
Distinguishing ’Sugar’, ’Gravel, ’Flowers’
and ’Fish’ mesoscale cloud patterns in the

trades using cluster analysis

Gyan Luchmun (4845889)

Bachelor Final Project
TU Delft, Faculty of EEMCS,
BSc program Applied Mathematics,
TU Delft, Faculty of Applied Sciences,
BSc program Applied Physics

Delft, December 11, 2022

Supervisors:
Dr. Franziska Glassmeier
Dr. Maarten van Hoven

Dr. Aurèle Adam
Dr. Paul Visser

Abstract
In this thesis we are interested in distinguishing patterns of mesoscale cloud patterns in the trades.
Specifically, whether Sugar, Gravel, Fish and Flowers patterns can objectively be identified using
physical quantities. For this purpose, we use cloud fraction data attained by the CORAL Ka-Band
cloud radar at the Barbados Cloud Observatory during the boreal winter seasons of 2018, 2019
and 2020. These cloud fraction data represents the curves up until a height of 4 km for a given
6-hour interval of time. We do this to see if these clusters match up with the labels assigned to
each cloud fraction curve obtained from a classification model used in Schulz (2021). Firstly, we
map the cloud fraction curves onto points on a finite dimensional space using functional principal
component analysis. We subsequently apply K-means, Gaussian Mixture Models and Mean Shift
clustering onto the pre-processed dataset to identify any robust clusters. We have been able to
attain robust Sugar-like clusters for K-means for 3 and 4 partitions and Mean Shift with bandwidth
λ ≈ 585. This provides evidence that we are able to use cloud fraction data to distinguish Sugar.
However, the same can not be said for Gravel, Fish and Flowers as we have not been able to
identify them in our analysis. It is suggested for future research to do sensitivity analysis in the
height interval of the cloud fraction data, that outliers are omitted and that the labeled data from
Schulz (2021) are used instead of the mean and spread of the data pertaining to those labels.

ii

Contents
Abstract ii

I Introduction 1

II Theory 4

1 Instrumentation and Data 4
1.1 The Radar Equation . 4
1.2 The Reflectivity Z . 5
1.3 Cloud Fraction . 6
1.4 CORAL Ka-Band Cloud Radar Characteristics . 7

2 Mesoscale Cloud Organization: Sugar, Flower, Fish and Gravel 7
2.1 Complex Systems . 7
2.2 Visual Identification . 8
2.3 Classification . 9

3 Functional Principal Component Analysis 10

4 Clustering 12
4.1 Centroid-based Clustering: K-means . 13
4.2 Distribution-based Clustering: Gaussian Mixed Models (GMM) 14
4.3 Density-based Clustering: Mean Shift . 15
4.4 Internal Validation . 16
4.5 The Hopkins Statistic . 18
4.6 Determining the Number of Clusters . 18
4.6.1 The Elbow Method . 18
4.6.2 Gap Statistic . 18
4.7 Methodology . 19

5 Methods 20
5.1 Model Selection . 20
5.2 Data Extraction . 20
5.3 Cluster Analysis . 20

III Results and Discussion 22

6 Testing for Clustering Tendency 22

7 Data Pre-processing: FPCA 22

8 K-means 23
8.1 Determining the Number of Clusters . 23
8.2 Internal & External Validation . 23

9 Gaussian Mixed Models 24
9.1 Determining the Number of Clusters . 24
9.2 Internal & External Validation . 25

10 Mean Shift 25
10.1 Bandwidth . 25
10.2 Internal & External Validation . 25

iii

11 Investigating Robust Clusters 25
11.1 Overall Remarks . 26

IV Conclusion 28

References 29

Appendix 31

A Algorithms 31

B Analysis for K-means Clustering with Schulz’s (2021) Data 33

C Analysis for GMM Clustering with Schulz’s (2021) Data 36

D Analysis for Mean Shift Clustering with Schulz’s (2021) Data 39

E Python Programs 40
E.1 Time Windows . 40
E.2 Clustering Tendency . 41
E.3 K-means Clustering . 43
E.3.1 K-means Analysis . 43
E.3.2 K-means Elbow method . 50
E.3.3 K-means Gap statistic . 51
E.4 GMM Clustering . 52
E.4.1 GMM Analysis . 52
E.4.2 GMM Elbow method . 59
E.4.3 GMM Gap statistic . 60
E.5 Mean Shift Clustering . 61
E.5.1 Mean Shift Analysis . 61

iv

Part I

Introduction
Humans are good at discerning subtle
patterns that are really there, but equally
so at imagining them when they are
altogether absent.

Carl Sagan

Imagine you are relaxing in the scorching Aruban sun off its beautiful coast on its easternmost
point. You are completely in trance from the environment and as you look up at the sky you notice
something peculiar that brings you back to reality and makes you wonder: ’Why are these clouds
waiting in line?’. What you end up seeing looks something like figure 1. You might shrug it off
as a coincidence until you see it occur for a second, third or fourth time. On satellite imagery, a
possible cloud field that corresponds with this phenomenon is shown in figure 2.

Figure 1: This is a panoramic view of one of the beaches near the easternmost point of the island.
We see some row-like formation of clouds towards the south of the island between the coasts of
Aruba and Venezuela. From ref. [1].

Figure 2: This figure illustrates a satellite image with cloud streets that can be seen above and
below the island of Aruba. The cloud street seen in figure 1 has a similar location and orientation
as the cloud street that can be seen to be between Aruba and Venezuela. From ref. [2].

.

1

This is an example of what it means to have spatial organization of clouds and these occur under
specific conditions. However, the processes that drive the organization of clouds under such condi-
tions tend to not be fully understood. It is not clear whether the clouds organise themselves and/or
organise due to changes in the large-scale environment. This makes it difficult to incorporate it
into weather models. This gives us an incentive to investigate these systems to further implement
them into climate models [3].
Cloud streets are not the only example of mesoscale cloud organization. In the trades, there happen
to be four additional ways that cloud organise themselves in the order of 2-2000 km (mesoscale)
throughout the year. These additional ways of cloud organisation are denoted to be Sugar, Gravel,
Fish and Flowers; and are shown briefly in figure 3.

(a) (b)

(c) (d)

Figure 3: Here we show the four different cloud patterns that can occur in the trades near the
island of Barbados. The subfigures a., b., c. and d. represent Sugar, Gravel, Fish and Flowers
respectively. The greenly lit island in all of the figures represents Barbados. From ref. [4].

Broadly speaking, one can associate these patterns with varying levels of associated precipitation
and cloudiness. It must also be noted that according to literature that climate change will effect
the frequency of recurrence of these cloud patterns [4]. As the climate changes, conditions will
favor Sugar and disfavor Fish and Flowers [4]. Because Sugar is a ’sunny’ pattern, we therefore
expect clouds, on average, to reflect less sunlight back to space. This shifts the planetary energy
balance and causes the climate to therefore become even warmer. Understanding these patterns
will help us improve climate models and also help us to understand climate change and its effects
[3].
For the past years, researchers have been investigating these different cloud patterns. Due to the
visual nature of this phenomenon, researchers in the field have conducted classification studies.
Given we are able to label satellite images based off some classification model, we can find physical
quantities associated with that label. However, it should be noted that these physical quantities
that pertain to some label are not necessarily distinct. Distinct in the sense that physical quantities

2

belonging to the same label are more similar with respect to physical quantities coming from
different labels. This touches upon what is known as clustering; where physical quantities belonging
to clusters have the aforementioned property. The epigraph in the beginning of this chapter tells
us it is not at all obvious whether clusters might be visually distinct. To truly find and determine
clusters we use a combination of mathematics and an all-around understanding of these cloud
patterns to base our judgement upon. In this thesis we will investigate whether we are able to find
reasonable clusters that pertain to labels that have been found using a classification model. As
for the labeled physical quantity, we use cloud fraction as a function of height up to 4 km. This
physical quantity, the cloud fraction, is the closest related quantity to these purely visually defined
cloud patterns and will hopefully allow us to answer our research question [4].
In chapter 2 we the necessary theory that should be understood for our thesis. In chapter 3 we
present our results and discuss these. Chapter 4 gives the conclusions drawn by this analysis. The
thesis is part of the Bachelor Final Project that is part of the double bachelor Applied Mathematics
and Applied Physics degree at the Delft University of Technology.

3

Part II

Theory
In this chapter we go through the theory that is relevant for having a proper understanding
regarding the intricacies of this thesis. We start by talking about the instrument involved in
measuring the data that we use. Then, we give some context regarding the literature of these
four patterns. Subsequently, we explain how we pre-process the data before we move onto the
mathematical topic of clustering and finish this chapter off with the methods involved in answering
our research question.

1 Instrumentation and Data
In this section we elaborate on the relevant physical quantities involved in this research and the
instrument involved in measuring those.

1.1 The Radar Equation
Detection at a distance using radars are done by comparing the transmitted EM-wave, with known
properties, alongside the reflected EM-wave that has bounced off some target we are interested
in investigating. These targets are denoted as ’point targets’ and are of negligible spatial extent.
This negligibility is due to the sheer distance between the target and the antenna of the radar [5].
To understand what is happening, one must first consider the an antenna radiating its energy
isotropically into space. Meaning: radiation from a point source without preferred direction.
Suppose we are interested in the power Pσ that pours through an area σ of little radial extent at
a distance of r from an antenna which generates power Pt. To relate these quantities, we invoke
the inverse quadratic relationship of power at a distance from an isotropically radiating source as
shown in equation 1.

Pσ =
Aσ

4πr2
Pt. (1)

What a radar is able to do with this antenna, is it is able to control the amount of power that it
pours through Aσ. It does this by focusing its energy into a beam onto the point target instead of
simply allowing the antenna to radiate the energy isotropically. Then, we can describe the power
flowing through Aσ in this scenario to be proportional to the isotropic case. This constant of
proportionality G is denoted to be the antenna axial-gain. The modified equation for the power
flowing through σ is shown in equation 2.

Pσ =
GAσ
4πr2

Pt. (2)

G happens to be related with the aperture area Ae and is given in equation 3 [5].

G =
4πAe
λ2

. (3)

Now that we know the power flowing through the target point due to a beam of wavelength λ, we
must now ask ourselves what the measured power will be due to reflection. If we measure using
antenna with aperture Ae, which again is far enough from the source to be described as spatially
negligible, we are eventually able to describe the reflected power Pr as:

Pr =
Ae

4πr2
Pσ =

GAσAe
(4πr2)2

Pt. (4)

4

By writing our aperture area Ae in terms of gain G and the beam wavelength λ in equation 4, we
eventually arrive at equation 5.

Pr =
G2λ2

(4π)3r4
PtAσ. (5)

Because this equation unfortunately relies upon the assumption that our target radiates isotropi-
cally, we use a slightly different expression. We, instead, use the radar equation for a single target,
which is shown in equation 6 [5].

Pr =
G2λ2

(4π)3r4
Ptσ. (6)

The σ is known as the backscatter cross-section. This is not Aσ, rather some correlatory value
that matches observations tied to the target and is given in equation 7.

σ =
π5

λ4
|K|2D6. (7)

D represents the diameter of the spherical target and K is a coefficient depending of the refractive
index and absorption coefficient of the target. |K| ≈ 0.93 for water [5].

1.2 The Reflectivity Z

Rain and cloud droplets belong to an important class of radar targets knows as distributed targets.
To be able to measure a distribution of these, confined to a small space, we take measured averages
of timescales greater than 10−2 s. We do this to average-out any high frequency power fluctuation
that the radar might be able to pick up. This is shown in equation 8.

P̄r =
G2λ2

(4π)3r4
Pt
∑
i

σi. (8)

∑
i σi indicates the sum of backscatter cross-sections pertaining to the distribution of targets

reflecting the generated EM-waves [5]. By combining equations 8 and 7 we are eventually able to
arrive at the measured reflected power average by a number of spherical scatterers as,

P̄r =
G2π5|K|2

(4π)3r4λ2
Pt
∑
i

D6
i . (9)

This is where the motivation behind the quantity ’reflectivity’ Z becomes clear. We express the
reflectivity Z as

∑
iD

6
i . Supposing we know the distribution of the diameter of these objects N(D)

we are able to write Z as,

Z =
∑
i

D6
i =

∫ ∞
0

N(D)D6dD. (10)

N(D) are associated with the distribution of the size of these scatterers, whether it may be rain-
drops or snowflakes [5]. Another related quantity is the logarithmic reflectivity. Figure 4 illustrates
how this logarithmic reflectivity might be used.

5

Figure 4: This figure shows logarithmic reflectivity as a function of height and time values for Sugar,
Gravel, Fish and Flower patterns measured at the Barbados Cloud Observatory. The greenly lit
island in the right-hand side of the figure represents Barbados. From ref. [6].

This will become useful for calculating cloud fractions. To summarize, reflectivity can be measured
by parameters that both depend on the radar and the target.

1.3 Cloud Fraction
The need to be able to quantify cloudiness at a location during some period of time motivates
the use of a quantity which is known as the cloud fraction. The cloud fraction is essentially the
percentage of ’cloudy time’ during some time spent measuring whether a location was ’cloudy’.
Although the latter might be an intuitive definition, cloud fraction is more often defined geometri-
cally as the fraction of a scene that is cloud filled. Suppose we want to measure the cloud fraction
over some time interval T . If we have conducted, say, N reflectivity measurements during this
time, we are able to make a statement on this average ’cloudiness’. ’Cloudiness’ at a location is
ascertained by checking if the reflectivity at the location is high enough. This can mathematically
be described as a function C that takes on logarithmic reflectivity. This is shown in the following
equation,

C(Z) =

{
1 for log (Z) > −50 dB,
0 otherwise. (11)

Observe in equation 11 that for logarithmic reflectivities −50 dB and higher we assign C 7→ 1 and
C 7→ 0 otherwise. We choose −50 dB to be our threshold to not detect sea-salt aerosols [4]. The
cloud fraction is estimated by calculating the mean of these one-zero realizations with respect to
time.

6

1.4 CORAL Ka-Band Cloud Radar Characteristics
The cloud radar whose data we use in this thesis comes from the Barbados Cloud Observatory
(BCO). A picture of this radar is shown in figure 5. The features of this radar are show in table 1.
For the purposes of this thesis, the reflectivity measurements of this device will be of relevance.

Figure 5: This figure shows the CORAL Ka-Band Cloud Radar at the Barbados Cloud Observatory.
We use its measurements for the purposes of this thesis. From ref. [7].

Radar Type: Mono static, pulsed, magnetron
Frequency (related to λ): 35.5 Ghz ± 150 MHz
Diameter of Antenna (related to Ae): 2 m
Peak Power: 30 kW
Pulse Width: 200 ns for 30 m range resolution
Anatenna Beam Width: 0.3 deg x 0.3 deg
Sensitivity: -48 dBz at 5 km, -70 dBz at 500 m

Table 1: The properties of the CORAL Ka-Band Cloud Radar at the Barbados Cloud Observatory
relevant for this thesis. From ref. [7].

2 Mesoscale Cloud Organization: Sugar, Flower, Fish and
Gravel

Within the tropics we have some recurrence regarding the ways clouds might organize themselves
in the trades. Sugar, Flower, Fish and Gravel happen to be the names of these different types of
recurring cloud organization. These clouds organize themselves in the order of 20 to 2000 km and
are therefore denoted as mesoscale cloud organization [6].

2.1 Complex Systems
It is useful to consider the hypothesis that the visual properties of these patterns are emergent
properties coming from an underlying complex system. Arising due to the internal interactions from
the complex system itself. We therefore often speak about self-organization because this describes
the relationship between internal interaction and the resulting visual properties. Complex systems
are systems, naturally evolving through time, that can be described on a potential landscape. The
potential landscape can be described using hills and valleys. Regions respectively of local stability
and instability. As for the remaining part of what influences a system’s destiny are external
influences. These are all grounded in the deterministic laws which are naturally able to model

7

this non-linear behaviour. When attempting to describe measurable properties arising from such
complex systems, a probabilistic approach is preferred over a traditional deterministic one [8].

2.2 Visual Identification

Figure 6: This figure illustrates a collection of satellite images. The rows of these shows how
clouds might organize themselves during what is classified to be ’Sugar’, ’Gravel’, ’Flower’ and
’Fish’ respectively. The columns represent different realizations of the same pattern. From ref. [6].

The first row of figure 6 shows an example of what is classified to be Sugar. Sugar is associated
with fine dust-like clouds with no precipitation and shows little to no self-organization [6]. Gravel is
associated with low precipitation. This pattern is characterized by structures the size of 20 to 100
km. Cell-like cloud patterns can be seen if one closely observes the second row of satellite imagery
in figure 6. These cell-like cloud patterns are also known cold pools [6]. These cells, which are
visible in figure 6, are formed where gust-fronts collide that accompany these cold pools. Leading
to brighter clouds than Sugar. These deeper tower-like clouds precipitate and are illustrated in
figure 4. Flower is associated precipitation. This state is characteristical due to the cloud-decks
and tower-like clouds which are shown in the third row in figure 6. The size of these flower like
cloud structures are in the scale of 20 km to 200 km and are often well separated from each other
due to the presence of defined cloud-free areas. Fish can be identified from the fish-bone like cloud
structure that can be seen in the final row in figure 6. These fish-bone like structure span 200
to 2000 km and are clearly separated from each other. Lastly, it is important to note that this
pattern is associated with precipitation.

