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 A B S T R A C T

Point clouds and polygonal meshes are widely used when modeling real-world scenarios. Here, point clouds 
arise, for instance, from acquisition processes applied in various surroundings, such as reverse engineering, 
rapid prototyping, or cultural preservation. Based on these raw data, polygonal meshes are created to, for 
example, run various simulations. For such applications, the utilized meshes must be of high quality. This 
paper presents an algorithm to derive triangle meshes from unstructured point clouds. The occurring edges 
have a close to uniform length and their lengths are bounded from below. Theoretical results guarantee the 
output to be manifold, provided suitable input and parameter choices. Further, the paper presents several 
experiments establishing that the algorithms can compete with widely used competitors in terms of quality of 
the output and timing and the output is stable under moderate levels of noise. Additionally, we expand the 
algorithm to detect and respect features on point clouds as well as to remesh polyhedral surfaces, possibly 
with features.

Supplementary material, an extended preprint, a link to a previously published version of the article, 
utilized models, and implementation details are made available online.
1. Introduction

Point cloud meshing is an important topic present in different 
fields of research and in various applications. Examples include reverse 
engineering [1], rapid prototyping [2], or architecture [3]. A common 
approach to enable this raw data for further processing is to create 
a triangle mesh from the point cloud. The quality of this mesh is, 
however, affected by outliers, noise, or non-uniform distribution of the 
input data. Thus, badly formed mesh elements can become apparent in 
the resulting geometric model. They can be long-stretched, thin trian-
gles, so-called slivers, or topological issues. These faulty representations 
have to be repaired before the meshes are further processed.

While this issue is rather general and inherent to the workflow, 
recent research still struggles to circumvent it. Even when reducing 
to only a local mesh representation of a given geometry, established 
methods, such as Delaunay triangulations, do not guarantee to create a 
manifold mesh of well-shaped triangles [4, Sec. 4.4]. The present paper 
aims to close this gap.

We aim to reconstruct a surface from a given point cloud via a 
sphere-packing approach [5]. The goal is to create a manifold output 

I This article is part of a Special issue entitled: ‘SIAM IMR 2023/24’ published in Computer-Aided Design.
∗ Corresponding author.
E-mail address: mail@ms-math-computer.science (M. Skrodzki).

1 Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Germany – 455095046.

with guaranteed smallest edge length and with strong consideration 
of triangle quality provided by a distribution close to uniformity of 
edge lengths. Furthermore, as opposed to other meshing approaches, 
our algorithm works directly on the surface geometry, that is, does 
not need any parametrization. Finally, the algorithm performs a greedy 
disk-growing approach, which enables the processing of the geometry 
in one pass, making further iterations unnecessary.

A first version of this algorithm has been presented at the 2024 
International Meshing Roundtable [6]. The contributions of the original 
article included:

• introduction of a geometric approach suitable to mesh point 
clouds,

• which creates high-quality triangles with edge lengths close to 
uniformity and of a guaranteed minimum length,

• as well as manifold output, provided a suitable input geometry,
• in a single sweep over said input,

discussed in Sections 3 to 5. In this extended version of the article, 
we build upon the previous contributions and extend the algorithm to 
handle:
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• detection of sharp feature ridges in point clouds,
• remeshing of polyhedral surfaces obtaining high-quality meshes 
with edge lengths close to uniformity,

• detection of sharp feature ridges on polyhedral meshes,
presented in Sections 6 to 9.

2. Related work

In the last decades, several attempts were made to reconstruct the 
ground truth from a given point cloud  . The resulting reconstruction 
depends on the quality of  , which can include noisy points or normals, 
outliers, or be sampled non-uniformly. On top of a reconstruction, the 
user may ask for guarantees such as correct topology [7], or conver-
gence to the ground truth with increasing sampling density [8]. Some 
algorithms guarantee local connectedness of their output [9], while 
others guarantee their output to stay within the convex hull of the given 
input [10]. Other requirements might be, for instance, a result mesh of 
high quality, that is, consisting of triangles with edge length close to 
uniformity and vertices of degree close to 6. Finally, the reconstruction 
should be computed fast. For an overview of surface reconstruction 
algorithms, we refer to a recent survey [11]. The algorithms discussed 
in the following were chosen for their wide use in the field and will 
serve as a comparison in Section 5.

First, we consider surface reconstruction based on a Poisson equa-
tion [12], implemented in CGAL [13]. An implicit function framework 
is built, where the reconstructed surface appears by extracting an 
appropriate isosurface. The output is smooth and robustly approximates 
noisy data. Additionally, densely sampled regions allow the reconstruc-
tion of sharp features while sparsely sampled regions are smoothly 
reconstructed. In later work, these ideas are further developed to create 
watertight meshes fitting an oriented point cloud by using adaptive, 
finite elements multi-grid solvers capable of solving a linear system 
discretized over a spatial domain [14], implemented in MeshLab [15].

Second, the scale-space approach [16], implemented in CGAL [13], 
aims at topological correctness by choosing triangles based on a
confidence-based criterion. This avoids the accumulation of errors, 
which is often detected in greedy approaches. The algorithm is interpo-
lating, and can handle sharp features to a certain extent, but does not 
come with proven topological correctness.

The advancing front algorithm [17], implemented in CGAL [13], 
handles sets of unorganized points without normal information. It 
computes a normal field and meshes the complete point cloud directly, 
which leads to a high-level reconstruction of details as well as to an 
accurate delineation of holes in the ground truth. Therefore, a smooth-
ing operator consistent with the intrinsic heat equation is introduced. 
By construction, this approach is almost interpolating and features are 
preserved given very low levels of noise.

The robust implicit moving least squares (RIMLS) algorithm [18], 
implemented in MeshLab [15], combines implicit MLS with robust 
statistics. The MLS approach [8] is a widely used tool for functional 
approximation of irregular data. The development of RIMLS is based on 
a surface definition formulated in terms of linear kernel regression min-
imization using a robust objective function which gives a simple and 
technically sound implicit formulation of the surface. Thus, RIMLS can 
handle noisy data, outliers, and sparse sampling, and can reconstruct 
sharp features. The number of iterations needed to achieve a reliable 
result increases near sharp features while smooth regions only need a 
single iteration. Furthermore, RIMLS belongs to the set of algorithms 
producing approximating meshes.

Another approach is based on placing triangles with regard to the 
restricted Voronoi diagram of a filtered input point set [19], available 
via MeshLab [15]. This approach has the largest similarity to our 
algorithm, as we will also employ Voronoi diagrams, however, only to 
filter points on the tangent plane. Another shared aspect is that both 
2 
this and our algorithm work on a set of disks centered at the input 
points, oriented orthogonal to a guessed or provided normal direction.

All these algorithms come with different guarantees regarding the 
output. However, none of these algorithms comes with a guarantee on 
the edge length, and only some algorithms are guaranteed to provide 
a manifold mesh. As we base our surface reconstruction on a set of 
touching spheres placed on the underlying surface [5], we are able to 
provide certain theoretical guarantees on the output: given suitable in-
put and parameter choices, our output is always manifold. Furthermore, 
the output of our algorithm has a guaranteed minimum edge length, 
while striving towards uniformity of occurring edge lengths. For better 
comparison to other algorithms, we also employ the ‘‘Isotropic Ex-
plicit Remeshing’’ filter of MeshLab [15]. This filter repeatedly applies 
edge flip, collapse, relax, and refine operations [20]. For remeshing 
polyhedral surfaces, we also make use of the ‘‘Remeshing’’ routine 
provided by the Polygon Mesh Processing (PMP) library [21]. Here, the 
triangle quality is improved by local modifications such as splitting and 
collapsing of edges and tangential smoothing [22]. Similar algorithms 
exist that are based on local operations like edge flips and vertex 
relocations to achieve anisotropic triangular meshes [23]. As opposed 
to our approach, in their work, the resulting edge lengths depend 
on the curvature of the geometry remeshed. Additionally, all of the 
works listed above require several iterations to obtain an isotropic 
triangulation while our approach works in a single sweep over the input 
geometry. In Sections Section 5.1, 8, and 9, we will provide a detailed 
comparison of our algorithm with the works listed here.

When it comes to feature-aware (re)meshing, as a comparison met-
ric between the obtained meshes, we will employ the Hausdorff dis-
tance. This allows us to compare the input, be it a point cloud or a 
surface mesh, with the (re)meshed version. An estimate of the one-sided 
Hausdorff distance is computed by sampling the input and projecting 
the samples onto the output [24]. A variety of methods has been 
proposed to identify features on point clouds and meshes. We follow a 
basic approach using the variation of normals of two elements [25], al-
lowing us to specify a critical dihedral angle between two normals from 
which a feature between the two is respected during remeshing. This 
follows similar approaches in point cloud and surface smoothing [26,
27].

3. Theory and methodology

Our algorithm aims to reconstruct a manifold  from a given 
point cloud  . In order to obtain a manifold mesh with a guaranteed 
minimum edge length, we first present assumptions and theoretical 
results on both  and  in Section 3.1. Based on these theoretical 
results, we present a geometric approach in Section 3.2, which consists 
of creating a sphere packing from which the output is constructed. 
Sections 3.3 to 3.7 are devoted to explaining the different steps in 
detail.

3.1. Assumptions and theory

Here, we will derive the assumptions to be made on  and  to 
ensure that the constructed surface mesh is manifold. Let  be an 
orientable, compact 2-manifold embedded into R3, which is assumed 
to be closed and of finite reach
𝜌 ∶= inf

{

‖𝑎 − 𝑚‖ ∣ 𝑎 ∈  ∧ 𝑚 ∈ 
}

∈ R>0,

where  is the medial axis of  consisting of the points 𝑞 ∈ R3

satisfying

min
𝑝∈

‖𝑞 − 𝑝‖ = ‖𝑞 − 𝑝̂‖ = ‖𝑞 − 𝑝̃‖

for 𝑝̂ ≠ 𝑝̃ ∈ . On the manifold , we define the geodesic distance 𝑑
as follows: 
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Fig. 1. Illustration of Lemma  3.1. Intersection of a saddle-shaped surface with 
a sphere (shown in blue). Six points on the surface are marked as well as their 
projections to the tangent plane belonging to the center of the sphere. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Definition 3.1.  Let len(𝑓 ) = ∫ 1
0
|

|

𝑓 ′(𝑡)|
|

𝑑𝑡 denote the length of a curve 
𝑓 ∈ 1([0, 1],) in . Then the geodesic distance 𝑑 of 𝑚,𝑚′ ∈  is 
defined as inf {len(𝑓 ) ∣ 𝑓 ∈ 1([0, 1],) ∶ 𝑓 (0) = 𝑚 ∧ 𝑓 (1) = 𝑚′}.

