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1
Introduction

1.1. Motivation
Automatic Speech Recognition (ASR) has become a significant technique in improving human-machine
interaction, playing a critical role in accessibility [1], communication [2], education [3], and entertainment
[4]. Most of the research in ASR is aimed primarily at the adult population, and reported ASR systems
have achieved high rates of recognition of adult speech [5]. However, ASR systems that are trained us-
ing data from adults see a significant decrease in performance when recognizing speech from children
[6]. The acoustics and linguistic characteristics, spectral and temporal factors, of adults and children
exhibit notable differences [7, 8]. Variation in these characteristics leads to a mismatch between the
speech patterns of children and adults [5]. The main reason for these variations is the morphological
and anatomical disparities in the vocal tract, together with the restricted control that children have over
prosodic features such as pitch, intensity, speed, and intonation [5]. The disparity is more pronounced
in children with speech difficulties, as their speech patterns may markedly differ from those of gener-
ally developing peers [9, 10]. Currently, popular state-of-the-art commercial ASR systems (Amazon
Web Services Transcribe, Google Cloud Speech, and IBM Watson Speech-to-Text) show low ASR ac-
curacy when processing impaired speech [11]. These systems are mostly trained on huge amounts
of typical speech, which means that they do not work accurately for impaired speech. Despite some
recent developments in personalization of ASR models [12], data augmentation and transfer learning
approaches[13], and the creation of specialized impaired-speech datasets such as UASpeech [14], the
accuracy of ASR systems for impaired speech remains much lower compared to typical speech [15].

Developmental LanguageDisorder (DLD), a prevalent condition affecting around 5–8%of preschool-
aged children [16]. It encompasses many disorders in which a child has notable deficits in speech ac-
quisition, comprehension, or language utilization, all crucial for effective communication and academic
achievement. Children with DLD may demonstrate several linguistic deficiencies, including difficulties
in producing speech sounds accurately, using vocabulary effectively, and constructing grammatically
correct sentences [17, 18]. These issues are manifest in their speech patterns, which may markedly
diverge from those of their typically developing peers.

Although ASR technology has the potential to improve communication and learning for children
with DLD, its implementation is limited by two primary limitations. First, there exists a deficiency of
publicly accessible, high-quality speech datasets from children with DLD, mostly attributable to ethical
and privacy issues related to the collection and distribution of data from vulnerable groups [19, 20, 21].
This makes DLD speech a low resource. Second, there is a notable mismatch between the speech
of children with DLD and the speech on which current ASR systems are trained—typically large-scale
datasets of typcial adult speech.

Data augmentation [22] is a technique used in machine learning to increase the amount of data
available for training models without actually collecting new data [23, 24], which has been demonstrated
to be effective in addressing the issue of data sparsity [25, 26]. Recently, some research has shown that
using data augmentation such as speed perturbation (SP) [27, 28] and vocal tract length perturbation
(VTLP) [29, 30] increases the performance for both child and impaired speech recognition.

Moreover, transfer learning approaches, such as fine-tuning [31], aim to solve these problems by
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1.2. Research Questions 2

initially training a model on a larger corpus that is not specific to the target domain. The learned features
are then adapted and used to train a network on a smaller dataset that is specific to the target domain
[32]. Previous research has demonstrated the efficacy of these techniques for languages with limited
resources [33, 34, 35], non-native accent speech [36, 19] and disorder speech of adults [37].

1.2. Research Questions
This study aims to improve the ASR performance for the speech of children with DLD using data aug-
mentation and transfer learning, in contrast to previous research that focused primarily on typical adult
speech. It also examines performance on typical child speech to ensure that improvements in DLD
child speech do not come at the expense of recognition accuracy in typical child speech. It evalu-
ates whether these techniques improve recognition of DLD child speech without negatively impacting
performance on typical child speech. Achieving this balance is essential for developing robust and gen-
eralizable systems suitable for practical educational and clinical settings, where both types of speech
may be present.

The main research question is

• How can ASR performance be improved for the speech of children with DLD while maintaining
recognition accuracy on typical child speech?

We decompose this question into smaller research questions:

• RQ1: To what extent do data augmentation techniques, such as SP and VTLP, improve ASR per-
formance for the speech of children with DLD without degrading recognition accuracy on typical
child speech?

• RQ2: To what extent does transfer learning through fine-tuning improve ASR performance for the
speech of children with DLD while maintaining accuracy on typical child speech?

• RQ3: To what extent does combining data augmentation (SP and VTLP) with transfer learning
(fine-tuning) improve ASR performance for the speech of children with DLD without negatively
impacting recognition accuracy on typical child speech?

1.3. Outline
In this thesis, Chapter 2 provides essential background knowledge for a comprehensive understanding
of this thesis. Chapter 3 explores the methods. Chapter 4 describes the experiments designed to
investigate the research questions. Chapter 5 presents the experimental results. Chapter 6 provides
discussions, conclusions, and future work based on the experimental results.





2
Background

This chapter presents the essential knowledge for this thesis and discusses relevant studies. I start with
an introduction to developmental language disorder (DLD) in section 2.1. In Section 2.2, we provide
background information about automatic speech recognition, covering traditional ASR systems (Section
2.2.1) as well as end-to-end ASRmodels (Section 2.2.2). The ASR-related data augmentation methods
are described in Section 2.3, where I start with the speed perturbation in Section 2.3.1 and follow with
vocal tract length perturbation in Section 2.3.2. Fine-tuning refers to ASR in low-resource situations
and is described in detail in Section 2.4. Lastly, Section 2.5 describes the evaluation metric used in this
thesis.

4



2.1. Developmental Language Disorder 5

2.1. Developmental Language Disorder
Developmental Language Disorder [38] is a neurodevelopmental condition which hinders a child’s abil-
ity to learn and use spoken language in the absence of any apparent neurological, sensory or cognitive
impairment. Approximately 5–8% of children are affected by DLD and tend to continue into teenage
years and adulthood [16]. The primary challenges involve the child’s ability to use words and construct
sentences to convey meaning, however, many children also struggle with understanding language (re-
ceptive language) [39]. DLD can influence various aspects of language, and the extent of impairment in
these areas may differ from one child to another [40]. Despite efforts to classify distinct subtypes, such
efforts have typically not produced clear categories [41]. The study [42] advised that specific language
impairments should be evaluated and recorded for each individual child, acknowledging that children
can exhibit diverse combinations of challenges [39]. The potential areas impacted include:

• Phonology – Younger DLD children tend to make speech sound errors, they may struggle to
differentiate between specific speech sounds, resulting in the production of ’cake’ as ’tate’ [43].
Phonological difficulties that have persisted over time will result in unclear speech and affect
children’s earliest experiences of learning to read [44, 45].

• Grammar – Children with DLD have trouble constructing grammatically correct sentences (syn-
tax) and using word structure to give meaning (morphology), and make errors such as missing
tense markers or wrong word order (e.g.,’me jump here’ instead of ’I jumped here’). This dif-
ficulty also affects comprehension, especially when faced with complex sentence structures or
grammatical markers [46, 47, 48].

• Semantics – Vocabulary development is delayed. Children may use vague or overgeneralized
words and, one word might have a lot of meanings (eg. ”cold” temperature, sickness or emotional
state) [49, 50].