8

2.3 Classification
The ability of being able to distinguish these patterns visually has motivated people to con-
duct classification studies. Schulz (2021), among which, have been able to classify 6-hour cloud
fraction data from the Barbados Clouds Observatory spanning the boreal winter seasons from
2018 (January-February-March), 2019 (November-December-January-February-March) and 2020
(November-December-January-February-March). These also happen to be considered dry seasons
for Barbados. Dry season is generally associated with warm days, cool nights and relatively little
rainfall [9]. Roughly 90% of the 6-hour time windows are available and the remaining 10% are
missing time windows [4].
Schulz (2021) has been able to label these time windows using the object detection algorithm Keras
RetinaNet. They had trained this neural network using 49,000 manually created labels from 10
years of satellite imagery as input data [4]. Some main results from this classification study are
given in figures 7 and 8.

Figure 7: This figure illustrates the Schulz (2021) classification means alongside their standard
deviation. The data corresponds with classified cloud fraction data that has been captured using
the Ka-band cloud radar at BCO. From ref. [4].

9

Figure 8: This table shows the frequency of each classification label from Schulz (2021). The
frequency is given in terms of 6 hours windows, percentage of the total windows and percentage of
robust patterns. From ref. [4].

Although Sugar has been labeled for 9% of all the 6-hour time windows according to figure 8,
it must be remarked that this classification study underemphasizes Sugar [4]. Sugar, the state
that shows little to no self-organization with randomly distributed grain-sized clouds, appears very
often. However, it is picked out by their analysis due to not often being dominant on a satellite
image when classifying these 49,000 satellite images [4]. These satellite images represent too large
of a domain on which Sugar is underrepresented through the classification bias towards larger scale
phenomenon.

3 Functional Principal Component Analysis
Functional data analysis entails that we have observations in the form of smooth functions whose
discrete counterpart we are able to capture using, say, n observations with d attributes. In our
thesis, we model cloud fraction X as the realization of a stochastic process on a height interval
[0, H]. Such data may be described as realizations of smooth random functions X1(h), . . . , Xn(h) ∈
L2[0, H]; denoting the n sampled discrete observations as Xij = Xi(hj) for (i, j) ∈ [1, n] × [1, d].
For the purposes of clustering, we are able to go about this problem in different ways as shown in
figure 9.

Figure 9: This figure illustrates a tree diagram which indicates the different approaches when
it comes to clustering functional data according to literature. The node of the tree diagram
representing FPCA denotes Functional Principal Component Analysis [10].

10

As shown in the most left branch of figure 9, one might consider capturing each raw observation
Xi in the form of a d-dimensional vector (Xij)1≤j≤d on which we apply the clustering technique of
interest. However, d is usually too large to reasonably be able to apply any statistical analysis due
to the curse of dimensionality. For increasing dimension d we can expect the meaningfulness of any
distance function to worsen as it’s ability to discriminate between points becomes hampered [11].
To remedy this issue, we instead try to find an appropriate projection of our data onto a lower
dimensional subspace; on which we can then apply our clustering techniques. This way of going
about clustering functional data is illustrated in the 2-step methods branch of figure 9. This branch
in the illustration tells us that we start by applying FPCA to reduce a discrete representation of
a curve in L2 to a point in Rd∗ , to thereafter be able to appropriately apply clustering techniques.
The natural number d∗ represents the minimum amount of attributes necessary to capture the
exact same observation in L2. Hence, this is called a 2-step method. In what follows, we explain
the underlying concepts of FPCA. We do this by explaining how the Karhunen-Loève expansion
is used to be able to help us arrive at our dimensionally reduced dataset. This is shown in the
following theorem:

Theorem 3.1. (Karhunen-Loève expansion) A stochastic process X in L2(I) can be expressed as:

X(h) = µ(h) +

∞∑
k=1

√
λkξkφk(h). (12)

Where (λk) is a non-increasing sequence of positive numbers, (φk) an orthogonal sequence on
L2(I) and ξk = 1/

√
λk
∫
I X

c(v)φk(v)dv is an uncorrelated random variables with zero mean and
unit variance for all k [12].

Infer how we are able to write our observation as the sum of the mean observation and a linear
combination modes of which any further variation is composed of according to theorem 3.1. A
sum whose sequence is ordered in importance; starting from the most dominant mode. Note
that (λk)k≥1 represents a monotonically decreasing sequence of eigenvalues corresponding to the
variance of each mode. If we are interested in finding the least amount of attributes to reasonable
be able to model the same observations, our problem boils down to trying to find a suitable cut-off
point for our monotonically increasing converging sum. A useful tool for the purposes of choosing
this cut-off point is the explained variance (EV)i = λi/

∑
k λk. This tells us, mode-wise, the

quality of how well we are able to reconstruct observations on a lower dimensional subspace. By
taking an informed decision using the ((EV)k)k≥1 we arrive at, we are able to choose a suitable
cut-off within our infinite sum; thus representing our data as follows:

Xi(h) = µ(h) +

d∗∑
k=1

cikφk(h). (13)

ci = (cik)1≤k≤d∗ ∈ Rd∗ is a sequence containing the ordered FPCA scores that are associated with
some observed cloud fraction curve Xi. This is the essence of FPCA. We minimize the number of
attributes necessary to quantitatively describe the exact same observation. In this thesis, the FPCA
scores corresponding to our observed cloud fraction curves alongside its explained variances will
be computed using Scikit-FDA package [13][14]. An example application this method is presented
in figure 10.

11

Figure 10: These graphs represent the functional principal components of some Canadian Tem-
perature data. The percentage represents the amounts of variation that can be explained from its
corresponding functional principal component. From ref. [14].

Apparently more than 95% of any further deviation from the mean can be explained using the
first two functional principal components according to figure 10. Therefore, we are able to justify
a change of basis on which we express observations in terms of linear combination of these two
functional principal components.

4 Clustering
Clustering is about finding groups of observations such that the observations within a group are
more ’similar’ with respect to observations pertaining to other groups. Before we are able to
talk about the clustering of observations with d ∈ N attributes, that we may represent as vectors
x ∈ Rd, it becomes of importance to us to understand what defines ’closeness’ or ’remoteness’
between observations within our data set. In other words: How do we define the distance between
two observations? An interpretation of such a distance is called a proximity measure. To give an
example, a commonly used proximity measure is the Euclidean metric [15].
Due to the generality and subjective nature of the concept of clustering, exists countless of ways
to cluster a given data set [15][16]. Thus, if we want to meaningfully cluster any data set, it is
important to make choices based off knowledge regarding the system from which we are making our
observations from. Or maybe upon rather the lack of which. Different clustering algorithms yield
different interpretations on what the optimal grouping of observations should be. A comparison
of the clustering algorithms that are available in the Scikit-learn python package are illustrated in
figure 11.

12

Figure 11: This figure illustrates the application of various clustering algorithms onto two-
dimensional toy datasets using the Scikit-learn package. Connectivity-based algorithms: Ward,
Agglomerative Clustering and BIRCH. Centroid-based algorithms: MiniBatch KMeans and Affin-
ity Propagation. Distribution-based algorithms: Gaussian Mixture. Density-based algorithms:
MeanShift, DBSCAN and OPTICS. Graph-based algorithm: Spectral Clustering. From ref. [17].

The clustering algorithms that are illustrated in figure 11 can broadly be categorized into connectivity-
, centroid-, distribution- and density-based clustering algorithms. For the purposes of this thesis,
we are interested in choosing methods that are able to take into account that our observations
can be seen as the realizations of some random variable. Therefore, we are interested in applying
centroid-based, distribution-based and density-based methods to find meaningful clusters. Exam-
ples of executing these algorithms onto different two-dimensional toy datasets are shown in figure
11. We use these techniques in section III to arrive at a substantiated answer for our research ques-
tion. In the following subsections we are going to sketch the general idea behind these clustering
algorithms alongside their strengths and weaknesses.

4.1 Centroid-based Clustering: K-means
When going about clustering with K-means, we attempt to find a partition of the data such that
the average intra-cluster variance is minimized. An example execution of this algorithm along with
this solution is sketched in figure 12.

13

(a) We start by initializing the centroids.
(https://commons.wikimedia.org/wiki/File:
K_Means_Example_Step_1.svg).

(b) In this step we assign all observations to the
closest centroid. (https://commons.wikimedia.org/
wiki/File:K_Means_Example_Step_2.svg).

(c) We assign new centroids. We keep as-
signing new centroids until the algorithm con-
verges. (https://commons.wikimedia.org/wiki/
File:K_Means_Example_Step_3.svg).

(d) The algorithm arrives at an optimal so-
lution. (https://commons.wikimedia.org/wiki/
File:K_Means_Example_Step_4.svg).

Figure 12: This figure shows the general steps one encounters when executing the K-means algo-
rithm to find clusters. The circles are centroids and the blocks represents the data. The shaded
regions in figures b. and d. displays the points closer to a certain centroid than any other. From
“Wikimedia Commons,” by P. Weston, 2007. Licensed under CC BY-SA 3.0.

Consider n collected samples of data to be vectors xi ∈ Rd, for 1 ≤ i ≤ n and denote some partition
of the data as C = {C1, C2, . . . , Cm} with m ≤ n. Taking µi to be the mean for our partition Ci,
for 1 ≤ i ≤ m, allows us to describe the optimization problem at hand:

argmin
C

m∑
i=1

∑
x∈Ci

|| x− µi ||2 . (14)

To obtain a solution, we go about initializing candidate means and choosing an algorithm to
allows these means to converge to an optimal solution. Initialization entails make an educated
guess towards our optimal partition. An initial starting position that we are able to feed to our
algorithm. Please take note that this starting position is not obvious and should be chosen with
care as different initial positions might lead to different optimal solutions [15]. Therefore, we start
with what is called initialization and is shown in subfigure 12a. In this thesis we initialize using
K-means++ and apply Lloyd’s algorithm to find our optimal partition. These algorithms are
implemented using Scikit-learn and are written in pseudo code in Algorithm 1 and Algorithm 2
respectively within appendix A [18].

4.2 Distribution-based Clustering: Gaussian Mixed Models (GMM)
The philosophy behind distribution-based clustering is that we assume that our clusters to be
realizations of some random variable whose parameters are fitted to model the clusters that might
be apparent in our observations. A well known example of such a distribution-based clustering
method is Gaussian Mixed Models. To assume that our clusters are realizations of some Gaussian
with mean µ and covariance matrix Σ is not a stretch in many cases. We are able to capture,
not only, the location of these clusters, but also the correlation and dependence of the attributes
involved within a cluster. This model happens to be excellent for e.g. modelling measurement
error.
An obvious drawback of this method, despite its applicability, suffers from its underlying assump-
tion. Assuming that all clusters follow some Gaussian distribution is a very strong assumption.

14

https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_1.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_1.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_2.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_2.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_3.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_3.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_4.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_4.svg

Any additional structure and complexity that might be present in the data will therefore completely
be lost [19]. Another drawback is that, just like K-means, it is sensitive to its input parameters
[15].
Distribution-based clustering using Gaussian Mixed Models boils down to assuming that all clus-
ters are realizations of some Gaussian of mean µ and covariance matrix Σ. The complete model
for some observation xi can be expressed as follows:

p(xi) =
∑
g

φgN(xi|µg,Σg). (15)

In other words, the probability of xi occurring can be expressed as the sum of membership proba-
bilities multiplied by their associated probability. Obtaining µg and Σg for all g components comes
down to finding candidate solutions and subsequently optimizing them to fit the observations. Af-
ter applying K-means++ to initialize the candidate means for the Gaussian models, we find the
optimal parameters belonging to our data using the Expectation-Maximization algorithm. This
algorithm is illustrated as pseudo code in Algorithm 3 within appendix A and can be implemented
using the Scikit-learn python package [18].

4.3 Density-based Clustering: Mean Shift
The Mean Shift algorithm makes no model assumptions, is able to capture complex-shaped clusters,
has a physically interpretable input parameter, has no local minima and thus is also robust with
respect to its input parameter; and is relatively insensitive to outliers [20]. These properties
distinguishes itself from K-means and GMM as they are, however: sensitive to outliers, have the
number of clusters as an input parameter and have local minima when it comes to finding optimal
solutions [15]. Mean Shift is able to circumvent all of these issues with the benefit that clusters
can be realizations of some random variable.
The Mean Shift clustering algorithm is also know as a ’mode-seeking’ algorithm. When applying
this algorithm we are trying to seek out ’modes’ that might be present within the data. For
each iteration t we try to find a centroid xt+1 whose neighbourhood N(xt+1

i) is denser than the
previous iteration N(xti). This is done through estimation of the direction where this increase in
density is maximum. For this purpose we use a kernel K(.); a function that effectively help assign
weights onto neighbouring points. In other words, we continuously ’shift’ our candidate ’mean’
until convergence and subsequently occupies what it deems to be the most the most dense region.
This iterative process where we update our centroid xti → xt+1

i can be shown as follows:

xt+1 = m(xt) =
∑

xj∈N(xt)

K(xj − xt)xj∑
xj∈N(xt)K(xj − xt)

. (16)

This kernel depends the bandwidth λ, which is a parameter that indicates the relative size of the
neighbourhood which contain useful data points. This bandwidth, λ, is estimated by ordering all
the pairwise distances available in our data and by subsequently picking its median [18]. For the
purposes of this thesis we will use what is called the flat-kernel for equation 16. An example sketch
of a run of the Mean Shift algorithm using a flat-kernel onto an ideal geometry is given in figure
13.

K(x) =

{
1 for x < λ,
0 otherwise. (17)

15

Figure 13: This is a sketch of some data whose density drops smoothly as a function of the
distance away from its center. It also illustrates how the Mean Shift algorithm iterates to achieve
a region where the density is optimal. The purple enumerated dotted line shows how the Mean
Shift algorithm uses a flat-kernel to find another centroid whose neighbourhood is denser. These
neighbourhoods are represented by circles that surround its centroid whose radius is defined as the
pre-chosen parameter: the bandwidth. The red centroid represents the converged result.

This algorithm is also written as pseudo code in Algorithm 4 within appendix A and is implemented
using Scikit-learn [21][18]. As seen in Algorithm 4, clusters are constructed by continuously placing
a ’walker’ until it converges which is shown in figure 13. Then the algorithm places all data that
are at most a bandwidth distance away from each other in the same cluster. This is done until
all observations are assigned to some cluster. However, it can occur that you have isolated points
of data whose nearest neighbour is further than the bandwidth itself. These isolated points, or
modes, are denoted to be orphans and can be omitted for the purposes of clustering.

4.4 Internal Validation
The power behind the application of these algorithms is that they rest upon the general assumption
that we are able to extract distinct patterns from our data. To assess the quality of clusters, we
apply silhouette plots [16]. An example of such a plot is shown in figure 14. Silhouette plots
illustrate the ordered Silhouette scores of the observations pertaining to each cluster.

16

Figure 14: In this figure we show Silhouette plots for some data that has three distinct clusters.
The Silhouette plots are given for three, four and five clusters respectively. From ref. [22].

The Silhouette score for some observation i can be expressed as the following:

s(i) =
b(i)− a(i)

max {a(i), b(i)}
. (18)

In equation 18, a(i) represents the mean distance from observation i to the observations pertaining
to its belonging cluster and b(i) expresses the mean distance from observation i to observations
pertaining to clusters that it does not belong to [23]. This value has the property that −1 ≤ s(i) ≤
−1 for any observation i and can be computed using the Scikit-learn python package [18].
Observe what happens when s(i) ≈ 1, s(i) ≈ −1 and s(i) ≈ 0. For the first case we see that
b(i) >> a(i). This indicates strong evidence for belonging to its assigned cluster. As for the
second case we have that b(i) ≈ a(i). This tells us that it is not clear whether the observation
belongs to its assigned cluster. The final case corresponds with having a(i) >> b(i). This, as
opposed to the first case, provides strong evidence against belonging to its assigned cluster.

17

4.5 The Hopkins Statistic
We can test ’clusterability’ in our data using the Hopkins statistic. This checks for clustering
tendency by testing the null hypothesis, which in most cases is some random position hypothesis
[24].
Suppose we have some data X = (xi)1≤i≤n ∈ Rd. We now generate m << n samples Y =
(yi)1≤i≤m ∈ Rd that are randomly placed in a subspace of the d-dimensional space. Let us define
udj to be the distance of yj ∈ Y from its nearest neighbour in X and wdj to be the minimum distance
between m randomly selected data x ∈ X and their nearest neighbours. The Hopkins statistic in
d-dimensions is shown in equation 19.

H =

∑m
j=0 u

d
j∑m

j=0 u
d
j +

∑m
j=0 w

d
j

. (19)

We test against the null hypothesis H0: Our data is generated by some randomly uniform dis-
tribution. Note how it follows that, under H0, the mean distance ūd and the mean w̄d should
roughly be the same. Therefore,

∑m
j=0 u

d
j ≈

∑m
j=0 w

d
j in equation 19 and we arrive at H = 0.5.

When w̄d << ūd or w̄d >> ūd, we have H = 0 and H = 1 respectively. H 6= 0.5 apparently
builds evidence against the random position hypothesis. When H = 0 holds, we have that the
data is uniformly distributed and H = 1 tells us that our data is highly clustered. To estimate
p-values using this statistic we make use of the fact that the test statistic H follows a Beta(m,m)
distribution [24].

4.6 Determining the Number of Clusters
In this thesis we will use the Gap statistic, the Elbow method and Silhouette scores to arrive at
an informed decision regarding what number of clusters might be present in the data.

