Bobby Fischer, were used. We synthesized
images of selected chess games using the NVIDIA Isaac Simulator
(Makoviychuk et al., 2021). Ground truth labels were created,
consisting of the game positions represented in Forsyth–Edwards
Notation (FEN) and the positions of the board corners. Following a
similar approach to previous works (Mallasén Quintana et al., 2020;
Matuszek et al., 2011; Wölflein and Arandjelović, 2021), the images
were cropped into sub-images, each corresponding to a square on
the chessboard. Two categories, “empty” or “occupied”were assigned
for occupancy classification, while 12 categories (representing the
six types of chess pieces in both black and white) were designated
for piece classification.

To train the occupancy and piece classifiers with the synthetic
data, 80% of the cropped images were used as the training set,
while the remaining 20% was evenly split between a test set and a

validation set. A ResNet-34 (He et al., 2016) and an InceptionV3
(Szegedy et al., 2016) were trained independently on their respective
training datasets. This is illustrated in the left portion of Figure 4.

To adapt to real-world chess, a piece-square dataset was created
by manually iterating over all the chess pieces on the board. During
the iteration, the gamepositionswere recorded both in FENnotation
and in images taken at 1080p resolution from the perspective of the
robot in the Ready pose (Figure 3). A number of training datasets
to fine-tune the piece classifier were extracted from the piece-
square dataset using sub-images of chess pieces on key squares.
The trained models were evaluated on the remaining portion of
the piece-square dataset. Additionally, to evaluate the classifiers’
performance in games, a game dataset was collected by the robot
autonomously replaying the provided chess games. Two games
played by the grandmaster Michael Adams were used, with the
game positions recorded both in FEN and in images, following the
same procedure used when collecting the piece-square set. Dataset
creation, training settings, and evaluation are explained in more
detail in Section 5.1 and Supplementary Material Part B.

The preceding chess detectionmodel considers only the position
of the chess game. It does not verify the legality of the observed
game position and does not possess knowledge of the previous game
position. Such information can potentially improve the accuracy of
the Perception module. Our legality check consists of two steps:
first, it verifies if the game position conflicts with the chess rules,
such as detecting no king or too many pawns. If the game position
is invalid, it requests a new image (using the same camera pose
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but with potentially better camera exposure) and reanalyzes it. The
robot can also change the camera angle to improve perception.More
specifically, in case the predicted game states are detected as illegal,
the robot slightly moves to its side in order to capture an image
from a different perspective to improve the occupancy and piece
classification.

In the second step of the legality check, the robot examines if the
recognized chess move is among the legal moves from the previous
game position. When the inferred game position and chess move
prove to be legitimate, the robot adopts the inference and proceeds
with gameplay. If not, the robot will halt its operation and wait for
manual correction by the operator.

3.2 Analysis and evaluation

The processed chess FEN is forwarded to a chess engine
wrapper, which uses the Universal Chess Interface (UCI)
protocol for interaction with standard engines. Our chess engine
wrapper builds upon an existing open-source Python wrapper
for Stockfish (Zhelyabuzhsky, 2022). Our system integrates
Stockfish 15 (Stockfish, 2022) as the default engine, using a total
of 10 CPU threads. The chess engine assigns scores to candidate
moves, which are monotonically related to the player’s win rate,
should the engine play against an equally strong opponent.

3.3 Motion planning and execution

For the planning of the OpenChessRobot’s motions, we rely on
the MoveIt! motion planner (Coleman et al., 2014). To determine
the joint configurations, an inverse kinematics solver named
IKFast is used (MoveIt, 2021). This solver calculates suitable robot
joint angles based on the specified end-effector coordinates relative
to the robot’s base.

The robot arm is equipped with a customized gripper (Figure 5),
designed to secure the underside of the piece, which is cylindrical
in shape. The gripper is designed to be tolerant to minor deviations
between the anticipated pickup positions (square centers) and the
actual positions. Consequently, the human (or robotic) chess player
is not bound to place a piece exactly at the center of a square.

