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Introduction

Bayesian Networks (BNs) are graphs that model a probability distribution by representing variables
as nodes and dependencies between them as edges [1]. Compared to other machine learning ap-
proaches, BNs are capable of representing complex distributions while retaining interpretability. More
importantly, Bayesian Networks can be designed by experts to represent their knowledge, i.e., not
necessarily requiring data to be generated. These two characteristics make them relevant for several
industries such as the ones where data is scarcely available.

In some scenarios, it might be required to leverage the knowledge of multiple BNs across multiple
parties while retaining confidential information relevant to an individual party. This is the case for indus-
tries in which the manufacturers need to collaborate with customers to improve production efficiency
while protecting trade secrets. CCBNet (Confidential Collaborative Bayesian Network) [2] is one of
such studies.

While CCBNet supports representation of categorical variables, most real-world problems require
dealing with a mixture of discrete and numerical data. The models that are capable of operating within
this domain are called Hybrid Bayesian Networks [1, 3]. One of the most common classes of hybrid
models is the set of Conditional Linear Gaussian (CLG) distribution models [4]. In this class, continuous
nodes are Gaussian-shaped variables whose mean are linearly dependent on their parents. Further-
more, they cannot have any discrete child.

In this thesis project we aim at answering the following research questions:
1. How can we run Hybrid CLG inference in a distributed and privacy preserving fashion?
2. How can we reduce communication costs of collaborative inference over discrete variables?
3. How can we avoid revealing posterior of private variables in multi-party Bayesian Networks?

The thesis consists of three main parts. The first is a research paper that presents the main contri-
butions presented in the proposed Hybrid CCJT framework and results. The second chapter provides
extra insights into concepts relevant to the paper’s content, like Bayesian Network inference proce-
dure, Belief Propagation, inference on Hybrid CLG Bayesian Networks, and the other approaches to
deal with Hybrid data. The third chapter present the additional experiments, followed by the conclusion
chapter.
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Collaborative and Confidential Junction Trees for Hybrid Bayesian Networks

Anonymous Authors!

Abstract

Bayesian Networks (BNs) are widely utilized
across various industrial sectors to optimize pro-
cesses, with an emerging focus on the collabora-
tion across multiple parties. While most realistic
scenarios require handling a mixture of categori-
cal and continuous data simultaneously, the cur-
rent state-of-the-art only supports collaborative
inference on purely discrete models. The Junction
Tree enables efficient and accurate inference on
hybrid models but has not been implemented for
confidential scenarios yet. To address this gap, we
introduce Hybrid CCJT, an innovative frame-
work for confidential multiparty inference in hy-
brid domains, offering: (i) a method to construct
a collaborative, strongly-rooted junction tree for
efficient and secure inference, (ii) a confidential-
preserving inference protocol for Hybrid BN,
(iii) an optimized message-passing scheme that
improves communication efficiency even in the
purely discrete domain. Our extensive evaluation
show that Hybrid CCJT improves the predic-
tive accuracy of continuous target variables by an
average of 32% in Mean Squared Error and reduce
the communication cost up to 86-fold, against the
best state-of-the-art baseline.

1. Introduction

Bayesian Networks (BNs) (Pearl, 1988) have emerged as a
powerful tool in numerous industrial domains for optimizing
complex processes (Nannapaneni et al., 2016; McNaught &
Chan, 2011), often requiring collaboration between parties.
For instance, let us consider the use case of semiconductor
manufacturing. Pursuing ever smaller size chips at a high
yield (Ypma et al., 2020) entails cooperation between many
specialized parties that must protect their trade secrets. Pur-
suing ever smaller size chips at a high yield (Ypma et al.,
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<anon.email@domain.com>>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

2020) entails cooperation between many specialized parties
that must protect their trade secrets. In recent years, these
probabilistic models have been explored in collaborative
and confidential settings (Malan, 2023), allowing stakehold-
ers to extract insights and make decisions while protecting
sensitive and proprietary knowledge.

While in most real-world applications, data often comprise a
mix of categorical and continuous variables (Hertlein et al.,
2020), the current state-of-the-art only supports confidential
inference over purely discrete models (Milan, 2023). Fur-
thermore, the framework by Milan lacks in scalability, as
its communication costs grow exponentially depending on
the parties’ BNs size and structure. The current advance-
ments in collaborative confidential inference for discrete
networks are built upon variable elimination, which is a
naive algorithm to take out exact inference in exponential
time. Junction Trees provide a framework to make exact
inference on larger instances tractable by decomposing the
network in smaller ones. In hybrid domains, a Junction
tree is said to be strongly-rooted if there exists a (strong)
elimination order such that continuous nodes are eliminated
from the graph before discrete ones (Madsen, 2008). If a
Junction Tree is strongly-rooted it can be used to run accu-
rate inference efficiently in hybrid BNs as well. However,
Junction Trees have yet to be applied to collaborative con-
fidential inference. Other studies in the field of distributed
hybrid BNs disregarded model confidentiality constraints.
For instance, Masegosa et al. (2016) provided a method to
generate a centralized hybrid network from different parties’
models. Albeit, structure and parameters of such generated
network may leak confidential knowledge.

We propose Hybrid CCJT, the first framework that al-
lows to run privacy-preserving multiparty inference over
mixed data domains. Hybrid CCJT does not require a
trusted third party, and protects confidentiality at both the
levels of party models and data instances. The two key
components of Hybrid CCJT are: (i) generation of a
distributed strongly-rooted junction tree ; and (ii) a privacy-
preserving inference protocol for Hybrid BNs. The novelty
in the tree generation process lies in defining a variable elim-
ination order that allows to perform accurate inference over
hybrid models. Furthermore, we define an alignment proce-
dure for discrete probability tables that allows marginalizing
variables prior to message passing, improving scalability of
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(a) The ASIA network. Having
8 variables in total, the cost of
running inference directly on it is
0(2%).

(b) A Junction Tree defined over ASIA. The
largets cliques are Co, C3 with 4 variables each.
They bound the cost of inference to O(2*).

P(E,S|D = d)}

P(TID=d,X=x

(c) Belief is propagated toward clique Cq
for query with evidence X = z, D = d.

Figure 1. Example of construction and inference on a Junction Tree.

communication costs. To execute inference queries confi-
dentially, we propose two secret-sharing schemes to merge
parties continuous and discrete knowledge while not dis-
closing computation results. We evaluate Hybrid CCJT
against twelve different datasets spanning purely discrete,
purely continuous, and hybrid domains. We compare it with
non-hybrid confidential approaches, measuring significant
improvements under both inference accuracy and communi-
cation costs.

In summary, we make the following contributions:

* We propose the first privacy-preserving inference
framework on Hybrid Bayesian Networks by allow-
ing parties to collaboratively run belief propagation
without sharing private variables’ posteriors.

* We design the first method to define a variable elimi-
nation order for strong marginalization in multiparty
Hybrid Bayesian Networks by building a distributed
strongly-rooted junction tree.

* We improve communication efficiency compared to
the state-of-the-art by marginalizing all discrete private
variables prior to message passing.

* We evaluate our method against twelve different
datasets and analyze improvements compared to non-
hybrid confidential methods. We measure 32% average
improvement in mean squared error and up to 86-fold
improvements in communication costs.