• Word Finding – Some children find it difficult to retrieve knownwords during speaking. This ”tip-of-
the-tongue” phenomenon can interfere with fluency and narrative communication skills, reducing
expressive vocabulary [51, 52].

• Pragmatics – DLD can also affect the use of language in social situations. Children may have
difficulty staying on topic, understanding figurative language, or adjusting speech according to
the listener or the setting [53].

• Discourse – Impairments in language organization above the sentence level can lead to prob-
lems in narrative telling, producing events sequentially, or even understanding discourses as a
whole [54].

• Verbal Memory And Learning – People with DLD typically have a lower verbal working mem-
ory capacity. Speaking and processing long strings of words is difficult, and learning new ones
likewise [55, 56, 57].

2.2. Automatic Speech Recognition
ASR is a computational task that transforms a signal that contains spoken language into the correspond-
ing written text. ASR systems analyze audio waveforms and extract relevant linguistic features through
multiple processing stages. ASR has evolved considerably, transitioning from early rule- and statistical
model-based systems to current ASR models with deep learning and end-to-end neural architectures
[58, 59, 60, 61].

The basic idea of ASR is to find the most probable sequence of words W from acoustic feature
vectors X extracted from an input audio signal. This is typically modeled as a maximum a posteriori
(MAP) estimation problem as Equation 2.3:

Ŵ = argmax
W

P (W |X) (2.1)

Using Bayes’ theorem, this can be decomposed as Equation 2.4:

Ŵ = argmax
W

P (X|W )P (W ) (2.2)

Where:

• P (X|W ): Likelihood of the acoustic signal given a word (modeled by the acoustic model)
• P (W ): Prior probability of the word sequence (modeled by the language model) [58]
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2.2.1. Traditional ASR Model
Figure 2.1 illustrates the architecture of the traditional ASR model, which consists of three major com-
ponents, the acoustic model, the lexicon, and the language model. The acoustic model maps acoustic
features to the probabilities of phonemes. Second, the lexicon provides a dictionary that maps se-
quences of phonemes to words. Finally, the language model assigns probabilities to sequences of
words to generate coherent sentences. Although each component may be developed or trained sepa-
rately, they are integrated during decoding to produce the final transcription.

While traditional ASR models, such as Gaussian Mixture Model - Hidden Markov Model (GMM-
HMM) systems [62] and later Deep Neural Networks - Hidden Markov Model (DNN-HMM) hybrid sys-
tems [59], have achieved successful recognition performance, these models suffer from major draw-
backs. First, they rely heavily on handcrafted acoustic features (e.g., Mel-frequency cepstral coeffi-
cients), which limits their ability to capture complex and abstract representations of speech. Second,
they require pronunciation lexicons that depend on expert linguistic knowledge and often fail to ade-
quately capture the variability of pronunciation between speakers, dialects, and spontaneous speech.
Finally, their robustness is limited when faced with variability in speech, such as different acoustic envi-
ronments, background noise, accents, speaking styles, or age-related speech characteristics, making
them less effective in real-world or diverse speaker conditions [59, 60, 63, 64].

Figure 2.1: The traditional ASR architecture

2.2.2. End-to-End ASR Model
End-to-End (E2E) models were developed to address the limitations of traditional ASR systems. Unlike
traditional ASR, which requires separate components for acoustic modeling, pronunciation lexicons,
and language modeling, E2E approaches integrate these into a single neural network that directly
maps input speech to text. This unified architecture eliminates the need for hand-crafted features and
expert-designed lexicons, allowing themodel to automatically learn representations andmappings from
data. As a result, E2E systems are often more robust to speech variability [65, 28] and better suited
for large-scale real-world applications [66, 67]. Figure 2.2 illustrates the architecture of a general E2E
ASR model.

One of the greatest advantages E2E models offer is the lack of the need for lexicon dictionaries.
Without using a fixed phonetic dictionary or expert linguistic input, these models can be trained end-to-
end on speech data and its transcription. Thus, it helps in the training of ASR systems for low-resource
languages, that is, where such resources are limited or missing.

In addition, E2E models eliminate the need for word alignments in the training process. Unlike
traditional ASR systems that rely on forced alignments between acoustic frames and linguistic units,
E2E approaches can be trained directly from paired audio and transcription.

Three major paradigms have gained significant popularity and form the backbone of most SOTA
E2E ASR systems:

Connectionist Temporal Classification (CTC)
Although CTC is technically a loss function rather than a standalone architecture, models trained with
CTC loss have become a fundamental paradigm in E2E ASR. It is capable of dealing with the align-
ment between input acoustic sequences and output label sequences without relying on pre-segmented
data. CTC allows some flexibility by inserting a blank token and uses dynamic programming to sum
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Figure 2.2: The E2E ASR architecture

the probabilities for all possible cross-alignment sequences. Although CTC is efficient and fast, it as-
sumes conditional independence of output labels given the input, thus limiting its ability to model longer
contexts across tokens [68].

Attention-Based Encoder-Decoder Models
This architecture is inspired by the translation of neural machines. It has an encoder that converts the
audio signal into high-level features and a decoder that predicts the output tokens one at a time. In
each decoding step, the decoder uses attention to focus on certain relevant parts of the input sequence,
adding soft alignment between the input and output. These architectures can effectively model long-
range dependencies and complex contextual relationships [69].

RNN-Transducer (RNN-T)
The RNN-Transducer is an extension of CTC that incorporates a prediction network that models depen-
dencies between output tokens, while jointly modeling alignment and prediction, making it particularly
useful for real-time ASR needs. Compared to CTC, RNN-T does not assume independence among out-
put tokens, and this has demonstrated improved timestamp performance in noisy and conversational
environments [70].

These three paradigms are highlighted because they represent the main approaches to end-to-
end ASR, each with complementary strengths. CTC-based models provide fast and straightforward
training by eliminating the need for frame-level alignments between audio and texts, making them
efficient for large datasets [71]. Attention-based models aim to model long-range dependencies and
contextual information, allowing them to model complex linguistic structures effectively [72]. RNN-
T balances alignment modeling and token dependencies, supporting streaming recognition and low-
latency applications [73].

These models have been integrated into popular toolkits and frameworks like ESPnet [74], OpenAI
Whisper [75], wav2vec 2.0 [76], and DeepSpeech [77], all of which modify and enhance these architec-
tures to address various challenges, including low-resource settings, multilingual modeling, and domain
adaptation.

2.3. Data Augmentation Techniques in ASR
2.3.1. Speed Perturbation
Speed perturbation is a data augmentation technique that alters the temporal properties of a speech
signal by modifying the playback speed of the audio without changing its pitch. This technique is
effective in simulating natural variability in speech rate between different speakers or utterances. In
ASR training, speed perturbation is typically applied using speed factors such as 0.9 and 1.1, generating
slower and faster versions of the original utterance [26].
Mathematically, if x(t) is the original audio signal, speed perturbation modifies the signal as Equation
2.3:

x′(t) = x(αt) (2.3)
where α is the speed factor. For example, α = 0.9 slows down the audio, and α = 1.1 speeds it up
[26]. By speeding up or slowing down speech, SP creates variations in the temporal characteristics of
the speech signal, which can help the ASR model become more resilient to differences in speech rate.
By generating additional training examples with different speech rates, SP can help the model learn to
recognize speech that is faster or slower than the original training data. This is especially important
in the context of ASR for children, as children’s speech often exhibits greater variability in speech rate
compared to adult speech [26].
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2.3.2. Vocal Tract Length Perturbation
Vocal Tract Length Perturbation is another data augmentation technique. It simulates differences in
speaker vocal tract anatomy, a key factor in determining the formant frequencies of speech sounds by
warping the frequency axis of the audio signal [78]. The core idea is to apply a non-linear transformation
to the frequency f of the signal. A commonly used VTLP transformation is shown as Equation 2.4:

f ′ =


αf, 0 ≤ f ≤ f0

fmax−αf0
fmax−f0

(f − f0) + αf0, f0 < f ≤ fmax

(2.4)

where:

• f is the original frequency,
• f ′ is the warped frequency,
• α is the warp factor (e.g., 0.9 to 1.1),
• f0 is a threshold frequency (typically around 4.8 kHz),
• fmax is the maximum frequency (e.g., 8 kHz).