There are two basic robot motions: a sliding motion (Figure 6A)
and a jumping motion (Figure 6B). If the path between the start
and end positions of a movement is unobstructed, the robot
grasps the piece and pushes it to the destination square. When the
path is obstructed, the robot raises the piece to leap over other
pieces. Special movements like capture, castling, and en passant are
manually programmed as combinations of the two basic motions.

A chessmove for the robot to execute is provided by the Analysis
and Evaluation module in an encoded text format, e.g., g1f310000.
The first four characters indicate the chess move. Additional
information for a move is stored in the remaining characters.
Specifically, the fifth to ninth characters indicate whether the move
is a jump, capture, castling, en passant, or promotion move.

With the encoded string, we create waypoints, using the 3D
locations of the start square, the destination square, as well as
intermediate states for special motions. The intermediate states are
generated when the robot needs to lift pieces first rather than slide

FIGURE 5
The customized 3D-printed gripper. This gripper has two fingers that
are tolerant to deviations of chess pieces if they are not in the center
of a square.

them on the board. The motion planner receives these waypoints
and plans the trajectory of the end-effector using Rapidly-exploring
Random Trees (RRTConnect; Kuffner and LaValle, 2000), with a 3D
box surrounding the chessboard as a workspace constraint. After
trajectory planning, velocity and acceleration limits are enforced on
the planned trajectory (Kunz and Stilman, 2013).

4 Interactive modules

As the chess robot is designed for HRI research, providing
various modalities for human-robot communication is important.
We implemented an interactive gameplay pipeline based on the
core modules (Figure 7). Specifically, depending on the human’s
chess performance, the OpenChessRobot can move its end-effector
to express its evaluation, and it can provide verbal information
regarding move qualities.

4.1 Verbal interaction

In typical chess games, verbal communication does not hold
a central role, although some professional players have explained
the rationale and inner thoughts of chess moves in “Banter Blitz”.
Additionally, chess trainers commonly use verbal feedback to train
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FIGURE 6
The robot is executing planned trajectories to move chess pieces. (A) The robot slides a pawn from the E2 square to the E4 square. (B) The robot lifts
the knight on G1 to jump over other pieces on its way.

FIGURE 7
Flowchart of the OpenChessRobot execution using the core modules and Interactive module. As an extension of the core modules, the robot has an
interactive gameplay pipeline. It evaluates human moves using predefined criteria and provides feedback by adjusting its posture. The system is also
programmed to interpret human behaviors, such as gazing or asking questions, to provide a responsive and engaging experience.
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FIGURE 8
Verbal interaction. In this diagram, the user asks for an explanation of the last move. Next, a prompt consisting of a system message, the user request,
and the processed game position is provided to the ChatGPT API to generate verbal feedback.

their students. OpenAI’s ChatGPT has proven capable of generating
human-like dialogues. However, ChatGPT is unable to properly play
chess on its own (Kuo et al., 2023). Our proposed solution relies on
combining the analysis from the chess enginewithChatGPTwithout
model fine-tuning.

Depending on the human player’s request, the OpenChessRobot
can explain the last move or the next move. The process is
depicted in Figure 8. Capturing the user’s request is achieved
through voice recognition. To trigger the voice interaction, the robot
should be in the Ready pose, waiting for the user’s move. The player
must vocalize specific keywords of the phrases, such as “explain the
(last) move” or “analyze/predict the (next) move”.

When explaining the last move, the move history and the
current game FEN are sent to the Analysis and Evaluation module.
Alternatively, when the user seeks advice on subsequent moves, the
system uses the chess engine to predict several top-ranked moves,
along with their game continuations. A wrapper integrates global
instructions and the chess game information into a prompt ready
for submission to the ChatGPT API (using model GPT-4-0613).
The global instructions, which remain consistent across requests, are
embedded in a system message (Table 1).

In response to the prompt, the ChatGPT API is requested to
provide an analysis within the specified chess context in a tutor-
like tone. To reduce the latency in vocalizing text responses from
the server while maintaining a natural flow in synthetic voice,
the feedback from the server, streaming in words/characters, is
organized into short sentences, which are stored in a queue and
played sequentially.