4.6.1 The Elbow Method

The Elbow method presents a heuristic for determining the number of clusters available in the
data. This is done by analyzing an average within-sum squares plot against the number of optimal
partitions and by subsequently choosing its ’elbow’. This reflects the point at which the cost of
adding an additional cluster becomes too much when considering the diminishing returns involved
[16]. It can be computed using K-means through the Scikit-learn python package and its ’elbow’
can be detected using an elbow detector which is referred to in the references [25]. An example
how such an average within-sum squares plot might look like is given in subplot b. of figure 15.
According to the Elbow method we infer the data in subplot a. of figure 15 to have two clusters
because subplot b. indicates the presence of an elbow at k = 2.

4.6.2 Gap Statistic

The Gap statistic returns a value that reflects the contrast of the optimized cost functions of our
algorithm between our data and some uniformly distributed data [26]. This method can be seen
as a generalized version of the Elbow method and demonstrates good performance according to
simulation study [16][26]. Before we find an expression of the Gap statistic it is important to
understand that Wk expresses the sum of the average within-pairwise distances of all the clusters.
For clusters r ∈ {1, 2, . . . ,K} that we define as Cr and euclidean distance dii′ between observations
i and i′ helps us express Wk as:

Wk =
∑
r

1

nr

1

2

∑
i,i′∈Cr

dii′

 . (20)

The Gap statistic is then defined as,

18

Gapk(n) = E∗n(log (Wk))− log (Wk). (21)

Where E∗n defines the expected Wk using n samples generated using some reference distribution.
An example of computing the Gap statistic for some data containing two distinct clusters is given
in figure 15. The number of clusters we expect the data to have is the smallest k such that
Gapk(n) ≥ Gapk+1(n) − sk+1 where sk+1 is the standard deviation of the Gap statistic at k + 1
[26]. As one can see, this corresponds with k = 2 in figure 15.

Figure 15: This figure illustrates the data in subplot a., the within-sum squares plot in subplot b.,
the graphs log (E∗n(Wk)) and log (Wk) in subplot c.; and finally the difference of these graphs are
shown in subplot d. This difference shows the Gap statistic for varying k. From ref. [26].

To give us some motivation as to why this ’peak contrast’ between the expected value of the
reference distribution and the observations, which is shown in figure 15 subplot c., tells us the
optimal number of clusters; consider clustering n uniform data points in p dimensions with k
centres. If there are actually K clusters we expect Wk to decrease faster than E∗(Wk) for k < K.
For k > K it is as if we are adding unnecessary cluster centres in the middle of an approximately
uniform cloud and thus Wk should decrease slower than its expected rate. Hence, the gap statistic
should be largest when k = K [26].

4.7 Methodology
Due to the great degree of choice that is left upon the researcher to find or even verify clusters
one must be careful as how these choices are made. For this purpose, we follow a set of guidelines

19

one must follow according to Milligan (1996) [27]. This framework illustrates what constitutes a
cluster analysis that is grounded in the literature and is shown in table 2.

Steps: Milligan (1996) [27] Remarks:

1. Objects to cluser The randomly sampled observations should be members of
the cluster structure believed to be present [16].

2. Variables to be used The variables that are chosen must all justifiably define
the clusters [16].

3. Missing Values
4. Variable standardization
5. Proximity measure It is important to choose an interpretation that is able to

discriminate between objects the best [16].
6. Clustering method Clustering methods should be chosen such that it is robust and

effecting at recovering the clusters that are suspected in the data.
7. Number of clusters
8. Replication and testing
9. Interpretation

Table 2: Important remarks from a combination of Milligan’s original suggestions and the book
Cluster Analysis 5th edition [27][16].

5 Methods
We start by modeling the possible structure involved behind cloud fraction data as realizations
arising from a unimodal probability distribution in FPCA space. By doing this, we are then able
to explore the hypothesis of there being any reliable evidence that these labels correlate with any
possible clusters. By comparing the classified observations with any obtained clusters, we are able
to arrive at some statement about the possible presence of an underlying complex system associated
with the labeled observations.

5.1 Model Selection
When trying to identify any structure with the occurrence of these patterns, attention must be paid
to the choice of clustering model. By assuming that these patterns are realizations of some complex
system, we have reasonable justification to model these patterns as realizations coming from some
unimodal probability distribution in FPCA space. This has been expanded on in chapter 2.1.
The chosen clustering algorithms that make room for this ’unimodal density assumption’ are the
Gaussian Mixed Models, Mean Shift and the K-means algorithms.

5.2 Data Extraction
We use the exact same data that Schulz (2021) has used for classification. We will, instead, use
this data for the sake of clustering analysis. The .nc files that are associated with these 6-hour
time windows were obtained from BCO’s RAMADDA Data Repository [28].
For further analysis, we extract the Schulz (2021) classification means using a WebPlotDigitizer
[29]. After having extracted sufficient points from the graphs shown in figure 7, we apply a linear
interpolation scheme to estimate the cloud fraction values at exactly the height values that the
radar measures the height values at.

5.3 Cluster Analysis
On top of finding and evaluating these clusters we also have show in table 3 which gives a short
summary regarding how Milligan’s methodology applies to our thesis. This goes into constituting
what is as defined meaningful cluster analysis that is grounded in literature.

20

Steps: Milligan (1996) [27] Remarks with respect to our research:

1. Objects to cluster

We cluster cloud fraction data. Specifically, we make observations
between an interval of 0 to 4000 meters. It must be noted that
this motivates sensitivity analysis for discovering clusters for varying
intervals to investigate possible robustness of clusters as a choice of interval.
See section 1.3.

2. Variables to be used We use FPCA scores to be able to model our observations using the
least amount of features. See section 3.

3. Missing Values We neglect them. See section 2.
4. Variable standardization We don’t standardize FPCA scores.
5. Proximity measure The Euclidean norm is a reasonable measure of distance in this situation and

there is no obvious motivation for choosing another. For simplicity, we use the
Euclidean proximity measure.

6. Clustering method We use K-means, Mean Shift and GMM. Their resulting clusters will be
compared and interpreted to check robustness for any suspected clusters.
See section 4

7. Number of clusters See section 4.6.
8. Replication and testing We don’t have direct access to the labels associated with each specific

observation. Otherwise, it would have been interesting to use the
Rand measure to be able to quantify correspondence between the labels
assigned through clustering and classification.

9. Interpretation Finally we interpret the results. This is done through internal validation
, see section 4.4, and through external validation by seeing as to how far the
existing literature is able to match our results. We mainly use the means
associated with the classified cloud fraction patterns from Schulz (2021).
We compare any suspected cluster means with the classified means extracted
from Schulz (2021).

Table 3: This table gives a short summary as to how Milligan’s (1996) methodology applied to
our cluster analysis.

21

Part III

Results and Discussion
In this chapter we present our results that we thoroughly discuss in the following subsections. We
start by investigating clustering tendency and subsequently move onto data pre-processing before
we do our cluster analysis.

6 Testing for Clustering Tendency
Testing for clustering tendency, using 1% of the complete sample size as randomly generated
samples, the Hopkins statistic results in a p-value of p = 0.00 < 0.05. Thus we may reject the null
hypothesis and assume that the data is clusterable under a confidence interval of 95%.

7 Data Pre-processing: FPCA
The first two FPCA components estimated using Schulz’s (2021) data are presented in figure 16.

Figure 16: Here we illustrate a height versus cloud fraction plot where the first two estimated
principal components corresponding to Schulz’s (2021) data are displayed. The explained variance
corresponding to each functional principal component are shown in the legend.

These two principal components are able to explain 89% of all variation in the data with respect to
the mean observation. It therefore suffices to use these two components if we are willing to sacrifice
roughly 10% of explained variance. Any additional component will yield diminishing returns, come
at a cost of visualization and allows the curse of dimensionality to take more of an affect.
Our first principal component is able to explain 80.0% of the variation in our data. Any observation
from our data can be described using the mean observation plus a sum of functional principal
components as shown in equation 3.1. If we approximate our observations using only the first
principal component; it entails that our observations are modelled using scalar multiples of the
first mode of variation φ1 plus the mean observation µ. Infer how this is expressed in equation 22.

X(h) = µ(h) + c1φ1(h) (22)

The first mode of variation’s shape can be described as hump-like as seen in figure 16. This mode
is shown to be greatest around 1800 km. Using equation 22, the absolute difference ∆Xij between
two observations with FPCA scores ci1 and cj1 can be written as:

22

∆Xij = |ci1 − c
j
1|φ1. (23)

Observe, for fixed FPCA scores in equation 23, how the hump-like structure in from figure 16
transfers to ∆Xij . Therefore, we can argue that our data has the greatest variability around 1800
km. This makes sense when we look at the classification means in figure 7. According to Schulz
(2021); the largest inter-pattern variability is indeed maximum between 1.5 km and 2.5 km [4].
We are therefore able to corroborate the descriptive capability our applied FPCA. Any further
functional principal component becomes too difficult to interpret due to the diminishing negligible
contributions towards the total explained variance.

8 K-means

8.1 Determining the Number of Clusters
According to the Elbow method we infer that the optimal number of clusters to be 3 as seen
in figure 17b. The Gap statistic also tells us that the optimal number is 3 according to figure
17a. Because we are interested in finding at most four possible patterns through clusters, we have
motivation to conduct our cluster analysis for 2,3 and 4 clusters.

(a) This plot presents a blue graph of the Gap
statistic against cluster number. The red dot
indicates what is considered to be the optimal
number of clusters using K-means.

(b) This plot shows a blue graph of the total
sum-squares against the cluster number. This
’total sum-squares’ is denoted as the distortion
score in this figure. The optimal number of clus-
ters is indicated by the dashed line.

Figure 17: In this figure we illustrated the plots involved in estimating the optimal number of
clusters using the Gap statistic and the Elbow method.

Lastly, we start by making any inferences about the mean Silhouette scores as shown in the figures
in Appendix B. For 2, 3 and 4 clusters we have mean Silhouette scores of 0.75, 0.65 and 0.59
respectively. These are shown in figures B.20, B.21 and B.22. This gives us an impression that for
2, 3 and 4 clusters we are, on average, able to find distinguishable clusters. However, we do see
that this decline in mean Silhouette scores tell us that the distinguishability between clusters start
to suffer as we increase the number of optimal partitions that we allow K-means to find.

8.2 Internal & External Validation
In this subsection we investigate the quality of our obtained clusters from the shown in Appendix
B. We now check the Silhouette plots for 2, 3 and 4 clusters using K-means. Look at the clusters
labeled 0, 2 and 0 respectively in the Silhouette plots of figures B.20, B.21 and B.22. Observe how
we are able to see that our analysis is able to constantly pick out one ’thick’ band of Silhouette
scores that point towards the good quality of the cluster in question. These ’thick’ bands provide

23

evidence that the related clusters are of good quality in the sense that a great chunk of the
observations have Silhouette value, say, greater than 0.5. In contrast to the remaining sliver of
observations that represent Silhouette scores smaller than 0.5 thus drawing out a ’thick’ band-like
structure in our plots. Any cluster we consider of having a reasonably high distinguishability, we
will further deem as ’quality clusters’. Apparently, we find exactly one quality cluster for each
number of partitions that we ask K-means to find.
Furthermore, by looking at the remaining estimated clusters: They tend to, for all number of
estimated partitions, represent less than 32% of all the data. These clusters, in contrast to the
quality clusters, tends to not be ’band-like’ and tend to have a greater percentage of observations
that do not obviously belong to its assigned cluster. We must therefore interpret the remaining
estimated clusters with a grain of salt.
Placing our focus upon the quality clusters for each number of partitions as shown in figures B.20,
B.21 and B.22; we will now elaborate how they match up with existing literature. In figures B.21
and B.22 we see that these quality cluster means are relatively close to the Sugar classification
means. In the plots pertaining to height against cloud fraction data, we are able to see the quality
cluster means reflecting a great deal of similarity when compared with the Sugar classification
mean. This great degree of similarity is no coincidence when we look at their associated FPCA
plots. The quality cluster mean can visually be seen to be much closer to the Sugar classification
mean as opposed to the other classification means, i.e. Gravel, Flowers and Fish.
For K-means with two partitions, we see that it has not been able to capture the suspected
structure; although it has been capable of doing so for three and four partitions. This might be
because the number of partitions are too low. We have been able to find 3 as the optimal number
of cluster and any lower number of partitions might merge our suspected cluster with peripherally
located data. This leads the membership towards the suspected cluster to become over represented.

9 Gaussian Mixed Models

9.1 Determining the Number of Clusters
The Gap statistic according to figure 18 tells us that the optimal amount of clusters should be 3.
The Elbow method can only be seen as a correlatory value for the optimal number of clusters using
GMM. This is because, the Elbow method uses partitions coming from the K-means algorithm and
not the GMM algorithm. The Elbow method tells us that the optimal number of partition is also
3; so we therefore have motivation to investigate this algorithm’s outputs for 2,3 and 4 clusters.

Figure 18: This plot presents a blue graph of the Gap statistic against cluster number. The red
dot indicates what is considered to be the optimal number of clusters using GMM.

24

Lastly, we start by making any inferences about the mean Silhouette scores as shown in the figures
in Appendix C. For 2, 3 and 4 components we have mean Silhouette scores of 0.45, 0.38 and 0.34
respectively. These are shown in figures C.23, C.24 and C.25. This gives us an impression that for
2, 3 and 4 clusters we are, on average, able to find somewhat distinguishable clusters as they are
not negative but are at the same time less than 0.5. The distinguishability, judging by the mean
Silhouette scores, tend to worsen for higher components.

9.2 Internal & External Validation
In this subsection we investigate the quality of our obtained clusters from the shown in Appendix
C. We now check the Silhouette plots for 2, 3 and 4 clusters that has been estimated using GMM.
In the Silhouette plots of figures C.23, C.24 and C.25 it has been deduced that the quality clusters
are that of the labels 0, 2 and 0 respectively. However, it can be argued that these quality clusters
have no meaningful interpretation. All the remaining clusters in the Silhouette plots show are of
arguably bad quality. These clusters contain a significant percentage of observations with negative
Silhouette scores. This is also reflected in the low Silhouette means.
Because the quality of clusters can come at a cost of the quality of others, we will interpret
these quality clusters with a grain of salt. Despite this, we are able to see that the quality
cluster corresponding with two components in figure C.23 has strong similarities with the Sugar
classification mean.

10 Mean Shift

10.1 Bandwidth
We have been able to find a bandwidth λ ≈ 585.

10.2 Internal & External Validation
The plot relating with the Mean Shift analysis is shown in figure D.26 of Appendix D. Starting with
the mean Silhouette score, we arrive at a value of 0.63. The Silhouette plot in figure D.26 shows one
quality cluster alongside five relatively minuscule clusters. These isolated modes can be interpreted
to be artifacts from the Mean Shift algorithm so we do no tie any meaningful interpretation to
these.
An interesting observation is that the quality cluster’s mean shares a strong similarity with the
Sugar classification mean according to figure D.26.

11 Investigating Robust Clusters
For the sake of brevity and clarity, let us denote the quality clusters that are interestingly close to
the Sugar classification mean to be denoted as the ’robust clusters’. We discovered robust clusters
when we use K-means for 3 and 4 partitions and Mean Shift with bandwidth λ ≈ 585. We denote
the cluster obtained by GMM with 2 components as the ’semi-robust cluster’ as shown in figure
C.23. We take the semi-robust cluster with a grain of salt considering we do not have strong overall
clustering for two components.
We essentially have arrived at robust clusters that visually occupy different, yet greatly overlapping
regions in FPCA space. When we apply a reverse transformation onto these robust clusters using
the Scikit-FDA python package, we arrive at a collection of curves. What we are able to infer, is
that the mean and spread of these collections are insensitive to the varying diameter of the sets
that represent these robust clusters that are used to subsequently estimate these collections. An
important question one must ask, despite the varying diameter in the sizes of these sets, are: Do
our observation corroborate with our assumption that we are measuring the realizations of some
Sugar unimodal density?
The answer is yes. These robust clusters indeed corroborate with the assumption that our robust
cluster follows some and the same unimodal probability density in FPCA space. This manifests

25

itself in the aforementioned insensitivity. This insensitivity implies that all of these different sets
do contain the ’core’ observations representative to Sugar. To explain this we have a look at the
following figure:

Figure 19: In this figure we see some unimodal distribution with two regions that are defined by the
sets whose boundaries represent the dashed and solid lines. The set of observations with diameter
d contains 95% of all observations including the mode. Observe that the set with diameter d + ε
is at most able to include 5% of all possible observations.