VTLP works by warping the frequency axis of the speech signal, effectively altering the perceived length
of the vocal tract of the speaker. This technique can help ASR models to generalize better to different
speakers by making them less sensitive to variations in the length of the vocal tract.

This warping simulates the speech characteristics of speakers with different vocal tract lengths—
shorter tracts (e.g., in children) result in higher formant frequencies, while longer tracts (e.g., in adults)
result in lower ones. VTLP improves model performance under speaker-diverse conditions by helping
ASR systems to learn to generalize across spectral variability [78].

2.4. Finetuning in ASR
For ASR, fine-tuning can provide good benefit if the target speech data differ from the original data
used to train the models. SOTA pre-trained models (e.g., based on the Transformer architectures,
e.g., Whisper [79], wav2vec 2.0 [76]) are typical trained large corpora of adult speech, learning general
acoustic and linguistic representations. Fine-tuning adapts these representations to better reflect the
target speech. This is usually done by continuing training on the target dataset, with strategies depend-
ing on the task and the amount of available data. If the pre-trained model already includes substantial
examples of the target speech data, fine-tuning may provide only limited improvements and should be
done cautiously to avoid overfitting [80].

• Full fine-tuning: Update all parameters of the pre-trained model. This approach generally per-
forms better when a sufficiently large target dataset is available [31].

• Partial fine-tuning: Update only a subset of parameters, such as the final layers or certain at-
tention blocks. This is useful when the target dataset is moderate in size, helping to prevent
overfitting [81].

• Feature extraction: Keep the pre-trained model frozen and use it to extract features from the
input. Only a downstreammodel (e.g., a classifier or a smaller neural network) is trained on these
features. This approach works well for small target datasets or when computational resources
are limited [82].

2.5. Evaluation Metrics
2.5.1. Word Error Rate
In ASR, the performance of a system is typically evaluated using the Word Error Rate (WER). WER is a
standard metric that quantifies the accuracy of transcribed speech by comparing the ASR output with a
reference transcription. WER is defined as the ratio of the total number of errors (insertions, deletions,
and substitutions) to the total number of words in the reference transcription. Mathematically, WER is
calculated as

WER =
S +D + I

N
∗ 100% (2.5)

where
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• S represents the number of substitutions (incorrect words that are different from reference).
• D represents the number of deletions (words that were in the reference but were missed by the
ASR system).

• I represents the number of insertions (extra words added by the ASR system that were not in the
reference).

• N is the total number of words in the reference transcription.

2.5.2. Statistical Significance
Matched-Pair Sentence Segment Word Error (MAPSSWE) [83] is a statistical test to assess whether
the difference in WER of two ASR systems is statistically significant. In contrast with straightforward
WER comparisons, the MAPSSWE procedure conducts a paired comparison of two systems at the
sentence level, meaning each utterance is evaluated independently by both systems, and the differ-
ences are compared within matched pairs (i.e., the same sentence across systems). This approach
ensures that any observed performance differences are not due to random chance but rather to system
improvements. It is particularly useful when comparing two ASR models evaluated on the same test
set.

The open source tool WER-SigTest [84] was used to determine whether differences in WER in the
same test set were statistically significant. This tool includes a script that compares the transcription
hypotheses of different ASR systems to perform the significance test. The toolkit calculates the p-
value by computing the MAPSSWE [83] between the outputs of different ASR systems. The formulas
for calculating the p-value of MAPSSWE are shown below.

The difference in matched pairs for each sentence i is calculated as

di = ei1 − ei2 (2.6)

where:

• ei1 is the number of word errors for system 1 on sentence i,
• ei2 is the number of word errors for system 2 on sentence i.

The mean difference between n sentence pairs is:

d̄ =
1

n

n∑
i=1

di (2.7)

The standard deviation of the differences is:

sd =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2 (2.8)

The t-statistic is then computed as:

t =
d̄

sd/
√
n

(2.9)

where:

• t is the test statistic,
• n is the number of matched sentence segments.

The resulting t-value is compared against a t-distribution with n−1 degrees of freedom to determine
the p-value, which indicates the statistical significance of the difference between the two systems. The
results’ statistical significance is denoted by stars following the WER values: *** indicates a significant
difference at the level of p=0.001, ** indicates a significant difference at the level of p=0.01 but not
p=0.001, * indicates a significant difference at the level of p=0.05 but not p=0.01, no stars suggests
that the performance difference is statistically insignificant, indicating that the observed improvement
could have occurred due to random variation.





3
Methodology

In this chapter, a detailed description of the data sets and the training strategies used in this thesis is
provided. In Section 3.1, we provide a detailed description of the selected data sets. Two baseline mod-
els were introduced in Section 3.2 with their implementation. The implementation of data augmentation
methods is described in Section 3.3. The fine-tuning procedures are detailed in Section 3.4. Section
3.5 presents the integration of data augmentation and fine-tuning.

11
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3.1. Datasets
I will introduce all the data sets used in the thesis. Both the Auris and Jasmin datasets are used in
data augmentation to generate more simulated child data. Both are also used for fine-tuning models.
The CGN data set is only used to train the conformer-based ASR model from scratch, which is our first
baseline. Auris and Jasmin datasets are also used as our test sets.

3.1.1. Auris
Auris is a Dutch corpus consisting of speech recordings of conversations between children (3 to 9)
with (possible) developmental language disorders and their speech therapists. The given Auris data
set originally had 47 audio files and their corresponding configuration files (.TextGrid), including the
transcription of each utterance in the audio files and the corresponding timestamps. However, the
configuration files of two of the audio files contained incorrect or missing transcriptions and timestamps,
so these two audio files were not used in the experiments in this paper. In the end, all experiments in
this paper used only 45 audio files, which contained conversations between 40 different target children
and their speech therapists. Among these children, five had two audio files each, while the remaining
35 children had one audio file each. There are 5 audio files missing age information, for the purpose of
splitting the data by age, these files were treated as belonging to a single “unknown” age group. This
setup ensures that all audio files are accounted for while allowing a complete age distribution despite
incomplete age metadata.

The Auris data set was processed and segmented to extract only the speech of the target children,
excluding the speech of the therapists. To process these files, a Python program using a dedicated
library was developed to read and write .TextGrid files. During processing, we encountered errors in a
small number of TextGrid files, caused by ”invalid timestamps”, such as intervals ending earlier than they
started or overlapping with adjacent intervals. These inconsistencies, likely due to annotation errors,
were manually corrected or skipped to ensure a reliable extraction of the child’s speech segments.