4.2 Non-verbal interaction

In human-human communication, non-verbal cues play an
important role. In professional chess games, verbal exchanges are

often sparse. Apart from the moves played, participants may rely on
behavioral cues to understand their opponents.

The posture feedback consists of basic nodding and shaking
motions executed by the robot’s hand (Figure 9). These gestures are
triggered based on the chess engine’s evaluation. Specifically, the
robot enacts nodding or shaking gestures when the reduction in win
probability due to the latest move exceeds a predefined threshold.

5 Technical evaluation

We performed the following assessments of the chess robot
system: (1) Perceptionmodule: accuracies of the piece classifiers; (2)
Motion Planning and Execution module: success rates of grasping a
piece from different sections of each square.

5.1 Chess perception

For the piece classifier of the chess perception module, several
training settings were tested, using two sets of key squares, different
components of the training dataset, and varying training lengths.
The challenge was to identify a training setting that minimizes the
number of training samples while achieving good generalization
performance.

The two sets of key squares were:

• 3× 3 squares, which include intersections between the key files
A, E, and H and the key ranks 1, 4, and 8.

• 4× 4 squares, which contain intersections between the key files
A, E, and D, H and the key ranks 1, 4, 5, and 8.

The piece-square dataset contains three subsets: default, rotated,
and visually shifted:.
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TABLE 1 Prompt and ChatGPT output to explain the last move (bishop c4).

Prompt

System message You are a helpful chess assistant. Your role is to help the user understand the reasons behind chess opening moves, including their benefits, weaknesses,
and overall strategic concepts. There are some instructions on how to respond to the user. Instruction 1: You should always start your response with a
short sentence or few words to acknowledge that you’ve received the user’s message and are considering it. Instruction 2: The user prefers concise
explanations, so please keep your responses brief. Instruction 3: Your response should be informative and fluid, avoiding bullet points or index numbers.
Instruction 4: When analyzing a board, mention one key reason for a move. Try to use the given history moves and predicted future moves. The input will
include a user question, a chess FEN for the current game, the move to make, predicted future moves and a move history in a dictionary format under the
keys 'question', 'fen', 'move', 'evaluation', 'future' and 'history'.
Input:

User message {'question':'can you explain?', 'fen':'r1bqkbnr/pppp1ppp/2n5/4p3/4P3/5N2/PPPP1PPP/RNBQKB1R w KQkq - 2 3', 'move':'Bc4', 'evaluation':'Excellent',\
'future':'Bc4 Bc5 d3 Nf6 O-O d6 c3 O-O h3 h6 ',\ 'history': '1. e4 e5 2. Nf3 Nc6'}

GPT-4-0613

Sure, I can assist with that. The move Bc4 in this position is known as the Italian Game. The aim of this move is to control the center quickly with your pawn and knight and
then put your bishop on its most dangerous square. After this, both white and black usually castle and then start a pawn storm against the opponent's king. In this case, future
moves predict a traditional development of pieces with both sides castling kingside. The main goal is to have a solid position and try to exploit tiny advantages.

FIGURE 9
Posture feedback of the robot nodding and shaking its end-effector after a chess move was evaluated as good or bad, respectively.

• The default dataset (D) contains sub-images of 768 unique
piece-square pairs (64 squares × 12 pieces), with each pair
occurring at least once.

• The rotated dataset (R) includes sub-images of four
types of pieces: white king, white knight, black king,
and black knight. Kings were rotated twice by 45° (64
squares × 2 rotations), while knights were rotated four times
(64 squares × 4 rotations) to create different shapes due to their
rotational asymmetry (see Figure 10 right). Sixty-four samples
of each rotated piece were randomly selected, forming the final
rotated dataset.

• The visually shifted dataset (S) contains sub-images with
cropping windows shifted in four directions (up, down, left,

right). The displacement in each direction was ¼ square in
length. For each shift direction, all 768 unique piece-square
pairs were extracted. The S dataset serves as a test set with
increased noise.

Additionally, the data recorded by the OpenChessRobot while
replaying the games was used as another test set (G) to evaluate the
piece classifiers trained with piece images on the key squares. Only
unique piece-square pairs in each game are extracted, making up the
G dataset.

