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Estuarine Adjustment: Dependence of Salinity Delay on the
Forcing Timescale and Magnitude
Yoeri M. Dijkstra1

1Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands

Abstract The salinity in estuaries continuously adapts to varying forcing for example, by discharge and
tidal conditions. The changes in salinity lag behind the changes in forcing. Previous work has mostly related this
delay to the adjustment time, which depends on an average background state of the estuary. Payo‐Payo et al.
(2022), https://doi.org/10.1029/2021jc017523 showed that adjustment time however cannot explain the actually
observed delays for a realistic salinity and forcing signal. Inspired by this, this study aims to develop relations
between delay time and forcing variations and background state of the estuary. To this end, I first propose a
definition of the actual delay of salinity based on wavelet analysis, applicable to observed or modeled salinity
signals. To compare delay to estuarine parameters, I use a linear 1D model, but qualitative results carry over to
the general case. Using model experiments with harmonic and peaked variations in the forcing, the delay time
depends not only on the adjustment time, but also on the timescale of the forcing variation. Even for forcing
timescales that are up to a factor 100 longer than the adjustment time, both forcing timescale and adjustment
time are important for the delay. A second novel finding is that the delay depends strongly on the position along
the estuary where the delay is observed. As verification, model experiments with realistically varying forcing
were done, roughly inspired by the Modaomen Estuary (China). Although delay times showed a complicated
and scattered dependency on model variables in this case, the above qualitative conclusions were confirmed.

Plain Language Summary The salinity in estuaries continuously changes with changes in external
conditions including river flow and tides. These changes of salinity lag behind the changes in external
conditions. Previous work has mostly related this delay to a theoretical indicator, the adjustment time, that is
related to a background state of the estuary. The adjustment time is useful as it is easy to compute and intuitive.
However, recent research could not identify a clear relation between the actual delay and the adjustment time.
Inspired by this, this study aims to develop relations between the delay time and the background state of the
estuary. This was done using a simplified model. It was found that the delay time depends not only on the
adjustment time, but also on the timescale and magnitude of variations of the external conditions. A second
novel finding is that the delay depends strongly on the position along the estuary where the delay is observed,
where locations further upstream experience a much longer delay between salinity and variations of external
conditions. To verify these results, model experiments with realistically varying forcing were done, roughly
inspired by the Modaomen Estuary (China).

1. Introduction
Estuaries are subject to continuously changing flow on multiple time scales due to varying tidal forcing and river
run‐off. The time scales include the tidal time scale (hours), river discharge events (days), spring‐neap cycle
(14 days) and seasonal river discharge variations (months). The salinity distribution in estuaries adjusts to these
changing flow conditions with a certain delay (e.g., Banas et al., 2004; Gong & Shen, 2011). This delay may be
anywhere from a few hours to months (e.g., Kranenburg, 1986; Vijith et al., 2009) depending on the estuary and
the flow conditions. It is important to know how this delay depends on the estuary and the flow conditions to
understand when critical salt intrusion may occur, leading to disruptions in use of fresh water for irrigation or
consumption. Hence, this is important knowledge for developing effective management of estuaries.

Our main understanding of delayed salinity response today comes from both analytical and numerical model
studies that consider idealized model experiments. Kranenburg (1986) and MacCready (1999); MacC-
ready (2007) considered the “step experiment”: simulating a sudden increase in discharge ΔQ starting from
equilibrium conditions. If ΔQ is small compared to the background discharge Q0, they found that the salinity
adapts like a relaxation process with an exponential adjustment time scale Tadj that scales as
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Tadj ∼
AL0
Q0

. (1)

Here A is the cross‐sectional area and L0 an equilibrium salt intrusion length scale. MacCready (1999) noted that
Tadj is smaller than the above expression for large positive ΔQ (i.e., as Q increases), while Hetland and
Geyer (2004) found that Tadj is larger for large negative ΔQ (i.e., asQ decreases). Chen (2015) provides improved
expressions for Tadj that capture this asymmetry.

Considering periodic variations of tidal dispersion, Hetland and Geyer (2004) and Lerczak et al. (2009) showed
that the delay of salinity variations was not necessarily related to Tadj. If the period of the variations in tidal
dispersion is small compared to Tadj, the delay in salinity response is 25% of this period, and hence much smaller
than Tadj. Studying a single (positive) peak in river discharge, Monismith (2017) studied the delay in terms of
relaxation. He found that the delay in salinity response depends on the duration of the peak, with longer peaks
resulting in a longer relaxation times. Other authors also studied estuarine adjustment to periodic variations
(Bowen & Geyer, 2003; Lerczak et al., 2009; MacCready, 2007) or single peaks (Biemond et al., 2022; Moni-
smith, 2017), but focussed on the magnitude of the salinity response, not the delay. These studies showed that the
magnitude of the salinity response decreases strongly if the period or peak duration is small compared to Tadj.

Recently, analyzing 9 months of realistic 3D model results of the Modaomen estuary (China) using wavelet
transforms, Payo‐Payo et al. (2022) (hereafter PP22) suggested that the delay in response of the salinity depends
in a complex way on the typical time scale with which the forcing (e.g., tide or river discharge) varies and on the
background (i.e., time‐averaged) state of tidal amplitude, discharge and salinity in the estuary. For example,
during the dry season they estimated a delay time of the salinity of about 1–3 hr with respect toM2 tidal variations,
1 day with respect to short river discharge events, and several days with respect to slower variations in discharge
and the spring‐neap cycle. Much shorter delays were observed during the wet season. The observed seasonal
trends in the delay time are consistent with expression 1. Also, the dependence of the delay on the forcing time
scale is qualitatively consistent with the conclusions from the idealized experiments of Hetland and Geyer (2004),
Lerczak et al. (2009) and Monismith (2017), that is, forcing variations on shorter time scales generally correlate
with shorter delays. However, PP22 could not directly link their observed delay times to estimates involving Tadj
suggested by previous authors. Hence, the delays observed in realistic model output remain largely unexplained.
This is because we lack an overarching theory that connects the observed delay to Tadj and the forcing time scale at
the same time.