Segmentation was necessary because the original audio files are very long, often tens of minutes,
which can lead to errors or excessive memory usage when running the ASR models. By extracting
only valid child speech segments, the ASR models were trained exclusively on the children’s speech,
avoiding irrelevant interference from the therapists’ speech or problematic intervals. This ensures that
the models learn speech information only relevant to children, which is crucial for accurately evaluating
ASR performance for children with DLD.

To guarantee robust model training and balanced evaluation, the data set was divided into three
subsets according to a standard ratio: 70% for training (32 audio recordings), 15% for validation
(7 audio recordings), and 15% for testing (6 audio recordings). For the 5 children who had 2 audio
files each, since the 2 audio recordings were made over a long period of time, both for a few months,
we considered the total of 10 audio recordings to be audio recordings of different children.

Furthermore, to maintain demographic consistency and minimize potential bias, we preserved the
approximate gender ratio of the entire data set approximately 2.75:1male to femalewithin each subset.
This ratio reflects the original gender distribution of the data (33 males and 12 females) and was
carefully replicated across splits to guarantee fair representation. We also consider the age distribution
during the data division. There was no intersection of speakers between the training, validation, and test
sets. After data splits, it resulted in 4.43 hours of processed training data, 40.59 minutes of validation
data, and 48.38 minutes of test data. The overview of the Auris data split is shown in Table 3.1.

The gender composition for each subset is as follows:

• Training set: 24 males, 8 females
• Validation set: 5 males, 2 females
• Test set: 4 males, 2 females

3.1.2. The Spoken Dutch corpus (CGN)
CGN [85], also known as the Corpus Gesproken Nederlands, is a Dutch corpus that consists of native
Dutch speech spoken by adults (18–65 years) from the Netherlands and Flanders. We only use the
data collected in the Netherlands to train our ASR systems. The corpus includes a wide range of
speech types, such as read speech, interviews, debates, and broadcast news. The following Table 3.2
outlines 15 distinct components of speech data, each accompanied by a concise description. Notably,
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Table 3.1: Auris Data Splits

Age Total Train Validation Test
3 1 1M 0 0
4 5 3M 1M 1M
5 18 8M/6F 1M/1F 1M/1F
6 10 7M/1F 1M 1F
7 5 1M/1F 1M/1F 1M
9 1 1M 0 0

Unknown Age (Males) 5 3M 1M 1M
Total 45 (33 male, 12 female) 32 7 6

Durations - 4.43 hours (Atrain) 40.59 minutes 48.38 minutes (Atest)
Number of Utterances - 7058 1254 1153

components labeled a through h relate to multilogue speech data, whereas those identified as i through
o correspond to monologue speech data. The unprocessed training data consist of 483 hours. After
preprocessing the data, it resulted in 428.58 hours of processed training data Ctrain and 4.35 hours of
validation data. The training and validation set partitions adhere to the experimental setup described
in [86]. The overview of CGN data split is shown in Table 3.3. There was no intersection of speakers
between the training and validation sets. Because in this study, we only want to investigate the ASR
performance on children’s speech, so the test set of the CGN dataset is not used in the following
experiments.

Table 3.2: CGN Components and Descriptions

Component Description
a face-to-face spontaneous conversations
b interviews with teachers of Dutch
c spontaneous telephone dialogues (switchboard)
d spontaneous telephone dialogues (local interface)
e simulated business negotiations
f interviews/discussions/debates (broadcast)
g (political) discussions/debates/meetings
h lessons recorded in a classroom
i live commentaries (broadcast)
j newsreports/reportages (broadcast)
k news (broadcast)
l commentaries/columns/reviews (broadcast)
m ceremonious speeches/sermons
n lectures/seminars
o read speech

Table 3.3: Total duration and number of utterances for each data split of CGN

Dataset Split Duration (hours) Number of Utterances
Training 428.58 (Ctrain) 697250
Validation 4.35 7043

3.1.3. Jasmin-CGN
Jasmin-CGN [87] is an extension of the CGN corpus and includes spoken speech by native Dutch
speakers of different age groups (children, teenagers, and older adults) as well as non-native speakers
of Dutch who are teenagers and adults. Speech includes both read speech (RS) and human-machine
interaction (HMI) speech. The general information and the matching duration of the raw speech data for



3.2. Baselines 14

the five speaker groups in the Jasmin-CGN corpus are detailed in Table 3.4 below. Only native Dutch

Table 3.4: Overview of Speaker Groups and Data Duration of Jasmin-CGN

Code Group Description Age Range Duration
DC Native Dutch children 6–13 12h 21m
DT Native Dutch teenagers 12–18 12h 21m
DOA Native Dutch older adults ≥ 59 9h 26m
NNT Non-native teenagers 11–18 12h 21m
NNA Non-native adults 19–55 12h 21m

children (DC) aged 6 to 13 years would be used in the following experiments. The target children in
the Auris data set are all below 10 years of age. To provide a fair performance comparison between
typical and atypical child speech. I will divide the Dutch children’s speech into a training set, a validation
set, and a test set. The training data set, which comprises 6.63 hours of child speech, called Jtrain,
was used to train ASR systems. The validation set comprises 44.22 minutes of child speech from three
female and three male Dutch child speakers, with one child of each age from 7 to 12 years. The test set
comprises 35.73 minutes of read speech and 8.65 minutes of HMI speech from three female and three
male Dutch child speakers, with one child of each age from 7 to 12 years, which is denoted by RDC and
HDC . The partition of the test set is based on the setup of the experiment in [19]. The overview of the
Jasmin data split is shown in Table 3.5. There was no intersection of speakers between the training,
validation, and test sets. The detailed speaker information of the validation set and the test set are
shown in Tables 3.6 and 3.7, respectively.

Table 3.5: Total duration and number of utterances for each data split of Jasmin-CGN

Dataset Split Duration Number of Utterances
Training 6.63 hours (Jtrain) 13945
Validation 44.22 minutes 1551
Testing 35.73 minutes (RDC), 8.65 minutes (HDC) 1213 (RDC), 350 (HDC)

Table 3.6: Speaker information of validation set: Native Dutch children speakers

Speaker ID Gender Age
N000026 Male 8
N000028 Male 10
N000030 Female 9
N000050 Female 12
N000062 Female 11
N0000210 Male 7

Table 3.7: Speaker information of test set RDC and HDC : Native Dutch children speakers

Speaker ID Gender Age
N000025 Female 8
N000027 Male 9
N000029 Male 10
N000054 Female 11
N000045 Male 12
N0000213 Female 7

3.2. Baselines
Two baseline ASR models were trained to provide a point of comparison, allowing us to evaluate the
effects of fine-tuning and data augmentation across different architectures and to ensure that the ob-
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served trends were not model-specific. The first baseline model is an encoder-decoder conformer [88]
based model implemented using the ESPnet Toolkit [74]. It combines self-attention and convolutional
modules to capture both global and local dependencies in the input speech signal. I chose this model
because the experimental results in [89] demonstrated that the Conformer-based ASR model outper-
formed the Transformer-based model used in the earlier study [19] to mitigate bias against non-native
Dutch accents when evaluated in the CGN and Jasmin-CGN corpora. Furthermore, there is an in-
creasing trend for using pre-trained models in ASR, and it shows good performance, especially when
fine-tuned on some low-resource data set [35, 90]. Therefore, we want to compare this training-from-
scratch model with a state-of-the-art (SOTA) pre-trained model. So we chose OpenAI Whisper models
[75] as the second baseline since it is a widely used SOTA pre-trained model.
The training data set from the CGN corpus Ctrain was used to build the conformer-based baseline.