Different compositions of training and test datasets were
extracted from these three datasets:
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FIGURE 10
The raw images to create the piece-square dataset. The upper half image is taken without any rotations, and the lower half image is taken with
135-degree piece rotations.

• The training set (d) contained sub-images of each piece on
the key squares. The remaining samples in the D dataset were
divided into a validation set and a test set in a 20:80 ratio.

• The training set (r) was generated from the R dataset using
pieces on the key squares rotated by 90°.

• Similarly, the training set (rr) contains all pieces on the
key squares with all the rotations from the R dataset. The
corresponding test sets and validation sets of r and rr were
created in the same manner as the D dataset.

The fine-tuning was conducted in two phases: in the first phase,
the weights ofmost layers of themodel were frozen, and only the last
layer (head) was trained over epochs with a learning rate of 0.001. In
the secondphase, all themodel’s weightswere trainedwith a learning
rate of 0.0001. The Adam optimizer was used in both phases.

Following the aforementioned training conditions, the piece
classifier models were evaluated on their corresponding test sets,
as well as on the S and G datasets. The evaluation results are
detailed in Table 2. When comparing the two selections of key
squares based on the model accuracies on the G dataset, it is
evident that using 4× 4 squares provides more samples for fine-
tuning and results in good accuracies with better robustness.
Additionally, including the rotated samples in the training set also
helps improve performance, but it requires a longer training
duration to be effective. Results on the S dataset show that using 4
× 4 squares provides better robustness against the noise caused by
piece displacements compared to using 3× 3 squares. While longer
training durations and adding rotations to the training set yield some
improvements, these improvements are not substantial.

Regarding the occupancy classifier, it was found to achieve 100%
accuracy on the G dataset after retraining for 50 epochs using piece
sub-images at the 4× 4 squares and all the adjacent empty squares.

5.2 Grasping of pieces

An experiment was performed in which the OpenChessRobot
was tasked with grasping various pieces positioned on different
squares of the chessboard, repeated multiple times. To reduce
positional discrepancies, a compensation of 1 cm along the y-
axis and 0.55 cm along the x-axis (Figure 11) was applied as the
system error.

Specifically, the evaluation focused on testing the grasp
performance using the largest piece, the king (4 cm in width, 7.8 cm
in height), and the smallest piece, the pawn (2 cm in width, 4 cm
in height). These pieces were positioned at each of the four corner
squares (A1, A8, H1, H8) and physically shifted from the edges of
the squares to their centers (depicted in Figure 11). Two shifting
distances were used: (1) placing the piece tangent to the square’s
edge or (2) 0.625 cm away from the edge, corresponding to 1/8
the length of a square. Each piece in each square position was
tested 10 times.

Figure 12 shows the success rates for the different independent
variables of the grasping experiment. A distinction is made between
three categories: (1) accurate grasping: a correct grasp in 10 out of
10 trials, (2) remedied grasping: a correct grasp in 8 or 9 out of 10
trials (usually correct grasping occurred here in such a way that
the piece slid into the grasper’s teeth), and (3) missed grasping : a
correct grasp in 0–7 out of 10 trials. Table 3 shows the corresponding
results in numerical form. A trend can be noticed, whereby the
grasping was least successful when the piece was positioned toward
the edge of the square or toward the ‘up’ direction, i.e., in the positive
direction of the y-axis (see Figure 11), positioned away from the
base of the robot arm. It is hypothesized that this effect stems from
image projection and coordinate transformation errors in the 3D
chessboard localization.
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FIGURE 11
The positions by physically shifting the piece at square H8. In the left image, the black pawn is in the center without shifting. In the right image, the
white king shifts to the left edge of the square. The brown circle shows the center position. The white circles indicate the first shifting distance (to the
edge), and the yellow circles indicate the second shifting distance (intermediate).

FIGURE 12
Results from the grasping experiment.

5.3 Performance in human-robot chess
play

To assess the core components of the chess robot, a chess game
between a human and the OpenChessRobot was conducted. The
robot had control of the white pieces while the human played with
the black pieces. To determine its next move, Stockfish 15, with a
search depth of 20, was used.

