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ABSTRACT

The Level-of-Detail (LOD) 2 building models defined in CityGML are used widely in three-dimensional (3D) city
applications. Many of these applications demand valid solid-based geometry (closed 2-manifold), which is
crucial for analytical and computational purposes. However, this condition is often violated in practice because
of the way LOD2 models are constructed and exchanged. Examples of the resulting errors include missing
surfaces, intersecting building parts, and superfluous interior geometry. In this study, we present a heuristic
shrink-wrapping algorithm for reconstructing valid solid-based LOD2 buildings by repairing and generalizing
invalid input models. A single building model is first decomposed as intersection-free and reassembled by
constrained tetrahedralization. The bounding membrane is then shrunk by incrementally carving the selected
boundary tetrahedra and wrapping the expected shape of the building. In the algorithm, combinations of
heuristics are proposed to guide the carving process. Topological and geometrical constraints are proposed to
ensure the validity and exactness of the output model. The semantics of the input geometry are preserved and
missing semantics are deduced based on pragmatic rules. We evaluated the performance of the algorithm using
3D building models, including CityGML datasets. The results showed that our method achieved state-of-the-art

performance at repairing 3D building models.

1. Introduction

The three-dimensional (3D) Level-of-Detail (LOD) 2 building models
defined in CityGML are used widely in GIS applications, such as city
planning, navigation, and environmental analysis (Kolbe, 2008; Kolbe
et al., 2008; Biljecki et al., 2015). Although not mandatory, the desired
geometrical type for these models is solid without interior shells, and
the boundary forms a closed 2-manifold, i.e., the ComposedSurface
(Herring, 2005; Groger et al., 2012). However, a LOD2 building model
is often modeled as multisurface in practice due to the error-prone data
acquisition or modeling processes (Wagner et al., 2013). As a result,
geometrical and topological errors such as gaps and unwanted interior
geometry (Fig. 1a), intersection between surfaces (Fig. 1b), degenerated
edge and surface primitives (Fig. 1c), and non-manifold situations
(Fig. 1d) are present, which violate the criteria for a valid solid-based
LOD2 building (Zhao et al., 2014).

These are only a subset of the cases explored by Biljecki et al. (2016)
regarding the quality of existing CityGML datasets. These flawed
models can eventually lead to serious errors or even crash downstream
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applications. Therefore, they should be validated and repaired before
use (Ledoux, 2013; Biljecki et al., 2016).

Repairing 3D models, especially those with a triangular mesh, is a
popular research area in the fields of computer-aided design and
computer graphics (Mezentsev and Woehler, 1999). However, most of
the existing methods were proposed for continuous meshes and few can
handle regular shaped 3D building models (Campen et al., 2012). In the
GIS field, 3D repair has become an important topic in recent years
because of the increasing availability of 3D city models worldwide.
Great success has been achieved in the validation of 3D building models
and several tools are now available (Kazar et al., 2008; Ledoux, 2013;
Karki et al., 2010). However, the capabilities of the existing repair
methods for 3D building models are still restricted (Bogdahn and Coors,
2010; Wagner et al., 2013; Biljecki et al., 2016; Mulder, 2015; Steuer
et al., 2015).

In this study, we propose an automatic repair method based on the
idea of shrink-wrapping (Section 3). This method simulates a process
where an approximate membrane, i.e.,the boundary shell of the ap-
proximation, is shrunk and it finally wraps the exact shape of an object.

E-mail addresses: zhaojungiao@tongji.edu.cn (J. Zhao), H.Ledoux@tudelft.nl (H. Ledoux), J.E.Stoter@tudelft.nl (J. Stoter), fengtiantian@tongji.edu.cn (T. Feng).

https://doi.org/10.1016/j.isprsjprs.2018.09.019

Received 2 May 2018; Received in revised form 17 September 2018; Accepted 18 September 2018

Available online 21 October 2018

0924-2716/ © 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2018.09.019
https://doi.org/10.1016/j.isprsjprs.2018.09.019
mailto:zhaojunqiao@tongji.edu.cn
mailto:H.Ledoux@tudelft.nl
mailto:J.E.Stoter@tudelft.nl
mailto:fengtiantian@tongji.edu.cn
https://doi.org/10.1016/j.isprsjprs.2018.09.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2018.09.019&domain=pdf

J. Zhao et al.

ISPRS Journal of Photogrammetry and Remote Sensing 146 (2018) 289-304

d)

Fig. 1. Geometrical and topological errors found in CityGML models: (a) holes and unwanted interior geometry; (b) intersecting components; (c) collapsed faces; and

(d) non-2-manifolds.

Thus, a closed-2 manifold reconstruction of the object can be obtained.
Moreover, the semantics attached to the surface of the original model
are preserved and the missing semantics can be completed. This method
is implemented by carving a tetrahedra-based representation heur-
istically while conforming to validity rules.

The proposed approach is a substantial extension of our previous
paper (Zhao et al., 2013). Although both work share the shrink-wrap-
ping framework for repairing, in this paper, we elaborated the newly
introduced heuristics and geometrical constraints. Semantics defined in
CityGML was also incorporated. We evaluated the proposed method
using real CityGML datasets composed of thousands of buildings. The
results obtained using the proposed approach were compared with
those produced by state-of-the-art mesh-repair methods.

We describe the handling of intersections and the constrained tet-
rahedralization (CT) method in (Section 3.1). The heuristic carving
process as well as the geometrical and topological constraints for
guaranteeing the validity of the output and maintaining the shape of
the building are explained in Sections 3.2 and 4. Our experimental
results (Section 5) demonstrate that typical errors such as gaps in the
model, holes in the surface, intersections between building parts can all
be repaired using the proposed method, and superfluous interior geo-
metry either left by the automatic conversion from IFC (Industrial
Foundation Class) models to CityGML or generated by the intersecting
geometrical parts can also be removed.

2. Related work

In the following, we discuss two areas of related research: the
geometrical repair of 3D models and the shrink-wrapping algorithm.

2.1. Geometrical repair of 3D models

As mentioned in Section 1, the repair of 3D city models is still in its
early stages. In this section, we mainly consider the repair of generic 3D
models, i.e.,mesh models. The existing methods can be classified into
two broad categories: local and global approaches.