3.2.1. Conformer-based ASR model implementation
ASR model configuration
The conformer encoder contains 12 layers, each with 4 attention heads and a position-wise feed-
forward layer whose dimensionality is 1024. A dropout of 0.1 was used on the whole encoder to reduce
overfitting.

The decoder is based on the Transformer architecture using a hybrid CTC/Attention decoding strat-
egy with CTC weight 0.3 and contains 6 layers, each with 4 attention heads and 1024 feed-forward
units. Dropout methods were used the same in the decoder.

The input features were extracted directly from the raw audio using 80-dimensional log-Mel filter-
banks. Byte Pair Encoding (BPE) was used as the subword tokenization strategy with a vocabulary
size of 5000 units.

The first baseline, the conformer-based ASR model, was trained from scratch for 40 epochs. The
final model is chosen on the basis of the average of the top 10 models with the highest accuracy
evaluated on the validation set.

3.2.2. Whisper model implementation
For the second baseline, we use the Whisper large-v3 model, as it shows the lowest WER of Dutch
speech recognition compared to other Whisper models [79]. This baseline, the OpenAI Whisper large
v3 pre-trained model is constructed using openly released code and model weights [91], although the
training data itself are not publicly available. ’

3.3. Data Augmentation
I used the built-in script provided by ESPnet [74] to implement the speed perturbation function. In
our experiments, I generated child-like speech by speed perturbing the typical Dutch child speech
data Jtrain (Jasmin) and atypical Dutch child speech Atrain (Auris) using the perturbation factors {0.9,
1.1}, resulting in two two-fold data augmentations, which doubling each dataset and produced the
augmented sets SPJtrain and SPAtrain , respectively. We used the Python library nlpaug [92] to generate
one-fold VTLP-augmented data separately for the typical and atypical Dutch child speech datasets,
resulting in two augmented datasets: one for typical speech and one for atypical speech. Unlike speed
perturbation, which applies two fixed factors, VTLP randomly selects a single factor between 0.9 and
1.1 for each utterance, producing only one-fold vtlp-augmented data set.

3.4. Fine-tuning
Two baseline ASR models were used in this study: a Conformer-based model and Whisper-large-v3.
The Conformer-based baseline was trained from scratch on the CGN training set (Ctrain) and serves as
the ”pre-trained model” for subsequent Conformer-based ASR fine-tuning experiments. Similarly, the
Whisper-large-v3 baseline, which is a pre-trained model provided by OpenAI, serves directly as the
”pre-trained model” for the Whisper-large-v3 ASR fine-tuning experiments.

In this study, fine-tuning allows the ASR models to better recognize child speech while leveraging
the general acoustic and linguistic knowledge captured during pre-training.

For the Conformer-based ASR fine-tuning experiments, the corresponding pre-trained Conformer
model was continued to be trained for 40 epochs using the same architecture as the baseline model.



3.5. Combined Data Augmentation and Fine-tuning 16

This approach updates the model parameters gradually to improve performance on the child speech
data while maintaining the general representations learned from the CGN adult speech.

For the Whisper-large-v3 ASR fine-tuning experiments, the pre-trained Whisper model was fine-
tuned for 4000 training steps. During this process, the WER was evaluated every 1000 steps in the
validation sets and the final model was selected based on the best WER achieved in the validation
data.

3.5. Combined Data Augmentation and Fine-tuning
In addition to performing data augmentation and fine-tuning separately, this study also investigates the
effect of combining augmented child speech data with fine-tuning on ASR performance. By integrating
augmented datasets with the fine-tuning process, the ASR models are exposed to a more diverse set
of child speech variations while retaining the general acoustic and linguistic knowledge acquired during
pre-training.

For the Conformer-based ASR experiments, the corresponding pre-trained Conformer model was
fine-tuned for 40 epochs using the same architecture as the baseline. The fine-tuning data consisted
of the Jasmin-CGN child speech training set (Jtrain) combined with its augmented versions, or the
Auris training set (Atrain) combined with its augmented versions. This approach allows the model
parameters to adapt to the effect introduced by the augmented child speech while maintaining the
general representations learned from the original child speech.

For the Whisper-large-v3 ASR experiments, the pre-trained Whisper model was fine-tuned for 4000
steps, following the same procedure as described for the Conformer-based experiments mentioned in
the previous paragraph. During this process, the WER was evaluated in the validation sets every 1000
steps and the final model was selected based on the lowest WER on the validation data.





4
Experiments

This section describes the experimental design used to investigate the three research questions out-
lined in Section 1.2. The experiments are grouped by research question, with references to themethods
described in Section 3.
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4.1. Baselines
This first baseline model (conformer-based model) is trained from scratch using

• CGN training set Ctrain

The second baseline model (Whisper-large-v3) is directly evaluated without any additional training. All
models explained in this and the following subsections are evaluated on the same test datasets:

• RS and HMI test sets of the Jasmin-CGN child corpus (RDC andHDC ); Auris test set (Atest) using
WER as a metric

4.2. RQ1: Data Augmentation
To answer RQ1, a series of experiments were conducted. The augmentation techniques applied in-
cluded SP and VTLP, both individually and in combination. SP modifies the speaking rate by simu-
lating natural variations in tempo among children, while VTLP modifies the spectral characteristics by
simulating changes in vocal tract length. Applying them individually allows assessing their separate
effects on ASR performance, whereas combining them means merging the SP-augmented and VTLP-
augmented datasets, without applying both augmentations sequentially to the same data. This tests
whether combining temporal and spectral variations provides an additional effect. Since Whisper is a
pre-trained model, we can only examine its fine-tuning performance. Therefore, experiments will only
be conducted using the first baseline model. Specifically, the conformer-based baseline model was
trained for 40 epochs using the same architecture as the baselines. All experiments include original
CGN training data (Ctrain) combined with original child speech training data from the Jasmin-CGN cor-
pus (Jtrain) or from the Auris corpus (Atrain). In some configurations, the original child speech training
data are further combined with their augmented versions. The configurations differ in the type of child
data and augmentation applied:

• The SP-augmented training set of Jasmin-CGN child speech SPJtrain

• The VTLP-augmented training set of Jasmin-CGN child speech V TLPJtrain

• The SP- and VTLP-augmented training set of Jasmin-CGN child speech SPJtrain + V TLPJtrain

• The SP-augmented training set of Auris child speech SPAtrain

• The VTLP-augmented training set of Auris child speech V TLPAtrain

• The SP- and VTLP-augmented training set of Auris child speech SPAtrain + V TLPAtrain

4.3. RQ2: Fine-Tuning
To answer RQ2, both baseline models, conformer-based and Whisper-large-v3, were fine-tuned on the
original training set of the Jasmin-CGN child corpus Jtrain or the original training set of the Auris corpus
Atrain.

