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ARTICLE INFO ABSTRACT
Keywords: Point clouds and polygonal meshes are widely used when modeling real-world scenarios. Here, point clouds
Meshing arise, for instance, from acquisition processes applied in various surroundings, such as reverse engineering,
Remeshing ) rapid prototyping, or cultural preservation. Based on these raw data, polygonal meshes are created to, for
Geometry processing example, run various simulations. For such applications, the utilized meshes must be of high quality. This
Algorithm . . . . .
paper presents an algorithm to derive triangle meshes from unstructured point clouds. The occurring edges
have a close to uniform length and their lengths are bounded from below. Theoretical results guarantee the
output to be manifold, provided suitable input and parameter choices. Further, the paper presents several
experiments establishing that the algorithms can compete with widely used competitors in terms of quality of
the output and timing and the output is stable under moderate levels of noise. Additionally, we expand the
algorithm to detect and respect features on point clouds as well as to remesh polyhedral surfaces, possibly
with features.
Supplementary material, an extended preprint, a link to a previously published version of the article,
utilized models, and implementation details are made available online.
1. Introduction with guaranteed smallest edge length and with strong consideration
of triangle quality provided by a distribution close to uniformity of
Point cloud meshing is an important topic present in different edge lengths. Furthermore, as opposed to other meshing approaches,
fields of research and in various applications. Examples include reverse our algorithm works directly on the surface geometry, that is, does
engineering [1], rapid prototyping [2], or architecture [3]. A common not need any parametrization. Finally, the algorithm performs a greedy
approach to enable this raw data for further processing is to create disk-growing approach, which enables the processing of the geometry

in one pass, making further iterations unnecessary.

A first version of this algorithm has been presented at the 2024
International Meshing Roundtable [6]. The contributions of the original
article included:

a triangle mesh from the point cloud. The quality of this mesh is,
however, affected by outliers, noise, or non-uniform distribution of the
input data. Thus, badly formed mesh elements can become apparent in
the resulting geometric model. They can be long-stretched, thin trian-

gles, so-called slivers, or topological issues. These faulty representations - introduction of a geometric approach suitable to mesh point
have to be repaired before the meshes are further processed. clouds,
While this issue is rather general and inherent to the workflow, + which creates high-quality triangles with edge lengths close to

recent research still struggles to circumvent it. Even when reducing uniformity and of a guaranteed minimum length,
to only a local mesh representation of a given geometry, established as well as manifold output, provided a suitable input geometry,
methods, such as Delaunay triangulations, do not guarantee to create a in a single sweep over said input,
manifold mesh of well-shaped triangles [4, Sec. 4.4]. The present paper
aims to close this gap.

We aim to reconstruct a surface from a given point cloud via a
sphere-packing approach [5]. The goal is to create a manifold output

discussed in Sections 3 to 5. In this extended version of the article,
we build upon the previous contributions and extend the algorithm to
handle:
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« detection of sharp feature ridges in point clouds,

» remeshing of polyhedral surfaces obtaining high-quality meshes
with edge lengths close to uniformity,

+ detection of sharp feature ridges on polyhedral meshes,

presented in Sections 6 to 9.
2. Related work

In the last decades, several attempts were made to reconstruct the
ground truth from a given point cloud P. The resulting reconstruction
depends on the quality of P, which can include noisy points or normals,
outliers, or be sampled non-uniformly. On top of a reconstruction, the
user may ask for guarantees such as correct topology [7], or conver-
gence to the ground truth with increasing sampling density [8]. Some
algorithms guarantee local connectedness of their output [9], while
others guarantee their output to stay within the convex hull of the given
input [10]. Other requirements might be, for instance, a result mesh of
high quality, that is, consisting of triangles with edge length close to
uniformity and vertices of degree close to 6. Finally, the reconstruction
should be computed fast. For an overview of surface reconstruction
algorithms, we refer to a recent survey [11]. The algorithms discussed
in the following were chosen for their wide use in the field and will
serve as a comparison in Section 5.

First, we consider surface reconstruction based on a Poisson equa-
tion [12], implemented in CGAL [13]. An implicit function framework
is built, where the reconstructed surface appears by extracting an
appropriate isosurface. The output is smooth and robustly approximates
noisy data. Additionally, densely sampled regions allow the reconstruc-
tion of sharp features while sparsely sampled regions are smoothly
reconstructed. In later work, these ideas are further developed to create
watertight meshes fitting an oriented point cloud by using adaptive,
finite elements multi-grid solvers capable of solving a linear system
discretized over a spatial domain [14], implemented in MeshLab [15].

Second, the scale-space approach [16], implemented in CGAL [13],
aims at topological correctness by choosing triangles based on a
confidence-based criterion. This avoids the accumulation of errors,
which is often detected in greedy approaches. The algorithm is interpo-
lating, and can handle sharp features to a certain extent, but does not
come with proven topological correctness.

The advancing front algorithm [17], implemented in CGAL [13],
handles sets of unorganized points without normal information. It
computes a normal field and meshes the complete point cloud directly,
which leads to a high-level reconstruction of details as well as to an
accurate delineation of holes in the ground truth. Therefore, a smooth-
ing operator consistent with the intrinsic heat equation is introduced.
By construction, this approach is almost interpolating and features are
preserved given very low levels of noise.

The robust implicit moving least squares (RIMLS) algorithm [18],
implemented in MeshLab [15], combines implicit MLS with robust
statistics. The MLS approach [8] is a widely used tool for functional
approximation of irregular data. The development of RIMLS is based on
a surface definition formulated in terms of linear kernel regression min-
imization using a robust objective function which gives a simple and
technically sound implicit formulation of the surface. Thus, RIMLS can
handle noisy data, outliers, and sparse sampling, and can reconstruct
sharp features. The number of iterations needed to achieve a reliable
result increases near sharp features while smooth regions only need a
single iteration. Furthermore, RIMLS belongs to the set of algorithms
producing approximating meshes.

Another approach is based on placing triangles with regard to the
restricted Voronoi diagram of a filtered input point set [19], available
via MeshLab [15]. This approach has the largest similarity to our
algorithm, as we will also employ Voronoi diagrams, however, only to
filter points on the tangent plane. Another shared aspect is that both
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this and our algorithm work on a set of disks centered at the input
points, oriented orthogonal to a guessed or provided normal direction.

All these algorithms come with different guarantees regarding the
output. However, none of these algorithms comes with a guarantee on
the edge length, and only some algorithms are guaranteed to provide
a manifold mesh. As we base our surface reconstruction on a set of
touching spheres placed on the underlying surface [5], we are able to
provide certain theoretical guarantees on the output: given suitable in-
put and parameter choices, our output is always manifold. Furthermore,
the output of our algorithm has a guaranteed minimum edge length,
while striving towards uniformity of occurring edge lengths. For better
comparison to other algorithms, we also employ the “Isotropic Ex-
plicit Remeshing” filter of MeshLab [15]. This filter repeatedly applies
edge flip, collapse, relax, and refine operations [20]. For remeshing
polyhedral surfaces, we also make use of the “Remeshing” routine
provided by the Polygon Mesh Processing (PMP) library [21]. Here, the
triangle quality is improved by local modifications such as splitting and
collapsing of edges and tangential smoothing [22]. Similar algorithms
exist that are based on local operations like edge flips and vertex
relocations to achieve anisotropic triangular meshes [23]. As opposed
to our approach, in their work, the resulting edge lengths depend
on the curvature of the geometry remeshed. Additionally, all of the
works listed above require several iterations to obtain an isotropic
triangulation while our approach works in a single sweep over the input
geometry. In Sections Section 5.1, 8, and 9, we will provide a detailed
comparison of our algorithm with the works listed here.

When it comes to feature-aware (re)meshing, as a comparison met-
ric between the obtained meshes, we will employ the Hausdorff dis-
tance. This allows us to compare the input, be it a point cloud or a
surface mesh, with the (re)meshed version. An estimate of the one-sided
Hausdorff distance is computed by sampling the input and projecting
the samples onto the output [24]. A variety of methods has been
proposed to identify features on point clouds and meshes. We follow a
basic approach using the variation of normals of two elements [25], al-
lowing us to specify a critical dihedral angle between two normals from
which a feature between the two is respected during remeshing. This
follows similar approaches in point cloud and surface smoothing [26,
27].

3. Theory and methodology

Our algorithm aims to reconstruct a manifold M from a given
point cloud P. In order to obtain a manifold mesh with a guaranteed
minimum edge length, we first present assumptions and theoretical
results on both M and P in Section 3.1. Based on these theoretical
results, we present a geometric approach in Section 3.2, which consists
of creating a sphere packing from which the output is constructed.
Sections 3.3 to 3.7 are devoted to explaining the different steps in
detail.

3.1. Assumptions and theory

Here, we will derive the assumptions to be made on M and P to
ensure that the constructed surface mesh is manifold. Let M be an
orientable, compact C2-manifold embedded into R3, which is assumed
to be closed and of finite reach

pi=inf {|la—m| |a€ Ay A me M} Ry,

where A, is the medial axis of M consisting of the points ¢ € R3
satisfying

min ||q — = - pll = —-p
peMllq pll=llg =5l =llg—pll

for p # p € M. On the manifold M, we define the geodesic distance d ,,
as follows:
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Fig. 1. Illustration of Lemma 3.1. Intersection of a saddle-shaped surface with
a sphere (shown in blue). Six points on the surface are marked as well as their
projections to the tangent plane belonging to the center of the sphere. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Definition 3.1. Let len(f) = fol |£'()] dt denote the length of a curve
f € C'([0,1], M) in M. Then the geodesic distance dy of mm' € M is
defined as inf {len(f) | f € C}([0,1], M) : fF(O)=mA f(1)=m'}.