Local approaches deal with each of the defects locally on the mesh
based on the intrinsic combinatorial structure, e.g., filling holes (Liepa,
2003), splitting non-manifold edges (Guéziec et al., 2001), and re-
moving intersections (Campen and Kobbelt, 2010). This type of ap-
proach usually solves one or a few types of errors, but it may introduce
new errors, as described by Campen et al. (2012), e.g.,filling a hole
might introduce intersections with another part of the mesh. Moreover,
local approaches are vulnerable to unexpected error types in the input
model and they may not function properly when these errors are
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present.

Global approaches usually employ volume-based representations,
i.e.,voxels, tetrahedra. These methods first try to repair the volumetric
representation of the object and then reconstruct the surface, and thus
they are robust. Nooruddin and Turk (2003) used voxels to represent
the spaces occupied by the input mesh. Geometrical errors such as holes
are healed by morphologic operators defined for voxels. The final mesh
is derived using isosurface extraction. However, each voxel has to be
classified correctly during repair by using an expensive multi-ray
stabbing method, and unwanted discretizing artifacts are introduced
into the result, even when smoothing and mesh optimization processes
are applied subsequently. This is especially problematic for regular and
planar surfaces such as those of 3D buildings.

Bischoff and Kobbelt (2005) proposed a structure-preserving
method based on octrees, which helps to locally repair only the erro-
neous region in order to retain the sharp features. However, this
method does not solve self-intersections. A similar method proposed by
Bischoff et al. (2005) also repairs the model locally, and it employs an
octree and BSP mixed structure to represent the input. However, this
method is complex to implement and local sampling still introduces
artifacts in the results.

Further detail of mesh repair have been reviewed in previous studies
(Campen et al., 2012; Attene et al., 2013). Steuer et al. (2015) proposed
a volumetric repair method for 3D building models, where the exterior
shell is extracted using the marching cube method, which causes dis-
cretization artifacts. Mulder (2015) evaluated two workflows for re-
covering the shape of a 3D building model based on its volumetric re-
presentation, i.e.,the marching cube and dual contouring algorithms,
and showed that the latter is more desirable because of its ability to
retain sharp features. However, the repaired models still contain var-
ious artifacts. Recently, a robust rearrangement method for an arbitrary
input mesh was proposed for robust constructive solid geometry (CSG)
operations (Zhou et al., 2016). This method explores the arrangement
of the geometry in its embedding space and extracts the desired
boundary, as also did in our proposed method. However, it does not
solve the repair problem.

2.2. Shrink-wrapping algorithm

The concept of shrink-wrapping is not new in geometry processing.
Kobbelt et al. (1999) introduced a remeshing method that uses the in-
itial mesh with the desired property as a membrane, and then a force is
applied to each of the vertices to move the vertices accordingly. How-
ever, this method is not suitable for flawed models with holes or in-
tersections. Koo et al. (2005) used a similar method to shrink wrap an
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unstructured point cloud to reconstruct the mesh model. Voxels are
used to structure the points and thus smoothing has to be applied at the
end. This approach cannot deal with surface models.

In order to simplify a polygonal mesh, Hagbi and El-Sana (2010)
proposed a tetrahedron carving approach that generates several topo-
logically simplified models. The tetrahedra are incrementally carved
according to specific criteria. However, this method only accepts valid
inputs, so it cannot deal with geometrical or topological errors. Fur-
thermore, their carving operation may produce non-manifold results,
which must be fixed using a stitching and cutting method (Guéziec
et al., 2001).

A similar approach involves the approximation of an input polygon
soup based on implicit surfaces (Shen et al., 2004). However, inter-
polation using an implicit surface cannot preserve the tessellation of the
input surfaces and it also introduces a smoothing effect, which is not
desirable for 3D buildings. Hétroy et al. (2011) also proposed a mem-
brane shrinking-based method for repairing a mesh. However, this
method requires manual guidance for shrinking, and it employs voxel-
based morphological operations to shrink the model.

3. Repair by Heuristic Shrink wrapping

In this study, we propose a repair approach based on the shrink-
wrapping concept. This approach is a top-down method and it ensures
that the intermediate output always has valid solid geometry. The
geometrical and topological errors from the input building model are
repaired in a uniform process, and a valid LOD2 building model is
obtained.

To implement this idea, a “membrane” first has to be constructed for
the input model, which should be valid and easy to build. A step-by-step
shrinking process is then applied, where two options are possible. The
first involves directly deforming the primitives of the membrane, i.e.,
vertices or faces, toward the correct positions for the original input
model. However, the exact correspondences between the primitives of
the membrane and the input model are difficult to build, especially for
an input with non-zero genus, or even with holes or intersections
(Kobbelt et al., 1999). The second option involves developing the
process implicitly based on an auxiliary structure, such as voxels or
tetrahedra. As discussed earlier, the voxelization of an input model has
difficulty preserving either the exact shape of the model or its tessel-
lation. The latter defect is particularly unacceptable for the repair of an
input model with properties attached to its surface primitives, such as a
CityGML model. Therefore, CT is adopted in the second option for
structuring the input model and to provide elements for the shrinking
process.

Our shrinking process involves incrementally eliminating the excess
tetrahedra while preserving the preferred tetrahedra, and finally
wrapping the correct exterior shell of the model. This process can be
implemented by a carving operation in a similar manner to the method
used by Hagbi and El-Sana (2010). However, rather than removing
details from a valid input, an appropriate carving strategy should be
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proposed for repair.
Fig. 2 demonstrates the work flow of our method in 2D. The steps
comprise:

® Step 1: Decomposition and CT,
e Step 2: Heuristic carving,
e Step 3: Exterior shell extraction and semantic completion.

3.1. Decomposition and CT

Our method accepts any arbitrary input geometry, which means
that geometries may intersect with each other and they may contain
various types of defects. These defects cause the failure of the successive
tetrahedralization step, and thus they should be cleaned up first by
decomposition.

The decomposition step triangulates all the input polygons (Fig. 3a
and b) and detects all of the different types of intersections between the
triangles. The intersecting triangles are then subdivided at the inter-
section elements, i.e.,a vertex, an edge, or even a polygon. The result is
a valid simplicial 2-complex (Fig. 3c), which can be further improved
by coplanar merging, as shown in Fig. 3d.