Suppose a region is carved out containing, say, 95%, of all observations pertaining to some unimodal
density as shown in figure 19. Any positive perturbation in the diameter of this region will at
most contribute to 5% extra observations. According to our results, the smallest set containing
information regarding the Sugar-like cluster is the semi-robust cluster. Despite this set being small
in diameter, it is able to capture 61% of all observations. This is strongly indicating of the presence
of a mode and ’core-like’ observations tied to some unimodal density.
The robust cluster of smallest diameter is the robust cluster seen in using K-means with four
partitions as seen in figure B.22. The robust cluster representing the largest diameter in our
results is attained through Mean Shift as shown in figure D.26. If we make the assumption that
the core of our observations are all contained within our robust clusters; we can amount the
difference in diameter to an artifact of the clustering algorithm. This assumption is justified from
the insensitivity and how at least 61% of the data present can describe Sugar-like curves.
Finally, we briefly elaborate on how we are able to explain our results through any artifacts that
the algorithms we have used, to estimate the semi-robust cluster and robust clusters, are prone to
generate.
For the semi-robust cluster, found using GMM, we infer that it has not been able to properly
find clusters possibly due to the algorithm’s assumption that these clusters must be Gaussian
distributed. This might have been too harsh of a restriction considering that the robust clusters
attained by K-means and Mean shift have been able to carve out clusters that do not seem Gaussian.
As for our robust clusters, we naturally expect Mean Shift to make a much larger estimate than
our K-means. K-means are bound by the number of predetermined clusters and whose data are
hard partitioned into regions where the variance is minimum. Mean Shift, on the other hand,
tries to find blobs of smoothly varying density that is highest around their modes. This explains
the much larger region that Mean Shift is able to carve out opposed to K-means. Now we have
reasonable corroboration that there might be some probabilistic structure behind a subset of our
observations. This motivates further research regarding the true unimodal probability density that
is associated to Sugar realizations in FPCA space. Leading us to a better understanding of the
random function generating Sugar realizations. Doing this will help us be able to give a much
more defined and accurate description regarding the possible cloud fraction curves that can denote
a Sugar realization.

11.1 Overall Remarks
A peculiarity in our results are that we see our robust clusters dominate in terms of the percentage
of observations that it contains. Although it is in strong contradiction of the proportion that Schulz
(2021) has found, as seen in table 8, we have to keep in mind that Schulz (2021) underemphasizes

26

Sugar [4]. Lastly, we observe that we continually obtain clusters that are significantly high in terms
of cloud fraction. It might be useful to remove outliers that hinder our clustering algorithms to
find meaningful patterns.

27

Part IV

Conclusion
We have been able to attain robust Sugar-like clusters for K-means for 3 and 4 partitions and
Mean Shift with bandwidth λ ≈ 585. This hints at the existence of some unimodal probability
distribution whose realizations are related with the Sugar pattern in FPCA space. However, the
same can not be said for Gravel, Fish and Flowers as we have not been able to identify them in
our analysis. For future research it might be interesting to investigate the true random function
that is able to model Sugar realizations. Furthermore, the choice of using cloud fraction curves
that represent a height interval up until 4 km is relatively arbitrary. It might be interesting to
pursue some type of sensitivity analysis to check whether our results corroborate for varying height
interval. A major improvement that can be made on this thesis is to use individual Sugar-labeled
observations from Schulz (2021) to evaluate whether clusters are ’robust clusters’. This will yield
clearer results as opposed to solely using the mean and spread of the observations labeled as
Sugar. Lastly, it might be useful to remove outliers that hinder our clustering algorithms to find
meaningful patterns.

28

References
[1] Marcus Kock. Google Maps. https://www.google.com/maps/@12.4423006,-

69.8753425,3a,75y,20h,110t/data=!3m8!1e1!3m6!1sAF1QipOlALWyDsXZPsUcEAOWtQZ5x
LSsaCR-G0BO7vnV!2e10!3e11!6shttps:%2F%2Flh5.googleusercontent.com%2Fp
%2FAF1QipOlALWyDsXZPsUcEAOWtQZ5xLSsaCR-G0BO7vnV%3Dw203-h100-k-no-
pi-20-ya16.534597-ro-0-fo100!7i5472!8i2736. [Online; accessed 2022-11-23].

[2] Aruba Vacations. http://www.arubaanswers.com/Maps-of-Aruba.html. [Online; accessed
2022-11-23].

[3] A. Pier Siebesma, Sandrine Bony, Christian Jakob, and Bjorn Stevens. Clouds and Climate:
Climate Science’s Greatest Challenge. Cambridge University Press, aug 31 2020. [Online;
accessed 2022-11-23].

[4] Hauke Schulz, Ryan Eastman, and Bjorn Stevens. Characterization and evolution of organized
shallow convection in the downstream north atlantic trades. Journal of Geophysical Research:
Atmospheres, 126(17):e2021JD034575, 2021.

[5] Roddy Rhodes Rogers and Man Kong Yau. A Short Course in Cloud Physics. jan 1 1989.
[Online; accessed 2022-11-01].

[6] Bjorn Stevens, Sandrine Bony, Hélène Brogniez, Laureline Hentgen, Cathy Hohenegger,
Christoph Kiemle, Tristan S L’Ecuyer, Ann Kristin Naumann, Hauke Schulz, Pier A Siebesma,
et al. Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the trade winds. Quarterly
Journal of the Royal Meteorological Society, 146(726):141–152, 2020.

[7] Coral Ka-Band Cloud Radar [MPI Wiki]. https://wiki.mpimet.mpg.de/doku.php
id=observations:bco:cloudradars:coralradar. [Online; accessed 2022-11-03].

[8] G. Nicolis and C. Rouvas-Nicolis. Complex systems. Scholarpedia, 2(11):1473, 2007. revision
#91143.

[9] World Bank Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org/
country/barbados/climate-data-historical. [Online; accessed 2022-11-06].

[10] Julien Jacques and Cristian Preda. Functional data clustering: a survey. Advances in Data
Analysis and Classification, 8(3):231–255, 2014.

[11] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is “near-
est neighbor” meaningful? In International conference on database theory, pages 217–235.
Springer, 1999.

[12] Han Lin Shang. A survey of functional principal component analysis. AStA Advances in
Statistical Analysis, 98(2):121–142, 2014.

[13] GAA-UAM. Github - GAA-UAM/scikit-fda: Functional Data Analysis Python package.
https://github.com/GAA-UAM/scikit-fda. [Online; accessed 2022-10-21].

[14] JO Ramsay and BW Silverman. Principal components analysis for functional data. Functional
data analysis, pages 147–172, 2005.

[15] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms. Annals of
Data Science, 2(2):165–193, 2015.

[16] Brian S. Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. Cluster Analysis. John
Wiley Sons, jan 14 2011.

[17] Comparing different clustering algorithms on toy datasets. https://scikit-
learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html. [Online; accessed
2022-10-21].

29

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[19] Charles Bouveyron, Gilles Celeux, T. Brendan Murphy, and Adrian E. Raftery. Model-Based
Clustering and Classification for Data Science: With Applications in R. Cambridge University
Press, jul 25 2019.

[20] Miguel A Carreira-Perpinán. A review of mean-shift algorithms for clustering. arXiv preprint
arXiv:1503.00687, 2015.

[21] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–619,
2002.

[22] Selecting the number of clusters with silhouette analysis on KMeans clustering. https://scikit-
learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html. [Online;
accessed 2022-11-03].

[23] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[24] Amit Banerjee and Rajesh N Dave. Validating clusters using the hopkins statistic. In 2004
IEEE International conference on fuzzy systems (IEEE Cat. No. 04CH37542), volume 1, pages
149–153. IEEE, 2004.

[25] arvkevi. Github - arvkevi/kneed: Knee point detection in Python.
https://github.com/arvkevi/kneed. [Online; accessed 2022-10-21].

[26] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 63(2):411–423, 2001.

[27] Glenn W Milligan. Clustering validation: results and implications for applied analyses. In
Clustering and classification, pages 341–375. World Scientific, 1996.

[28] Ramadda Data Repository. https://observations.mpimet.mpg.de/repository/. [Online; ac-
cessed 2022-11-03].

[29] Webplotdigitizer. https://automeris.io/WebPlotDigitizer/. [Online; accessed 2022-11-03].

[30] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Tech-
nical report, Stanford, 2006.

[31] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[32] Kyu-Won Kim and Gyu-In Jee. Free-resolution probability distributions map-based precise
vehicle localization in urban areas. Sensors, 20(4):1220, 2020.

[33] Miguel A Carreira-Perpinán. A review of mean-shift algorithms for clustering. arXiv preprint
arXiv:1503.00687, 2015.

30

A Algorithms

Algorithm 1 K-means++: Adapted from [30]

1: Input: Data vectors (xn)
N
n=1, number of clusters K

2: n← RandomInteger(1, N)
3: µ1 ← xn
4: for k ← 2 . . .K do
5: for n← 1 . . . N do
6: dn ← mink′<k ||xn − µk||2
7: for n← 1 . . . N do
8: pn ← d2

n/
∑
n′ d

2
n′

9: n← Discrete(p1, p2, . . . , pN)
10: µk ← xn

11: Return cluster means (µk)Kk=1

Algorithm 2 Lloyd’s algorithm: Adapted from [31]

1: Input: Data vectors (xn)
N
n=1, number of clusters K

2: for n← 1 . . . N do
3: r ← [0, 0, . . . , 0]
4: k′ ← RandomInteger(1,K)
5: rnk′ = 1

6: repeat
7: for k ← 1 . . .K do
8: Nk ←

∑N
n=1 rnk

9: µk ← 1
Nk
rnkxn

10: for n← 1 . . .K do
11: rn ← [0, 0, . . . , 0]
12: k′ ← arg mink ||xn − µk||2
13: rnk′ = 1

14: until none of the rn change.
15: Return assignments (rn)Nn=1 for each datum, and cluster means (µn)Kn=1

Algorithm 3 Expectation-Maximization algorithm: Adapted from [32]

1: Input: Data vectors (xn)
N
n=1, number of clusters K

2: Parameter Initialization π, µ,Σ
3: for t← 1 . . . T do
4: for n← 1 . . . N do
5: for k ← 1 . . .K do
6: γ(znk) = πkN(pn|µk,Σk)∑K

i πiN(pn|µi,Σi)

7: for k ← 1 . . .K do
8: µk =

∑N
n=1 γ(znk)pn∑N
n=1 γ(znk)

9: Σk =
∑N

n=1 γ(znk)(pn−µk)(pn−µk)T∑N
n=1 γ(znk)

10: πk = 1
N

∑N
n=1 γ(znk)

11: Return π, µ, σ

31

Algorithm 4 Mean Shift algorithm: Adapted from [33]

1: Input: Data vectors (xn)
N
n=1

2: for n← 1 . . . N do
3: x← xn
4: repeat
5: ∀n : p(n|x)← K(||x−xn||2)∑N

n=1K(||x−xn′ ||2)

6: x←
∑N
n=1 p(n|x)xn

7: until stop
8: zn ← x

9: connected-component ((zn)Nn=1, λ)

32

B Analysis for K-means Clustering with Schulz’s (2021) Data

Figure B.20: We show the analysis for K-means with 2 clusters. The clusters are associated with a
color and its % of belonging observations are shown in the legend. In the scatter plots, the squared
markers represent the classification means and the circled ones represent the cluster means. In
the echo fraction plots, the shading represents points up to two standard deviations away from its
mean. In the Silhouette plot, the dashed red line represents the mean Silhouette score of 0.75.

33

Figure B.21: We show the analysis for K-means with 3 clusters. The clusters are associated with a
color and its % of belonging observations are shown in the legend. In the scatter plots, the squared
markers represent the classification means and the circled ones represent the cluster means. In
the echo fraction plots, the shading represents points up to two standard deviations away from its
mean. In the Silhouette plot, the dashed red line represents the mean Silhouette score of 0.65.

34

Figure B.22: We show the analysis for K-means with 5 clusters. The clusters are associated with a
color and its % of belonging observations are shown in the legend. In the scatter plots, the squared
markers represent the classification means and the circled ones represent the cluster means. In
the echo fraction plots, the shading represents points up to two standard deviations away from its
mean. In the Silhouette plot, the dashed red line represents the mean Silhouette score of 0.59.

35

C Analysis for GMM Clustering with Schulz’s (2021) Data

Figure C.23: We show the analysis for GMM with 2 clusters. The clusters are associated with a
color and its % of belonging observations are shown in the legend. In the scatter plots, the squared
markers represent the classification means and the circled ones represent the cluster means. In
the echo fraction plots, the shading represents points up to two standard deviations away from its
mean. In the Silhouette plot, the dashed red line represents the mean Silhouette score of 0.45.

36

Figure C.24: We show the analysis for GMM with 3 clusters. The clusters are associated with a
color and its % of belonging observations are shown in the legend. In the scatter plots, the squared
markers represent the classification means and the circled ones represent the cluster means. In echo
fraction plot, the shading represents points up to two standard deviations away from its mean. In
the Silhouette plot, the dashed red line represents the mean Silhouette score of 0.38.

37

Figure C.25: We show the analysis for GMM with 4 clusters. The clusters are associated with a
color and its % of belonging observations are shown in the legend. In the scatter plots, the squared
markers represent the classification means and the circled ones represent the cluster means. In echo
fraction plot, the shading represents points up to two standard deviations away from its mean. In
the Silhouette plot, the dashed red line represents the mean Silhouette score of 0.34.

38

D Analysis for Mean Shift Clustering with Schulz’s (2021)
Data

Figure D.26: We show the analysis for Mean Shift clustering. Orphans have been omitted in our
analysis. In all subplots, the clusters are associated with a color and its % of belonging observations
are shown in the legend. In the scatter plots, the squared markers represent the classification means
and the circled ones represent the cluster means. In the echo fraction plots, the shading represents
points up to two standard deviations away from its mean. In the Silhouette plot, the dashed red
line represents the mean Silhouette score of 0.63.

39

E Python Programs

E.1 Time Windows

Listing 1: Time Windows.py
1 import numpy as np
2 import xarray as xr
3 import datet ime as dt
4 import os
5 import pandas as pd
6

7 de f hour_rounder (t) :
8 # Rounds to nea r e s t hour by adding a t imede l ta hour i f minute >= 30
9 re turn (t . r ep l a c e (second=0, microsecond=0, minute=0, hour=t . hour)

10 +dt . t imede l ta (hours=t . minute //30))
11

12 path = ’C:/ Users /Gyan/Desktop/BEP Python/Data ’
13

14 Data = []
15 nd_Data = []
16

17 f o r f i l e sA in os . l i s t d i r (path) :
18 f o r f i l e s B in os . l i s t d i r (path + ’ / ’ + f i l e sA) :
19

20 Radar_File = xr . open_dataset (path + ’ / ’ + f i l e sA + ’ / ’ + f i l e s B
)

21

22 Zf = Radar_File . Zf . copy ()
23 Zf_Cloud = np . where (Zf < −50, np . nan , Zf)
24

25 Time = Radar_File . time . va lue s
26

27 window_hours = 6
28

29 window_width = dt . t imede l ta (hours=window_hours)
30

31 time_window_starts = pd . date_range (Radar_File . time . va lue s [0] ,
32 Radar_File . time . va lue s [−1] ,

f r e q=’ {}H ’ . format (s t r (
window_hours)))

33

34 f o r i in range (l en (time_window_starts)) :
35

36 Cut_Time = Time [(Time >= hour_rounder (time_window_starts [i
])) & (Time <= hour_rounder (time_window_starts [i]) + dt
. t imede l ta (hours=window_hours))]

37 Cut_Zf_Cloud = Zf_Cloud [(Time >= hour_rounder (
time_window_starts [i])) & (Time <= hour_rounder (
time_window_starts [i]) + dt . t imede l ta (hours=
window_hours))]

38

39

40 Range = Radar_File . range . va lue s
41 Mask = np . where (np . i snan (Cut_Zf_Cloud)==False , 1 , np . nan)
42

43 #Calcu la te c loud f r a c t i o n

40

44 CF = np . z e ro s (shape=(l en (Range)))
45 f o r i in range (l en (CF)) :
46 CF[i] = np . nansum(Mask [: , i])
47

48 i f l en (Cut_Time) > 0 :
49 CF = CF / len (Cut_Time) ∗ 100
50 Data . append (CF[: 6 0 5])
51 i f np . sum(CF∗∗2) != 0 :
52 nd_Data . append (CF[: 6 0 5])
53 e l s e :
54 pass
55 e l s e :
56 pass
57

58 CSV_path = ’C: / Users /Gyan/Desktop/BEP Python/CSVData/Data . csv ’
59 df_Data = pd . DataFrame (Data)
60 df_Data . to_csv (CSV_path , index=False)
61

62 CSV_nd_path = ’C: / Users /Gyan/Desktop/BEP Python/CSVData/Data_nd . csv ’
63 df_train_Data = pd . DataFrame (nd_Data)
64 df_train_Data . to_csv (CSV_nd_path , index=False)

E.2 Clustering Tendency

Listing 2: Data Reader Clustering Tendency.py
1 from sc ipy . s t a t s import beta
2 import numpy as np
3 import xarray as xr
4 import pandas as pd
5 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
6 from skfda . r ep r e s en t a t i on . g r id import FDataGrid
7 from sk l e a rn . ne ighbors import NearestNeighbors
8 from random import sample
9 from numpy . random import uniform

10

11 de f f ind_neares t (array , va lue) :
12

13 array = np . asar ray (array)
14 idx = (np . abs (array − value)) . argmin ()
15

16 re turn idx
17

18 de f hopk i n s_s t a t i s t i c (X) :
19

20 sample_size = in t (X. shape [0] ∗ 0 . 0 5) #0.05 (5%) based on paper by
Lawson and Jures

21

22

23 #a uniform random sample in the o r i g i n a l data space
24 X_uniform_random_sample = uniform (X. min (ax i s=0) , X.max(ax i s=0) , (

sample_size , X. shape [1]))
25

26

27

28 #a random sample o f s i z e sample_size from the o r i g i n a l data X

41

29 random_indices=sample (range (0 , X. shape [0] , 1) , sample_size)
30 X_sample = X[random_indices]
31

32

33 #i n i t i a l i s e unsuperv i sed l e a r n e r f o r implementing neighbor s ea r che s
34 neigh = NearestNeighbors (n_neighbors=2)
35 nbrs=neigh . f i t (X)
36