2. Background and Related Studies
2.1. Hybrid CLG Bayesian Networks

Bayesian Networks (BNs) (Pearl, 1988) are directed acyclic
graphs whose nodes are random variables and whose edges
correspond to direct influence of one node on another. The
conditional probability distribution (CPD) of a variable
given its parents -P(x | pa(z))- is called its factor. The
table that summarizes all CPD for all variables is called

CPD table. Traditionally, BNs only allow variables to be
discretely valued (Koller & Friedman, 2009). However, such
a requirement limits the representation quality for variables
which are better represented by real-valued data (Salmerén
et al., 2018). Moreover, exact inference in discrete BNs is
NP-hard, while other continuous representations, such as
Conditional Linear Gaussian (CLG) (Koller & Friedman,
2009), can perform exact inference with polynomial cost in
the network size (Koller & Friedman, 2009).

Hybrid Bayesian Networks (Salmerdn et al., 2018) allow to
model probability distribution with both discrete (A) and
continuous variables (I') simultaneously. One of the most
common classes of hybrid models is the set of Hybrid Con-
ditional Linear Gaussian (Hybrid CLG) distribution models
(Lauritzen & Wermuth, 1989). In this class, continuous
variables are Gaussian-shaped and cannot have any discrete
child. The factor of a continuous variable z € I" with dis-
crete parents za and continuous parents zr is given by:

fal{za,2r}) = N(z;a(za) + B(za) " 2r, 0% (24))

where « and [ are the coefficients that depend on the dis-
crete state combination of za. If the state combination of
za 1s fixed, x is Gaussian-shaped. If this is not the case,
f(z) is a mixture of O(2/2) Gaussian distributions. In
general, even representing the correct marginal distribution
in a hybrid CLG network require space that is exponential
in the size of network (Koller & Friedman, 2009). Fur-
thermore, even approximate inference for simple models
structures such as polytrees is NP-hard in hybrid CLG net-
works (Lerner & Parr, 2013).

Inference. Lauritzen (1992; 2001) develops an algorithm to
carry out accurate inference in Hybrid CLG BNs by lever-
aging a strong elimination order. That is, an order such
that continuous nodes are eliminated from the graph before
discrete ones (Madsen, 2008). On top of Lauritzen’s works,
Madsen (2008) builds an algorithm for running centralized
lazy propagation (Madsen & Jensen, 1999). Lerner (2013)



Submission and Formatting Instructions for ICML 2025

Party 1 Interface

Party 2

I (Shared) I
1

Party 1 Party 2 AE 1 Az Aﬁ
—HACH ===
{A.B,C} | {C,A} | {D, C}
I i) |
- | I | .
~ p \
/1 N T}

@
N N

J

(a) Parties’ input hybrid BNs.

(b) Collaborative Junction Tree.
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(c) Collaborative inference with evidence X = x, D = d.

Figure 2. Overview of Hybrid CCJT. Discrete variables are represented as red squares, continuous variables are represented as blue

circles. Factor variables are highlighted in bold.

extended the algorithm of Lauritzen to allow inference for
discrete children of continuous variables by approximating
them using a softmax function. Other works on Hybrid CLG
only allow for a subset of inference queries. For instance,
Paskin (2003) leverages the Rao-Blackwell theorem to pro-
vide tractable approximated inference but does not allow
queries with continuous evidence.

2.2. Junction Trees

Exact inference in discrete BNs is NP-hard as its cost grows
exponentially in the number of variables in the network. A
widely used technique to make inference on larger instances
tractable is the Junction Tree (Lauritzen & Spiegelhalter,
1988). Similarly to tree decomposition, the original network
is decomposed into a tree-like graph where each node -
called cligue- contains a sub-graph of the original BN. After
resolving inference in the small cliques, these results can
be combined via a message-passing algorithm called belief
propagation, which is proven to converge in linear time on
trees. Doing so, the cost of exact inference is bounded to
the size of the largest clique.

In Figure 1a we showcase the popular ASIA network (Lau-
ritzen & Spiegelhalter, 1988) as an example. Here, running
Variable Elimination requires O(2%) operations to carry-out
exact inference. In contrast, the cost of inference on the
Junction Tree in Figure 1b is bounded by the size of the
largest clique. Thus, requiring only O(2*) operations.

2.3. Distributed and Confidential Bayesian Networks

CCBNet (Malan, 2023) is the current state-of-the-art in the
field of distributed confidential BN inference. It is based on
two protocols: CABN (Confidentially Augmented Bayesian
Networks) and SAVE (Share Aggregation Variable Elimina-
tion). Briefly, CABN privately performs alginment of factors
of common variables, while SAVE performs distributed in-
ference based on Variable Elimination and a BN merging
scheme inspired by (Del Sagrado & Moral, 2003) and (Feng
et al., 2014).

Despite being a significant step forward in the Confiden-
tial BN literature, CCBNet falls short under several aspects.
Namely, its communication costs have been shown to ex-
plode even for relatively small problems, it only supports
discrete variables, and posterior probability values for some
private variables from the peers are revealed to the party
executing a query.

3. Hybrid CCJT

In this section, we first provide the preliminary of Junction
Trees and then detail the collaborative BN architecture and
the confidential inference protocol of Hybrid CCJT.

3.1. Preliminaries on Junction Trees

A Junction Tree of a Bayesian Network over variables X
with set of factors ® is a computational graph whose nodes
¢i, also called cliques, are tuples (X; C X', ®; C ®). Edges,
also called separators, are associated with a set of variables
called sepset S; ; = X; N X;. These edges connect the
cliques to form a tree. In order to be valid, a Junction Tree
must satisfy the following rules:

e Family preservation: Each factor ¢ € ® must be asso-
ciated with one cluster ¢; such that Scope[¢] C X;;.

* Running-intersection property: For every pair of
cliques c¢;, ¢, every clique on the path between ¢;, ¢;
contains X; N X;.

Exact inference can be run on Junction Trees via message
passing schemes, one of the most popular being the sum-
product algorithm (Shenoy & Shafer, 1990). Let us define
the potential of each clique ¢; as ¢(c;) =[] o,c, @5- This
scheme requires cliques to send messages through the tree
towards a root as:

Pe;—c; = Z ¢(C1) H

viSi,j Ckenb((}j)\c]'

Hep—e; (1)

Where ., ., is a message sent from clique ¢y, to clique ¢;
in form of a CPD table with scope Sy, ;. Y represents the
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variable elimination operator, used to remove variables not
in clique j before message passing.

Strongly-Rooted Junction Trees Since regular Junction
Trees do not always have a strong elimination order (Mad-
sen, 2008), they cannot be used to run inference correctly
on Hybrid CLG models. Instead, a stricter structure called
Strongly-Rooted Junction Tree (Lauritzen, 1992) is required.
A Junction Tree is said to be strongly-rooted if it has a dis-
tinguished clique R, called strong root, such that for every
couple of neighboring cliques (C, D), with C' being closer
to R than D, it holds that:

CNDCA Vv D\CCT

Lauritzen (1992; 2001) shows that this data structure can
be used to compute exact marginals of all discrete variables
(strong marginalization) and exact first and second moment
of all continuous variables by approximating them as multi-
variate Gaussians (weak marginalization).

3.2. Method

Hybrid CcCJT (Hybrid Collaborative Confidential
Junction Trees) is a framework that allows to run privacy-
preserving multiparty inference over mixed data domains. It
is made of two main components: (i) Collaborative Junction
Tree Networks, allows parties to generate a collaborative
strongly-rooted junction tree for hybrid belief propagation,
(i1) Confidential Inference Protocol, allows parties to jointly
perform the exact inference as defined by Lauritzen (2001).

