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Abstract 
Membrane shells, which have minimized bending moments under certain load conditions, are regarded 
as ideal structural forms in terms of material efficiency. Most of the existing numerical form-finding 
methods are based on discretizing membranes into finite panels or funicular networks and focusing on 
gravitational loading only. In order to obtain smooth shells and to consider horizontal loads, this paper 
presents a method to find the equilibrium forms of the membrane shells by solving Pucher’s equation. 
Radial base functions (RBFs) is utilized to represent stresses and shapes of the membranes, and a least 
square method is applied to find the controlling coefficients which allow the functions to fit the boundary 
conditions (e.g. zero stresses at the free edges) and the governing equation. When all the parameters are 
carefully chosen, the stress and shape functions can achieve sufficient accuracy. The presented method 
has been preliminarily implemented to find shells on a triangle ground plan incorporating horizontal 
loads. The form-found geometries are then analyzed by finite element models. The result confirms that 
the form-found shells have the stress distributions similar to the prescribed stresses. 

Keywords: from finding, membrane shells, radial basis functions, Pucher’s equation, funicular structures. 

1. Introduction 
The design of membrane shells is to contain stresses in the curved surface (force follows form) and to 
curve the surface following the embedded stresses (form follows forces). By carefully designing the 
stresses and the surfaces, membrane shell structures can elegantly span large area with minimal materials 
by membrane stresses (i.e. tension, compression, and in-plane shear stresses).  

Although the shells are materially efficient structures, the complication of the shell theory prohibits 
them to be widely applied [1] (let alone the fabrication of the doubly curved surfaces). By the 
development of computational methods and techniques, numerical algorithms are able to analyze the 
statics of the shells by discretizing the continuous surfaces into finite elements [2] and sometimes 
reconstruct them back to smooth NURBS surfaces [3]. However, the design of smooth shells is still 
restricted to a few analytical solutions. 

The aim of this paper is to utilize radial basis functions (RBFs), a numerical method developed in the 
1990s, which can easily represent free-form C ∞ smooth multivariate functions and facilitate scientists 
solving partial differential equations (PDEs)[4], [5]. Surprisingly, the method has not been applied for 
form-finding application, to the best of authors’ knowledge. This paper investigates how to apply RBFs 
to represent both stress and shape functions and how to find an agreement between them by solving 
Pucher's equation. The investigation shows the RBFs are handy numerical design tools to even handle 
horizontal body forces and the singularity of the point-supported membrane shells. 
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The outline of this paper is as follow. The first section introduces the features of membrane shells. The 
second section briefly explains how to apply RBFs to represent an arbitrary function and its differential 
operation. The third section focuses on the Pucher’s equation and related boundary conditions. The 
fourth section proposes an overall workflow with a demonstration finding shapes of membrane shells 
on a triangular ground plane. The fifth section concludes the current finding and projects future works. 

2. Basic Operations of Radial Basis Functions 
Radial basis functions are used to represent a smooth multivariate function. An arbitrary function ( )f x

can be approximated by a serious of radial basis functions ( ; )i iφ ρ−x μ  and polynomial terms ( )h x

[4]: 

1

( ) ( ; ) ( )
n

i i i
i

f hλφ ρ ε
=

= − + +x x μ x , (1) 

in which x  is the position of evaluation, iλ  are the magnitude coefficients of the RBFs, iμ  are the 

source points, iρ  are the shape parameter of the RBFs, and ε  is the approximate error. By sufficient 
number of RBFs n , the equation (1) shall be able to deliver decent accuracy.  

For a linear differential operator [ ]⋅D  acting on the function ( )f x , the derivative equation would be   

[ ] [ ]
1

( ) ( ; ) ( )
n

i i i
i

f hλ φ ρ ε
=

 = ⋅ − + + x x μ x DD D D . (2) 

which also can be presented in a matrix form:   

[ ] [ ] [ ]( ) ( ) ( )
 

 = +  
 

λ
f x Φ x H x ε

c DD D D , (2a) 

in which λ  are the magnitude coefficients of the radial basis functions, while c  are the coefficients of 
the polynomial terms. The coefficients then can be regarded as the main arguments for minimizing the 
squared approximate errors. When the desired derivative values of the function ( xag ) are provided at 

certain locations ( ax ), coefficient vectors can be provided by the weighted least square method:  

( ) 1T T
xa

− 
= 

 

λ
A W A A W g

c
 (3) 

where A  is defined by [ ] [ ]( ) ( )
a a= =

 
  x x x x

Φ x H xD D , and W  is the weight matrix. 

Having the basic differential and the least-square operations of the RBFs in mind, the following sections 
state the specific differential operations should be concerned for designing a membrane shell. 