37 #u_distances = nea r e s t neighbour d i s t an c e s from uniform random
sample

38 u_distances , u_indices = nbrs . kne ighbors (X_uniform_random_sample ,
n_neighbors=2)

39 u_distances = u_distances [: , 0] #d i s t anc e to the f i r s t (nea r e s t)
neighbour

40

41 #w_distances = nea r e s t neighbour d i s t an c e s from a sample o f po in t s
from o r i g i n a l data X

42 w_distances , w_indices = nbrs . kne ighbors (X_sample , n_neighbors=2)
43 #di s t anc e to the second nea r e s t neighbour (as the f i r s t neighbour

w i l l be the po int i t s e l f , with d i s t ance = 0)
44 w_distances = w_distances [: , 1]
45

46 u_sum = np . sum(u_distances)
47 w_sum = np . sum(w_distances)
48

49 #compute and return hopkins ’ s t a t i s t i c
50 H = u_sum/ (u_sum + w_sum)
51 re turn H
52

53 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
54

55 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

56

57 Range = rada r_ f i l e . range . va lue s
58 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
59 data_nd = dataframe_nd . to_numpy ()
60

61 lower = 0
62

63 upper = 4000
64

65 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

66 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
Range [tra in_range])

67

68 fpca_bas i s = FPCA(2) . f i t (f_data)
69 fpca_data = fpca_bas i s . t rans form (f_data)
70

71 s t a t i s t i c = hopk in s_s t a t i s t i c (fpca_data)
72

73 m = len (data_nd)
74

75 pvalue = 1 − beta . cd f (s t a t i s t i c ,m,m)
76 pr in t (pvalue)

42

E.3 K-means Clustering
E.3.1 K-means Analysis

Listing 3: Data Reader K-Means Analysis.py
1 from sc ipy import s t a t s
2 from sc ipy . s t a t s import pmean
3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5 import xarray as xr
6 import pandas as pd
7 from sk l e a rn . c l u s t e r import KMeans
8 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
9 from skfda . r ep r e s en t a t i on . g r id import FDataGrid

10 from sc ipy . i n t e r p o l a t e import inte rp1d
11 from sk l e a rn . met r i c s import s i lhouette_samples , s i l h oue t t e_s co r e
12 import matp lo t l i b . cm as cm
13

14 de f f ind_neares t (array , va lue) :
15

16 array = np . asar ray (array)
17 idx = (np . abs (array − value)) . argmin ()
18

19 re turn idx
20

21 de f WPD_Reader(path_input , train_range , range_data) :
22

23 dataframe_input = pd . read_csv (path_input , header = None)
24 data_input = dataframe_input . to_numpy ()
25

26 x_values_input = data_input [: , 0]
27 y_values_input = data_input [: , 1]
28

29 i n te rpo la ted_input = interp1d (x_values_input , y_values_input)
30

31 mean_input = inte rpo la ted_input (range_data [tra in_range])
32 fmean_input = FDataGrid (data_matrix = mean_input , gr id_points=

range_data [tra in_range])
33

34 re turn mean_input , fmean_input
35

36 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
37 sugar_path = ’C: / Users /Gyan/Desktop/BEP Python/Extracted Data/Sugar . csv

’
38 gravel_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Gravel .

csv ’
39 f lower_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Flowers .

csv ’
40 f i sh_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Fish . csv ’
41

42 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

43

44 Range = rada r_ f i l e . range . va lue s
45 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
46 data_nd = dataframe_nd . to_numpy ()

43

47

48 lower = 0
49

50 upper = 4000
51

52 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

53 h_train = Range [tra in_range]
54

55 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
h_train)

56

57 fpca_bas i s = FPCA(2) . f i t (f_data)
58 fpca_data = fpca_bas i s . t rans form (f_data)
59

60 fpca_components = fpca_bas i s . components_ . data_matrix
61

62 p l t . p l o t (fpca_components [0] [:] , h_train , l a b e l = ’FPCA1: {}% ’ . format (
fpca_bas i s . explained_variance_rat io_ [0] . round (2) ∗100))

63 p l t . p l o t (fpca_components [1] [:] , h_train , l a b e l = ’FPCA2: {}% ’ . format (
fpca_bas i s . explained_variance_rat io_ [1] . round (2) ∗100))

64 p l t . t i t l e (’FPCA Components ’)
65 p l t . yl im (0 ,4000)
66 p l t . x l ab e l (’ echo f r a c t i o n / %’)
67 p l t . y l ab e l (’ he ight / m’)
68 p l t . l egend ()
69 p l t . show ()
70

71 mean_sugar , fmean_sugar = WPD_Reader(sugar_path , train_range , Range)
72 mean_gravel , fmean_gravel = WPD_Reader(gravel_path , train_range , Range)
73 mean_flower , fmean_flower = WPD_Reader(flower_path , train_range , Range)
74 mean_fish , fmean_fish = WPD_Reader(f ish_path , train_range , Range)
75

76 mean_gravel_hat = [fpca_bas i s . t rans form (fmean_gravel) [0] , ’G’]
77 mean_sugar_hat = [fpca_bas i s . t rans form (fmean_sugar) [0] , ’ S ’]
78 mean_flower_hat = [fpca_bas i s . t rans form (fmean_flower) [0] , ’ FI ’]
79 mean_fish_hat = [fpca_bas i s . t rans form (fmean_fish) [0] , ’FL ’]
80

81 mean_hat_list = [mean_gravel_hat , mean_sugar_hat , mean_flower_hat ,
mean_fish_hat]

82

83 n_c lus te r s = 2
84

85 ##PLOTS
86 ax2 = p l t . subp lo t2g r id ((2 , 2) , (0 , 0))
87 ax3 = p l t . subp lo t2g r id ((2 , 2) , (0 , 1))
88 ax4 = p l t . subp lo t2g r id ((2 , 2) , (1 , 0))
89 ax5 = p l t . subp lo t2g r id ((2 , 2) , (1 , 1))
90

91 p l t . subplots_adjust (wspace = 0 . 3 , hspace = 0 . 3)
92

93 # I n i t i a l i z e the c l u s t e r e r with n_c lus te r s va lue and a random generator
94 # seed o f 10 f o r r e p r o d u c i b i l i t y .
95 c l u s t e r e r = KMeans(n_c lus te r s=n_clus te r s)
96 c l u s t e r_ l ab e l s = c l u s t e r e r . f i t_p r ed i c t (fpca_data)
97

44

98 # The s i l h oue t t e_s co r e g i v e s the average value f o r a l l the samples .
99 # This g i v e s a p e r sp e c t i v e in to the dens i ty and sepa ra t i on o f the

formed
100 # c l u s t e r s
101 s i lhouet te_avg = s i l houe t t e_s co r e (fpca_data , c l u s t e r_ l ab e l s)
102 pr in t (
103 "For n_c lus te r s =" ,
104 n_clusters ,
105 "The average s i l h oue t t e_s co r e i s : " ,
106 s i lhouette_avg ,
107)
108

109 #
##
AX2

110 # 2nd Plot showing the ac tua l c l u s t e r s formed
111 c o l o r s = cm. n ipy_spectra l (c l u s t e r_ l ab e l s . astype (f l o a t) / n_c lus te r s)
112 ax2 . s c a t t e r (
113 fpca_data [: , 0] , fpca_data [: , 1] , marker=" . " , s=30, lw=0, alpha

=0.7 , c=co l o r s , edgeco l o r="k"
114)
115

116 # Label ing the c l u s t e r s
117 c en t e r s = c l u s t e r e r . c lus ter_center s_
118

119 # Draw white c i r c l e s at c l u s t e r c en t e r s
120 ax2 . s c a t t e r (
121 c en t e r s [: , 0] ,
122 c en t e r s [: , 1] ,
123 marker="o" ,
124 c="white " ,
125 alpha=1,
126 s=200 ,
127 edgeco l o r="k" ,
128)
129

130 f o r i , c in enumerate (c en t e r s) :
131 ax2 . s c a t t e r (c [0] , c [1] , marker="$%d$" % i , alpha=1, s=50, edgeco l o r

="k")
132

133 # Draw c l a s s i f i c a t i o n mean c en t e r s
134 f o r i in range (l en (mean_hat_list)) :
135 ax2 . s c a t t e r (
136 mean_hat_list [i] [0] [0] ,
137 mean_hat_list [i] [0] [1] ,
138 marker=" s " ,
139 c="white " ,
140 alpha=1,
141 s=200 ,
142 edgeco l o r="k" ,
143)
144 ax2 . s c a t t e r (mean_hat_list [i] [0] [0] , mean_hat_list [i] [0] [1] , marker=

"${}$" . format (mean_hat_list [i] [1]) , alpha=1, s=50, edgeco l o r="k
" , c=’ white ’)

145

146 ax2 . s e t_ t i t l e ("The v i s u a l i z a t i o n o f the c l u s t e r e d data . ")

45

147 ax2 . s e t_x labe l ("Feature space f o r the 1 s t f e a t u r e ")
148 ax2 . s e t_y labe l ("Feature space f o r the 2nd f e a tu r e ")
149

150 #
##
AX4

151 # 2nd Plot showing the ac tua l c l u s t e r s formed
152 c o l o r s = cm. n ipy_spectra l (c l u s t e r_ l ab e l s . astype (f l o a t) / n_c lus te r s)
153 ax4 . s c a t t e r (
154 fpca_data [: , 0] , fpca_data [: , 1] , marker=" . " , s=30, lw=0, alpha

=0.7 , c=co l o r s , edgeco l o r="k"
155)
156 # Draw white c i r c l e s at c l u s t e r c en t e r s
157 ax4 . s c a t t e r (
158 c en t e r s [: , 0] ,
159 c en t e r s [: , 1] ,
160 marker="o" ,
161 c="white " ,
162 alpha=1,
163 s=200 ,
164 edgeco l o r="k" ,
165)
166 ax4 . set_xlim ([−600 ,400])
167 ax4 . set_ylim ([−250 ,150])
168

169 f o r i , c in enumerate (c en t e r s) :
170 ax4 . s c a t t e r (c [0] , c [1] , marker="$%d$" % i , alpha=1, s=50, edgeco l o r

="k")
171

172 # Draw c l a s s i f i c a t i o n mean c en t e r s
173 f o r i in range (l en (mean_hat_list)) :
174 ax4 . s c a t t e r (
175 mean_hat_list [i] [0] [0] ,
176 mean_hat_list [i] [0] [1] ,
177 marker=" s " ,
178 c="white " ,
179 alpha=1,
180 s=200 ,
181 edgeco l o r="k" ,
182)
183 ax4 . s c a t t e r (mean_hat_list [i] [0] [0] , mean_hat_list [i] [0] [1] , marker=

"${}$" . format (mean_hat_list [i] [1]) , alpha=1, s=50, edgeco l o r="k
" , c=’ white ’)

184

185 ax4 . s e t_ t i t l e ("The v i s u a l i z a t i o n o f the c l u s t e r e d data . (Zoomed) ")
186 ax4 . s e t_x labe l ("Feature space f o r the 1 s t f e a t u r e ")
187 ax4 . s e t_y labe l ("Feature space f o r the 2nd f e a tu r e ")
188

189 p l t . s u p t i t l e (
190 "Ana lys i s f o r KMeans c l u s t e r i n g on sample data with n_c lus te r s = %d

"
191 % n_clusters ,
192 f o n t s i z e =14,
193 f ontwe ight="bold " ,
194)
195

46

196 #
##
AX3

197 ax3 . p l o t (mean_sugar , h_train , c o l o r = ’ l i g h t g r e e n ’ , l a b e l=’ Sugar ’ ,
l i n e s t y l e = ’ dashdot ’)

198 ax3 . p l o t (mean_gravel , h_train , c o l o r = ’ darkgreen ’ , l a b e l=’ Gravel ’ ,
l i n e s t y l e = ’ dashdot ’)

199 ax3 . p l o t (mean_fish , h_train , c o l o r = ’ darkblue ’ , l a b e l=’ Fish ’ ,
l i n e s t y l e = ’ dashdot ’)

200 ax3 . p l o t (mean_flower , h_train , c o l o r = ’ l i g h t b l u e ’ , l a b e l=’ Flower ’ ,
l i n e s t y l e = ’ dashdot ’)

201

202 patte rn_dic t ionary = d i c t ()
203

204 f o r k in range (n_c lus te r s) :
205 patte rn_dic t ionary [k] = l i s t ()
206

207

208 f o r i in range (l en (fpca_data)) :
209 f o r k in range (n_c lus te r s) :
210 i f c l u s t e r_ l ab e l s [i] == k :
211 patte rn_dic t ionary [k] . append (data_nd [i])
212 e l s e :
213 pass
214

215 #a r r a y f i c a t i o n
216 f o r key in pat te rn_dic t ionary :
217 patte rn_dic t ionary [key] = np . array (pat te rn_dic t ionary [key])
218

219 #stdev
220 stdev_pattern_dict ionary = patte rn_dic t ionary . copy ()
221

222 f o r key in patte rn_dic t ionary :
223 stdev_pattern_dict ionary [key] = s t a t s . sem(patte rn_dic t ionary [key])
224

225 #mean
226 mean_pattern_dictionary = patte rn_dic t ionary . copy ()
227

228 f o r key in patte rn_dic t ionary :
229 mean_pattern_dictionary [key] = pmean(patte rn_dic t ionary [key] , 1)
230

231 #plo t pat t e rns
232 f o r key in patte rn_dic t ionary :
233 Le f t = mean_pattern_dictionary [key]−2∗ stdev_pattern_dict ionary [key]
234 Right = mean_pattern_dictionary [key]+2∗ stdev_pattern_dict ionary [key

]
235 c o l o r = cm. n ipy_spectra l (f l o a t (key) / n_c lus te r s)
236

237 ax3 . p l o t (mean_pattern_dictionary [key] , Range [: 6 0 5] ,
238 c o l o r = co lo r ,
239 l a b e l = ’ C lus te r {} : {}% ’ . format (key , round (l en

(pat te rn_dic t ionary [key]) ∗100/ l en (data_nd))
))

240 ax3 . f i l l_betweenx (Range [: 6 0 5] , Left , Right , f a c e c o l o r=co lo r , alpha
=0.5 , zorder=−1)

241 ax3 . set_ylim (0 ,4000)

47

242 ax3 . s e t_ t i t l e (’The p lo t o f he ight aga in s t c loud f r a c t i o n . ’)
243 ax3 . ax l i n e ((0 , 800) , (1 , 800) , c o l o r = ’ grey ’)
244 ax3 . s e t (x l ab e l = ’ echo f r a c t i o n / %’ , y l ab e l = ’ he ight / m’)
245 ax3 . l egend ()
246

247 #
##
AX5

248 ax5 . p l o t (mean_sugar , h_train , c o l o r = ’ l i g h t g r e e n ’ , l a b e l=’ Sugar ’ ,
l i n e s t y l e = ’ dashdot ’)

249 ax5 . p l o t (mean_gravel , h_train , c o l o r = ’ darkgreen ’ , l a b e l=’ Gravel ’ ,
l i n e s t y l e = ’ dashdot ’)

250 ax5 . p l o t (mean_fish , h_train , c o l o r = ’ darkblue ’ , l a b e l=’ Fish ’ ,
l i n e s t y l e = ’ dashdot ’)

251 ax5 . p l o t (mean_flower , h_train , c o l o r = ’ l i g h t b l u e ’ , l a b e l=’ Flower ’ ,
l i n e s t y l e = ’ dashdot ’)

252

253 patte rn_dic t ionary = d i c t ()
254

255 f o r k in range (n_c lus te r s) :
256 patte rn_dic t ionary [k] = l i s t ()
257

258

259 f o r i in range (l en (fpca_data)) :
260 f o r k in range (n_c lus te r s) :
261 i f c l u s t e r_ l ab e l s [i] == k :
262 patte rn_dic t ionary [k] . append (data_nd [i])
263 e l s e :
264 pass
265

266 #a r r a y f i c a t i o n
267 f o r key in pat te rn_dic t ionary :
268 patte rn_dic t ionary [key] = np . array (pat te rn_dic t ionary [key])
269

270 #stdev
271 stdev_pattern_dict ionary = patte rn_dic t ionary . copy ()
272

273 f o r key in patte rn_dic t ionary :
274 stdev_pattern_dict ionary [key] = s t a t s . sem(patte rn_dic t ionary [key])
275

276 #mean
277 mean_pattern_dictionary = patte rn_dic t ionary . copy ()
278

279 f o r key in patte rn_dic t ionary :
280 mean_pattern_dictionary [key] = pmean(patte rn_dic t ionary [key] , 1)
281

282 #plo t pat t e rns
283 f o r key in patte rn_dic t ionary :
284 Le f t = mean_pattern_dictionary [key]−2∗ stdev_pattern_dict ionary [key]
285 Right = mean_pattern_dictionary [key]+2∗ stdev_pattern_dict ionary [key

]
286 c o l o r = cm. n ipy_spectra l (f l o a t (key) / n_c lus te r s)
287

288 ax5 . p l o t (mean_pattern_dictionary [key] , Range [: 6 0 5] ,
289 c o l o r = co lo r ,

48

290 l a b e l = ’ C lus te r {} : {}% ’ . format (key , round (l en
(pat te rn_dic t ionary [key]) ∗100/ l en (data_nd))
))

291 ax5 . f i l l_betweenx (Range [: 6 0 5] , Left , Right , f a c e c o l o r=co lo r , alpha
=0.5 , zorder=−1)