We assume that features from different parties have the
same name only if they represent the same concept, and that
the independence, across parties, of distinct parents for the
same node reasonably approximates the ground truth. Thus,
names identify the common nodes between models, serving
as the contact points for graph fusion. Our adversarial
model includes semi-honest parties that follow the protocol
while trying to abuse gained information (Goldreich et al.,
2005) but do not collude. No trusted third party exists. The
goal is to protect all network parameters and only share
structure/state-name information among parties modeling
the same variables. Figure 2 shows an overview of the steps
of Hybrid CCJT.

In order to achieve confidentiality, we construct a collabo-
rative junction tree without sharing any information except
the names of shared variables. We align discrete variables’
factors by exponentiating their entries and privately comput-
ing normalization values of each column of the CPD tables.
Then, the querying party takes care of such normalization at
inference time, allowing peers to marginalize private vari-
ables in the scope of the common prior message passing. To
merge continuous variables, we propose a merging scheme
based on weak marginalization and use a secret sharing
scheme for addition (Garcia & Jacobs, 2011) to combine

parties’ beliefs.

3.3. Collaborative Junction Tree Networks

Collaborative Junction Tree Networks is a protocol that
allows to setup a collaborative strongly-rooted Junction Tree
without sharing any confidential information. First, we
construct cliques and separators of the tree, which enables to
find a variable elimination order for strong marginalization.
Afterward, the factors of common discrete variables are
augmented confidentially, allowing parties to combine their
beliefs at inference time.

The protocol requires every party to define a input Bayesian
Network (either Hybrid CLG, Discrete or CLG) describing
their knowledge and data (Figure 2a). Network structure
and parameters can be defined by human experts or learned
via structure and parameter learning methods (Scutari &
Denis, 2021). Before running the protocol, we find interface
variables, that are common variables between parties. We do
so via Private Set Intersection (Morales et al., 2023). The
collaborative Junction Tree is defined given each party’s
input network and the set of interface variables.

We first construct the junction tree for each party. For each
party i we define two local cliques, one discrete (A%.) and
one continuous (I'%.). Then, we define two interface cliques,
one discrete (A7) and one continuous (I'z), over factors of
all interface variables and their scope, serving as interface
between parties’ local cliques. Thus, each party has four
cliques.

Next, we define the set of variables and factors to be as-
sociated with each clique (Figure 2b). Let ®(X) denote
the set of factors for each x € X, where X is a set of vari-
ables. Each local clique contains all the variables and factors
owned by each party minus the factors of the interface vari-
ables. Namely, every party i owns A% = (A;, ®(A; \ 7))
and I'. = (T;,®(T'; \ Z)). Interface cliques contain all
variables in the scope of interface variables and factors of
interface variables. Thus, Az = (Scope[ANZ],P(ANT))
and I'z = (Scope[I' N Z], &(I' N 7)).

Cliques are then connected to form a tree. Discrete and
continuous local cliques are connected with discrete and
continuous interface cliques respectively. The two interface
cliques are connected with each other with the separator
being the set of threshold variables, the set of discrete vari-
ables with continuous children (A N pa(T)).

We merge discrete party beliefs using a weighted geometric
mean inspired by (Del Sagrado & Moral, 2003). Hence, we
define the remote clique potential as:

6(Az) = a[] s(ah) Ter @
1€P

Where w; is the weight of party ¢, which represent confi-



Submission and Formatting Instructions for ICML 2025

Algorithm 1 Federated Hybrid Query

Algorithm 3 Collaborative Discrete Inference

Input: Target T', Evidence &£, Party (), Peers P

1: FederatedContinuousInference(E¥, {Q} U P)

2: strong-marginals < FederatedDiscretelnference(E™)

3: A-marg < VarElim(thresholdVars U T2, {}, strong-
marginals)

4: posterior < WeakMarginalization(A-marg, T")

5: return posterior

Algorithm 2 Collaborative Continuous Inference
Input: Evidence &£, Parties P

1: forp € Pdo
p.ovBelief < posterior(p.overlap, &)
: end for
: ovBelief < secretShare(| J
: forp € Pdo
p.thresholdBelief < canonicalPosterior({}, ovBe-
lief)
7: end for

e p p-ovBelief )

dence in its BN and is publicly known. « is the column
normalization factor that is applied to each table’s column
based on the potential alignment process. To implement this,
parties allocate space in the interface variables’ CPDs to
account for parents managed by other peers with obfuscated
names. Then, parties collaboratively compute column nor-
malization factors o via homomorphic encryption (Cheon
et al., 2017). This normalization is only applied during
inference by the querying party, enabling peers to marginal-
ize their private variables before message passing, where
CPD entries are secret shared via a multiplication-based
scheme (Kilbertus et al., 2018), enhancing both communi-
cation costs and privacy guarantees. Parties don’t need to
share any information to define I'z, as our merging scheme
for CLG variables does not require any factor alignment.

3.4. Confidential Inference Protocol

Confidential Inference Protocol has parties collaboratively
run inference over the Junction Tree previously constructed.
The protocol pseudocode is outlined in Algorithm 1. Belief
is propagated towards a strong root through two steps: first,
parties collaboratively run inference over continuous do-
main to compute marginals over threshold variables (line 1),
then, they run collaborative discrete inference (line 2). Fol-
lowing that, the querying party can leverage the evidences
of other parties to run local queries (1l. 3-5).

Confidential Continuous Inference During this step, we
aim to merge parties local continuous evidence to find the
strong marginals over threshold variables. The pseudocode
of this procedure is outlined in Algorithm 2.

Input: target T, evidence £2, party @, peers P

auxFacts < {}
forp € P do
partyFacts <= (¢, cppsFactor(cpd)
partyFacts U <— p.thresholdBelief
partyT < T U overlapNodes(p)
auxFacts U < VarElim(partyT, £2, partyFacts)
end for
auxFacts Ucp d€Q.cpdsnoverlapNodes(Q) < normFactor(cpd)

auxFacts UcpdeQ.CPDs\overlapNodes(Q) A Factor(cpd)
return VarElim(AqU T, £ A auxFacts)

R A S o

H
=4

Messages from I'%. to I'z are derived by each party without
interaction (11. 1-3). When computing a message from I'z
to A7 we aim to find strong marginals over discrete parents
of continuous variables. To do so, we merge the knowledge
of continuous interface variables. Parties then marginalize
all continuous variables to find strong marginals. In order to
merge parties continuous knowledge, we propose a weighted
merging scheme inspired by weak marginalization (Koller
& Friedman, 2009) in which mean and variance of interface
variables are updated as follows:

H = Zwi,ui (3)
i€P
=) (W) + Y (wilp = p) (e —m)") @
ieP ieP

For the purpose of preserving confidentiality, we use ad-
ditive secret-sharing with no trusted third party (Garcia &
Jacobs, 2011) (1. 5). Each party randomly splits its secret
value in as many shares as the number of parties and send
it to each of them. Every party computes addition over
the values it received. Finally, parties share the addition
outcome with each other and compute the sum to find the
final result. To compute Equation 3, each party secret shares
w; ;. While to find Equation 4, each party secret shares
wi Y 4 wi(p— ps) (o — pa) "

Finding strong marginals requires integrating out all con-
tinuous variables while taking into account their evidences.
When using canonical representation, this can be done by
marginalizing out all continuous variables and exponentiat-
ing the marginalization outcome (1. 6-8). Then, each entry
of the CPD table is assigned the marginalization outcome
corresponding to its state combination.