Now, for any 𝑝, 𝑞 ∈  such that ‖𝑝 − 𝑞‖ < 2𝜌, the following 
estimation holds [28, Lemma 3]: 

‖𝑝 − 𝑞‖ ≤ 𝑑(𝑝, 𝑞) ≤ 2𝜌 arcsin
(

‖𝑝 − 𝑞‖
2𝜌

)

. (3.1)

Let 𝑇𝑝 and 𝑇𝑞 denote the tangent planes at 𝑝, 𝑞 ∈ . Lemma 6 
in [28] gives an upper bound for the angle ∢ (

𝑇𝑝, 𝑇𝑞
) between 

them, 

∢
(

𝑇𝑝, 𝑇𝑞
)

≤
𝑑(𝑝, 𝑞)

𝜌
. (3.2)

Hence, Inequalities (3.1) and (3.2) imply for the normal vectors 𝑛𝑝 at 
𝑝 and 𝑛𝑞 at 𝑞 that 

𝜑 ∶= ∢
(

𝑛𝑝, 𝑛𝑞
)

≤ 2 arcsin
(

‖𝑝 − 𝑞‖
2𝜌

)

⇒‖𝑝 − 𝑞‖ ≥ 𝑟(𝜑) ∶= 2𝜌 sin
(𝜑
2

)

.
(3.3)

For a given angle 𝜑max ∈
[

0, 𝜋2
[

, the second part of Eq.  (3.3) implies 
that there is a constant 𝑟max ∈ R≥0 such that 𝜑 ≤ 𝜑max if ‖𝑝− 𝑞‖ < 𝑟max. 
Denote by ′ ∶= 𝐵𝑟max

(𝑝) ∩  the part of  that is contained in 
 and the ball 𝐵𝑟max

(𝑝) centered at 𝑝. Then, the normals 𝑛𝑞 of all 
points 𝑞 ∈ 𝐵𝑟max

 have positive Euclidean scalar product with 𝑛𝑝. The 
assumption that  is of positive finite reach guarantees that ′ is a 
single connected component. Hence, ′ has a parallel projection to the 
tangent plane 𝑇𝑝 without over-folds (Fig.  1). Furthermore, we have:

Lemma 3.1.  Let 𝑝 ∈  be a point with normal 𝑛𝑝. Then, for 𝑟 < 𝜌, the 
image of 𝐵𝑟(𝑝) ∩ under the projection 𝜋 in direction of 𝑛𝑝 to the tangent 
plane 𝑇𝑝 is a convex set.

Proof.  The intersection  of a closed set  ⊂ R𝑑 having reach 𝜌 > 0
with a closed ball 𝐵𝑟(𝑥), 𝑟 < 𝜌 and 𝑥 ∈ R𝑑 , is geodesically convex 
in  [28, Corollary 1]. That is, the shortest path between any two 
points in  lies itself in the intersection. Furthermore, the intersection 
′ of 𝐵𝑟max

 and  is a topological disk as established above [28, 
Proposition 1].

Here,  is not empty and consists of a surface patch since 𝑝 lies 
on . Hence, the boundary 𝜕′ can be parameterized by a closed 
3 
curve 𝛾. As  is geodesically convex, 𝛾 has positive geodesic curvature. 
The inner product of the normals 𝑛𝑝 and 𝑛𝑞 at an arbitrarily chosen 
point 𝑞 ∈ 𝜕 is positive: ⟨𝑛𝑝, 𝑛𝑞⟩ > 0, by choice of 𝑟. Therefore, under 
projection along 𝑁𝑝 to the tangent plane 𝑇𝑝, the sign of curvature is 
preserved. Hence, the projection 𝜋(𝛾) is a convex curve. □

Finally, let  be a simple graph that can be embedded on  such 
that the vertices in  connected by an edge have Euclidean distance 𝑑. 
The connected components remaining after removing  from  are 
called regions, denoted by . The set of vertices and edges incident to 
a region 𝑅 ∈  is called its border, denoted by 𝜕𝑅. Note that because 
is closed, each edge of  belongs to the border of exactly two regions. 
Also, each vertex of  can belong to the borders of several regions 
at once. Fix one such region 𝑅 ∈ . Lemma  3.1 implies a choice of 
points 𝑞1,… , 𝑞𝑘 ∈ 𝜕𝑅 is mapped to points 𝜋(𝑞1),… , 𝜋(𝑞𝑘) ∈ 𝑇𝑝 in 
cyclic order, for 𝑝 ∈ 𝑅 arbitrarily chosen. Hence, the regions can be 
extracted correctly with respect to their topology from the cyclic order 
of the edges at each vertex from the local projection. Given that the 
reach criterion is satisfied and given a suitable normal field, we can 
thus reconstruct a manifold from the input.

3.2. Methodology

Our algorithm extracts a mesh from the input  by placing touching 
spheres of a predefined diameter 𝑑 across an approximation of the 
surface [5]. As the spheres touch, this will guarantee a minimum edge 
length of the mesh and by the results from Section 3, the resulting mesh 
will be manifold.

We assume to be given unstructured input in form of a point 
cloud  = {𝑝𝑖 ∣ 𝑖 = 1,… , 𝑛} ⊂ R3 with corresponding normals

 = {𝑛𝑝𝑖 ∣ 𝑖 = 1,… , 𝑛} ⊂ S2.

Furthermore, we assume that  is sampling an underlying, possibly 
itself unknown, manifold  with the properties as listed above. To 
approximate the surface, we associate to each point 𝑝 ∈  a splat 𝑆𝑝 in 
the shape of a circular disk with radius 𝑠𝑝 ∈ R>0. Each 𝑆𝑝 is centered 
at the respective point 𝑝 and placed such that 𝑆𝑝 is orthogonal to 
the corresponding normal 𝑛𝑝. We assume the radii 𝑠𝑝 to be chosen 
sufficiently large such that the manifold to be reconstructed is covered. 
Here, a manifold is said to be covered, if the union of projections of 
splats to the ground truth covers it. This is illustrated in Fig.  2(a).

Note that following Lemma  3.1, the user has to choose the parame-
ter 𝑑 with respect to the reach 𝜌 of the input, which can be estimated for 
point clouds [29], to ensure a manifold output. In this sense, choosing 𝑑
is always a model-dependent choice of the user. If the model has, for 
instance, been scanned and the user has physical access to the model, 
a suitable value of 𝑑 can be estimated based on the narrowest parts 
of the model. Also, the overall point distance in the input point cloud 
can serve as a means to approach a suitable value of 𝑑 from below, for 
instance by taking the smallest point distance (or a small multiple of 
it) as value 𝑑. This results in an extremely fine-grained output, which 
might not be supported by the user’s machine memory. Ultimately, it 
depends on the use-case scenario of the user how fine-grained they 
want the output. In Section 4.1, we will discuss a heuristic to iteratively 
estimate a suitable value for 𝑑 from above, aiming for a coarse output 
that still satisfies the requirements formulated above.

Furthermore, the user also chooses a uniform initial splat size 𝑠. The 
individual splat sizes will be derived later as described in Section 4.3. 
In the following discussion, we will refer to elements of the input 
geometry  as points and to entities created by the algorithm as vertices.



H. Lipschütz et al. Computer-Aided Design 192 (2026) 104010 
Fig. 2. Illustration of uniform splat size 2(a), the projection of a point 𝑝 and its vicinity to the tangent plane 𝑇𝑝 2(b), and the Voronoi cells with the farthest 
point circled 2(c), leading to individual splat sizes 2(d).
Fig. 3. Possibilities when creating new vertices and edge connections in the graph : In 3(a), the new vertex 𝑣 and its two edges connect elements of the same 
border. Here, 𝑣 is created either in the in- or the outside region of the border. In 3(b), the new vertex 𝑣 is connecting two borders. After introducing 𝑣 and its 
edges, the respective outside regions are still connected, then 𝑣 and its edges join the borders. However, if the outside regions are split by 𝑣 and its edges, new 
borders are created which induce the corresponding regions.
Fig. 4. An input geometry with a vertex candidate 𝑣𝑐 4(a), the region projection shows an illegal edge crossing 4(b). Edges to parent vertices are shown dotted. 
Computation of vertex candidate positions 4(c).
3.3. Initialization

Aside from 𝑑 and 𝑠, the user provides two starting vertices to ini-
tialize the algorithm. These vertices are chosen from R3 such that the 
projections of these vertices onto their closest splats are sufficiently 
close, that is, the distance between the projected vertices is in [𝑑, 2𝑑], 
so a third vertex having distance 𝑑 to both of the starting vertices can 
be placed by the algorithm. They do not have to be points from the 
input  . The projected vertices form an initial vertex set of a graph 
that will ultimately provide the manifold mesh discussed in Section 3.1. 
They can be manually provided or automatically created, for instance, 
around the maximum 𝑧-coordinate of the input. At this stage,  does 
not contain any edges. In the following, positions exactly 𝑑 away from 
at least two already existing vertices are called vertex candidates. The 
two vertices that are 𝑑 away from a candidate are its parents.

3.4. Disk growing to add vertices to 

After initialization, disk growing is performed to create further 
vertices and edges for . A vertex is added from the list of vertex 
candidates, connected by edges to the two vertices distance 𝑑 away 
(Fig.  5(a)), and new vertex candidates are added based on the newly 
placed vertex (Fig.  5(d)). Adding edges to  also changes the regions 
introduced in Section 3.1: By inserting a new vertex and its two edges, 
either one border is split into two borders or two borders join into one 
(Figs.  3(a) and 3(b)).
4 
As shown in Fig.  7, there might be regions with comparably long 
borders. These lead to visible seams in both  and its triangulation. To 
avoid such seams, we prioritize joining borders over splitting borders. 
Thus, we aim to prioritize splits with a larger combinatorial distance 
between the parent vertices along the border over those with smaller 
distances. We do so with a priority assigned to the vertex candidates.

3.5. Prioritizing of vertex candidates

A vertex candidate 𝑣𝑐 is chosen to become a vertex of  according 
to the following priorities, given in decreasing order:

1. At least one of the parent vertices has no edges incident to it. 
(Note: This parent vertex has to be a starting vertex from the 
initialization.)