CT reconstructs an intersection-free geometrical set into 3-simplices
(tetrahedra) that are non-overlapping, and all the input constraints, i.e.,
triangle surfaces from the input model, are represented by facets in the
tetrahedralization results.

3.2. Carving tetrahedra to obtain the 2-manifold

The carving operation is applied to the candidate tetrahedra, which
are tetrahedra located on the membrane. They are referred to the
candidate triangles and their detailed definition is given in Section 4.1.

After a carving operation, a candidate tetrahedron is removed and its
adjacent tetrahedra are then converted into candidates if they are not
on the boundary, as shown in Fig. 4a and b. The membrane is then
shrunk once.

Given that the aim is repair, we must be careful about the validity of
carving because it may produce an invalid geometry (non-2-manifold)
in the output. Therefore, validity rules are required to constrain the
carving process, as explained in Section 4. If carving a candidate tetra-
hedron breaks any of the constraints, the tetrahedron is preserved or
postponed for carving (Fig. 4c).

The validity of geometry, i.e.,the 2-manifoldness, is defined based
on its topological structure, so the validity rules are referred to as to-
pological constraints in this study. Moreover, carving must also consider
the shape of buildings, e.g.,typical man-made objects such as buildings
are rich in planar features. Therefore, we must preserve the tetrahedra
that form these features during carving, so geometrical constraints are
also proposed.

The carving operation only eliminates one tetrahedron each time, so
an optimal sequence is required to guide the consecutive carving pro-
cesses. It might be possible to formalize the carving costs using an

RN Cel NN
Input Decomposition Tetrahedralization
————e

Heuristic carving

-
AN

. .

. .~

Watertight output

Fig. 2. Work flow of our shrink-wrapping method.
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optimization technique, as shown by Guercke et al. (2011). However, a
heuristic method is introduced instead in this study, which is rapid and
it yields promising results, as shown later.

Finally, the exterior shell is extracted from the remaining boundary
tetrahedra.

3.3. Semantic completion

During carving, our method preserves the semantic information
from the input and it also deduces the semantics for the newly gener-
ated surfaces. If we consider the exterior of a CityGML building model
as an example, then the semantic information attached to the model
comprises six types of boundary surface (RoofSurface, WallSurface,
GroundSurface, OuterCeilingSurface, OuterFloorSurface, and
ClosureSurface) with two types of opening (Window and Door). In the
decomposition stage, all of these semantics are retained with every
input polygon and they are propagated to the decomposed intersection-
free triangles.

After the carving process is finished, we first traverse all of the ex-
terior triangles and validate the existing semantics based on normal
vector-based rules. These rules for building boundaries have been em-
ployed in several studies on the generation of LOD2 models defined in
CityGML, and they are known to be effective (Donkers et al., 2016;
Boeters, 2013). We consider a setting similar to that shown in Fig. 5a,
with a vertical surface and its normal pointing to the horizontal di-
rection is probably a WallSurface. A horizontal surface with its normal
pointing downward should be a GroundSurface or an Out-
erCeilingSurface. By contrast, a horizontal surface with its normal
pointing upward should be a RoofSurface or a OuterFloorSurface. The
OuterCelingSurface and the OuterFloorSurface are distinguished by
their neighbors, where they both have two neighboring WallSurfaces on
different sides of the surface, but the GroundSurface or RoofSurface
should have all their neighboring WallSurfaces on the same side of the
surface, as shown in Fig. 5b. The remaining surfaces are all defined as
RoofSurfaces.

Based on these rules, we deduce the semantics for the newly gen-
erated boundary surface according to the following situations (as illu-
strated in Fig. 6).

o If the newly generated surface has coplanar neighboring surfaces
with the same semantics, then the semantics of the surface are de-
fined as the same as those of its neighbors

e If the newly generated surface has coplanar neighboring surfaces
with heterogeneous semantics, then the semantics of the surface are

b)
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Fig. 3. Decomposition of the intersected poly-
gons.

90°+75° S
/
%{uﬁl\

OuterCeilingSurface

RoofSurface”

Opening
T |
§ Any degree
OuterCeilingSurface. .

v 90°:1°
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OuterFloorSurface

OuterFloorSurface

=5 0°+15°
WallSurface —

GroundSurface, GroundSurface

.

J -90°+1° 0°

a) b)

Fig. 5. (a) Rules based on normal directions for different types of boundary
surfaces. (b) Difference between an OuterCelingSurface (OuterFloorSurface)
and GroundSurface (RoofSurface).

defined as the dominant semantics among its neighbors

o If the newly generated surface does not have coplanar neighboring
surfaces, then its semantics are defined according to the normal
vector-based rules.

4. Proposed heuristic carving rules
4.1. Categorizing triangles and tetrahedra

As mentioned earlier, the carving operation is applied to candidate
tetrahedra. These tetrahedra are located on the boundary of the CT re-
sult and they are depicted based on the types of their member triangles.
In our method, all of the triangles from the input model and its convex
hull are classified into three categories: anchor triangles, candidate tri-
angles, and preserved triangles.

The anchor triangles comprise all the triangles in the input model
after decomposition. They are treated as the ”anchors” in our method
and retained during the carving process. We trust most of the input
geometry, except some superfluous faces that may disturb the carving
process, especially when the faces form dangling surfaces. These tri-
angles are prevented by constraints described in Section 4.2.2.

The candidate triangles are newly emerged boundary triangles on the
membrane. They also define the candidate tetrahedra that can be carved
where possible. The candidate tetrahedra for carving are defined as
tetrahedra that contain at least one candidate triangle member. After a
candidate tetrahedron has been carved, its neighboring undefined tri-
angle members are converted into candidate triangles on the fly (as
shown in Fig. 4b).

Fig. 4. The carving operation where red in-
dicates the candidate triangle for the selected
candidate tetrahedron that needs to be carved,
and yellow indicates the candidate triangles for
the candidate tetrahedra after carving and whe-
ther the candidate tetrahedron in (a) should not
be carved. All of the member triangles are tagged
as anchor/preserved in blue. These colors are used
consistently in this study). (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

¢)
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Fig. 6. Semantic deduction based on neighboring faces: (a) the undefined face has homogeneous coplanar neighbors; and (b) the undefined face has heterogeneous

coplanar neighbors.