Now, for any p,q € M such that ||p — q|]| < 2p, the following
estimation holds [28, Lemma 3]:

lp —qll < dp(p. @) s2parcsin<w>. 3.1

Let T,M and T, M denote the tangent planes at p,q € M. Lemma 6
in [28] gives an upper bound for the angle « (TI,M, TqM) between
them,

dy(p,q)

< (T,M, T,M) < (3.2)

Hence, Inequalities (3.1) and (3.2) imply for the normal vectors n, at
p and n, at q that

Q=< (np,nq) < 2arcsin < ||P2—pq||>

(3.3)

=lp=all > rtg) :=2psin (2 ).

For a given angle ¢, € [O, % [, the second part of Eq. (3.3) implies
that there is a constant r,, € Ry, such that ¢ < @, if [[p—qll < rp-
Denote by M’ := B, (p) n M the part of M that is contained in
M and the ball B, () centered at p. Then, the normals n, of all
points ¢ € B,  have positive Euclidean scalar product with n,. The
assumption that M is of positive finite reach guarantees that M’ is a
single connected component. Hence, M’ has a parallel projection to the

tangent plane T, M without over-folds (Fig. 1). Furthermore, we have:

Lemma 3.1. Let p € M be a point with normal n,. Then, for r < p, the
image of B,(p) N M under the projection r in direction of n, to the tangent
plane T, M is a convex set.

Proof. The intersection 7 of a closed set S ¢ RY having reach pg > 0
with a closed ball B,(x), r < pg and x € R?, is geodesically convex
in S [28, Corollary 1]. That is, the shortest path between any two
points in 7 lies itself in the intersection. Furthermore, the intersection
M of B, . and M is a topological disk as established above [28,
Proposition 1].

Here, 7 is not empty and consists of a surface patch since p lies
on M. Hence, the boundary oM’ can be parameterized by a closed
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curve y. As 7 is geodesically convex, y has positive geodesic curvature.
The inner product of the normals n, and n, at an arbitrarily chosen
point g € 97 is positive: (n,,n,) > 0, by choice of r. Therefore, under
projection along N, to the tangent plane T,.M, the sign of curvature is
preserved. Hence, the projection z(y) is a convex curve. []

Finally, let G be a simple graph that can be embedded on M such
that the vertices in G connected by an edge have Euclidean distance d.
The connected components remaining after removing G from M are
called regions, denoted by R. The set of vertices and edges incident to
aregion R € R is called its border, denoted by dR. Note that because M
is closed, each edge of G belongs to the border of exactly two regions.
Also, each vertex of G can belong to the borders of several regions
at once. Fix one such region R € R. Lemma 3.1 implies a choice of
points q;,...,q, € OR is mapped to points z(q,),...,7(q;) € TPM in
cyclic order, for p € R arbitrarily chosen. Hence, the regions can be
extracted correctly with respect to their topology from the cyclic order
of the edges at each vertex from the local projection. Given that the
reach criterion is satisfied and given a suitable normal field, we can
thus reconstruct a manifold from the input.

3.2. Methodology

Our algorithm extracts a mesh from the input P by placing touching
spheres of a predefined diameter ¢ across an approximation of the
surface [5]. As the spheres touch, this will guarantee a minimum edge
length of the mesh and by the results from Section 3, the resulting mesh
will be manifold.

We assume to be given unstructured input in form of a point
cloud P = {p; | i = 1,...,n} ¢ R® with corresponding normals

N={n, li=1,..,n}cS.

Furthermore, we assume that P is sampling an underlying, possibly
itself unknown, manifold M with the properties as listed above. To
approximate the surface, we associate to each point p € P a splat S, in
the shape of a circular disk with radius s, € R,,. Each S, is centered
at the respective point p and placed such that S, is orthogonal to
the corresponding normal n,. We assume the radii s, to be chosen
sufficiently large such that the manifold to be reconstructed is covered.
Here, a manifold is said to be covered, if the union of projections of
splats to the ground truth covers it. This is illustrated in Fig. 2(a).

Note that following Lemma 3.1, the user has to choose the parame-
ter d with respect to the reach p of the input, which can be estimated for
point clouds [29], to ensure a manifold output. In this sense, choosing d
is always a model-dependent choice of the user. If the model has, for
instance, been scanned and the user has physical access to the model,
a suitable value of d can be estimated based on the narrowest parts
of the model. Also, the overall point distance in the input point cloud
can serve as a means to approach a suitable value of d from below, for
instance by taking the smallest point distance (or a small multiple of
it) as value d. This results in an extremely fine-grained output, which
might not be supported by the user’s machine memory. Ultimately, it
depends on the use-case scenario of the user how fine-grained they
want the output. In Section 4.1, we will discuss a heuristic to iteratively
estimate a suitable value for d from above, aiming for a coarse output
that still satisfies the requirements formulated above.

Furthermore, the user also chooses a uniform initial splat size s. The
individual splat sizes will be derived later as described in Section 4.3.
In the following discussion, we will refer to elements of the input
geometry P as points and to entities created by the algorithm as vertices.
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(a) Splats of radius s. (b) Projection to Tp M. (c) Voronoi cells in T, M. (d) Individual splat radii.

Fig. 2. Illustration of uniform splat size 2(a), the projection of a point p and its vicinity to the tangent plane T,M 2(b), and the Voronoi cells with the farthest
point circled 2(c), leading to individual splat sizes 2(d).

(a) Connecting v by two edges to the same border. (b) Connecting v to two different borders.

Fig. 3. Possibilities when creating new vertices and edge connections in the graph C: In 3(a), the new vertex v and its two edges connect elements of the same
border. Here, v is created either in the in- or the outside region of the border. In 3(b), the new vertex v is connecting two borders. After introducing v and its
edges, the respective outside regions are still connected, then v and its edges join the borders. However, if the outside regions are split by v and its edges, new
borders are created which induce the corresponding regions.

=K
<N

(a) 3D view of a tent-like feature, a (b) Projection of the graph along an (c) Intersection of circle ¢ with splat S
geometry with reach p = 0. approximated surface normal. gives next vertex candidate.

Fig. 4. An input geometry with a vertex candidate v, 4(a), the region projection shows an illegal edge crossing 4(b). Edges to parent vertices are shown dotted.

Computation of vertex candidate positions 4(c).
3.3. Initialization

Aside from d and s, the user provides two starting vertices to ini-
tialize the algorithm. These vertices are chosen from R?® such that the
projections of these vertices onto their closest splats are sufficiently
close, that is, the distance between the projected vertices is in [d,2d],
so a third vertex having distance d to both of the starting vertices can
be placed by the algorithm. They do not have to be points from the
input P. The projected vertices form an initial vertex set of a graph ¢
that will ultimately provide the manifold mesh discussed in Section 3.1.
They can be manually provided or automatically created, for instance,
around the maximum z-coordinate of the input. At this stage, G does
not contain any edges. In the following, positions exactly d away from
at least two already existing vertices are called vertex candidates. The
two vertices that are d away from a candidate are its parents.

3.4. Disk growing to add vertices to G

After initialization, disk growing is performed to create further
vertices and edges for G. A vertex is added from the list of vertex
candidates, connected by edges to the two vertices distance d away
(Fig. 5(a)), and new vertex candidates are added based on the newly
placed vertex (Fig. 5(d)). Adding edges to G also changes the regions
introduced in Section 3.1: By inserting a new vertex and its two edges,
either one border is split into two borders or two borders join into one
(Figs. 3(a) and 3(b)).

As shown in Fig. 7, there might be regions with comparably long
borders. These lead to visible seams in both G and its triangulation. To
avoid such seams, we prioritize joining borders over splitting borders.
Thus, we aim to prioritize splits with a larger combinatorial distance
between the parent vertices along the border over those with smaller
distances. We do so with a priority assigned to the vertex candidates.

3.5. Prioritizing of vertex candidates

A vertex candidate v, is chosen to become a vertex of G according
to the following priorities, given in decreasing order:

1. At least one of the parent vertices has no edges incident to it.
(Note: This parent vertex has to be a starting vertex from the
initialization.)

2. At least one of the parent vertices is a vertex with only one edge
incident to it.

3. Inserting v, and its two edges joins two borders.

4. Inserting v, splits a border—prioritize larger distance between
parents along the common border.

In all cases, ties are broken by the breadth-first strategy. To determine
the priority of the vertex candidate to be added, it is necessary to know
to which of the parent vertices’ borders the edges to be introduced
will connect. To find the corresponding border, the candidate edge is
projected to the plane defined by the parent vertex and its normal. Note
that because of the results from Section 3.1, such a projection is possible
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without over-folds. Given the prioritization of vertices, these can now
be added to the graph G.

3.6. Creating a new vertex

Once a vertex candidate v, has been chosen, it is first determined
whether there is a vertex v in G such that ||v, — v||, < d. If so, the vertex
candidate is discarded.