2. At least one of the parent vertices is a vertex with only one edge 
incident to it.

3. Inserting 𝑣𝑐 and its two edges joins two borders.
4. Inserting 𝑣𝑐 splits a border—prioritize larger distance between 
parents along the common border.

In all cases, ties are broken by the breadth-first strategy. To determine 
the priority of the vertex candidate to be added, it is necessary to know 
to which of the parent vertices’ borders the edges to be introduced 
will connect. To find the corresponding border, the candidate edge is 
projected to the plane defined by the parent vertex and its normal. Note 
that because of the results from Section 3.1, such a projection is possible 
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without over-folds. Given the prioritization of vertices, these can now 
be added to the graph .

3.6. Creating a new vertex

Once a vertex candidate 𝑣𝑐 has been chosen, it is first determined 
whether there is a vertex 𝑣 in  such that ‖

‖

𝑣𝑐 − 𝑣‖
‖2 < 𝑑. If so, the vertex 

candidate is discarded.
Next, the priority of 𝑣𝑐 is checked. In case the vertex does not satisfy 

the given priority anymore — for instance, because it was created with 
a parent vertex without any edges incident to it, but the parent vertex 
gained an edge by now — the vertex candidate’s priority is reduced and 
another vertex candidate is chosen.

Adding 𝑣𝑐 and the corresponding edges to  bears one additional 
problem. In practice, we do not always know whether the point cloud 
fulfills the criteria listed in Section 3.2. If they are satisfied, the output 
is guaranteed to be manifold. However, the user might have chosen 𝑑
too large or the input point cloud might not sample a manifold in the 
first place. In either of these cases, all edges created from new vertices 
still have an edge length of 𝑑, but the edges might create non-manifold 
connections. Consider Figs.  4(a) and 4(b) for an example of a surface 
with reach 𝜌 = 0.

In these cases, we still want to prevent such faulty connections. 
Therefore, we find an approximated surface normal, which will be 
discussed in Section 4.1. We project 𝑣𝑐 and its prospective edges as well 
as all edges already existing in the vicinity of 𝑣𝑐 along this normal. For 
this projection, the vicinity of 𝑣𝑐 is bounded by 𝑑 in normal direction. 
We discard 𝑣𝑐 if either of its edges crosses an already existing edge (Fig. 
4(b)). While the algorithm creates manifold output for suitable input 
point clouds and choices of 𝑑, this mechanism improves the output even 
outside of this regime. If 𝑣𝑐 has passed these checks, 𝑣𝑐 and the two 
edges connecting it to its parent vertices are added to .

3.7. Triangulating the resulting regions

After the disk growing process has finished, the graph  provides 
a set of regions . On average, each vertex of  is connected to ap-
proximately four other vertices [5, Section 4.2]. Therefore, the average 
border length is approximately four. Hence, we are left with the task 
of triangulating these regions. In case of surfaces with boundary such 
as partial scans, we do not want to close the surface by triangulating 
the interior of the boundary. Therefore, we give the user the choice to 
specify a maximal border length 𝜕max that will leave the region as a 
hole rather than triangulating it.

A region can be irregular in the sense that the inner angle of two 
consecutive edges can be larger than 180◦. In such cases, a projection 
of a single region to a plane is not necessarily a convex polygon. 
These inner angles of the faces are found by projecting the edges 
onto a plane given by the vertex normal. Then, we triangulate each 
region by iteratively cutting away the smallest angle as this leads to 
triangles close to equilateral ones. Not only have we thereby created a 
triangulation of the input surface that has guaranteed minimum edge 
length 𝑑, but by the results provided in Section 3.1, provided that the 
input and the user-chosen parameters satisfy the restrictions made, the 
triangulation is also manifold.

4. Implementation

In this section, we will discuss implementation aspects of the al-
gorithm presented above. In particular, this contains the introduc-
tion of data structures for efficient access. As stated in Section 3.2, 
we assume to be given a point cloud  , its normal field  , user-
chosen parameters 𝑑, 𝑠, and in case of a surface with boundary, 𝜕max. 
If  does not come with a normal field, the user has to estimate 
one, for instance, via [30]. Furthermore, the user has to choose the 
implementation-related parameter 𝑤 (Section 4.2).
5 
Fig. 5. Update steps of the algorithm.

4.1. Box grid data structure

When introducing new vertex candidates (Section 3.4), we need to 
know all splats close to a given, newly introduced vertex. In order 
to have access to these, we build a box grid data structure consisting 
of equal-sized, cubical boxes of side-length 𝑑 partitioning the three-
dimensional embedding space. Each box holds a pointer to those input 
points and their splats that are at most 𝑑 away (Fig.  5(c)). This 
collection of points associated with box 𝑏𝑗 is denoted by 𝑗 .

As preliminary filter step, we compute an average normal 𝑛𝑏𝑗  for 
each box 𝑏𝑗 by summing up the normals of all those points that 𝑏𝑗 has 
a pointer to, without normalizing the sum. If ‖‖

‖

𝑛𝑏𝑗
‖

‖

‖2
 is smaller than 0.1, 

we keep all points in 𝑏𝑗 . If the length is at least 0.1, we can assume 
that enough points agree on a normal direction in this box. Then, we 
remove those points 𝑝 from the box for which ⟨𝑛𝑝, 𝑛𝑏𝑗 ⟩ < 0. We choose 
a value of 0.1 for the length check to filter a small number of points 
while maintaining coherent normal information. This will ensure that 
the following step can succeed.

For each box 𝑏𝑗 with at least one associated splat, we compute a
box normal 𝑛𝑏𝑗 . It will be used for projection steps that will ensure 
manifold properties of the resulting mesh. This will provide approx-
imated surface normals that allow us to work on data which do not 
fulfill the requirements listed in Section 3.1 such as the example shown 
in Fig.  4(a). To compute an approximation efficiently, we take a finite 
sampling 𝐹 ⊂ S2 and derive the box normal 𝑛𝑏𝑗  as
𝑛𝑏𝑗 = argmax𝑁∈𝐹

min
𝑝𝑖∈𝑗

⟨𝑛𝑝𝑖 , 𝑛⟩ ≈ argmax
𝑛∈S2

min
𝑝𝑖∈𝑗

⟨𝑛𝑝𝑖 , 𝑛⟩.

That is, we search for the unit normal that maximizes the smallest 
scalar product with all point normals associated to the box 𝑏𝑗 . For each 
box 𝑏𝑗 , the scalar product ⟨𝑛𝑝𝑖 , 𝑛𝑏𝑗 ⟩ is ideally strictly positive for all 
points 𝑝𝑖 ∈ 𝑗 , even in those cases where we did not filter the normals. 
Therefore, it allows for a projection onto a plane spanned by 𝑛𝑏𝑗  as 
normal vector such that all points remain positively oriented by their 
normals. The newly computed box normal is also used as vertex normal 
for all vertices lying in 𝑏𝑗 from now on.

To achieve a fast lookup, we can either build a uniform grid on 
the complete bounding box of the input or create a hash structure to 
only store those boxes that are including input points from  . The 
uniform grid has faster access, but results in many empty boxes and 
thus large memory consumption. The hash structure does not use as 
much memory, but the access is slower. In our experiments, we utilize 
the uniform grid structure to be faster as memory consumption can be 
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Fig. 6. Different borders and their respective regions: Border of length 0 consisting of a single vertex and associated to a single, white, surrounding region 6(a); 
border of length 4, going back and forth between 𝑣 and 𝑣′, associated to a single, white, surrounding region 6(b); cycle of 𝑘+1 edges, separating the surface into 
an inner, light gray and outer, white region 6(c).
Fig. 7. Visible seams on the Bottle Shampoo. Figs.  7(a) to 7(d) show experimental results obtained by inserting new vertices via pure breadth-first-growing. The 
seams (shown in blue) appear as regions having a high number of border edges compared to all other regions on the surface. Figs.  7(e) and 7(f) show results 
obtained by prioritizing new vertex candidates. For better visibility, the target edge length 𝑑 was chosen as 1.  (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
handled by our test machine, although the time difference will become 
significant only for larger models than used here.

Note that in Section 3, we stated that for creating new vertex 
candidates, we need to traverse all splats that are distance 𝑑 away from 
a given point. However, here we are collecting all splats that are at 
distance ≤ 𝑑 from the box, thus possibly resulting in a higher number of 
splats to be considered. That insures that the spheres from Section 3.2 
are inscribed into the volume within 𝑑-distances around the boxes (Fig. 
5(b)).

This leads to the question how to choose a good side-length of the 
boxes. As stated above, we use side-length 𝑑, that is, their size coincides 
with the target edge length for the triangulation. For smaller values, 
each splat would be associated to more boxes, hence the memory 
demand would grow. For larger boxes, there will be many splats 
associated to each box that do not actually lead to vertex candidates 
with the currently considered vertex. Thus, the runtime would grow 
when checking all splats being far away from the currently considered 
vertex. Finally, for larger boxes, it will also become more difficult to 
compute a suitable box normal for projections. Hence, we advocate for 
the middle ground and choose 𝑑 as the box size.

The last observation regarding the box normals leads to a heuristic 
how to check the user’s parameter choice of 𝑑. Namely, a choice of 𝑑
is considered too large if there is a box whose box normal has negative 
scalar product with any point normal of a point registered in the box. 
This provides a mechanism to alert the user that they have chosen the 
parameter 𝑑 outside of the specifications as provided in Section 3.1 
and that the output is thus not guaranteed to be manifold anymore. 
This observation allows for the following binary search heuristic to 
find a suitable, yet not too small value of 𝑑 (compare the discussion 
in Section 3.2): Start with a large initial value 𝑑init, for instance, the 
bounding box diagonal of the geometry. Perform a binary search on 
the interval [0, 𝑑init] by picking the midpoint of the current interval, 
building the box grid data structure and evaluating the normal scalar 
products. If any is negative, continue the binary search in the lower 
half of the interval. If all are positive, the user could either stop, since 
a suitable value for 𝑑 has been found, or continue in the upper half of 
the interval, if they seek for a coarser output.
6 
4.2. Window size

During the disk growing, we maintain a data structure representing 
the regions’ borders. They consist of oriented half-edge cycles. Note 
that this includes degenerate cases, such as a single vertex, interpreted 
as a border of length 0 (Fig.  6(a)). Each time a new vertex and the 
two edges to its parent vertices are added to , this creates four 
new half-edges which have to be linked to the existing borders. To 
avoid traversing very long distances along the borders when computing 
priorities of vertex candidates, we introduce a window size 𝑤 after which 
the traversal is stopped. A window then consists of 2𝑤 + 1 vertices on 
a common border, running in both directions centered at the vertex 
currently considered. This provides a considerable speedup compared 
to the previous solution [5].