The preserved triangles are the non-anchor member triangles of a
tetrahedron that are preserved during the carving process. These tri-
angles are also retained untouched during the subsequent carving
processes. In contrast to the anchor triangles, they do not contain se-
mantic information.

4.2. Carving constraints

The criteria for decisions regarding a carving operation are specified
as constraints. We consider two basic constraints that are essential for
the repair of building models, i.e., topological constraints and geometrical
constraints. If carving a candidate tetrahedron breaks any of the topolo-
gical constraints, the tetrahedron should be excluded from carving be-
cause the carving will introduce invalid non-2-manifold cases in the
results. The geometrical constraints preserve the shape characteristics of
a building model, such as maintaining anchor triangles, patching a
surface in a nested hole, and retaining the consistent orientations of
surfaces.

4.2.1. Topological constraints

During the carving process, it is essential to detect whether a non-2-
manifold situation will be introduced. However, if a non-manifold si-
tuation occurs after carving, this does not necessarily mean that the
final result will also be invalid because a temporarily invalid situation
might be resolved in the subsequent carving operations. Therefore, we
validate the carving operation according to topological constraints de-
fined based on both the candidate tetrahedron and the neighboring tet-
rahedra affected by subsequent carvings.

Non-manifold situations can occur at facets, edges, or vertices
(Botsch et al., 2007). Thus, the manifoldness of all the primitives of the
neighbors of a candidate tetrahedron should be ensured.

Topological constraint for triangles For a triangle, the invalid case
involves the triangle becoming a dangling triangle after carving, as
shown in Fig. 7. Our method preserves the anchor triangles, so each of
them should have at least one neighboring tetrahedron after carving.
Therefore, the topological constraint for triangles is defined as follows.

Topological constraint I (Constraint I,):

Fig. 7. Topological constraint for triangles where carving the candidate tetra-
hedron in a) (in red) leaves the anchor triangle as a dangling triangle (in blue).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

3 fe T A fe membrane A f€ anchor (preserved) triangles
= T € preserved tetrahedra (€))

where f is a triangle of the candidate tetrahedron T.

Topological constraint for edges For an edge, it is necessary to
ensured that carving will not change the edge into a complex edge, i.e.,
an edge shared by more than two triangles. To examine the validity of
an edge, we traverse all of the incident triangles around the edge of a
candidate tetrahedron, as shown by the red edge in the center of Fig. 8a.

Clearly, the validity has to be checked only when the edge of the
candidate tetrahedron that needs to be carved is already on the mem-
brane (as shown by the red edge where the two yellow candidate tri-
angles join).

To avoid invalid cases, carving operations around this edge should
finally result in a single connected component (where the boundary
forms a 2-manifold), and thus if carving is permitted, the visited tet-
rahedra should be carved continually and simultaneously.

To better understand their relationships, we project the edge and its
incident triangles into 2D (Fig. 8b-d), where the edge is mapped as a
point in the center and all of the triangles are mapped as edges at-
taching to the point.

As shown in Fig. 8b, the carving operation should not break anchor
triangles (represented by blue lines), so we eventually break the model
into two components touching at one edge. However, as shown in
Fig. 8c and d, carving in a clock-wise order will finally reach the ex-
isting boundary, so valid results can be obtained. Thus, we define this
topological constraint as follows.

Topological constraint II (Constraint II;):

de €T A e€ membrane A 3 anchor f, f, A e = f,nf,A
fi f, are isolated by T in star triangles of e = T
€ preserved tetrahedra
2

where e is a hidden edge’ of candidate tetrahedron T and f; is a triangle.

Topological constraint for vertices The third topological constraint
is defined for vertices. If a vertex is shared by more than one dis-
connected components, then it is called a singular vertex, which is a non-
2-manifold case. Fig. 9 shows the star tetrahedra for a vertex of a can-
didate tetrahedron. Similar to the constraint for edges, because this
vertex is already on the boundary of the membrane (as shown in Fig. 9b
and e), its validity is checked by counting the number of incident dis-
connected components. This can be interpreted as determining whether
a carving path made of homogeneous neighbors (the adjacent non-
preserved tetrahedra) can be found that connects any one of the can-
didate triangles of the candidate tetrahedron with the membrane.

If no such path exists, the volume around the vertex will be divided
into disconnected components after carving (as shown in Fig. 9d and e),
which should be prevented. Otherwise, all of the tetrahedra along this
path should be tested and carved so no more half-spaces are introduced

1 A hidden edge means that neither of its two incident triangles from the
candidate tetrahedron presents on the membrane, except the edge itself.
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\ E
b)

d)

e)

into the neighborhood of the vertex (Fig. 9b). Therefore, the last to-
pological constraint is defined as follows.
Topological constraint III (Constraint II1,):

Jve T A ve membrane A 3 anchor F = {fli

=1.,n} AV = (n]fi

i=1
A T is isolated from the opposite membrane by F = T

€ preserved tetrahedra 3)
where v is a hidden vertex” of the candidate tetrahedron T and f is a
triangle.

Multiple paths may exist so the shortest carving path around the
vertex is found using Dijkstra’s algorithm, thereby minimizing the dif-
ferences before and after carving.

4.2.2. Geometrical constraints

Due to the topological constraints, each step of shrinking-wrapping
will yield a closed 2-manifold. However, these constraints do not con-
sider the geometrical aspects of the input model. For example, if holes
are present in the input model (Fig. 10a), the carving process may ex-
cavate these areas on the membrane to yield a valid but undesired
concave shape on the output surface, as shown in Fig. 10b. This is
particularly undesirable for building models because these models are
often formed of planar features. Thus, geometrical constraints are

2 The hidden vertex means that none of its three incident triangles from the
candidate tetrahedron presents on the membrane, except the vertex itself.

1 <K
Vv </
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Fig. 8. Topological constraint for edges where
red indicates the candidate triangle that needs to
be carved, yellow indicates the candidate triangle
on the membrane, and blue indicates the anchor/
preserved triangle. (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

Fig. 9. Topological constraint for vertices where
red indicates the candidate triangle that needs to
be carved, yellow indicates the candidate triangle
on the membrane, and blue indicates the anchor/
preserved triangle. The sphere maps in (b) and (e)
are shown in (c) and (f), where the black half-
spaces indicate the ”occupied” volumes and the
white half-spaces indicate the ”void” volume
(Granados et al., 2003). (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

f)

introduced concerning the shape characteristics of a building.