The OpenChessRobot initiated the game from its Ready
pose, executed a move, and subsequently returned to its Ready
pose, awaiting the human player’s move. The human player was
prompted to press themiddle keyboard button (see Figure 1B) upon
completing their move. The manual button press was maintained
to mirror traditional chess tournament practices and ensure clear
separation of moves. This design also maintains safety and user
control safeguards by providing an explicit signal before the robot
begins its movement. The robot then captured an image, identified
the human’s move, and made its subsequent move. Two demo
videos of human-robot chess play can be found in Supplementary
Material Part C.

To ensure a fair match, the human player also had access to
Stockfish 15 to determine their next best move. The game ended
when a checkmate was achieved or a draw due to repetition.
Throughout the experiment, we recorded the time taken by each
robot module as it carried out its respective tasks.

The game ended in a draw after 97 moves, including 49 robot
moves and 48 humanmoves. Out of these 49 robotmoves, 7 involved
capturing pieces, wherein the robot first removed the captured piece
before executing its move, 6 moves required jumping pieces over
others, resulting in longer execution times compared tomovesmade
on unobstructed paths, and onewas the castling.The other 35moves
followed the pick-and-slide approach.

The time taken for the OpenChessRobot to execute its moves
is depicted in Figure 13A. On average, it took 7.33 s for the
robot to complete a chess move, from its initial position to the
resumption of that position after the move. Capture moves, on
average, consumed 6.24 s. Figure 13B shows the time allocation
for move detection, evaluation, and prediction. Move detection
was typically completed within 1 s, with one outlier attributed
to camera failure. Evaluating a single move with Stockfish took
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approximately 1 s. Finding the next move with Stockfish generally
took approximately 5 s, unless Stockfish had already encountered
the current human move during its previous search. In such cases,
the search time was virtually zero, allowing the robot to execute the
nextmove immediately.The relatively large computation time can be
explained by the fact that Stockfish was allowed to search at a high
depth, which is typically unnecessary for amateur-level play.

6 Evaluation of people’s views on the
chess robot

To collect an expert chess player’s opinion on the
OpenChessRobot, we involved a FIDE Master to play against
the robot in two games (Supplementary Material Part D). The
interview conducted after playing two games revealed that the
robot, while potentially useful for beginner-level practice, lacks
human-like feedback or commentary from which experts might
benefit. The player also indicated that the robot might be useful for
entertainment purposes.

In addition to the evaluation by an expert player, we conducted
an online study to investigate how the broader population perceives
the OpenChessRobot and to gather opinions on the future uses of
such embodied AI in general. Participants watched a demo video of
the robot and completed a corresponding questionnaire.

Specifically, demo videos were shown featuring the robot in
three scenarios:

• The scenario Robotics Education featured the robot explaining
how it works.The 28-s demo video showed the robot describing
its perception function and how it localizes the chessboard.

• In the Chess Coach scenario, the robot teaches a chess opening.
The 36-s video demonstrates specific moves and highlights key
squares on the chessboard.

• The scenario Home Entertainment represents a future
household robot that intends to entertain people through
conversation and chess play. The 42-s demo video showed
the robot discussing a chess game from a movie (Campbell,
1997). The videos and corresponding transcripts can
be found in Supplementary Material Part C.

The choice of these scenarios is partly based on the
aforementioned experiences with the expert chess player and also
represents how (chess) robots could potentially be used in the
future. That is, chess robots do not necessarily have to provide
chess lessons (Chess Coach scenario) but can also support education
by explaining their own functionality and serving as a knowledge
resource (Robotics Education scenario). Additionally, robots can be
seen as a companion or interaction partner (Home Entertainment
scenario).

6.1 Participants

Weaimed to recruit 600 participants through the online research
platform Prolific (Douglas et al., 2023; Peer et al., 2021) from six
countries where English is an official or de facto primary language:
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TABLE 3 Piece grasping results. The percentages represent the number of trials that were marked as “accurate grasping” or “remedied grasping”.