Recall split and join from Section 3.4. Note that by cutting the 
traversal at a finite window size, it is not longer possible to distinguish 
between a split and join operation in all cases. Preliminary experiments 
showed that window sizes of 𝑤 ≥ 8 all produced the same quality 
output, despite not distinguishing splits or joins, as shown in the 
supplementary material [31].

Furthermore, we experienced that setting the window size to 𝑤 = 0
immediately creates noticeable negative effects on the result of the 
algorithm. In this case, our algorithm defaults to the breadth-first strat-
egy of [5] and thus creates visible seams on the geometry (Figs.  7(a) 
to 7(d)). Starting from window sizes of 𝑤 = 2 or 𝑤 = 3, benefits in the 
quality of the output are apparent as larger visible seams are prevented. 
Theoretically, a larger window size will increase the lookup time. 
Therefore, in our implementation of the algorithm, we go for 𝑤 = 8
as a large enough window size to reap its benefits, but a small enough 
one to not impact the algorithm’s run time.

4.3. Discussion of splat size

In case of non-uniform sampling density, using a global splat size 𝑠
might lead to areas covered multiple times. For more densely sampled 
areas, a smaller splat size guarantees the creation of vertices closer 
to the sampling points. In our experiments, we saw that in high-
curvature regions, smaller splats have small deviation from the surface, 
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Fig. 8. Running our algorithm on the Bowl Chinese from [11] with 8(a) using 
a global splat size and 8(b) using a local spat size. The letter reduces artifacts 
in high-curvature regions such as the rim of the bowl.

while larger splats deviate from the surface significantly. Hence, when 
looking for vertex candidates on large splats, the algorithm can place 
vertices that are somewhat distant to the input points (Fig.  8(a)). There-
fore, we turn to individual, smaller splat sizes to reduce the deviation 
of the vertices with respect to an underlying surface represented by the 
input point cloud.

An additional benefit is that for smaller splat sizes, there are less 
splats registered per box, which speeds up the algorithm. However, the 
individual splats have to have sizes sufficient to cover the underlying 
geometry. To find the specific splat size 𝑠𝑝 for each point 𝑝 ∈  , we use 
the box data structure (Fig.  2(d)). We consider all points 𝑝𝑖 associated 
to the box containing 𝑝. To map the points {𝑝𝑖} to 𝑇𝑝, consider the 
plane 𝑁⟂ containing 𝑝 and 𝑝𝑖 and being orthogonal to 𝑇𝑝. For each 
𝑝𝑖, an auxiliary point 𝜋(𝑝𝑖) is determined by rotating 𝑝𝑖 around 𝑝 around 
the smaller angle in 𝑁⟂ until it lies in 𝑇𝑝. Hence, 𝑝 and 𝜋(𝑝𝑖) have the 
same distance 𝑑𝑖 as 𝑝 and 𝑝𝑖 have. Based on a cyclic sorting around 𝑝, 
we compute a central triangulation, connecting all projections to 𝑝 and 
connecting them pairwise according to their angular sorting (Fig.  2(b)). 
For the resulting triangulation, we test whether or not we can flip a 
central edge to make the incident triangles Delaunay. Points 𝑝𝑖, whose 
edges are flipped, are removed from the following consideration. For 
those neighboring points that remain, consider the Voronoi diagram of 
their triangulation. We choose the local splat size 𝑠𝑝 as distance from 𝑝
to the farthest Voronoi vertex (Fig.  2(c)). This ensures that all Delaunay 
triangles are still completely covered. By choosing local splat sizes in 
this way, the visible deviation from the underlying geometry is reduced 
(Fig.  8(b)).

4.4. Processing vertex candidates

The processing of vertex candidates, following Section 3.4, consists 
of the following steps: popping a vertex candidate from the priority 
queue, checking feasibility of the candidate, adding a suitable candi-
date as well as its edges to , and adding new vertex candidates to the 
priority queue.

Because of the window size 𝑤, there is a finite number of priorities, 
as given in Section 3.5. Each of these priorities is handled via its 
7 
own queue that follows a strict first-in-first-out strategy, which enables 
popping of candidates in constant time [32, Chapter 2.4].

If a vertex still has correct priority, checking for conflict with exist-
ing vertices and performing the projection check from Fig.  4(b) both 
requires access to nearby vertices. This is a constant-time operation 
because of the box data structure that holds all relevant vertices. Fur-
thermore, the number of vertices within distance 2𝑑 is, by construction, 
bounded from above by the densest sphere packing in space, which is 
a constant.

Once a new vertex 𝑣new is created, we compute new vertex can-
didates having 𝑣new as parent vertex. Therefore, we need the set of 
all splats intersecting the ball of radius 𝑑 centered at 𝑣new. This is a 
subset of the set of those splats associated to the box containing 𝑣new. 
To efficiently access potential second parent vertices, we maintain for 
each splat 𝑆 a list of all vertices within distance 𝑑 to 𝑆 (Figs.  5(b) and
5(c)).

5. Experiments

This section is devoted to different experimental settings. As de-
scribed in the beginning, we aim for the reconstruction of real-world 
scan data. When performing the comparison of different algorithms, we 
do so based on a quantitative analysis of the obtained triangle mesh  . 
For this, given a triangle 𝑡 ∈  , we denote the lengths of its edges 
by 𝓁𝑡,1, 𝓁𝑡,2, and 𝓁𝑡,3. The area of the triangle will be called 𝐴𝑡.

Following the approach in [33, p. 307, Eq. (13)], we measure the 
quality 𝑄𝑡 of a single triangle as

𝑄𝑡 =
4
√

3𝐴𝑡

𝓁2
𝑡,1 + 𝓁2

𝑡,2 + 𝓁2
𝑡,3

.

This measure corresponds to a scaled version of the scale-invariant 
(smooth) conditioning quality measure discussed by Shewchuk [34, 
Table 3]. Based on the local, triangle-based measure 𝑄𝑡, further fol-
lowing [33], we present a global metric for the entire triangle mesh 
as average over the quality of the triangles, that is

𝑄avg =
1
| |

∑

𝑡∈
𝑄𝑡.

Note that the factors normalize this quality metric to be 1 for equilateral 
triangles and close to 0 for very narrow slivers. Finally, we compute the 
root mean square deviation in percent 𝑄RMS as

𝑄RMS =
100
𝑄avg

√

1
| |

∑

𝑡∈

(

𝑄𝑡 −𝑄avg
)2.

See Section 3 of [34] for a relation of this quality measure to the stiff-
ness matrix. Furthermore, from the set of all edges in the triangulation, 
we consider the average edge length 𝐸avg as well as the corresponding 
root mean square deviation 𝐸RMS, also in percent.

In order to demonstrate the quality of the meshes achieved by 
our algorithm, we turn to 20 scanned objects provided as part of a 
surface reconstruction benchmark [11]. Here, we concentrate on high-
resolution scans obtained by an OKIO 5M scanning device, resulting 
in 330k to 2000k points per surface after 20 shots. The shots are 
registered and do come with a normal field. Out of the 20 point clouds, 
we used 19 as they are provided in the repository. The scan of a remote 
control had a clear registration artifact, since one of the buttons of 
the remote was registered into the remote, pointing down, not up. 
This, we corrected manually by removing the wrongly registered points. 
Here, we compare our results to those made by various widely used 
algorithms from the field. Then, we add different levels of noise to the 
data and investigate the stability of our algorithm.

As mentioned in Section 4, there is a set of parameters which has 
to be chosen by the user. For our experiments, we made the following 
choices. The sphere diameter 𝑑 was set to be 0.2, while the maximal 
border length 𝜕max was equal to 40. For each model, the initial splat 
size 𝑠 was chosen between 0.2 and 0.4 individually, depending on the 
considered point cloud.
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Fig. 9. Qualitative comparison of named algorithms without remeshing (left) and with remeshing (right).
Table 1
Bottle Shampoo (604,903 input points).
 Algorithm | | 𝐸avg 𝐸RMS 𝑄avg 𝑄RMS 
 Adv. Front 1.209546 0.1799 39.6 0.8247 16.0  
 Adv. Front (Re) 928,850 0.2028 15.3 0.9416 6.1  
 Poisson 16,280 1.2946 74.8 0.8760 12.3  
 Poisson (Re) 498,140 0.2657 38.6 0.9251 7.5  
 Poisson MG 150,770 0.5318 35.7 0.7204 33.7  
 Poisson MG (Re) 952,830 0.2015 16.3 0.9330 7.0  
 RIMLS 1,907,781 0.1499 35.8 0.7055 35.1  
 RIMLS (Re) 1,054,438 0.1905 19.3 0.9117 11.5  
 Scale Space 1,209,093 0.1798 39.1 0.8248 16.0  
 Scale Space (Re) 926,828 0.2028 15.2 0.9417 6.0  
 Voronoi 1,209,792 0.1799 52.3 0.8241 16.1  
 Voronoi (Re) 923,476 0.2044 20.8 0.9407 6.8  
 Ours 840,453 0.2131 11.2 0.9577 4.5  
 Ours (Re) 854,257 0.2098 10.4 0.9701 3.8  

Table 2
Bowl Chinese (606,320 input points).
 Algorithm | | 𝐸avg 𝐸RMS 𝑄avg 𝑄RMS 
 Adv. Front 1,212,636 0.2920 38.2 0.8045 18.6  
 Adv. Front (Re) 2,407,002 0.2038 15.4 0.9405 6.2  
 Poisson 13,584 2.3850 63.2 0.8845 11.7  
 Poisson (Re) 637,488 0.3732 40.8 0.9301 6.9  
 Poisson MG 503,458 0.4710 39.8 0.7062 37.1  
 Poisson MG (Re) 2,409,076 0.2050 17.7 0.9223 7.9  
 RIMLS 6,458,589 0.1331 40.4 0.6877 39.6  
 RIMLS (Re) 2,441,143 0.2023 15.4 0.9394 6.3  
 Scale Space 1,093,339 0.2779 34.9 0.8054 18.7  
 Scale Space (Re) 1,947,592 0.2006 16.1 0.9351 7.3  
 Voronoi 1,212,636 0.2916 38.4 0.8042 18.7  
 Voronoi (Re) 2,398,584 0.2039 15.3 0.9405 6.1  
 Ours 2,137,650 0.2167 14.8 0.9485 6.2  
 Ours (Re) 2,246,434 0.2093 11.4 0.9665 4.3  

5.1. Experimental comparison for point cloud meshing

From the algorithms listed in Section 2, Poisson [12], advancing 
front [16], and scale space [17] are run with the standard parameters 
as implemented in [35] except for the cleaning steps, which were un-
necessary because of the high-quality input. Multigrid Poisson [14] and 
Voronoi reconstruction [19] are run with the standard parameters as 
implemented in [36]. RIMLS [18] is run with the standard parameters 
from [15], using a smoothness of 2 and a grid resolution of 1000.