In view of this, the goal of this work is to describe the delay of changes in salinity to changes in forcing (here
focusing on dispersion, e.g. by the tide, and river discharge) as a function of the time scale and magnitude of these
changes in forcing and of the background state of the estuary. To this end I first develop a definition of delay time
based on wavelet analysis. This delay time can be computed for any measured or modeled salinity signal in a fully
automated way and is hence general and objective. Next, I focus is on describing the qualitative behavior of the
delay in a systematic way and covering a large range of parameters representative for many estuaries. Hence, I use
a simple linear 1D salinity model, which is simple enough to analyze in detail. I will argue in Section 4 that the
main results qualitatively carry over to nonlinear models. The main results and dependencies will be inferred from
model experiments with idealized periodic variations and peaks in forcing. The model is then applied to a realistic
forcing inspired by PP22 to test to what extent these theoretical results can be applied in realistic applications.

Section 2 presents the model, the parameters that control the model behavior, the solution method, and the
analysis method using wavelet transforms. Notably, Section 2.5 provides the definition for delay time based on
wavelet analysis. Next, Section 3 shows the resulting salinity delay in response to periodic forcing and peak
variations in forcing. Section 4 presents a reflection on the theoretical results by applying the model to a realistic
and complex forcing signal and by discussing to what extent the results can be transferred to more realistic non‐
linear models. Finally, Section 5 summarizes the main conclusions.
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2. Model and Methods
2.1. Linear Salinity Model

I consider a cross‐sectionally averaged model for an estuary. The cross‐sectional area is denoted by A and is
assumed constant in the along‐channel x‐direction. The x‐coordinate is positive in upstream direction, where x= 0
denotes the mouth. The water motion consists of a river discharge Q(t), where t denotes time. The tidal flow,
vertical and lateral exchange flows and wind are not resolved explicitly, but their effect on the salt distribution is
parametrized by a dispersion parameter Kh(t). Even though in practice, parametrizations of Kh depends in
complex way on the flow and salinity itself, in the remainder of this study it will be referred to as a forcing
parameter.

To describe the salt distribution s(x, t), I use a linearized cross‐sectionally integrated mass balance

Ast − Qsx − AKhsxx = 0, (x> 0, t > 0). (2)

Here, subscripts x, t denote derivatives with respect to these dimensions. At the mouth, the salinity is assumed to
be known and equal to s(0, t) = ssea(t). For x→ ∞ the salinity is assumed to vanish. This salinity model has three
forcing parameters: the discharge Q(t), dispersion parameter Kh(t) and boundary salinity ssea(t). Various time
signals for these three parameters will be considered: harmonic functions, single peaks, and a realistic 9‐month
data set derived from 3D model results and observations.

2.2. Typical Length and Time Scales

To facilitate systematic analysis of the model it is useful to derive typical length and time scales present in
Equation 2. To this end, I define the following scales: s= ssea,0s*,Q= Q0Q*, Kh = Kh,0K∗

h, t= Tadj,0t*, x= L0x*.
Here, variables with * denote dimensionless quantities, ssea,0, Q0, and Kh,0 are typical scales for the forcing
parameters, Tadj,0 is a typical adjustment time scale, and L0 is a typical salt intrusion length scale. Note that the
scales Q0 and Kh,0 are allowed to vary (gradually) with time. Substituting these expressions in Equation 2 and
rewriting yields

s∗
t∗ −

Tadj,0Q0

AL0
Q∗s∗

x∗ −
Tadj,0Kh,0

L20
K∗

h s
∗
x∗x∗ = 0.

Assuming all three terms in the equation are of a similar order of magnitude, it follows that Tadj,0Q0
AL0

and Tadj,0Kh,0
AL0

are
both equal to one. The expressions for Tadj,0 and L0 to satisfy these conditions are given by

L0 =
AKh,0
Q0

, (3)

Tadj,0 =
AL0
Q0

, (4)

=
A2Kh,0

Q2
0

. (5)

This expression for Tadj,0 matches definitions in literature for Tadj (see Equation 1) up to a constant of propor-
tionality and noting that various authors employed various definitions for L0 (e.g., compare MacCready (2007,
Equation 4.6), Monismith (2017, Equation 12), Lerczak et al. (2009, Equation 9)).

2.3. Solution Method

The solution method used depends on the type of forcing signal. For a purely harmonic forcing signal, two
different analytical approximation solutions are used depending on the amplitude of the harmonic forcing. For the
case of peak forcing or a general forcing signal, a numerical discretization is used. The solution methods are
briefly discussed below, with more details in SI‐1.
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Small‐amplitude harmonic forcing: I first consider the case of small‐amplitude harmonic forcing. Of the three
forcings in the model, Q, Kh, and ssea I only vary one at a time, keeping the others constants. These forcing
variations have the form.

Q = Q0 +R(Q̂1e
− i2π t

Tforcing), or (6a)

Kh = Kh,0 +R(K̂h,1e
− i2π t

Tforcing), or (6b)

ssea = ssea,0 +R(ŝsea,1e
− i2π t

Tforcing). (6c)

Here, Tforcing is the period of the forcing signal, which will be varied in the model experiments. Q̂1 denotes a

complex phase‐amplitude with |Q̂1 |
Q0

≪ 1, and similar notation is used for the other forcing parameters. The solution
for s is constructed by using a perturbation expansion (see SI for details). The resulting salinity consists of a
constant s0(x) plus small harmonic variation, that is,

s(x, t) = s0(x) +R(ŝ1(x)e
− i2π t

Tforcing), (7)

where ŝ(x) is the complex phase‐amplitude also with |ŝ|s0 ≪ 1 everywhere. The solutions for s0 and ŝ1 can be found
explicitly and read as

s0(x) = ssea,0e
− x

L0 , (8)

ŝ1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ssea,0
i
2π

Tforcing
Tadj,0

Q̂1

Q0
e−

x
L0

⎛

⎜
⎜
⎜
⎝
1 − e

− x
2L0
(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− 8πi

Tadj,0
Tforcing

√
− 1)
⎞

⎟
⎟
⎟
⎠

if K̂h ≠ 0,

ssea,0
i
2π

Tforcing
Tadj,0

K̂h,1
Kh,0

e−
x
L0

⎛

⎜
⎜
⎜
⎝
1 − e

− x
2L0
(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− 8πi

Tadj,0
Tforcing

√
− 1)
⎞

⎟
⎟
⎟
⎠

if Q̂ ≠ 0,

ŝsea,1e
− x

2L0
(1+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− 8πi

Tadj,0
Tforcing

√
)

if ŝsea ≠ 0.