Geometrical constraint I The first geometrical constraint is pro-
posed for filling holes. This constraint is based on the connected co-
planar neighbors of a candidate triangle. If these triangles are bounded
by an open boundary formed by anchor triangles, then this implies that
these triangles can be a missed planar surface in the input model, as
shown by the example in Fig. 11. A building model with a missing
ground plane is a common error in practice. During repair, the coplanar
triangles of candidate triangle 2 in Fig. 11b are bounded by the anchor
triangles shown by blue edges. Therefore, carving should be prohibited
inside this area, which results in the filled hole in Fig. 11c. Otherwise, if
these triangles are not bounded (as shown by triangle 1 in Fig. 11b),
they are interpreted as the auxiliary geometry generated from tetra-
hedralization and they can be carved (Fig. 11c). This constraint is re-
ferred to as geometrical constraint I in our method. In the implementa-
tion, open boundaries should be detected with caution. As shown in
Fig. 12, when anchor/preserved triangles already form 2-manifolds, the
planar candidate triangle is not bounded. However, for other purposes,
e.g.,generalization, these cases can be treated as bounded in order to fill
concave shapes. It should also be noted that there is a special case when
the connected coplanar neighbor triangles are bounded by nested an-
chor boundaries (shown in Fig. 13). In this case, the nested structure
must be identified and the hollow space should not be preserved in-
correctly (Fig. 13c).

Geometrical constraint II In addition to holes, another common
geometrical flaw in the input model is the ill-shaped triangle®. If these

31ll-shaped triangles have sharp and narrow angles, and the length of the
normal vector is close to zero.
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a)
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¢)

Fig. 10. A box with holes repaired with and without geometrical constraints. (a) shows the broken box with holes. (b) shows the repaired solid without constraints, in
which a concave surface is produced. (c) shows the repaired solid with constraints, which is bounded by flat surfaces.

a) 9

Fig. 11. A U-shaped building model with a hole at bottom (a-c) where the
carving process is projected onto 2D and the blue edges represent anchor tri-
angles.

b)

triangles form part of the boundary of a hole, the previous constraint
might not be able to fill this hole because the co-planarity detection will
be affected by the ill-shaped triangles. Moreover, these tiny triangles
produce ill-shaped tetrahedra during CT, which can lead to unexpected
consequences in the carving process. Thus, Geometrical constraint II is
proposed for optimizing or discarding ill-shaped triangles. After an ill-
shaped triangle is detected, we use a method similar to that proposed by

Botsch and Kobbelt (2001) to flip the longest edge and collapse the
triangle at the shortest edge.

Geometrical constraint III This constraint is optional and it is based
on the assumption that most of the input geometry has correct or-
ientations. This constraint protects tetrahedra inside a model from
being carved. As shown in Fig. 14, we examine the anchor triangles of a
given tetrahedron. If the orientation of one of these triangles points out
the tetrahedron, the tetrahedron is inside the anchor triangles, and thus
it should be preserved. However, if one of the anchor triangles points in,
the tetrahedron is not necessarily outside the model, as shown by the
black arrows in Fig. 14c. The tetrahedron is outside the model only if all
its anchor triangle members are oriented inward.

4.2.3. Application of constraints

The previously introduced six constraints are implemented in our
algorithm and they are applied to the candidate tetrahedra during car-
ving. However, a tetrahedron does not require all six checks in every
case because of the specific configuration of its member triangles. For

d)

e)

f)

Fig. 12. Definitions of open boundaries shown in black lines: (a—c) the anchor triangles already form 2-manifolds so they are not cases of open boundaries, but these
cases can be treated as boundaries, e.g.,for generalization; and (d-f) open boundaries of a hole.

a) b)

Fig. 13. A tubular-shaped building model with a
hole at bottom (a—c) where the carving process is
projected onto 2D and the blue edges represent
anchor triangles.

c)
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a)

Fig. 14. Geometrical constraint based on orientations illustrated in 2D, where the edges indicates anchor triangles and their normal vectors are shown by arrows.

Table 1
Topological (t) and geometrical (g) constraints imposed in various configura-
tions of triangles of a candidate tetrahedron.

Configurations Applied constraints
Candidate triangle Anchor/preserved triangle =~ Topological = Geometrical
No. No.

4 0 [] IIg
3 1 Iy IIg Iy
2 2 LI Iy I
1 3 I II; 11T Iy Iy 1g
3 0 [] 1Iy
2 1 I 10 Il 1,
1 2 I I 1L Iy Iy I,
2 0 [] IIg
1 1 I I 1L Iy Iy I,
1 0 4] Iy II

example, if a candidate tetrahedron has at least one anchor triangle
member on the membrane, then the tetrahedron should be preserved
without checking the other constraints because of topological constraint I
(). By contrast, ill-shaped triangles can appear at any place on the
input geometry, so geometrical constraint II (II;) should be applied at the
beginning of carving in all cases.

We examine all 10 combinations of the member triangles for a
candidate tetrahedron and summarize the mandatory constraints that
should be imposed for these cases in Table 1, where the first two col-
umns show all the possible configurations of candidate and anchor tri-
angles for a candidate tetrahedron. The third and fourth columns show
the constraints that must be applied to the specific configuration, where
@ means that no constraint is needed.

First, it can be observed that there is no need for topological con-
straints in configurations when there are no anchor/preserved triangles
because these constraints are only enabled for geometry from the input
model or that preserved in the previous carving. Second, topological
constraints I, and III, are applicable when the vertices and edges of the
anchor triangle are inside the membrane. For example, the third and
the sixth configurations do not need constraint III,. Third, geometrical
constraint I, should only be applied to configurations when only one
candidate triangle is present on the membrane because two or three
candidate triangles will form a non-coplanar surface’. Finally, geome-
trical constraint III, is only enabled when anchor triangles are present.

All of the proposed constraints are used as pre-assertions. However,
in the implementation, we also need to impose post-assertions because

“1In the case where a tetrahedron becomes degenerate, planarity can still be
found for these configurations. Thus, we apply geometrical constraint I, to
these tetrahedra in the implementation

b)
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c)

not all of the invalid cases can be detected before carving. For example,
when a group of tetrahedra needs to be carved continuously, as de-
scribed in Section 4.2.1, the validity of the resulting geometry should be
checked subsequently. Therefore, we postpone this carving by de-
creasing the priority of the candidate tetrahedron.