We aim for an algorithm that provides high-quality triangulations 
out-of-the-box, right after reconstruction. However, as the comparison 
algorithms do not necessarily optimize for a uniform edge length, we 
take their respective results and process them with the ‘‘Isotropic Ex-
plicit Remeshing’’ filter of MeshLab [15]. This filter repeatedly applies 
edge flip, collapse, relax, and refine operations [20]. We run three 
iterations with a target edge length of 0.2 in absolute world units for 
the input [11].

In Tables  1 to 4, we report both the results of the comparison 
algorithms and the result after these have been remeshed, indicated 
by ‘‘(Re)’’. These tables include representative models. A full report 
with data for all 20 models can be found in the supplementary ma-
terial [31]. We chose the Bottle Shampoo and the Bowl Chinese because 
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Table 3
Cloth Duck (1,018,891 input points).
 Algorithm | | 𝐸avg 𝐸RMS 𝑄avg 𝑄RMS 
 Adv. Front 2,037,574 0.1839 40.1 0.8143 17.3  
 Adv. Front (Re) 1,739,214 0.1965 19.4 0.9179 9.5  
 Poisson 147,940 0.6300 44.3 0.8805 12.0  
 Poisson (Re) 1,488,112 0.2068 17.5 0.9311 7.2  
 Poisson MG 419,614 0.4086 38.5 0.7160 36.0  
 Poisson MG (Re) 1,463,018 0.2093 18.7 0.9154 8.8  
 RIMLS 5,878,521 0.1154 39.9 0.6919 38.9  
 RIMLS (Re) 1,728,371 0.1978 20.1 0.9143 12.7  
 Scale Space 2,036,816 0.1839 40.0 0.8139 17.4  
 Scale Space (Re) 1,735,814 0.1965 19.3 0.9179 9.5  
 Voronoi 2,037,270 0.1767 41.8 0.8067 18.1  
 Voronoi (Re) 1,514,160 0.2027 15.4 0.9407 6.3  
 Ours 1,435,604 0.2181 15.7 0.9454 6.6  
 Ours (Re) 1,535,058 0.2089 12.5 0.9592 4.8  

Table 4
Toy Bear (607,501 input points).
 Algorithm | | 𝐸avg 𝐸RMS 𝑄avg 𝑄RMS 
 Adv. Front 1,214,998 0.1474 36.3 0.8474 13.9  
 Adv. Front (Re) 629,138 0.2024 15.2 0.9418 6.0  
 Poisson 20,134 1.0381 54.7 0.8882 11.7  
 Poisson (Re) 530,374 0.2193 22.8 0.9293 7.3  
 Poisson MG 432,268 0.2585 39.5 0.2623 37.1  
 Poisson MG (Re) 629,508 0.2021 15.0 0.9436 6.1  
 RIMLS 5,548,226 0.0730 40.0 0.6910 39.3  
 RIMLS (Re) 618,531 0.2049 16.2 0.9322 6.8  
 Scale Space 1,214,990 0.1474 36.3 0.8474 13.9  
 Scale Space (Re) 628,848 0.2025 15.2 0.9417 6.0  
 Voronoi 1,214,996 0.1471 36.5 0.8471 13.9  
 Voronoi (Re) 616,160 0.2041 15.0 0.9427 5.9  
 Ours 555,490 0.2159 13.5 0.9499 5.6  
 Ours (Re) 578,730 0.2096 11.5 0.9657 4.3  

of their features, as explored in Figs.  8 and 9. The Cloth Duck is one of 
two models where the competing methods had the largest gain on our 
algorithm when measured by 𝐸avg (see supplementary material [31] for 
the Mug).

A first thing to notice when regarding the results presented in 
Tables  1 to 4 is that our algorithm achieves the best, that is, highest 
values for 𝑄avg on all models. This holds consistently across all 20 
models from the repository. That is, our method produces the highest 
quality meshes, even when compared with the remeshed results of the 
other algorithms. For comparison, we also add the remeshed version of 
our algorithm, which generally improves the quality metrics slightly 
while destroying the minimum edge length guarantee. The goal of 
this paper is not to compare different remeshing approaches, but to 
present a method that can provide high-quality triangle meshes right 
after reconstruction, without remeshing. Hence the remeshed version 
of our algorithm is set apart in gray and carries bold font if it causes 
an improvement on the previously best result. In this setting, the 
comparison to the remeshed results just serves to place our results in a 
broader setting.

On most of the models, the deviation 𝑄RMS has also the low-
est percentages for our algorithm. Notable exceptions are the Bowl 
Chinese (Table  2) and the Cloth Duck (Table  3). However, across all 
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Fig. 10. Distributions of the Bottle Shampoo as obtained by our algorithm 
(without remeshing).

models, the lowest deviation 𝑄RMS is at most 0.6% better than ours, 
cf. supplementary material [31].

Regarding the second metric, note that by construction, all edges 
produced by our algorithm are of length ≥ 0.2. Therefore, the average 
edge length is also always greater than 0.2, which places the remeshed 
output of other methods in the lead regarding the metric 𝐸avg. How-
ever, the largest average edge length across all models is 0.2181 for 
our algorithm, attained on the Cloth Duck (Table  3), which is still very 
close to the target edge length.

Also, for almost all models, the width of the distribution of edge 
lengths, measured by 𝐸RMS, is the lowest for our algorithm. That is, 
the triangulations produced are almost uniform. As a final observation 
regarding the quality metrics, note that those comparison algorithms 
that provide better metrics on the models do so only after an additional 
remeshing step. This shows that our algorithm does attain the goal of 
providing high-quality meshes immediately after reconstruction as it 
beats all comparison algorithms in this regard.

When inspecting the models visually, it is clear that, at least after 
remeshing, the triangulations are of high quality (Fig.  9). Note how 
some algorithms are not able to reproduce small details—for instance, 
a number 14 on the Bottle Shampoo. Even in the remeshed version, line-
like artifacts are still visible for some of the comparison algorithms. Our 
algorithm creates a mesh close to uniformity while retaining the details.

This uniformity can be observed by plotting histograms on the 
distribution of angles, edge lengths, and quality measures for a triangu-
lation obtained by our algorithm. See Fig.  10 for a corresponding set of 
plots for the Bottle Shampoo and find histograms for the other models 
in the supplementary material [31]. The histogram confirms that the 
angles of the triangles are centered around 60◦, indicating a strong 
tendency towards equilateral triangles. Also, we see that the edge 
lengths are indeed starting from the set minimum of 0.2, with most 
edges actually attain this value. Finally, the histogram of the triangle 
quality reveals that there are many equilateral triangles (corresponding 
to 𝑄𝑡 = 1), with the distribution skewed towards this highest quality 
value.

Unlike some competitors and the remeshing step, our algorithm 
is not iterative but produces the output in a single sweep over the 
input. Run times for several models are given in Fig.  11, where the 
competitors are reported including the remeshing time. All experiments 
were run on a machine with an Intel® CoreTM i7-5600U CPU 2.60 GHz 
with four cores and 16 GB of RAM. Five of the models did not fit the 
RAM of this comparison machine. Thus, we only provide timings for 15 
models, while the qualitative data for the remaining five was acquired 
on another machine. Note that our algorithm performs similarly to most 
of the competitors.
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Fig. 11. Log of the run time of the algorithms on several models. Ours is 
additionally split into initialization and disk growing.

Fig. 12. Measuring the reconstruction quality.

5.2. Robustness to user input

As stated in Section 3.3, the user is asked to provide two starting 
vertices to run the algorithm. To investigate whether the quality of 
the obtained mesh is independent of the chosen starting vertices, we 
selected the Toy Bear because of its various differently curved regions. 
Further models promoting this observation are included in the supple-
mentary material [31]. As illustrated in Fig.  13, we chose eight different 
regions to place the starting vertices in. The results of these experiments 
show that the quality of the output is not sensitive to the choice of 
starting vertices. For the eight resulting triangle meshes, the average 
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Fig. 13. Results with various starting vertices. From left to right: The Toy Bear with positions for starting vertex pairs, close up for pairs 1 to 8, showing the 
area at one eye emphasized in the first image.
edge length varies from 0.2158 to 0.2159, as does the average quality: 
from 0.9499 to 0.9504. In all cases, 𝐸RMS is equal to 13.5 while 𝑄RMS
equals 5.6.

Next, we investigate the robustness of surface reconstruction de-
pending on the splat size. As the models discussed so far are real-world 
scans, there is no ground truth to compare the reconstruction with. 
For this experiment, we turn to two models that satisfy all assump-
tions made in Section 3.1 and that have an explicit mathematical 
parametrization to evaluate the reconstruction: the unit-sphere and a 
torus parametrized as a unit circle swept around a circle of radius 2. 
We sample both models randomly, the sphere with 10,000 and the torus 
with 60,000 points, resulting in a similar density on the models. The 
norm is a direct measure of the reconstruction quality. For the sphere 
model, vertices with norm 1 lie directly on the sampled sphere. For 
the torus model, we measure the norm as the distance to the circle of 
rotation, hence, a vertex with norm 1 lies directly on the sampled torus. 
In this scenario, the sphere diameter 𝑑 was chosen as 0.1 while a global 
splat size was chosen between 0.02 and 0.4.