(9)

General‐amplitude harmonic forcing: if the forcing is harmonic with general amplitude, the forcing 6a–6c is still
used but without restrictions on the amplitude of the harmonic part. The solution s then no longer consists just the
single harmonic with period Tforcing but also of all multiples of this frequency. This is written as

s(x, t) = s0(x) +∑
N

n=1
R(ŝn(x)e

− ni 2πt
Tforcing). (10)

Here, N → ∞ yields the exact solution, but good approximations are achieved for finite N. Fixing N = 30 and
substituting the above form for s and expressions 6a–6c in the model equation, analytical solutions can be
computed. However, the resulting expressions are very long and complicated and therefore only evaluated
numerically. The solution procedure is explained in the SI.

General forcing: for all other forms of the forcing terms, a numerical solution is used. To this end, the equation is
discretized using a backward Euler method in time. The spatial discretization uses a first‐order upwind method for
advective terms and a second‐order central method for dispersive terms. The length of the domain is chosen much
longer than the salt intrusion length. The grid is equidistant.
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2.4. Wavelet Analysis

Following Payo‐Payo et al. (2022) results are analyzed using a wavelet transform. The wavelet transform pro-
vides a way of analyzing any signal consisting of temporal variations on multiple timescales and is therefore a
useful and universal analysis tool for estuaries (e.g., Hoitink & Jay, 2016). The reader is referred to Grinsted
et al. (2004) and Torrence and Compo (1998) for an extensive explanation of wavelet analysis. A brief summary is
given below.

I use the Morletω0=6 wavelet, which is a Fourier mode multiplied by a Gaussian function. The resulting transform
acts like a Fourier transform, but on a Gaussian time window centered at time t. The size of this Gaussian window
scales with the Fourier period Tforcing. Hence, the window is small when extracting high‐frequency modes from
the signal, while it is larger when extracting lower‐frequency modes. Various wavelet transforms may be
computed using this wavelet. First, the Continuous Wavelet Transform (CWT) computes the power of a signal
(i.e., forcing or salinity) as a function of Fourier period Tforcing and window position t. Second, the Cross‐Wavelet
Transform (XWT) computes the common power of one forcing parameter and the salinity together as a function
of Tforcing and t. Finally, the Cross‐Wavelet Coherence (WCT) is like the XWT but normalized by the CWT of the
forcing and salinity. The WCT is therefore like a correlation coefficient in the (t, Tforcing)‐space.

Of greatest relevance to this study, the WCT not only computes the correlation amplitude but also the phase
difference ϕ(t, Tforcing) between the forcing and salinity as a function of t and Tforcing. This phase difference
provides information on the time delay (a precise definition is provided in the next section). A major advantage of
wavelets over some other transforms, such as the Fourier transform, is the ability to identify changes in delay at
each certain timescale over time. Hence, it is possible to identify that the delay between salinity and discharge on a
weekly scale is different during the high and low discharge season. Fourier transforms on the other hand would
only yield one value of the delay at each timescale.

For this study, I consistently used 146 wavelets with a period between 2 hr and 1 year (log‐scale). Since the Morlet
wavelets are non‐orthogonal, adding wavelets could lead to different results in case of too low resolution. It was
tested here that adding more wavelets to the analysis did not visibly alter the results.

2.5. Definitions of Delay and Adjustment Time

To formally define the delay time, let ϕ(t, Tforcing) be the phase difference resulting from the cross‐wavelet
coherence. The delay time is given by

Tdelay ( t,Tforcing) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ( t,Tforcing)
2π

Tforcing for forcing Kh and ssea,

ϕ( t,Tforcing) + π
2π

Tforcing for forcing Q.

(11)

When considering forcing byQ the phase difference is shifted by π (i.e., 180°) as increasingQ leads to decreasing
salinity, which is retrieved as a 180° phase difference. The delay time as defined here is the actually observed
delay time between a certain (time‐dependent) frequency in forcing and salinity. The above definition can be
applied to any measured or modeled signal and will be used consistently throughout this study.

The value of Tdelay is not meaningful for all t and Tforcing. If the forcing or salinity have almost no power at a
certain forcing period and time, the delay is still defined but carries little significance. Hence, I only consider the
time delay at points in the (t, Tforcing)‐space where the XWT andWCT are both significant and where the CWT of
the forcing has a local maximum in Tforcing. To illustrate this procedure, consider some forcing varying at both a 7‐
day and 14‐day scale but with noise as shown in Figure 1a. Figure 1b shows a colormap of the normalized CWT of
the forcing as a function of time and wavelet scale, with warmer colors indicating more power. This shows power
mainly in the area around the 7 and 14 days wavelet scales. The red lines show the significance thresholds for the
XWT compared to a red noise model with 95% confidence level. This shows only significant results roughly
within the 5–19 days band. The WCT is significant in the entire domain in this simple case and is hence not
shown. Within the area where the XWT and WCT are significant, only the forcing bands where the CWT attains
local maxima are selected and indicated by the black markings. These clearly are at the 7 and 14 days wavelet
timescales with a few spurious points due to the noise.
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The phase lag defined above is invariant to shifts of a full period, that is, for a harmonic signal with period of
2 weeks it would not see the difference between 1 week delay and 3 weeks delay. In the theoretical analysis on
simple forcing signals in Section 3 it will be shown however that in most cases the delay should be (significantly)
shorter than the forcing period. It is assumed that this conclusion carries over to more complex practical cases.