4.3. Carving priority

In addition to constraints, the step-by-step carving operations
should be executed in an appropriate order. Fig. 15 shows that two
different carving paths can result in different repaired results. There-
fore, the problem is whether an optimal path can be discovered when
carving candidate tetrahedra.

This can be considered as an optimization problem and dynamic
programming methods are needed to obtain the solution. However,
programming requires an objective function, which is difficult to define
in the case of repair. It is well known that repair is an ill-posed problem,
so our goal is to approximate the most likely shape of the input model
and to fix all of the invalid cases. A pragmatic alternative is to adopt the
“best-first” strategy, which deals with the most prominent candidate
tetrahedron first. This method is also known as the heuristic-based
method. Each time, we select the most prominent candidate and check
whether it can be carved according to constraints. Therefore, heuristics
are required to evaluate the degree of prominence for a candidate tet-
rahedron. Identifying a suitable heuristic function is always a trial-and-
error process. There are two different carving strategies. The first is
analogous to ” sculpturing” where the carving processes spread around
the membrane and shrink the membrane isotropically from the per-
iphery toward the center. The second is analogous to ” region growing”
where the membrane is shrunk intensively at some seed positions and
carving processes are then propagated to the neighboring area. The first
types of heuristics used to reflect the carving strategies described above
are referred to as global heuristics.

Global heuristics As shown in Fig. 16a, we initialize each tetra-
hedron with a depth value (Depth). The boundary tetrahedra start from
depth 1. During carving, the depth of the carved tetrahedron is pro-
pagated to its neighbors (Fig. 16a and b), as follows. If the depth value
of a neighbor is less than or equal to the depth of the carved tetrahedron
value, then its depth is set as the ”carved depth” incremented by 1;
otherwise, its depth value remains unchanged (Fig. 16c-d). By sorting
the candidate tetrahedra in ascending order of Depth (or in descending
order of the negative value of Depth, i.e., the NDepth), we can distribute
carving around the whole model. By contrast, carving in descending
order of Depth (or in ascending order of NDepth) will focus carving on a
certain location.

We also consider the distance from a candidate tetrahedron to the
input model (Dist). During repair, if a distant candidate is carved ear-
lier, the carving processes will also be distributed evenly, and vice
versa. The distance is calculated from the center of the candidate tet-
rahedron to the nearest anchor triangle, which is accelerated by using the
KD-tree (CGAL, 2013).

Finally, buildings are rich in parallel and perpendicular structures,
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Fig. 15. Two carving paths yield different repair results where the last carving process in the upper path is blocked by II,, whereas the last carving process in the

lower path is unblocked and terminated by I,.

1:11 1; ;:1 :5 5 ;:
\OONNOY  \ON/NNNY  \/ONY NN

0
a) b) @]

AT ALY
d) e)

Fig. 16. Depth heuristics for tetrahedra during carving (in 2D). The yellow line
segments represent parts of the approximated membrane. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

and the main orientations can be extracted. The minimum deviation
from the main orientations of a candidate tetrahedron is also treated as a
global heuristic (Dev). Dev implies the conformity of the tetrahedron to

—
-

a)

b)

a regular shape. If the deviation is greater, the tetrahedra are less likely
to conform to the input building model. Carvings will then be guided to
corners around the model, and vice versa.

Local heuristics In addition to global heuristics, we found that the
local characteristics of a candidate tetrahedron can greatly influence the
carving results. In this study, we consider the following five local
heuristics for candidate tetrahedra.

I. The number of candidate triangles in the candidate tetrahedron, which
we refer to as the "degrees of freedom” (DoF).
. The total area of the member triangles on the candidate tetrahedron
III. The flatness of the candidate tetrahedron (defined by the ratio be-
tween the area of a candidate triangle and its distance to the op-
posite vertex).

IV. The volume of the candidate tetrahedron.

. The mean curvature of the candidate triangle on the candidate tet-
rahedron

carved carved

¢)

Fig. 17. The possible DoF of a candidate tetrahedron and the carved results (a) DoF = 1, where only one candidate triangle is on the boundary; (b) DoF = 2, where two
candidate triangles are on the boundary; (c) DoF = 3, where three candidate triangles are on the boundary.).

b) building 1

a) torus

¢) building 2

Fig. 18. Four typical erroneous models used for
selecting heuristics: (a) synthetic erroneous
model, (b and c¢) simple erroneous building
models, and (d) a complex erroneous building
model.

d) building 3
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Table 2
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Results based on purely global heuristics and local heuristics, where f denotes failure and s represents success.

Global heuristics descending

Global heuristics ascending

Models

NDepth Dev Dist NDepth Dev Dist

Torus f s f s f H
Building 1 f s f f f s
Building 2 f f f f f f
Building 3 f s f f f f

Local heuristics No heuristic

Models DoF Area Flat Volume Curvature

Torus f s s f f f
Building 1 s f f f f f
Building 2 s f f f f f
Building 3 f f f s s f

Table 3 As described by Zhao et al. (2013)), DoF indicates the degree of

Comparisons of different combinations of global and local heuristics, where f
denotes failure and s represents success.

Descending NDepth Dev Dist
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Building 2
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knowledge about the candidate tetrahedron. When the DoF is larger,
more is revealed about the shape of the tetrahedron, as shown in
Fig. 17. Thus, fewer constraints are required (Table 1), and thus there
should be a higher priority for carving.

Local heuristics II to IV depict various geometrical characteristics of
the candidate tetrahedron, where a larger value indicates the greater size
or the flatter shape. In general, these types of tetrahedra are more likely
to be part of the auxiliary structure generated by CT.

Finally, the mean curvature of the candidate triangle in a candidate
tetrahedron describes the local convexity. The initial membrane is
convex so the convex part should be carved early.