For both models, given too small splat sizes, the algorithm fails to 
cover the entire model, resulting in a very small number of vertices. 
Once a splat size is reached for which the entire model is covered, both 
the number of vertices and the reconstruction quality are stable until 
larger splat sizes are reached, which causes visible distortion in the 
reconstructed models (Fig.  12). This shows that for splat sizes, just large 
enough to cover the geometry, our algorithm achieves close to optimal 
reconstruction results. For the sphere model, all points created are on 
or outside the sphere, placing the closest vertex at a norm of 1 directly 
on the sphere. On the torus model, points are lying both in and outside 
of the torus. Even for the largest splat size of 0.4, which creates visible 
reconstruction artifacts, the reconstructed models are still manifold, in 
line with our guarantees from Section 3.1.

5.3. Robustness to noise

In order to investigate the robustness of our algorithm with respect 
to noisy data, we equip a selection of the high-quality models [11] 
with different levels of noise 𝜈 ∈ R≥0. Here, we use those models that 
allow for placing moderate noise, for instance, the Bottle Shampoo or 
the Bowl Chinese, whereas we ignore those that already have details 
and elements that hinder manifold reconstruction even for tiny levels 
of noise. Thereby, each input point is moved by a uniformly distributed 
random vector of length smaller or equal to 𝜈. This moves the noisy 
points within a bound of ±𝜈 around the ground truth. To measure the 
quality of the output, for each level 𝜈 of noise, we computed a triangula-
tion based on the same parameter choices as above (Section 5). We find 
that the level of noise directly influences the number of vertices, similar 
to the observations made while increasing the splat size (Section 5.2). 
That is, with increasing noise level, the number of vertices of the output 
increases as well. Depending on the model, we experience that for 
values 𝜈 ∈ [0.06, 0.1], the output begins not to be manifold anymore. 
That is, manifoldness is lost from 2𝜈 between 60% to 100% of 𝑑. For 
the user, this experiment suggests that for a geometry with known or 
estimated noise level 𝜈, choosing 𝑑 ≥ 2𝜈 yields the best results (see 
Table  5).
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Table 5
Noise levels 𝜈 for which the reconstruction is (3) or is not (7) manifold.
 Name ∖ 𝜈 0.

00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1 

 Bottle Shampoo 3 3 3 3 3 3 3 3 3 7 7 
 Bowl Chinese 3 3 3 3 3 3 3 3 3 3 7 
 Cup 3 3 3 3 3 3 3 3 7 7 7 
 Flower Pot 2 3 3 3 3 3 3 7 7 7 7 7 
 Toy Bear 3 3 3 3 3 3 3 3 7 7 7 
 Toy Duck 3 3 3 3 3 3 3 3 7 7 7 

Table 6
Experimental results for remeshing Kitten.
 𝑑 || | | 𝛼min 𝛼max 𝛼avg  
 input – 10,000 20,000 7.6919◦ 153.3379◦ 60◦  
 remesh 0.02 17,673 35,346 30.2108◦ 112.2197◦ 60◦  
 remesh 0.03 7,837 15,674 28.3165◦ 115.9218◦ 60◦  
  
 𝐸min 𝐸max 𝐸avg 𝑄min 𝑄max 𝑄avg  
 0.0039 0.1119 0.0287 0.2296 0.9999 0.8438 
 0.02 0.0391 0.0213 0.6742 1.0000 0.9558 
 0.03 0.0613 0.0320 0.6391 1.0000 0.9552 

6. Extension to surface remeshing

Here, we modify the ansatz presented in Sections 3 and 4 to remesh 
polyhedral surfaces to achieve an isotropic triangular mesh with guar-
anteed smallest edge length. To guarantee the theoretical results col-
lected in Section 3, we assume the input polyhedral surface  to 
represent an orientable, closed, and compact 2-manifold embedded 
into R3, which is of finite, positive reach 𝜌. The strict definition from 
Section 3.1 would give a reach of 𝜌 = 0 for polyhedral surfaces. How-
ever, several methods are available to compute an approximation of 
an idealized surface that the polyhedral input is assumed to represent, 
where a user-given parameter steers how closely the input should be 
taken into account [37].

In Section 3.2, we equipped the input point cloud with circular 
splats on which the output surface is built. Now, turning to polyhedral 
surfaces, we can skip the splats and place the spheres on the faces of 
the polyhedral surface directly. Consequently, we use the face normals 
instead of splat normals for further calculations. This also removes the 
need for finding individual splat radii. To build the box data structure 
described in Section 4.1, to each box 𝑏𝑗 , we associate all faces of the 
input with distance less than 𝑑 to 𝑏𝑗 . Afterwards, we run the algorithm 
as described in Sections 3.3 to 3.7 on the faces of the input geometry. 
Hence, the resulting surface interpolates the input one.

We illustrate the applicability of our algorithm to remesh a freeform 
mesh by running it on the Kitten model. Here, we run our algorithm 
with target edge length 𝑑 varying between 0.01 and 0.08. Since the 
input consists of 10,000 vertices and has an average edge length 
of 0.0287, we consider the results achieved for 𝑑 = 0.02 and 𝑑 = 0.03
in more detail. As shown in Table  6, for both target edge lengths, the 
mesh quality is improved. Both, the resulting edge lengths as well as the 
resulting angles are less widely distributed than provided by the input 
mesh. Further, the model remeshed has a better average quality 𝑄avg
equal to 0.9558 for 𝑑 = 0.02 or to 0.9552 for 𝑑 = 0.03, respectively, in 
comparison to 0.8438 of the input model. The meshes resulting for the 
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Fig. 14. Result of the algorithm run on Kitten model. Left: input geometry. 
Middle: input geometry remeshed with target edge length 0.02. Right: input 
geometry remeshed with target edge length 0.03.

Fig. 15. Result of the algorithm run on CAD model. Left: the input geometry 
with detected features (shown in blue). Right: the remeshed output with more 
nearly regular triangles, but also a loss of features. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.)

mentioned target edge lengths are shown in Fig.  14. The complete data 
set can be found in the supplementary material [31].

Also for the CAD model shown in Fig.  15, the modified algorithm 
returns a remeshed triangular polyhedral surface. The result has more 
triangles than the input and the resulting triangles are closer to regular 
triangles than those of the input geometry. The improved triangle 
quality does come with a caveat. Since we place the spheres such that 
a newly introduced one touches two spheres already placed, the sphere 
centers — which later form the vertex set of the resulting mesh — do 
not necessarily coincide with input vertices nor are they likely to lie 
on edges of the input surface. Hence, features like ridges, as shown in 
Fig.  15, are worn off. In the next section, we therefore discuss how to 
further modify the algorithm to maintain features on both polyhedral 
surfaces and point clouds.

7. Feature detection

In this section, we focus on retaining features on point clouds 
and polyhedral surfaces throughout our algorithm. To define and to 
detect features, we use the dihedral angle 𝛼 formed by the normals of 
intersecting splats introduced in Section 3.2. In case of a polyhedral 
surface input, we use the dihedral angle 𝛼 formed by adjacent faces. 
In either case, we additionally introduce an angle threshold 𝜗 chosen 
by the user. This threshold defines a lower bound such that every 
intersection with 𝛼 > 𝜗 will be considered to be a feature and thus to 
be retained throughout the remeshing.

7.1. Feature detection on point clouds

We first turn to input point clouds and will discuss polyhedral sur-
faces as input subsequently. Consider two splats 𝑆 and 𝑆′ intersecting 
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in a straight line segment 𝓁; we say that 𝓁 is a feature segment, if 𝛼 is 
larger than the threshold 𝜗 (see Fig.  17). In Section 8, we will illustrate 
the connection between the input geometry and 𝜗 experimentally.

For two splats, the length of the resulting feature segment 𝓁 is at 
most equal to the diameter of the splat with smallest radius, depending 
on the individual splat sizes. To avoid such — possibly very short 
— feature segments, we use the global splat diameter during feature 
segment detection, in contrast to Section 4.3. This leads to an increasing 
number of intersecting splats as larger splats are more likely to intersect 
other splats. The features detected by a given splat size do depend on 
various properties such as, for instance, the noise level, the chosen 
value of 𝛼, or the feature scales of the input geometry. Therefore, 
choosing a suitable splat size is highly dependent on the input settings 
at hand.

As depicted in Figs.  16(b) and 16(c), after collecting all feature 
segments, regions of aligned feature segments occur. Similar to the 
disconnected splats representing the input point cloud, the feature 
segments are a disconnected representation of features of the surface 
underlying the input. To structure this further, we collect a set of feature 
vertex candidates, which is formed by all intersection points of three 
splats.

For initialization of our algorithm, we construct the graph  based 
on the detected features of the input geometry. First, we sequentially 
add all feature vertex candidates to . However, we only add a feature 
vertex candidate, if it is at least distance 𝑑 away from previously added 
ones to maintain the minimal edge lengths, otherwise, the feature 
vertex candidate is discarded. Next, we grow feature lines by iteratively 
looking for a position on a feature segment at distance 𝑑 from an 
already existing feature vertex 𝑣. Again, these positions have to be at 
least distance 𝑑 away from all other previously placed feature vertices. 
As long as we find such positions, we place a feature vertex there 
and connect it to the parent vertex 𝑣 to which it has distance 𝑑. 
The connecting edges between two feature vertices are called feature 
edges. Hence, in contrast to the initialization described in Section 3.3, 
does not contain solely two starting vertices, but vertices and edges 
representing the features of the input geometry. In this way, feature 
lines can be grown similar to the disk growing process.

On a point cloud, not all feature segments might be close enough 
to a feature line evolving from a previously placed feature vertex 
such that spheres are placed on them being connected to a feature 
vertex. Therefore, after the growing process described above, we iterate 
through all feature lines that we have not yet placed a feature vertex 
on. If we can still do so, according to the distance criterion to all other 
vertices, we place a feature vertex and continue the growing process 
from there. Once all feature segments are sampled by vertices, we look 
for pairs of vertices with valence 1 in the graph, which have a distance 
smaller than 2𝑑 to each other, and connect them by an edge. This closes 
gaps in , where vertices were added iteratively starting from both ends 
on a feature line of the geometry. The positions of the two vertices 
connected by such a closing edge are moved slightly towards the center 
of the closing edge to avoid edges on feature lines with length close 
to 2𝑑. Finally, after having processed all feature lines, we perform disk 
growing based on  as described in Section 3.4.