292 ax5 . set_xlim (0 ,23)
293 ax5 . set_ylim (0 ,4000)
294 ax5 . s e t_ t i t l e (’The p lo t o f he ight aga in s t c loud f r a c t i o n . (Zoomed) ’

)
295 ax5 . ax l i n e ((0 , 800) , (1 , 800) , c o l o r = ’ grey ’)
296 ax5 . s e t (x l ab e l = ’ echo f r a c t i o n / %’ , y l ab e l = ’ he ight / m’)
297

298 #
##
AX1

299 f i g , ax1 = p l t . subp lo t s ()
300

301 # Compute the s i l h o u e t t e s c o r e s f o r each sample
302 sample_s i lhouette_values = s i lhouet te_sample s (fpca_data , c l u s t e r_ l ab e l s

)
303

304 ax1 . set_xlim ([−0 .5 , 1])
305 # The (n_c lus te r s+1)∗10 i s f o r i n s e r t i n g blank space between s i l h o u e t t e
306 # p lo t s o f i nd i v i dua l c l u s t e r s , to demarcate them c l e a r l y .
307 ax1 . set_ylim ([0 , l en (fpca_data) + (n_c lus te r s + 1) ∗ 10])
308

309 y_lower = 10
310 f o r i in range (n_c lus te r s) :
311 # Aggregate the s i l h o u e t t e s c o r e s f o r samples be long ing to
312 # c l u s t e r i , and s o r t them
313 i t h_c lu s t e r_s i l houe t t e_va lue s = sample_si lhouette_values [

c l u s t e r_ l ab e l s == i]
314

315 i t h_c lu s t e r_s i l houe t t e_va lue s . s o r t ()
316

317 s i z e_c lu s t e r_ i = i th_c lu s t e r_s i l houe t t e_va lue s . shape [0]
318 y_upper = y_lower + s i z e_c lu s t e r_ i
319

320 c o l o r = cm. n ipy_spectra l (f l o a t (i) / n_c lus te r s)
321 ax1 . f i l l_betweenx (
322 np . arange (y_lower , y_upper) ,
323 0 ,
324 i th_c lus t e r_s i lhouet t e_va lue s ,
325 f a c e c o l o r=co lo r ,
326 edgeco l o r=co lo r ,
327 alpha =0.7 ,
328)
329

330 # Label the s i l h o u e t t e p l o t s with t h e i r c l u s t e r numbers at the
middle

331 ax1 . t ex t (−0.05 , y_lower + 0 .5 ∗ s i z e_c lu s t e r_ i , s t r (i))
332

333 # Compute the new y_lower f o r next p l o t
334 y_lower = y_upper + 10 # 10 f o r the 0 samples
335

336 ax1 . s e t_ t i t l e ("The s i l h o u e t t e p l o t f o r the var i ous c l u s t e r s . ")

49

337 ax1 . s e t_x labe l ("The s i l h o u e t t e c o e f f i c i e n t va lue s ")
338 ax1 . s e t_y labe l (" Clus te r l a b e l ")
339

340 # The v e r t i c a l l i n e f o r average s i l h o u e t t e s co r e o f a l l the va lue s
341 ax1 . axv l i n e (x=si lhouette_avg , c o l o r=" red " , l i n e s t y l e="−−")
342

343 ax1 . s e t_yt i ck s ([]) # Clear the yax i s l a b e l s / t i c k s
344 ax1 . s e t_xt i ck s ([−0 .1 , 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1])

E.3.2 K-means Elbow method

Listing 4: Data Reader K-Means Elbow Method.py
1 import numpy as np
2 import xarray as xr
3 import pandas as pd
4 from sk l e a rn . c l u s t e r import KMeans
5 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
6 from skfda . r ep r e s en t a t i on . g r id import FDataGrid
7 from ye l l owbr i ck . c l u s t e r import KElbowVisual izer
8

9 de f f ind_neares t (array , va lue) :
10

11 array = np . asar ray (array)
12 idx = (np . abs (array − value)) . argmin ()
13

14 re turn idx
15

16 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
17

18 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

19

20 Range = rada r_ f i l e . range . va lue s
21 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
22 data_nd = dataframe_nd . to_numpy ()
23

24 lower = 0
25

26 upper = 4000
27

28 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

29 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
Range [tra in_range])

30

31 fpca_bas i s = FPCA(2) . f i t (f_data)
32 fpca_data = fpca_bas i s . t rans form (f_data)
33

34 c l u s t e r e r = KMeans ()
35

36 d i s t o r t i o n = KElbowVisual izer (c l u s t e r e r , k=(1 ,10) , locate_elbow = True ,
t imings = False , metr ic = ’ d i s t o r t i o n ’)

37

38 # Fit the data to the v i s u a l i z e r
39 d i s t o r t i o n . f i t (fpca_data)

50

40

41 # Fina l i z e and render the f i g u r e
42 d i s t o r t i o n . show ()

E.3.3 K-means Gap statistic

Listing 5: Data Reader K-Means Gap Statistic.py
1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import xarray as xr
4 import pandas as pd
5 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
6 from skfda . r ep r e s en t a t i on . g r id import FDataGrid
7 from gap_s t a t i s t i c import OptimalK
8

9 de f f ind_neares t (array , va lue) :
10

11 array = np . asar ray (array)
12 idx = (np . abs (array − value)) . argmin ()
13

14 re turn idx
15

16 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
17

18 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

19

20 Range = rada r_ f i l e . range . va lue s
21 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
22 data_nd = dataframe_nd . to_numpy ()
23

24 lower = 0
25

26 upper = 4000
27

28 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

29 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
Range [tra in_range])

30

31 fpca_bas i s = FPCA(2) . f i t (f_data)
32 fpca_data = fpca_bas i s . t rans form (f_data)
33

34 optimalK = OptimalK ()
35

36 n_c lus te r s = optimalK (fpca_data , c lu s t e r_ar ray=np . arange (1 , 10))
37

38 p l t . p l o t (optimalK . gap_df . n_clusters , optimalK . gap_df . gap_value ,
l i n ew id th=3)

39 p l t . s c a t t e r (optimalK . gap_df [optimalK . gap_df . n_c lus te r s == n_clus te r s] .
n_clusters ,

40 optimalK . gap_df [optimalK . gap_df . n_c lus te r s == n_clus te r s] .
gap_value , s=250 , c=’ r ’)

41 p l t . g r i d (True)
42 p l t . x l ab e l (’ C lus te r Count ’)

51

43 p l t . y l ab e l (’Gap Value ’)
44 p l t . t i t l e (’Gap Values by Clus te r Count ’)
45 p l t . show ()

E.4 GMM Clustering
E.4.1 GMM Analysis

Listing 6: Data Reader GMM Analysis.py
1 from sc ipy import s t a t s
2 from sc ipy . s t a t s import pmean
3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5 import xarray as xr
6 import pandas as pd
7 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
8 from skfda . r ep r e s en t a t i on . g r id import FDataGrid
9 from sc ipy . i n t e r p o l a t e import inte rp1d

10 from sk l e a rn . met r i c s import s i lhouette_samples , s i l h oue t t e_s co r e
11 import matp lo t l i b . cm as cm
12 from sk l e a rn . mixture import GaussianMixture
13

14 de f f ind_neares t (array , va lue) :
15

16 array = np . asar ray (array)
17 idx = (np . abs (array − value)) . argmin ()
18

19 re turn idx
20

21 de f WPD_Reader(path_input , train_range , range_data) :
22

23 dataframe_input = pd . read_csv (path_input , header = None)
24 data_input = dataframe_input . to_numpy ()
25

26 x_values_input = data_input [: , 0]
27 y_values_input = data_input [: , 1]
28

29 i n te rpo la ted_input = interp1d (x_values_input , y_values_input)
30

31 mean_input = inte rpo la ted_input (range_data [tra in_range])
32 fmean_input = FDataGrid (data_matrix = mean_input , gr id_points=

range_data [tra in_range])
33

34 re turn mean_input , fmean_input
35

36 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
37 sugar_path = ’C: / Users /Gyan/Desktop/BEP Python/Extracted Data/Sugar . csv

’
38 gravel_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Gravel .

csv ’
39 f lower_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Flowers .

csv ’
40 f i sh_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Fish . csv ’
41

52

42 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

43

44 Range = rada r_ f i l e . range . va lue s
45 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
46 data_nd = dataframe_nd . to_numpy ()
47

48 lower = 0
49

50 upper = 4000
51

52 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

53 h_train = Range [tra in_range]
54

55 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
h_train)

56

57 fpca_bas i s = FPCA(2) . f i t (f_data)
58 fpca_data = fpca_bas i s . t rans form (f_data)
59

60 fpca_components = fpca_bas i s . components_ . data_matrix
61

62 p l t . p l o t (fpca_components [0] [:] , h_train , l a b e l = ’FPCA1: {}% ’ . format (
fpca_bas i s . expla ined_variance_rat io_ [0] . round (2) ∗100))

63 p l t . p l o t (fpca_components [1] [:] , h_train , l a b e l = ’FPCA2: {}% ’ . format (
fpca_bas i s . expla ined_variance_rat io_ [1] . round (2) ∗100))

64 p l t . t i t l e (’FPCA Components ’)
65 p l t . yl im (0 ,4000)
66 p l t . x l ab e l (’ echo f r a c t i o n / %’)
67 p l t . y l ab e l (’ he ight / m’)
68 p l t . l egend ()
69 p l t . show ()
70

71 mean_sugar , fmean_sugar = WPD_Reader(sugar_path , train_range , Range)
72 mean_gravel , fmean_gravel = WPD_Reader(gravel_path , train_range , Range)
73 mean_flower , fmean_flower = WPD_Reader(flower_path , train_range , Range)
74 mean_fish , fmean_fish = WPD_Reader(f ish_path , train_range , Range)
75

76 mean_gravel_hat = [fpca_bas i s . t rans form (fmean_gravel) [0] , ’G’]
77 mean_sugar_hat = [fpca_bas i s . t rans form (fmean_sugar) [0] , ’ S ’]
78 mean_flower_hat = [fpca_bas i s . t rans form (fmean_flower) [0] , ’ FI ’]
79 mean_fish_hat = [fpca_bas i s . t rans form (fmean_fish) [0] , ’FL ’]
80

81 mean_hat_list = [mean_gravel_hat , mean_sugar_hat , mean_flower_hat ,
mean_fish_hat]

82

83 n_c lus te r s = 2
84

85 ##PLOT
86

87 ax2 = p l t . subp lo t2g r id ((2 , 2) , (0 , 0))
88 ax3 = p l t . subp lo t2g r id ((2 , 2) , (0 , 1))
89 ax4 = p l t . subp lo t2g r id ((2 , 2) , (1 , 0))
90 ax5 = p l t . subp lo t2g r id ((2 , 2) , (1 , 1))
91

53

92 p l t . subplots_adjust (wspace = 0 . 3 , hspace = 0 . 3)
93

94 # I n i t i a l i z e the c l u s t e r e r with n_c lus te r s va lue and a random generator
95 # seed o f 10 f o r r e p r o d u c i b i l i t y .
96 c l u s t e r e r = GaussianMixture (n_components=n_clusters , init_params=’k−

means++’)
97 c l u s t e r_ l ab e l s = c l u s t e r e r . f i t_p r ed i c t (fpca_data)
98

99 #
##
AX2

100 # 2nd Plot showing the ac tua l c l u s t e r s formed
101 c o l o r s = cm. n ipy_spectra l (c l u s t e r_ l ab e l s . astype (f l o a t) / n_c lus te r s)
102 ax2 . s c a t t e r (
103 fpca_data [: , 0] , fpca_data [: , 1] , marker=" . " , s=30, lw=0, alpha

=0.7 , c=co l o r s , edgeco l o r="k"
104)
105

106 # Label ing the c l u s t e r s
107 c en t e r s = c l u s t e r e r .means_
108 # Draw white c i r c l e s at c l u s t e r c en t e r s
109 ax2 . s c a t t e r (
110 c en t e r s [: , 0] ,
111 c en t e r s [: , 1] ,
112 marker="o" ,
113 c="white " ,
114 alpha=1,
115 s=200 ,
116 edgeco l o r="k" ,
117)
118

119 f o r i , c in enumerate (c en t e r s) :
120 ax2 . s c a t t e r (c [0] , c [1] , marker="$%d$" % i , alpha=1, s=50, edgeco l o r

="k")
121

122 # Draw c l a s s i f i c a t i o n mean c en t e r s
123 f o r i in range (l en (mean_hat_list)) :
124 ax2 . s c a t t e r (
125 mean_hat_list [i] [0] [0] ,
126 mean_hat_list [i] [0] [1] ,
127 marker=" s " ,
128 c="white " ,
129 alpha=1,
130 s=200 ,
131 edgeco l o r="k" ,
132)
133 ax2 . s c a t t e r (mean_hat_list [i] [0] [0] , mean_hat_list [i] [0] [1] , marker=

"${}$" . format (mean_hat_list [i] [1]) , alpha=1, s=50, edgeco l o r="k
" , c=’ white ’)

134

135 ax2 . s e t_ t i t l e ("The v i s u a l i z a t i o n o f the c l u s t e r e d data . ")
136 ax2 . s e t_x labe l ("Feature space f o r the 1 s t f e a t u r e ")
137 ax2 . s e t_y labe l ("Feature space f o r the 2nd f e a tu r e ")
138

139 #
##

54

AX4
140 # 2nd Plot showing the ac tua l c l u s t e r s formed
141 c o l o r s = cm. n ipy_spectra l (c l u s t e r_ l ab e l s . astype (f l o a t) / n_c lus te r s)
142 ax4 . s c a t t e r (
143 fpca_data [: , 0] , fpca_data [: , 1] , marker=" . " , s=30, lw=0, alpha

=0.7 , c=co l o r s , edgeco l o r="k"
144)
145

146 # Label ing the c l u s t e r s
147 c en t e r s = c l u s t e r e r .means_
148 # Draw white c i r c l e s at c l u s t e r c en t e r s
149 ax4 . s c a t t e r (
150 c en t e r s [: , 0] ,
151 c en t e r s [: , 1] ,
152 marker="o" ,
153 c="white " ,
154 alpha=1,
155 s=200 ,
156 edgeco l o r="k" ,
157)
158 ax4 . set_xlim ([−600 ,400])
159 ax4 . set_ylim ([−250 ,150])
160

161

162

163 f o r i , c in enumerate (c en t e r s) :
164 ax4 . s c a t t e r (c [0] , c [1] , marker="$%d$" % i , alpha=1, s=50, edgeco l o r

="k")
165

166 # Draw c l a s s i f i c a t i o n mean c en t e r s
167 f o r i in range (l en (mean_hat_list)) :
168 ax4 . s c a t t e r (
169 mean_hat_list [i] [0] [0] ,
170 mean_hat_list [i] [0] [1] ,
171 marker=" s " ,
172 c="white " ,
173 alpha=1,
174 s=200 ,
175 edgeco l o r="k" ,
176)
177 ax4 . s c a t t e r (mean_hat_list [i] [0] [0] , mean_hat_list [i] [0] [1] , marker=

"${}$" . format (mean_hat_list [i] [1]) , alpha=1, s=50, edgeco l o r="k
" , c=’ white ’)

178

179 ax4 . s e t_ t i t l e ("The v i s u a l i z a t i o n o f the c l u s t e r e d data . (Zoomed) ")
180 ax4 . s e t_x labe l ("Feature space f o r the 1 s t f e a t u r e ")
181 ax4 . s e t_y labe l ("Feature space f o r the 2nd f e a tu r e ")
182

183 p l t . s u p t i t l e (
184 "Ana lys i s f o r GMM c l u s t e r i n g on sample data with n_c lus te r s = %d"
185 % n_clusters ,
186 f o n t s i z e =14,
187 f ontwe ight="bold " ,
188)
189

55

190 #
##
AX3

191 ax3 . p l o t (mean_sugar , h_train , c o l o r = ’ l i g h t g r e e n ’ , l a b e l=’ Sugar ’ ,
l i n e s t y l e = ’ dashdot ’)

192 ax3 . p l o t (mean_gravel , h_train , c o l o r = ’ darkgreen ’ , l a b e l=’ Gravel ’ ,
l i n e s t y l e = ’ dashdot ’)

193 ax3 . p l o t (mean_fish , h_train , c o l o r = ’ darkblue ’ , l a b e l=’ Fish ’ ,
l i n e s t y l e = ’ dashdot ’)

194 ax3 . p l o t (mean_flower , h_train , c o l o r = ’ l i g h t b l u e ’ , l a b e l=’ Flower ’ ,
l i n e s t y l e = ’ dashdot ’)

195

196 patte rn_dic t ionary = d i c t ()
197

198 f o r k in range (n_c lus te r s) :
199 patte rn_dic t ionary [k] = l i s t ()
200

201

202 f o r i in range (l en (fpca_data)) :
203 f o r k in range (n_c lus te r s) :
204 i f c l u s t e r_ l ab e l s [i] == k :
205 patte rn_dic t ionary [k] . append (data_nd [i])
206 e l s e :
207 pass
208

209 #a r r a y f i c a t i o n
210 f o r key in pat te rn_dic t ionary :
211 patte rn_dic t ionary [key] = np . array (pat te rn_dic t ionary [key])
212

213 #stdev
214 stdev_pattern_dict ionary = patte rn_dic t ionary . copy ()
215

216 f o r key in patte rn_dic t ionary :
217 stdev_pattern_dict ionary [key] = s t a t s . sem(patte rn_dic t ionary [key])
218