We compared the performance of the global and local heuristics as
well as their combinations with a few representative erroneous models
(four typical examples are shown in Fig. 18). These models are either
created by hand or selected from existing datasets. Each of them con-
tains various topological and geometrical errors, thus can be employed
as the ”touchstone”. We inspected all the repaired models visually by a

(descending) (descending)+DoF

Fig. 19. Comparison of the repair results obtained using: (a) no heuristic, (b) only DoF in descending order, (c) only Depth in ascending order, (d) only Depth in
descending order, and (e) Depth in descending order combined with DoF in descending order.
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before repaired repaired shown in color

a) The building 1
before repaired repaired shown in color

SE X

b) The building 2
before repaired repaired shown in color

$

¢) The building 3

g S
N

3

N

Fig. 20. Selected erroneous building models and their repaired results, where blue indicates anchor triangles and green indicates newly generated preserved triangles
during repair. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

b) Repaired details

Fig. 21. Details of the errors in the input geometrical models and the repaired results.

modeling software, i.e.,3ds Max, and the results are shown in Tables 2 also tried to swap the order of the global and local heuristics, and found
and 3. The global heuristics were applied in both ascending and des- that the results were almost identical. The results showed that the
cending order, and the local heuristics were all applied in descending heuristic combination of NDepth in ascending order (or Depth in descending
order. order) and DoF performed better than the other combinations (some repair

Table 2 shows that the repair algorithm could not succeed with all results are shown in Fig. 19 for comparison). This suggests that carving
four input geometries without using the heuristics or with only the the corner tetrahedra (higher DoF) intensively at a specified area
global or local heuristics. In Table 3, all of the candidate tetrahedra are (higher Depth) is a better choice. Other combinations, e.g., the NDepth
sorted first by the global heuristics and then by the local heuristics. We in descending order+The mean curvature, and the Dev in descending
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269 tetrahedra

214 tetrahedra

&

o

7 D
TS0

a) WITTE DORP dataset

Table 4

Validation of repaired MultiSurfaces for two CityGML datasets. Note the repair
process introduced extra MultiSurfaces. But both the ratio and the absolute
number of invalid MultiSurfaces were drastically decreased after repairing.

Original MultiSurfaces Repaired MultiSurfaces (invalid/

(invalid/total) total)
Witte dorp 124/696 = 17.8% 2/7435 = 0.0002%
Nesselande 1424/12796 = 11.1% 4/163076 = 0.00002%

order+DoF, were also successful in some cases, but they could not pass
all of the test models. Thus, the combination of the Depth and DoF
heuristics was selected for our experiments.

The pseudo code of the proposed repair method is shown by
Algorithm 1.

Algorithm 1. HSW Repair of a building model M.

Intersection free M« Decomposition(M)

Tetrahedra T« CT(]\7 )
while Existed(Tqndidare) dO
Sort(All T.gndidates descending) by Global heuristics Depth
Sort(All T.uudidares descending) by Local heuristics DoF
Tetrahedron t< Pop(All Tandidate)
if ViolateTopologicalConstraints(t) ——
ViolateGeometricConstraints(t) then
Preserve or Postpone t
else

ISPRS Journal of Photogrammetry and Remote Sensing 146 (2018) 289-304

Fig. 22. Illustration of the incremental shrink
repair process where blue indicates anchor tri-
angles, green indicates newly generated preserved
triangles obtained during repairing, and yellow
indicates candidate triangles. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)

237 tetrahedra

Final 206 tetrahedra

Fig. 23. Two real LOD2 CityGML datasets
adopted in the experiments.
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Carve or Postpone t
end if
Update heuristics for All T.qndidate
end while
Repaired M« ExtractBoundary(All Tuandidate)
Restore orientations and semantics of M

return ]\//\I

5. Results

We conducted several experiments to evaluate the proposed
methods. First, we assessed the repair of geometrical defects by using
building models created with 3D modeling software (e.g.,Autodesk 3ds
Max and Maya). This type of model has been used widely in many 3D
city projects throughout the world (Zhao et al., 2012). We then repaired
the real 3D city datasets based on CityGML. As shown by Biljecki et al.
(2016), the standardized models are often enriched in terms of their
semantics, but they are not flawless. When repairing these models, we
had to consider the semantics as well as the erroneous geometry. Fi-
nally, in Section 5.2, we present comparisons of the performance of the
proposed repair method with those of the state-of-the-art mesh repair
methods, i.e., MeshFix (Attene, 2010), PMP (Botsch et al., 2007),
PolyMender (Ju, 2004), and ReMESH (Attene and Falcidieno, 2006).

In the implementation, we employed several third-party libraries.
The Delaunay tessellation of polygons was based on the Triangle
package (Shewchuk, 2002). The intersection detection method was
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Table 5
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Validation of repaired solids for two CityGML datasets. The less the ratio, the better the repaired result. Note that there are some models cannot be processed by a
certain algorithm, e.g., indexing error of vertices or cases that cannot be handled.

Origin solids (invalid/total)

Repaired solids (invalid/processed total)

HSW (Ours)

PMPHolcFill PMPpolerin Decomposed

233/233 = 100%
4273/4740 = 90.14%

Witte Dorp
Nesselande

5/232 = 2.15%
200/4740 = 4.2%

231/232 = 99.57%
3495/4733 = 73.84%

72/231 = 31%
1338/4683 = 28.57%

Invalid
building

Repaired valid
building

Y
[
B

Invalid
building

Repaired valid
building

&
&
"
T

o T
o w
% Ve
re

Fig. 24. Selected repair results for two CityGML datasets, where blue indicates anchor triangles and green indicates newly generated preserved triangles during
repair. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Invalid building

F

L

—
Sl N8

Fig. 25. Several failed results after repair, where blue indicates anchor triangles
and green indicates newly generated preserved triangles during repair. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Invalid repaired
building

built based on a fast triangle intersection detector (Moller, 1997). CT
was conducted using Tetgen (Si, 2015).

5.1. Repair of building datasets

5.1.1. Repair of geometrical defects

We selected three invalid geometrical building models (shown in
Fig. 20) from real 3D city datasets, where they contained the typical
errors found in many building models, such as holes, self-intersections,
and non-manifold cases (Fig. 21a). We applied the proposed method
and automatically obtained the repaired results (Fig. 20). The detailed
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repaired results are demonstrated in (Fig. 21b), in which all of the er-
rors were corrected and the results were closed 2-manifolds. Fig. 22
shows the carving sequence during the repair process. The membrane
was shrunk gradually under guidance by the heuristics, and the topo-
logical and geometrical constraints ensured the correctness of the end
results.

