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Summary

This thesis presents a comprehensive exploration of unwieldy object delivery using mobile
robots, focusing on the challenges and advancements in Navigation Among Movable
Objects (NAMO). The research addresses critical issues in robotic manipulation, particularly
nonprehensile techniques such as pushing, which are essential for handling objects that
are difficult to grasp.

The study is structured around four key research questions guiding the investigation
into effective pushing manipulation strategies:

1. How to perform pushing manipulation with limited or inaccurate state estimation:
We employ the concept of “stable pushing,” ensuring the robot can always “catch”
the object during delivery. The stable pushing control problem is simplified as an
optimization problem with a concise linear constraint. Experiments show that this
approach outperforms reactive pushing strategies, reducing the robot’s traveled
distance by 23.8% and time by 77.4%.

2. How to improve pushing manipulation when accurate state estimation is available:
We enhance the stable pushing approach to a more maneuverable “free pushing”
method, allowing contact point changes to improve manipulation mobility. This
approach achieves an average success rate of 83% with an accuracy of 0.085m when
pushing to selected goals, demonstrating improved agility and efficiency compared
to stable pushing.

3. How to achieve efficient, real-time global trajectory optimization for contact-rich
pushing:
By investigating the differential flatness property of the pushing system, we simplify
the pushing planning problem, significantly reducing computational complexity.
This transformation allows for a simpler contact-implicit planning task that is easy
to design, fast to solve, and robust to uncertainties.

4. How to perform robust state estimation through sensor fusion:
We integrate data from multiple sensors and improve the robustness of the classic
Kalman Filter using a deep reinforcement learning (DRL) algorithm. This novel
DRL-based orientation estimation method guarantees bounded estimation errors
without the need for hyperparameter tuning. Experiments demonstrate its superior
performance compared to conventional methods, particularly in challenging scenar-
ios with inaccurate initial state estimates, imprecise filter gains, and non-Gaussian
noise environments.



xii Summary

The key contributions of this thesis include:

• A stable pushing approach that simplifies the optimization problem for nonholonomic
mobile bases.

• A maneuverable free pushing method that enhances agility while maintaining con-
tact.

• A reactive manipulation strategy leveraging differential flatness for efficient trajec-
tory planning.

• A reinforcement learning-based approach to improve state estimation accuracy.

In conclusion, this research significantly advances the capabilities of mobile robots
in handling unwieldy objects, bridging the gap between theoretical navigation planning
and practical applications in complex environments. The findings pave the way for future
research and broader applications of mobile robots in various domains, including logistics,
search and rescue, and autonomous inspections.
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Samenvatting

Dit proefschrift presenteert een diepgaande onderzoek naar de levering van onhandelbare
objecten met behulp van mobiele robots, met de nadruk op de uitdagingen en vooruitgang
in Navigatie Tussen Verplaatsbare Objecten (NTVO). Het onderzoek richt zich op kritieke
vraagstukken in robotmanipulatie, met name technieken als duwen, die essentieel zijn voor
het hanteren van objecten die moeilijk te grijpen zijn.

Het onderzoek is gestructureerd rond vier belangrijke onderzoeksvragen rondom
effectieve manipulatie bij duwbewegingen:

1. Hoe kunnen manipulatie door duwbewegingen uitgevoerd worden met beperkte en
onnauwkeurige bepalingen van de huidige configuratie:
We introduceren het concept van “stabiel duwen,” waarbij we ervoor zorgen dat
de robot het object altijd kan “vangen” tijdens transport. Het probleem van stabiel
duwen wordt vereenvoudigd tot een optimalisatieprobleem met een lineare voor-
waarde. Experimenten tonen aan dat deze aanpak beter presteert dan reactieve
duwstrategieën, waarbij de afgelegde afstand van de robot met 23,8% en de tijd met
77,4% wordt verminderd.

2. Hoe verbeter je duwmanipulatie wanneer het mogelijk is om de configuratie van de
robot nauwkeurig te bepalen:
We verbeteren de stabiele duwmethode tot een "vrije duwmethode"die meer man-
ouevres toestaat, waarbij veranderingen in de contactpunten worden toegestaan
om de bewegelijkheid van de manipulatie te verbeteren. Deze aanpak bereikt een
gemiddeld slagingspercentage van 83% met een nauwkeurigheid van 0,085m bij het
duwen naar geselecteerde doelen, wat een verbeterde wendbaarheid en efficiëntie
aantoont in vergelijking met stabiel duwen.

3. Hoe kan efficiente en realtime trajectoptimalisatie bereikt worden voor contactrijk
duwen:
Door de differentiële vlakheidseigenschap van het systeem te onderzoeken, wordt
het oorspronkelijke probleem betreffende het duwen van objecten vereenvoudigd,
waardoor de computationele complexiteit aanzienlijk wordt verminderd. Deze trans-
formatie zorgt voor een doeltreffende contact-impliciete planning die eenvoudig te
ontwerpen en op te lossen is, en robuust is tegen onzekerheden.

4. Is het mogelijk door middel van het fuseren van informatie uit verschillende sensoren,
een stabiele schatting te maken van de huidige configuratie:
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We integreren gegevens van meerdere sensoren en verbeteren de stabiliteit van de
klassieke Kalman Filter met behulp van een deep reinforcement learning (DRL) algo-
ritme. Deze nieuwe DRL-gebaseerde oriëntatieschattingsmethode garandeert gelimi-
teerde schattingsonnauwkeurigheden zonder dat handmatige hyperparametrizatie
bepaling nodig is. Experimenten tonen de superieure prestaties aan in vergelijking
met conventionele methoden, vooral in uitdagende scenario’s met onnauwkeurige
initiële configuratiesbepalingen, onnauwkeurige filterwinsten en niet-Gaussische
ruisomgevingen.

De belangrijkste bijdragen van dit proefschrift zijn:

• Een stabiele duwaanpak die het optimalisatieprobleem voor niet-holonome mobiele
bases vereenvoudigt.

• Een manoeuvreerbare vrije duwmethode die de wendbaarheid verbetert terwijl het
contact behouden blijft.

• Een reactieve manipulatiestrategie die gebruik maakt van differentiële vlakheid voor
efficiënte trajectplanning.

• Een op reinforcement learning gebaseerde benadering om de nauwkeurigheid van
configuratiesbepalingen te verbeteren.

Concluderend, dit onderzoek verbetert de mogelijkheden van mobiele robots bij het
hanteren van moeilijk hanteerbare objecten aanzienlijk, en overbrugt de kloof tussen
theoretische navigatieplanning en praktische toepassingen in complexe omgevingen. De
bevindingen banen de weg voor toekomstig onderzoek en bredere toepassingen van mo-
biele robots in verschillende domeinen, waaronder logistiek, zoek- en reddingsacties, en
autonome inspecties.
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2 1 Introduction

1.1 Motivation
Mobile robots have become integral to various autonomous tasks, including inspections,
monitoring, logistics, and search and rescue operations. Traditional autonomous navigation
approaches focus on safe movement and collision avoidance, but real-world scenarios often
present more complex challenges. Robots may need to navigate through cluttered rooms
or debris-blocked tunnels, requiring more than simple obstacle avoidance. These situations
demand the ability to interact with and reconfigure the environment (as shown in Fig. 1.1),
giving rise to the field of Navigation Among Movable Objects (NAMO) [1].

Current NAMO research primarily focuses on optimizing navigation costs by deter-
mining which objects to move and where to place them. Recent studies have explored
various aspects of NAMO optimization. Zhang et al. [2] focused on minimizing total time
cost in route planning. Considering social factors, Renault et al. [3] incorporated strategies
to reduce disturbance to humans during object placement. Additionally, researchers like
Wang et al. [4] and Meng et al. [5] investigated object properties such as movability and
affordance to inform decision-making processes in NAMO scenarios. However, a crucial
aspect is overlooked: how robots should interact with these objects and precisely deliver
them to the planned place.

In an attempt to address this gap, Wang et al. [6] combined navigation and interaction
planning in NAMO through Reinforcement Learning. However, learning a policy for
NAMO is a long-horizon task with sparse rewards which makes the NAMO policy learning
challenging. To simplify planning, Zhang et al. [2] proposed simple representations for
interaction actions, only assuming basic attach and detach actions. This approach, however,
ignores the complexities of object graspability, which depends on the object’s mass and
shape, as noted by Scholz et al. [7].

Obstacles encountered during navigation are often too heavy and unwieldy for effective
grasping. The limited payload capacity of robot arms presents another challenge. For
instance, the widely used Franka Panda has a maximum payload of just 3 kg. Therefore,
Ellis et al. [8] and Zherdev et al. [9] propose a method to push the object to the goal instead
of grasping them. Compared to grasping, pushing with the mobile base is more versatile
and cost-effective. However, these methods often consider only simple straight-forward
pushing, limiting object placement options and preventing optimization.

This research aims to tackle the key challenge in NAMO: how to effectively manipulate
obstacles. Our study explores a wide range of object manipulation techniques, focusing
particularly on efficiently pushing large, heavy objects using mobile robot bases. This
approach overcomes the payload limitations of robot arms, which often struggle with
heavy objects. Furthermore, it targets to expand the possibilities for object placement
and trajectory optimization beyond simple straight-line pushing. The completion of this
research will contribute to the NAMO field by enhancing mobile robots’ capabilities in
handling unwieldy obstacles. Consequently, this work will bridge the gap between the-
oretical navigation planning and its practical application in complex environments with
movable obstacles, paving the way for broader mobile robot applications.
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Figure 1.1: A Husky robot navigating a supermarket environment encounters baskets blocking
its path. To clear the way, it attempts to push the baskets aside before reversing to realign with
its predefined path.

1.2 Research questions
This thesis focuses on unwieldy object delivery using mobile bases, addressing the “how”
problem in Navigation Among Movable Objects (NAMO). Specifically, we explore nonpre-
hensile manipulation techniques, particularly pushing, which involve manipulating objects
without grasping them. This approach is more cost-effective and flexible than traditional
grasping methods, making it particularly suitable for mobile robots handling unwieldy
objects.

In robotic manipulation, particularly nonprehensile manipulation where objects are not
firmly grasped, accurate state estimation is crucial for effective action. This is especially
relevant for mobile base pushing, where the robot must continuously adjust its position
relative to the object, requiring a sequence of precise interactions. Our work addresses
the challenges of pushing manipulation with mobile bases by exploring four key research
questions:

1. How can we perform pushing manipulation with mobile bases when state estimation
information is limited or inaccurate?

Our first research question addresses the challenge of performing pushing manipulation
with a mobile base when state estimation is limited or unreliable. In such cases, ensuring
consistent and effective contact between the robot and the object is crucial. Mason [10]
introduced the concept of “stable pushing”, which maintains constant robot-object contact
to minimize repositioning and reduce dependence on state estimation. However, stable
pushing relies on the motion constraint at the contact point. Most commonly used mobile
bases are differentially-driven, inherently subject to nonholonomic constraints. When
these constraints are combined with those of stable pushing, they result in a complex set of
constraints in the optimization problem. So, how can we design a stable pushing method
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for nonholonomic mobile robots considering its nonholonomic constraint?

2. How can we improve pushing manipulation when accurate state estimation is
available?

Our second research question focuses on improving pushing manipulation when ac-
curate state estimation is available. While stable pushing benefits from reduced reliance
on state estimation during the process, it suffers from limited object mobility due to the
need to maintain stiff contact. To enhance pushing agility, planners that allow relative
sliding between the robot and object [11–14] have been proposed. These methods utilize
varying contact modes (sticking, right-slide, and left-slide) to apply the necessary pushing
force on the object. However, executing these planned pushes on real robot platforms may
sometimes prove unreachable due to the robot’s kinematic limitations [11]. So, how can
we design a more maneuverable pushing approach while still ensuring the feasibility of
the plans?

3. How can we achieve efficient, real-time global trajectory optimization for contact-
rich pushing?

The underactuated nature of nonprehensile manipulation systems often leads local
controllers to become trapped in suboptimal solutions, necessitating global trajectory
planning. Unlike stable pushingwith its fixed contact point, moremaneuverable approaches
allow for dynamic contact point changes during manipulation. To plan for the contact
changes, existing methods frequently rely on computationally intensive techniques [15] or
are limited to short-horizon tasks [14], rendering them impractical for real-time applications.
The complexity is primarily due to the highly nonlinear dynamics involved, giving rise to
our third research question: How can we simplify the planning for contact-rich pushing to
overcome these limitations and enable efficient, real-time global trajectory optimization?

4. How can we estimate the states robustly through sensor fusion?

The fundamental challenge of state estimation in nonprehensile manipulation remains
crucial for ensuring effective robot-object interactions. This challenge is twofold, necessi-
tating accurate estimation of both the robot’s and the object’s state. To enhance estimation
accuracy, we often employ sensor fusion, integrating data from multiple sensors. This
critical aspect leads to our fourth research question: How can we achieve robust state
estimation through the effective fusion of data from diverse sensor sources to improve the
overall performance and reliability of nonprehensile manipulation systems?



1.3 Contributions

1

5

1.3 Contributions
To solve the research questions proposed in Section. 1.2, several contributions are made in
this thesis:

A Stable Pushing Approach for Unwieldy Object Delivery with Nonholonomic
Mobile Base: We propose a stable pushing method for the nonholonomic mobile base
pushing problem that maintains stiff contact between the robot and the object to minimize
repositioning actions and reduce the reliance on state estimation. We prove that a line
contact, rather than a single point contact, is necessary for nonholonomic robots to achieve
stable pushing. We also show that the stable pushing constraint and the nonholonomic
constraint of the robot can be simplified as a concise linear motion constraint. Then, the
pushing planning problem can be formulated as a constrained optimization problem using
nonlinear model predictive control (NMPC). According to the experiments, our NMPC-
based planner outperforms a reactive pushing strategy in terms of efficiency, reducing the
robot’s traveled distance by 23.8% and time by 77.4%. Furthermore, our method requires
four fewer hyperparameters and decision variables than the Linear Time-Varying (LTV)
MPC approach, making it easier to implement. Real-world experiments are carried out to
validate the proposed method with two differential-drive robots, Husky and Boxer, under
different friction conditions.

A Maneuverable Free Pushing Approach with Contact Point Changing: A more
maneuverable push approach, “free pushing”, is proposed that allows the transportation of
objects using mobile bases while considering the feasibility of the plans. Unlike previous
stable pushing methods, which maintain a stiff robot-object contact, our approach uses the
state estimation information of the object and allows the robot to maneuver around the
object while pushing it. It aims to execute continuous pushes without losing contact for
improved pushing maneuverability. Additionally, to ensure the feasibility of the planned
pushes, a robot-object contact model is developed to account for the shape and kinematics
of the robot in pushing modeling and planning. A Model Predictive Controller solves
the pushing planning problem in real-time. Experimental results show that the proposed
method achieves an average success rate of 83% with an accuracy of 0.085m when pushing
to the selected goals. Compared to the stable pushing method, this approach improves the
agility and efficiency of mobile pushers. Furthermore, it is robust in achieving the task
while tolerating modeling errors.

Nonprehensile Planar Manipulation via Differential Flatness: The planning and
control of nonprehensile manipulation are notoriously difficult due to the hybrid nature
of contact dynamics. Instead of solving the planning problem directly, we exploit the
differential flatness property of the pushing system to model its dynamics in a simplified
form. With the differential flatness property, we are able to transform the manipulation
problem into a simpler trajectory planning task, thus achieving significant reductions in
computational complexity. The proposed method has the following advantages compared
to the other methods: 1) It is simple to design, fast to solve, and robust to uncertainties. 2)
Unlike other approaches, it has the advantage of simplicity with only one parameter to
tune. No learning or extra tactile sensors are required. 3) The global planner extends the



1

6 1 Introduction

usage of the free-pushing controller even in cluttered environments.

Reinforcement Learning Compensated Extended Kalman Filter for State Esti-
mation: To achieve better state estimation results under nonprehensile manipulation, we
get the state estimation by fusing the observation from multiple sensors. Furthermore, we
improve the robustness of the classic Kalman Filter with a deep reinforcement learning
(DRL) algorithm. The convergence of state estimation errors is proved with Lyapunov’s
method in control theory. Based on the theoretical results, the estimator gains and a
Lyapunov function are parametrized by deep neural networks and learned from samples.
However, in this thesis, the proposed method is only tested in an attitude estimation task
using Inertial Measurement Units (IMU) sensors. The extension to the state estimation task
in nonprehensile manipulation is left as our future work. The proposed DRL estimator
is compared with three well-known orientation estimation methods on both numerical
simulations and real datasets. The results show that the proposed algorithm is superior for
arbitrary estimation initialization and can adapt to very large velocities for which other al-
gorithms can hardly be applicable. To the best of our knowledge, this is the first DRL-based
orientation estimation method with an estimation error boundedness guarantee.

1.4 Outline
Figure 1.2 outlines the structure of the thesis. Chapter 2 reviews related works in unwieldy
object delivery using mobile robots and sensor fusion techniques. Chapter 3 presents a
stable pushing approach for scenarios where state estimation information is incomplete
or unavailable. Chapter 4 introduces a more maneuverable free pushing method, which
demonstrates improved pushing agility but requires constant, accurate state estimation
of the object. Chapter 5 extends the free pushing method by exploiting its differential
flatness property, simplifying the complex manipulation planning problem into a trajectory
optimization problem for the object. Chapter 6 showcases improved state estimation results,
proposing and testing a Deep Reinforcement Learning (DRL)-based state estimation method
for attitude estimation fusing IMU sensor data. Finally, Chapter 7 concludes the thesis and
provides recommendations for future research.
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Figure 1.2: Structure of this thesis.
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In this chapter, we summarize related works in two main research fields connected to
this thesis topic: nonprehensile pushingmanipulation and sensor fusion for state estimation.

2.1 Nonprehensile pushing manipulation
In the class of nonprehensile manipulation, pushing received the most attention for its
high flexibility and efficiency in completing a task [16–18]. Pushing with robot arms has
been extensively studied [13, 19, 20]. However, the delivered object may sometimes be
either too heavy or too large for the robot arm to grasp. In this case, one option is to
manipulate the object by pushing it with the robot arm [21]. Alternatively, the robot base
can push the object. Although there are some works that have studied pushing with robot
arms, research on pushing with mobile robots is still limited. This thesis focuses on the
nonprehensile pushing manipulation for unwieldy object delivery with mobile bases.

2.1.1 Reactive manipulation

Considering the difficulty in modeling the contacts, early research uses some reactive
manipulation approaches. Nieuwenhuisen et al. investigated reactively push objects along
the environment boundaries in [18, 22]. Compliance was used as an aid to push the object
and to compensate for uncertainty under contact. This approach also simplified the problem
of pushing in cluttered environments, eliminating the need to find feasible paths in free
space. However, the method was limited to disk-shaped pushers and objects and could
only be applied in environments with smooth boundaries, which are rare in the real world.

To achieve practical pushing performance, Krivić et al. proposed new reactive con-
trollers [23, 24]. Their basic idea was to keep the robot, object, and goal in a line to push
the object toward the goal. Adaptive proportional controllers were employed to deliver
the object along these pre-defined trajectories. Nevertheless, the method was limited to
pushing small-sized objects with circular or point-sized robots, making it easy to reposition
around the object to change the pushing direction. The method was improved to deal
with obstacle avoidance while delivering the object by proposing a pushing corridor [25].
However, the physical feasibility of the planned trajectory was not ensured. Furthermore,
their numerous parameters and inherent model uncertainties made tuning difficult.

Alternatively, manipulation can be managed by reactively sampling actions according to
predictive models [26–28]. Experimental models are first obtained regarding how pushable
real-world objects with complex 3D structures move in response to various pushing actions.
Then, a rapidly-exploring random tree (RRT) based planner uses past pushing experiences
to construct achievable and collision-free pushing plans [26]. Besides experimental models,
Pezzato et al. [27] directly use the physical simulator as the predictive model and introduce
a sampling-based MPC method that samples input sequences for varied pushing sequences.
While these sampling-based approaches mitigate optimization challenges with non-convex
constraints and discontinuous dynamics, they require substantial computational resources
due to parallel sampling of numerous trajectories.