• The training set of Jasmin CGN child speech Jtrain
• The Auris training set Atrain

4.4. RQ3: Integration of Data Augmentation and Fine-Tuning
To answer RQ3, all experiments were conducted using the same training strategy as used in Section
3.4. Both baseline models were fine-tuned in the original training set of the Jasmin-CGN child corpus
(Jtrain) or that of the Auris corpus (Atrain), each combined with its respective augmented data. The
differences between models lie in the type of augmented data included:

• The SP-augmented training set of Jasmin-CGN child corpus SPJtrain

• The VTLP-augmented training set of Jasmin-CGN child corpus V TLPJtrain

• The SP- and VTLP-augmented training set of Jasmin-CGN child corpus SPJtrain + V TLPJtrain

• The SP-augmented Auris training set SPAtrain

• The VTLP-augmented Auris training set V TLPAtrain

• The SP- and VTLP-augmented Auris training set SPAtrain + V TLPAtrain





5
Results

This chapter begins with a description of the experimental results for the two baselines in Section 5.1.
RQ1 is explored through data augmentation experiments, the results of which are detailed in Section 5.2.
For RQ2, fine-tuning experiments are conducted and discussed in Section 5.3. Section 5.4 addresses
RQ3 by integrating data augmentation with fine-tuning and presenting the corresponding findings.
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5.1. Baselines
Before addressing the main RQ, it is essential to first establish the baseline performance in both typical
and atypical child speech. The baseline speech recognition performance, measured by WER, is sum-
marized in Table 5.1 under the rows labeled BL1: Conformer-based and BL2: Whisper-large-v3 in
the Model column.

First, for the row with ”BL1: Conformer-based” in Table 5.1, the model was trained from scratch on
Ctrain. In the Auris test set, the conformer-based baseline shows a considerably high WER, while the
performance in the Jasmin-CGN test sets is slightly better for read speech (RDC) than for HMI speech
(HDC). This shows that the model works better on read speech than on HMI-type speech, which also
corresponds to expectations, since read speech is usually more acoustically clean and controlled.

Second, for the row with ”BL2: Whisper-large-v3”, which is a pre-trained model without using Ctrain,
the WER on the Auris test set is 70.9%, showing a large improvement over the conformer-based base-
line despite having no additional training. For the Jasmin-CGN test sets, Whisper also achieves lower
WERs in both subsets, performance is better in read speech (RDC) than in HMI speech (HDC), again
confirming a better performance in read speech than in HMI speech. As shown in Table 5.1, the
Whisper-large-v3 model achieves markedly better performance than the Conformer-based model in
all test cases.

5.2. Data Augmentation
I merged Ctrain and Jtrain to retrain the conformer-based model, and then retrain the conformer-based
model with Ctrain and Jtrain and augmented data from Jtrain. The results are shown in rows where the
“Model” column is labeled Conformer-based in Table 5.1. The WER results for all test sets are shown
with significance test values in brackets following each WER. If only one significance result is reported,
it represents a comparison with the baseline model. If an additional significance result appears in
brackets following the first, it indicates a comparison with the model trained on the original child data.
The stars (*, **, ***) denote statistically significant improvements, whereas the empty brackets () indicate
that there is no significant difference.

All these results for both the Auris and Jasmin test sets show significant improvement compared to
the baseline model (BL1). However, these comparisons do not distinguish whether the improvement
arises from simply adding more child speech data or from the inclusion of augmented data. Therefore,
the focus is placed on comparisons against the model trained with only the original child data to isolate
the pure effect of augmentation.

Using Jasmin Child Speech Training Data
Compared to the model trained with Ctrain + Jtrain, both SP and SP + VTLP produced statistically
significant reductions in WER in the Auris test set (p < 0.001) and in the Jasmin read-speech test set
(p < 0.001). However, the improvements in HMI speech were not statistically significant, indicating that
there is no effect on performance. VTLP also significantly improved performance compared to Ctrain

+ Jtrain, but to a lesser extent in the Auris test set (p < 0.05), and significantly improved performance
in HMI speech (p < 0.05).

Using Auris Child Speech Training Data
Compared to themodel trained withCtrain+Atrain, only SP produced a statistically significant reduction
in WER in the Auris test set (p < 0.05). The improvements observed in the Jasmin test sets were not
statistically significant, indicating that there is no reliable effect of SP augmentation on typical child
speech. VTLP did not produce statistically significant changes in all test sets, suggesting that VTLP
alone had little impact. In contrast, the combination of SP + VTLP did not significantly improve Auris
performance and even resulted in significant performance reductions in both the Jasmin read-speech
test (p < 0.05) and the HMI test (p < 0.001).

5.3. Fine-tuning
Using Jasmin Child Speech Training Data
Both baselines were fine-tuned using Jasmin child training data Jtrain, and their corresponding results
are presented in Table 5.1 under the title: Using Jasmin Child Speech Training Data. Specifically,
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these results appear in the two rows where the “Model” column is labeled Fine-tuning and the “Train
data” column indicates Jtrain.

When fine-tuned on the Jasmin dataset (Jtrain), the Conformer-based model showed a statistically
significant improvement over its baseline performance on both datasets (p < 0.001). In the Auris test set
(Atest), WER decreased by approximately 7%, while in the Jasmin test sets, the reductions were much
more noticeable around 30% for read speech (RDC) and 25% for the HMI condition (HDC ), demon-
strating a strong positive effect of fine-tuning. The Whisper-based model demonstrated a similar trend,
with statistically significant improvements of approximately 20% in both Jasmin test sets (p < 0.001).
In contrast, the small increase in WER observed in the Auris test set was not statistically significant,
indicating that fine-tuning Jtrain did not reliably improve performance in the Auris data.

Using Auris Child Speech Training Data
Fine-tuning with the Auris dataset also resulted in a statistically significant reduction in WER for both
baseline models (p < 0.001). For BL1: Conformer-based model, fine-tuning produced an approximate
large relative reduction of 30% inWER in the Auris test set, whileWER in the Jasmin test sets decreased
much less, approximately 15%. Similarly, the Whisper-based model (BL2) showed similar significant
improvements with reductions of approximately 15% on the Auris test set and a much smaller reduction
of approximately 5% on the Jasmin test sets (p < 0.001).

5.4. Combined Data Augmentation and Fine-tuning
Using Jasmin Child Speech Training Data
Both baselines are fine-tuned using original Jasmin child training data and its augmented data Jtrain,
and their corresponding results are presented in Table 5.1 under the title: Using Jasmin Child Speech
Training Data. Specifically, these results appear in the rows under where the “Model” column is
labeled Fine-tuning and the “Train data” column indicates Jtrain + its augmented data. These
results are compared directly with the baseline models (BL1 and BL2) to evaluate the overall combined
effect of fine-tuning and data augmentation.

When fine-tuned with the original Jasmin training set and its augmented data, the conformer-based
model (BL1) achieved statistically significant improvements in both the Auris and Jasmin test set (p <
0.001) compared to its baseline. Among the three combinations of augmentation, VTLP achieved the
lowest WER in Auris, while SP and SP+VTLP also provided consistent improvements. However, VTLP
produced the highest WER in read speech and a slightly higher WER in HMI speech. In contrast, SP +
VTLP achieved the lowest WER in read speech but the highest WER in HMI speech. SP alone provided
the lowest WER on HMI speech while maintaining competitive performance on read speech. For the
Whisper-based model (BL2), fine-tuning with the original Jasmin training set and its augmented data
produced a higherWER in the Auris test setAtest, which exhibited a significant decrease in performance
(p < 0.05). However, it achieved a significant improvement, producing the lowest average WERs in
both Jasmin test sets (p < 0.001).