5.1.2. Repair of CityGML datasets

We repaired two real datasets comprising 4970 buildings (Fig. 23).
The two real CityGML datasets were provided by the Rotterdam mu-
nicipality and both were generated using photogrammetric methods. To
quantitatively evaluate the validity of a CityGML dataset, i.e.,in both
the topological and geometrical perspectives, the standard conforming
Val3Dity tool (Ledoux, 2013) is employed in this paper®.

Both datasets were built based on MultiSurfaces. The invalid
MultiSurfaces before and after repair are shown in Table 4. The aim of
our repair method is to reconstruct solid-based representations, so we
also compared the validation reports for each of the buildings and
Val3Dity indicated that more than 97% of the buildings in Witte Dorp
(1-2.15%) and more than 95% of the buildings in Nesselande (1—4.2%)
were repaired (Table 5).

Fig. 24 compares the original buildings and those after repair. Holes
were healed and self-intersections were removed. Each repaired
building was a solid model and a closed 2-manifold. Several un-
successful cases are also shown in Fig. 25. These failures occurred

S https://github.com/tudelft3d /val3dity
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Tnvalid building ~ cpaired building

with artifacts

Repaired building

Invalid building with artifacts

Fig. 26. Introduction of artifacts due to the complex edge shown by dashed boxes, where blue indicates anchor triangles and green indicates newly generated

preserved triangles during repair.

Invalid building MeshFix ReMESH

PMP HoleFill
with decomposed HSW (Ours)
model

PMP HoleFill

Fig. 27. Illustration of the repaired results obtained by the methods compared.

because too many faces were missing from these models, and thus the
available information was insufficient for repair using automatic
methods. We also visually inspected all the results and found that the
method introduced artifacts in some topological corrected repaired
models (Fig. 26). The introduction of tetrahedron surfaces was due to
the formation of a complex edge when two neighboring solid shapes
touched on the roof. In this case, the edge should be split in advance
(Guéziec et al., 2001).

5.2. Comparison

We compared our method with freely available automatic mesh
repair methods, i.e., MeshFix (Attene, 2010), PMP (Botsch et al., 2007),
PolyMender (Ju, 2004), and ReMESH (Attene and Falcidieno, 2006).
We applied these methods with the default parameters to the models
used in our previous experiments. The repaired results are shown in
Fig. 27. The hole filling method in PMP (PMPy,.ri) performed the best
among these methods, but it is still inferior to our method.

We also compared PMP with our method using two CityGML da-
tasets (Section 5.1.2). The PMP hole filling method lacks the capacity to
resolve intersecting geometry, so we first decomposed the input model
using our proposed method and then employed PMP to repair the in-
tersection-free model. The Val3Dity reports for the repaired results are
shown in Table 5, which demonstrates that the proposed method
achieved state-of-the-art performance at repairing these datasets.
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5.3. Discussion

Our experiments showed that the proposed method could fix most of
the errors found in 3D city models. The method is robust because it
employs a volumetric representation based on CT. The method is also
accurate because the input geometry is preserved exactly in CT, and
thus no discretization artifacts are introduced. The CT is conducted
efficiently by using Tetgen (Si, 2015). According to Si (2015), the
constraint tetrahedralization of a model of m vertices and r reflex edges
results in O(m + r?) tetrahedra. Therefore, the complexity of our HSW
method is O((m + r?)?), because every tetrahedron is examined and
sorted in each carving step. In comparison, the PMP method works on
the mesh combinatorial structure directly, thus would have a much
lower complexity. However, we considered the repair task to be in-
sensitive to the computational time, since it can be conducted offline.
The two real CityGML datasets adopted in the experiment can be re-
paired within an hour. This method can be further optimized and ac-
celerated by conducting a few batches of repair in parallel.

According to the experiments, we found that the proposed topolo-
gical constraints are capable of maintaining the carving process as ”2-
manifold-bounded,” which means that the repair process will always
produce a solid model. The geometrical constraints were also found to
perform efficiently at fixing the erroneous geometry of a building
model. However, more geometrical constraints can be proposed for spe-
cific error types, such as non-planar holes. Although the proposed
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heuristics was derived by trial-and-error with a limited number of er-
roneous models, it generalizes well to large datasets.

A problem is that CT might introduce degenerate tetrahedra and this
could affect our constraints. For example, Constraintl, should be re-
inforced for configurations with more than one candidate triangle (as
shown in Table 1) because the member triangles of a tetrahedron can be
coplanar in these cases.

We did not expect to obtain accurate repair results for CityGML
models with overhanging because overhangs are represented by sur-
faces that comprise topologically dangling faces. Auxiliary surfaces will
remain and keep the dangling face as a part of the solid. Thus, our
shrink-wrapping repair method should not be applied directly to these
models, but instead, it should only be used to fix models or building
parts that are assumed to be solids (Zhao et al., 2014).

Given that the repair task is an ill-posed problem, our method can
still be improved. We selected the heuristics using pragmatic methods
and they can be extended. Backtracking of the carving process could be
introduced to facilitate finding the best carving route by evaluating the
cost of carving in an optimization process.

If complex edges or vertices are present, our method will introduce
unwanted but ”valid artifacts”, which could be addressed by first
splitting these geometries.

Finally, an efficient and fast data structure for tetrahedra should be
formulated to allow rapid implementation of the proposed constraints.
In addition, robust arithmetic kernels could also be used in the de-
composition stage for extreme intersection cases (Attene, 2014).

6. Conclusion

In this study, we proposed a shrink-wrapping repair algorithm
(HSW) for reconstructing valid solid-based LOD2 building models from
invalid building models. This method employs CT and this makes it as
robust as volume-based repair methods. Owing to the proposed topo-
logical constraints, any arbitrary input geometry can be accepted and
the output is consistently a closed 2-manifold solid. The shape and se-
mantics of the input building model are also preserved well, and few
artifacts are introduced. We demonstrated the effectiveness of our
method based on various experiments using 3D building models and
CityGML datasets. The choices of different heuristics and their combi-
nations were also investigated in detail. This method can be extended to
the repair of regular-shaped mesh models where solids are the desired
outputs. By introducing the proper constraints, the proposed method
can be further adopted for generalization purpose. In future research,
we will focus on implementing the overall repair framework for the
CityGML model by treating building components separately according
to their repair goals.
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