To avoid heavy computational burden, sampling methods are also used to sample
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contact modes to achieve trajectories with longer horizons [29, 30]. Doshi et al. [15]
developed a search tree with a predefined depth to handle a fixed number of contact
mode switches. However, as the number of potential contact modes increases, so does the
search complexity. These methods often focus on basic manipulation motions, such as
pushing centrally or forward, leading to frequent failures and inefficient trajectories due
to numerous repositioning actions. Zito et al. [31] expanded the search tree by applying
random control inputs, guiding the system towards randomly selected points until the goal
is reached. Despite its flexibility, this approach does not guarantee plan optimality and
depends on the discretization level of control inputs, requiring more extensive searches
with finer discretization.

Recent efforts have applied deep learning to nonprehensile planar manipulation, aiming
to learn the physics of manipulation [26, 32]. These approaches help manage irregular
objects with complex dynamics but struggle to generalize across different objects, necessi-
tating retraining for even minor differences. Reinforcement learning methods have been
employed to develop manipulation policies through trial and error without pre-learned
dynamics models [33]. These are particularly useful for cluttered environments with
location-based attention mechanisms [34]. However, the extensive training required, along
with the need for retraining when the scene changes, limits their practicality. Additionally,
slight variations in objects or environments can significantly impact the robustness of
these methods.

However, all the aforementioned research assumes the use of omnidirectional mobile
robots, which can freely move around the object to achieve the planned pushing actions.
For widely-used differential drive robots, limited research has been conducted, as the
nonholonomic constraint hinders their ability to smoothly push around the object, making
pushing planning more complex. This will be the main research focus in Chapters 3 and 4.

2.1.2 Pushing with a stiff contact

In addition to the motion constraints, a significant challenge in robot pushing is the
uncertainty about the object’s pose after each action [35]. The methods discussed above
rely on reactive actions taken after observing the resulting motion of the pushed object.
The robot pusher and the object strive to maintain an equilibrium configuration to continue
moving together, resembling a “catching” action during navigation [36]. Thus, the crucial
aspect of designing a push/navigation controller is ensuring the stability of this “catching”
action.

The concept of stable pushing, which establishes a predictable stiff contact between the
robot and the object, was proposed based on the mechanics of planar sliding [37]. This idea
has been widely used in the field of pushing manipulation, as demonstrated in [12, 38]. In
Chapter 3, we also adopt the concept of stable pushing and propose a method that enables
a differential-drive robot to push an object without losing contact.

The most related methodology is proposed by Bertoncelli et al. [39], where a Linear
Time-Varying (LTV) MPC is used for mobile robots to push an object along a given path.
Stable pushing is achieved by optimizing for both the pushing force and the robot control
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inputs, which explicitly imposes friction cone constraints. However, we found that it was
computationally expensive to solve this optimization problem due to the additional decision
variables and constraints. Furthermore, it is not even solvable with commercial solvers such
as ACADOS [40]. To address this, a reference trajectory and supplementary linearization
are essential components in the solution process. In contrast, our proposed method in
Section 3 implicitly constrains the stiff robot-object contact by deriving a concise motion
constraint for the robot control input, making it easier to implement. The validation of the
proposed method is also shown in both simulation and real-world experiments.

2.1.3 Model predictive control

Although pushing with a stiff contact can reduce uncertainty under manipulation and thus
simplify planning for pushing, the fixed contact also limits the range of pushing forces that
can be transmitted, thereby restricting the system’s maneuverability. It is worth exploring
the pushing mechanics and designing a more flexible pushing approach to adapt to more
complicated application scenarios.

The challenges in modeling pushing and implementing it within a controller arise
from its inherent discontinuities, characterized by (1) transitions between different contact
modes (sliding up, sticking, and sliding down) caused by friction, and (2) sudden changes
in system dynamics upon contact.

Various solutions have been proposed in the literature to address the problem posed
by its discontinuous feature. One approach uses a hybrid model to represent pushing
dynamics in different contact modes [13] and employs a mixed-integer program that
optimizes both the discrete contact mode sequence and continuous control actions. On the
contrary, contact is represented as a complementarity constraint, implicitly planning for
contact modes [14, 41]. However, solving a mixed-integer optimization problem or finding a
solution for trajectory optimization with complementarity constraints are computationally
challenging, especially as the size of the discrete decision variables increases. Therefore,
continuous relaxations are often used to simplify the problem. For example, continuous
pushes are planned without losing contact with the object in [13], while [41] assumes
frictionless contact between the robot and the object.

In addition to using continuous approximations, it is recognized that even accurate
analytical dynamics models for pushing are inherently unstable because physics parameters
such as inertia and friction can only be approximated [42]. Furthermore, friction parameters
may gradually vary over large surfaces, which is hard to model [43]. Thus, simplified
models are commonly used instead of seeking an accurate dynamics model, accompanied by
real-time control strategies to fill the gaps in model simplification. For instance, ellipsoidal
approximation of the limit surface together with the quasi-static interaction assumption
has been widely used in robot-pushing applications [12, 15, 44]. This approximation is
relatively accurate in determining whether slippage will occur [45], but it cannot quantify
the relative motion between the robot and the object. In contrast, a simplified object
dynamics model is used to predict the relative motion in [46]. While it plans for the optimal
contact force, contact point, and robot control input using two separate model predictive
control frameworks, it does not guarantee that the planned contact points are reachable.
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A dynamics model for pushing manipulation is preferred to be able to predict the
relative motion between the robot and the object such that feasible push plans can be
predicted. Considering pushing with robots of different sizes results in distinct object
motions and contact point trajectories. Previous work, such as [47, 48], has studied high-
level path planning for large-sized disk-shaped robots and objects but has not provided
a low-level control approach to achieve the planned path. As Rigo concluded in [46],
following the pushing trajectory is equivalent to following the contact point sequence.
However, the nonholonomic constraint of a differential-drive robot limits its ability to
reach planned contact points. Therefore, planning achievable contact point sequences is
critical to the success of push manipulation, which will be researched in Chapter 4.

2.2 Sensor fusion for state estimation
State estimation is crucial in robotics and human motion analysis [49–51]. Recent advance-
ments in sensor technology have significantly improved state estimation accuracy. Sensor
fusion, which combines data from multiple sensors, is commonly used to estimate object
states more robustly. Various sensor combinations have been explored, such as inertial
measurement units (IMU) with magnetometers [52–54], magnetometers with cameras [55],
and IMUs with visual sensors [56, 57]. This thesis focuses on orientation estimation using
inertial sensors and magnetometers.

Orientation estimation algorithms can be summarised into three categories: (1) Bayesian
estimation, (2) optimisation and (3) deep learning. In Bayesian estimation, the well-known
extended Kalman filter (EKF) and the unscented Kalman filter (UKF), were used to estimate
the orientation [52, 53, 58]. The key idea is to approximate the states by a Gaussian
distribution based on the linearisation technique and the deterministic sampling technique,
respectively. Furthermore, the complementary filter was developed based on the EKF,
which exploits the complementary characteristics of gyroscopes and that of accelerometer
and magnetometer at different time scales [54]. In optimisation, the orientation estimation
is obtained based on gradient-based optimisation algorithms [59, 60]. Until recently, deep
learning was introduced to estimate the orientation [61], in which a deep neural network
is trained to mimic the noise distribution of gyroscopes such that accurate orientation
estimates can be obtained by open-loop integration of the noise-free gyro measurements.
These algorithms showed superior estimation performance empirically. However, the
performance can not be theoretically guaranteed, i.e, the orientation estimate error never
diverge. In this chapter, we will employ Lyapunov’s method in control theory to prove the
estimation error boundedness guarantee using samples. Based on the theoretical result,
we will develop a reinforcement learning (RL) based algorithm to learn the estimator from
samples.

RL was first applied for state estimation in [62]. Motivated by this work, we plan to
develop an RL algorithm to learn the estimator gain using samples while the orientation
estimator remains the structure of conventional EKF. The key idea is, the estimator gain
will be approximated by a deep neural network (DNN) as a function of the sequence of
estimate errors. Different from other popular RL algorithms [63–65], the value function
will be treated as a Lyapunov function used to guarantee the estimation performance.
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Lyapunov’s method has been widely used as a basic tool for stability analysis in control
theory [66]. To analyze the stability, the key is to find a scalar “energy-like” Lyapunov
function for the considered system such that the derivative/difference of Lyapunov function
along the state trajectory is semi-negative definite. Nonetheless, the construction/learning
of the Lyapunov function is not trivial. In [67], a straightforward approach is proposed
to construct the Lyapunov function for nonlinear systems using DNNs. Recently, the
asymptotic stability in model-free RL is given for robotic control tasks in [68]. Inspired
by the works [67, 68], we will also parameterise the Lyapunov function as a DNN and
learn the parameters from samples. Thereafter, a soft actor-critic (SAC) like algorithm
[65] that incorporates the Lyapunov boundedness condition in the objective function to
be optimised is proposed. By using the learned estimator gain, the estimate error of the
orientation estimator is guaranteed to be bounded all the time.

In this thesis, we combine Lyapunov’s method and DRL to design a state estimator with
estimation error boundedness guarantee for orientation estimation. Furthermore, we try to
combine reinforcement learning (RL) with the classic EKF to design a tuning-free estimation
algorithm insensitive to inaccurate initial state estimate and filter gain. It leverages the
merits of both data-driven RL and model-based probabilistic methods instead of only using
RL to train the filter gain [69].
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A stable pushing approach for
unwieldy object delivery with

nonholonomic mobile base

Parts of this chapter appeared in:

• Y. Tang, H. Zhu, S. Potters, M. Wisse, W. Pan, “Unwieldy Object Delivery With Nonholonomic Mobile
Base: A Stable Pushing Approach,” IEEE Robotics and Automation Letters, vol. 8, no. 11, pp. 7727-7734,
Nov. 2023.
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In this chapter, we present a novel stable pushing approach for mobile robots to deliver
objects while maintaining a stiff contact between the robot and the object. This method
significantly reduces the risk of losing the object during transport, thereby decreasing
reliance on robust state estimation. The key challenges we address are twofold: 1) formu-
lating a constraint within the planning optimization problem that ensures a stable contact,
and 2) accounting for the nonholonomic constraints of the mobile base. Building upon
extensive research in pushing mechanics, we derive a concise linear motion constraint for
stable pushing with differential-drive mobile robots. Our approach is easily implementable
within existing robot navigation frameworks and achieves a high success rate in real-world
applications.

3.1 Introduction
With mobile robots increasingly being used, there are various scenarios in which the robots
are expected to perform additional delivery tasks while maneuvering, for example, a robot
conveying a package in a warehouse. In this regard, mobile robots equipped with robot
arms have become progressively popular. However, the delivered object may be sometimes
unwieldy, either too heavy or too large, for the robot arm to grasp. In this case, one option
is to manipulate the object by pushing it with the robot arm [21]. Alternatively, the robot
can push the object, as shown in Fig. 3.1. Without a robot arm, pushing with the robot
expands its manipulation repertoire, making it not just a mobile base. Moreover, it reduces
the cost, space, and payload by eliminating the robot arm [70].

Research on pushing with mobile robots is still limited, though pushing with robot arms
has been extensively studied [13, 19, 20]. Mobile robots have nonholonomic constraints
that restrict their ability to freely reach various planned contact points. As a result, the
pushed object is prone to sliding away, requiring time-consuming and effort-consuming
repositioning actions to restart pushing. To address this challenge, [36] proposed stable
pushing, which involves maintaining a stiff robot-object contact to prevent frequent reposi-
tions. The object is effectively rigidly relative to the pusher, and the push is called a stable
push [71]. This approach can reduce the risk of losing control over the object resulting in
improved efficiency.

As concluded in [44], stable pushing with a single-point contact can be reducible to
the Dubins car problem, where the sticking contact constraint is translated to bounded
curvatures of the object’s trajectory, represented as a motion cone for the object. However,
we extend this conclusion by proving that stable pushing is not achievable for a differential-
drive mobile robot pushing with a single-point contact, due to the limited friction cone
and the nonholonomic constraint of the robot. It can not provide enough friction force
to maintain a stiff robot-object contact. As a follow-up study to [44], we introduce a line
contact to make stable pushing possible where a larger friction cone can be provided. Based
on it, we prove that the stable pushing constraint and robot nonholonomic constraint
can be combined as a linear motion constraint on the robot’s control input, which greatly
simplifies the pushing planning problem compared to [39], as the stable pushing can be
guaranteed implicitly with the control constraint.
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(a) (b)

Figure 3.1: The wheeled mobile robots (Clearpath Husky and Boxer) push a paper box with
and without collision avoidance to the goal position. The blue box in (a) indicates the obstacle.
Transparency of the robots and box indicates their movement.

We formulate the goal-conditioned stable pushing problem as a constrained optimiza-
tion problem by employing Nonlinear Model Predictive Control (NMPC). Our NMPC
planner with the concluded motion constraint guarantees that the object’s motion is within
the motion cone for stable pushing and the physical limitation of the robot is met. Ad-
ditionally, it can be readily adapted to an obstacle-aware planner by including collision
avoidance constraints (see the blue box in Fig. 3.1a), which do not introduce additional
complexity.

The main contributions of this chapter can be summarized as follows:

• We first propose a stable pushing approach for nonholonomic mobile robots that
maintains a stiff robot-object contact so that the need for frequent repositioning
actions can be minimized.

• We then derive a concise linear motion constraint to simplify the stable pushing one
in [39] and develop an algorithm that is easier to be implemented with commercial
solvers.

• Lastly, we evaluate the proposed method through real-world experiments using
wheeled mobile robots (Clearpath Husky and Boxer) that showed significant reduc-
tions in traveled distance and time.

3.2 Preliminaries
Throughout this chapter, scalars are denoted by italic lowercase letters, e.g., 𝑥 , vectors
by bold lowercase, e.g., 𝐱, matrices by plain uppercase, e.g., 𝐴, and sets by calligraphic
uppercase, e.g., . The superscript 𝐱⊤ or 𝐴⊤ denotes the transpose of a vector 𝐱 or a matrix
𝐴. Denote by {}, {}, and {}, the global world frame, the robot body frame, and the
object body frame, respectively.
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3.2.1 Robot dynamics model

Consider a nonholonomic differential-drive robot. Let 𝐱r_e = [𝑥r,𝑦r,𝜃r, 𝑣r,𝜔r]⊤ ∈ ℝ5 denote
the extended robot state vector, where 𝐩r = [𝑥r,𝑦r]⊤ represents the robot position (the
geometric center of its four wheels) in the world frame {}, 𝜃r its orientation and 𝑣r and 𝜔r
its linear and angular velocities referring to the world frame, as shown in Fig. 3.4. Denote
by 𝐮r = [𝑎r, 𝜉r]⊤ ∈ ℝ2 the robot’s control input vector, in which 𝑎r and 𝜉r are its linear and
angular accelerations, respectively. The robot dynamics are described by the following
nonlinear differential equations [72]:
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which can further be written in a nonlinear discrete form 𝐱𝑡+1r_e = 𝐟r(𝐱𝑡r_e,𝐮𝑡r), where 𝑡 ∈ℕ
denotes the time step.

The robot velocity expressed in the robot frame is 𝐯r = [𝑣r,0]⊤. By transforming it
into the world frame, we can achieve

𝐯r = 𝑅
𝐯r = [

cos𝜃r −sin𝜃r
sin𝜃r cos𝜃r ][

𝑣r
0] , (3.2)

where 𝑅 represents the rotation matrix that transforms from the robot frame, , to the
world frame, .

3.2.2 Quasi-static pushing

Pushed by the mobile robot, the object slides with friction interaction with both the
ground and the robot. The friction interaction is assumed to conform to Coulomb’s law.
A quasi-static assumption is made here that the motion of the system is slow and the
wrenches are balanced with negligible inertia effects. Then, a force-motion mapping can
be given according to the Limit Surface theory proposed in [73]. All the possible static and
sliding friction wrenches form a convex set whose boundary is called limit surface. Under
the uniform pressure distribution, the limit surface is a closed convex surface and can be
approximated by an ellipsoid [74]. In this case, the applied push wrench that quasi-statically
balances the friction wrench has:

𝐰⊤
p𝐻

𝐰p = 1, (3.3)

in which 𝐻 = diag( 1
(𝜇g𝑁o)2

, 1
(𝜇g𝑁o)2

, 𝛾 2g
(𝜇g𝑁o)2

), where 𝐰p = [𝑓p,𝑥 ,𝑓p,𝑦 ,𝜏p]⊤ ∈ ℝ3 denotes
the wrench applied by the pusher that quasi-statically balances the friction wrench exerted
by the ground planar surface, the left super-script ⋅ represents variables in the object body
frame. The friction coefficient between the object and the ground planar surface is denoted
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Figure 3.2: Illustration of the possible center of rotation. The circle and the rectangle represent
the robot and the object in a 2D plane. The grey area and the blue arrows respectively indicate
the friction cone and its edges. The orange line indicates the set of rotation centers of the object
under stable push. While the green line is the robot’s common left and right wheel axis and the
line of its possible rotation centers. In (a), the object is pushed by an omni-directional pusher
with a point contact. The set of its possible rotation centers lies on the orange line. In (b), the
object is pushed by a nonholonomic robot with its rotation centers on the green line. However,
there is no overlap between the possible rotation center of the wheeled robot and the object
under this contact configuration. The red bricks, connected by grey dashed lines, represent the
wheels of a car model in Dubin’s car problem.
as 𝜇g, 𝑁o represents the gravity of the object, and 𝛾g is an integration constant related to
the contact surface area 1.

The friction wrench is a point on the limit surface when the object is sliding. Moreover,
the direction of the object’s twist 𝐯o = [𝑣o,𝑥 ,𝑣o,𝑦 ,𝜔o]⊤ ∈ ℝ3 is given by the normal to
the limit surface at that point [73]. Hence, there is:

𝐯o ∝
𝜕

𝜕𝐰p
(𝐰⊤

p𝐻
𝐰p) ∝ 𝐻𝐰p. (3.4)

3.2.3 Dubins car model with a single-point contact pusher

As concluded in [44], stable pushing with a single-point contact can be reducible to the
Dubins car problem [75]. As shown in Fig. 3.2a, a round pusher pushes a rectangle shaped
object at point 𝐶 with a pushing force 𝐟p = [𝑓p,x, 𝑓p,y], which is limited within the friction
cone. The resulted twist of the object, 𝐯o, can be represented as an instantaneous center
of rotation 𝐼𝑅𝐶 = [𝑣o,𝑥/𝜔o,𝑣o,𝑦/𝜔o].

1𝛾g =
𝐴(g)s

g
√

𝑥2+𝑦2𝑑𝑥𝑑𝑦
, where g is the contact patch between the object and the ground planar surface, and

𝐴(g) its area.



3

20 3 A stable pushing approach for unwieldy object delivery with nonholonomic mobile base

Given a pushing force 𝐟p at contact point 𝐶, the distance from the object frame
origin 𝑂𝑜 to the line of force is 𝑟f =

|𝑥c𝑓p,x|√
𝑓 2p,x+𝑓 2p,y

. According to the limit surface theory,

distance from the center of rotation to the origin is inverse-proportional to 𝑟f, that is,

𝑟f =
√

𝑣2o,𝑥+𝑣2o,𝑦
𝑣2o,𝜔

= 𝛾 2g
𝑟f
.

It is demonstrated in [44], as in Projective Geometry, the dual of the line of pushing
force 𝐟p about the origin 𝑂𝑜 is the instantaneous center of rotation, 𝐼𝑅𝐶. So the dual of
𝐟𝑝 in all directions forms a line, as a set of all the possible instantaneous rotation centers,
which is perpendicular to the vector from the origin to the contact point, represented as
the dashed orange line, 𝑙1, in Fig. 3.2a. But due to the friction cone constraint, the rotation
center will not be positioned on the line segment 𝑍𝑙𝑍𝑟 whose two vertices correspond to
the pushing force along the edge of the friction cone.