3. Pucher’s Equation and Boundary Conditions  
The overall aim of designing membrane shells is to determine the equilibrium state of the membrane 
surface. Fortunately, the Airy stress function can describe the internal equilibrium of the 2D stress fields 
succinctly with a scalar function, and the C 0 continuation of the stress function guarantees the 
equilibrium in the two directions. The equilibrium stresses can be expressed as follow when body forces 
are also considered [6]:  

11 22 1 1

12 12

22 11 2 2

,

,

,

N F p dx

N F

N F p dx

= ∂ −

= −∂

= ∂ −




 (4) 

in which 11N  and 22N  are normal stress in two directions, 12N  is the in-plane shear stress, F is the Airy 

stress function, 1p  and 2p  are the body forces per unit area in related directions. 12∂  is the Euler’s 
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notation for the mixed second partial derivative, meanwhile 11∂  and 22∂  are the derivatives with respect 
to the coordination 1 and 2. 

While the Airy stress function guarantees the horizontal equilibrium, the equilibrium in z-direction is 
governed by the Pucher’s equation [6]:  

11 11 12 12 22 22 1 1 2 22 zN z N z N z p z p z p⋅∂ + ⋅∂ + ⋅∂ = ⋅∂ + ⋅∂ − . (5) 

When the external loads 1p , 2p , and zp  are given, the designer only needs to find a set of the stress 
function ( )F x  and shape function ( )z x  that meet both of the equations (4) and (5). 

Within the Pucher’s equation, either the shape function ( )z x  or the stress function ( )F x  can be 
regarded as unknown, and others are assumed independent of the unknown functions. Explicitly, when 
the loads and the stresses are given, the shape function should be governed by  

22 1 1 11 12 12 11 2 2 22 1 1 2 2[( ) 2 ( ) ] zF p dx F F p dx p p z p∂ − ⋅∂ − ∂ ⋅∂ + ∂ − ⋅∂ − ⋅∂ − ⋅∂ = −  , (5a) 

or in an abridged notation as [ ]z zz p= −FP , where [ ]z ⋅FP  is the differential operator acting on the shape 

function. In another way around, when the loads and the shape are given, the stress function should 
meets 

[ ]11 22 12 12 22 11 1 1 11 2 2 22 1 1 2 22 zz z z F p dx z p dx z p z p z p∂ ⋅∂ − ∂ ⋅∂ + ∂ ⋅∂ = ⋅∂ + ⋅∂ + ⋅∂ + ⋅∂ −  , (5b) 

or in an abridged notation [ ]F zF p′= −ZP , where [ ]F ⋅ZP  is the differential operator action on the stress 

function while zp′−  is the summation of all the terms on the right-hand side.  

Given the fact that the solution of the Airy stress function does not exist in the case of free-edges point-
supported parabola membrane shell [1], it might also be possible that an arbitrarily given set of boundary 
conditions and stress function could not permit the existence of a shape function. In other words, the 
shape function and stress function should recursively be revised until they mutually agree. 

3.2. Boundary Conditions of Stress Functions Subsections 
The equilibriums in three directions within the domain are governed by equations (4) and (5). However, 
the stresses around the boundaries require extra attention. Stresses at the fully supported edges would 
have no constraints, given that all resultant forces that shell imposes can be balanced by resistance from 
the supports. In contrast, for free edges, there should have no normal stress transmitting from or towards 
the boundaries, have no shear stresses against the tangential direction, and have no unbalanced vertical 
loads. For other common boundary types and their constraints are listed in Table 1. The normal and 
tangential directions are shown in Figure 1. 

In this paper, free-edge is the mainly considered boundary type. The related boundary conditions are  
0,

0.
nn

nt

N

N

=
=

(6) 

Table 1 The boundary constraints on the functions. 

Boundary types 
Constraints on functions 

N zp

Support no constraint no constraint 

On diaphragm 0nnN =  no constraint 

On columns 0nnN = , 0ntN = no constraint 

Reinforced edge 0nnN = zp = self-weight 

Free edge 0nnN = , 0ntN = zp = self-weight Figure 1 Directions at edges 
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When the normal vectors and the tangent vectors of the edges are expressed as [ ]1 2n n  and [ ]1 2t t =

[ ]2 1n n− , and equation (4) is incorporated, the conditions of the equation (6) become  
2 2

1 1 1 2 2 2

1 2 1 1 1 2 2 2

,

.

tt

nt

F n p dx n p dx

F n n p dx n n p dx

∂ = +

−∂ = − +

 
 

 (7) 

The final remark on the conditions of stress function is that only the second derivative, or curvature, of 
the stress function influence the Pucher’s equation. In other words, the stress function can be 
homogenously elevated or sheered, and the stress field remains the same. Therefore, there are 3 degrees 
of freedom in the stress function, which regard the overall elevation and overall slops in two directions, 
shall be constrained in order to acquire a determined solution. 