Confidential Discrete Inference Once marginals of thresh-
old variables are computed, 5)arties collaboratively calculate
the message from Az to A7 to finalize strong marginaliza-
tion. The pseudocode is outlined in Algorithm 3. Fort that,
each non-querying party p; find posteriors over their discrete
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domain A;. Then, following Equation 1 and Equation 2, we
find puy_ INE

Y o(dr) ] maroar )
rZXy pi €C\{Q}
=S o[l o™ [ #aions ©)
xZX, pieC p; €C\{Q}
- > oo [ o0 nags )
r¢Xq pi €C\{Q}
SRS DI | T
z¢Xq p; €C\{Q}
SORECII | D DR TS LTINS
pi €C\{Q} z¢Xq

where Y is the variable marginalization operator. The most
important step is Equation 9. When multiplying CPD tables,
we can marginalize variables that are not common in both
tables prior to the product without affecting the result. This
leads to a severe reduction of communication costs as each
variables doubles the size of the shared CPD.

From Equation 9, it follows that each non-querying party ¢
has to compute message m; = oy qb(AiI)wPuAZHAI.
This can be done locally as ¢(A%)™» is the outcome of dis-
crete interface alignment known to party ¢ and p AL AL =
Doegr $(AL) can be computed locally with no interaction
among parties (1. 2-7).

Eventually, m; is a factor over variables owned by the query-
ing party (). To protect the content of this messages, we
use a secret sharing scheme for multiplication (Kilbertus
et al., 2018). A secret value is split into shares distributed
amongst parties. Parties perform the computation with their
local share of each secret and all aggregate their results to
reconstruct the answer.

Weak Marginalization Once discrete posteriors are com-
puted, continuous ones can be found following the weak
marginalization procedure (Koller & Friedman, 2009). Thus,
for any continuous variables X that has at least one discrete
parent we get:

px = Y p(s)ix,s

ses
Bx = p()Sxst+ > p(s) (x —pxs) (tx —px,s)"
ses ses

Where p(s) is the probability of state combination s, S is the
set of all possible state combinations of threshold variables,
tx,s and X x , are the parameters of X dependent on s.

3.5. Note on the Confidentiality

Below, we review how the different steps in our method
enable it to maintain our confidentiality objective:

Table 1. Datasets stats.

Dataset #Discrete nodes #Continuous nodes #Arcs #Params
Healthcare 3 4 9 42
Sangiovese 1 14 55 259

Mehra 8 16 71 324423
Asia 8 - 8 18
Child 20 - 25 230
Alarm 37 - 46 509

Insurance 27 - 52 1008
Andes 223 - 338 1157
Link 724 - 1125 14211
Munin #2 1003 - 1244 69431

Junction Tree Construction First, we want to define a
strong elimination order in the global network. We do so by
only disclosing which variables are common between the
parties. In fact, every party knows which of their variables to
allocate in the local and interface cliques. This is sufficient
to carry out inference as in our protocol, but no party knows
anything about the content nor the structure of other parties’
local cliques.

Early marginalization of private discrete variables We
ensure that only the querying party handles the normaliza-
tion of interface factors process. As shown in Equation 9,
this allows each party to marginalize all variables that are
not shared with the querying party prior to message pass-
ing. As such, the merging procedure will only reveal the
posterior of the interface variables, which are owned by
the querying party. Finally, this approach leads to a severe
reduction of communication costs, which we extensively
discuss in section 4.

Merging scheme for continuous variables Similarly to
what we do for discrete variables, we aim to find the updated
posteriors of common continuous variables while abiding
our confidentiality assumptions. Parties merge the poste-
rior of common variables via a secret sharing scheme for
addition. This allows the querying party to find the merged
posterior without having access to the peers’ private posteri-
ors, nor any parameter of the network.

4. Evaluation

We evaluate Hybrid CCJT’s predictive performance and
communication costs on a total of twelve publicly avail-
able datasets (two of which are in Appendix A) whose data
structures are either hybrid or discrete only. We compare
it against the current state-of-the-art on different types of
queries. Furthermore, we also include results on purely
continuous data in Appendix A.

Evaluation Metrics Our experiments assess the average
predictive performance for both discrete and continuous
target variables, as well as the associated communication
costs. For discrete variables, we evaluate the prediction
quality using the Brier Score (= 4 Zi\il Zil (fit — 0it)?
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where N is the number of queries, R is the number of target
variables state combinations and f and o are the predicted
and reference probabilities). For continuous variables, we
use the Mean Squared Error (MSE) of predicted means
with respect to the reference values. Communication costs
are calculated as the average number of CPD and CLG
parameter values transmitted per query.

Dataset We consider the 10 data sets shown in Table 1. To
define parties’ input networks, we first generate a dataset of
subnetworks by sampling from the original network. Then,
we vertically split datasets and learn structure and param-
eters via 2-phase Restricted Maximization and Maximum
Likelihood Estimator for conditional probabilities (for dis-
crete variables) and least squares regression models (for
CLG variables). Each vertical split has a different overlap
ratio. That is, the ratio between the amount of common
nodes and the amount of nodes in the global network.

Baselines We test our method against ten different datasets
shown in Table 1 and compare Hybrid CCJT’s perfor-
mance with two baselines:

¢ CCBNet (Milan, 2023): the current state-of-the-art
for distributed confidential inference in Bayesian Net-
works.

* A-CCJT: a simplified Hybrid CCJT variant with
only the federated discrete inference as in Algorithm 3.

Since none of the baselines can handle continuous data,
when such variables are present in the dataset, we discretize
them with different degrees of coarseness ranging from 3 to
10 states per variable. Given the hardness of discrete exact
inference (Koller & Friedman, 2009), a finer discretization
implies significantly higher computational and communi-
cation costs, making it infeasible to run these algorithms
with large number of states per variable. All variables are
discretized using a quantile-based approach, ensuring that
each discrete state contains an equal number of samples
from the training set.

4.1. Results on Hybrid Data

Here, we consider three hybrid data sets, namely Health-
care, Sangiovese, and Mehra. We test Hybrid CCJT with
different combinations of number of involved parties and
overlap ratios for a total of 10 total experiment scenarios.
For each of them, we run 1000 queries with discrete target
variables and 1000 queries with continuous target variables.
We summarize the results in Table 2.

Predictive Accuracy In all experiment scenarios consid-
ered, Hybrid CCJT outperforms all baselines in predic-
tive accuracy of continuous target variables with an average
32% improvement of MSE compared with the best perform-
ing baseline. When targeting discrete variables, Hybrid

CCJT is either the best performing solution or the second
best performing solution with a performance gap always
under 1073 in terms of Brier score. The only experiment
that does not fit this trend is Sangiovese with 4 parties and
30% overlap, where the deficit to the best model is 0.0015
(0.0125 versus 0.015). Recalling that the Sangiovese dataset
contains only one discrete variable, we experimented that
this returns a quasi-uniform distribution regardless of the set
of continuous evidences. This explains why running hybrid
inference on this data does not lead to any improvement
rather than using a discretized version. As one would ex-
pect, the best performing baseline is the one with a finer
discretization. Using a low number of discrete states leads
to a drastic performance decay compared to our implemen-
tation with an MSE 26.9 times higher, and a Brier score
42.8% higher on average. In summary, Hybrid CCJT
brings notable improvements when targeting continuous
variables, proving the benefit of natively handling continu-
ous data. Nonetheless, the performance of Hybrid CCJT
matches the baselines when targeting discrete variables.