In other words, the stable pushing constraint is translated to a bounded curvature of
the object, which makes the stable pushing planning a Dubins car problem, as depicted
in Fig. 3.2b. However, [44] only considers the omnidirectional pushers. If we take a
differential-drive wheeled robot as the pusher, the robot can only rotate about a point
that lies along its common left and right wheel axis [76], as shown in Fig. 3.2b. There
comes the contradiction that the shared rotation center of the robot and the object can
only be the intersection of 𝑙1 and 𝑙2, which means the robot and the object can only move
together straightly forward or rotate around the intersection point of the two lines of
rotation centers to maintain stable pushing.

3.3 Sticking contact constraint
As shown in Section.3.2.3, the maneuverability of the pushing system with a single-point
contact is greatly restricted by using a nonholonomic rectangular mobile base. We focus
on pushing with line contact to improve maneuverability under stable pushing. Due to the
complexity of directly imposing the friction cone constraint, we instead derive a simplified
linear motion constraint tailored for the differential drive robot. This approach allows us
to solve the stable pushing problem effectively. The Clearpath Husky and Boxer robot are
used here, as shown in Fig. 3.1. The schematic of the pusher-slider system can be found in
Fig. 3.4.

3.3.1 Graphical derivation

Building upon the derivation for point contact based on the graphical approach presented in
Section.3.2.3, we extend it to the line contact case, as depicted in Fig. 3.3. The line contact can
be simplified as two point contacts at the extreme points [77], 𝐶i = [−𝑊o/2,𝑑i], 𝑖 ∈ {1,2}.
The pushing force at contact points is denoted by 𝐟p,𝑖 = [𝑓 L

p,𝑖, 𝑓 R
p,𝑖]𝑇 ∈ ℝ2, including two

components along the two edges of the friction cone. To ensure stiff contact between the
robot and the object, the pushing forces, 𝐟p,𝑖, are limited within the friction cone.

A total generalized force, 𝐟p = [𝑓 L
p , 𝑓 R

p ] ∈ ℝ2, and a corresponding generalized contact
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Figure 3.3: Graphical demonstration for the sticking contact constraint. The intersection of the
robot’s and object’s possible rotation center lies on the green lines.

Figure 3.4: Schematic of the robot-object pushing system.

point, 𝐶 = [−𝑊o/2,𝑑],𝑑 ∈ [− 𝐿o
2 ,

𝐿o
2 ], can be found, which are equivalent to the two

pushing forces, 𝐟p,𝑖, 𝑖 ∈ 1,2, ensuring that the contact wrench exerted by the generalized
force, 𝐰p, matches that of the pushing forces, 𝐰p,1 and 𝐰p,2: 𝐰p = 𝐰p,1+𝐰p,2.

The generalized contact point shifts on the line segment 𝐶1𝐶2, causing a tilt in the line
of rotation centers 𝑙 (for details, please refer to [44]). Consequently, this tilted 𝑙 intersects
with the wheel axis of the robot, as illustrated in Fig. 3.3. Under the friction cone constraint,
all the possible intersections form the line segment [−∞,𝑅l] and [𝑅r,+∞]. Obviously, the
sticking constraint is transformed to a constrained motion set for the robot-object system.

3.3.2 Algebraic derivation

Now we derive the constrained motion set boundary using an algebraic approach.

The friction cone of the pushing force is

p,𝑖 = {𝐟p,𝑖 ∈ ℝ2 | 𝑓 L
p,𝑖 > 0, 𝑓 R

p,𝑖 > 0}, 𝑖 = 1,2. (3.5)

Equivalently, the friction cone on 𝐟p,𝑖 can bewritten in a form of 𝐟p,𝑖 = 𝜆1,𝑖 [
1
0]+𝜆2,𝑖 [

0
1] | 𝜆1,𝑖,𝜆2,𝑖 > 0
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where 𝜆1,𝑖,𝜆2,𝑖 are non-negative real numbers [78]. For each feasible friction force 𝐟p,𝑖 ∈ p,𝑖,
it generates a wrench 𝐰p,𝑖 = 𝐽p,𝑖𝐟p,𝑖 with 𝐽p,𝑖 the matrix that maps the contact friction force
to a pusher wrench in the object’s body frame.

𝐽p,𝑖 =
⎡
⎢
⎢
⎣

cos(𝜃𝜇) cos(𝜃𝜇)
sin(𝜃𝜇) −sin(𝜃𝜇)

𝑑𝑖cos(𝜃𝜇)+ 1
2𝑊osin(𝜃𝜇) 𝑑𝑖cos(𝜃𝜇)− 1

2𝑊osin(𝜃𝜇)

⎤
⎥
⎥
⎦

(3.6)

The friction cones on the contact points lead to the wrench cone. For each friction
cone p,𝑖, 𝑖 = 1,2, pusher wrenches 𝐰L

p,𝑖 and 𝐰R
p,𝑖 corresponding to the two-unit edges

𝐟Lp,𝑖 = [0,1]⊤ and 𝐟Rp,𝑖 = [1,0]⊤, gives the edges of the wrench cones, as shown in Fig. 3.5b.

p,𝑖 = {𝐰p,𝑖 = 𝐽p,𝑖𝐟p,𝑖 | 𝐟p,𝑖 ∈ p,𝑖}, 𝑖 = 1,2. (3.7)

where
𝐰p,𝑖 = 𝜆1,𝑖𝐰L

p,𝑖+𝜆2,𝑖𝐰R
p,𝑖

=
⎡
⎢
⎢
⎣

𝜆1,𝑖cos(𝜃𝜇)+𝜆2,𝑖cos(𝜃𝜇),
𝜆1,𝑖sin(𝜃𝜇)−𝜆2,𝑖sin(𝜃𝜇),

𝜆1,𝑖(𝑑𝑖cos(𝜃𝜇)+ 1
2𝑊osin(𝜃𝜇))+𝜆2,𝑖(𝑑𝑖cos(𝜃𝜇)− 1

2𝑊osin(𝜃𝜇))

⎤
⎥
⎥
⎦
.

(3.8)

Then the generalized wrench of the two pushing forces is
𝐰p = 𝜆3𝐰p,1+𝜆4𝐰p,2

= 𝜆3(𝜆1,1𝐰R
p,1+𝜆2,1𝐰L

p,1)

+𝜆4(𝜆1,2𝐰R
p,2+𝜆2,2𝐰L

p,2)

(3.9)

where 𝜆𝑗 > 0, 𝑗 = 3,4. Since 𝜆1,𝑖𝜆𝑗 > 0, the feasible set of the generalized wrench in Eq. (3.9)
can be represented as a convex hull p, as shown in Fig. 3.5c.

p = cvx_hull(𝐰L
p,1,

𝐰R
p,1,

𝐰L
p,2,

𝐰R
p,2) (3.10)

As mentioned in Eq. (3.4), the limit surface theory gives the mapping of the pushing force
and the resulting object sliding motion. The direction of the object’s twist is parallel to
𝐻𝐰p. Combining with Eq. (3.7), we can write all possible twists o = [𝑣o,𝑥 ,𝑣o,𝑦 ,𝜔o]⊤
of the object as:

o = {𝑘o𝐻𝐰p | 𝐰p ∈ p, 𝑘o ∈ ℝ+}, (3.11)
where 𝑘o is a magnitude parameter.

For all pusher wrenches 𝐰p ∈ p that are on the ellipsoidal limit surface, the set of
mapped object twists o is also a polyhedral cone since the mapping in Eq. (3.11) is linear.
Thus, we can compute the motion cone o by computing its edges, as shown in Fig. 3.5d.

Additionally, since the object is pushed by the robot, which has a linear velocity 𝑣r and
angular velocity 𝜔r, without losing or sliding the contact, we have the object velocity

𝐯o = 𝐯r+𝑅 ⋅ (𝜔r𝜔r𝜔r ×𝐱o)(1∶2) (3.12)
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(a) (b) (c) (d) (e)

Figure 3.5: Illustration of themotion cone construction for planar pushing using a nonholonomic
robot. (a) Friction cones. (b) Individual generalized friction cones. (c) Convex hull of the
individual generalized friction cones (blue region) and the limit surface (light purple ellipsoid).
(d) Feasible pusher wrenches (on the green surface) and force-motion model (orange vectors).
(e) Motion cone of the object (area marked red).

where 𝐱o = [𝑑ro,𝑦o,0]⊤ denotes the object position in the robot frame and𝜔r𝜔r𝜔r = [0,0,𝜔r]⊤
corresponds to the pure rotation velocity vector of the robot. The subscript (1:2) indicates
taking the first two dimensions of the vector.

After substituting Eq. (3.2) in Eq. (3.12), the velocity of the object expressed in the
object frame can be achieved by multiplying 𝑅−1

 at both sides of Eq. (3.12), which yields:

𝑣o,𝑥 = 𝑣r−𝜔r
𝑦o, 𝑣o,𝑦 = 𝜔r𝑑ro, 𝜔o = 𝜔r. (3.13)

It can be observed that Eq. (3.13) describes a plane o crossing the origin in the 𝑥−𝑦−𝜔
space: o = {𝐯o | 𝑣o,𝑦 −𝑑ro𝜔o = 0}, as shown in Fig. 3.5e. Combining Eq. (3.11)-(3.13),
we can obtain the final possible twists of the object, known as the object motion cone, as
the intersection of the set o and the plane o: ̄o = {𝐯o | 𝐯o ∈ o, 𝐯o ∈ o}. The
edges of the motion cone are computed as the intersection between the planes 𝐯𝑅o,1−𝐯𝑅o,2,
𝐯𝐿o,1−𝐯𝐿o,2 and the plane o, which results in two edge vectors, 𝐯′o and 𝐯′′o .

𝐯′o = (𝐯𝐿o,1 ×
𝐯𝐿o,2) × �⃗� = 𝑘𝑜

⎡
⎢
⎢
⎣

−𝑑rocos(𝜃𝜇)
−𝑑rosin(𝜃𝜇)
−sin(𝜃𝜇)

⎤
⎥
⎥
⎦

𝐯′′o = (𝐯𝑅o,1 ×
𝐯𝑅o,2) × �⃗� = 𝑘𝑜

⎡
⎢
⎢
⎣

−𝑑rocos(𝜃𝜇)
𝑑rosin(𝜃𝜇)
sin(𝜃𝜇)

⎤
⎥
⎥
⎦

(3.14)

where �⃗� = [0,1,−𝑑ro] is the normal vector to plane o.

The object motion cone can then be written as ̄o = 𝜆5𝐯′o + 𝜆6𝐯′′o | 𝜆5,𝜆6 ∈ ℝ≥0.
According to Eq. (3.13), we can achieve the corresponding motion cone for the robot,

r, with a linear mapping [
𝑣r
𝑤r]

= [
1 0 𝑦o
0 0 1 ]

⎡
⎢
⎢
⎣

𝑣o,x
𝑣o,y
𝑤o

⎤
⎥
⎥
⎦
|
⎡
⎢
⎢
⎣

𝑣o,x
𝑣o,y
𝑤o

⎤
⎥
⎥
⎦
∈ ̄o. Expressing the robot
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motion cone as a conical combination,

[
𝑣r
𝑤r]

=𝜆5 [
−𝑦osin(𝜃𝜇)−𝑑rocos(𝜃𝜇)

−sin(𝜃𝜇) ]+

𝜆6 [
𝑦osin(𝜃𝜇)−𝑑rocos(𝜃𝜇)

sin(𝜃𝜇) ]

(3.15)

from which we achieve the motion constraint on the robot input by finding the boundary
of 𝑤r/𝑣r

𝑘′′𝑣𝑡r ≤𝜔
𝑡
r ≤ 𝑘′𝑣𝑡r (3.16)

where 𝑣r ≥ 0, 𝑘′′ = sin(𝜃𝜇)
𝑦o sin(𝜃𝜇)−𝑑ro cos(𝜃𝜇)

, 𝑘′ = sin(𝜃𝜇)
𝑦o sin(𝜃𝜇)+𝑑ro cos(𝜃𝜇)

. It can also be regarded as
a constraint on the curvature of the robot’s trajectory, 𝑘. For simplification, we only plan
for the pushes at the middle of the contact surface, where 𝑦o = 0.

3.4 Planning for robot pushing
With the motion constraint derived in Eq. (3.16), we now present a motion planner for
robot pushing that keeps the object to be within its motion cone based on NMPC.

NMPC formulation

We formulate a receding horizon optimization problem with 𝑁 time steps and planning
horizon 𝑁Δ𝑡:

min
𝐱1∶𝑁r_e ,𝐮0∶𝑁−1r

𝑁−1
∑
𝑡=0

𝐽 𝑡(𝐱𝑡r_e,𝐮
𝑡
r)+ 𝐽𝑁 (𝐱𝑁r ) (3.17a)

s.t. 𝐱0r_e = 𝐱r_e(𝑡0), (3.17b)
𝐱𝑡r_e = 𝐟r(𝐱𝑡−1r_e ,𝐮

𝑡−1
r ), (3.17c)

𝐡pushing(𝐱𝑡r_e) ≤ 0, (3.17d)
𝐡avoidance(𝐱𝑡r_e) ≤ 0, (3.17e)
𝐮𝑡−1r ∈r, ∀𝑡 ∈ {1,… ,𝑁 },

where Δ𝑡 is the sampling time, 𝐽 𝑡 denotes the cost term at stage 𝑡 and 𝐽𝑁 denotes the
terminal cost, 𝐱r_e(𝑡0) is the initial extended state of the robot, 𝐟r is the robot dynamics
model, r represents the robot’s acceleration and angular acceleration limits. 𝐡pushing
and 𝐡avoidance respectively represent the path constraints for stable pushing and obstacle
avoidance, which will be described in detail in the following.

Cost functions

Let 𝐩go be the goal location that the object needs to be pushed to. We minimize the
displacement between the object’s terminal position with this goal. To this end, the
terminal cost is defined as: 𝐽𝑁 (𝐱𝑁r_e) = 𝑞goal ‖‖𝐩

𝑁
o −𝐩go‖‖, where the object’s terminal position

is 𝐩𝑁o = 𝐩𝑁r +𝑅(𝜃𝑁r )[𝑑ro,0]T with 𝑅(⋅) the two-dimensional rotation matrix. 𝑞goal is a tuning
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weight. The stage cost is to minimize the robot’s linear and angular velocities to render it
not to move too fast:𝐽 𝑡(𝐱𝑡r_e,𝑢𝑡r) = 𝑞v(𝑣𝑡r)2+𝑞𝜔(𝜔𝑡

r)2, where 𝑞v and 𝑞𝜃 are tuning weights.

Pushing constraints

To make the robot keep contact with the object while pushing, the object’s motion has to
be within its motion cone at each time step. By combining the computed motion cone in
Eq. (3.16) with the continuous pushing constraint, the sticking contact constraints can be
derived as follows:

𝑣𝑡r ≥ 0, 𝑘′′𝑣𝑡r ≤ 𝜔𝑡
r ≤ 𝑘′𝑣𝑡r , (3.18)

It indicates that the robot has to push forward the object, but its angular velocity should
be within a motion cone related to the forward speed, which formulates the stable pushing
constraints 𝐡pushing.

3.5 Experimental results
To validate the efficacy of our proposed method, we performed experiments using two
robots, Clearpath Husky and Boxer, to test the stable pushing performance (Fig. 3.6
and 3.10). Both the Husky and Boxer robots were differential-drive wheeled robots with
rectangular shapes, respectively sized 0.97 × 0.67 m and 0.75 × 0.55 m. Our experimental
results demonstrated a 100% stiff contact when applying the proposed concise stable
pushing constraint. Additionally, we compared the proposed method with state-of-the-art
pushing baselines to showcase the conciseness of our proposed constraint and the efficiency
of stable pushing by effectively controlling object motion.

3.5.1 Real-world experiments using Husky and boxer

We carried out real-world experiments with two robots to demonstrate the efficacy of our
proposed sticking contact constraint when stably pushing paper boxes. Our experiments
utilized a motion capture system (OptiTrack) and a Kalman filter to collect information on
robots, objects, and obstacles that operate at 120Hz. Control commands were calculated
using our NMPC-based method on a laptop and sent to robots through WiFi and ROS,
which operate at a frequency of 20Hz. We use the open source solver ACADOS [40] to
solve the NMPC problem, with a sampling time of Δ𝑡 = 0.1 seconds, a planning horizon of
𝑁 = 20 and tuning weights 𝑞goal = 1, 𝑞v = 𝑞𝜔 = 0.1.

The Husky robot was equipped with a line bumper in the front, which acts as a pushing
effector. It was used to push a large paper box measuring 0.32 × 0.48 × 0.48 meters and
weighing 2.8 kilograms. At the beginning of the push, the box was placed in contact
with the robot center at a distance of 𝑑ro = 0.66 meters. The angle of the friction cone
was set to 𝜃𝜇 = 12.00 degrees. It is estimated by measuring the force which could pull
the box at a constant speed, such that the pulling force is equal to the friction force:
𝐹pull = 𝐹𝑓 = tan𝜃𝜇 ⋅𝑚o𝑔 . Then 𝜃𝜇 can be achieved as arctan( 𝐹pull𝑚o𝑔 ).

Using the above setup, the limits of the robot trajectory curvature are calculated as
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(a)

(b) (c)

Figure 3.6: Evaluation of stable pushing performance with different goal positions. (a) Six
predefined pushing goals, represented by white crosses on the floor. The corresponding goal-
oriented pushing results are shown in Fig. 3.7 (a–f). (b) and (c) show the experimental results
of robot pushing without and with the sticking contact constraints (Eq.(3.18) ), respectively.
The transparency of the robot and box indicates their movement over time.
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𝑘′ = 0.32 and 𝑘′′ = −0.32. Due to the size limitation of the motion capture system, we
selected six pushing goals with coordinates (2,1), (2,0), (2,-1), (0,1), (0,0), and (0,-1) to
evaluate the stable pushing performance, as shown in Fig. 3.6a. Starting from the initial
position (-2,1), the Husky robot was tasked with pushing the paper box to the designated
goal positions, as shown in Fig. 3.7 (a-f). The robot successfully maintained sticking
contact with the object in all cases. Compared to trajectories without the stiff contact
constraint (Fig. 3.7 (h-j)), the object easily slides away while the robot moves (intuitive
comparison can be found in Fig. 3.6b and 3.6c). However, the contact constraint also limited
the maneuverability of the pushing system, so that the maximum curvature of the planned
trajectory was bounded. Fig. 3.8 illustrates the relationship between maneuverability and
motion cone. As a result, some pushing targets (e.g., Goal c in Fig. 3.7) were unattainable
within a limited time with the local NMPC planner. Reposition actions are required, so a
global pushing planner will be the focus of our future research. Additionally, the proposed
method can be easily extended to an obstacle-aware case, as shown in Fig. 3.1 and Fig. 3.9.
A static obstacle is placed in front of the robot, and the object’s goal location is behind it.
The robot can successfully avoid the obstacle by maintaining both the stiff contact and
obstacle avoidance constraints while pushing the object to the goal location.

Furthermore, we aimed to comprehensively validate the effectiveness of our proposed
stable pushing method under varying friction conditions using the Boxer robot within a
distinct environment. A series of experiments were conducted to this end. In the initial
phase, we conducted ablation studies to assess the effectiveness of the sticking contact
constraint with box sized 0.39 × 0.59 m. Three pushing targets were selected, with five
pushing trials conducted for each target. The outcomes of these ablation experiments are
illustrated in Fig. 3.10, demonstrating an impressive 100% success rate across all trials.
Subsequently, we tried a new box sized 0.32 × 0.48 m and proceeded to an experiment
where the robot pushed an object around the room. The implementation of the stiff contact
constraint ensured that the robot maintained stiff contact with the object throughout the
process. This strategic approach significantly reduced the need for frequent repositioning
actions and requires only two designed switches. To further gauge the stability and
robustness of our method, we designed a path tracking experiment. In this setup, the
robot meticulously followed a predefined path while engaging in stable pushing. Both
sets of experimental results are depicted in Fig. 3.11 (shown in the attached video as well),
illustrating the method’s consistent performance across diverse scenarios.

Overall, the outcomes of these comprehensive experiments demonstrate the robustness
and efficacy of our proposed method across different friction conditions and robot platforms,
underscoring its potential for real-world applications in robotics.