7.2. Feature detection on polyhedral surfaces

In contrast to an input point cloud, on a polyhedral surface input, 
we already have a set of edges. As stated above, an edge 𝑒 in the input is 
called a feature segment if 𝛼 > 𝜗. Similarly, a vertex of the input is said 
to be a feature vertex if it is incident to either one feature segment or to 
at least three. In Fig.  15, the features detected for 𝜗 = 40◦ are shown. 
Feature vertices are depicted as dark blue dots. All the other end points 
of feature segments are incident to exactly one other feature segment. 
Hence, the feature segments form feature lines consisting of consecutive 
feature segments connecting the feature vertices. In case, a feature 
segment is not yet contained in such a feature line, it is part of a closed 
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Fig. 16. Feature detection on the Wrench model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
Fig. 17. Intersection of two splats 𝑆 and 𝑆′ and resulting feature segment 𝓁. 
Side view of intersecting splats.

feature line. This allows for their reconstruction as shown in Fig.  25. On 
each feature line, we distribute feature vertices with distance 𝑑 until no 
further vertex can be placed. In order to distribute the sphere centers 
more regularly, feature vertices are moved iteratively on the feature 
lines. Finally, after having processed all feature lines, we perform disk 
growing based on  as described in Section 6. Figs.  18 and 19 show the 
results achieved after running the algorithm on a CAD model. Further 
evaluations of the output achieved by the algorithm presented here are 
included in the supplementary material [31]. Here, complete data sets 
in addition to graphical representations of the models used in this paper 
as well as models not presented so far can be found.

8. Experiments on point clouds

From the set of models provided in [11], we run the modified 
version of the algorithm on those models possessing feature ridges like 
the Wrench, the Screw, and the Xiao Jie Jie. Complete data sets of the 
models listed and others are provided in Table  7. As illustrated in Fig. 
16, there is a visually striking improvement made. The Wrench model 
with feature ridges shown in Fig.  16(e) gives the impression of being a 
CADed version of the result shown in Fig.  16(f).

To quantify the results, we measure the level of interpolation 
achieved by the triangulation in comparison to the input point cloud. 
Therefore, we calculate the shortest distance between an input point 
𝑝 ∈  and the output mesh  ,
𝑑(𝑝,  ) = min ‖

‖

𝑝 − 𝑝′‖
‖

,

𝑝′∈
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Table 7
 Evaluation of one-sided Hausdorff distance from point cloud to approximating 
surface, without and with feature detection (f.d.) in comparison to input point 
cloud.
 Model 𝑑 𝜗 || | | 𝑑max 𝑑avg 𝑑RMS  
 Wrench 1.0 – 8946 17,896 0.6630 0.0360 7.4933 
 with f.d. 1.0 60◦ 8871 17,746 0.4353 0.0112 2.1373 
 Screw 0.6 – 13,411 26,842 0.4605 0.0438 6.0548 
 with f.d. 0.6 90◦ 13,472 26,988 0.3595 0.0190 2.3354 
 Xiao Jie Jie 0.8 – 22,584 45,164 0.7918 0.0312 4.0479 
 with f.d. 0.8 70◦ 22,180 44,364 0.6131 0.0269 3.1905 
 Lock 0.8 – 5,951 11,902 0.4609 0.0167 3.2285 
 with f.d. 0.8 60◦ 5,837 11,674 0.2963 0.0113 1.6142 
 Remote 0.8 – 22,595 45,186 0.7816 0.0296 5.6993 
 with f.d. 0.8 50◦ 22,239 44,474 0.4880 0.0179 2.9222 

where 𝑝′ denotes a point on the output mesh. We use 𝑑(𝑝,  ) to 
determine the one-sided Hausdorff distance between  and   as

𝑑max = max
𝑝∈

𝑑(𝑝,  ).

We measure the one-sided Hausdorff distance from P to T in order 
to find the biggest deviation between output and input. Next, we 
determine the average distance between  and   as

𝑑avg =
1
||

∑

𝑝∈
𝑑(𝑝,  )

and the corresponding root mean square deviation in percent 𝑑RMS

𝑑RMS =
100
𝑑avg

√

1
||

∑

𝑝∈

(

𝑑 (𝑝,  ) − 𝑑avg
)2.

We use the implementation of the one-sided Hausdorff distance [24] in 
MeshLab [15] to compute these values practically. In this sample-based 
approach, we always sample on vertices, edges, and faces. In this, we 
utilize ten times the number of samples suggested by MeshLab to obtain 
an even better approximation of the Hausdorff distance.

As shown in Table  7, applying feature detection does not signifi-
cantly change the number of vertices and edges in the output geometry. 
The maximal distance between point cloud and output geometry, the 
average distance, and the root mean square error are reduced.
Fig. 18. Feature detection on polyhedral surface (Fandisk model). From left to right: Input with highlighted section; algorithm applied without feature detection; 
detected feature edges; detected feature edges and feature vertices; end of feature lines where no further vertex can be placed; feature vertices regularly distributed 
along feature lines; remeshed geometry with feature detection.
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Fig. 19. Result of the algorithm run on Cube model. Left: input geometry 
remeshed without feature detection (see Fig.  15). Middle: input geometry 
remeshed with 𝜗 = 40◦ and target edge length 0.1. Right: input geometry 
remeshed with 𝜗 = 24◦ and target edge length 0.1.

In Section 7, we introduced the threshold 𝜗 for feature detection. 
Experiments for decreasing values of 𝜗 showed an increase in the 
number and density of feature segments as depicted in Fig.  20. A 
suitable choice for 𝜗 depends on the input as well as on the remeshing 
goals of the user. Choosing 𝜗 = 90◦ can be taken as a recommendation 
to start the search for a reasonable value of 𝜗 with. That is, since this 
allows for the detection of geometry parts intersecting under an angle 
equal to 90◦ like those found on the Wrench model as illustrated in Fig. 
16(c). Table  7 lists the angle 𝜗 used per model, which was chosen to 
preserve the majority of features present in the model.

Fig.  20 illustrates the increase in the number of feature segments 
with shrinking values of 𝜗 on the Xiao Jie Jie model. Since for de-
creasing angle 𝜗 the number of feature segments increases, regions in 
the point cloud occur being densely covered with feature segments. In 
contrast to a single feature segment or a small number of nearly parallel 
ones, the features are blurred. The quality of the meshes does not differ 
significantly from the result achieved without feature detection. For 
target edge length 0.4 and 𝜗 = 40◦, we achieve the worst value for 𝑄avg, 
which is 0.9420, while without feature detection, the corresponding 
value of 𝑄avg is equal to 0.9552 determined for the same target edge 
length. An overview on all data collected for this model is contained 
in the supplementary material [31], Table 25. Based on the results 
achieved, the feature angle to choose depends on the geometry.

8.1. Varying sampling density

Depending on the scanning process, the derived sampling points 
may be distributed in varying density over the geometry. In the upper 
row of Fig.  21, close-ups of two models taken from [11] are depicted. 
Both show a higher density of sampling points in areas of high curva-
ture than in low-curvature areas. In the algorithm presented here, the 
individual splat sizes are chosen based on the distribution of sample 
points. Hence, areas with low curvature are well represented by a few 
splats of larger radii while a higher number of splats of smaller radii 
cover regions of higher curvature. The images in the lower row of Fig. 
21 illustrate that the quality of the resulting meshes is not influenced 
by the variation of the sampling density of the input.
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8.2. Handling reach criterion

As mentioned in Section 4.1, the parameter 𝑑 has to be chosen by 
the user, depending on the reach 𝜌 of the input. In case 𝑑 is smaller or 
equal to the reach, the output consists of an isotropic triangular mesh, 
as discussed in Section 3. However, choosing 𝑑 larger than the reach 
might lead to issues in the growing process. Both choices are illustrated 
in Fig.  22. For 𝑑 > 𝜌, the growing process was started on the top side of 
the Plate model (available online [31]) and failed to grow over the rim 
to the lower side. For any 𝑑 < 𝜌, the Plate model is meshed successfully, 
as illustrated in the lower image of Fig.  22.

9. Experiments on polyhedral surfaces

To further illustrate the effectiveness of the modifications to the 
algorithm presented in Sections 6 and 7, we run the algorithm on a 
broad choice of polyhedral surfaces, with a varying number of sharp 
features as well as an increasing level of topology. The models we 
remesh in the following are either taken from an online repository of 
commonly used meshes [38] or self-made (available online [31]).

We compare the results achieved by our algorithm to the Isometric 
Explicit Remeshing [20] pipeline of MeshLab [15] and to the Remesh-
ing [22] module of the PMP library [21]. In all experiments, for both 
algorithms, we use the standard number ten of iterations. Further-
more, we do not use adaptive remeshing for either implementation 
as it conflicts the goal of obtaining a uniform edge length. All other 
parameters are left in their standard configuration of the respective 
implementation, except for using world-length coordinates in PMP—in 
the standard configuration, lengths are given relative to the bounding 
box. In Table  8, a representative choice of CAD models processed with 
said routines is listed. The derived data show that our single-sweep 
algorithm produces comparable mesh quality with and without feature 
detection. A larger variety of models with more detailed data sets can 
be found in the supplementary material [31].

9.1. Influence of feature detection on Hausdorff distance

In Fig.  19, we observe the striking differences between the results 
without feature detection and with feature detection. While all features 
in the result achieved without feature detection are lost, varying the 
threshold angle 𝜗 shows an increase of features maintained. In addition 
to investigating the one-sided Hausdorff distance 𝑑max as introduced in 
Section 8, we will consider the relative error 𝑑max

𝑑  as well. Remeshing 
the Cube with 𝜗 = 40◦ does not allow for a complete maintenance of 
all feature lines and vertices while choosing 𝜗 = 24◦ does as illustrated 
in Table  9 and depicted in Fig.  19. Further, we can observe the same 
behavior on the Fandisk as well.
Fig. 20. Feature detection on point clouds, illustrated on the Xiao Jie Jie model. Upper row: point cloud and features detected. Lower row: close-up of left eye. 
Both rows, left to right: without feature detection, detected features for 𝜗 = 90◦, 80◦, 70◦, 60◦, 50◦, 40◦.
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Fig. 21. Upper row: varying sampling density, detected on the Remote model 
and on the Coffee Bottle Plastic model. Lower row: resulting isotropic meshes 
derived from the point samplings shown above.

Fig. 22. Results achieved by processing the Plate model. Above: failed attempt 
based on 𝑑 chosen too big. Below: successful application.