Next, the priority of v, is checked. In case the vertex does not satisfy
the given priority anymore — for instance, because it was created with
a parent vertex without any edges incident to it, but the parent vertex
gained an edge by now — the vertex candidate’s priority is reduced and
another vertex candidate is chosen.

Adding v, and the corresponding edges to ¢ bears one additional
problem. In practice, we do not always know whether the point cloud P
fulfills the criteria listed in Section 3.2. If they are satisfied, the output
is guaranteed to be manifold. However, the user might have chosen d
too large or the input point cloud might not sample a manifold in the
first place. In either of these cases, all edges created from new vertices
still have an edge length of d, but the edges might create non-manifold
connections. Consider Figs. 4(a) and 4(b) for an example of a surface
with reach p = 0.

In these cases, we still want to prevent such faulty connections.
Therefore, we find an approximated surface normal, which will be
discussed in Section 4.1. We project v, and its prospective edges as well
as all edges already existing in the vicinity of v, along this normal. For
this projection, the vicinity of v, is bounded by d in normal direction.
We discard v, if either of its edges crosses an already existing edge (Fig.
4(b)). While the algorithm creates manifold output for suitable input
point clouds and choices of d, this mechanism improves the output even
outside of this regime. If v, has passed these checks, v, and the two
edges connecting it to its parent vertices are added to G.

3.7. Triangulating the resulting regions

After the disk growing process has finished, the graph G provides
a set of regions R. On average, each vertex of ¢ is connected to ap-
proximately four other vertices [5, Section 4.2]. Therefore, the average
border length is approximately four. Hence, we are left with the task
of triangulating these regions. In case of surfaces with boundary such
as partial scans, we do not want to close the surface by triangulating
the interior of the boundary. Therefore, we give the user the choice to
specify a maximal border length d,,,, that will leave the region as a
hole rather than triangulating it.

A region can be irregular in the sense that the inner angle of two
consecutive edges can be larger than 180°. In such cases, a projection
of a single region to a plane is not necessarily a convex polygon.
These inner angles of the faces are found by projecting the edges
onto a plane given by the vertex normal. Then, we triangulate each
region by iteratively cutting away the smallest angle as this leads to
triangles close to equilateral ones. Not only have we thereby created a
triangulation of the input surface that has guaranteed minimum edge
length d, but by the results provided in Section 3.1, provided that the
input and the user-chosen parameters satisfy the restrictions made, the
triangulation is also manifold.

4. Implementation

In this section, we will discuss implementation aspects of the al-
gorithm presented above. In particular, this contains the introduc-
tion of data structures for efficient access. As stated in Section 3.2,
we assume to be given a point cloud P, its normal field N, user-
chosen parameters d, s, and in case of a surface with boundary, d,,,,.
If P does not come with a normal field, the user has to estimate
one, for instance, via [30]. Furthermore, the user has to choose the
implementation-related parameter w (Section 4.2).
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(a) Adding a new vertex. (b) Collecting splats, top view.

(c) Collecting normals.

(d) Finding candidates.

Fig. 5. Update steps of the algorithm.

4.1. Box grid data structure

When introducing new vertex candidates (Section 3.4), we need to
know all splats close to a given, newly introduced vertex. In order
to have access to these, we build a box grid data structure consisting
of equal-sized, cubical boxes of side-length d partitioning the three-
dimensional embedding space. Each box holds a pointer to those input
points and their splats that are at most d away (Fig. 5(c)). This
collection of points associated with box b; is denoted by B;.

As preliminary filter step, we compute an average normal n, for
each box b; by summing up the normals of all those points that b; has
a pointer to, without normalizing the sum. If Vbj ‘ is smaller than 0.1,
we keep all points in b;. If the length is at least 0.1, we can assume
that enough points agree on a normal direction in this box. Then, we
remove those points p from the box for which (np,ﬁbj) < 0. We choose
a value of 0.1 for the length check to filter a small number of points
while maintaining coherent normal information. This will ensure that
the following step can succeed.

For each box b; with at least one associated splat, we compute a
box normal ny . It will be used for projection steps that will ensure
manifold properties of the resulting mesh. This will provide approx-
imated surface normals that allow us to work on data which do not
fulfill the requirements listed in Section 3.1 such as the example shown
in Fig. 4(a). To compute an approximation efficiently, we take a finite
sampling Sy C S? and derive the box normal ny, as
ny, = arg max min <"Pi’ n) ~ arg max min <"Pi’ n).

K NeSp Pi€b; nes?  Pi€b;
That is, we search for the unit normal that maximizes the smallest
scalar product with all point normals associated to the box b;. For each
box b;, the scalar product <"1’i’"”/> is ideally strictly positive for all
points p; € B;, even in those cases where we did not filter the normals.
Therefore, it allows for a projection onto a plane spanned by ny as
normal vector such that all points remain positively oriented by their
normals. The newly computed box normal is also used as vertex normal
for all vertices lying in b; from now on.

To achieve a fast lookup, we can either build a uniform grid on
the complete bounding box of the input or create a hash structure to
only store those boxes that are including input points from 7. The
uniform grid has faster access, but results in many empty boxes and
thus large memory consumption. The hash structure does not use as
much memory, but the access is slower. In our experiments, we utilize
the uniform grid structure to be faster as memory consumption can be
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(c) Border of length k + 1.

Fig. 6. Different borders and their respective regions: Border of length 0 consisting of a single vertex and associated to a single, white, surrounding region 6(a);
border of length 4, going back and forth between v and v/, associated to a single, white, surrounding region 6(b); cycle of k+ 1 edges, separating the surface into

an inner, light gray and outer, white region 6(c).

(b) Longest bor- (c)
der (close-up). regions.

(a) Longest bor-
der (length 93).

Triangulated (d) Triangulated (e) Longest border
region (close-up).

(f) Longest border

(length 11). (close-up).

Fig. 7. Visible seams on the Bottle Shampoo. Figs. 7(a) to 7(d) show experimental results obtained by inserting new vertices via pure breadth-first-growing. The
seams (shown in blue) appear as regions having a high number of border edges compared to all other regions on the surface. Figs. 7(e) and 7(f) show results

obtained by prioritizing new vertex candidates. For better visibility, the target edge length ¢ was chosen as 1.

this figure legend, the reader is referred to the web version of this article.)

handled by our test machine, although the time difference will become
significant only for larger models than used here.

Note that in Section 3, we stated that for creating new vertex
candidates, we need to traverse all splats that are distance d away from
a given point. However, here we are collecting all splats that are at
distance < d from the box, thus possibly resulting in a higher number of
splats to be considered. That insures that the spheres from Section 3.2
are inscribed into the volume within d-distances around the boxes (Fig.
5(b)).

This leads to the question how to choose a good side-length of the
boxes. As stated above, we use side-length d, that is, their size coincides
with the target edge length for the triangulation. For smaller values,
each splat would be associated to more boxes, hence the memory
demand would grow. For larger boxes, there will be many splats
associated to each box that do not actually lead to vertex candidates
with the currently considered vertex. Thus, the runtime would grow
when checking all splats being far away from the currently considered
vertex. Finally, for larger boxes, it will also become more difficult to
compute a suitable box normal for projections. Hence, we advocate for
the middle ground and choose d as the box size.

The last observation regarding the box normals leads to a heuristic
how to check the user’s parameter choice of d. Namely, a choice of d
is considered too large if there is a box whose box normal has negative
scalar product with any point normal of a point registered in the box.
This provides a mechanism to alert the user that they have chosen the
parameter d outside of the specifications as provided in Section 3.1
and that the output is thus not guaranteed to be manifold anymore.
This observation allows for the following binary search heuristic to
find a suitable, yet not too small value of d (compare the discussion
in Section 3.2): Start with a large initial value dj,;, for instance, the
bounding box diagonal of the geometry. Perform a binary search on
the interval [0, d;,;;] by picking the midpoint of the current interval,
building the box grid data structure and evaluating the normal scalar
products. If any is negative, continue the binary search in the lower
half of the interval. If all are positive, the user could either stop, since
a suitable value for d has been found, or continue in the upper half of
the interval, if they seek for a coarser output.

(For interpretation of the references to color in

4.2. Window size

During the disk growing, we maintain a data structure representing
the regions’ borders. They consist of oriented half-edge cycles. Note
that this includes degenerate cases, such as a single vertex, interpreted
as a border of length 0 (Fig. 6(a)). Each time a new vertex and the
two edges to its parent vertices are added to G, this creates four
new half-edges which have to be linked to the existing borders. To
avoid traversing very long distances along the borders when computing
priorities of vertex candidates, we introduce a window size w after which
the traversal is stopped. A window then consists of 2w + 1 vertices on
a common border, running in both directions centered at the vertex
currently considered. This provides a considerable speedup compared
to the previous solution [5].

Recall split and join from Section 3.4. Note that by cutting the
traversal at a finite window size, it is not longer possible to distinguish
between a split and join operation in all cases. Preliminary experiments
showed that window sizes of w > 8 all produced the same quality
output, despite not distinguishing splits or joins, as shown in the
supplementary material [31].