3.5.2 Comparison with the baseline approaches

What’s more, to assess the performance of our proposed stable pushing method, we
compared it to two existing baseline approaches, namely the reactive pushing strategy
[25] and a Linear Time-Varying Model Predictive Control (LTV MPC) based stable pushing
approach [39]. The comparison results are presented in Table 3.1.

During the pushing process, the reactive pushing strategy attempts to minimize the
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Figure 3.7: Experiments were conducted to evaluate the stable pushing performance with
different goal positions, comparing the results with and without the sticking contact constraint.
Additionally, the proposed approach is compared to a baseline method. Panels (a-f) show the
stable pushing outcomes for the six selected goals, as depicted in Fig. 3.6a. For goals (d), (e),
and (f), Fig. (h-j) displays the pushing paths without the sticking contact constraint, while Fig.
(k-m) highlights the performance of the reactive pushing strategy.



3.5 Experimental results

3

29

Figure 3.8: Robot trajectories for pushing considering various limits of the robot trajectory
curvature, where 𝑘 = 𝑘′ = −𝑘′′. The blue square and the red diamond represent the start and
the goal locations, respectively. The smaller the motion cone, the maneuverability of the robot
is more limited.

Figure 3.9: Experimental results of obstacle-aware robot pushing. The red and blue curves with
dots represent the trajectories of the robot and the pushed object, respectively. The obstacle is
marked in gray.

(a) (b) (c)

Figure 3.10: Goal-targeted stable pushing with Boxer. Stiff contact is successfully maintained
under the sticking contact constraint.
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(a) Push an object around the room.
(b) Path following while engaging in

stable pushing.

Figure 3.11: Stable pushing across different scenarios. The red and blue curves represent
the trajectories of the robot and the pushed object, respectively. The reference waypoints
are marked in green. In (b), A sponge sheet is sticked to the box to augment friction in the
robot-object interaction, where 𝑘′ = −𝑘′′ = 0.4. For detailed information, we direct readers to
our accompanying video.

Number of
hyper-

parameters

Success rate
(For

Goal 1, 2, 3)

Decision
variables
in MPC
(at time t)

Solvable
with

commercial
solver

Proposed
approach 1 100%, 100%, 0% 7 Yes

Reactive
pushing 5 100%, 60%, 0% - -

LTV
MPC 5 - 11 No

Table 3.1: Comparison to the baselines

angle between the object’s movement direction and its direction toward the goal location.
As a result, the robot must maneuver around the object to adjust its angle and sometimes
reposition itself when the robot-object contact is lost. However, the core of the controller
is a Proportional-Integral-Derivative (PID) controller, which is challenging to tune for
optimal performance. Due to safety concerns, we tested this approach only in simulation.
As shown in Fig. 3.7 (k-m), the robot often loses contact with the object, requiring time-
consuming repositioning actions. Moreover, since the approach was originally designed
for omnidirectional robots, it does not account for the motion constraints of nonholonomic
robots. The robot sometimes bumps into the object while repositioning, adversely affecting
pushing performance. In contrast, our proposed approach has demonstrated superior
efficiency and pushing success rate for all three goals while maintaining a higher pushing
success rate. The reactive pushing approach only achieves high success rates when the
goal position is directly in front of the robot and is close to the initial position. To achieve
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the goals d, e, f, it has an average distance traveled by the robot and a time of 8.53 m and
58.4 s, respectively, while our proposed approach only takes 6.53 m and 13.2 s which saves
23.8% and 77.4% in these metrics.

The LTV MPC-based pushing method shares the same motivation and mechanics as
our proposed approach which is to add the friction cone constraint to guarantee stable
pushing. However, the LTV MPC approach directly adds the stiff contact constraint to
the optimization problem without any preprocessing. Consequently, it has four additional
independent decision variables and four more hyperparameters to tune in the MPC formu-
lation. We utilized the open source ACADOS solver to solve the MPC problem proposed
in LTV MPC, which is unsolvable due to extra independent variables. Compared to other
models, our concise stiff contact constraint requires only one hyperparameter (𝑘′ = −𝑘′′)
to tune and can be easily added to MPC-based navigation controllers.

3.5.3 Sensitivity analysis

Recognizing the inherent challenges in accurately measuring friction coefficients, we
conducted a comprehensive sensitivity analysis. The primary goal was to determine the
parameter 𝑘 without prior knowledge of the friction coefficient between the robot and
the object. Additionally, we sought to comprehend how variations in the estimation of
𝑘 would impact the effectiveness of stable pushing. Subsequently, we assessed stable
pushing performance for objects with distinct surface characteristics, including sponge
sheet, foam sheet, and cardboard. Furthermore, recognizing the common occurrence of
non-uniform mass distribution in unwieldy objects, we conducted experiments involving
the rearrangement of the same set of objects within the box, thus achieving diverse mass
distributions. This enabled us to investigate the method’s robustness in scenarios where
the assumption of uniform mass distribution is not perfectly upheld.

Because 𝑘 represents the limit of the robot trajectory curvature, our experimental setup
entailed pushing various objects at a uniform speed of 0.1 m/s around a predetermined
rotation center for a duration of 4 seconds. This rotation center, in turn, determines moving
along a certain trajectory with curvature 𝑘 = 𝑤r/𝑣r. By measuring the displacement of
the object’s position in the robot frame at both the start and end of the trajectory, we
quantified the cumulative slid distance of the object at different k. The outcomes of the
experiments are depicted in Fig. 3.12. Notably, when 𝑘 < 𝑘′ = 0.32 (for 𝑦o = 0, where
changing direction represents a symmetry case that we omit here), the object’s slid distance
remains at zero such that stable pushing is attainable. Conversely, when 𝑘 > 𝑘′ = 0.32, the
assurance of stable pushing diminishes where the object slides. This observed trend persists
across all tested friction conditions and mass distributions, underscoring the approach’s
capacity for generalization. Even when 𝑘 deviates by as much as ±20%, the slid distance
remains constrained to within 0.05 m.

3.5.4 Discussion

The proposed approach introduces a simple analytical stable pushing constraint, ensuring
pushing stability under the line contact between the robot and the object. It is well-suited
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(a) Slid distance for pushes along different
curvatures, k, across different friction conditions

which indicates the effectiveness of stable
pushing.

(b) Slid distance for pushes along different
curvatures, k, across different mass distributions

which indicates the effectiveness of stable
pushing.

Figure 3.12: Validate the effectiveness of stable pushing under different conditions. The grey
dashed line corresponds to 𝑘 = 0.32. The yellow shading represents the range of 𝑘 ∈ [0.8𝑘,1.2𝑘].
Notably, the results illustrate that stable pushing—where the sliding distance is less than 0.05
m—can be realized whenever 𝑘 < 0.32, irrespective of alterations in friction conditions or
mass distribution. Additionally, even when the hyperparameter in the stiff pushing constraint
deviates by up to ±20%, stable pushing remains intact.
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for objects with uniform mass distributions, and it can potentially be extended to handle
cases with slightly nonuniform mass distributions and indeterminate anisotropic friction.
Its simplicity is a notable feature, with only one hyperparameter requiring approximation.
However, stable pushing imposes limitations on maximum trajectory curvature, which
is decided by the friction condition between the robot-object interaction. Adding high
friction coating will help to improve system maneuverability.

In contrast, there are widely-used learning-based pushing controllers utilize data-based
pushing dynamics models, which do not consider the shape or mass distribution of the
object [11, 20, 26]. However, data-driven methods are known for their data dependency,
challenges in generalization, and susceptibility to Model Drift. Moreover, they neglect
pushing stability, resulting in frequent object sliding and the need for time-consuming
repositioning actions, especially problematic for nonholonomic mobile robots with limited
maneuverability.

The choice between stable pushing for regular-shaped objects and intermittent pushing
for complex objects should be made based on the specific application’s requirements and
the characteristics of the objects involved.

3.6 Conclusion
This chapter addresses the problem of using a differential-drive mobile robot to push an
object to a goal location. We start by revisiting the pushing mechanics and highlighting
the nonholonomic robot’s challenges. To overcome the challenge, we propose a stable
pushing approach that maintains a stiff line contact between the robot and the object,
controlled by a stable pushing constraint. As a key contribution of this work, we provide
an algorithm to simplify this constraint as a concise motion constraint for the robot. An
NMPC-based planner is presented for stable pushing by considering the motion constraint.
Our proposed method is more efficient than reactive pushing strategies, with a 23. 8%
reduction in the traveled trajectory length and a 77.4% reduction in time. Furthermore, our
method is more concise than the LTV MPC-based stable pushing method, making it easier
to implement. We validate our proposed method through real-world experiments with
Husky and Boxer robots under different friction conditions. However, the stable pushing
method has limitations in maneuverability. Our future research aims to design global
policies that can further switch between contact surfaces to improve maneuverability.
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In Chapter 3, we address the challenge of unwieldy object delivery using a stable
pushing approach, which focuses on maintaining stiff contact between the robot and
the object, thereby reducing reliance on robust state estimation. However, the motion
constraints inherent in stable pushing limit the system’s maneuverability. To overcome
this limitation, we propose a free pushing approach in this chapter. This method allows
the robot to slide relative to the object, enabling it to maneuver around the object while
pushing. Although this approach requires more accurate object state estimation, it offers
more flexible pushing motions and better adaptability to confined spaces.

4.1 Introduction
Mobile manipulators hold great potential for practical applications, such as logistics oper-
ations, where they may need to move objects that are unwieldy, either too heavy or too
large, for their manipulator arm(s) to grasp. A viable solution is to equip the robot with
the ability to push the object, an essential motion primitive for handling objects of varying
sizes. In this chapter, we concentrate on pushing using the basic mobile base [25, 39, 79],
in contrast to recent studies that focus on pushing with a manipulator’s end effector [80].

In the field of pushing with robot arms, stable pushing approach is widely used. It
assumes a stiff contact while pushing [19, 39, 79]. However, for this assumption to be valid,
the contact forces imposed by the robot on the object must remain within the friction cone,
causing nonholonomic constraint on the motion of the pushed object [44, 81]. As a result,
the mobility of the pushed object is limited. Especially when pushed with mobile base
pushers, which are mostly nonholonomic wheeled robots, stable pushing would further
undermine the maneuverability of the robot-object system. In the case of a cylinder-shaped
nonholonomic robot, stable pushing only allows it to push the object straight forward or
rotate with a fixed turning radius [82].

To improve pushing agility, pushing planners which allow for relative sliding between
the robot and object are proposed [11–14]. In these methods, the robot-object contact is
switched between sticking, right-slide, and left-slide modes to provide the required pushing
force on the object. But these pushing motions are planned under the assumption that the
robot can freely access any point on the object, which may be true for a robot arm but
not necessarily for a nonholonomic robot. For example, differential-drive robots can not
move sideways to reach the planned contact point. Executing the planned pushes is always
difficult on a real robot platform due to the limitations of the robot’s kinematics [11].

This chapter aims to develop a maneuverable push approach that allows the transporta-
tion of objects using powerful mobile base pushers while considering the feasibility of the
plans. The proposed approach allows the object to slide relative to the pusher, hence called
free pushing, in contrast to the stable pushing methods. To ensure the feasibility of the
planned pushes, planning is conducted for the motion of the robot pusher and the resulting
object movement. It is achieved through the development of a robot-object contact model
by modeling the robot and the object as a unified multibody system employing Differential
Algebraic Equations (DAE) such that the motion of the object relative to the robot can be
predicted. Unlike existing pushing models, the relative motion is modeled with careful
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(a) (b)

Figure 4.1: Pushing (a) a 0.565 × 0.755 × 0.425 m3 sized package, and (b) an 8 kg weighed
basket, with a differential-drive mobile base. Tiago, a mobile service robot from PAL Robotics
[83], is used in this work. Transparency in the image indicates the movements.

consideration of the robot’s shape and kinematics. To the best of our knowledge, this is
the first paper that addresses the shape and kinematics of the robot in pushing modeling
and planning. A Model Predictive Controller (MPC) solves the Push Planning Problem in
real time.

The contributions of our paper can be summarized as follows:

• We propose a free pushing approach for nonholonomic mobile robot which enables
the robot to maneuver around the object while pushing it, allowing for improved
pushing maneuverability compared to the stable pushing counterpart.

• We develop a robot-object contact model that takes into account the robot shape
and kinematics in pushing modeling and planning, ensuring efficient continuous
pushing and the feasibility of the planned pushes.

• We evaluate the proposed method through real-world experiments using Tiago
(Fig. 4.1), a mobile service robot, demonstrating an average success rate of 83% with
an accuracy of 0.085m.

4.2 Preliminaries
We consider a pushing planning problem where a cylinder-shaped differential-drive robot
pushes a rectangular object toward a goal position. Fig. 4.2 provides a visualization of the
problem setup. The pushing system consists of the cylinder-shaped robot, which can be
controlled directly, and the rectangular object, which moves in response to the contact
forces. We assume that the contact between the robot and the object is frictionless while
using a continuous friction model for the contact between the object and the ground. In the
following, we will introduce the friction-less contact model and continuous friction model
respectively. Before going into details, we first provide the definitions for the variables
used throughout the paper.
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Figure 4.2: The configuration of the coordinates and frames, as well as the demonstration of
the control framework.

• 𝐱r, the robot state [𝑥r,𝑦r,𝜃r]T in the world frame, where the origin of the robot frame
is defined as the geometric center of the cylinder-shaped robot base;

• 𝐱o, the object state [𝑥o,𝑦o,𝜃o]T in the world frame, where the origin of the object
frame is defined as the geometric center of the cuboid basket;

• 𝜙, the angle between the object and the robot frame as shown in Fig. 4.3a

• 𝑑, the 𝑦 coordinate of robot center in the object frame;

• 𝑣r, 𝜔r, the linear and angular velocities of the robot;

• 𝑎r, 𝜉r, the linear and angular accelerations of the robot;

• 𝑓x,p, the x-component of the push force in the object frame1;

• 𝐰g = [𝑓x,g, 𝑓y,g, 𝜏g]T is the friction wrench exerted by the ground on the object, where
𝑓x,g, 𝑓y,g are the x and y component of the friction force, 𝜏g is the friction torch;

• �̃�g = [𝑓x,g, 𝑓y,g, �̃�g]T, the simplified friction wrench exerted by the ground to the
object;

• 𝑀o = diag[𝑚o,𝑚o, 𝐼o], the inertia matrix of the object, where 𝑚o, 𝐼o denote the mass
and moment of inertia of the object;

• 𝑊o,𝐿o, width and length of the object;

• 𝑟r, radius of the robot.

4.2.1 Friction-less robot-object contact model

With a point contact between the robot and the object, the object can rotate around that
contact point or slide along the contact surface, which can be seen in Fig. 4.3a.
1The superscript  denotes the robot frame. The object and the world frames are represented as  and  .  is
always omitted for simplicity.
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Instead of dividing the contact modes into {𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔, 𝑟𝑖𝑔ℎ𝑡 − 𝑠𝑙𝑖𝑑𝑖𝑛𝑔, 𝑙𝑒𝑓 𝑡 − 𝑠𝑙𝑖𝑑𝑖𝑛𝑔,
𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛} states [12, 84, 85], we use a frictionless contact assumption to simplify the
problem such that there is a continuous sliding contact. Since friction forces only play a
minor role in our pushing tasks, this assumption helps reduce computational time at the
expense of a slight loss in physical accuracy [41].

In addition, we introduce contact constraints to ensure continuous contact between
the robot and the object, avoiding separation contact modes during the pushing process.
Specifically, these constraints require that (4.1a) the robot does not move backward, (4.1b)
the robot does not decelerate abruptly at a rate greater than the object’s deceleration due
to friction with the ground, (4.1c) the object remains in front of the robot, and (4.1d) the
robot maintains contact with the object at the same plane. The contact constraints are
summarized as:

𝑣r ≥ 0 (4.1a)
|𝑎r| < 𝑎r, max (4.1b)

−90° < 𝜙 < 90° (4.1c)

−
1
2
𝐿𝑜 < 𝑑 <

1
2
𝐿𝑜 (4.1d)

where 𝑎r, max is the maximum acceleration of the robot.

4.2.2 Continuous object-ground contact friction model

While the contact between the robot and the object is assumed to be frictionless in our
pushing planning problem, we model the contact between the object and the floor using a
continuous friction model. In most previous studies on pushing planning, the Coulomb
friction model has been used, and the friction cone has been employed to control the
transition between different contact modes. However, the Coulomb model is discontinuous
at zero relative tangential contact velocities, which can lead to instability in the numerical
simulation of the sliding motion [86]. This characteristic makes the design of controllers
more complicated.

Thus we point out the keymodeling decision in this chapter which is to use a continuous
friction model instead of the traditional Coulomb friction model [87]. This choice enables
us to model the contact dynamics in a continuous manner, which streamlines the controller
design process. To obtain the continuous friction model, we mathematically approximate
the Coulomb model using a Sigmoid function. It should be noted that we assume a constant
coefficient of friction, 𝜇g, for the friction interaction between the object and the ground at
the contact surface. The friction force at position p is expressed as

𝐟g,𝐩(𝐩) = −𝜇g ⋅ (𝛾1sig(𝐯p)− [𝛾2, 𝛾2]T) ⋅ 𝑓n (4.2)

where 𝛾1 = 2, 𝛾2 = 1 are scaling factors, 𝑓n is the normal force at p, 𝐯p = [�̇�p, �̇�p]T the
velocity ofp expressed in the world frame, and sig(⋅) is the sigmoid function that operates
element-wise on the input vector, such that sig(𝐱) yields a vector 𝐲, where each element 𝑦𝑖
is computed as 𝑦𝑖 = 1

1+exp(−(𝑥𝑖)) , for 𝑖 = 1,2, ...,𝑛, where 𝑛 is the length of the input vector 𝐱.
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4.3 Modelling
In this Section, we present the dynamics model for the pushing system. First, we introduce
the model for the differential-drive robot pusher. Then wewill explain the contact transition
dynamics between the robot and the object such that the physical interaction is modeled
with a 2D (i.e., top-view) constrained multi-body system.

4.3.1 Robot dynamics model

Given the full robot state [𝑥r,𝑦r,𝜃r, 𝑣r,𝜔r]⊤ and its control input 𝐮r = [𝑎r, 𝜉r]⊤ ∈ ℝ2, the
dynamics model of robot can be written as:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�̇�r
�̇�r
�̇�r
�̇�r
�̇�r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑣rcos(𝜃r)
𝑣rsin(𝜃r)

𝜔r
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
𝑎r
𝜉r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.3)

4.3.2 Dynamics model of the pushing system

Different from the widely-used point contact model [12, 84, 85] where the robot is a pole
and its shape is ignored, wemodel the relative motion between the robot and the object with
careful consideration of the shape of the robot. Since we constrain that the contact between
the robot and the object is carefully maintained, the robot-object system is modeled as two
rigid bodies connected by an idealized joint. Furthermore, we assume that the mobile robot
is controlled in a closed loop to achieve the desired movement, so its motion will not be
influenced by the reaction force exerted by the object.

For the pushed object, its motion is a result of the contact interaction with the robot,
as shown in Fig. 4.3. The dynamics of the object can be achieved by a combination of
the Newton-Euler equations of motion and a contact constraint equation in the form of
Differential Algebraic Equations.

The Newton Euler equations of motion for the object are

⎧⎪⎪
⎨⎪⎪⎩

cos(𝜃𝑜)𝑓x,p+ 𝑓x,g = 𝑚o�̈�o
sin(𝜃𝑜)𝑓x,p+ 𝑓y,g = 𝑚o�̈�o
−𝑑𝑓x,p+𝜏g = 𝐼o�̈�o

(4.4)

where 𝑑 = −sin(𝜃𝑜) ⋅ (𝑥𝑟 −𝑥𝑜)+cos(𝜃𝑜) ⋅ (𝑦𝑟 −𝑦𝑜) is the position of the contact point in y
direction of the Object frame.