9.2. Influence of feature detection on edge length and angle distribution

In Fig.  23, the angle distribution, the edge length distribution, 
and the distribution of quality are shown, evaluated on a remeshing 
of the Cube model with and without feature detection. Respecting 
features of a geometry results in a broader distribution for each of 
the three quantities evaluated. While the edge length distribution does 
not change drastically, the angle distribution has a peak at a smaller 
angle. The quality 𝑄𝑡 is still good, but does not contain as many ideal 
triangles as the remeshing without feature detection. In contrast to 
the results achieved by the algorithms mentioned above, we perform 
better with respect to the minimum angle as well as to the minimum 
triangle quality. The Cube model possesses several feature lines and 
corners easily to be detected visually. Most angles at points detected 
as feature vertices of higher valence by our algorithm are close to 90◦. 
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Table 8
Selection of CAD models remeshed with and without feature detection using 
MeshLab (ML), Polygon Mesh Processing (PMP), and our algorithm. A more 
detailed evaluation is presented in the supplementary material [31].
 Algo. 𝑑 𝜗 𝐸avg 𝐸RMS 𝑄avg 𝑄RMS 
 

Cu
be

ML 0.04 24◦ 0.0408 12.8 0.9600 4.5  
 PMP 0.04 24◦ 0.0364 12.2 0.9636 3.5  
 ours 0.04 24◦ 0.0436 14.1 0.9295 5.8  
 ML 0.04 – 0.0404 14.5 0.9525 7.3  
 PMP 0.04 – 0.0364 11.8 0.9663 3.1  
 ours 0.04 – 0.0426 11.3 0.9584 4.5  
 

Fa
nd
isk

ML 0.012 60◦ 0.0124 18.9 0.9526 5.0  
 PMP 0.012 60◦ 0.0112 12.3 0.9713 2.9  
 ours 0.012 60◦ 0.0131 14.2 0.9221 5.3  
 ML 0.012 – 0.0124 12.9 0.9531 4.9  
 PMP 0.012 – 0.0125 12.2 0.9720 2.8  
 ours 0.012 – 0.0127 11.1 0.9592 4.4  
 

Fl
an
ge

ML 1.0 80◦ 1.0241 13.2 0.9562 5.1  
 PMP 1.0 80◦ 0.9240 12.6 0.9601 3.8  
 ours 1.0 80◦ 1.0645 11.8 0.9585 4.9  
 ML 1.0 – 0.9361 27.7 0.8823 21.4  
 PMP 1.0 – 0.9269 12.2 0.9626 3.5  
 ours 1.0 – 1.0666 11.4 0.9572 4.5  
 

O
lo
id

ML 0.02 80◦ 0.202 15.8 0.9455 9.4  
 PMP 0.02 80◦ 0.0183 12.3 0.9624 3.4  
 ours 0.02 80◦ 0.0214 11.8 0.9508 4.5  
 ML 0.02 – 0.0201 17.3 0.9373 11.2  
 PMP 0.02 – 0.0183 12.3 0.9625 3.4  
 ours 0.02 – 0.0212 10.9 0.9606 4.4  

Table 9
Evaluation of one-sided Hausdorff distance of CAD models (Cube and Fandisk), 
comparing to the output of MeshLab (ML) and Polygon Mesh Processing (PMP).
 Algo. 𝑑 𝜗 𝑑max

𝑑max
𝑑 𝑑 𝜗 𝑑max

𝑑max
𝑑  

 

Cu
be

ML 0.04 — 0.0347 0.8687 0.1 — 0.0808 0.8082  PMP 0.04 — 0.0334 0.8353 0.1 — 0.2781 0.6623  ours 0.04 — 0.0324 0.8122 0.1 — 0.0776 0.7765  ML 0.04 24◦ 0.0043 0,1078 0.1 24◦ 0.0062 0.0620  PMP 0.04 24◦ 0.0038 0.0951 0.1 24◦ 0.0061 0.0614  ours 0.04 24◦ 0.0042 0.1059 0.1 24◦ 0.0084 0.0843  ML 0.04 40◦ 0.0043 0.1033 0.1 40◦ 0.0190 0.1908  PMP 0.04 40◦ 0.0065 0.1637 0.1 40◦ 0.0196 0.1961  ours 0.04 40◦ 0.0097 0.2427 0.1 40◦ 0.0213 0.2134 
 

Fa
nd
isk

ML 0.012 — 0.0111 0.9302 0.024 — 0.0216 0.9039  PMP 0.012 — 0.0080 0.6721 0.024 — 0.0180 0.7524  ours 0.012 — 0.0097 0.8147 0.024 — 0.0184 0.7679  ML 0.012 60◦ 0.0035 0.2929 0.024 60◦ 0.0061 0.2561  PMP 0.012 60◦ 0.0027 0.2331 0.024 60◦ 0.0055 0.2302  ours 0.012 60◦ 0.0034 0.2835 0.024 60◦ 0.0072 0.2983  ML 0.036 — 0.0318 0.8840 0.048 — 0.0461 0.9618  PMP 0.036 — 0.0261 0.7252 0.048 — 0.0334 0.6976  ours 0.036 — 0.0302 0.8376 0.048 — 0.0337 0.7025  ML 0.036 60◦ 0.0060 0.1690 0.048 60◦ 0.0115 0.2405  PMP 0.036 60◦ 0.0088 0.2454 0.048 60◦ 0.0125 0.2612  ours 0.036 60◦ 0.0085 0.2367 0.048 60◦ 0.0134 0.2806 

This leads to a larger number of nearly isosceles triangles with angles 
close to 45◦ and 90◦, which can be seen in the histograms in Figs.  23. In 
case the sharp features of the input geometry do not meet at an angle 
close to 90◦, the angle distribution of the remeshed geometry varies 
less, comparing the results achieved with and without feature detection 
as depicted in Fig.  24 on the Flange.

9.3. Sharp angles

In Fig.  25, two feature lines are shown, meeting under an angle 𝛾
less than 60◦. Triangulating the area between the feature lines may 
introduce edges within the triangulation step shorter than the target 
edge length. Since the length of the third side of the triangle filling 
the space at the meeting point of the feature lines depends on 𝛾, there 
are two different ways to go. The first one consists of maintaining the 
features detected and accept the occurrence of (a comparably small 
number of) edges shorter than the target edge length, while the second 
one maintains the target edge length, but loses one of the features. 
Here, we decided to follow the first possibility, which is illustrated in 
Fig.  25.
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Fig. 23. Distributions obtained by our algorithm applied to the Cube model 
with feature detection (shown in blue) for 𝜗 = 24◦ and without feature 
detection (shown in yellow). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Distributions obtained by our algorithm applied to the Flange model 
with feature detection (shown in blue) for 𝜗 = 80◦ and without feature 
detection (shown in yellow). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

A similar obstacle occurs in case the angle between the two parts 
of the surfaces joint along a single feature line is less or equal to 60◦. 
Here, the disk growing step is restricted to one side solely, since no 
sphere can be placed on the other side of the ridge because it is too 
close to spheres already placed. Hence, internal connections between 
the two sides may occur as well as a non-manifold result since the lack 
of possibilities to place spheres cuts a hole into the surface as illustrated 
in Fig.  26. In case such a feature line forms a closed curve on the 
geometry, as it does on the Boat model, the geometry can be cut into 
15 
Fig. 25. Feature lines meeting at angle < 60◦. Left: Fandisk model with 
emphasized feature lines meeting. Right: triangulation of surface between 
meeting features, containing edges shorter in length than the preset target 
edge length.

Fig. 26. Sharp feature ridges on Boat model. Left: Boat model remeshed with 
features. Right: close up of Boat model showing faulty edges.

two parts along the feature curve. Since the boundaries of both parts are 
already covered with spheres placed in the feature detection step, we 
use them for initialization. Subsequently, we place further spheres in a 
disk growing process applied to each part of the geometry individually. 
Hence, we prevent the spheres placed to intersect the other part of the 
geometry.

The ansatz we described above to mesh feature lines, is applicable 
to geometries with boundaries as well. Here, the spheres placed on the 
boundaries directly are used for initialization. In case, a feature line 
does not close, but makes an angle less than 60◦, the geometry has to 
be segmented in order to prevent the spheres to intersect the geometry 
several times. To find such a segmentation is left as future work.

10. Conclusion and future work

In this paper, we built on a surface representation by equally sized 
spheres [5] to provide a feature-aware algorithm for meshing of point 
clouds and remeshing of polyhedral surfaces. A prior publication of the 
algorithm introduced the meshing of point clouds with a guaranteed 
smallest edge length [6], see Sections 3 to 5. This extension enables 
the algorithm to remesh polyhedral surfaces with and without sharp 
features, see Sections 6 to 9. The algorithm still only needs a single, 
greedy sweep across the input geometry to obtain the resulting mesh. 
Respecting features of the input point cloud or surface mesh makes it 
possible to process a broader variety of input geometries in a way that 
is suitable for a variety of follow-up applications. The results achieved 
remain guaranteed to be manifold, based on the theory discussed in 
Section 3.

The Fandisk model and the Boat model discussed in Section 9.3 al-
ready hinted at some shortcomings of our algorithm. These arise when 
the model demands for very sharp angles in the geometry that cannot 
be modeled while maintaining the desired minimum edge length. While 
this can be interpreted as a feature of the algorithm, in these cases — 
especially with the tip of the Boat model — it would be preferential 
to let the user decide to violate the distance requirement between 
non-connected vertices to obtain a faithful reconstruction of the input 
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geometry. A similar case could be made for the Fandisk model, where 
the angle made between features might be worthwhile preserving over 
the cost of having few badly shaped triangles. Highlighting these cases 
and letting the user decide how to handle them is left as future work.

On a different note, none of the surfaces handled here are equipped 
with boundary. Technically, handling boundary is not very different 
from handling features: If the boundary is given as a polygon, it can be 
used for initialization. Then, when triangulating the regions following 
Section 3.7, regions solely bounded by boundary edges are omitted. The 
tricky element here is to identify a boundary polygon for point cloud 
input. While corresponding approaches exist in the literature [39], 
implementing such in our context is left as future work.

Finally, this paper used the uniform sphere representation of sur-
faces [5] in the context of remeshing. Fundamentally, the represen-
tation is not limited to surfaces and could also be applied to repre-
sent volumes by a collection of single-sized spheres. Similar to the 
remeshing of surfaces, a volume representation could thus be used 
for tetrahedral meshing and remeshing of volumetric objects. Like the 
previous considerations, this is left as future work.
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