Using Auris Child Speech Training Data
When fine-tuned with the original Auris training set and its augmented data, both models achieved
significantly lower WER on the Auris test set Atest (p < 0.001) compared to their baselines. The
conformer-based model (BL1) showed a larger improvement of approximately 30%, while the Whisper-
based model (BL2) achieved a much smaller improvement of about 15%. In the Jasmin test sets, BL1
(conformer-based model) also exhibited statistically significant improvements of roughly 15% in both
read and HMI speech. For BL2 (Whisper-based model), only the model fine-tuned with VTLP demon-
strated significant improvements in both the read speech test set RDC (p < 0.001) and the HMI test set
HDC (p < 0.01) while the models fine-tuned with SP and SP + VTLP showed no statistically significant
changes on the HMI test, indicating that they did not reliably improve performance in the HMI test set
HDC .



Table 5.1: WER results and significance test results on Auris and Jasmin datasets. All the numbers with bold means the best
result in each column

Details Auris (% WER) Jasmin (% WER)
Model Train data Atest RDC HDC

BL1: Conformer-based Ctrain 98.1 43.1 45.4
BL2: Whisper-large-v3 – 70.9 25.6 35.1

Using Jasmin Child Speech Training Data

Conformer-based Ctrain + Jtrain 90.3*** 14.2*** 19.5***
Conformer-based Ctrain + Jtrain + SPJtrain 87.1***(***) 11.7***(***) 18.7***()
Conformer-based Ctrain + Jtrain + V TLPJtrain 88.3***(*) 12.3***(***) 17.4***(*)
Conformer-based Ctrain + Jtrain + SPJtrain + V TLPJtrain 87.4(***) 9.7***(***) 18.3***()
Fine-tuning: Conformer-based Jtrain 90.7*** 10.6*** 18.8***
Fine-tuning: Conformer-based Jtrain + SPJtrain 89.2*** 8.5*** 17.7***
Fine-tuning: Conformer-based Jtrain + V TLPJtrain 88.1*** 9.2*** 18.7***
Fine-tuning: Conformer-based Jtrain + SPJtrain + V TLPJtrain 88.8*** 7.6*** 19.6***
Fine-tuning: Whisper-large-v3 Jtrain 79.1 6.4*** 15.1***
Fine-tuning: Whisper-large-v3 Jtrain + SPJtrain 85.9* 5.7*** 14.3***
Fine-tuning: Whisper-large-v3 Jtrain + V TLPJtrain 84.6* 5.9*** 14.4***
Fine-tuning: Whisper-large-v3 Jtrain + SPJtrain + V TLPJtrain 94.8* 5.7*** 15.3***

Using Auris Child Speech Training Data

Conformer-based Ctrain + Atrain 66.6*** 25.0*** 27.5***
Conformer-based Ctrain + Atrain + SPAtrain 64.7***(*) 24.8***() 28.2***()
Conformer-based Ctrain + Atrain + V TLPAtrain 65.8***() 24.6***() 28.6***()
Conformer-based Ctrain + Atrain + SPAtrain + V TLPAtrain 65.1***() 26.4***(*) 32.2***(***)
Fine-tuning: Conformer-based Atrain 67.7*** 26.8*** 32.3***
Fine-tuning: Conformer-based Atrain + SPAtrain 64.6*** 27.7*** 31.7***
Fine-tuning: Conformer-based Atrain + V TLPAtrain 65.9*** 27.0*** 30.2***
Fine-tuning: Conformer-based Atrain + SPAtrain + V TLPAtrain 64.6*** 27.9*** 32.3***
Fine-tuning: Whisper-large-v3 Atrain 54.1*** 20.5*** 29.5***
Fine-tuning: Whisper-large-v3 Atrain + SPAtrain 53.6*** 21.7*** 32.6
Fine-tuning: Whisper-large-v3 Atrain + V TLPAtrain 53.2*** 21.2*** 30.6**
Fine-tuning: Whisper-large-v3 Atrain + SPAtrain + V TLPAtrain 54.7*** 23.4** 32.9

*p < 0.05; **p < 0.01; ***p < 0.001



6
Discussions and Conclusions

In this chapter, the results presented in Section 5 are analyzed and discussed in detail. Section
6.1 discusses the answers to individual research questions: the findings of RQ1, RQ2, and RQ3 are
described in Section 6.1.1, Section 6.1.2, and Section 6.1.3. Finally, in Section 6.1.4, I present a
more general reflection relating to the main research question. Section 6.2 gives an overview of the
study. Finally, in Section 6.3, I present possible future directions of this research based on results and
limitations in this work.
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6.1. Discussion
6.1.1. Implications of Data Augmentation
This section discusses the effect of data augmentation techniques, SP and VTLP, on ASR performance.
For the conformer-based model trained using Jasmin child data, both SP and SP + VTLP showed clear
improvements in the Auris and Jasmin read speech. However, improvements in HMI speech were
limited, indicating that improvement is less effective for spontaneous or conversational speech. VTLP
showed moderate improvements compared to the model trained with (Ctrain + Jtrain), showing smaller
improvements in the Auris test set but considerable benefits for HMI speech.

When the conformer-based model was trained using Auris child data, the benefits of augmentation
were more constrained. Only SP produced a clear improvement on the Auris test set, with a limited
effect on the Jasmin test set, while VTLP alone had a small impact on both the Auris and Jasmin test
sets. Moreover, combining SP and VTLP led to a small improvement on the Auris test set, although
the effect was not meaningful, and even resulted in considerably reduced recognition performance on
the Jasmin test sets, particularly for HMI speech.

In general, these findings demonstrate that data augmentation methods clearly improve the perfor-
mance of ASR for child speech with DLD (Auris) but in some cases reduce the accuracy of typical child
speech (Jasmin), which is in line with other research focused on dysarthric speech [27, 29], particularly
when applying SP, which consistently provided the largest reductions in WER. VTLP produced smaller,
but overall consistent effects. The combined SP + VTLP method was most effective when trained on
Jasmin data, but less reliable and even led to a noticeable reduction in the recognition accuracy of the
Jasmin test set when trained on Auris data.

6.1.2. Implications of Fine-tuning
This section discusses the effect of transfer learning through fine-tuning on ASR performance. The
results presented in Section 5.3 show that fine-tuning substantially improves recognition of speech
from children with DLD (Auris) while maintaining or improving performance on typical child speech
(Jasmin).

When fine-tuned on typical child speech (Jasmin), the conformer-based model (BL1) achieved con-
siderable improvements in performance in both atypical (Auris) and typical child speech (Jasmin). In the
case of Whisper, fine-tuning using original Jasmin training data appeared to reduce its ability to recog-
nize atypical child speech (Auris) but still improve performance substantially on Jasmin data. However,
this observed performance reduction was minor and not considered meaningful. This indicates a pos-
sibility that Whisper’s internal representations, which are learned from a wide variety of data, cannot
recognize atypical child speech well when fine-tuning Jasmin data and thus could result in reduced
performance for atypical child speech.