To solve for the three unknown accelerations of the object as well as the push force in
Eq. (4.4), we need one more equation. Since the successive interaction restricts the separate
movement of the two bodies at the contact point, we have the contact constraint:

𝑥r = cos(𝜃o)(𝑥r−𝑥o)+ sin(𝜃o)(𝑦r−𝑦o) = −𝑟r−
1
2
𝑊o (4.5)
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(a) (b)

Figure 4.3: The robot and the object are assumed to be connected with a virtual sliding joint
around the contour of the mobile base. (a) shows the possible robot-object relative motion
which not only includes sliding but also rotating around the contact point. In (b), the robot
and the object are taken as two free bodies where the contact joint between them is cut. Then
the Newton-Euler equations of motion of the object can be achieved where the joint is “glued”
with the constraint equation.

By differentiating Eq. (4.5) twice with respect to time, we achieve the constraint on the
object accelerations:

𝐶𝐱�̈�r+𝑔𝐱 = 0 (4.6)
with 𝑔𝐱 =−cos(𝜃o)�̇�o�̇�o(𝑥r−𝑥o)+cos(𝜃o)�̈�r+sin(𝜃o)�̈�r−2sin(𝜃o)�̇�o(�̇�r− �̇�o)−sin(𝜃o)�̇�o�̇�o(𝑦r−
𝑦o) + 2cos(𝜃o)�̇�o(�̇�r − �̇�o), and 𝐶𝐱 = [−cos(𝜃o),−sin(𝜃o),−sin(𝜃o)(𝑥r − 𝑥o) + cos(𝜃o)(𝑦r −
𝑦o)].

Combining the equations of motion (Eq. (4.4)) and the contact constraint equation (Eq.
(4.6)) leads to the full set of DAEs:

[
𝑀o 𝐶T

𝐱
𝐶𝐱 0 ][

�̈�o
𝑓x,p]

= [
𝐰g
𝑔𝐱 ]

(4.7)

where 𝐰g is calculated by integrating the force over the contact patch 𝐴:

𝐟g = ∫
𝑅
−𝜇g(2sig(𝐯p)− [1,1]T)𝑝(𝐩)𝑑𝐴, (4.8)

𝑝(𝐩)𝑑𝐴 is the normal force at 𝐩 under pressure distribution 𝑝(⋅), 𝐩 is the position
expressed in the object frame. The corresponding frictional moment is 𝜏g = [𝐩⊗ 𝐟g](3),
with ⊗ cross product, [⋅](3) indicates the third element in the vector.

4.3.3 Model simplification

However, the precision of the double integration depends on the number of segmented
contact patches. Integration with more contact patches promises a more accurate approxi-
mation to the integral but slow computation. For computational efficiency, we simplified
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the friction model of the object-ground contact by only summing for the force at the
four corners of the polygonal object, instead of integrating over the whole contact region.
Assuming a uniform object density when projected onto the horizontal plane, the normal
force at four corners is 1

4𝑚𝑜𝑔 , where 𝑔 refers to the acceleration of gravity. Using Eq.
(4.2), the simplified friction force is  𝐟g =∑ 𝐟g, i(𝐩c,i) where 𝑖 = {0,1,2,3} for a rectangle
object, 𝐩c,i is the coordinate of the corner at contact patch𝐴. The corresponding simplified
frictional moment is �̃�g =∑[𝐩c,i⊗ 𝐟g, i](3).

4.4 Planning for robot pushing
By predicting the motion of the pushed object using Eq. (4.7), we can solve the constrained
pushing planning problem using a Model Predictive Controller. It ensures the feasibility of
the MPC-planned pushes by planning for both the path of the robot and the motion of the
pushed object. First, we will discuss how to reformulate the DAE model to simplify the
optimization problem in MPC. Afterward, we will present the Optimal Control Problem
(OCP) and the cost function.

4.4.1 Dynamics model in generalized coordinates with implicit con-
straints

To solve the pushing control problem in an MPC formulation, a system dynamic model is
required. The robot-pusher system is modelled as a constrained multi-body system whose
dynamics is derived with a set of equations of motion and an algebraic constraint equation
in Eq. (4.7). However, it is known that many numerical discretization schemes, such as the
implicit Runge–Kutta (IRK) methods, fail to converge or exhibit an order reduction when
applied to DAEs [88]. The algebraic constraints for the system state make the forward
prediction problem significantly hard.

Removing the algebraic constraint in Eq. (4.6), obviously can help by making the
problem less complex. Thus we reformulate the DAEs to simplify the optimal control
problem. By choosing a set of independent generalized coordinates, we derive the system
dynamics where the algebraic contact constraint can be imposed implicitly.

The object only has two degrees of freedom with respect to the robot, as shown in Fig.
4.3a. Therefore, the independent generalized coordinates are chosen as 𝐪 = [𝜙,𝑑]. With
the contact constraint between the robot and the object during pushing, the coordinates of
the object in the robot frame can be written as a function of the generalized coordinates
and their derivatives:

⎡
⎢
⎢
⎣

𝑥o
𝑦o
𝜃o

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

cos(𝜙)(𝑊o/2+ 𝑟r)+𝑑sin(𝜙)
sin(𝜙)(𝑊o/2+ 𝑟r)−𝑑cos(𝜙)

𝜙

⎤
⎥
⎥
⎦

(4.9)
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We differentiate Eq. (4.9) twice:

�̇�o = 𝑇 �̇� (4.10a)
�̈�o = 𝑇 �̈�+𝐠 (4.10b)

where

�̈�o = [�̈�o,�̈�o,�̈�o]T

𝐠 =
⎡
⎢
⎢
⎣

−cos(𝜙)�̇�2(𝑤o/2+ 𝑟r)+ �̇�cos(𝜙)�̇�−𝑑sin(𝜙)�̇�2+ �̇�cos(𝜙)�̇�,
−sin(𝜙)�̇�2(𝑤o/2+ 𝑟r)+ �̇�sin(𝜙)�̇�+𝑑cos(𝜙)�̇�2+ �̇�sin(𝜙)�̇�,

0

⎤
⎥
⎥
⎦

𝑇 =
⎡
⎢
⎢
⎣

−sin(𝜙)(𝑤o/2+ 𝑟r)+𝑑cos(𝜙) sin(𝜙)
sin(𝜙)(𝑤o/2+ 𝑟r)+𝑑sin(𝜙) −cos(𝜙)

1 0

⎤
⎥
⎥
⎦

�̈�o can be achieved by reformulating the dynamics in Eq. (4.4) in the non-inertia
reference frame (the Robot frame):

𝑀o
�̈�o =𝐰p+�̃�g−𝐰fic (4.11)

where 𝐰p ∈ ℝ3 denotes the push wrench exerted by the robot, 𝐰fic = 2𝑚o�̇�r × �̇�r +
𝑚o

 �̈�r +𝑚o�̇�r × (�̇�r ×𝐩r) + 𝐼o�̈�r ×𝐩r is the introduced additional fictitious wrenches
with �̇�r = [0,0,𝜔r], 𝐩r = [𝑥r,𝑦r,0].

To achieve the object dynamics with generalized coordinates, the TMTmethod proposed
in [89], is used with the application of the principle of virtual power. Based on the DAE
achieved in Section.IV, the TMT method simply derives the unconstrained equations of
motion [90].

Since we have introduced the generalized coordinates, we also have a new set of
corresponding generalized force 𝐟𝑞 . Given the wrench of generalized force as 𝐰𝑞 , the total
virtual power of �̃�g, 𝐰fic and 𝐰𝑞 is

𝛿𝑃 = 𝛿�̇�To (
�̃�g−𝑀o

�̈�o−𝐰fic)+𝛿�̇�T𝐰𝑞 (4.12)

The virtual velocities and the accelerations which satisfy the constraints are shown
in Eq. (4.10a)-(4.10b). Substitution in Eq. (4.12) yields the virtual power expressed in
generalized coordinates and their derivatives,

𝛿𝑃 = (𝑇𝛿�̇�)T(�̃�g−𝑀o(𝑇 �̈�+𝐠)−𝐰fic)+𝛿�̇�T𝐰𝑞 (4.13)
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Because the system is in dynamic equilibrium where 𝛿𝑃 = 0, which results in

𝑇 T(�̃�g−𝑀o𝑇 �̈�−𝑀o𝐠−𝐰fic)+𝐰𝑞 = 0 (4.14)

𝐟𝑞 equals the friction force between robot and object, which is omitted because of the
friction-less assumption in Section. 4.2.1. Then we have 𝐰𝑞 = 0. Rearranging the terms in
Eq. (4.14) gives us contact dynamics in terms of generalized coordinates.

�̈� = 𝑇 T𝑀o(�̃�g−𝐰fic−𝑀o𝐠) (4.15)

Hence, the dynamics of the whole robot-object system is the combination of Eq. (4.3)
and Eq. (4.15).
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(4.16)

4.4.2 Optimal control problem (OCP) formulation

With the simplified motion model, a desired controller must be able to recover from the
perturbation and be fast enough to do re-planning online. Additionally, it is important to
obey the contact constraint in Eq. (4.1) so that the derived contact dynamics is applied.
To satisfy these requirements, we formulate an OCP where the goal is to minimize the
finite-horizon cost-to-go function subject to the constraints and the dynamics of the system
at every control cycle.

We first define the system state vector 𝐱 and control input 𝐮 as 𝐱= [𝑥r,𝑦r,𝜃r, 𝑣r,𝜔r,𝜙,𝑑, �̇�, �̇�]T
and 𝐮 = [𝑎r, 𝜉r]T. Then the cost-to-go for N time steps is set as:

𝐽N(𝐱N) = (𝐩No −
𝐩𝐺o )𝑄(𝐩No −

𝐩𝐺o )
T (4.17)

where𝑄 denotes theweightmatrix associatedwith the object state,𝐩No = [𝑥No ,𝑦No ,𝜃No ]T
is the predicted object pose in the world frame, 𝐩𝐺o is the target object pose.

The final OCP is defined to minimize the distance between the object pose and the
target pose at the end of the overall horizon, while satisfying the contact constraints in
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Eq. (4.1), the state constraints and the robot dynamics:

min
𝐱1∶𝑁 ,𝐮0∶𝑁−1

𝐽N(𝐱N) (4.18a)

s.t. 𝐱0 = 𝐱𝑡0 (4.18b)
𝐱𝑡 = 𝐟(𝐱𝑡−1,𝐮𝑡−1r ) (4.18c)
𝑣𝑡r > 0 (4.18d)
−90° < 𝜙𝑡 < 90° (4.18e)
|𝑎𝑡−1r | < 𝑎r,max (4.18f)
𝐮𝑡−1 ∈r, ∀𝑡 ∈ {1,… ,𝑁 }

It should be noted that 𝐱𝑡 = 𝐟(𝐱𝑡−1,𝐮𝑡−1r ) is the forwardmodel in Eq. (4.16), andr represents
the robot’s acceleration and angular acceleration limits. Every time step, the OCP is solved
online.

4.5 Experimental results
This Section presents an evaluation and validation of the proposed pushing model and
controller. The Tiago service robot [83] (see Fig. 4.1), which has a cylinder-shaped mobile
basewith a radius of 27cm, was used to push several rectangular boxeswith varying physical
properties, includingmass, size, and texture. The results indicate that our simplified pushing
model predicts the object’s motion under pushing with an accuracy better than 0.075m.
With this prediction, the proposed controller plans feasible trajectories by adapting the
contact with the object while pushing to the goal. Although the pushing success rate varies
depending on the target’s position, the proposed method can achieve an average success
rate of 83% with a pushing accuracy of 0.085m for the selected goals, distributed equally
in the test room. Compared to the stable pushing controller [82], the proposed approach
improves the agility and efficiency of mobile manipulators and is robust in achieving the
task while tolerating modeling errors.

4.5.1 Evaluation of the contact model

We evaluate the precision of the contact dynamics model. The Tiago robot is controlled to
push a paper box that has a dimension of 0.386×0.585×0.4 m3 and a weight of 1.5 kg. The
friction coefficient of the ground-box contact is 𝜇g = 0.4. Two primary sources of prediction
errors were identified: the mismatch between the actual shape of the robot and its modeled
counterpart and the slippage of the wheeled robot during movement.

We first evaluate the accuracy of the proposed contact model under different contact
configurations. To exclude the influence of the robot slippage, we conduct object pushing
experiments with a fixed speed as 𝑣r = 0.1m/s,𝑤r = 0 rad/s. 380 trails of the pushing
trajectory are collected for 20 timestamps, with a sampling time of 𝛿𝑡 = 0.1𝑠. The average
error of the motion prediction by the DAE model (Eq. 4.7) and the simplified Generalized
Coordinate Model (GCM, Eq. 4.16) is presented in Fig. 4.5a and 4.5c, respectively. We found
that the overall prediction error was under 0.025m for the DAE model and 0.04m for the
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simplified GCM. However, we observed that the prediction accuracy was lower in cases
where the object was in front of the robot at the center (𝑑 = 0,𝜙 = 0) due to a mismatch
between the real robot and our model. Specifically, there is a boss on the front of the mobile
base serving as the charging connector, which causes discontinuous contact dynamics, as
shown in Fig. 4.4.

Figure 4.4: Boss on the robot.

Furthermore, we evaluate the prediction error under different pushing speed by con-
ducting at least 5 trials of pushing trajectory for each speed configuration, with increments
of 0.1m/s and 0.05rad/s for linear and rotation speed, respectively. The results are shown
in Fig. 4.5b and 4.5d. It demonstrates an increasing trend in prediction error as pushing
speed increases. This could be attributed to the mobile robot’s wheel slippage worsening
at higher speeds, leading to poorer object motion prediction during pushing. Under all the
speed configurations, the DAE model had the highest prediction error of 0.06m, while the
simplified GCM had a prediction error of 0.075m.

Despite the simplified model’s inherent lower prediction accuracy compared to the
DAE model, the error resulting from the different contact/speed configurations seems more
significant, as shown in Fig. 4.5. Consequently, a reactive controller is deemed necessary
to bridge the gap in the modeling process and tolerate modeling errors.

4.5.2 Validation of the controller

Simulation results

Using the same setup as in Section 4.5.1, we conducted simulations in which the robot
pushed the object to different goal positions with varying initial contact configurations.
The MPC planner is configured with a prediction horizon of 30 and a sampling time of
𝛿𝑡 = 0.1𝑠. As a goal-reaching controller, the weight matrix is set as 𝑄 = diag(1,1,0). The
solver we used is IPOPT. The key parameters for both the simulation experiments and
real-world experiments are concluded in Table. 4.1.

Three different scenarios were defined, and the proposed free pushing approach is
compared with the stable pushing method in [44]. As the simulation results shown in Fig.
4.6, the robot changes its contact with the object during the pushing process in the free
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(a) Prediction accuracy of DAE under different
contact configurations

(b) Prediction accuracy of DAE at different
pushing speeds

(c) Prediction accuracy of GCM under different
contact configurations

(d) Prediction accuracy of GCM at different
pushing speeds

Figure 4.5: The prediction accuracy of the DAE model and the simplified GCM evaluated
by their averaged prediction error. The black dots in (a), (b) represent the sampled contact
configurations. The prediction accuracy is determined by comparing the predicted object
position with its actual position recorded by the motion capture system (OptiTrack) after a
prediction horizon of 20 timestamps.
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pushing mode, while it maintains a sticking contact with the object in the stable pushing
cases. To maintain the sticking contact in stable pushing, the object is modeled as a Dubin’s
car with its maximum curvature limited [44], as shown in Fig. 4.6b. However, it does not
consider the kinematic constraints of the nonholonomic robot, which results in infeasible
push plans, as seen in Fig. 4.6d, where the robot is unable to follow the trajectory to push
the object sideways. Furthermore, in cases where the robot and the pushing target are
initially positioned on the left of the object, the robot is capable of pushing the object
towards the goal by adapting the contact configuration during pushing, as depicted in
Fig. 4.7. But it is not possible with the stable pushing controller where a longer pushing
trajectory with a large curvature is required. In conclusion, the free pushing method plans
for feasible trajectories for the robot by considering its nonholonomic constraint. It is also
more agile and efficient in completing pushing tasks due to its ability to change contact
points while pushing.

Real-world experimental results

The proposed controller is tested in physical experiments using (1) the same paper box in
Section. 4.5.1 and (2) a plastic basket which sizes 0.345×0.522×0.278 m3 and weighs 8 kg.
The robot and object states are provided by a motion capture system (OptiTrack) and a
Kalman filter, which runs at 120Hz. Control commands are computed on a laptop using
our proposed MPC-based method and are sent to the Tiago robot via WiFi and ROS, which
runs at 10Hz. The average solution time of the MPC controller is 60ms. According to the
setup of Tiago, we send the optimized 𝑣1r and 𝜔1

r form Eq. 4.18 as its control commands (as
demonstrated in Fig. 4.2).

Ablation experiments are conducted to push the box towards 6 different targets (as
shown in Fig. 4.8), distributed evenly in the motion capture room, for 10 times per target.
We defined pushing accuracy as the square root of the average of the squared errors
between the goal and the actual final position of the pushed object. We considered cases
with pushing accuracy below 0.25m as failures. The results are summarized in Table 4.2,
where we observed an average reaching accuracy below 0.120m and a delivery success rate
higher than 70%. Since the object movement is very sensitive to the small differences in the

Table 4.1: Key parameter values used in both the simulation and real-world experiments.

Parameter Value

MPC

Prediction Horizon 30
Sampling Time 0.1s
Weight, Q, in cost (Eq. 4.17) diag(1,1, 0).
Solver IPOPT
Average Solution Time 60ms

Pushed objects
1. Paper Box

Size 0.386×0.585×0.4𝑚3

Mass 1.5 kg
Pushed objects
2. Plastic Basket

Size 0.345×0.522×0.278𝑚3

Mass 8 kg
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(a) Trail 1: Free pushing (b) Trail 1: Stable pushing

(c) Trail 2: Free pushing (d) Trail 2: Stable pushing

Figure 4.6: Comparison of the pushing performance with a free and stable pushing controller
in simulation. The orange circles and blue rectangles represent the trajectory of the robot and
object, respectively. The black arrows indicate the direction of the robot. Trails (a), and (b)
share the same target of (0, 1), while panels (c) and (d) share the target of (0.5, 0). All panels
start with the same initial contact configuration of 𝑑 = 0 and 𝜙 = 0.

contacts and initial states, the robot reacts to unforeseen changes by continuously adapting
its contact with the object, resulting in differences in travel distance, even for the same
goal. In Fig. 4.9, we present several repeated pushing trials targeting goal 4. Starting at
position (0,−1) with the contact configuration 𝑑 = 0,𝜙 = 0, the resulting object trajectories
varied significantly. Furthermore, as the object got closer to the target, there were instances
where the robot’s control inputs were too small to articulate the pushing, leading to wheel
slippage and failure, as shown in Fig. 4.9c. This observation motivates our future research
on compliant robot pushing.

As we already discussed in our previous work [82], maintaining contact between the
robot and the object is crucial for pushing with nonholonomic robots. Because frequent
repositioning actions are time-consuming. Additionally, planning these actions while
avoiding collisions with the object simultaneously is challenging. As an improvement of
[82], we will not explain it repeatedly due to space limitation. However, we give experiment
results of tracking predefined trajectories with the free pushing method (Fig. 4.10). These
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Figure 4.7: Free pushing trail 3 with an initial contact configuration of 𝑑 = 0.25 m and 𝜙 = 0
and target of (0, 1). The stable pushing is infeasible using the setup in Fig. 4.6.

results illustrate how the proposedmethod can continuously push the object along the given
path without losing contact. Additionally, the free pushing controller is more maneuverable
than [82] to track curly paths without curvature limitation.

Furthermore, we attempted a more challenging task, i.e., pushing a heavy basket
filled with random products (Fig. 4.1b). The basket’s mass distribution is difficult to
measure, complicating accurate system modeling. This test was performed to evaluate
the controller’s robustness and determine whether it could compensate for small model
mismatches. The results of the pushing experiment are shown in Fig. 4.11, where the
controller still successfully achieved the pushing task despite the modeling errors. However,
it resulted in a longer pushing distance and more changes in the contact configuration.
Our results indicate that the mobile base is able to deliver large and heavy objects that
cannot be grasped. However, its pushing performance is still limited by motor capabilities
and wheel slippage. It is noted that objects that are too heavy may degrade the pushing
performance, resulting in jerky motions.