It should be noted that the phase lag defined above is still a measure of correlation. Hence, it does not imply
causality between the forcing and salinity. Most obviously, the delay can be negative, implying the salinity leads a
certain forcing (say, dispersion). Such situation can be found if there are multiple forcing signals and salinity
responds dominantly to another forcing (say, discharge). However, also a positive delay does not automatically
imply a causal relation, and one should remain careful in the interpretation of the results (see more on this in
Section 4).

Simplification in case of harmonic forcing: due to the nature of the of the Morlet wavelet, the wavelet transform
(i.e., CWT) of a periodic signal is identical to the Fourier transform. The phase difference obtained from aWCT is
therefore also identical to the phase difference one would obtain from a Fourier transform. This is verified for the
results in this study in SI‐2 (Figures S1–S4 in Supporting Information S1). Hence, in the case of periodic forcing,
the definition of delay time simplifies. Thus using the notation in terms of Fourier components in 6a–6c and 10,
the delay time for harmonic signals is rewritten as

Tdelay (Tforcing) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ[ŝ1] − ϕ[K̂h,1]

2π
Tforcing, for periodic Kh,

ϕ[ŝ1] − ϕ[ŝsea,1]
2π

Tforcing, for periodic ssea,

ϕ[ŝ1] − ϕ[Q̂1] + π
2π

Tforcing for periodic Q,

(12)

where ϕ[·] denotes the angle of a complex number.

Adjustment timescale: whereas the delay time represents an actually observed delay, the adjustment time scale
Tadj,0 defined in Equation 4 is only a typical time scale. Nevertheless, as Tadj,0 provides a useful intuitive and easy
time scale, throughout this work I will compare Tadj,0 to Tdelay. To this end, the definitions of Q0 and Kh,0 used for
Tadj,0 need to be made more precise. For general forcing signals, I will defineQ0 and Kh,0 as a Gaussian average of
Q(t) and Kh(t) over a time window with typical length Tforcing, that is,

Q0 ( t,Tforcing) =
1
̅̅̅̅̅
2π

√ ∫

∞

− ∞
Q(t′) e

− 1
2(

t′− t
Tforcing

)

2

dt′,

Kh,0 ( t,Tforcing) =
1
̅̅̅̅̅
2π

√ ∫

∞

− ∞
Kh(t′) e

− 1
2(

t′− t
Tforcing

)

2

dt′.

Figure 1. Illustration of use of wavelets to select the relevant timescales to compute delay. (a) illustration of a forcing with a 7
and 14 days forcing and noise. (b) normalized Continuous Wavelet Transform of the forcing (colors), significance threshold
of the Cross‐Wavelet Transform (red lines) and selected points for analysis (black).
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This definition ensures that Q0 and Kh,0 represent the actual background
conditions as they vary over time, yet this background varies gradually with
respect to the forcing time scale that is investigated.

3. Results
The dependence of the delay time on the model variables is investigated for
the various types of forcing. First, Section 3.1 illustrates the salinity and delay
for a single example. Next, Sections 3.2 and 3.3 discuss results for small‐
amplitude and general amplitude harmonic forcing. Finally, Section 3.4
shows the behavior of the delay time for peak forcing signals.

3.1. Illustration of a Model Result

I first illustrate a model result for a case with A = 1 · 104 m2, ssea = 30 psu,
Q= 100 m3/s, and Kh = 100 + 60 cos ( πtT) with T= 230 days. Figure 2 shows
the diffusivity and salinity at x= 34 km, which corresponds to x

L0
= 3.4, which

is the position of the 1 psu line in the case the forcing would not vary in time.
The salinity (green line) varies with the diffusivity but with a delay: the
maximum salinity is attained 23 days after the maximum diffusivity, while the
minimum salinity is attained 36 days after the minimum diffusivity. In the

remainder of this study, the delay is measured as defined in Section 2.5 based on the WCT phase. Using this
method, Tdelay = 26 days, representing an average delay over the entire period. As a periodic signal is considered
here, this is equivalent to the phase difference between the Fourier components with period 230 days. This
example clearly shows that other definitions of delay, for example, based on minimum or maximum salinity, may
show different delays with respect to the forcing than the definition employed here.

3.2. Small‐Amplitude Harmonic Forcing

Next, I will focus on small‐amplitude harmonic forcing variations. Looking closer at the analytical solution for the
salinity for small‐amplitude harmonic forcing in Equation 9, it is found that the delay between the salinity and
forcing only depends on two parameters: Tforcing

Tadj,0 and x
L0
. For the results, therefore, these two dimensionless pa-

rameters will be varied instead of setting values for the dimensional parameters. As long as the amplitude of the
forcing variations are small, the forcing amplitude only affects the magnitude of the salinity variations, not the
delay. Furthermore, the delay time between salinity andQ or Kh have the same dependency on the two parameters
mentioned above, while the delay between salinity and ssea behaves differently.

First I focus on the delay between salinity and Kh or Q. Figure 3 shows the delay time relative to Tadj,0 (panel a)
and relative to Tforcing (panel b) as a function of

Tforcing
Tadj,0 and x

L0
. Shown are results for values of x

L0
that correspond to

the average location of the 1, 2, 10, and 20 psu isohalines. The dashed line in both panels indicates a delay of 25%
of the forcing period, equivalent to a phase difference of 90°. If the forcing varies rapidly compared to the

Figure 2. Illustration of the salinity (green, right axis) at a fixed location
(x = 34 km) under harmonic variation of Kh (blue, left axis) with constant
discharge and seaward salinity.

Figure 3. The delay time for small‐amplitude harmonic variations in Q or Kh along various isohalines plotted in two ways:
normalized by Tadj,0 (a) and Tforcing (b). Delay is plotted as a function of

Tforcing
Tadj,0 and the along‐channel position in the estuary.
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adjustment time (i.e., TforcingTadj,0 small), the observed delay time is approximately 25% of the forcing period (panel b)

and hence much smaller than the adjustment time (panel a). This is consistent with earlier findings of Hetland and
Geyer (2004). If the forcing varies slowly compared to the adjustment time (i.e., TforcingTadj,0 large), the observed delay is

proportional to the adjustment time (panel a).