219 #mean
220 mean_pattern_dictionary = patte rn_dic t ionary . copy ()
221

222 f o r key in patte rn_dic t ionary :
223 mean_pattern_dictionary [key] = pmean(patte rn_dic t ionary [key] , 1)
224

225 #plo t pat t e rns
226 f o r key in patte rn_dic t ionary :
227 Le f t = mean_pattern_dictionary [key]−2∗ stdev_pattern_dict ionary [key]
228 Right = mean_pattern_dictionary [key]+2∗ stdev_pattern_dict ionary [key

]
229 c o l o r = cm. n ipy_spectra l (f l o a t (key) / n_c lus te r s)
230

231 ax3 . p l o t (mean_pattern_dictionary [key] , Range [: 6 0 5] ,
232 c o l o r = co lo r ,
233 l a b e l = ’ C lus te r {} : {}% ’ . format (key , round (l en

(pat te rn_dic t ionary [key]) ∗100/ l en (data_nd))
))

234 ax3 . f i l l_betweenx (Range [: 6 0 5] , Left , Right , f a c e c o l o r=co lo r , alpha
=0.5 , zorder=−1)

235 ax3 . set_ylim (0 ,4000)

56

236 ax3 . s e t_ t i t l e (’The p lo t o f he ight aga in s t c loud f r a c t i o n . ’)
237 ax3 . ax l i n e ((0 , 800) , (1 , 800) , c o l o r = ’ grey ’)
238 ax3 . s e t (x l ab e l = ’ echo f r a c t i o n / %’ , y l ab e l = ’ he ight / m’)
239 ax3 . l egend ()
240

241 #
##
AX5

242 ax5 . p l o t (mean_sugar , h_train , c o l o r = ’ l i g h t g r e e n ’ , l a b e l=’ Sugar ’ ,
l i n e s t y l e = ’ dashdot ’)

243 ax5 . p l o t (mean_gravel , h_train , c o l o r = ’ darkgreen ’ , l a b e l=’ Gravel ’ ,
l i n e s t y l e = ’ dashdot ’)

244 ax5 . p l o t (mean_fish , h_train , c o l o r = ’ darkblue ’ , l a b e l=’ Fish ’ ,
l i n e s t y l e = ’ dashdot ’)

245 ax5 . p l o t (mean_flower , h_train , c o l o r = ’ l i g h t b l u e ’ , l a b e l=’ Flower ’ ,
l i n e s t y l e = ’ dashdot ’)

246

247 patte rn_dic t ionary = d i c t ()
248

249 f o r k in range (n_c lus te r s) :
250 patte rn_dic t ionary [k] = l i s t ()
251

252 f o r i in range (l en (fpca_data)) :
253 f o r k in range (n_c lus te r s) :
254 i f c l u s t e r_ l ab e l s [i] == k :
255 patte rn_dic t ionary [k] . append (data_nd [i])
256 e l s e :
257 pass
258

259 #a r r a y f i c a t i o n
260 f o r key in pat te rn_dic t ionary :
261 patte rn_dic t ionary [key] = np . array (pat te rn_dic t ionary [key])
262

263 #stdev
264 stdev_pattern_dict ionary = patte rn_dic t ionary . copy ()
265

266 f o r key in patte rn_dic t ionary :
267 stdev_pattern_dict ionary [key] = s t a t s . sem(patte rn_dic t ionary [key])
268

269 #mean
270 mean_pattern_dictionary = patte rn_dic t ionary . copy ()
271

272 f o r key in patte rn_dic t ionary :
273 mean_pattern_dictionary [key] = pmean(patte rn_dic t ionary [key] , 1)
274

275 #plo t pat t e rns
276 f o r key in patte rn_dic t ionary :
277 Le f t = mean_pattern_dictionary [key]−2∗ stdev_pattern_dict ionary [key]
278 Right = mean_pattern_dictionary [key]+2∗ stdev_pattern_dict ionary [key

]
279 c o l o r = cm. n ipy_spectra l (f l o a t (key) / n_c lus te r s)
280

281 ax5 . p l o t (mean_pattern_dictionary [key] , Range [: 6 0 5] ,
282 c o l o r = co lo r ,
283 l a b e l = ’ C lus te r {} : {}% ’ . format (key , round (l en

(pat te rn_dic t ionary [key]) ∗100/ l en (data_nd))

57

))
284 ax5 . f i l l_betweenx (Range [: 6 0 5] , Left , Right , f a c e c o l o r=co lo r , alpha

=0.5 , zorder=−1)
285 ax5 . set_xlim (0 ,23)
286 ax5 . set_ylim (0 ,4000)
287 ax5 . s e t_ t i t l e (’The p lo t o f he ight aga in s t c loud f r a c t i o n . (Zoomed) ’

)
288 ax5 . ax l i n e ((0 , 800) , (1 , 800) , c o l o r = ’ grey ’)
289 ax5 . s e t (x l ab e l = ’ echo f r a c t i o n / %’ , y l ab e l = ’ he ight / m’)
290

291 #
##
AX2

292 f i g , ax1 = p l t . subp lo t s ()
293

294 # The 1 s t subplot i s the s i l h o u e t t e p l o t
295 # The s i l h o u e t t e c o e f f i c i e n t can range from −1, 1 but in t h i s example

a l l
296 # l i e with in [−0.1 , 1]
297 ax1 . set_xlim ([−0 .5 , 1])
298 # The (n_c lus te r s+1)∗10 i s f o r i n s e r t i n g blank space between s i l h o u e t t e
299 # p lo t s o f i nd i v i dua l c l u s t e r s , to demarcate them c l e a r l y .
300 ax1 . set_ylim ([0 , l en (fpca_data) + (n_c lus te r s + 1) ∗ 10])
301

302

303 # The s i l h oue t t e_s co r e g i v e s the average value f o r a l l the samples .
304 # This g i v e s a p e r sp e c t i v e in to the dens i ty and sepa ra t i on o f the

formed
305 # c l u s t e r s
306 s i lhouet te_avg = s i l houe t t e_s co r e (fpca_data , c l u s t e r_ l ab e l s)
307 pr in t (
308 "For n_c lus te r s =" ,
309 n_clusters ,
310 "The average s i l h oue t t e_s co r e i s : " ,
311 s i lhouette_avg ,
312)
313

314 # Compute the s i l h o u e t t e s c o r e s f o r each sample
315 sample_s i lhouette_values = s i lhouet te_sample s (fpca_data , c l u s t e r_ l ab e l s

)
316

317 y_lower = 10
318 f o r i in range (n_c lus te r s) :
319 # Aggregate the s i l h o u e t t e s c o r e s f o r samples be long ing to
320 # c l u s t e r i , and s o r t them
321 i t h_c lu s t e r_s i l houe t t e_va lue s = sample_si lhouette_values [

c l u s t e r_ l ab e l s == i]
322

323 i t h_c lu s t e r_s i l houe t t e_va lue s . s o r t ()
324

325 s i z e_c lu s t e r_ i = i th_c lu s t e r_s i l houe t t e_va lue s . shape [0]
326 y_upper = y_lower + s i z e_c lu s t e r_ i
327

328 c o l o r = cm. n ipy_spectra l (f l o a t (i) / n_c lus te r s)
329 ax1 . f i l l_betweenx (
330 np . arange (y_lower , y_upper) ,

58

331 0 ,
332 i th_c lus t e r_s i lhouet t e_va lue s ,
333 f a c e c o l o r=co lo r ,
334 edgeco l o r=co lo r ,
335 alpha =0.7 ,
336)
337

338 # Label the s i l h o u e t t e p l o t s with t h e i r c l u s t e r numbers at the
middle

339 ax1 . t ex t (−0.05 , y_lower + 0 .5 ∗ s i z e_c lu s t e r_ i , s t r (i))
340

341 # Compute the new y_lower f o r next p l o t
342 y_lower = y_upper + 10 # 10 f o r the 0 samples
343

344 ax1 . s e t_ t i t l e ("The s i l h o u e t t e p l o t f o r the var i ous c l u s t e r s . ")
345 ax1 . s e t_x labe l ("The s i l h o u e t t e c o e f f i c i e n t va lue s ")
346 ax1 . s e t_y labe l (" Clus te r l a b e l ")
347

348 # The v e r t i c a l l i n e f o r average s i l h o u e t t e s co r e o f a l l the va lue s
349 ax1 . axv l i n e (x=si lhouette_avg , c o l o r=" red " , l i n e s t y l e="−−")
350

351 ax1 . s e t_yt i ck s ([]) # Clear the yax i s l a b e l s / t i c k s
352 ax1 . s e t_xt i ck s ([−0 .1 , 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1])

E.4.2 GMM Elbow method

Listing 7: Data Reader GMM Elbow Method.py
1 import numpy as np
2 import xarray as xr
3 import pandas as pd
4 from sk l e a rn . c l u s t e r import KMeans
5 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
6 from skfda . r ep r e s en t a t i on . g r id import FDataGrid
7 from ye l l owbr i ck . c l u s t e r import KElbowVisual izer
8

9 de f f ind_neares t (array , va lue) :
10

11 array = np . asar ray (array)
12 idx = (np . abs (array − value)) . argmin ()
13

14 re turn idx
15

16 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
17

18 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

19

20 Range = rada r_ f i l e . range . va lue s
21 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
22 data_nd = dataframe_nd . to_numpy ()
23

24 lower = 0
25

26 upper = 4000
27

59

28 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

29 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
Range [tra in_range])

30

31 fpca_bas i s = FPCA(2) . f i t (f_data)
32 fpca_data = fpca_bas i s . t rans form (f_data)
33

34 c l u s t e r e r = KMeans ()
35

36 d i s t o r t i o n = KElbowVisual izer (c l u s t e r e r , k=(1 ,10) , locate_elbow = True ,
t imings = False , metr ic = ’ d i s t o r t i o n ’)

37

38 # Fit the data to the v i s u a l i z e r
39 d i s t o r t i o n . f i t (fpca_data)
40

41 # Fina l i z e and render the f i g u r e
42 d i s t o r t i o n . show ()

E.4.3 GMM Gap statistic

Listing 8: Data Reader GMM Gap Statistic.py
1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import xarray as xr
4 import pandas as pd
5 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
6 from skfda . r ep r e s en t a t i on . g r id import FDataGrid
7 from gap_s t a t i s t i c import OptimalK
8 from sk l e a rn . mixture import GaussianMixture
9

10 de f f ind_neares t (array , va lue) :
11

12 array = np . asar ray (array)
13 idx = (np . abs (array − value)) . argmin ()
14

15 re turn idx
16

17 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
18

19 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

20

21 Range = rada r_ f i l e . range . va lue s
22 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
23 data_nd = dataframe_nd . to_numpy ()
24

25 lower = 0
26

27 upper = 4000
28

29 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

30 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
Range [tra in_range])

60

31

32 fpca_bas i s = FPCA(2) . f i t (f_data)
33 fpca_data = fpca_bas i s . t rans form (f_data)
34

35 de f spe c i a l_c lu s t e r i ng_func (X, k) :
36 """
37 Spe c i a l c l u s t e r i n g func t i on which uses the MeanShift
38 model from sk l e a rn .
39

40 These user de f ined func t i on s ∗must∗ take the X and a k
41 and can take an a rb i t r a r y number o f other kwargs , which can
42 be pass with ‘ c lusterer_kwargs ‘ when i n i t i a l i z i n g OptimalK
43 """
44

45 # Here you can do whatever c l u s t e r i n g a lgor i thm you heart d e s i r e s ,
46 # but we ’ l l do a s imple wrap o f the MeanShift model in sk l e a rn .
47

48 m = GaussianMixture ()
49 m. f i t (X)
50

51 # Return the l o c a t i o n o f each c l u s t e r center ,
52 # and the l a b e l s f o r each po int .
53 re turn m.means_ , m. p r ed i c t (X)
54

55 optimalK = OptimalK ()
56

57 n_c lus te r s = optimalK (fpca_data , c lu s t e r_ar ray=np . arange (1 , 20))
58

59 p l t . p l o t (optimalK . gap_df . n_clusters , optimalK . gap_df . gap_value ,
l i n ew id th=3)

60 p l t . s c a t t e r (optimalK . gap_df [optimalK . gap_df . n_c lus te r s == n_clus te r s] .
n_clusters ,

61 optimalK . gap_df [optimalK . gap_df . n_c lus te r s == n_clus te r s] .
gap_value , s=250 , c=’ r ’)

62 p l t . g r i d (True)
63 p l t . x l ab e l (’ C lus te r Count ’)
64 p l t . y l ab e l (’Gap Value ’)
65 p l t . t i t l e (’Gap Values by Clus te r Count ’)
66 p l t . show ()

E.5 Mean Shift Clustering
E.5.1 Mean Shift Analysis

Listing 9: Data Reader MS Analysis.py
1 from sc ipy import s t a t s
2 from sc ipy . s t a t s import pmean
3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5 import xarray as xr
6 import pandas as pd
7 from skfda . p r ep ro c e s s i ng . dim_reduction . f e a tu r e_ext rac t i on import FPCA
8 from skfda . r ep r e s en t a t i on . g r id import FDataGrid
9 from sc ipy . i n t e r p o l a t e import inte rp1d

10 from sk l e a rn . met r i c s import s i lhouette_samples , s i l h oue t t e_s co r e

61

11 import matp lo t l i b . cm as cm
12 from sk l e a rn . c l u s t e r import MeanShift
13 from sk l e a rn . c l u s t e r import estimate_bandwidth
14

15 de f f ind_neares t (array , va lue) :
16

17 array = np . asar ray (array)
18 idx = (np . abs (array − value)) . argmin ()
19

20 re turn idx
21

22 de f WPD_Reader(path_input , train_range , range_data) :
23

24 dataframe_input = pd . read_csv (path_input , header = None)
25 data_input = dataframe_input . to_numpy ()
26

27 x_values_input = data_input [: , 0]
28 y_values_input = data_input [: , 1]
29

30 i n te rpo la ted_input = interp1d (x_values_input , y_values_input)
31

32 mean_input = inte rpo la ted_input (range_data [tra in_range])
33 fmean_input = FDataGrid (data_matrix = mean_input , gr id_points=

range_data [tra in_range])
34

35 re turn mean_input , fmean_input
36

37 root_path = ’C: / Users /Gyan/Desktop/BEP Python ’
38 sugar_path = ’C: / Users /Gyan/Desktop/BEP Python/Extracted Data/Sugar . csv

’
39 gravel_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Gravel .

csv ’
40 f lower_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Flowers .

csv ’
41 f i sh_path = ’C:/ Users /Gyan/Desktop/BEP Python/Extracted Data/Fish . csv ’
42

43 r ada r_ f i l e = xr . open_dataset (root_path + ’ /Data/20201 ’ + ’ /
MMCR__MBR2__Spectral_Moments__10s__155m−18km__200112 . nc ’)

44

45 Range = rada r_ f i l e . range . va lue s
46 dataframe_nd = pd . read_csv (root_path + ’ /CSVData/Data_nd . csv ’)
47 data_nd = dataframe_nd . to_numpy ()
48

49 lower = 0
50

51 upper = 4000
52

53 tra in_range = range (f ind_neares t (Range , lower) , f ind_neares t (Range ,
upper))

54 h_train = Range [tra in_range]
55

56 f_data = FDataGrid (data_matrix = data_nd [: , tra in_range] , gr id_points=
h_train)

57

58 fpca_bas i s = FPCA(2) . f i t (f_data)
59 fpca_data = fpca_bas i s . t rans form (f_data)

62

60

61 fpca_components = fpca_bas i s . components_ . data_matrix
62

63 p l t . p l o t (fpca_components [0] [:] , h_train , l a b e l = ’FPCA1: {}% ’ . format (
fpca_bas i s . explained_variance_rat io_ [0] . round (2) ∗100))

64 p l t . p l o t (fpca_components [1] [:] , h_train , l a b e l = ’FPCA2: {}% ’ . format (
fpca_bas i s . explained_variance_rat io_ [1] . round (2) ∗100))

65 p l t . t i t l e (’FPCA Components ’)
66 p l t . yl im (0 ,4000)
67 p l t . x l ab e l (’ echo f r a c t i o n / %’)
68 p l t . y l ab e l (’ he ight / m’)
69 p l t . l egend ()
70 p l t . show ()
71

72 mean_sugar , fmean_sugar = WPD_Reader(sugar_path , train_range , Range)
73 mean_gravel , fmean_gravel = WPD_Reader(gravel_path , train_range , Range)
74 mean_flower , fmean_flower = WPD_Reader(flower_path , train_range , Range)
75 mean_fish , fmean_fish = WPD_Reader(f ish_path , train_range , Range)
76

77 mean_gravel_hat = [fpca_bas i s . t rans form (fmean_gravel) [0] , ’G’]
78 mean_sugar_hat = [fpca_bas i s . t rans form (fmean_sugar) [0] , ’ S ’]
79 mean_flower_hat = [fpca_bas i s . t rans form (fmean_flower) [0] , ’ FI ’]
80 mean_fish_hat = [fpca_bas i s . t rans form (fmean_fish) [0] , ’FL ’]
81

82 mean_hat_list = [mean_gravel_hat , mean_sugar_hat , mean_flower_hat ,
mean_fish_hat]