Table 4.2: Pushing performance with the real robot.

Goal Averaged pushing
accuracy (RMSE, m)

Averaged
travel distance (m) Success rate Number of trails

1 0.074 2.324 0.7 10
2 0.054 1.427 1 10
3 0.120 2.510 0.7 10
4 0.105 3.242 0.8 10
5 0.064 2.957 1 10
6 0.098 4.186 0.8 10
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Figure 4.8: The proposed controller is tested in physical experiments where a Tiago robot is
used to push a paper box to specified positions. The selected pushing targets are shown in the
figure.

(a) (b) (c)

Figure 4.9: Pushing trails with the same goal. The object motion is sensitive to the small
difference in the control inputs and the initial states. But the robot achieves the push success
by continuously adapting the contact configuration.
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Figure 4.10: Tracking an S-curve (left) and a 1/4 circle (right) while engaging in free pushing.
The green line represents the reference path.

Figure 4.11: The robot is able to successfully push a heavy plastic basket to the target position
with the tolerance of modeling error. Pictures of the experiment can be seen in Fig. 4.1b. (Left)
the recorded trajectories, (right) the control commands.
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4.6 Conclusion
In this chapter, we address the challenge of unwieldy object delivery using a differential-
drive mobile robot with a free pushing method. Unlike previous approaches focusing on
contact point trajectories, we introduce a continuous contact model to predict pusher-slider
dynamics and directly plan robot control inputs. This method ensures feasible pushes
and minimizes time and distance by continuously pushing the object without relocations.
However, it is limited to regular-shaped objects like rectangles.

In contrast, data-driven controllers are suitable for irregular objects but require exten-
sive data collection for tuning. Training a model for each object is impractical. Given that
most unwieldy objects in logistics are regular-shaped, we prefer to make an analytical
reactive controller, as introduced. An enhancement to the proposed method could involve
identifying parameters in the model during the pushing process.
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5
Nonprehensile planar

manipulation via differential
flatness

Parts of this chapter appeared in:

• Y. Tang, M. Wisse, W. Pan, “Reactive Nonprehensile Planar Manipulation via Differential Flatness,”
submitted to IEEE Robotics and Automation Letters, under review.
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Chapters 3 and 4 propose two object manipulation methods with mobile bases, fo-
cusing on controller design. However, for underactuated nonprehensile manipulation,
long-horizon planning remains challenging. This challenge is compounded by the highly
nonlinear dynamics and discontinuities in the manipulation process, which motivated the
research presented in Chapter 5. In this chapter, we investigate the differential flatness
property of the pushing system and utilize it to simplify planning for nonprehensile manip-
ulation. Leveraging the simplicity and computational efficiency of the proposed method,
we develop a reactive pushing manipulation approach.

5.1 Introduction
In addition to typical pick-and-place operations, nonprehensile manipulations, which
require extensive contact with the physical world, are widely used. However, planning and
control for contact-rich manipulations are recognized as particularly challenging, especially
for long-horizon tasks.

The difficulty of contact-rich manipulation lies in its complex dynamics, characterized
by multimodality under varying contact conditions. Additionally, it requires decisions
on when to initiate or break contact, making the decision variables a mix of continuous
control inputs and integer contact modes, thus formulating a hybrid optimization problem.
[13] addresses the problem using mixed-integer programming, but due to computational
complexity, it necessitates an additional offline phase to pre-plan a sequence of contacts.
More recently, [14] solves the nonprehensile planar manipulation control problem as a
trajectory optimization problemwith complementarity constraints. However, this approach
can only be solved online for sufficiently short horizons due to computational demands and
requires the use of a specialized commercial solver. Even though these methods precisely
address the planning and control for planar manipulation, they are limited to scenarios
with predefined contact trajectories and short horizons.

To avoid excessive mode enumeration and reduce computational complexity, stable
manipulation is widely explored to simplify manipulation planning [19, 39, 79]. This
approach emphasizes limiting the applied force through the contact point within the
bounds of the friction cone, thereby maintaining contact stability without switching to
other contact modes. [44] demonstrate that the robot-object system under stable contact
is differentially flat, reducing the manipulation planning problem to that of a Dubins car.
Consequently, planning for planarmanipulation becomes as straightforward as computing a
Dubins curve, which greatly simplifies the problem and offers the benefit of time optimality
as well.

Although stable manipulation makes nonprehensile planar manipulation easier, the
fixed contact point under stable pushing can only transmit a limited set of forces, thus
restricting the system’s maneuverability. Our previous research [91] presented a free-
pushing approach that approximates the robot-object contact as a sliding joint, smoothing
transitions across different contact points. Compared to stable manipulation, the free-
pushing approach exhibits highly reactive manipulation behavior, freely maneuvering
around the object, like reactively catching the object during manipulation. However, the
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Figure 5.1: Manipulating object to the goal with a low-cost mobile robot: Mirte Master. The
transparency of the robots and boxes indicates their movement.

underactuated nature of the nonprehensile manipulation system poses the problem of
the controller sometimes getting trapped in local optima, necessitating a global planner
to plan a global trajectory beforehand. Optimizing such a global trajectory for contact-
based manipulation is challenging due to the highly nonlinear dynamics, prompting us to
investigate how we can simplify the planning of free pushing.

The key contribution of this chapter is that we demonstrate that the free-pushing system
is also differentially flat like the one with stable contact. This means the manipulation
planning problem can be simplified as a trajectory planning problem for the object. As a
result, we can derive the robot trajectory directly from the object trajectory. This makes
it easy to plan a reaching trajectory where the start of the robot’s pushing trajectory is
where it plans to initiate contact. The entire manipulation plan, including reaching and
manipulating, only takes an average of 2 milliseconds to solve. With the benefit of fast
calculations, our method offers robustness, ensuring quick recovery from disturbances
or uncertainties during manipulation. Furthermore, our method can easily incorporate
obstacle avoidance using the planned trajectory, effectively handling manipulation in
cluttered environments.

To conclude, the proposed method has the following advantages compared to the other
methods:

• It is simple to design, fast to solve, and robust to uncertainties.

• Unlike other approaches, it has the advantage of simplicity with only one parameter
to tune. No learning or extra tactile sensors are required.

• The global planner extends the usage of the free-pushing controller even in cluttered
environments.
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5.2 Preliminaries

5.2.1 Problem definition

In this chapter, we address the problem of reactive nonprehensile planar manipulation.
The significant amount of contact during manipulation makes modeling and planning
challenging, particularly in cluttered environments where obstacle avoidance is necessary.
Additionally, uncertainties arising from contact often lead to manipulation failures, neces-
sitating a method that can adapt reactively to changes. To achieve this task, we need to
solve the following problems:

1. How to plan for a feasible and collision-free trajectory for the planar manipulation?

2. How to reactively handle disturbances and recover during the manipulation?

We simplify the planning problem by proving that the nonprehensile planar manip-
ulation system is differentially flat: the trajectory of the object can fully determine the
system behavior, as explained in Section 5.3. This reduces manipulation planning to a
trajectory planning problem for the object (Section 5.4). Furthermore, our reactive approach
addresses manipulation failures caused by uncertainties or external disturbances. It unifies
reaching and pushing tasks into a single trajectory optimization framework, ensuring fast
computation and robustness to disturbances, as detailed in Section 5.5.

5.2.2 Quasi-static assumption

Due to the complexities in modeling impacts and the typically low speeds involved in
manipulation, the contacts in this work are assumed to be quasi-static. This means the
object’s motion is slow enough that inertial forces can be neglected compared to other
forces acting on the system [92]. This assumption simplifies the motion model of the
object by only considering a balance between the pushing and friction forces. Although
the quasi-static assumption may not ensure an accurate model in some dynamic cases, it is
a powerful tool for simplifying the analysis of planar manipulation tasks. We rely on our
reactive design to compensate for any imprecision in the model.

5.3 Differential flatness
Differential flatness is a concept in control theory that simplifies controlling and planning
the trajectories of complex dynamical systems. Many systems have nonlinear dynamics,
making control and planning challenging. In a differentially flat system, we can use a
simpler set of variables (flat outputs) to “flatten” the system’s behavior, transforming a
complicated planning problem into a simpler one.

A system is said to be differentially flat if a set of differentially independent variables,
known as flat outputs 𝐲, can be found such that (1) The flat outputs 𝐲 can be expressed as
functions of the system’s state variables 𝐱 ∈ ℝ𝑛, control inputs 𝐮 ∈ ℝ𝑚, and a finite number
of their derivatives. (2) Conversely, all the state variables and control inputs of the system
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Figure 5.2: Coordinate and frame configuration. The blue circle represents the robot, while the
orange rectangle denotes the object. Key local frames are illustrated.

can be expressed as functions of the flat outputs 𝐲 and a finite number of their derivatives
[93]. From a mathematics perspective, a nonlinear system in the form of �̇� = 𝑓 (𝐱,𝐮) can be
stated as differentially flat if there exists a set of flat outputs 𝐲 ∈ ℝ𝑚 such that

𝐲 = 𝑓1(𝐱,𝐮, �̇�, �̈�, ...)
𝐱 = 𝑓2(𝐲, �̇�, �̈�, ...)
𝐮 = 𝑓3(𝐲, �̇�, �̈�, ...)

(5.1)

By finding the appropriate flat outputs, the complex task of trajectory planning can be
reduced to a simpler problem involving these outputs and their derivatives. This property
enables the trajectory of the flat output to determine the entire system behavior.

For the cylinder-shaped robot (the Mirte Master robot as shown in Fig. 5.1), its center
is also the central point of the configuration of the four wheels. The robot has a radius
𝑟𝑟 . We use a rectangular object as an example, with length 𝐿𝑜 and width 𝑊𝑜 . However,
the proposed method can be generalized to other shapes that have a plane to contact and
maneuver around. The key to proving the flatness of the system is identifying the flat
output.

Proposition 1. The position of the object’s center of mass, 𝐩𝑜(𝑡), is the flat output of the
pusher-slider system.

Assumption 1. The contact under this work is assumed to be quasi-static [92, 94].

Assumption 2. The contact between the robot and the object is assumed to be friction-less
[91].

Proof. First, the dimension of 𝐩𝑜(𝑡) matches that of the control input. Next, we demon-
strate that the trajectory of the entire system can be derived (without integration) from the
trajectory of the object. Given the object’s position 𝐩𝑜(𝑡) = [𝑥𝑜(𝑡),𝑦𝑜(𝑡)] along a geometric
path 𝜏(𝑡), we can express its orientation 𝜃𝑜 , the path’s tangent direction 𝑇 (𝑡), and curvature
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𝜅(𝑡) as (illustrated in Fig. 5.3b):

𝜃𝑜 = arctan
�̇�𝑜
�̇�𝑜

,

𝑇 (𝑡) =
1√

�̇�2𝑜 + �̇�2𝑜 [
�̇�𝑜
�̇�𝑜]

𝜅(𝑡) =
�̇�𝑜 �̈�𝑜 − �̇�𝑜 �̈�𝑜
(�̇�2𝑜 + �̇�2𝑜)3/2

(5.2)

The normal vector of the curve at 𝑝𝑜(𝑡) can be achieved from 𝑇 (𝑡) by a counterclockwise
rotation of 𝜋

2 ,
𝑁 (𝑡) = 𝑅(

𝜋
2
) ⋅𝑇 (𝑡)

=
1√

�̇�2𝑜 + �̇�2𝑜 [
−�̇�𝑜
�̇�𝑜 ]

(5.3)

where 𝑅(𝜃) denotes the rotation matrix.

The instantaneous rotation center of the curve, RC, is

RC(𝑡) = 𝐩𝑜(𝑡)+
1

𝜅(𝑡)
𝑁 (𝑡)

= 𝐩𝑜(𝑡)+
�̇�2𝑜 + �̇�2𝑜

�̇�𝑜 �̈�𝑜 − �̇�𝑜 �̈�𝑜 [
−�̇�𝑜
�̇�𝑜 ]

(5.4)

According to [44], the distances from the object center to the pushing force and instan-
taneous rotation center are inversely perpendicular (Fig. 5.2). This geometric relationship
allows us to express the trajectory curvature 𝜅(𝑡) in terms of the contact point distance 𝑑:

𝜅(𝑡) = 𝑐 ⋅𝑑 (5.5)

Since the contact point, 𝐩𝑝 , is opposite the object’s origin 𝑂𝑜 and located on the object’s
surface,

𝐩𝑝(𝑡) = 𝐩𝑜(𝑡)+ 𝑐𝜅(𝑡)𝑁 (𝑡)−
𝑊𝑜

2
𝑇 (𝑡)

= 𝐩𝑜(𝑡)+ 𝑐
�̇�𝑜 �̈�𝑜 − �̇�𝑜 �̈�𝑜
(�̇�2𝑜 + �̇�2𝑜)2 [

−�̇�𝑜
�̇�𝑜 ]−

𝑊𝑜

2
1√

�̇�2𝑜 + �̇�2𝑜 [
�̇�𝑜
�̇�𝑜]

(5.6)

The robot center is located 𝑟𝑟 from the contact point in the inverse direction of 𝑇 (𝑡).

𝐩𝑟 (𝑡) = 𝐩𝑝(𝑡)− 𝑟𝑟𝑇 (𝑡)

= 𝐩𝑜(𝑡)+ 𝑐
�̇�𝑜 �̈�𝑜 − �̇�𝑜 �̇�𝑜
(�̇�2𝑜 + �̇�2𝑜)2 [

−�̇�𝑜
�̇�𝑜 ]−

(
𝑊𝑜

2
+ 𝑟𝑟 )

1√
�̇�2𝑜 + �̇�2𝑜 [

�̇�𝑜
�̇�𝑜]

(5.7)
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The control input of the system, 𝐮r, is the desired velocity for the robot, which can be
obtained as the derivative of 𝐩r(𝑡):

𝐮r = [
𝑣r
𝜔r]

=
[

√
�̇�𝑟 (𝑡)2+ �̇�𝑟 (𝑡)2

arctan( �̇�𝑟 (𝑡)�̇�𝑟 (𝑡) ) ]
(5.8)

where 𝐩r = [𝑥r,𝑦r] which indicates the position of the robot.

Now, we have the robot position and control input expressed in terms of the flat output
(object position) and its derivatives. Thus, without calculating the pushing force and
reasoning the resulting movement of the object, the robot’s position and motion can be
derived from the object’s position and its derivatives. The object’s trajectory determines
the robot’s trajectory and its motion. We can prove that the position of the object’s origin
is the flat output of the pusher-slider system.

5.4 Trajectory optimization
Since the flat outputs are differentially independent, there are no feasibility constraints
on the trajectories in the flat space. Consequently, every trajectory in the flat space can
be mapped to a feasible trajectory in the state-input space [95]. Trajectories planned in
the flat space can directly yield control inputs without considering the system’s complex
dynamics, thereby simplifying the trajectory planning process.

Hereby, global planning of the nonprehensile planar manipulation is simplified as the
trajectory planning problem for the object. Given the object’s starting pose [𝑥𝑠𝑜 ,𝑦𝑠𝑜 ,𝜃𝑠𝑜]⊤,
goal pose [𝑥𝑔𝑜 ,𝑦𝑔𝑜 ,𝜃𝑔𝑜 ]⊤, and the position of the obstacles, we can easily plan for a trajectory
of the object that is pushed to the goal while avoiding the obstacle.

5.4.1 Representation of the trajectory

We use piecewise Bezier curves, 𝜏 = [𝜏𝑥 , 𝜏𝑦], to represent the object trajectory in each
dimension 𝜇 ∈ 𝑥,𝑦. Each Bezier segment is parameterized to time 𝑡 and defined over a fixed
interval [0,1], consisting of a set of control points 𝐩𝑖.

For example, the 𝑗 𝑡ℎ segment of the Bezier curve in 𝜇 dimension, 𝜏𝜇, is defined as

𝜏𝜇𝑗 (𝑡) =∑𝐩𝑖𝜇𝑗𝑏
𝑖
𝑛(𝑡) (5.9)

where 𝑏 𝑖
𝑛(𝑡) is the Bernstein polynomial basis with 𝑛 being the degree of the basis and (𝑛𝑖)

being the binomial coefficient. Here we use the cubic Bezier curve where 𝑛 = 3. 𝐩𝑖𝜇𝑗 is the
𝑖𝑡ℎ control point of of the 𝑗 𝑡ℎ segment of the trajectory.

Accordingly, we have a piece-wise curve of 𝑚 segments:

𝜏𝜇(𝑡) =
⎡
⎢
⎢
⎢
⎣

𝜏𝜇1,
𝜏𝜇2,
...,
𝜏𝜇𝑚

⎤
⎥
⎥
⎥
⎦

=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

∑𝑛
𝑖=0 𝐩𝑖𝜇1𝑏 𝑖

𝑛(
𝑡−𝑇0
𝑇1−𝑇0 ), 𝑡 ∈ [𝑇0,𝑇1]

∑𝑛
𝑖=0 𝐩𝑖𝜇2𝑏 𝑖

𝑛(
𝑡−𝑇1
𝑇2−𝑇1 ), 𝑡 ∈ [𝑇1,𝑇2]

...
∑𝑛

𝑖=0 𝐩𝑖𝜇𝑚𝑏 𝑖
𝑛(

𝑡−𝑇𝑚−1
𝑇𝑚−𝑇𝑚−1 ), 𝑡 ∈ [𝑇𝑚−1,𝑇𝑚]

(5.10)
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(a) (b)
Figure 5.3: Example of the optimized Bezier curve. (a) Given the object’s start and goal poses,
a Bezier curve (dashed red line) is optimized to represent the object’s trajectory. The blue dots
are the control points of the first curve segment. The white and pink patches represent the
object’s start and goal poses, respectively. The colorful lines indicate the instantaneous rotation
radius of the trajectory, while the green circles indicate the robot’s positions. (b) The robot’s
trajectory is recovered from the optimized object trajectory, allowing the robot to maneuver
and push the object along the planned path to reach the goal pose.

where 𝑇1,𝑇2, ...,𝑇𝑚 are the end times of each segment.

5.4.2 Objective

According to Eq. 5.5, the curvature of the object trajectory is proportional to the distance
of the contact point to the x direction of the object frame. During the pushing process, we
want to maintain contact between the robot and the object and avoid sliding away from
the object. Therefore, we aim to minimize the curvature of the planned object trajectory to
keep the contact point closer to the center of the object.

The curvature variation energy is given by 𝐸𝑐𝑣(𝑃) = ∫ 𝑙
0 [�̇�(𝑠)]

2𝑑𝑡, where 𝑠 is the arc pa-
rameter, 𝑙 is the arc length of 𝜏(𝑡). Minimizing the curvature of the trajectory is challenging
in real-time because the curvature involves the second derivatives of position, leading to a
non-quadratic cost function, which complicates the optimization problem and can make it
non-convex. According to [96, 97], this nonlinear energy function can be approximated by
the quadratic jerk energy. The jerk energy of each Bezier curve segment is defined as:

𝐸𝑗𝑒𝑟𝑘(𝜏𝜇𝑗 ) = ∫
𝑇𝑗

𝑇𝑗−1
|| �⃛�𝜇𝑗 (𝑡)||2𝑑𝑡

= 𝐩⊤𝜇𝑗𝑄𝜇𝑗𝐩𝜇𝑗
(5.11)

where �⃛�𝜇𝑗 (𝑡) = 6(−𝑝0
𝜇𝑗 +3𝑝1

𝜇𝑗 −3𝑝2
𝜇𝑗 +𝑝3

𝜇𝑗 ), 𝐩𝜇𝑗 = [𝑝0
𝜇𝑗 ,𝑝1

𝜇𝑗 ,𝑝2
𝜇𝑗 ,𝑝3

𝜇𝑗 ]⊤,𝑄𝜇𝑗 = 36 ∗
⎡
⎢
⎢
⎢
⎣

1,−3,3,−1
−3,9,−9,3
3,−9,9,−3
−1,3,−3,1

⎤
⎥
⎥
⎥
⎦

is the symmetric Hessian matrix.
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Then the final cost function of the trajectory optimization problem is

𝐽 = ∑
𝜇∈𝑥,𝑦

∑
𝑗=1,2,...,𝑚

𝐸𝑗𝑒𝑟𝑘(𝜏𝜇𝑗 ) (5.12)

5.4.3 Enforcing constraints

A set of constraints is set to ensure the trajectory’s smoothness and feasibility in generating
a trajectory containing piecewise trajectory segments. Furthermore, safety constraints,
start pose constraints, and goal pose constraints are also applied to ensure that we can
achieve the desired path. For each piece of the Bezier curve, higher-order derivatives can be
represented as a linear combination of corresponding lower-order control points, written
as:

𝑎0,𝑖𝜇𝑗 = 𝑝𝑖
𝜇𝑗 , 𝑎

𝑙,𝑖
𝜇𝑗 =

𝑛!
(𝑛− 𝑙)!