Piece Overall Shift distance Shift direction

Without
shifting
(n = 4)

With shifting
(n = 32)

Halfway
(n = 16)

Edge
(n = 16)

Left
(n = 8)

Right
(n = 8)

Up
(n = 8)

Down
(n = 8)

Pawn 100% 65% 75% 31% 75% 88% 0% 50%

King 100% 78% 100% 31% 63% 88% 50% 63%

FIGURE 13
(A) Time consumption of different robot moves in the game. (B) Time
consumption of move detection, Stockfish evaluating a move, and
Stockfish searching for the next move.

Australia, Canada, Ireland, New Zealand, the United Kingdom, and
the United States.

A questionnaire was launched on Prolific on Wednesday,
12 February 2025, at 22:00 Central European Time. In Prolific,
prospective participants were provided with a hyperlink to the
survey platformQualtrics to complete our questionnaire titled “User
perception of a talking chess robot”. The purpose of the study
was described as “to examine how people evaluate a talking chess
robot, which is powered by artificial intelligence including ChatGPT”.
Once the target of 600 active participants was reached, the survey
was automatically closed. Ultimately, 597 responses were collected.
Respondents gave informed consent via a dedicated questionnaire
item. Each respondent received a reward of £1.50 for completing
the estimated 10-min questionnaire. The research was approved
by the TU Delft Human Research Ethics Committee (Application
Number 5109).

6.2 Experiment design

The online study followed a between-subjects design, with
each participant presented with one of the three demo videos. All
participants first answered questions about their familiarity with
ChatGPT. After this, a short text was presented introducing one of
the three demo videos, such as (Chess coach scenario): “The following
video shows a talking chess robot that uses artificial intelligence
(including ChatGPT) to give a chess lesson. The robot explains a chess
opening. Please turn on your sound.”

Next, the demo video was played, followed by questions about
people’s acceptance (Q1), impression of the technical soundness of
the robot (Q2), possible improvements (Q3), and opinions on the
potential for such talking robots equippedwithAI to replace existing
technology (Q4) or human workers (Q5). The first three questions
collected people’s perceptions of the current OpenChessRobot, and
the last two questions aimed to acquire their opinions on the future
use of such talking robots equipped with AI. The five questions
were as follows:

Q1. “Do you think this robot could be used <in schools to explain
to students how a robot works?>/<in schools to teach students
chess?>/<at home to provide entertainment?>” (Definitely not,
Probably not, Neutral, Probably Yes, Definitely yes, I prefer not
to respond)

Q2. “Comment on the technical quality of the robot as
shown in the video. Mention positive or negative
aspects.” (A response of at least 20 characters was
required)

Q3. “Do you have any recommendations about how to improve the
robot?” (A response of at least 20 characters was required)

Q4. “Do you think that within 10 years, robots like this could
serve as a replacement of existing screen-based < computers
to help understand technical topics such as computer
vision?>/<computers to improve chess skills?>/<forms of
entertainment such as television?> Please elaborate on why or
why not.” (A response of at least 20 characters was required)

Q5. “Would you welcome a future where robots that can talk,
equipped with artificial intelligence (such as improved versions of
ChatGPT), replace human workers?” (Definitely not, Probably
not, Neutral, Probably Yes, Definitely yes, I prefer not
to respond)

The remaining questions gathered demographic information
(age, gender, and education) and assessed participants’ attitudes
toward and familiarity with chess, technology, and the movie used
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in the Home Entertainment scenario. The full questionnaire can
be found in Supplementary Material Part E.

6.3 Data analysis

For the open-ended questions (Q2–Q4), we used ChatGPT
o1 (OpenAI, 2024) to analyze the responses (see Supplementary
Material Part F for the full prompts and raw outputs). Previous
research shows the possibility of using large language models to
analyze textual data fromuser studies (Tabone andDe Winter 2023).
In addition, the reasoning model ChatGPT o1 has demonstrated
its efficiency in textual content classification for social media
analysis, sentiment analysis (Zhong et al., 2024) and categorical
reasoning (Latif et al., 2024). We requested ChatGPT o1 to extract
the three most mentioned positive and negative aspects from
responses to Q2, the five most mentioned recommendations from
responses to Q3, and the three most mentioned concerns from
responses to Q4.