3.3. Boundary Condition of Shape Function 
Designers may wish the shell be supported by few given locations. In mathematical terms, it means 
imposing the Dirichlet boundary condition in the shape function, which can be express as:  

( )s sz z=x , (8) 

where sx are the location of the supports and sz are the desired elevations of them. 

4. Methodology and Application 
Pucher's equation governs the equilibrium of the membrane shell, but it disregards compatibility 
conditions nor constitutive relation. These features make it a problem with non-unique solutions 
providing many degrees of freedom for structure designers.  

To locate the converged solutions of the stress function and the shape function under the given loads in 
the Pucher’s equation, this paper proposes a workflow of designing a membrane shell as follows: 

1. Determine the ground plane. List the boundary conditions of the shell (supports, free edges). 
2. Identify potential singular points and arrange the basis functions accordingly. 
3a. Design initial shape. 3b. Design initial stress field. 
4a. Find the corresponding stress function with 

the Pucher’s equation. 
4b. Find corresponding shape function with the 

Pucher’s equation. 
5. Revise stress function according to the shape, and revise shape according to the updated stress 

until two of them converged. 

To explicitly show how to precede the design sequence, the sub-sections start with brief explanations 
that what type of RBF is chosen and the arrangement of them, and followed the implementation of RBFs 
to find the membrane shells. 

4.1 Designing the ground-plane and arranging the source and calibration points for RBFs 
The demonstration focuses on a triangular-ground-plane points-supported shell. The supports are evenly 
distributed on a unit circle. The design of the ground plane leads to three free edges (boundary conditions 
for the stress function) and three grounded points (the Dirichlet boundary conditions for the shape 
function.) This subsection explains how the basis function ( )φ ⋅  is chosen and how the calibration points 
are arranged. 

Suggested by Csonka [1], the curvature of the stress function ( )nnF∂ x  is extremely large as x  on the 
edges approaches to the support points. Therefore, the RBFs should allow this singularity. To achieve 
such goal, the basis function ( )φ ⋅ , scale parameters iρ  and the centers of the sources iμ  have to be 
nicely arranged. The chosen basis function is  

2 2( ; )φ ρ ρ− = − +x μ x μ , (9) 
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which has a cone shape but with a blunt peak controlled by the scale parameter ρ . As ρ  approaches to 
0, the size of the blunt peak approaches to 0 thus the curvatures at the μ  approaches to infinity. Table 
2 displays few basis functions with different scale parameters and their corresponding principle stresses 
calculated by equation (4). When there are multiple radial basis functions acting, their effects superpose 
each other, similar to static electric fields exerted by multiple charged objects. 

Table 2 Radial basis functions with different scale parameters. 

2 2
1 1 2 2( )F c x c xλ ρ= − + + +x x μ , where (0,0)=μ , 1 2 1c cλ = = = , and 

0.02ρ = 0.1ρ = 0.5ρ =

Sr
es

s 
Fu

nc
tio

n 
Sr

es
s 

Fi
el

d 

Understanding these properties, a basis function right on each pointy support has to be arranged and 
assigned with relativity small scale parameter to enable the singularity. Consequently, the source points 
of stress function and shape function are intentionally disturbed on the support points along with other 
source points within and around the domain. The scale parameters are also set differently according to 
the location. The parameters are smaller when source points are closer to the support. The stress function 
and shape function can be represented by the RBFs as 

1

( ) ( ; ) ( )
i i i

n

F F F F F F
i

F hλ φ ρ ε
=

= − + +x x μ x , (10) 

1

( ) ( ; ) ( )
i i i

n

z z z z z z
i

z hλ φ ρ ε
=

= − + +x x μ x , (11) 

which can also be expressed in matrix forms as  

[ ]( ) ( ) ( ) F
F F F

F

 
= + 

 

λ
F x Φ x H x ε

c
, (10a) 

[ ]( ) ( ) ( ) z
z z z

z

 
= + 

 

λ
z x Φ x H x ε

c
. (11a) 

Other than source points, the calibration points are also indispensable. For the shape equation, it should 
meet the Pucher’s equation (5a) at the calibration points in the domain dx  and the Dirichlet condition 

(8) at the support points sx . The overall conditions are 
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[ ] [ ]( ) ( )

( ) ( )
z zzz z d z z d

zzz s z s

  −    
= −      
     

λ εpΦ x H x
ε0cΦ x H x

F F
P P P

. (12) 

For the stress function, it should meet the Pucher’s equation (5b) at the domain calibration points dx

and the free edge condition (7) at the calibration points on the edges ex . Along with the extra Dirichlet 
conditions to allow the stress function numerically determinate, all the conditions imposing in the stress 
function can be summarized by  

[ ] [ ]( ) ( )