⋅ (𝑎𝑙−1,𝑖+1𝜇𝑗 −𝑎𝑙−1,𝑖𝜇𝑗 ), 𝑙 ≥ 1, (5.13)

where 𝑙 is the order of the derivative, and 𝑛 is the degree of the Bernstein basis.

Continuity constraints

The trajectory should be continuous at all derivatives at the connecting points of the
segments. Therefore, the continuity constraint is applied to the consecutive curves:

𝑎𝜎,𝑛𝜇𝑗 = 𝑎𝜎,0𝜇𝑗+1,1 ≤ 𝑗 ≤ 𝑚−1, 𝜇 ∈ 𝑥,𝑦, (5.14)

where 𝜎 indicates the 𝜎𝑡ℎ derivative, 0 ≤ 𝜎 ≤ 𝑛.

Safety constraints

Bezier curves have the property that the curve lies completely within the convex hull of
its control points. Thus, safety constraints are enforced on the control points to ensure
that they are within a convex polygon without overlapping with the obstacle, which adds
boundary limits on the control points:

𝛽− < 𝑝𝑖
𝜇𝑗 < 𝛽+ (5.15)

where 1 ≤ 𝑗 ≤ 𝑚−1, 𝜇 ∈ 𝑥,𝑦,𝑧, 𝑗 ∈ 0,1, ...,𝑛.
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Start and goal pose constraints

The beginning and end points of the trajectory are defined by the start and goal points of
the object, resulting in start and goal pose constraints:

𝜏𝑥0(0) = 𝑥𝑠𝑜
𝜏𝑦0(0) = 𝑦𝑠𝑜
𝜏′𝑥0(0) = cos(𝜃𝑠𝑜)
𝜏′𝑦0(0) = sin(𝜃𝑠𝑜)

𝜏𝑥𝑚(𝑇𝑚) = 𝑥𝑔𝑜
𝜏𝑦𝑚(𝑇𝑚) = 𝑦𝑔𝑜
𝜏′𝑥𝑚(𝑇𝑚) = cos(𝜃𝑔𝑜 )
𝜏′𝑦𝑚(𝑇𝑚) = sin(𝜃𝑔𝑜 )

(5.16)

The relative position between the robot and the object at the beginning determines the
starting curvature of the curve, 𝜅(0):

𝜅(0) = 𝑐/𝑑(0) (5.17)

where 𝑑(0) is the distance from the object’s origin to the line of the pushing force at the
beginning, which will be optimized.

The starting contact point is limited at the contact patch such that −𝑊𝑜/2 < 𝑑(0) <
𝑊𝑜/2. The continuity constraints and the start and goal pose constraints are formulated
as linear equality constraints on the decision variables, denoted as 𝑨𝑒𝑞𝐜 = 𝐛𝑒𝑞 . The safety
constraints form linear inequality constraints, written as 𝑨𝑖𝑒𝐜 = 𝐛𝑖𝑒 . The final trajectory
optimization problem is formulated as a linear quadratic optimization problem as follows.
An example of the optimized trajectory can be found in Figure. 5.3.

min
𝑝𝑖𝜇𝑗 ,𝑑(0)

𝐩⊤𝜇𝑗𝑄𝜇𝑗𝐩𝜇𝑗 (5.18a)

𝑨𝑒𝑞𝐜 = 𝐛𝑒𝑞 , (5.18b)
𝑨𝑖𝑒𝐜 = 𝐛𝑖𝑒 . (5.18c)

where 𝑝𝑖
𝜇𝑗 are the control points of the Bezier curve segments.

5.5 Planning and control
In the previous section, we described how to plan for planar manipulation. By determining
the trajectory of the object, we can infer the behavior of the entire system. However, this
planning only addresses the phase when the robot and the object are in contact during
manipulation. Maintaining continuous contact during nonprehensile manipulation is
challenging due to uncertainties and disturbances. Thus, a robust approach must include
the ability to recover from lost contact. Here, we introduce a reactive manipulation pipeline.
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Figure 5.4: Planning and control pipeline. The dashed arrow indicates the transmission of
the data flow, like planned trajectories. The open circle arrow indicates that the controller
recursively follows the reference trajectory until the termination condition is met.

The schematic of the pipeline is shown in Fig. 5.4. It features a contact-implicit global
planner that continuously plans an object trajectory under pushing and a robot trajectory
to reach the object. Since the robot’s pushing trajectory can be derived from the object’s
trajectory using the differential flatness property, the goal of the robot’s reaching task is
to position itself at the start of the pushing trajectory. Trajectory optimization for the
robot reaching task follows the same principles as those for the object, as illustrated in the
previous section.

When the robot is not in the initial pushing position, a reaching controller is employed to
track the robot’s reaching trajectory until it reaches the target point. Once the robot makes
contact with the object, a free pushing controller [91] is used to follow the pushing trajectory
until the object reaches its goal. The free pushing controller adapts to uncertainties by
dynamically changing the contact point on the object. Additionally, it is always ready to
switch back to the reaching controller if the robot loses contact with the object, making
the pushing approach more reactive to uncertainties.

We use Model Predictive Controllers (MPC) to track the trajectories. For simplicity, the
details of the controllers are not included here; please refer to our previous work [91] for
comprehensive information. While we employ MPC controllers in this approach, other
local controllers can also be used to track the planned trajectory.
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Figure 5.5: Goal reaching experiments. (a, b, c) Manipulate objects with different sizes with
the proposed reactive manipulation method, including reaching and pushing phases. (d, e, f)
Manipulate objects with different sizes with the free pushing controller in [91], without the
global reference trajectory.

5.6 Experimental results
This section presents the experimental results performed in simulation and in the real
world. The trajectory optimization problem is implemented using CasADi and solved with
the IPOPT solver. Aside from the third-party solver, the code is implemented in Python
and runs on a laptop with the processor i7-11800H. With the trajectory optimization
method proposed in Section. 5.4, the robot can plan for the planar manipulation easier and
faster, which only takes 2 ms in average to make one contact-implicit manipulation plan.
Compared to manipulation without the global plan, it avoids going to the local optima
and can recover from the infeasible configurations. Compared to the more reactive MPPI
(Model Predictive Path Integral) controller, the proposed approach shows the benefits of
producing more efficient manipulations and demonstrates significant simplicity. The real
experiments show its ability to deal with unexpected disturbances during manipulation.
Experiments are also shown in the supplementary video.

5.6.1 Simulation experiments

We use Isaac Gym as our simulation environment for its accurate contact dynamics and
realistic physical interaction simulations. We present three examples of manipulating
objects with different shapes, as shown in Fig. 5a-5c. The dimensions of the manipulated
objects are 0.5x0.5 m, 0.5x0.75 m, and 0.2x1.5 m, each weighing 2 kg. The parameter 𝑐 is
set to 0.02.

Starting from the purple patch, the controller’s goal is to transport the object to the
pink patch. At the beginning of the experiment, the robot is not in contact with the object.
The manipulation trajectory optimizes for the position where the robot initiates the contact,



5.6 Experimental results

5

67

Figure 5.6: Box plots for various metrics related to the goal-reaching performance, including
solver time, position error and orientation error. Each box plot shows the distribution of
data points for the respective metric, with the median represented by the central line and
the interquartile range represented by the box. Each metric includes data from three groups
corresponding to the experimental conditions in Fig. 5a, 5b, 5c.

respectively, starting from the middle, left side, and right side of the object for Fig. 5a,
5b and 5c. After getting in contact with the object, the robot maneuvers around it to
adjust its pose and push it forward to the goal position smoothly. The experiments are
repeated 50 times for each condition, whose statistical results are shown in Fig. 5.6. The
average solver times for the manipulation trajectory optimization are 2.34, 2.45, and 2.41
milliseconds, respectively. The average position errors are 0.16, 0.23, and 0.25 meters, while
the average orientation errors are 0.23, 0.16, and 0.17 radians. This highlights the efficiency
and effectiveness of the trajectory optimization process, ensuring quick computations and
relatively low errors in both position and orientation.

In comparison, some experiments were conducted without the proposed contact-
implicit trajectory, using only the goal-driven finite-horizon controller [91], as shown
in Fig. 5d, 5e and 5f. This controller starts with contact with the object, eliminating the
need for the reaching phase. Initially, the process proceeds well, but it ultimately results in
local-optima configurations as shown in Fig. 5d and 5f. As an underactuated system, the
robot struggles to transmit sufficient force to push the object to the goal while minimizing
cost. Due to uncertainties in contact modeling, the object’s movement under pushing can
be unpredictable, sometimes breaking robot-object contact, as shown in Fig 5e. Without a
reactive recovery method, the configuration becomes infeasible for the pushing controller,
preventing the manipulation from continuing.

For the goal-reaching experiments, the proposed contact-implicit trajectory optimiza-
tion effectively guides planar manipulation to reach the target while avoiding local optima
traps. Due to its fast-solving capability, it can quickly generate new manipulation plans to



5

68 5 Nonprehensile planar manipulation via differential flatness

recover from unexpected situations, such as losing contact with the object.

The proposed approach proves especially useful in obstacle-aware environments, where
obstacle avoidance complicates the manipulation planning, increasing the likelihood of
encountering local optima. In two obstacle-aware environment settings, our robot success-
fully pushes the object along the planned trajectory and avoids collisions with obstacles,
as shown in Fig. 5.7c and 5.7a. We compare our method to a highly reactive manipulation
controller based on Model Predictive Path Integral (MPPI) control [27]. MPPI is consid-
ered one of the most reactive methods in contact-based manipulation due to its ability to
dynamically switch contacts from all possible locations.

The MPPI-based controller utilizes the GPU-parallelizable IsaacGym simulator to com-
pute forward dynamics, enabling rapid sampling and evaluating potential actions. We
tuned the MPPI hyperparameters for optimal performance, using 𝐾 = 1000 simulated
environments in IsaacGym and a planning horizon of 𝑇 = 20. The resulting trajectories
from MPPI can be seen in Fig. 5.7d and 5.7b. Although the MPPI-controlled robot even-
tually completes the task, its trajectory is significantly longer than that of our proposed
method, as seen in Fig. 5.7d. Additionally, it collides with an obstacle in Fig. 5.7b. While
MPPI excels in solving problems with non-linear and discontinuous dynamics, such as
contact-rich manipulations, it relies on performing hundreds of parallel rollouts, which
demands substantial computational resources.

In an ablation study, 30 experiments were conducted for each scenario using both
methods. The results are shown in Fig. 5.8. In scenario Fig. 5.7a, 5.7b, both the proposed
and the MPPI methods achieved success rates of 86.7%. In another scenario Fig. 5.7c, 5.7d,
the proposed method achieved a 100% success rate, while the MPPI method achieved 66.7%.
Despite the MPPI method’s slightly lower success rate, it cannot ensure collision avoidance.
The success rates of cases without collision avoidance drop to 56.7% and 23.3%. The
sampling-based nature of MPPI introduces an element of randomness in action selection.
If the samples fail to find a path to the goal, the system can become trapped in a sample
distribution that fails to explore the correct direction. In contrast, our method provides a
more deterministic and computationally efficient approach while maintaining the ability to
react to changes in the environment. Although the MPPI method achieves a lower average
position error than the proposed approach in the success trials, its average orientation
error is higher and exhibits greater variance. Furthermore, we observed that increasing the
weight for orientation error in the MPPI cost function leads to an even lower success rate.
Overall, the proposed method demonstrates advantages in simplicity and computational
efficiency compared to MPPI.

5.6.2 Real-world results

We also tested the proposed approach in real-world experiments. The robot we used is
the customized Mirte Master robot, which is a low-cost education robot. The radius of the
robot is 0.22 m. The object to be transported has a size of 0.37x0.41 m. The robot and object
states are provided by a motion capture system (OptiTrack) and a Kalman filter, which
runs at 120Hz. A goal-reaching experiment, replicating the setup shown in Fig. 5.5, was
conducted. The experiment result is presented in Fig. 5.1.
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The performance of the proposed approach was also tested under disturbances, as
shown in Fig. 5.9. Initially, the robot is not in contact with the object, so a contact-implicit
trajectory is planned. Then, the robot moves to the first planned contact position, as shown
in Fig. 5.9a. The robot started transporting the object aiming to the goal while being
disturbed by a person in Fig. 5.9b-5.9e. By quickly planning for a new contact-implicit
trajectory, the robot easily recovered from the disturbances. Finally, it successfully moves
the object to the goal position, as shown in Fig. 5.9f. The full trajectory is depicted in Fig.
5.10.
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(a) DF, case 1. (b) MPPI, case 1

(c) DF, case 2. (d) MPPI, case 2.

Figure 5.7: Manipulation with obstacle avoidance. DF represents the proposed reactive manip-
ulation based on differential flatness. Using this approach, the robot successfully pushes the
object along the planned trajectory while avoiding obstacles, as shown in (a) and (c). Compared
to the Model Predictive Path Integral (MPPI) control, the resulting trajectory successfully avoids
obstacles but is significantly longer than that of the proposed method.
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Figure 5.8: Performance comparison between the proposed method and MPPI method across
three metrics: position error, orientation error, and success rates.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Manipulation under disturbances. The transparency of the robots and boxes
represents their movement. The robot aims to push the paper box to the goal, indicated by
the white rectangle. In (b-e), random disturbances are introduced, yet the robot successfully
adapts the contact configuration and continues pushing smoothly. The paper box is ultimately
delivered to the goal, as shown in (f).

Figure 5.10: The overall trajectory from the experiment in Fig. 5.9 is shown. The robot
successfully handles random disturbances and completes the pushing task.
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5.7 Conclusion
This chapter introduces a reactive planning and control approach for nonprehensile planar
manipulations. We first proved that the underactuated pushing system is differentially flat.
By exploiting this differential flatness property, we simplify the pushing planning problem
as a trajectory optimization problem for the object, thus eliminating the need for complex
integration techniques. Additionally, our method formulates the initial contact point as
a decision variable, enabling seamless integration of reaching and pushing tasks into a
unified trajectory optimization framework. This holistic approach results in a contact-
implicit planner capable of reacting to unforeseen circumstances, such as losing contact
with the object or changes in goal pose. Through experimental validation, our method
offers reactivity, simplicity, and robustness.

While exploiting differential flatness has significantly simplified contact-implicit tra-
jectory planning, further improvements are possible. Future work will focus on reducing
computational demands of the local MPC controller. Developing a feedback lineariza-
tion controller based on differential flatness [44] could streamline the control problem,
potentially reducing complexity. This avenue will be explored in our future research.
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6
Reinforcement learning

compensated extended Kalman
filter for state estimation

Parts of this chapter appeared in:

• Y. Tang, L. Hu, Q. Zhang, W. Pan, “Reinforcement learning compensated extended Kalman filter for
attitude estimation” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.

• L. Hu*, Y. Tang*, Z. Zhou, W. Pan, “Reinforcement learning for orientation estimation using inertial
sensors with performance guarantee” IEEE International Conference on Robotics and Automation (ICRA),
2021.
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Given the importance of state estimation in nonprehensile manipulation, this chapter
presents our work on improving the robustness of state estimation using reinforcement
learning. We focus on its implementation in a simple case: attitude estimation using sensor
data from Inertial Measurement Units (IMU). However, this approach can be easily adapted
to state estimation problems in higher dimensions. The proposed method leverages ideas
from classic Kalman Filters and improves estimation robustness by learning the estimation
gain through reinforcement learning. Our approach demonstrates superior performance
compared to conventional methods in three challenging scenarios: inaccurate initial state
estimates, inaccurate filter gains, and even non-Gaussian noises. Experiments with real-
world data further validate the effectiveness of the proposed method.

6.1 Introduction
IMU is widely used to provide accurate attitude estimation in many fields, including:
aerospace [98], robotics [99] and human motion analysis [100]. Even though the gyroscope
alone can compute the sensor’s orientation by integrating the angular velocity over time,
it suffers from accumulated errors, especially in the drift of angular estimation [101]. A
data fusion approach using additional sensors such as an accelerometer and magnetometer
is often adopted to achieve higher attitude estimation accuracy. A variety of estimation
methods such as the extended Kalman filter (EKF) [102], unscented Kalman filter (UKF)
[103] and complementary filter (CF) [104] have been proposed, which compute a more
reliable estimate using the data collected from all available sensors.

The EKF and UKF, as two variants of the Kalman filter, use linearisation and deter-
ministic sampling methods, respectively, to obtain a more accurate estimate for nonlinear
dynamic systems. The CF uses an optimized gradient descent algorithm to compute the
gyroscope measurement error direction as a quaternion derivative [59]. Nonetheless, all
three methods are sensitive to the initial state estimate. An accurate initial state estimate
can lead to the estimation’s fast convergence, but the initial estimate is typically chosen
empirically, and thus, it is hard to guarantee its accuracy. Furthermore, a filter gain tuning
procedure is usually required when deploying filter algorithms in real-world systems. Due
to approximation or numerical optimization methods used in calculating the filter gain,
the optimality of the estimation algorithms does not hold, necessitating manual tuning
of the filter gains. Moreover, the motion acceleration of the sensor may align with the
gravity direction sporadically. This will change the level of measurement noise at some
time instants/intervals. Using the classical estimation methods without tuning the filter
gain will suffer from slow convergence or even divergence in estimation performance.

Several approaches have been proposed to tune the filter gain. [105] proposed a
fuzzy processing method to improve the convergence rate. [106] proposes a switching
architecture to prioritize the measurement of sensors in different working conditions to
yield robust performance. Learning-based methods are also used to calibrate the IMU
parameters and compute gyro corrections that filter undesirable errors in the raw IMU
signals [61].

This chapter tries to combine reinforcement learning (RL) with the EKF to design a
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RL
compensation

The real state

Figure 6.1: A cartoon illustration of the extended Kalman filter with reinforcement learning
compensation.

tuning-free estimation algorithm insensitive to inaccurate initial state estimate and filter
gain. It leverages the merits of both data-driven RL and model-based probabilistic methods
instead of only using RL to train the filter gain [69]. The key idea is to add a learnable
policy using RL on top of a referenced gain using EKF. Specifically, an RL policy is trained
to compute the gyro correction according to the estimation residuals. Then the learned
RL policy is applied and acts as a supplement correction based on the EKF. Intuitively, the
learned RL policy compensates strongly when the EKF performs bad (big estimate residual)
and remains “idle" if the EKF performs well. Thanks to RL, there is no need to tune the
filter parameters in our proposed method manually. As an additional benefit of the added
RL in the estimation, the proposed method even works well with non-Gaussian noise, as
shown in the experiments. On the other hand, compared with [69, 107] where a pure RL
based algorithm is trained/learned from scratch, our proposed method uses the EKF to
provide a good starting point of RL training and hence is potentially more sample efficient.
A similar idea has recently been explored for control applications [108, 109].

To summarise, this chapter aims to design a tuning-free attitude estimation algorithm
that maintains good performance even under inaccurate initial state estimates and/or
filter gains. We have proposed a double-stage fusion architecture to correct the gyro drift
leveraging both EKF and RLmethods (as shown in Fig. 6.1). The proposed estimationmethod
shows superior performance compared with the usual methods in all three scenarios:
inaccurate initial state estimate, inaccurate filter gain, and even non-Gaussian noises.
Experiments with real data further validate the effectiveness of the proposed method. The
rest of the paper is organized as follows. Section 6.2 describes the application of EKF in
attitude estimation; Section 6.3 presents the implementation of reinforcement learning in
sensor fusion for attitude estimation; Section 6.4 details the RL-based correction step built
upon the EKF and outlines the complete pipeline of our proposed filter; finally, Section 6.5
provides experimental results and discussion.