Additionally, for the open-ended question Q4, we used two
reasoning models, ChatGPT o3-mini-high and Gemini 2.0 Flash
Thinking, as text classifiers to classify the responses regarding
people’s opinions into positive, neutral, or negative. If the two
classifiers produced different predictions, a human annotator
manually determined the final label.

6.4 Results

A total of 195, 211, and 191 participantswere randomly allocated
to the Robotics Education, Chess Coach, and Home Entertainment
scenarios, respectively. The median time to complete the survey was
6.48 min. The mean age of the participants was 36.5 years (SD =
12.33, n = 597). The gender distribution was: 302 females (50.6%),
286 males (47.9%), 8 “other” (1.3%), and 1 “I prefer not to respond”.

Figure 14 presents the distribution of responses for Q1, Q4,
and Q5. For Q4, the two reasoning models classified the opinions
identically for 528 participants, while a human annotator manually
labeled the remaining 69 responses.

6.4.1 Analysis of acceptance per scenario
Acceptance was the highest for the Robotics Education scenario

(Figure 14A), with a mean of 3.96 on a scale of 1 (“Definitely not”)
to 5 (“Definitely yes”) (SD = 0.98, n = 195) (Q1). According to the
ChatGPT o1 analysis, the most mentioned positive aspects for this
scenario were the “Advanced technical ability” in terms of computer
vision and the “Clear voice/explanation” demonstrated by the robot
(Q2). However, participants often found the technical language in
this scenario rather hard for beginners or students to comprehend.

The acceptance of the Chess Coach scenario was the second
highest, with a mean of 3.82 (SD = 1.05, n = 210, excluding one
participant who chose “I prefer not to respond”) (Q1). The most
mentioned positive aspect specifically for this scenario according
to ChatGPT o1’s analysis of Q2 was that it was seen as an “effective
teaching approach”. However, participants also often mentioned the
“limited interactivity” as a downside.

The acceptance of the Home Entertainment scenario was the
lowest (mean = 3.59, SD = 1.07, n = 191), with only 15% of the

participants answering “Definitely yes” to Q1. A similar pattern
can be observed in the classified opinions of Q4, where a majority
of participants (57%) expressed a negative expectation regarding
the use of such a robot to replace screen-based entertainment like
television (Figure 14B).

6.4.2 Analysis of open-ended questions across
the three scenarios

The summary results of the open-ended questions
are shown in Table 4. Participants frequently praised the smooth
and precise movements of the robot and its clear teaching style,
but they criticized its robotic voice, mechanical noise, and slow
operation. Common recommendations included adopting a more
natural, human-like voice, simplifying the explanations, reducing
the mechanical noise, speeding up performance, making the design
more friendly, while keeping the robot cost-effective.

7 Discussion and conclusion

In this paper, we introduced an open-source cognitive robot
designed for engaging in chess matches with humans. While
multiple chess robots have been developed over the years, none have
been made available as a reproducible platform, and many of them
have not been specifically designed for conducting HRI studies.
Our robot takes a unique approach by integrating robust robotic
perception, evaluation of gameplay, and move execution with
verbal and non-verbal interactions. Our development prioritized
adaptability and reproducibility, to create an accessible platform for
researchers and enthusiasts alike.

We focused on the game of chess because of its value as a
controlled experimental environment where both human behavior
and machine performance can be accurately measured. Chess also
serves as a ‘battleground’ for Moravec’s paradox, which states
that while machines excel at computational tasks (such as playing
chess), they traditionally struggle with tasks requiring human-
like perception, motor control, and language processing (Moravec,
1988). Our research platform aims to transcend Moravec’s paradox
by integrating chess engine capabilities with innovations in
human-like perception and the verbalization of moves using
synthetic speech.

Furthermore, the integration of verbal and non-verbal
interactions is included to increase the depth of engagement between
humans and the robot. By using a large language model for verbal
communication, we tried to create a solution that lowers the barrier
of understanding the reasons behind robot chess moves. Our
platform, in essence, revisits the conceptual foundation laid by the
Mechanical Turk in the 18th century (Standage, 2002).