Furthermore, we experienced that setting the window size to w =0
immediately creates noticeable negative effects on the result of the
algorithm. In this case, our algorithm defaults to the breadth-first strat-
egy of [5] and thus creates visible seams on the geometry (Figs. 7(a)
to 7(d)). Starting from window sizes of w = 2 or w = 3, benefits in the
quality of the output are apparent as larger visible seams are prevented.
Theoretically, a larger window size will increase the lookup time.
Therefore, in our implementation of the algorithm, we go for w =8
as a large enough window size to reap its benefits, but a small enough
one to not impact the algorithm’s run time.

4.3. Discussion of splat size

In case of non-uniform sampling density, using a global splat size s
might lead to areas covered multiple times. For more densely sampled
areas, a smaller splat size guarantees the creation of vertices closer
to the sampling points. In our experiments, we saw that in high-
curvature regions, smaller splats have small deviation from the surface,
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(b) Result with individual splat sizes.

Fig. 8. Running our algorithm on the Bowl Chinese from [11] with 8(a) using
a global splat size and 8(b) using a local spat size. The letter reduces artifacts
in high-curvature regions such as the rim of the bowl.

while larger splats deviate from the surface significantly. Hence, when
looking for vertex candidates on large splats, the algorithm can place
vertices that are somewhat distant to the input points (Fig. 8(a)). There-
fore, we turn to individual, smaller splat sizes to reduce the deviation
of the vertices with respect to an underlying surface represented by the
input point cloud.

An additional benefit is that for smaller splat sizes, there are less
splats registered per box, which speeds up the algorithm. However, the
individual splats have to have sizes sufficient to cover the underlying
geometry. To find the specific splat size s, for each point p € P, we use
the box data structure (Fig. 2(d)). We consider all points p; associated
to the box containing p. To map the points {p;} to T,M, consider the
plane N, containing p and p; and being orthogonal to 7, M. For each
p;, an auxiliary point z(p;) is determined by rotating p; around p around
the smaller angle in N, until it lies in 7,.M. Hence, p and #(p;) have the
same distance d; as p and p; have. Based on a cyclic sorting around p,
we compute a central triangulation, connecting all projections to p and
connecting them pairwise according to their angular sorting (Fig. 2(b)).
For the resulting triangulation, we test whether or not we can flip a
central edge to make the incident triangles Delaunay. Points p;, whose
edges are flipped, are removed from the following consideration. For
those neighboring points that remain, consider the Voronoi diagram of
their triangulation. We choose the local splat size s, as distance from p
to the farthest Voronoi vertex (Fig. 2(c)). This ensures that all Delaunay
triangles are still completely covered. By choosing local splat sizes in
this way, the visible deviation from the underlying geometry is reduced
(Fig. 8(b)).

4.4. Processing vertex candidates

The processing of vertex candidates, following Section 3.4, consists
of the following steps: popping a vertex candidate from the priority
queue, checking feasibility of the candidate, adding a suitable candi-
date as well as its edges to G, and adding new vertex candidates to the
priority queue.

Because of the window size w, there is a finite number of priorities,
as given in Section 3.5. Each of these priorities is handled via its
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own queue that follows a strict first-in-first-out strategy, which enables
popping of candidates in constant time [32, Chapter 2.4].

If a vertex still has correct priority, checking for conflict with exist-
ing vertices and performing the projection check from Fig. 4(b) both
requires access to nearby vertices. This is a constant-time operation
because of the box data structure that holds all relevant vertices. Fur-
thermore, the number of vertices within distance 2d is, by construction,
bounded from above by the densest sphere packing in space, which is
a constant.

Once a new vertex v, iS created, we compute new vertex can-
didates having v, as parent vertex. Therefore, we need the set of
all splats intersecting the ball of radius d centered at v, This is a
subset of the set of those splats associated to the box containing vpey-
To efficiently access potential second parent vertices, we maintain for
each splat S a list of all vertices within distance d to .S (Figs. 5(b) and
5(c).

5. Experiments

This section is devoted to different experimental settings. As de-
scribed in the beginning, we aim for the reconstruction of real-world
scan data. When performing the comparison of different algorithms, we
do so based on a quantitative analysis of the obtained triangle mesh 7.
For this, given a triangle r € 7, we denote the lengths of its edges
by 4,1, ;,, and ¢, ;. The area of the triangle will be called 4,.

Following the approach in [33, p. 307, Eq. (13)], we measure the
quality Q, of a single triangle as

4134,

0 =——""—.
2 2 2
ft,l + I/ﬂi,Z + ft,S

This measure corresponds to a scaled version of the scale-invariant
(smooth) conditioning quality measure discussed by Shewchuk [34,
Table 3]. Based on the local, triangle-based measure Q,, further fol-
lowing [33], we present a global metric for the entire triangle mesh 7
as average over the quality of the triangles, that is

1
Qavg = m Z 0,

teT
Note that the factors normalize this quality metric to be 1 for equilateral
triangles and close to O for very narrow slivers. Finally, we compute the
root mean square deviation in percent Qgyg as

100 1 2
QRMS Qavg |T| ,GZT(Qt Qavg) .
See Section 3 of [34] for a relation of this quality measure to the stiff-
ness matrix. Furthermore, from the set of all edges in the triangulation,
we consider the average edge length E,,, as well as the corresponding
root mean square deviation Egyg, also in percent.

In order to demonstrate the quality of the meshes achieved by
our algorithm, we turn to 20 scanned objects provided as part of a
surface reconstruction benchmark [11]. Here, we concentrate on high-
resolution scans obtained by an OKIO 5M scanning device, resulting
in 330k to 2000k points per surface after 20 shots. The shots are
registered and do come with a normal field. Out of the 20 point clouds,
we used 19 as they are provided in the repository. The scan of a remote
control had a clear registration artifact, since one of the buttons of
the remote was registered into the remote, pointing down, not up.
This, we corrected manually by removing the wrongly registered points.
Here, we compare our results to those made by various widely used
algorithms from the field. Then, we add different levels of noise to the
data and investigate the stability of our algorithm.

As mentioned in Section 4, there is a set of parameters which has
to be chosen by the user. For our experiments, we made the following
choices. The sphere diameter d was set to be 0.2, while the maximal
border length 9,,,, was equal to 40. For each model, the initial splat
size s was chosen between 0.2 and 0.4 individually, depending on the
considered point cloud.
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Input Adv. Front. Poisson. Poisson MG. RIMLS. Scale Space. Voronoi. Ours.
Fig. 9. Qualitative comparison of named algorithms without remeshing (left) and with remeshing (right).

Table 1 Table 3

Bottle Shampoo (604,903 input points). Cloth Duck (1,018,891 input points).

Algorithm 171 Eqyg Epns  Qavg Orwmis Algorithm 171 Eqyg Epys Qavg Qrus
Adyv. Front 1.209546 0.1799 39.6 0.8247 16.0 Adv. Front 2,037,574 0.1839 40.1 0.8143 17.3
Adv. Front (Re) 928,850 0.2028 15.3 0.9416 6.1 Adv. Front (Re) 1,739,214 0.1965 19.4 0.9179 9.5
Poisson 16,280 1.2946 74.8 0.8760 12.3 Poisson 147,940 0.6300 44.3 0.8805 12.0
Poisson (Re) 498,140 0.2657 38.6 0.9251 7.5 Poisson (Re) 1,488,112 0.2068 17.5 0.9311 7.2
Poisson MG 150,770 0.5318 35.7 0.7204 33.7 Poisson MG 419,614 0.4086 38.5 0.7160 36.0
Poisson MG (Re) 952,830 0.2015 16.3 0.9330 7.0 Poisson MG (Re) 1,463,018 0.2093 18.7 0.9154 8.8
RIMLS 1,907,781 0.1499 35.8 0.7055 35.1 RIMLS 5,878,521 0.1154 39.9 0.6919 38.9
RIMLS (Re) 1,054,438 0.1905 19.3 0.9117 11.5 RIMLS (Re) 1,728,371 0.1978 20.1 0.9143 12.7
Scale Space 1,209,093 0.1798 39.1 0.8248 16.0 Scale Space 2,036,816 0.1839 40.0 0.8139 17.4
Scale Space (Re) 926,828 0.2028 15.2 0.9417 6.0 Scale Space (Re) 1,735,814 0.1965 19.3 0.9179 9.5
Voronoi 1,209,792 0.1799 52.3 0.8241 16.1 Voronoi 2,037,270 0.1767 41.8 0.8067 18.1
Voronoi (Re) 923,476 0.2044 20.8 0.9407 6.8 Voronoi (Re) 1,514,160 0.2027 15.4 0.9407 6.3
Ours 840,453 0.2131 11.2 0.9577 4.5 Ours 1,435,604 0.2181 15.7 0.9454 6.6
Ours (Re) 854,257 0.2098 10.4 0.9701 3.8 Ours (Re) 1,535,058 0.2089 12.5 0.9592 4.8

Table 2 Table 4

Bowl Chinese (606,320 input points). Toy Bear (607,501 input points).