83

84 n_c lus te r s = 2
85

86 ##PLOTS
87

88 # Create a subplot with 1 row and 3 columns
89 ax2 = p l t . subp lo t2g r id ((2 , 2) , (0 , 0))
90 ax3 = p l t . subp lo t2g r id ((2 , 2) , (0 , 1))
91 ax4 = p l t . subp lo t2g r id ((2 , 2) , (1 , 0))
92 ax5 = p l t . subp lo t2g r id ((2 , 2) , (1 , 1))
93

94

95 p l t . subplots_adjust (wspace = 0 . 3 , hspace = 0 . 3)
96

97 # I n i t i a l i z e the c l u s t e r e r with n_c lus te r s va lue and a random generato r
98 # seed o f 10 f o r r e p r o d u c i b i l i t y .
99 bandwidth_est = estimate_bandwidth (fpca_data , quan t i l e =0.5)

100

101 c l u s t e r e r = MeanShift (c l u s t e r_a l l = False , bandwidth=bandwidth_est)
102 c l u s t e r_ l ab e l s = c l u s t e r e r . f i t_p r ed i c t (fpca_data)
103 n_c lus te r s = max(c l u s t e r_ l ab e l s) + 1
104

105 #
##
AX2

106 # 2nd Plot showing the ac tua l c l u s t e r s formed
107 c o l o r s = cm. n ipy_spectra l (c l u s t e r_ l ab e l s . astype (f l o a t) / n_c lus te r s)
108 ax2 . s c a t t e r (
109 fpca_data [: , 0] , fpca_data [: , 1] , marker=" . " , s=30, lw=0, alpha

=0.7 , c=co l o r s , edgeco l o r="k"

63

110)
111

112 # Label ing the c l u s t e r s
113 c en t e r s = c l u s t e r e r . c lus ter_center s_
114 # Draw white c i r c l e s at c l u s t e r c en t e r s
115 ax2 . s c a t t e r (
116 c en t e r s [: , 0] ,
117 c en t e r s [: , 1] ,
118 marker="o" ,
119 c="white " ,
120 alpha=1,
121 s=200 ,
122 edgeco l o r="k" ,
123)
124

125 f o r i , c in enumerate (c en t e r s) :
126 ax2 . s c a t t e r (c [0] , c [1] , marker="$%d$" % i , alpha=1, s=50, edgeco l o r

="k")
127

128 # Draw c l a s s i f i c a t i o n mean c en t e r s
129 f o r i in range (l en (mean_hat_list)) :
130 ax2 . s c a t t e r (
131 mean_hat_list [i] [0] [0] ,
132 mean_hat_list [i] [0] [1] ,
133 marker=" s " ,
134 c="white " ,
135 alpha=1,
136 s=200 ,
137 edgeco l o r="k" ,
138)
139 ax2 . s c a t t e r (mean_hat_list [i] [0] [0] , mean_hat_list [i] [0] [1] , marker=

"${}$" . format (mean_hat_list [i] [1]) , alpha=1, s=50, edgeco l o r="k
" , c=’ white ’)

140

141 ax2 . s e t_ t i t l e ("The v i s u a l i z a t i o n o f the c l u s t e r e d data . ")
142 ax2 . s e t_x labe l ("Feature space f o r the 1 s t f e a t u r e ")
143 ax2 . s e t_y labe l ("Feature space f o r the 2nd f e a tu r e ")
144

145 #
##
AX4

146 # 2nd Plot showing the ac tua l c l u s t e r s formed
147 c o l o r s = cm. n ipy_spectra l (c l u s t e r_ l ab e l s . astype (f l o a t) / n_c lus te r s)
148 ax4 . s c a t t e r (
149 fpca_data [: , 0] , fpca_data [: , 1] , marker=" . " , s=30, lw=0, alpha

=0.7 , c=co l o r s , edgeco l o r="k"
150)
151 # Draw white c i r c l e s at c l u s t e r c en t e r s
152 ax4 . s c a t t e r (
153 c en t e r s [: , 0] ,
154 c en t e r s [: , 1] ,
155 marker="o" ,
156 c="white " ,
157 alpha=1,
158 s=200 ,
159 edgeco l o r="k" ,

64

160)
161 ax4 . set_xlim ([−600 ,400])
162 ax4 . set_ylim ([−250 ,150])
163

164 f o r i , c in enumerate (c en t e r s) :
165 ax4 . s c a t t e r (c [0] , c [1] , marker="$%d$" % i , alpha=1, s=50, edgeco l o r

="k")
166

167 # Draw c l a s s i f i c a t i o n mean c en t e r s
168 f o r i in range (l en (mean_hat_list)) :
169 ax4 . s c a t t e r (
170 mean_hat_list [i] [0] [0] ,
171 mean_hat_list [i] [0] [1] ,
172 marker=" s " ,
173 c="white " ,
174 alpha=1,
175 s=200 ,
176 edgeco l o r="k" ,
177)
178 ax4 . s c a t t e r (mean_hat_list [i] [0] [0] , mean_hat_list [i] [0] [1] , marker=

"${}$" . format (mean_hat_list [i] [1]) , alpha=1, s=50, edgeco l o r="k
" , c=’ white ’)

179

180 ax4 . s e t_ t i t l e ("The v i s u a l i z a t i o n o f the c l u s t e r e d data . (Zoomed) ")
181 ax4 . s e t_x labe l ("Feature space f o r the 1 s t f e a t u r e ")
182 ax4 . s e t_y labe l ("Feature space f o r the 2nd f e a tu r e ")
183

184 p l t . s u p t i t l e (
185 "Ana lys i s f o r Mean Sh i f t c l u s t e r i n g on sample data"
186 % n_clusters ,
187 f o n t s i z e =14,
188 f ontwe ight="bold " ,
189)
190

191 #
##
AX3

192 ax3 . p l o t (mean_sugar , h_train , c o l o r = ’ l i g h t g r e e n ’ , l a b e l=’ Sugar ’ ,
l i n e s t y l e = ’ dashdot ’)

193 ax3 . p l o t (mean_gravel , h_train , c o l o r = ’ darkgreen ’ , l a b e l=’ Gravel ’ ,
l i n e s t y l e = ’ dashdot ’)

194 ax3 . p l o t (mean_fish , h_train , c o l o r = ’ darkblue ’ , l a b e l=’ Fish ’ ,
l i n e s t y l e = ’ dashdot ’)

195 ax3 . p l o t (mean_flower , h_train , c o l o r = ’ l i g h t b l u e ’ , l a b e l=’ Flower ’ ,
l i n e s t y l e = ’ dashdot ’)

196

197

198 patte rn_dic t ionary = d i c t ()
199

200 f o r k in range (n_c lus te r s) :
201 patte rn_dic t ionary [k] = l i s t ()
202

203

204 f o r i in range (l en (fpca_data)) :
205 f o r k in range (n_c lus te r s) :
206 i f c l u s t e r_ l ab e l s [i] == k :

65

207 patte rn_dic t ionary [k] . append (data_nd [i])
208 e l s e :
209 pass
210

211 #a r r a y f i c a t i o n
212 f o r key in pat te rn_dic t ionary :
213 patte rn_dic t ionary [key] = np . array (pat te rn_dic t ionary [key])
214

215 #stdev
216 stdev_pattern_dict ionary = patte rn_dic t ionary . copy ()
217

218 f o r key in pat te rn_dic t ionary :
219 stdev_pattern_dict ionary [key] = s t a t s . sem(patte rn_dic t ionary [key])
220

221 #mean
222 mean_pattern_dictionary = patte rn_dic t ionary . copy ()
223

224 f o r key in pat te rn_dic t ionary :
225 mean_pattern_dictionary [key] = pmean(patte rn_dic t ionary [key] , 1)
226

227 #plo t pat t e rns
228 f o r key in pat te rn_dic t ionary :
229 Le f t = mean_pattern_dictionary [key]−2∗ stdev_pattern_dict ionary [key]
230 Right = mean_pattern_dictionary [key]+2∗ stdev_pattern_dict ionary [key

]
231 c o l o r = cm. n ipy_spectra l (f l o a t (key) / n_c lus te r s)
232

233 ax3 . p l o t (mean_pattern_dictionary [key] , Range [: 6 0 5] ,
234 c o l o r = co lo r ,
235 l a b e l = ’ C lus te r {} : {}% ’ . format (key , round (l en

(pat te rn_dic t ionary [key]) ∗100/ l en (data_nd))
))

236 ax3 . f i l l_betweenx (Range [: 6 0 5] , Left , Right , f a c e c o l o r=co lo r , alpha
=0.5 , zorder=−1)

237 ax3 . set_ylim (0 ,4000)
238 ax3 . s e t_ t i t l e (’The p lo t o f he ight aga in s t c loud f r a c t i o n . ’)
239 ax3 . ax l i n e ((0 , 800) , (1 , 800) , c o l o r = ’ grey ’)
240 ax3 . s e t (x l ab e l = ’ echo f r a c t i o n / %’ , y l ab e l = ’ he ight / m’)
241 ax3 . l egend ()
242

243 #
##
AX5

244 ax5 . p l o t (mean_sugar , h_train , c o l o r = ’ l i g h t g r e e n ’ , l a b e l=’ Sugar ’ ,
l i n e s t y l e = ’ dashdot ’)

245 ax5 . p l o t (mean_gravel , h_train , c o l o r = ’ darkgreen ’ , l a b e l=’ Gravel ’ ,
l i n e s t y l e = ’ dashdot ’)

246 ax5 . p l o t (mean_fish , h_train , c o l o r = ’ darkblue ’ , l a b e l=’ Fish ’ ,
l i n e s t y l e = ’ dashdot ’)

247 ax5 . p l o t (mean_flower , h_train , c o l o r = ’ l i g h t b l u e ’ , l a b e l=’ Flower ’ ,
l i n e s t y l e = ’ dashdot ’)

248

249

250 patte rn_dic t ionary = d i c t ()
251

252 f o r k in range (n_c lus te r s) :

66

253 patte rn_dic t ionary [k] = l i s t ()
254

255

256 f o r i in range (l en (fpca_data)) :
257 f o r k in range (n_c lus te r s) :
258 i f c l u s t e r_ l ab e l s [i] == k :
259 patte rn_dic t ionary [k] . append (data_nd [i])
260 e l s e :
261 pass
262

263 #a r r a y f i c a t i o n
264 f o r key in pat te rn_dic t ionary :
265 patte rn_dic t ionary [key] = np . array (pat te rn_dic t ionary [key])
266

267 #stdev
268 stdev_pattern_dict ionary = patte rn_dic t ionary . copy ()
269

270 f o r key in pat te rn_dic t ionary :
271 stdev_pattern_dict ionary [key] = s t a t s . sem(patte rn_dic t ionary [key])
272

273 #mean
274 mean_pattern_dictionary = patte rn_dic t ionary . copy ()
275

276 f o r key in patte rn_dic t ionary :
277 mean_pattern_dictionary [key] = pmean(patte rn_dic t ionary [key] , 1)
278

279 #plo t pat t e rns
280 f o r key in patte rn_dic t ionary :
281 Le f t = mean_pattern_dictionary [key]−2∗ stdev_pattern_dict ionary [key]
282 Right = mean_pattern_dictionary [key]+2∗ stdev_pattern_dict ionary [key

]
283 c o l o r = cm. n ipy_spectra l (f l o a t (key) / n_c lus te r s)
284

285 ax5 . p l o t (mean_pattern_dictionary [key] , Range [: 6 0 5] ,
286 c o l o r = co lo r ,
287 l a b e l = ’ C lus te r {} : {}% ’ . format (key , round (l en

(pat te rn_dic t ionary [key]) ∗100/ l en (data_nd))
))

288 ax5 . f i l l_betweenx (Range [: 6 0 5] , Left , Right , f a c e c o l o r=co lo r , alpha
=0.5 , zorder=−1)

289 ax5 . set_xlim (0 ,23)
290 ax5 . set_ylim (0 ,4000)
291 ax5 . s e t_ t i t l e (’The p lo t o f he ight aga in s t c loud f r a c t i o n . (Zoomed) ’

)
292 ax5 . ax l i n e ((0 , 800) , (1 , 800) , c o l o r = ’ grey ’)
293 ax5 . s e t (x l ab e l = ’ echo f r a c t i o n / %’ , y l ab e l = ’ he ight / m’)
294

295 #
##
AX1

296 f i g , ax1 = p l t . subp lo t s ()
297

298 # The 1 s t subplot i s the s i l h o u e t t e p l o t
299 # The s i l h o u e t t e c o e f f i c i e n t can range from −1, 1 but in t h i s example

a l l
300 # l i e with in [−0.1 , 1]

67

301 ax1 . set_xlim ([−0 .5 , 1])
302 # The (n_c lus te r s+1)∗10 i s f o r i n s e r t i n g blank space between s i l h o u e t t e
303 # p lo t s o f i nd i v i dua l c l u s t e r s , to demarcate them c l e a r l y .
304 ax1 . set_ylim ([0 , l en (fpca_data) + (n_c lus te r s + 1) ∗ 10])
305

306

307 # The s i l h oue t t e_s co r e g i v e s the average value f o r a l l the samples .
308 # This g i v e s a p e r sp e c t i v e in to the dens i ty and sepa ra t i on o f the

formed
309 # c l u s t e r s
310 s i lhouet te_avg = s i l houe t t e_s co r e (fpca_data , c l u s t e r_ l ab e l s)
311 pr in t (
312 "For n_c lus te r s =" ,
313 n_clusters ,
314 "The average s i l h oue t t e_s co r e i s : " ,
315 s i lhouette_avg ,
316)
317

318 # Compute the s i l h o u e t t e s c o r e s f o r each sample
319 sample_s i lhouette_values = s i lhouet te_sample s (fpca_data , c l u s t e r_ l ab e l s

)
320

321 y_lower = 10
322 f o r i in range (n_c lus te r s) :
323 # Aggregate the s i l h o u e t t e s c o r e s f o r samples be long ing to
324 # c l u s t e r i , and s o r t them
325 i t h_c lu s t e r_s i l houe t t e_va lue s = sample_si lhouette_values [

c l u s t e r_ l ab e l s == i]
326

327 i t h_c lu s t e r_s i l houe t t e_va lue s . s o r t ()
328

329 s i z e_c lu s t e r_ i = i th_c lu s t e r_s i l houe t t e_va lue s . shape [0]
330 y_upper = y_lower + s i z e_c lu s t e r_ i
331

332 c o l o r = cm. n ipy_spectra l (f l o a t (i) / n_c lus te r s)
333 ax1 . f i l l_betweenx (
334 np . arange (y_lower , y_upper) ,
335 0 ,
336 i th_c lus t e r_s i lhouet t e_va lue s ,
337 f a c e c o l o r=co lo r ,
338 edgeco l o r=co lo r ,
339 alpha =0.7 ,
340)
341

342 # Label the s i l h o u e t t e p l o t s with t h e i r c l u s t e r numbers at the
middle

343 ax1 . t ex t (−0.05 , y_lower + 0 .5 ∗ s i z e_c lu s t e r_ i , s t r (i))
344

345 # Compute the new y_lower f o r next p l o t
346 y_lower = y_upper + 10 # 10 f o r the 0 samples
347

348 ax1 . s e t_ t i t l e ("The s i l h o u e t t e p l o t f o r the var i ous c l u s t e r s . ")
349 ax1 . s e t_x labe l ("The s i l h o u e t t e c o e f f i c i e n t va lue s ")
350 ax1 . s e t_y labe l (" Clus te r l a b e l ")
351

352 # The v e r t i c a l l i n e f o r average s i l h o u e t t e s co r e o f a l l the va lue s

68

353 ax1 . axv l i n e (x=si lhouette_avg , c o l o r=" red " , l i n e s t y l e="−−")
354

355 ax1 . s e t_yt i ck s ([]) # Clear the yax i s l a b e l s / t i c k s
356 ax1 . s e t_xt i ck s ([−0 .1 , 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1])

69

	Abstract
	I Introduction
	II Theory
	Instrumentation and Data
	The Radar Equation
	The Reflectivity Z
	Cloud Fraction
	CORAL Ka-Band Cloud Radar Characteristics

	Mesoscale Cloud Organization: Sugar, Flower, Fish and Gravel
	Complex Systems
	Visual Identification
	Classification

	Functional Principal Component Analysis
	Clustering
	Centroid-based Clustering: K-means
	Distribution-based Clustering: Gaussian Mixed Models (GMM)
	Density-based Clustering: Mean Shift
	Internal Validation
	The Hopkins Statistic
	Determining the Number of Clusters
	The Elbow Method
	Gap Statistic

	Methodology

	Methods
	Model Selection
	Data Extraction
	Cluster Analysis

	III Results and Discussion
	Testing for Clustering Tendency
	Data Pre-processing: FPCA
	K-means
	Determining the Number of Clusters
	Internal & External Validation

	Gaussian Mixed Models
	Determining the Number of Clusters
	Internal & External Validation

	Mean Shift
	Bandwidth
	Internal & External Validation

	Investigating Robust Clusters
	Overall Remarks

	IV Conclusion
	References
	Appendix
	Algorithms
	Analysis for K-means Clustering with Schulz's (2021) Data
	Analysis for GMM Clustering with Schulz's (2021) Data
	Analysis for Mean Shift Clustering with Schulz's (2021) Data
	Python Programs
	Time Windows
	Clustering Tendency
	K-means Clustering
	K-means Analysis
	K-means Elbow method
	K-means Gap statistic

	GMM Clustering
	GMM Analysis
	GMM Elbow method
	GMM Gap statistic

	Mean Shift Clustering
	Mean Shift Analysis