Interestingly, and not identified earlier in literature, the constant of proportionality between Tdelay and Tadj,0
depends on the position along the estuary. Locations further upstream in the estuary show a larger delay time.
Using the analytical solution 9, the dependency of the delay time on the along‐channel location in the limit for
very slow forcing variations is found to satisfy

lim
Tforcing
Tadj,0

→∞
Tdelay = Tadj,0(1 +

1
2

x
L0
). (13)

Hence, close to the mouth the delay is approximately equal to the adjustment time, while it is a factor 2.7 larger

than the adjustment time at the 1 psu isohaline ( x
L0
= 3.4) . A technical detail: at x= 0 the delay between s andQ or

Kh is still formally defined, even though the modeled salinity equals ssea and is independent of Q and Kh.

For intermediate values of Tforcing
Tadj,0 in Figure 3, the delay shows a smooth transition between both extremes. Looking

at the results for the 1 or 2 psu isohaline, the figure shows that the delay time is still close to 25% of the forcing
period even if the forcing period is already five times larger than the adjustment time. The asymptotic result for
slowly varying forcing in Equation 13 is only attained if the forcing period is approximately a factor 100 larger
than the adjustment time.

Next, the delay time between the salinity and ssea is shown in Figure 4. If the forcing by ssea varies rapidly
compared to the adjustment time (i.e., TforcingTadj,0 small) the observed delay is not restricted by the period of the forcing

signal. As seen in panel b, near the 1 or 2 psu isohaline, the delay is even much more than one forcing period
(i.e., >360 deg). Analysis of the analytical solution 9 shows that the delay time scales linearly with x

L0
. The

variation in ssea thus propagates like a wave upstream. As Tforcing
Tadj,0 increases, the propagation speed decreases.

Correspondingly, the delay time increases. For Tforcing
Tadj,0 large, the delay time finally converges to

lim
Tforcing
Tadj,0

→∞
Tdelay = Tadj,0

x
L0

. (14)

Clearly, the delay of salinity to changes in ssea behaves differently to the delay to changes in Q or Kh. In reality,
variations in Q, Kh, and ssea are coupled. Due to the differences in response to both forcing parameters, the delay
time resulting from this interaction is not trivial. This interaction depends on the estuary and the geometry of the
adjacent sea or ocean and is not further explored in this study.

Figure 4. As Figure 3 but for small‐amplitude harmonic variations in ssea.
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3.3. General‐Amplitude Harmonic Forcing

In this section, the amplitude of the harmonic oscillations is arbitrary. Hence, the delay time of the salinity with
respect to the forcing parameters depends not only on Tforcing

Tadj,0 and x
L0
but also potentially on the forcing amplitudes

|Q̂1|
Q0
, |K̂h,1|

Kh,0 , and
|ŝsea,1 |
ssea,0

. In the model experiments in this section, the relative distance x
L0
is fixed at 3.4, which cor-

responds to the position of the 1 psu isohaline if the forcing were constant in time. For large‐amplitude forcing
variations, the salt intrusion length will be larger on average (see also Monismith, 2017) and hence x

L0
= 3.4

corresponds to a higher average salinity than 1 psu.

Figure 5 shows the delay time relative to the adjustment time as a function of Tforcing
Tadj,0 and the forcing amplitude for

variations inQ (panel a) and Kh (panel b). Focusing first on panel a, for small variations in the amplitude of Q, the
results are retrieved as in the previous section. As long as the forcing period is not too large compared to the
adjustment time, that is, TforcingTadj,0 < 20, the amplitude of discharge variations has almost no effect on the delay time. In

such cases, the salinity cannot fully adapt to the varying discharge. The salinity profile will therefore look like the
salinity profile for constant Q0 plus a relatively small temporal variation. Consequently, the results are similar to
the small‐amplitude case considered in Section 3.2. Only if the forcing period is much larger than the adjustment

time (TforcingTadj,0 > 100) is the delay time dependent on the amplitude of discharge variations. In such cases, the salinity

does adapt to the varying discharge.

To explain this, consider the following reasoning. The average delay over the forcing period is the result of the
adaptation of the salinity at each time instance. Assuming Tforcing is large, we are approximately in quasi‐

equilibrium and at each time instance the adjustment time scales with A2Kh,0
Q2
0

(see Equation 4). Due to the in-

verse square relation between this adjustment time and discharge, the overall delay over the entire period is
dominated by the slow adjustment at times with low discharges. Hence, the delay is larger when the amplitude of
discharge variations is large.

The amplitude of variations of Kh (panel b) has an almost negligible influence on the delay time. Using a similar

reasoning as above, assuming a quasi‐stationary state, the salinity adjusts with a time scale A2Kh,0
Q2
0
. While this

means the response is slow when Kh(t) is large and vice versa, these difference cancel out when averaged, and the
delay almost only depends on the average value of Kh(t).

The amplitude variations of ssea do not affect the delay time in this model. Hence, Figure 4 applies regardless of
the amplitude of ssea variations.

3.4. Peak Forcing

Next considered are peak forcing signals. To this end, I compute the salinity over 1 year (i.e. T = 365 days), with
constant forcing apart from one peak that reaches its maximum at 12T. The peak is chosen to take the shape of only
the positive part of a sine wave with various values for the peak amplitude and duration (see Figure 6a for an
example). Below, I only present results for peak forcing in discharge. The results for peak forcing in Kh and ssea