Algorithm 17| Eqg Erys Qavg Orums Algorithm |71 Eavg Erus Qavg Orwmis
Adyv. Front 1,212,636 0.2920 38.2 0.8045 18.6 Adv. Front 1,214,998 0.1474 36.3 0.8474 13.9
Adv. Front (Re) 2,407,002 0.2038 15.4 0.9405 6.2 Adv. Front (Re) 629,138 0.2024 15.2 0.9418 6.0
Poisson 13,584 2.3850 63.2 0.8845 11.7 Poisson 20,134 1.0381 54.7 0.8882 11.7
Poisson (Re) 637,488 0.3732 40.8 0.9301 6.9 Poisson (Re) 530,374 0.2193 22.8 0.9293 7.3
Poisson MG 503,458 0.4710 39.8 0.7062 37.1 Poisson MG 432,268 0.2585 39.5 0.2623 37.1
Poisson MG (Re) 2,409,076 0.2050 17.7 0.9223 7.9 Poisson MG (Re) 629,508 0.2021 15.0 0.9436 6.1
RIMLS 6,458,589 0.1331 40.4 0.6877 39.6 RIMLS 5,548,226 0.0730 40.0 0.6910 39.3
RIMLS (Re) 2,441,143 0.2023 15.4 0.9394 6.3 RIMLS (Re) 618,531 0.2049 16.2 0.9322 6.8
Scale Space 1,093,339 0.2779 34.9 0.8054 18.7 Scale Space 1,214,990 0.1474 36.3 0.8474 13.9
Scale Space (Re) 1,947,592 0.2006 16.1 0.9351 7.3 Scale Space (Re) 628,848 0.2025 15.2 0.9417 6.0
Voronoi 1,212,636 0.2916 38.4 0.8042 18.7 Voronoi 1,214,996 0.1471 36.5 0.8471 13.9
Voronoi (Re) 2,398,584 0.2039 15.3 0.9405 6.1 Voronoi (Re) 616,160 0.2041 15.0 0.9427 5.9
Ours 2,137,650 0.2167 14.8 0.9485 6.2 Ours 555,490 0.2159 13.5 0.9499 5.6
Ours (Re) 2,246,434 0.2093 11.4 0.9665 4.3 Ours (Re) 578,730 0.2096 11.5 0.9657 4.3

5.1. Experimental comparison for point cloud meshing

From the algorithms listed in Section 2, Poisson [12], advancing
front [16], and scale space [17] are run with the standard parameters
as implemented in [35] except for the cleaning steps, which were un-
necessary because of the high-quality input. Multigrid Poisson [14] and
Voronoi reconstruction [19] are run with the standard parameters as
implemented in [36]. RIMLS [18] is run with the standard parameters
from [15], using a smoothness of 2 and a grid resolution of 1000.

We aim for an algorithm that provides high-quality triangulations
out-of-the-box, right after reconstruction. However, as the comparison
algorithms do not necessarily optimize for a uniform edge length, we
take their respective results and process them with the “Isotropic Ex-
plicit Remeshing” filter of MeshLab [15]. This filter repeatedly applies
edge flip, collapse, relax, and refine operations [20]. We run three
iterations with a target edge length of 0.2 in absolute world units for
the input [11].

In Tables 1 to 4, we report both the results of the comparison
algorithms and the result after these have been remeshed, indicated
by “(Re)”. These tables include representative models. A full report
with data for all 20 models can be found in the supplementary ma-
terial [31]. We chose the Bottle Shampoo and the Bowl Chinese because

of their features, as explored in Figs. 8 and 9. The Cloth Duck is one of
two models where the competing methods had the largest gain on our
algorithm when measured by E,, (see supplementary material [31] for
the Mug).

A first thing to notice when regarding the results presented in
Tables 1 to 4 is that our algorithm achieves the best, that is, highest
values for Q,,, on all models. This holds consistently across all 20
models from the repository. That is, our method produces the highest
quality meshes, even when compared with the remeshed results of the
other algorithms. For comparison, we also add the remeshed version of
our algorithm, which generally improves the quality metrics slightly
while destroying the minimum edge length guarantee. The goal of
this paper is not to compare different remeshing approaches, but to
present a method that can provide high-quality triangle meshes right
after reconstruction, without remeshing. Hence the remeshed version
of our algorithm is set apart in gray and carries bold font if it causes
an improvement on the previously best result. In this setting, the
comparison to the remeshed results just serves to place our results in a
broader setting.

On most of the models, the deviation Qpyg has also the low-
est percentages for our algorithm. Notable exceptions are the Bowl
Chinese (Table 2) and the Cloth Duck (Table 3). However, across all
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Fig. 10. Distributions of the Bottle Shampoo as obtained by our algorithm
(without remeshing).

models, the lowest deviation Qgys is at most 0.6% better than ours,
cf. supplementary material [31].

Regarding the second metric, note that by construction, all edges
produced by our algorithm are of length > 0.2. Therefore, the average
edge length is also always greater than 0.2, which places the remeshed
output of other methods in the lead regarding the metric E,,,. How-
ever, the largest average edge length across all models is 0.2181 for
our algorithm, attained on the Cloth Duck (Table 3), which is still very
close to the target edge length.

Also, for almost all models, the width of the distribution of edge
lengths, measured by Egyg, is the lowest for our algorithm. That is,
the triangulations produced are almost uniform. As a final observation
regarding the quality metrics, note that those comparison algorithms
that provide better metrics on the models do so only after an additional
remeshing step. This shows that our algorithm does attain the goal of
providing high-quality meshes immediately after reconstruction as it
beats all comparison algorithms in this regard.

When inspecting the models visually, it is clear that, at least after
remeshing, the triangulations are of high quality (Fig. 9). Note how
some algorithms are not able to reproduce small details—for instance,
a number 14 on the Bottle Shampoo. Even in the remeshed version, line-
like artifacts are still visible for some of the comparison algorithms. Our
algorithm creates a mesh close to uniformity while retaining the details.

This uniformity can be observed by plotting histograms on the
distribution of angles, edge lengths, and quality measures for a triangu-
lation obtained by our algorithm. See Fig. 10 for a corresponding set of
plots for the Bottle Shampoo and find histograms for the other models
in the supplementary material [31]. The histogram confirms that the
angles of the triangles are centered around 60°, indicating a strong
tendency towards equilateral triangles. Also, we see that the edge
lengths are indeed starting from the set minimum of 0.2, with most
edges actually attain this value. Finally, the histogram of the triangle
quality reveals that there are many equilateral triangles (corresponding
to Q, = 1), with the distribution skewed towards this highest quality
value.

Unlike some competitors and the remeshing step, our algorithm
is not iterative but produces the output in a single sweep over the
input. Run times for several models are given in Fig. 11, where the
competitors are reported including the remeshing time. All experiments
were run on a machine with an Intel® Core™ i7-5600U CPU 2.60 GHz
with four cores and 16 GB of RAM. Five of the models did not fit the
RAM of this comparison machine. Thus, we only provide timings for 15
models, while the qualitative data for the remaining five was acquired
on another machine. Note that our algorithm performs similarly to most
of the competitors.
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Fig. 11. Log of the run time of the algorithms on several models. Ours is
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Fig. 12. Measuring the reconstruction quality.

5.2. Robustness to user input

As stated in Section 3.3, the user is asked to provide two starting
vertices to run the algorithm. To investigate whether the quality of
the obtained mesh is independent of the chosen starting vertices, we
selected the Toy Bear because of its various differently curved regions.
Further models promoting this observation are included in the supple-
mentary material [31]. As illustrated in Fig. 13, we chose eight different
regions to place the starting vertices in. The results of these experiments
show that the quality of the output is not sensitive to the choice of
starting vertices. For the eight resulting triangle meshes, the average
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Fig. 13. Results with various starting vertices. From left to right: The Toy Bear with positions for starting vertex pairs, close up for pairs 1 to 8, showing the

area at one eye emphasized in the first image.

edge length varies from 0.2158 to 0.2159, as does the average quality:
from 0.9499 to 0.9504. In all cases, Egys is equal to 13.5 while Ogpyg
equals 5.6.

Next, we investigate the robustness of surface reconstruction de-
pending on the splat size. As the models discussed so far are real-world
scans, there is no ground truth to compare the reconstruction with.
For this experiment, we turn to two models that satisfy all assump-
tions made in Section 3.1 and that have an explicit mathematical
parametrization to evaluate the reconstruction: the unit-sphere and a
torus parametrized as a unit circle swept around a circle of radius 2.
We sample both models randomly, the sphere with 10,000 and the torus
with 60,000 points, resulting in a similar density on the models. The
norm is a direct measure of the reconstruction quality. For the sphere
model, vertices with norm 1 lie directly on the sampled sphere. For
the torus model, we measure the norm as the distance to the circle of
rotation, hence, a vertex with norm 1 lies directly on the sampled torus.
In this scenario, the sphere diameter d was chosen as 0.1 while a global
splat size was chosen between 0.02 and 0.4.

For both models, given too small splat sizes, the algorithm fails to
cover the entire model, resulting in a very small number of vertices.
Once a splat size is reached for which the entire model is covered, both
the number of vertices and the reconstruction quality are stable until
larger splat sizes are reached, which causes visible distortion in the
reconstructed models (Fig. 12). This shows that for splat sizes, just large
enough to cover the geometry, our algorithm achieves close to optimal
reconstruction results. For the sphere model, all points created are on
or outside the sphere, placing the closest vertex at a norm of 1 directly
on the sphere. On the torus model, points are lying both in and outside
of the torus. Even for the largest splat size of 0.4, which creates visible
reconstruction artifacts, the reconstructed models are still manifold, in
line with our guarantees from Section 3.1.