Communication Costs Hybrid CCJT demonstrates su-
perior scalability in communication costs compared to all
discretized baselines. Although A-CCJT achieves the low-
est communication costs on the smaller Healthcare dataset,
this advantage diminishes with larger datasets where we can
start to appreciate Hybrid CCJT scalability. Under San-
giovese, which includes a higher number of continuous vari-
ables, the communication costs of A-CCJT with 10 states
increase significantly faster than those of our method, reach-
ing up to 40 times more communicated values per query.
This happens because discrete CPD table take more space
than regular continuous posteriors. Further highlighting the
advantage of handling continuous data natively. While base-
lines with fewer states may reduce communication costs
in certain experimental setups, this comes at the expense
of a sharp decline in predictive performance. For example,
on Sangiovese with 4 parties and 10% overlap, A-CCJT
exhibits nearly double the error for discrete targets and
200 times the error for continuous ones, making Hybrid
CCJT the most desirable choice overall. The current state-
of-the-art model, CCBNet, brings the worst communication
performance across all experiments. Its worst result aver-
ages almost 190k communicated values per query against
the only 596 used by Hybrid CCJT. This shows how our
collaborative discrete inference approach alone brings sig-
nificant improvements under communication efficiency. We
explore this more in detail in subsection 4.2.

Large data Mehra is the largest dataset among all the exper-
imented ones, with 4 times the amount of parameters of the
largest discrete dataset Munin. While Hybrid CCJT man-
aged to complete all experiments, none of the discretized
baselines managed to finish running within the timeout
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Table 2. Results on hybrid data. Best result in bold. Second best Brier score underlined. Lower is better for all.

Dataset Healthcare Sangiovese
Parties 2 4 2 4
Overlap 10% 30% 10% 30% 10% 30% 10% 30%
Brier 0.0496 0.036 0.0577  0.0856 | 0.019 0.0129 0.02746 0.015
Hybrid CCJT MSE 4.7¢+06 4.6e+05 4.8e+06 1.4e+07 | 0.0033 0.0018 0.00041 0.0045
Comm 4.7 16.6 114 139.7 43.5 87 219 596
Brier 0.0557 0.058 0.0651 0.128 | 0.0457 0.0138 0.0484  0.0125
3 States  MSE 59e+06 4.9+05 5.4e+06 1.7e+07 | 0.044  0.021 0.083 0.0071
Comm 4.6 9.3 8.3 23.9 44.6 164.8 133.6 2654
Brier 0.0502  0.0578  0.0623 0.173 | 0.0243 0.0132 0.0476  0.013
A-CCJT 5States MSE S5e+06  5.2e+05 5.3e+06 1.6e+07 | 0.025  0.012 0.012  0.0218
Comm 4.6 18.9 5.2 36.2 71 261.3 216.3 4174
Brier 0.0488 0.044 0.0597 0.112 | 0.0181 0.0129 0.0269  0.013
10 States MSE 4.8¢+06 4.9e+05  5e+06  1.6e+07 | 0.012 0.0036 0.0069  0.0049
Comm 4.0 58.2 5.2 66.7 140.1  213.7 424.7 24013
Brier 0.0558  0.0568  0.0651 0.128 | 0.0496 0.0138 0.05769 0.0125
3 States  MSE 5.8e+06 4.9+05 5.4e+06 1.7e+07 | 0.044 0.02 0.064 0.007
Comm 38.7 15.2 17.0 34.3 196 793.6 19044 20271
Brier 0.0502  0.0571  0.0623 0.172 | 0.0243 0.0132 0.0464  0.013
CCBNet 5 States MSE Se+06  5.2e+05 5.3e+06 1.6e+07 | 0.025  0.011 0.011 0.0215
Comm 12.6 28.2 9.6 161.1 52.8 808.9 42733 377341
Brier 0.0488 0.044 0.0597 0.113 | 0.0181 0.0129 0.0269  0.013
10 States MSE 4.8¢+06 4.9¢e+05  5e+06  1.6e+07 | 0.012 0.0037 0.0069  0.0049
Comm 9.7 135.2 9.6 560.2 154.1 13819 4074.6 189650

Table 3. Hybrid CCJT results on the
(Mehra).

large hybrid dataset

Dataset Mehra

#Parties 8

Overlap 10% 30%
Brier 0.00783  0.00772

Hybrid CCJT MSE 7.4e+11  4.5e+12
Comm 186 6734

limit' . This is due to the heavy computational requirements
of aligning large CPD tables of discretized continuous vari-
ables. Despite the size and hardness of predictive accuracy
under this model, Hybrid CCJT manages to achieve good
Brier Score and MSE, while maintaining reasonable com-
munication costs throughout the experiments. Specifically,
with 30% overlap, Hybrid CCJT communicates less than
a third of the values shared by A-CCIT with 10 states when
dealing with half the parties in a much smaller dataset like

Sangiovese.

4.2. Results on Discrete Data

Since scalability of communication costs is a significant
issue for CCBNet (Malan, 2023), we specifically emphasize
the improvement of Hybrid CCJT under this aspect on
purely discrete data. On datasets Child, Alarm and Insur-

"Timeout limit of the experiment is 24 hours, on 512GB RAM.

ance, we run experiments with different numbers of parties
involved ranging from 2 to 8. Furthermore, we run exper-
iments on larger datasets with up to 128 parties involved.
For each experiment, we perform 2000 different queries.
Results are showcased in Table 4. Since these datasets do
not include any continuous variable, Hybrid CCJT de-
generates into A-CCJT.

In smaller experiments, with two parties only, Hybrid
CCJT reduces CCBNet communication costs by 8 times,
from an average of 125 communicated values to an aver-
age of only 15. Then, improvement factors further increase
when the number of parties involved is greater. In larger-
scale experiments, CCBNet’s communication costs increase
significantly, reaching as high as 243k transmitted values in
the Munin experiment. In contrast, Hybrid CCJT main-
tains a low communication overhead, transmitting only 735
values in the same experiment, achieving an improvement
factor of 331. We did not measure any significant difference
(> 0.001) in predictive accuracy in these experiments.

5. Conclusions

This work introduces Hybrid CCJT, a novel framework
enabling privacy-preserving multiparty inference on Hybrid
CLG Bayesian Networks. By addressing key limitations
of existing methods, Hybrid CCJT facilitates secure col-
laborative inference while maintaining strict confidentiality
of both party models and data. The proposed framework
incorporates two pivotal components: a distributed strongly-
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Table 4. Results on discrete data: communication costs on discrete
datasets. 10% overlap. Lower is better for all. Predictive accuracy
difference is negligible (< 1072).

Dataset  #Parties CCBNet Hybrid CCJT Improvement
factor
2 67 14 4.8x
Child 4 157 33 4.7x
8 429 58 7.4x
2 166 15 11.1x
Alarm 4 1959 40 49.0x
8 1886 79 23.9x
2 143 17 8.4x
Insurance 4 1835 43 42.7x
8 473 42 11.3x
Andes 16 23175 6080 3.8x
Link 64 4455 459 9.7x
Munin #2 128 243474 735 331.3x

rooted junction tree for determining an elimination order
and a privacy-preserving inference protocol that leverages
such an elimination order.