Figure 5. Delay normalized by Tadj,0 for general amplitude harmonic variations inQ (a) andKh (b) at a fixed location x
L0
= 3.4.
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result in delay times that are very similar to the results when using periodic forcing, as demonstrated in SI‐3
(Figure S5 in Supporting Information S1). An example of a peak forcing in discharge is shown in Figure 6
with a peak duration of 15 days (period of full sine wave is 30 days) and amplitude of 1,000 m3/s. Figure 6a shows
the discharge and resulting salinity at x = 3.4L0. The salinity responds asymmetrically: it adjusts faster to
increasing discharge than to decreasing discharge similar to the periodic case illustrated in Figure 2, see
Chen (2015) for an extensive discussion. Figure 6b shows a (t, Tforcing)‐diagram. The shaded area is the cone‐of‐
influence, where the results of the wavelet analysis are not reliable due to the effects of using a finite time series.
The black markings indicate the points where the WCT phase difference is considered, based on the selection
criteria presented in Section 2.5 (i.e., significance and maximum amplitude in Tforcing). These points have a
wavelet scale (vertical axis) that varies between 18 and 75 days over time. It is interesting to note that the sine‐
wave used as input for Q has a period of 30 days, but the wavelet analysis does not uniformly identify this period.
The analysis already yields results around the 50 and 75 days wavelet scale for t < 100 days, while the discharge
peak only starts on day 170. This is because the wavelet analysis operates on a Gaussian window that scales with
the wavelet scale. The window centered around, for example, t = 100 days at wavelet scale 50 days extends over
day 170 and hence registers a signal. This can be interpreted as some measure of the delay when only considering
the start of the discharge peak. Similarly, the wavelet signal extends until well after day 250, when the salinity has
already returned to its equilibrium value. As Q0 is not constant in this model experiment, Tadj,0 is not a constant
and Figure 6d shows the adjustment time Tadj,0 as a function of time and wavelet period. The black markings are
the same as in panel b and we see that at these markings, Tadj,0 varies between 0.3 and 0.6 days. Figure 6c shows
the delay time against the forcing time, both scaled by Tadj,0. The colored lines indicate the results found earlier for
periodic signals at x

L0|t=0
= 3.4 (c.f. Figure 5). The dots show the delay time computed from the WCT phase

Figure 6. Results for a discharge peak forcing experiment. (a) Discharge signal (blue) and resulting salinity at x
L0
= 3.4

(green). (b) Points in the (t, Tforcing)‐space where the time delay is considered (black dots) and the cone‐of‐influence, where
results cannot be used due to the endpoints of the time series. (c) Delay time versus forcing time, scaled by Tadj,0 at x

L0
= 3.4.

Dots indicate the delay before, at, and after the maximum discharge is attained. The lines indicate the results obtained earlier
using harmonic forcing. (d) Tadj,0 as a function of t and Tforcing. Black markings as in panel (b).
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difference. Red and purple dots indicate the delay at times before and after the maximum discharge is reached,
respectively.

Figure 6c shows that the wavelet analysis identifies a variation in the typical timescale of the forcing and delay
over the course of the peak forcing. The delay is smaller than average before the maximum discharge is reached
and larger than average after the maximum discharge is reached. This corresponds to the observed asymmetry in s

(panel a) and Chen (2015). There are a few red points that indicate a small delay (TdelayTadj,0 < 1) , which correspond to

the outliers in the (t, Tforcing)‐diagram (Figure 6b) with wavelet timescale of 5 days and are probably spurious.

The red and purple dots meet at t = 1
2T (black circle) with Tdelay

Tadj,0 ≈ 2.5 and Tadj,0 ≈ 0.28 days (with wavelet scale of

18 days). Hence Tdelay ≈ 2.5 × 0.28 ≈ 0.7 days. Comparing the black circle to results for harmonic forcing (solid
lines), the value of Tdelay

Tadj,0 is close to the result for small‐amplitude periodic waves. This may be surprising as the

peak forcing has a very large amplitude. To explain this, consider a simple harmonic forcing that resembles the
peak forcing close to the peak. This harmonic signal would have a mean discharge of about 900 m3/s and

amplitude of about 500 m3/s. As |Q̂1 |
Q0

≈ 0.5, this harmonic signal would have a Tdelay
Tadj,0 ≈ 4.5 (green line in Figure 6c),

and Tadj,0 would be approximately equal to 0.14 days (Figure 6d). The delay of such harmonic signal would
therefore be Tdelay = 4.5 × 0.14 = 0.6 days, which is not too far from the 0.7 days delay of the peak forcing
computed for t = 1

2T.

Figure 7 shows the delay in response to various peak discharges. The upper row focusses on small‐amplitude
peaks with various durations. Figure 7a shows the discharge and Figure 7b shows the delay using matching

Figure 7. Various peak signals with small amplitude (a) and large amplitude (c) and the delay time resulting from the wavelet
analysis (b), (d) in matching colors. The large dots represent the delay at t = 1

2T , where the discharge attains its maximum.
Note that multiple large dots in one color can appear, as the wavelet analysis identifies several significant timescales at t = 1

2T .
Smaller dots correspond to the delay measured at other times.
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colors. The delay generally follows the results obtained with small‐amplitude harmonic forcing (blue line) with
some asymmetry in the delay for increasing and decreasing discharge. For large forcing period, deviations occur
showing some very small or large values of Tdelay

Tadj,0 , which I expect to be spurious. Overall however, the conclusions

drawn for small‐amplitude harmonic forcing carry over to small‐amplitude peak forcing. Figures 7c and 7d follow
a similar format for large‐amplitude forcing. The resulting delay has most points varying around the line for
small‐amplitude harmonic forcing, as we have seen in Figure 6. However, the wavelet analysis also shows an
extensive range of very large and small delay times. The small delay times correspond to times with increasing
discharge, while the large delay times correspond to times with decreasing discharge. This is consistent with
results found earlier in Figure 6, but this effect seems much more pronounced. Nevertheless, even the largest
reported delay times roughly remain smaller than 25% of the forcing period. The delay for small‐amplitude
harmonic forcing seems to be a good indication of a typical delay time for large‐amplitude peak forcing as
well, although the wavelet analysis registers a significant variation about this.

4. Discussion
The results discussed above are for quite theoretical forcing signals and a simple linear model. While this sets a
clear theoretical framework, in this section I will discuss to what extent these theoretical results can be recognized
in some more complex and realistic situations. First, in Section 4.1 I present the delay within the same linear
model but for realistic and simultaneously varying Q and Kh inspired from observations. Next, in Section 4.2, I
discuss how these results generalize to non‐linear salinity models, including a discussion of some of the limi-
tations of this work.