( ) ( )

( ) ( )

( ) ( )

FzF F d F F d

F Ftttttt F e tt F e

FntntFnt F e nt F e

FF s F s

′  −   
    ∂ ∂      = −     −∂ −∂      
      

εpΦ x H x
λ εFΦ x H x

εFcΦ x H x
ε0Φ x H x

Z Z
P P P

, (13) 

where ttF  is given by 2 2
1 1 1 2 2 2n p dx n p dx+   and ntF  is 1 2 1 1 1 2 2 2n n p dx n n p dx− +  . Since the 

differential operators mutually depend on each other, iterations would be needed to obtain the agreement 
between the stress functions and shape functions. The following sub-sections with case studies show 
how to implement the workflow. 

Figure 2 The distribution of all the points and their quantities (in the round brackets). 

4.2. Case A: a Triangular Shell initiate from Parabola Shape Equations 
The design process can either start with the stress function or the shape function. The first example 
shown is to initiate with a parabola shape function. By minimizing the errors in equation (13), one can 
derive the stress function to fit the parabola shape the most. Then, with the stress function, one can 
revise the shape function by minimizing the errors in equation (12). The alternating process may go 
forever until accuracy arrives at a certain satisfying level. The iteration process is shown in Figure 3a. 

As suggested by Csonka [1], the free-edges conditions are not compatible with point-supported parabola 
membrane shells. As a result, the root-mean-square errors (RMSE) of the free-edge conditions initially 
are relatively high and drop dramatically after a few iterations while the shape has to deviate from the 
initial shape correspondingly. After 100 iterations, the shape function becomes another synclastic shape 
as shown in the first panel of Figure 4. 
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4.3. Case B: a Triangular Shell initiate from a Stress Function 
In contrary to Case A, Case B opts to initiate the process from an analytical solution of the stress function 
from Csonka [1]. The initial input of the stress function goes as  

0 1 2
1 1 2 2

2 0 1 2 1 2

4
( , )

3 1initial 2

L L L
F x x

L L L x x
α

α
⋅ ⋅=

⋅ ⋅ ⋅ + + −
, (14) 

where 1 2

2 2 1
cos sin

3 3 2n

n n
L x x

π π   = + −   
   

, 1
at nL

F

n
α ∂=

∂
, and 2α  is a parameter influencing the peak 

of the stress function ( 1 2(0,0) 4 / 3( 8)initialF α α= + ). In this case, 2α  is set to be 12/5 for moderate 

upward edges in the final shape function. The RMS of the errors in the free edge conditions (i.e. Fttε  and 

Fntε ) in Case B are much smaller than their counterparts in Case A. The initial stress function, which 
fits the boundary conditions, may contribute to the low errors in the follow-up iterations. 

4.4. Case C: Triangular Membrane Shells Considering Horizontal Load 
As the previous two sub-sections demonstrate, the form-finding process can either starts with shape 
function or stress function. In this sub-section, the horizontal loads are introduced, which are set to be 
constant per projected area. The process of the iteration starts with the shape function found in Case B. 
Then the process proceeds with alternatively minimizing the errors in equation (13) and (12) as the 
process described in Case A. The major difference is that 2p  is set to be 0.3−  instead of 0. As a result, 
the converged shape function has no straight edges at the boundaries as equation (7) is asking the second 
derivatives to follow  

2
2 2 2

1 2 2 2

,

.
tt

nt

F n p x

F n n p x

∂ =
−∂ =

 (15) 

The shifted stress function is shown in Figure 4.  

A. B. C.  

Figure 3 The mean squared errors during the iteration process of the three cases 

5. Discussions and Conclusions 
This paper has proposed the workflow of applying RBFs to solve Pucher’s equation and implemented 
it on point-supported triangular-ground-plan shells with free-edge boundary conditions. Horizontal 
loads have been successfully integrated. FEM modeling has confirmed that the stresses distribution has 
similar patterns in the prescribe one. 

Arrangement of RBFs is the most critical part. The arrangement works as an implicit filter excluding all 
the solutions within the left null spaces. The designer should foresee the potential solutions and arrange 
the RBFs accordingly. 

For boarder application, the follow-up works are set to be implementing the proposed method to 
different ground plans and boundary conditions, such as oculus and reinforced edges. Load can also be 
revised to none homogenously distributed.  
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Case A ( 1 0p = , 2 0p = , 1zp = − )

Case B ( 1 0p = , 2 0p = , 1zp = − ) 

Case C1 ( 1 0p = , 2 0.3p = − , 1zp = − ) 

Figure 4 The converged solutions. First three columns are the top views of the stress function, stress field, shape 
function derived from the proposed method, and the last column is the stresses destitution calculated from FEM 

analysis. The back arrows suggest the directions of the loads. 
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