5.3. Robustness to noise

In order to investigate the robustness of our algorithm with respect
to noisy data, we equip a selection of the high-quality models [11]
with different levels of noise v € R,,. Here, we use those models that
allow for placing moderate noise, for instance, the Bottle Shampoo or
the Bowl Chinese, whereas we ignore those that already have details
and elements that hinder manifold reconstruction even for tiny levels
of noise. Thereby, each input point is moved by a uniformly distributed
random vector of length smaller or equal to v. This moves the noisy
points within a bound of +v around the ground truth. To measure the
quality of the output, for each level v of noise, we computed a triangula-
tion based on the same parameter choices as above (Section 5). We find
that the level of noise directly influences the number of vertices, similar
to the observations made while increasing the splat size (Section 5.2).
That is, with increasing noise level, the number of vertices of the output
increases as well. Depending on the model, we experience that for
values v € [0.06,0.1], the output begins not to be manifold anymore.
That is, manifoldness is lost from 2v between 60% to 100% of d. For
the user, this experiment suggests that for a geometry with known or
estimated noise level v, choosing d > 2v yields the best results (see
Table 5).

10

Table 5
Noise levels v for which the reconstruction is (v") or is not (X) manifold.
(=3 - N [52] < n O 1N e} (o)) —
Name \ v < < < < < < < < < < 5
=] =] =] =] =] =] =] =] =] = <
Bottle Shampoo v v v v 4 v v 4 v X X
Bowl Chinese v v v v v v v v v v X
Cup v v v v v v v v X X X
Flower Pot 2 v v v v v v X X X X X
Toy Bear v v v v v v v v X X X
Toy Duck v v v v v v v v X X X
Table 6
Experimental results for remeshing Kitten.

d V| 171 i nax Oavg
input - 10,000 20,000 7.6919° 153.3379° 60°
remesh 0.02 17,673 35,346 30.2108° 112.2197° 60°
remesh 0.03 7,837 15,674 28.3165° 115.9218° 60°

Epin Enax Eqvg Omin Omax Qavg

0.0039 0.1119 0.0287 0.2296 0.9999 0.8438

0.02 0.0391 0.0213 0.6742 1.0000 0.9558

0.03 0.0613 0.0320 0.6391 1.0000 0.9552

6. Extension to surface remeshing

Here, we modify the ansatz presented in Sections 3 and 4 to remesh
polyhedral surfaces to achieve an isotropic triangular mesh with guar-
anteed smallest edge length. To guarantee the theoretical results col-
lected in Section 3, we assume the input polyhedral surface F to
represent an orientable, closed, and compact C?-manifold embedded
into R3, which is of finite, positive reach p. The strict definition from
Section 3.1 would give a reach of p = 0 for polyhedral surfaces. How-
ever, several methods are available to compute an approximation of
an idealized surface that the polyhedral input is assumed to represent,
where a user-given parameter steers how closely the input should be
taken into account [37].

In Section 3.2, we equipped the input point cloud with circular
splats on which the output surface is built. Now, turning to polyhedral
surfaces, we can skip the splats and place the spheres on the faces of
the polyhedral surface directly. Consequently, we use the face normals
instead of splat normals for further calculations. This also removes the
need for finding individual splat radii. To build the box data structure
described in Section 4.1, to each box b ;, We associate all faces of the
input with distance less than d to b;. Afterwards, we run the algorithm
as described in Sections 3.3 to 3.7 on the faces of the input geometry.
Hence, the resulting surface interpolates the input one.

We illustrate the applicability of our algorithm to remesh a freeform
mesh by running it on the Kitten model. Here, we run our algorithm
with target edge length d varying between 0.01 and 0.08. Since the
input consists of 10,000 vertices and has an average edge length
of 0.0287, we consider the results achieved for d = 0.02 and d = 0.03
in more detail. As shown in Table 6, for both target edge lengths, the
mesh quality is improved. Both, the resulting edge lengths as well as the
resulting angles are less widely distributed than provided by the input
mesh. Further, the model remeshed has a better average quality O,y
equal to 0.9558 for d = 0.02 or to 0.9552 for d = 0.03, respectively, in
comparison to 0.8438 of the input model. The meshes resulting for the
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Fig. 14. Result of the algorithm run on Kitten model. Left: input geometry.
Middle: input geometry remeshed with target edge length 0.02. Right: input
geometry remeshed with target edge length 0.03.
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Fig. 15. Result of the algorithm run on CAD model. Left: the input geometry
with detected features (shown in blue). Right: the remeshed output with more
nearly regular triangles, but also a loss of features. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

mentioned target edge lengths are shown in Fig. 14. The complete data
set can be found in the supplementary material [31].

Also for the CAD model shown in Fig. 15, the modified algorithm
returns a remeshed triangular polyhedral surface. The result has more
triangles than the input and the resulting triangles are closer to regular
triangles than those of the input geometry. The improved triangle
quality does come with a caveat. Since we place the spheres such that
a newly introduced one touches two spheres already placed, the sphere
centers — which later form the vertex set of the resulting mesh — do
not necessarily coincide with input vertices nor are they likely to lie
on edges of the input surface. Hence, features like ridges, as shown in
Fig. 15, are worn off. In the next section, we therefore discuss how to
further modify the algorithm to maintain features on both polyhedral
surfaces and point clouds.

7. Feature detection

In this section, we focus on retaining features on point clouds
and polyhedral surfaces throughout our algorithm. To define and to
detect features, we use the dihedral angle « formed by the normals of
intersecting splats introduced in Section 3.2. In case of a polyhedral
surface input, we use the dihedral angle a« formed by adjacent faces.
In either case, we additionally introduce an angle threshold d chosen
by the user. This threshold defines a lower bound such that every
intersection with « > 9 will be considered to be a feature and thus to
be retained throughout the remeshing.

7.1. Feature detection on point clouds

We first turn to input point clouds and will discuss polyhedral sur-
faces as input subsequently. Consider two splats .S and S’ intersecting
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in a straight line segment ¢; we say that ¢ is a feature segment, if « is
larger than the threshold 9 (see Fig. 17). In Section 8, we will illustrate
the connection between the input geometry and 9 experimentally.

For two splats, the length of the resulting feature segment ¢ is at
most equal to the diameter of the splat with smallest radius, depending
on the individual splat sizes. To avoid such — possibly very short
— feature segments, we use the global splat diameter during feature
segment detection, in contrast to Section 4.3. This leads to an increasing
number of intersecting splats as larger splats are more likely to intersect
other splats. The features detected by a given splat size do depend on
various properties such as, for instance, the noise level, the chosen
value of @, or the feature scales of the input geometry. Therefore,
choosing a suitable splat size is highly dependent on the input settings
at hand.

As depicted in Figs. 16(b) and 16(c), after collecting all feature
segments, regions of aligned feature segments occur. Similar to the
disconnected splats representing the input point cloud, the feature
segments are a disconnected representation of features of the surface
underlying the input. To structure this further, we collect a set of feature
vertex candidates, which is formed by all intersection points of three
splats.

For initialization of our algorithm, we construct the graph G based
on the detected features of the input geometry. First, we sequentially
add all feature vertex candidates to . However, we only add a feature
vertex candidate, if it is at least distance d away from previously added
ones to maintain the minimal edge lengths, otherwise, the feature
vertex candidate is discarded. Next, we grow feature lines by iteratively
looking for a position on a feature segment at distance d from an
already existing feature vertex v. Again, these positions have to be at
least distance d away from all other previously placed feature vertices.
As long as we find such positions, we place a feature vertex there
and connect it to the parent vertex v to which it has distance d.
The connecting edges between two feature vertices are called feature
edges. Hence, in contrast to the initialization described in Section 3.3, G
does not contain solely two starting vertices, but vertices and edges
representing the features of the input geometry. In this way, feature
lines can be grown similar to the disk growing process.

On a point cloud, not all feature segments might be close enough
to a feature line evolving from a previously placed feature vertex
such that spheres are placed on them being connected to a feature
vertex. Therefore, after the growing process described above, we iterate
through all feature lines that we have not yet placed a feature vertex
on. If we can still do so, according to the distance criterion to all other
vertices, we place a feature vertex and continue the growing process
from there. Once all feature segments are sampled by vertices, we look
for pairs of vertices with valence 1 in the graph, which have a distance
smaller than 2d to each other, and connect them by an edge. This closes
gaps in G, where vertices were added iteratively starting from both ends
on a feature line of the geometry. The positions of the two vertices
connected by such a closing edge are moved slightly towards the center
of the closing edge to avoid edges on feature lines with length close
to 2d. Finally, after having processed all feature lines, we perform disk
growing based on ¢ as described in Section 3.4.