4.1. Delay for Realistically Varying Parameters

This section illustrates the application of the wavelet analysis and computation of delay for a more realistic
setting, with realistically and simultaneously varying Q and Kh. This case is inspired by the Modaomen estuary
(China) as presented by Payo‐Payo et al. (2022) (hereafter PP22). They simulated the salinity using a 3Dmodel in
FVCOM over a 9‐month period that includes the transition from dry to wet season. The model included a fully
realistic set‐up of the entire Pearl River Delta and coastal zone, forced by observed winds, tides and discharge and
solving the hydrostatic equations of motion, salinity equation and a k − ϵ turbulence closure model. To restrict
complexity, I apply the linear salt model 2 with constant cross‐sectional area with parameters representative for
the Modaomen estuary. The varying discharge is directly used from PP22 and shown in Figure 8a. The seaward
salinity is assumed constant for simplicity at a location 5 km downstream of the south‐section in PP22. While this
does not fully match the 3Dmodel results, this assumptions suffices for the illustrative purposes of this study. The
time‐dependent Kh is chosen such that the 0.5 psu line in the linear model matches the tidally averaged near‐bed
0.5 psu line in the 3D model of PP22 at every moment in time. Hence, Kh parametrizes the total dispersion
following from the 3D model. The resulting signal for Kh is shown in Figure 8b and shows a clear spring‐neap
variation as well as a seasonal variation. The salinity at a fixed location x1 = 5 km (i.e., the location of the south
section in PP22) resulting from the linear 1D model is plotted in Figure 8a (green line). The delay is computed at
the same location and analyzed below.

Figures 8c and 8d show the adjustment time Tadj,0 (color scale; same in both panels). The adjustment time varies
between 0.1 day and 2.5 days. On the shorter wavelet periods, the adjustment time shows a clear spring‐neap
variability as the dispersion parameter varies over the spring neap cycle. On a bigger time scale, there is a
clear seasonal difference, with the transition between the dry and wet season around t = 180 days. Related to the
change in discharge, the adjustment time drops from roughly 1.5–2.5 days to 0.1–0.5 days around this seasonal
transition. The black markings in the figure indicate the relevant points in the time‐wavelet period space identified
using the criteria from Section 2.5 for Q (Figure 8c) and Kh (Figure 8d). These points are on various wavelet
periods in both Q and Kh. This qualitatively matches PP22, who also identified a wide variety of relevant wavelet
periods. Notably, a 14 days scale is observed in Kh, matching the spring‐neap cycle.

Figure 8e shows the delay time plotted against forcing time, both normalized by the adjustment time, with respect
to discharge. It shows quite a few points near the theoretical line for small‐amplitude harmonic forcing (blue line),
but also a large scatter. This is not unlike the results for large‐amplitude peak forcing (c.f. Figure 7d) but with a
larger extent of the variations. These results are not surprising as the forcing signal of the discharge is much more
complex and looks like a sequence of peaks.With the single peaks in Section 3.4, a clear structure could be
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identified, with longer delay after the peak and shorter delay before the peak. I was not able to identify this
structure from the signal in this case, as peaks follow one another rapidly and the salinity is hence always
adjusting to multiple peaks in discharge simultaneously. The main conclusion that can be drawn is hence that most
delay times remain below 25% of the forcing time scale. Also a significant number of points is quite close to the
results for harmonic forcing (blue line).

The delay with respect to Kh (Figure 8f) shows two quite different aspects. For small
Tdelay
Tadj,0 (roughly <10), results

follow the delay for small‐amplitude harmonic signals. These results correspond mostly to t < 180 days, when the
discharge is fairly constant and Kh and salinity both vary dominantly on a spring‐neap scale. Hence, the setting is
reasonably close to the harmonic setting, which is also reflected in quite regular results. For larger relative forcing

Figure 8. Realistic forcing signals for Q, Kh based on PP22 for the Modaomen and salinity from the linear 1D model at
x = 5 km (panels (a), (b)). Panels (c), (d) show Tadj,0 as a function of time and forcing time scale (colors) as well as the points
were the delay is considered (black dots) for the forcing by discharge (c) and dispersion parameter (d), respectively. Panels
(e), (f) show the delay time as function of the forcing time scale, scaled by Tadj,0 with respect to the forcing by discharge
(e) and dispersion parameter (f). The blue line indicates the result for small‐amplitude harmonic forcing, as reference. The
brown dashed line indicates a delay of 25% of the forcing time.
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period, the delay is negative. These negative delay times indicate a non‐causal relationship. Since the salinity is
affected by variations in both Q and Kh, the salinity is not only caused by either Q or Kh but by both. Causal
relations between salinity and only one forcing variable is only reasonable to assume if the forcings act on clearly
different timescales or the considered forcing is dominant. Analysis shows that the negative delays correspond to
t > 180 days, where the variations in Q and Kh are on very similar timescales and the variations in Q are quite
large. Hence, it is reasonable that the salinity does not have a clear causal relation to Kh considered in isolation.
This limitation is important to consider in realistic application of the wavelet analysis, because salinity is usually
driven by more than one varying forcing (e.g., tide, discharge, wind).

Main lessons for general applicability: Reflecting on the results, on the one hand there are important parts of the
theory that stand out. Most importantly, assuming causality, delay is less than 25% of the forcing period. For small
relative forcing period (i.e., <5 to 10 times Tadj,0), the delay is quite close to this 25%, so the delay with respect to
forcing variations on each timescale can be estimated well. The scatter found for delay w.r.t.Q is also quite typical
for peak‐like forcing. However, it is now found that scatter is not only larger due to the complexity of the signals,
but also that scatter cannot be as well interpreted as in individual peaks. Also causality is no longer guaranteed
since now two (partly interdependent) forcing processes are considered.

The definition of delay per timescale in this work considers the delay between two general signals without
necessarily requiring any model, assumptions, processing or filtering beforehand. It is thus only logical that an
input of non‐causal signals or highly complex signals yields delays that are quite hard to interpret or carry no
physical meaning. The illustration here clearly demonstrates this. Further improvements in the interpretation of
realistic signals likely require better theoretical understanding as suggested in Section 4.3.