Our evaluation demonstrates the efficacy of our method. For
hybrid data, Hybrid CCJT improves the predictive accu-
racy of continuous target variables by an average of 32% in
Mean Squared Error (MSE) compared to the best perform-
ing baseline. For discrete targets, it consistently achieves
either the best or second-best results, with performance gaps
below 1073 in most cases. In addition, Hybrid CCJT out-
performs existing baselines in communication costs, with
up to 86-fold reductions in large hybrid datasets and 331-
fold improvements in large-scale experiments on purely
discrete data. Altogether, by natively handling continuous
and discrete data, Hybrid CCJT offers better predictive
quality and communication costs scalability compared to
the state-of-the-art.
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A. Results on Continuous Data

Table 5. Result on continuous data: mean squared errors.

Dataset Ecoli70 Magic-Niab
Hybrid-CCJT 0.070 0.287

3 States 1.411 0.521
Discretized BN 5 States 0.367 0.533

10 States | 0.368 N/A

10

Here, we measure the predictive accuracy of our method on
purely continuous datasets, i.e., Ecoli70 and Magic-Niab
and summarize the results in Table 5. Since this kind of
datasets do not contain any categorical variable, we only run
collaborative continuous inference as shown in Algorithm 2.
Our baseline is the exact inference on discretized datasets
with different levels of coarseness. Due to poor scalability
of CCBNet and A-CCJT when dealing with discretized
datasets, we use a centralized discrete network instead. This
provides an upper bound on the predictive performance of a
discretization-based approach. Under both experiments, we
ran 10000 queries, with 4 parties and 10% overlap.

Across all experiments, Hybrid CCJT achieves the high-
est predictive accuracy. Under the Ecoli70 dataset, Hybrid
CCJT attains an MSE of 0.07, which is five times lower than
the optimal discrete counterpart and 20 times better than the
non-optimal one. Under the Magic-Niab dataset, our model
achieves an MSE of 0.287, outperforming the discretized
counterpart, which has an MSE of 0.521. Furthermore, the
discretized model failed to run inference in a reasonable
amount of time with 10 states on Magic-Niab.






Background

3.1. Bayesian Networks

A Bayesian Network (BN) [5, 1] is a probabilistic graphical model represented as a directed acyclic
graph (DAG) whose nodes are the random variables in the problem domain and whose edges corre-
spond to direct influence of one variable on another [1]. The conditional probability distribution (CPD) of
a variable given its parents -P(x | pa(x))- is called its factor. The table that summarizes all CPD for all
variables is called CPD table. On the one hand, Bayesian Networks provide a semantics that enables
a compact, declarative representation of a joint probability distribution, achieving better interpretability
compared to other Al models such as deep neural networks [6]. On the other hand, many problems,
including both exact inference and approximated inference, are proven to be NP-hard on such models
[7, 8].

A model that is related to the Bayesian Network is the Markov Random Field (MRF). It is a probabilistic
graphical model represented as an undirected graph [1]. A Bayesian Network can be transformed into
a Markov Random Field via a process called moralization, which consists of removing directionality
from all edges and connect all co-parents in the graph. An example of this process applied to the ASIA
Bayesian Network is provided in Figures 3.1 and 3.2.

3.2. Inference on Bayesian Networks

Inference in Bayesian Networks involves computing the posterior distributions of certain variables given
evidence about others [5]. This section introduces key concepts and methods relevant to inference in
discrete Bayesian networks, including Conditional Probability Distribution (CPD) tables, Variable Elim-
ination, Belief Propagation, and Junction Trees.

Given a Bayesian Network over variables X, a set of observed variables E ¢ X and a set of tar-
get variables T < X \ E, The most common type of inference consists of computing the posterior

OO
Qeﬁ
ONRO

Figure 3.1: The ASIA Bayesian Network. Figure 3.2: The ASIA Bayesian Network moralized.
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Is a Smoker

P(S)

0.5

Lung Cancer Has Bronchitis

Smoker| P(L|S)
T 0.99

Smoker| P(B | S)
T 0.6
F 0.3

F 0.9

Has Bronchitis

Figure 3.3: CPD tables taken from the ASIA network.

distribution p(T|E) [3]. This, can be formulated as:

p(T, E) _ erﬂx\{Ele,] p(x' E)
p(E) Yreapg PG E)

Where Qy is the set of all possible state combinations of variables in X.

p(TIE) = 3.1)

Most inference algorithms for Bayesian Networks require the usage of a Conditional Probability Distri-
bution Table, also called CPD Table [1]. A CPD Table over a set of variables X contains the probability
values of all state combinations for all variables in X. An example of a CPD Table is shown in Figure
3.3. Since discrete variables have at least two possible different states, a CPD Table over X has size
0(Qy) ~ 0(2™1). This gives an intuition on why both memory cost and computational cost can explode
quickly when doing inference over these models.

3.2.1. Variable Elimination

Variable Elimination [1] is a fundamental algorithm for exact inference in Bayesian Networks. It com-
putes the marginal probability of a target variable by systematically summing out or marginalizing the
other variables in the network. The algorithm involves three key steps:

1. Factorization: Represent the joint probability distribution as a product of CPD tables.

2. Summing Out Variables: Sequentially eliminate variables not in the query or evidence by marginal-
izing them out, which involves summing over their values.

3. Combination of Factors: Multiply factors to produce intermediate results.

The order in which variables are eliminated significantly affects the computational efficiency of this
algorithm. A poor elimination order can result in the creation of large intermediate factors, leading to
exponential growth in computation time and memory requirements. Furthermore, representing the full
joint probability distribution of a Bayesian Network requires 0(2V) space.

3.2.2. Belief Propagation and Junction Trees

Belief propagation [9] is an algorithm for inference in graphical models that leverages the network’s
structure to efficiently compute marginal probabilities. Belief propagation operates by passing mes-
sages between nodes in the network. Each node computes a local function based on incoming mes-
sages from its neighbors and sends updated messages back. However, in loopy networks (graphs
with cycles), belief propagation becomes an iterative approximation algorithm, often called Loopy Be-
lief Propagation.

A Junction Tree of a Bayesian Network over variables X with set of factors @ is a computational graph
whose nodes c;, also called cliques, are tuples (X; € X, ®; € ®). Edges, also called separators, are
associated with a set of variables called sepset S; ; = X; N X;. These edges connect the cliques to form
a tree. In order to be valid, a Junction Tree must satisfy the following rules:
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Figure 3.5: Belief Propagation toward clique ¢; for query

Figure 3.4: A Junction Tree constructed over the ASIA A )
with evidence X = x,D = d.

Bayesian Network.

» Family preservation: Each factor ¢ € ® must be associated with one cluster ¢; such that
Scope[¢] € X;.

* Running-intersection property: For every pair of cliques c;, ¢;, every clique on the path between
¢, ¢; contains X; N X;.

Junction Trees have the nice property that they can run belief propagation in linear time, even if the
original network contained loops. One of the most popular message-passing schemes for Junction
Trees is the sum-product scheme [10], where messages from node c; to node ¢, is computed as

O N [

V&S Ckenb(Ci)\Cj

Where Y, represents the variable elimination operator, used to remove variables not in clique j before
message passing. For tree-structured networks, belief propagation provides exact results in linear time
[9]. While the cost of computing a message is still exponential, it remains bounded by the size of the
largest clique in the tree.