Fine-tuning on the Auris dataset (atypical child speech) produced the strongest improvements in
atypical child speech (Auris) recognition for both models. Whisper achieved the lowest WER, con-
firming its strong adaptation capabilities even when fine-tuned on a relatively small dataset, while the
conformer-based model also showed clear improvements under the same conditions.

In particular, fine-tuning the models using Auris data even improves the performance significantly
on the Jasmin test sets for both models, suggesting that there was no large negative transfer across
domains when fine-tuning. Although the absolute reductions in WER in Jasmin were smaller than
those in Auris, the results indicate that fine-tuning with atypical child speech contributes to improved
recognition in both types of speech.

In conclusion, these results indicate the effectiveness of fine-tuning to adapt ASR models to child
speech. When applied with matched training data, such as fine-tuning atypical child speech for atypi-
cal child speech (DLD) recognition, fine-tuning leads to substantial performance improvements. When
applied with unmatched data, such as fine-tuning on typical child speech, the models still show notice-
able improvements, though to a lesser extent. In general, fine-tuning ASR models using child speech
improves the performance substantially to recognize DLD child speech while also improving the perfor-
mance on typical child speech, which is in line with other research focused on child speech [35].
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6.1.3. Implications of combining Data Augmentation and Fine-tuning
This section discusses the combined effect of data augmentation and fine-tuning on ASR performance
by comparing the fine-tuned models trained with augmented data directly against the baseline sys-
tems (BL1 and BL2). This approach provides a clear measure of the overall improvement achieved
when both techniques are applied together. In particular, we examine whether combining these meth-
ods improves recognition of speech from children with DLD while maintaining accuracy in typical child
speech.

When Jasmin child speech (and its augmentations) is used for fine-tuning, the conformer-based
model showed noticeable improvements in both DLD and typical child speech, but the effect depends
on speech style. VTLP is most effective for Auris data, whereas SP resulted in the best outcomes
for HMI speech, combining SP + VTLP produced the lowest read speech WER but the highest WER
of HMI. In contrast, Whisper improved the recognition performance considerably on Jasmin test data
and reached the average best WERs, but it degraded noticeably on Auris, suggesting that augmenting
typical child speech does not transfer well to DLD child speech for a heavily pre-trained model.

Using Auris (and its augmentations) as fine-tuning data produced substantial recognition perfor-
mance for both models, with a larger effect on the conformer-based model than on the Whisper-based
model. In typical speech (Jasmin), the conformer showed clear recognition performance in read and
HMI indicates that fine-tuning using DLD child speech can be transferred positively to typical child
speech. However, for Whisper, only VTLP transfers well to Jasmin (read and HMI). SP and SP+VTLP
have little benefit in HMI, suggesting that temporal perturbations are less compatible with Whisper’s
pre-trained representations for spontaneous speech, but its average recognition performance in Auris
is the best.

Combining augmentation with fine-tuning improves DLD recognition substantially when the fine-
tuning data are matched (Auris to Auris), and moderately to not at all when mismatched (Jasmin to
Auris). Typical child speech accuracy is improved for BL1, for BL2 it is maintained or improved.

6.1.4. General Discussion
This section discusses how ASR performance can be improved for the speech of children with DLD
without negatively affecting the recognition accuracy in typical child speech.

For the conformer-based ASR model, the results show that the best way to improve DLD child
speech recognition performance is to combine data augmentation with fine-tuning when domain-matched
DLD child speech (Auris) is used. Both SP and SP + VTLP augmentations showed the best WERs in
child speech with DLD. Importantly, typical child speech (Jasmin) performance is improved, confirming
that fine-tuning using DLD child speech does not lead to degradation in typical child speech recognition.

For theWhisper-based ASRmodel, the combined approach also improves DLD speech recognition,
although the improvements are more moderate due to the model’s strong pre-trained representations.
Fine-tuning on domain-matched data (Auris to Auris) leads to the best performance, while mismatched
fine-tuning (Jasmin to Auris) showed a noticeably recognition performance reduction. Typical child
speech accuracy remains stable or substantially improved. Whisper fine-tuned on SP-augmented Jas-
min data and original Jasmin data, produced its best performance on Jasmin data. This best-performing
configuration outperforms previously reported results on similar Jasmin speech recognition tasks using
the same Jasmin test set. Previous works, for example, indicate WERs of 6.4% on read speech and
16.6% on HMI speech for the Jasmin test set [89]. However, this improvement comes at the cost of
the reduced recognition accuracy of DLD child speech.

In general, the results demonstrate that the combination of data augmentation and fine-tuning using
the large pre-trained model provides an effective way to improve ASR performance for children with
DLD while maintaining accuracy in typical child speech. The approach enhances model generalization
across diverse child speech domains and confirms that domain-matched fine-tuning with augmented
data yields the most reliable improvements.

6.2. Conclusion
The aim of this thesis is to investigate how ASR performance can be improved for the speech of chil-
dren with DLD, while also preserving high accuracy rates in typical child speech. To address this, two
SOTA ASR models (a conformer-based model and Whisper-large-v3) were evaluated under multiple
training conditions, including baseline models, transfer learning by fine-tuning and data augmentation
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techniques, such as SP and VTLP.
The results clearly demonstrated that fine-tuning using speech from children with DLD substantially

improves the recognition performance when testing on the same domain data (DLD). The use of SP
and VTLP in data augmentation also contributed to a lower WER. The best performance among all
experiments (53.2% WER in the Auris test set) was achieved by fine-tuning the Whisper model on the
Auris training and its VTLP-augmented data. The best performance among all experiments (5.7%WER
in read speech and 14.3% WER in HMI speech of Jasmin) was obtained by fine-tuning the Whisper
model in Jasmin training and its SP-augmented data. Importantly, this enhanced recognition of atypical
child speech did not appear to be at the expense of recognizing typical child speech. Both models
retained high levels of performance on typical child speech from the Jasmin dataset, with WERs better
than their baselines. However, when fine-tuning was conducted withmismatched data (Jasmin to Auris),
the improvement in Auris WER was considerably smaller. This effect was particularly pronounced for
the Whisper model, which even showed a notable performance reduction under such mismatched
conditions.

In conclusion, this thesis shows that it is possible to improve performance by recognizing speech
from children with DLD while maintaining the performance of speech from typical children by using a
combination of fine-tuning and data augmentations.

6.3. Future Work
Although this thesis has shown that, combined with domain-specific fine-tuning of DLD speech ASR
with data augmentations, the performance for DLD speech is considerably improved, there are defi-
nitely some roads to explore forward. There is also a lot of promise with user-adaptive ASR models.
Using speaker-adaptive training [93], future work could yield models that are personalized to individual
children, which may prove to be especially useful for children with severe or uncommon speech disor-
ders. More advanced augmentation strategies beyond SP and VTLP are also available for testing in
future work. Applying techniques such as SpecAugment [94], pitch shifting [95], or using generative
adversarial networks (GANs) can enhance robustness and generalizability [96]. SpecAugment applies
time and frequency masking to spectrograms, pitch shifting simulates differences in vocal characteris-
tics between children, and GANs generate synthetic child speech. In addition, other transfer learning
methods can be applied, such as multi-task learning (MTL) [97], domain adversarial training (DAT) [69].
MTL allows the model to learn multiple related tasks simultaneously, capturing features that benefit
recognition of both typical and atypical speech, while DAT encourages the model to learn features that
are insensitive to differences between typical and atypical child speech.
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