7.2. Feature detection on polyhedral surfaces

In contrast to an input point cloud, on a polyhedral surface input,
we already have a set of edges. As stated above, an edge e in the input is
called a feature segment if a > 9. Similarly, a vertex of the input is said
to be a feature vertex if it is incident to either one feature segment or to
at least three. In Fig. 15, the features detected for 9 = 40° are shown.
Feature vertices are depicted as dark blue dots. All the other end points
of feature segments are incident to exactly one other feature segment.
Hence, the feature segments form feature lines consisting of consecutive
feature segments connecting the feature vertices. In case, a feature
segment is not yet contained in such a feature line, it is part of a closed
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Fig. 16. Feature detection on the Wrench model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 17. Intersection of two splats .S and .S’ and resulting feature segment #.
Side view of intersecting splats.

feature line. This allows for their reconstruction as shown in Fig. 25. On
each feature line, we distribute feature vertices with distance d until no
further vertex can be placed. In order to distribute the sphere centers
more regularly, feature vertices are moved iteratively on the feature
lines. Finally, after having processed all feature lines, we perform disk
growing based on G as described in Section 6. Figs. 18 and 19 show the
results achieved after running the algorithm on a CAD model. Further
evaluations of the output achieved by the algorithm presented here are
included in the supplementary material [31]. Here, complete data sets
in addition to graphical representations of the models used in this paper
as well as models not presented so far can be found.

8. Experiments on point clouds

From the set of models provided in [11], we run the modified
version of the algorithm on those models possessing feature ridges like
the Wrench, the Screw, and the Xiao Jie Jie. Complete data sets of the
models listed and others are provided in Table 7. As illustrated in Fig.
16, there is a visually striking improvement made. The Wrench model
with feature ridges shown in Fig. 16(e) gives the impression of being a
CADed version of the result shown in Fig. 16(f).

To quantify the results, we measure the level of interpolation
achieved by the triangulation in comparison to the input point cloud.
Therefore, we calculate the shortest distance between an input point
p € P and the output mesh 7,

|,

— : -
d(p,T)—;peerl lp—p

Table 7

Evaluation of one-sided Hausdorff distance from point cloud to approximating
surface, without and with feature detection (f.d.) in comparison to input point
cloud.

Model d 9 4 171 dinax davg drus

Wrench 1.0 - 8946 17,896 0.6630 0.0360 7.4933
with f.d. 1.0 60° 8871 17,746 0.4353 0.0112 2.1373
Screw 0.6 - 13,411 26,842 0.4605 0.0438 6.0548
with f.d. 0.6 90° 13,472 26,988 0.3595 0.0190 2.3354
Xiao Jie Jie 0.8 - 22,584 45,164 0.7918 0.0312 4.0479
with f.d. 0.8 70° 22,180 44,364 0.6131 0.0269 3.1905
Lock 0.8 - 5,951 11,902 0.4609 0.0167 3.2285
with f.d. 0.8 60° 5,837 11,674 0.2963 0.0113 1.6142
Remote 0.8 - 22,595 45,186 0.7816 0.0296 5.6993
with f.d. 0.8 50° 22,239 44,474 0.4880 0.0179 2.9222

where p’ denotes a point on the output mesh. We use d(p,7) to
determine the one-sided Hausdorff distance between P and 7 as

diax = r;lear)); d(p,T).

We measure the one-sided Hausdorff distance from P to T in order
to find the biggest deviation between output and input. Next, we
determine the average distance between P and 7 as

LS ap7)

dyyg = —
avg |P| pep

and the corresponding root mean square deviation in percent dpyg

dRMS = ;ﬂ ﬁ Z (d (P, T) - davg)2'

avg PEP
We use the implementation of the one-sided Hausdorff distance [24] in
MeshLab [15] to compute these values practically. In this sample-based
approach, we always sample on vertices, edges, and faces. In this, we
utilize ten times the number of samples suggested by MeshLab to obtain
an even better approximation of the Hausdorff distance.

As shown in Table 7, applying feature detection does not signifi-
cantly change the number of vertices and edges in the output geometry.
The maximal distance between point cloud and output geometry, the
average distance, and the root mean square error are reduced.

Fig. 18. Feature detection on polyhedral surface (Fandisk model). From left to right: Input with highlighted section; algorithm applied without feature detection;
detected feature edges; detected feature edges and feature vertices; end of feature lines where no further vertex can be placed; feature vertices regularly distributed

along feature lines; remeshed geometry with feature detection.
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Fig. 19. Result of the algorithm run on Cube model. Left: input geometry
remeshed without feature detection (see Fig. 15). Middle: input geometry
remeshed with 9 = 40° and target edge length 0.1. Right: input geometry
remeshed with 9 = 24° and target edge length 0.1.

In Section 7, we introduced the threshold 9 for feature detection.
Experiments for decreasing values of 9 showed an increase in the
number and density of feature segments as depicted in Fig. 20. A
suitable choice for 9 depends on the input as well as on the remeshing
goals of the user. Choosing 9 = 90° can be taken as a recommendation
to start the search for a reasonable value of 9 with. That is, since this
allows for the detection of geometry parts intersecting under an angle
equal to 90° like those found on the Wrench model as illustrated in Fig.
16(c). Table 7 lists the angle 9 used per model, which was chosen to
preserve the majority of features present in the model.

Fig. 20 illustrates the increase in the number of feature segments
with shrinking values of 9 on the Xiao Jie Jie model. Since for de-
creasing angle 9 the number of feature segments increases, regions in
the point cloud occur being densely covered with feature segments. In
contrast to a single feature segment or a small number of nearly parallel
ones, the features are blurred. The quality of the meshes does not differ
significantly from the result achieved without feature detection. For
target edge length 0.4 and 8 = 40°, we achieve the worst value for Q,,,
which is 0.9420, while without feature detection, the corresponding
value of Q,, is equal to 0.9552 determined for the same target edge
length. An overview on all data collected for this model is contained
in the supplementary material [31], Table 25. Based on the results
achieved, the feature angle to choose depends on the geometry.

8.1. Varying sampling density

Depending on the scanning process, the derived sampling points
may be distributed in varying density over the geometry. In the upper
row of Fig. 21, close-ups of two models taken from [11] are depicted.
Both show a higher density of sampling points in areas of high curva-
ture than in low-curvature areas. In the algorithm presented here, the
individual splat sizes are chosen based on the distribution of sample
points. Hence, areas with low curvature are well represented by a few
splats of larger radii while a higher number of splats of smaller radii
cover regions of higher curvature. The images in the lower row of Fig.
21 illustrate that the quality of the resulting meshes is not influenced
by the variation of the sampling density of the input.
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8.2. Handling reach criterion

As mentioned in Section 4.1, the parameter d has to be chosen by
the user, depending on the reach p of the input. In case d is smaller or
equal to the reach, the output consists of an isotropic triangular mesh,
as discussed in Section 3. However, choosing d larger than the reach
might lead to issues in the growing process. Both choices are illustrated
in Fig. 22. For d > p, the growing process was started on the top side of
the Plate model (available online [31]) and failed to grow over the rim
to the lower side. For any d < p, the Plate model is meshed successfully,
as illustrated in the lower image of Fig. 22.

9. Experiments on polyhedral surfaces

To further illustrate the effectiveness of the modifications to the
algorithm presented in Sections 6 and 7, we run the algorithm on a
broad choice of polyhedral surfaces, with a varying number of sharp
features as well as an increasing level of topology. The models we
remesh in the following are either taken from an online repository of
commonly used meshes [38] or self-made (available online [31]).

We compare the results achieved by our algorithm to the Isometric
Explicit Remeshing [20] pipeline of MeshLab [15] and to the Remesh-
ing [22] module of the PMP library [21]. In all experiments, for both
algorithms, we use the standard number ten of iterations. Further-
more, we do not use adaptive remeshing for either implementation
as it conflicts the goal of obtaining a uniform edge length. All other
parameters are left in their standard configuration of the respective
implementation, except for using world-length coordinates in PMP—in
the standard configuration, lengths are given relative to the bounding
box. In Table 8, a representative choice of CAD models processed with
said routines is listed. The derived data show that our single-sweep
algorithm produces comparable mesh quality with and without feature
detection. A larger variety of models with more detailed data sets can
be found in the supplementary material [31].

9.1. Influence of feature detection on Hausdorff distance

In Fig. 19, we observe the striking differences between the results
without feature detection and with feature detection. While all features
in the result achieved without feature detection are lost, varying the
threshold angle 9 shows an increase of features maintained. In addition
to investigating the one-sided Hausdorff distance d,,, as introduced in
Section 8, we will consider the relative error d‘j‘% as well. Remeshing
the Cube with 9 = 40° does not allow for a complete maintenance of
all feature lines and vertices while choosing 9 = 24° does as illustrated
in Table 9 and depicted in Fig. 19. Further, we can observe the same

behavior on the Fandisk as well.

Fig. 20. Feature detection on point clouds, illustrated on the Xiao Jie Jie model. Upper row: point cloud and features detected. Lower row: close-up of left eye.
Both rows, left to right: without feature detection, detected features for 9 = 90°, 80°, 70°, 60°, 50°,40°.
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Fig. 21. Upper row: varying sampling density, detected on the Remote model
and on the Coffee Bottle Plastic model. Lower row: resulting isotropic meshes
derived from the point samplings shown above.

Fig. 22. Results achieved by processing the Plate model. Above: failed attempt
based on d chosen too big. Below: successful application.