As an example, let us consider the ASIA network (Figure 3.1) and the naively constructed Junc-
tion Tree (Figure 3.4). Here, running Variable Elimination requires 0(28) operations to carry-out exact
inference. In contrast, the cost of inference on the Junction Tree in Figure 3.4 is bounded by the size
of the largest clique. Thus, requiring only 0(2%) operations.

Finding an optimal Junction Tree is an NP-hard problem. Although several heuristic algorithms ex-
ist, most of them require to moralize the original graph to identify patterns in it.

3.3. Hybrid CLG Bayesian Networks

So far we have seen how Bayesian Networks can be used to model and run inference over a set of
discrete variables. However, some domains might require to model a problem as an union of discrete
and continuous variables. In this scenario, Hybrid Bayesian Networks come in hand [3]. One of the
most popular classes of hybrid models is the set of Hybrid Conditional Linear Gaussian (Hybrid CLG)
distribution models [4]. In this class, continuous variables are Gaussian-shaped and cannot have any
discrete child. The factor of a continuous variable x € T with discrete parents z, and continuous parents
zr is given by:

f(xl{za zr}) = N (x; a(2zp) + B(24) 21, 0% (24))

where a and B are the coefficients that depend on the discrete state combination of z,. If the state
combination of z, is fixed, x is Gaussian-shaped. If this is not the case, f(x) is a mixture of 0(212)
Gaussian distributions. In general, even representing the correct marginal distribution in a hybrid CLG
network require space that is exponential in the size of network [1]. Furthermore, even approximate
inference for simple models structures such as polytrees is NP-hard in hybrid CLG networks [11].
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3.3.1. Inference in Hybrid Bayesian Networks
Similarly to the discrete domain, we can define a query over a Hybrid Bayesian Network as:

p(xi,Xg) ZAEQA\{xi} fFEQF\{xi} p(X, Xg)dl
p(Xg) Laean Jreq, POXXg)dT

Where X is the set of observed variables, T is the set of continuous variables and A is the set of dis-
crete variables. In principle, the challenge we have to deal with when executing inference on Hybrid
models, is that variables in I \ Xz need to be integrated out.

p(xi|xg) = (3.2)

In order to make hybrid CLG inference tractable, most works focus on finding the first two moments of
continuous distributions instead of the full marginal probability. The first attempt at developing an exact
method over junction trees following this approach was introduced by Lauritzen [12] and later revised
by Lauritzen and Jensen [13]. This algorithm is able to perform exact inference in hybrid BNs, as long
as the joint distribution is a CLG. In order to achieve such result, we need to define a strong elimi-
nation order [14]. That is, an order such that continuous nodes are eliminated from the graph before
discrete ones. Since regular Junction Trees do not always have a strong elimination order [14], they
cannot be used to run inference correctly on Hybrid CLG models. Instead, a stricter structure called
Strongly-Rooted Junction Tree [12] is required. A Junction Tree is said to be strongly-rooted if it has a
distinguished clique R, called strong root, such that for every couple of neighboring cliques (C, D), with
C being closer to R than D, it holds that: (C n D € A)v (D \ € € I'). Meaning that no discrete variable
is marginalized before any other CLG one in the factor.

Madsen’s 2008 work [14] introduces an improved version of Lauritzen’s algorithm where belief mes-
sages are now represented as set of potentials and resolve dependencies between continuous vari-
ables by running arc-reversal operations on the DAG and leveraging Lazy Propagation [15] rules to
optimize inference computations. These two approaches require complex manipulation of variable po-
tentials which cannot be done in a straight-forward manner without breaking confidentiality constraints.
A significant disadvantage of CLG models is that they do not allow for categorical nodes to be children
of continuous variables [4]. Lerner introduced augmented CLG networks in [11], where they build an
algorithm on top of the work of Lauritzen [13] to run approximate inference in CLG models where con-
tinuous variables are allowed to have discrete children.

Other works only allow for a subset of inference queries. For instance, Paskin [16] leverages Rao-
Blackwellization to provide tractable approximated inference but does not allow for queries with con-
tinuous evidence.

3.4. Distributed Bayesian Networks

Studies on applications of Belief Propagation on distributed domains include the publications by Xia et
al. [17, 18] which focus on computation of message passing algorithms in concurrent systems without
focusing on the privacy constraints imposed by our problem. Similarly, Stefanovitch et al. [19] also
explores computational optimization rather than privacy in a multi-agent system setting with constraint
communication and computational capabilities. Other works use Belief Propagation for privacy-safe
collaborative filtering purposes [20, 21], but they require all parties to share the same set of nodes.
Works by Jo et al. [22] and Xu et al. [23] explore distributed computation of belief propagation and
moment sharing respectively. Although, these two methods require large communication costs due to
their iterative nature. Finally, Kearns et al. [24] studied privacy-preserving applications of both Belief
propagation and Gibbs sampling. Nonetheless, they don’t provide a protocol to run such inference.

Masegosa et al. [25, 26] explored applications of hybrid Conjugate Exponential Family BNs [3] within
distributed systems. They provided a method to generate a centralized hybrid network from different
parties’ models. Albeit, structure and parameters of such generated network may leak confidential
knowledge.

3.4.1. CCBNet
CCBNet [2] is a pioneer work in the field of collaborative confidential inference for Bayesian Networks
as well as the current state-of-the-art in its field. It is based on two protocols: CABN (Confidentially Aug-
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mented Bayesian Networks) and SAVE (Share Aggregation Variable Elimination). CABN is a protocol
that augments probability distributions for features across parties into secret shares of their normalized
combination. It follows a geometric mean merging procedure inspired by the works of Del Sagrado [27]
and Feng [28]. SAVE is an inference protocol based on Variable Elimination. It requires parties to run
said algorithm collaboratively by computing partial inference results over common variables and merge
them via a secret sharing scheme for multiplication [29]. Despite being a significant step forward in the
Confidential BN literature, CCBNet falls short under several aspects. Namely, its communication costs
have been shown to explode even for relatively small problems, it only supports discrete variables,
and posterior probability values for some private variables from the peers are revealed to the party
executing a query.






Additional Experiments and Results

4.1. Results on Continuous Data

We evaluate the predictive accuracy of our method on purely continuous datasets, specifically Ecoli70
[30] and Magic-Niab [31]. The results are summarized in Table 4.1. Since these datasets do not in-
clude categorical variables, we exclusively perform collaborative continuous inference as described in
Algorithm 3 in the paper.

Our baseline is exact inference applied to discretized datasets with varying levels of granularity. How-
ever, due to the limited scalability of CCBNet and our own purely discrete baseline A-CCJT when
processing discretized data, we use a centralized discrete network instead. This serves as an upper
bound for the predictive performance achievable with a discretization-based approach.

For all experiments, we execute 10,000 queries, involving four parties with a 10% overlap. We measure
both the mean squared error (MSE), as well as the accuracy in Maximum A Posteriori (MAP) accuracy.
With regards to the latter metric when used on the hybrid method, we measure wether the mean of the
posterior of the targeted variable falls in the relative discrete bin.