We invited an expert chess player to play with the platform and
found that although it can be useful for beginners, it failed to provide
human-like in-depth feedback from which expert-level players
might benefit. Additionally, we conducted an online survey with
597 participants recruited from six countries to gather their views
about the OpenChessRobot as well as talking robots equipped with
AI in general. The online survey results revealed that participants
favored the robot’s use in educational contexts (where its advanced
technical skills were appreciated) while expressing reservations
about its role in home entertainment, primarily due to concerns over
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FIGURE 14
(A) The proportion of responses to Q1 “Do you think this robot could be used …“, (B) Q4 “Do you think that within 10 years, robots like this could serve
as a replacement of existing screen-based …Please elaborate on why or why not.” (answers classified into three categories), and (C) Q5 “Would you
welcome a future where robots that can talk, equipped with artificial intelligence (such as improved versions of ChatGPT), replace human workers?”.

TABLE 4 Summary of results from the open-ended questions analyzed by ChatGPT o1. Underlined items indicate aspects that were commonly
mentioned across all three scenarios.

Theme Robotics education Chess coach Home
entertainment

Q2 The three most mentioned
positive and negative aspects

Positive
• Smooth and precise
movement

• Clear voice/explanation
• Advanced technical ability
(vision, analysis)

Negative
• Overly technical/Complex
language

• Slow or lengthy process
• Robotic or distracting
Voice/Noise

Positive
• Smooth and precise
movement

• Clear explanations
• Effective teaching approach
Negative
• Robotic or unnatural voice
• Noisy or distracting
movements

• Limited interactivity

Positive
• Smooth and precise
movement

• Intelligent or knowledgeable
• Entertaining or interactive
Negative
• Loud or noisy
• Bulky or large
• Slow or boring

Q3 The five most mentioned
recommendations

• More natural, varied, or
human-like voice

• Simpler, age-appropriate
explanations

• Friendlier or more appealing
design

• Reduced mechanical noise
• Faster or smoother operation

• More natural, simpler speech
• Reduce mechanical noise
• Friendlier design and smaller
size

• Greater interactivity and
Q&A

• Clearer movement cues

• Reduce mechanical noise
• Use a more natural,
expressive voice

• Make the design more
compact

• Improve overall
aesthetics/approachability

• Enhance movement fluidity

Q4 The three most mentioned
concerns

• High cost and limited
cost-effectiveness

• Acceptance and human
interaction

• Incomplete or restricted
functionality

• High cost
• Limited portability
• Reduced versatility

• Lack of variety and
visual/storytelling depth

• Preference for passive
entertainment

• Insufficient
human/emotional element

limited interactivity and its inability to replace traditional screen-
based media. These findings motivate future research on HRI in
educational settings using this robot.

One of the limitations of the OpenChessRobot, as also shown
in Table 4, is that its movement is rather slow and noisy. Another
limitation is that the ChatGPT-based explanations are still narrow
in scope and quality. To improve the robot, we will focus on faster

arm movements and the incorporation of advanced large language
models that are specifically trained or fine-tuned on chess-related
text databases (see also Feng et al., 2023). Here, there is a need
for explainable AI, where the chess position, represented by a FEN
notation, is translated into a verbal explanation that is not only
correct in terms of the chess engine’s evaluation (as our current robot
already does) but also contains meaningful content about why a
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particular move is good or bad. Moreover, although the results from
the online study demonstrate promising aspects of the platform,
any application beyond the research setting, such as education,
coaching or entertainment, should be researched further. Finally,
a limitation of the current paper is the lack of physical human-
subject experiments among a large number of chess players. In the
future, we intend to use this setup to study howAI-embodied robots
influence people during interactions. This will involve the robot
communicating with humans through emotional expressions and
more natural/meaningful verbal interactions.

In conclusion, this paper presents the OpenChessRobot, an
open-source, reproducible cognitive chess robot that integrates
robust computer vision, chess engine evaluation, and both verbal
and non-verbal interactions for HRI studies. A large languagemodel
is used to translate the evaluation from the chess engines into
human-like speech. Supported by an international survey and expert
gameplay, our findings show the robot’s potential in educational
and research contexts, while highlighting limitations in human-like
interaction.
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