9.2. Influence of feature detection on edge length and angle distribution

In Fig. 23, the angle distribution, the edge length distribution,
and the distribution of quality are shown, evaluated on a remeshing
of the Cube model with and without feature detection. Respecting
features of a geometry results in a broader distribution for each of
the three quantities evaluated. While the edge length distribution does
not change drastically, the angle distribution has a peak at a smaller
angle. The quality Q, is still good, but does not contain as many ideal
triangles as the remeshing without feature detection. In contrast to
the results achieved by the algorithms mentioned above, we perform
better with respect to the minimum angle as well as to the minimum
triangle quality. The Cube model possesses several feature lines and
corners easily to be detected visually. Most angles at points detected
as feature vertices of higher valence by our algorithm are close to 90°.
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Table 8

Selection of CAD models remeshed with and without feature detection using
MeshLab (ML), Polygon Mesh Processing (PMP), and our algorithm. A more
detailed evaluation is presented in the supplementary material [31].

Algo. d 9 Eqvg Erus Qavg QOrus
ML 0.04 24° 0.0408 12.8 0.9600 4.5
PMP 0.04 24° 0.0364 12.2 0.9636 3.5
_§ ours 0.04 24° 0.0436 14.1 0.9295 5.8
&) ML 0.04 - 0.0404 14.5 0.9525 7.3
PMP 0.04 - 0.0364 11.8 0.9663 3.1
ours 0.04 - 0.0426 11.3 0.9584 4.5
ML 0.012 60° 0.0124 18.9 0.9526 5.0
- PMP 0.012 60° 0.0112 12.3 0.9713 2.9
;§ ours 0.012 60° 0.0131 14.2 0.9221 5.3
L§ ML 0.012 - 0.0124 12.9 0.9531 4.9
PMP 0.012 - 0.0125 12.2 0.9720 2.8
ours 0.012 - 0.0127 11.1 0.9592 4.4
ML 1.0 80° 1.0241 13.2 0.9562 5.1
PMP 1.0 80° 0.9240 12.6 0.9601 3.8
% ours 1.0 80° 1.0645 11.8 0.9585 4.9
E ML 1.0 - 0.9361 27.7 0.8823 21.4
PMP 1.0 - 0.9269 12.2 0.9626 3.5
ours 1.0 - 1.0666 11.4 0.9572 4.5
ML 0.02 80° 0.202 15.8 0.9455 9.4
PMP 0.02 80° 0.0183 12.3 0.9624 3.4
'.'g ours 0.02 80° 0.0214 11.8 0.9508 4.5
1) ML 0.02 - 0.0201 17.3 0.9373 11.2
PMP 0.02 - 0.0183 12.3 0.9625 3.4
ours 0.02 - 0.0212 109 0.9606 4.4
Table 9

Evaluation of one-sided Hausdorff distance of CAD models (Cube and Fandisk),
comparing to the output of MeshLab (ML) and Polygon Mesh Processing (PMP).

Algo. d 9 dinax d“j% d 9 dimax d"‘%
ML 0.04 — 0.0347 0.8687 0.1 — 0.0808 0.8082
PMP 0.04 — 0.0334 0.8353 0.1 — 0.2781 0.6623
ours 0.04 — 0.0324 0.8122 0.1 — 0.0776 0.7765
N ML 0.04 24° 0.0043 0,1078 0.1 24° 0.0062 0.0620
3 PMP 0.04 24° 0.0038 0.0951 0.1 24° 0.0061 0.0614
ours 0.04 24° 0.0042 0.1059 0.1 24° 0.0084 0.0843
ML 0.04 40° 0.0043 0.1033 0.1 40° 0.0190 0.1908
PMP 0.04 40° 0.0065 0.1637 0.1 40° 0.0196 0.1961
ours 0.04 40° 0.0097 0.2427 0.1 40° 0.0213 0.2134
ML 0.012 — 0.0111 0.9302 0.024 — 0.0216 0.9039
PMP 0.012 — 0.0080 0.6721 0.024 — 0.0180 0.7524
ours 0.012 — 0.0097 0.8147 0.024 — 0.0184 0.7679
ML 0.012 60° 0.0035 0.2929 0.024 60° 0.0061 0.2561
v PMP 0.012 60° 0.0027 0.2331 0.024 60° 0.0055 0.2302
Z ours 0.012 60° 0.0034 0.2835 0.024 60° 0.0072 0.2983
g ML 0.036 - 0.0318 0.8840 0.048 - 0.0461 0.9618
= PMP 0.036 — 0.0261 0.7252 0.048 - 0.0334 0.6976
ours 0.036 - 0.0302 0.8376 0.048 — 0.0337 0.7025
ML 0.036 60° 0.0060 0.1690 0.048 60° 0.0115 0.2405
PMP 0.036 60° 0.0088 0.2454 0.048 60° 0.0125 0.2612
ours 0.036 60° 0.0085 0.2367 0.048 60° 0.0134 0.2806

This leads to a larger number of nearly isosceles triangles with angles
close to 45° and 90°, which can be seen in the histograms in Figs. 23. In
case the sharp features of the input geometry do not meet at an angle
close to 90°, the angle distribution of the remeshed geometry varies
less, comparing the results achieved with and without feature detection
as depicted in Fig. 24 on the Flange.

9.3. Sharp angles

In Fig. 25, two feature lines are shown, meeting under an angle y
less than 60°. Triangulating the area between the feature lines may
introduce edges within the triangulation step shorter than the target
edge length. Since the length of the third side of the triangle filling
the space at the meeting point of the feature lines depends on y, there
are two different ways to go. The first one consists of maintaining the
features detected and accept the occurrence of (a comparably small
number of) edges shorter than the target edge length, while the second
one maintains the target edge length, but loses one of the features.
Here, we decided to follow the first possibility, which is illustrated in
Fig. 25.
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Fig. 23. Distributions obtained by our algorithm applied to the Cube model
with feature detection (shown in blue) for 9 = 24° and without feature
detection (shown in yellow). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 24. Distributions obtained by our algorithm applied to the Flange model
with feature detection (shown in blue) for 9 = 80° and without feature
detection (shown in yellow). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

A similar obstacle occurs in case the angle between the two parts
of the surfaces joint along a single feature line is less or equal to 60°.
Here, the disk growing step is restricted to one side solely, since no
sphere can be placed on the other side of the ridge because it is too
close to spheres already placed. Hence, internal connections between
the two sides may occur as well as a non-manifold result since the lack
of possibilities to place spheres cuts a hole into the surface as illustrated
in Fig. 26. In case such a feature line forms a closed curve on the
geometry, as it does on the Boat model, the geometry can be cut into
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Fig. 25. Feature lines meeting at angle < 60°. Left: Fandisk model with
emphasized feature lines meeting. Right: triangulation of surface between
meeting features, containing edges shorter in length than the preset target
edge length.

Fig. 26. Sharp feature ridges on Boat model. Left: Boat model remeshed with
features. Right: close up of Boat model showing faulty edges.

two parts along the feature curve. Since the boundaries of both parts are
already covered with spheres placed in the feature detection step, we
use them for initialization. Subsequently, we place further spheres in a
disk growing process applied to each part of the geometry individually.
Hence, we prevent the spheres placed to intersect the other part of the
geometry.

The ansatz we described above to mesh feature lines, is applicable
to geometries with boundaries as well. Here, the spheres placed on the
boundaries directly are used for initialization. In case, a feature line
does not close, but makes an angle less than 60°, the geometry has to
be segmented in order to prevent the spheres to intersect the geometry
several times. To find such a segmentation is left as future work.

10. Conclusion and future work

In this paper, we built on a surface representation by equally sized
spheres [5] to provide a feature-aware algorithm for meshing of point
clouds and remeshing of polyhedral surfaces. A prior publication of the
algorithm introduced the meshing of point clouds with a guaranteed
smallest edge length [6], see Sections 3 to 5. This extension enables
the algorithm to remesh polyhedral surfaces with and without sharp
features, see Sections 6 to 9. The algorithm still only needs a single,
greedy sweep across the input geometry to obtain the resulting mesh.
Respecting features of the input point cloud or surface mesh makes it
possible to process a broader variety of input geometries in a way that
is suitable for a variety of follow-up applications. The results achieved
remain guaranteed to be manifold, based on the theory discussed in
Section 3.

The Fandisk model and the Boat model discussed in Section 9.3 al-
ready hinted at some shortcomings of our algorithm. These arise when
the model demands for very sharp angles in the geometry that cannot
be modeled while maintaining the desired minimum edge length. While
this can be interpreted as a feature of the algorithm, in these cases —
especially with the tip of the Boat model — it would be preferential
to let the user decide to violate the distance requirement between
non-connected vertices to obtain a faithful reconstruction of the input
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geometry. A similar case could be made for the Fandisk model, where
the angle made between features might be worthwhile preserving over
the cost of having few badly shaped triangles. Highlighting these cases
and letting the user decide how to handle them is left as future work.

On a different note, none of the surfaces handled here are equipped
with boundary. Technically, handling boundary is not very different
from handling features: If the boundary is given as a polygon, it can be
used for initialization. Then, when triangulating the regions following
Section 3.7, regions solely bounded by boundary edges are omitted. The
tricky element here is to identify a boundary polygon for point cloud
input. While corresponding approaches exist in the literature [39],
implementing such in our context is left as future work.

Finally, this paper used the uniform sphere representation of sur-
faces [5] in the context of remeshing. Fundamentally, the represen-
tation is not limited to surfaces and could also be applied to repre-
sent volumes by a collection of single-sized spheres. Similar to the
remeshing of surfaces, a volume representation could thus be used
for tetrahedral meshing and remeshing of volumetric objects. Like the
previous considerations, this is left as future work.
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