Across all evaluations, Hybrid CCJT consistently delivers the highest predictive accuracy. For the
Ecoli70 dataset, Hybrid CCJT achieves an MSE of 0.07, which is five times lower than the optimal
discrete counterpart and 20 times better than the non-optimal version. On the Magic-Niab dataset,
our method achieves an MSE of 0.287, outperforming the discretized model, which records an MSE of
0.521.

Furthermore, Hybrid CCJT consistently outperforms the baseline with respect with MAP accuracy. Ad-

ditionally, the discretized model could not complete inference within a reasonable time when using 10
states on the Magic-Niab dataset.

Table 4.1: Results on continuous data: mean squared errors and maximum a posterior accuracy.

Dataset Ecoli70 Magic-Niab

Metric Brier MAP Brier MAP
#States 3 States 5 States 10 States | 3 States 5 States 10 States | 3 States 5 States | 3 States 5 States
Hybrid -CCJT 0.070 0.849 0.67 0.40 0.287 0.895 0.704
Discretized BN 1.411 0.367 0.368 0.619 0.604 0.389 0.521 0.533 0.0448 0.1876
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Dataset Child Alarm Insurance Andes | Link | Munin #2
#Parties 2 4 8 2 4 8 2 4 16 64 128

Comm 14 33 58 15 40 79 17 43 6080 459 735
Hybrid CCJT

Brier | 0.023 0.031 0.038 | 0.010 0.022 0.041 | 0.028 0.051 | 0.046 | 0.0124 0.017

Comm 67 157 429 166 1959 1886 | 143 1835 | 23175 | 4455 243474
CCBNet
Brier | 0.023 0.031 0.038 | 0.011 0.022 0.041 | 0.028 0.052 | 0.046 | 0.126 0.016

Comm 18 36 31 51 74 61 23 57 305 2292 89008
CCBNetJ
Brier | 0.023 0.031 0.038 | 0.011 0.022 0.041 | 0.028 0.052 | 0.046 | 0.126 0.016

Table 4.2: Results on discrete data: communication costs and predictive accuracy (Brier score). Lower is better for all.

4.2. Results on Discrete Data

Given the significant scalability challenges posed by communication costs in CCBNet [2], we focus on
evaluating the improvements achieved by Hybrid CCJT in this aspect when applied to purely discrete
datasets. We further compare our model with CCBNetJ, a degenerate model of CCBNet introduced
by [2] that stores the fully combined central CPDs for overlaps in one of the concerned parties, trading
some safety for faster inference. We conduct experiments on the Child, Alarm, and Insurance datasets
with varying numbers of parties, ranging from 2 to 8. Additionally, we test larger datasets with up to
128 parties. Each experiment involves 2,000 queries. The results are presented in Table 4.2. For
these datasets, which contain no continuous variables, Hybrid CCJT simplifies to A-CCJT, as already
discussed in the paper.

In smaller experiments involving only two parties, Hybrid CCJT reduces CCBNet's communication
costs by a factor of 8, lowering the average number of communicated values from 125 to 15. The
improvement becomes even more pronounced as the number of parties increases. In larger-scale ex-
periments, such as the Munin dataset with up to 128 parties, CCBNet's communication costs escalate
substantially, reaching up to 243k transmitted values. By contrast, Hybrid CCJT maintains a low com-
munication overhead, transmitting only 735 values, representing a 331-fold improvement.

CCBNetJ manages to improve communication costs with respect with CCBNet. Bringing performance
that are sometimes comparable with our model. Despite these considerations and the significant con-
fidentiality trade-offs associated with this model, it fails to achieve scalability in very large discrete
networks. In such cases, Hybrid CCJT continues to outperform the baseline by a substantial margin.

Importantly, we observe no significant differences in predictive accuracy throughout these experiments.
Altogether, this shows how the Junction Tree approach is a desirable solution even when dealing with
purely discrete scenarios due its superior scalability compared to approaches based on Variable Elim-
ination.

4.3. Insights on the Hybrid Datasets

Inference complexity in purely discrete and purely continuous datasets is usually determined by factors
such as the number of nodes, arcs, and states per variable. However, for hybrid models, it can be diffi-
cult to evaluate how computationally demanding or challenging the inference process will be. Gaining
a clear understanding often requires deeper insights into the model’s structure and behavior.
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Figure 4.1: The Healthcare network.

4.3.1. Healthcare
The Healthcare dataset [32] (Figure 4.1) consists of only seven variables: three discrete (2, H, C) and
four continuous. Despite its small size (7 nodes) it has more than twice the number of parameteres
in the ASIA network (Figure 3.1). This highlights the increased complexity involved in representing a
hybrid network compared to a purely discrete one.

The discrete variables in the Healthcare dataset have a maximum of three states, which helps keep
the parameter count relatively manageable compared to other hybrid models. On the other hand, the
continuous variables exhibit an average variance exceeding 5 - 10°.

4.3.2. Sangiovese
The Sangiovese dataset [33] (Figure 4.2) has been used to assess the impact of several agronomic
settings on the quality of Tuscan Sangiovese grapes. It has 15 variable of which only one is discrete
(Treatment, with 16 different states). It has a total of 259 parameters, a relatively low number given
the network size, gained thanks to the fact that it only has one discrete variable.

Thanks to the low number of discrete state combinations, and the low variance of each continuous
variable, this network has an average variance of only slightly over 0.083.

4.3.3. Mehra

The Mehra dataset [34] (Figure 4.3) is a hybrid network used to model conditionality between air pol-
lution, climate, and health data in several regions of England. Despite having only 24 variables, it is
the largest network in terms of parameters by far, with more than four times the parameters of the
Munin network (which contains more than 1000 nodes). This network gives a clear example of how
computationally heavy a hybrid network can get with a small number of variables modeled.

The size of the network is given by both the amount of discrete variables (8) and the high amount
of states per variable (up to 31). Along with high variances of Gaussian distribution modeled by the
CLG node, this brings a in average variance of over 2.4 - 10'¢. The highest value seen so far, which
also explains the high results in MSE over this dataset.



4. Additional Experiments and Results










Conclusions

The answers to the initial research questions and solution identified by this thesis are:

1. How can we run Hybrid CLG inference in a distributed and privacy preserving fashion?

Hybrid CLG inference can be run in a distributed and privacy-preserving fashion by leveraging
the strongly-rooted Junction Tree properties. By defining a strong variable elimination order and a
federated method for merging parties beliefs, we achieve accurate inference quality while main-
taining parties’ privacy on 12 data sets. When dealing with hybrid data, our method improves
the predictive accuracy of continuous target variables by an average of 32% in Mean Squared
Error (MSE) compared to the best performing baseline. Our method also maintain predictive
performances comparable to the state-of-the-art when targeting discrete variables.

2. How can we reduce communication costs of collaborative inference over discrete variables?

By leveraging properties of Belief Propagation and the Shafer-Shanoy message-passing scheme
over trees, we marginalize overhead categorical variables before transmitting information be-
tween parties. This leads to a significant reduction in communication costs. Our method out-
performs existing baselines in communication costs, with up to 40-fold reductions in large hybrid
datasets and 331-fold improvements in large-scale experiments on purely discrete data.

3. How can we avoid revealing posterior of private variables in multi-party Bayesian Networks?

By leveraging properties of Belief Propagation and the Shafer-Shanoy message-passing scheme
over trees, we manage to marginalize private categorical variables before transmitting information
between parties. This prevents the querying party from reverse computing posteriors of private
variables owned by other parties.
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