4.2. Generalization to Nonlinear Salinity Models and Nonuniform Geometry

In general, salt transport follows strongly nonlinear laws due to the effects of salinity on density. A general 1‐
dimensional salt model can be written as

Ast = (Qs + D(x,s,sx))x, (15)

whereD is some function of x, s, and sx. Such general 1‐dimensional form can represent the salinity in many well‐
mixed and partially stratified estuaries. It thus provides sufficient possibilities to parametrize the effects of
averaging over the cross‐section and the tidal time scale (see e.g. Fischer et al., 1979; Savenije, 2012, for reviews).
This nonlinear equation may be approximated by our linear equation when considering small variations. To this
end, assume the salinity has the form s(x,t) = s̄(x,t) + s′(x,t), where s̄ is some known slowly varying background
state and s′ is a small variation. The linearized equation for s′ then reads as

As′t = ((Q +
∂D
∂s
)s′ +

∂D
∂sx

s′x)
x
.

This has the same form as Equation 2 with Q + ∂D
∂s replacing the discharge and ∂D

∂sx
replacing the dispersion

parameter. Hence, our results may be used directly for analyzing small variations of the salinity around some
slowly varying background state. As long as forcing signals have a time scale that is not too large compared to the
adjustment time, for example, TforcingTadj,0 < 10, the salinity can only partially adjust to the changing forcing. The salinity

in that case is always a small variation about a slowly varying background state. Hence, the conclusions drawn in
this study for Tforcing

Tadj,0 < 10 also apply approximately to nonlinear models.

Quite commonly, the form of D is restricted to a form C1snx + C2sm for constants C1, C2, n, and m (see e.g.
Savenije, 2012). For example, in estuaries strongly controlled by density‐driven flow, D scales with s3x (see e.g.
MacCready, 2004). For such forms of D, the linear model may also be used as a post‐processing tool for large
variations in salinity. In this case, the salt model 15 is rewritten to

Ast = ( (Q + C2sm− 1)s + C1sn− 1x sx)x (16)
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and Q+ C2s
m− 1 thus replaces the discharge and C1sn− 1x replaces the dispersion parameter. In post‐processing, s is

known, soQ+ C2s
m− 1 andC1sn− 1x are known. The non‐linearity then translates into a known time‐variation of the

discharge and dispersion parameter. The main conclusions from this study therefore also apply for any forcing
condition when using a nonlinear salinity model with the imposed form of D.

4.3. Suggestions for Further Theoretical Extension

In a realistic setting of a stratified estuary, dispersion and seaward salinity are not simply external parameters, but
depend on the salinity itself. Hence, a variation in discharge can cause a change in the dispersion and seaward
salinity with a certain delay, which itself creates a new delayed response in salinity. It is useful to further explore
the effect of such nonlinear relations within the context of the theory developed here, so as to better understand
observations in real estuaries. MacCready (2007) already showed that the adjustment time for partially stratified
estuaries, accounting for this nonlinear coupling, is clearly different from the linear case that better represents
well‐mixed estuaries. This also implies that adjustment time and therefore likely delay time is a function of the
estuarine regime.

Results in this work were all done assuming all parameters are along‐channel uniform. The results remain valid
when varying the parameters along the channel, however it becomes unclear how to define the adjustment time
Tadj,0. This does not only depend on the parameters at one cross‐section but on the parameters in the entire estuary.
More work is needed to find an appropriate definition for Tadj,0 in this case.

Finally, it was here assumed that ssea variations can simply be imposed, while in reality this still depends on
interaction with the sea or ocean. Also, the effect of varying ssea has not been tested in a more realistic context. In
the theoretical cases, the delay w.r.t. ssea could be larger than the forcing period. Since the delay from wavelet
analysis cannot distinguish delays that are exactly a forcing period apart, it is questionable whether the large
delays appearing in simple cases can be identified in more complex signals. Also, since there are potentially
strong relations between discharge, dispersion and ssea in a realistic context, it is unclear whether delays w.r.t. ssea
offer any clear interpretation.

5. Conclusions
The delayed response of salinity to changes in discharge and dispersion were investigated. The delay was
measured using a phase difference in the wavelet coherence. This method allows computation of delays w.r.t.
forcing variations on various timescales between any forcing signal and salinity, whether modeled or measured.
The method therefore clearly extends the possibilities beyond some other definitions that only applied to highly
idealized cases. While measures for delay based on windowed Fourier transforms or wavelet analysis have been
used before (e.g., PP22), to the author's knowledge this is the first time this measure is strictly defined, including a
set of rules on relevant points in the wavelet space where this delay should be evaluated, hence automating the
calculation process.

The main new insights into delay have been obtained by applying it to simple forcing signals. When considering
harmonic forcing in the forcing, clear one‐to‐one relations were found between delay and the duration and
amplitude of the forcing. For forcing signals consisting of a single peak, results were not one‐to‐one, but still
revealed quite similar relations. The following results were identified in the context of these simple forcing
signals.

1. The delay depends on the timescale Tforcing (e.g., period/duration) of a forcing variation, relative to the
adjustment time Tadj,0. Here the adjustment time only depends on the background conditions of the estuary.
When approximately Tforcing < 5Tadj,0, the delay is around 25% of the forcing timescale. For very large Tforcing
(i.e., Tforcing > 100Tadj,0), the delay is proportional to Tadj,0. For all intermediate forcing timescales, the delay
time varies as a function of Tforcing and Tadj,0. In practice this means that the observed delay in salinity cannot
simply be explained by Tadj,0, but should account for Tforcing as well.

2. The delay time depends the location along the estuary, where locations further upstream experience signifi-
cantly larger delays between forcing and salinity.

3. The delay with respect to discharge variations depends on the magnitude of the forcing variation, where
occurrences of low discharges cause disproportional increases in the delay time. In the wavelet analysis, this is
identified as a large scatter in delay time, locally peaking to high values.
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Although results were obtained with a simple linear model in a straight uniform estuary, it was reasoned that the
main conclusions apply qualitatively for much more general nonlinear salinity models and non‐uniform
geometries.

Data Availability Statement
The model is available under iFlow version 3.1 on GitHub (iFlow Modelling Framework (Version 3.1), 2024),
along with the input file and data needed to run the Modaomen test case.
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