6

78 6 Reinforcement learning compensated extended Kalman filter for state estimation

6.2 Extended Kalman filter for sensor fusion
In this chapter, the inertial sensors (3D gyroscopes and 3D accelerometers) combined
with the magnetometer are used to estimate the attitude. The gyroscopes calculate the
attitude movements by integrating the measured angular velocities. The accelerometers
and magnetometers observe the local magnetic and gravity direction to estimate the sensor
frame’s attitude relative to the earth frame. Due to the accumulated error in the integration
process and the measurement noise, a Kalman filter is widely used to fuse the separate
sensor data. More details can be found in [51].

6.2.1 Orientation from angular velocity

A tri-axis gyroscope measures the angular velocity along the 𝑥 , 𝑦, 𝑧 axes of the sensor
frame, termed 𝑦𝜔 = [𝑦𝜔𝑥 𝑦𝜔𝑦 𝑦𝜔𝑧]. The dynamics of the quaternion are given as

�̇�nb𝑡 = 1
2𝑞

nb
𝑡−1⊗𝑦𝜔,𝑡 , (6.1)

where n and b stand for the navigation frame and the body frame respectively, the ⊗
operate denotes a quaternion product, 𝑦𝜔,𝑡 is the angular velocity measured at time 𝑡.
Accumulating rotation overtime is typically done by discretisation, i.e.,

𝑞nb𝑡 = 𝑞nb𝑡−1+𝑇 ⋅ �̇�nb𝑡
= 𝑞nb𝑡−1+ 𝑇

2 𝑞
nb
𝑡−1⊗𝑦𝜔,𝑡

= 𝑞nb𝑡−1⊗ exp(𝑇
2 𝑦𝜔,𝑡)

(6.2)

where 𝑇 denotes the sampling period, exp(⋅) corresponds to the exponential function of the
quaternion. This “integration” procedure is known to be very sensitive to the measurement
noise of the angular velocities.

6.2.2 Orientation from vector observations

In attitude estimation, it is typically assumed that the accelerometer only measures the
gravity and a magnetometer only measures the earth’s magnetic field [59]. With the
direction of an earth’s field known in the earth frame 𝑦n, a measurement of the field’s
direction within the sensor frame 𝑦b will allow an orientation of the sensor frame relative
to the earth frame 𝑞nb to be calculated. A determined direction of the earth’s field can be
expressed in the sensor’s frame:

𝑦b = (𝑞nb)⋆⊗𝑦n⊗𝑞nb = 𝑅nb ⋅𝑦n (6.3)
where ⋆ denotes conjugate of the quaternion, 𝑦n is a direction vector in the earth frame that
represents either the direction of gravity or that of the magnetic field. The corresponding
description of 𝑦n in the sensor frame is denoted as 𝑦b. And 𝑅nb is the rotation matrix
associated with the orientation 𝑞nb.

For any single measurement 𝑦b, there will not be a unique orientation solution to the
under-determined function ℎ(𝑦b,𝑦n, 𝑞nb) = 0 (according to Eq. (6.3)). Thus, the gravity
and magnetic observations are used to reference the Tilt-Pitch angle and the yaw angle,
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respectively. While both the accelerometer and magnetometer measurements are often
contaminated by large measurement noise under some working conditions [59], they need
to be fused with another stable measurement source, e.g., a gyroscope, to achieve better
performance.

6.2.3 Extended Kalman filter for attitude estimation

The EKF is widely used in attitude estimation to fuse the measurements from gyroscopes,
accelerometers, and magnetometers for a single, accurate estimate of the orientation. The
orientation is estimated recursively by performing a prediction update and a correction
update. The prediction update use model (6.2) to predict the state (orientation estimation in
terms of quaternion) of the next time step as follows

𝑞nb𝑡 ∣𝑡−1 = �̂�nb𝑡−1∣𝑡−1⊗ exp(𝑇
2 𝑦𝜔,𝑡−1) ,

𝑃𝑡 ∣𝑡−1 = 𝐹𝑡−1𝑃𝑡−1∣𝑡−1𝐹⊤𝑡−1+𝐺𝑡−1𝑄𝐺⊤
𝑡−1,

(6.4)

with 𝑄 = Σ𝜔, 𝐹𝑡−1 = (exp(𝑇2 𝑦𝜔,𝑡−1))
𝑅 and 𝐺𝑡−1 = − 𝑇

2 (�̂�
nb
𝑡−1∣𝑡−1)

𝐿 𝜕exp(𝑒𝜔,𝑡−1)
𝜕𝑒𝜔,𝑡−1 . Σ𝜔 is the co-

variance matrix of the gyroscope measurement noise, (⋅)𝐿 and (⋅)𝑅 are the left- and right-
quaternion-product matrices respectively [110].

By using (6.3), the measurements from the accelerometer and magnetometer are fused
to correct the state predictions. The correction update equations of the EKF are as follows:

𝑞nb𝑡 ∣𝑡 = 𝑞nb𝑡 ∣𝑡−1+𝐾𝑡𝜀𝑡 ,

𝑃𝑡 ∣𝑡 = 𝑃𝑡 ∣𝑡−1−𝐾𝑡𝑆𝑡𝐾⊤
𝑡 ,

(6.5)

where
𝜀𝑡 ≜ 𝑦𝑡 −𝑦𝑡 ∣𝑡−1,

𝑆𝑡 ≜ 𝐻𝑡𝑃𝑡 ∣𝑡−1𝐻⊤
𝑡 +𝑅,

𝐾𝑡 ≜ 𝑃𝑡 ∣𝑡−1𝐻⊤
𝑡 𝑆

−1
𝑡

(6.6)

and 𝑦𝑡 = (
𝑦a,𝑡
𝑦m,𝑡)

, 𝑦𝑡 ∣𝑡−1 =(
−�̃�bn

𝑡 ∣𝑡−1𝑔
n

�̃�bn
𝑡 ∣𝑡−1𝑚

n )
, 𝐻𝑡 =

⎛
⎜
⎜
⎜
⎜
⎝

−
𝜕�̃�bn𝑡 ∣𝑡−1
𝜕𝑞nb𝑡 ∣𝑡−1

||||𝑞nb𝑡 ∣𝑡−1=𝑞nb𝑡 ∣𝑡−1
𝑔n

𝜕�̃�bn𝑡 ∣𝑡−1
𝜕𝑞nb𝑡 ∣𝑡−1

||||𝑞nb𝑡 ∣𝑡−1=𝑞nb𝑡 ∣𝑡−1
𝑚n

⎞
⎟
⎟
⎟
⎟
⎠

, 𝑅 = (
Σa 0
0 Σm)

. Σa

and Σm denote the covariance matrix of the measurement noise of accelerometer and mag-
netometor respectively, 𝑔n and 𝑚n are the accelerometer and magnetometor measurements
at time 𝑡 respectively.

However, there are a few drawbacks of the EKF and its variants. First, the linearisation
error is inevitable [111], since the EKF is based on the first-order approximation of the
nonlinear models (Eq. (6.1)). This means an inaccurate initial estimate 𝑞nb0∣0, i.e., the point
of the first linearisation is undesirable. Second, the filter gain computed using inaccurate
noise covariance in the EKF, needs to be tuned a priori. Third, the EKF is derived based on
the assumption that the measurement noise distribution is Gaussian and time-invariant,
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which are often too limited in practice. For example, the covariance of measurement noise
may change abruptly over time. To address these issues, we propose a reinforcement
learning (RL) approach to compensate for the estimation obtained from the EKF.

6.3 Reinforcement learning for state estimation
For orientation estimation, its system dynamics is shown in (6.5). And our goal is to design
the estimator gain like the classic Kalman filter. Different from other nonlinear filtering
techniques based on linearisation, we will show that the computation of the estimator gain
can be solved as a RL problem.

6.3.1 System dynamics and state estimator

Reformulate (6.5) to achieve the system dynamics:

𝑞nb𝑡+1 = 𝑞nb𝑡 ⊙ exp𝑞(
𝑇
2
(𝑦𝜔,𝑡 − 𝑒𝜔,𝑡)) , (6.7)

where 𝑞nb𝑡 ∈ ℝ4 is the unit quaternion for the orientation of the body frame with respect
to the navigation frame at time instant 𝑡 ∈ [0,𝑇 ], exp𝑞(⋅) corresponds to the exponential
function of the quaternion, and 𝑦𝜔,𝑡 is the gyroscope measurement. The distribution of the
gyroscope noise is assumed to be Gaussian, i.e., 𝑒𝜔,𝑡 ∼ (0,Σ𝜔) where Σ𝜔 is the covariance
matrix.

To estimate 𝑞nb𝑡+1, the following estimator in terms of the orientation deviation is often
proposed [51, 112] as illustrated in Section 6.2:

�̂�nb𝑡+1∣𝑡 = �̂�nb𝑡 ∣𝑡 ⊙ exp𝑞 (
𝑇
2 𝑦𝜔,𝑡) , (6.8a)

�̂�𝑡+1 = 𝐾𝑡+1(𝑦𝑡+1− �̂�𝑡+1∣𝑡), (6.8b)
�̂�nb𝑡+1∣𝑡+1 = exp𝑞 (�̂�𝑡+1)⊙�̂�nb𝑡+1∣𝑡 (6.8c)

with

𝑦𝑡 =(
𝑦a,𝑡
𝑦m,𝑡)

, �̂�𝑡+1∣𝑡 =
⎛
⎜
⎜
⎜
⎝

−𝑅
{
�̂�nb𝑡 ∣𝑡 ⊙ exp𝑞(

𝑇
2 𝑦𝜔,𝑡)

}⊤
𝑔𝑛

𝑅
{
�̂�nb𝑡 ∣𝑡 ⊙ exp𝑞(

𝑇
2 𝑦𝜔,𝑡)

}⊤
𝑚𝑛

⎞
⎟
⎟
⎟
⎠

,

where �̂�nb𝑡+1∣𝑡 is the linearisation point parametrised in terms of quaternions, �̂�n𝑡+1 is the state
estimate of the orientation deviation, and 𝑅{⋅} denotes the matrix formula of translation
from quaternion to rotation. The goal is to obtain 𝐾𝑡+1, i.e., the estimator gain at time
instant 𝑡 +1, which will be explained later in Section 6.3.2.

Define the orientation error

𝑞𝑡 ≜ 𝑞nb𝑡 ⊙(�̂�nb𝑡 ∣𝑡 )
c , (6.9)
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or equivalently 𝑞nb𝑡 = 𝑞𝑡 ⊙�̂�nb𝑡 ∣𝑡 . From (6.7) and (6.8), we have

𝑞𝑡+1 = 𝑞nb𝑡+1⊙(�̂�nb𝑡+1∣𝑡+1)
c

=((𝑞𝑡 ⊙�̂�nb𝑡 ∣𝑡 )⊙ exp𝑞 (
𝑇
2 (𝑦𝜔,𝑡 − 𝑒𝜔,𝑡)))⊙ (6.10)

((exp𝑞 (
1
2𝐾𝑡+1(𝑦𝑡+1− �̂�𝑡+1∣𝑡))⊙�̂�nb𝑡 ∣𝑡 ⊙ exp𝑞(

𝑇
2 𝑦𝜔,𝑡)))

c

where, (⋅)𝑐 denotes the conjugate of quaternion.

Furthermore, to escape the unit determinant condition of the quaternion representation
of rotation, the logarithm map of the quaternion is used [113]:

[𝜂𝑡+1]× = log(𝑞𝑡+1) (6.11)

where 𝜂𝑡+1 is the orientation deviation and the skew operator [⋅]× produces the cross-
product matrix.

6.3.2 Estimate error dynamics as Markov decision process

We can rewrite the residual of the estimated state, i.e., �̂�nb ∈ ℝ3, on rotation group 𝑆𝑂(3)
instead of quaternion to drop the unit determinant condition, where �̂�nb = 𝑞nb⊗ (�̂�nb)⋆.
When it is changed back to quaternions, the exponential map will be used [110]:

𝑒𝑥𝑝 ∶ ℝ3 → 𝑆𝑂(3); 𝑞�̂�nb = exp(
�̂�nb
2 ) . (6.12)

By combining (6.10) and (6.11), the estimate error dynamics can actually be modelled
as a Markov decision process (MDP) which is defined as a tuple <  ,, ,, 𝛾 >:

𝑞𝑡+1 ∼  (𝑞𝑡+1|𝑞𝑡 ,𝐾𝑡+1) ,∀𝑡 ∈ ℤ+, (6.13)

where the estimate error 𝑞𝑡 ∈  is the state, the estimator gain 𝐾𝑡+1 ∈  is the action
sampled from a stochastic policy. Considering that the ground truth 𝑞𝑡 is known during
training phase, the mapping between 𝑞𝑡 and �̂�𝑡 is bijective to some extent according to (6.8c)
and (6.9). For convenience, in our implementation of the algorithm, we treat 𝜋(𝐾𝑡+1|�̂�𝑡)
and 𝜋(𝐾𝑡+1|𝑞𝑡) equivalently.

The state dynamics can be characterised by the transition probability function(𝑞𝑡+1|𝑞𝑡 ,𝐾𝑡+1).
RL algorithms can be used to find the policy 𝜋, given a cost function1 𝐶(𝑞𝑡 ,𝐾𝑡+1) ∈  that
measures the goodness of a state-action pair. In state estimation, it is often desired that the
estimate error 𝑞𝑡 converges exponentially to a finite bound in mean square. As such, the
cost function is selected as 𝐶(𝑞𝑡 ,𝐾𝑡+1) = 𝔼𝑃(⋅|𝑞𝑡 ,𝐾𝑡+1)[‖𝑞𝑡+1‖

2], and the return is the sum of
discounted cost∑∞

𝜏=𝑡 𝛾 𝜏−𝑡𝐶(𝑞𝑡 ,𝐾𝑡+1)with the discount factor 𝛾 ∈ [0, 1), where 𝔼[⋅] denotes
the expected value.

1We will use cost, which is often used in control literature, instead of reward.
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Definition 6.1. [114] The estimate error 𝑞𝑡 in the MDP (6.13) is said to be exponentially
bounded in mean square if ∃ 𝜂 > 0 and 0 < 𝜑 < 1, such that

𝔼[‖𝑞𝑡 ‖2] ≤ 𝜂𝔼[‖𝑞0‖2]𝜑𝑡 +𝑝, (6.14)

holds at all the time instants 𝑡 ≥ 0, where 𝑝 is a positive constant number.

In this chapter, our goal is to learn the estimator gain 𝐾𝑡+1 = 𝜋(�̂�𝑡) in (6.8) which can
be seen as a policy obtained using an RL algorithm, such that the mean square of the
estimate error of 𝑞𝑡 in (6.13) is guaranteed to converge exponentially to a positive bound.
Different from the EKF where 𝐾𝑡+1 is computed using the linearisation approximation, in
this chapter 𝐾𝑡+1 is approximated by a DNN 𝜋(⋅).

6.3.3 Estimation error boundedness guarantee
In this section, we propose the main theorem to guarantee the boundedness of the estimate
error. Before proceeding, some notations need be clarified. 𝜌(𝑞0) denotes the distribution
of the starting state estimate error 𝑞0. The state distribution of state estimate error at
a certain instant 𝑡 as 𝑃(𝑞𝑡 |𝜌,𝜋, 𝑡) is defined in an iterative way: 𝑃(𝑞𝑡+1 = 𝑠′|𝜌,𝜋, 𝑡 +1) =
∫𝑆 𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡)𝑃𝜋(𝑠′|𝑠)𝑑𝑠. The following assumption, which is often used in RL literature,
is needed:

Assumption 6.1. The Markov chain in (6.33) induced by a policy 𝜋 is ergodic with a unique
distribution probability. That is, ∃ 𝑝𝜋(𝑠), such that

𝑝𝜋(𝑠) = lim
𝑡→∞

𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡) (6.15)

Theorem 6.1. The error dynamics (6.33) is exponentially bounded in mean square if there
exists a Lyapunov function 𝐿(𝑞𝑡) ∶ 𝑆 → 𝑅+ and positive constants 𝛼1,𝛼2 and 𝛿 such that

𝛼1𝔼𝜋[‖𝑞𝑡 ‖2]−𝛿 ≤ 𝐿(𝑞𝑡) ≤ 𝛼1𝔼𝜋[‖𝑞𝑡 ‖2] (6.16)

and

lim
𝑁→+∞

[ln(𝔼𝑞𝑡∼𝜇𝑁 (𝔼𝑞𝑡+1∼𝑃𝜋𝐿(𝑞𝑡+1)))

−𝔼𝑞𝑡∼𝜇𝑁 ln(𝐿(𝑞𝑡))] ≤ −𝛼2
(6.17)

where

𝜇𝑁 (𝑠) ≜
1
𝑁

𝑁−1
∑
𝑡=0

𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡) (6.18)
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Proof: We have
ln(𝔼𝑞𝑡∼𝜇𝑁 (𝔼𝑞𝑡+1∼𝑃𝜋𝐿(𝑞𝑡+1))

=ln(∫
𝑆

1
𝑁

𝑁−1
∑
𝑡=0

𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡)∫
𝑆
𝑃𝜋(𝑠′|𝑠)𝐿(𝑠′)𝑑𝑠′ 𝑑𝑠)

=ln(∫
𝑆
(∫

𝑆

1
𝑁

𝑁−1
∑
𝑡=0

𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡)𝑃𝜋(𝑠′|𝑠)𝑑𝑠)𝐿(𝑠′)𝑑𝑠′)

=ln(∫
𝑆
(
1
𝑁

𝑁−1
∑
𝑡=0

𝑃(𝑞𝑡+1 = 𝑠′|𝜌,𝜋, 𝑡 +1))𝐿(𝑠′)𝑑𝑠′)

=ln((
1
𝑁

𝑁−1
∑
𝑡=0

∫
𝑆
𝑃(𝑞𝑡+1 = 𝑠′|𝜌,𝜋, 𝑡 +1))𝐿(𝑠′)𝑑𝑠′)

≥
1
𝑁

𝑁−1
∑
𝑡=0

ln((∫
𝑆
𝑃(𝑞𝑡+1 = 𝑠′|𝜌,𝜋, 𝑡 +1))𝐿(𝑠′)𝑑𝑠′)

(6.19)

where the last inequality follows from the fact that ln(𝑥) is a concave function on 𝑅+.
Similarly, noting that −ln(𝑥) is a convex function we have

−𝔼𝑞𝑡∼𝜇𝑁 ln𝐿(𝑞𝑡)

=−∫
𝑆

1
𝑁

𝑁−1
∑
𝑡=0

𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡) ln(𝐿(𝑠))𝑑𝑠

=
1
𝑁

𝑁−1
∑
𝑡=0

∫
𝑆
𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡)(−ln𝐿(𝑠))𝑑𝑠

≥
1
𝑁

𝑁−1
∑
𝑡=0

−ln(∫
𝑆
𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡)𝐿(𝑠)𝑑𝑠)

(6.20)

It follows from the above two inequalities that

ln(𝔼𝑞𝑡∼𝜇𝑁 (𝔼𝑞𝑡+1∼𝑃𝜋𝐿(𝑞𝑡+1))−𝔼𝑞𝑡∼𝜇𝑁 ln𝐿(𝑞𝑡))

≥
1
𝑁

𝑁−1
∑
𝑡=0

ln
∫𝑆 𝑃(𝑞𝑡+1 = 𝑠′|𝜌,𝜋, 𝑡 +1)𝐿(𝑠′)𝑑𝑠′

∫𝑆 𝑃(𝑞𝑡 = 𝑠|𝜌,𝜋, 𝑡)𝐿(𝑠)𝑑𝑠

≥
1
𝑁

𝑁−1
∑
𝑡=0

ln
𝔼𝑞𝑡+1𝐿(𝑞𝑡+1)
𝔼𝑞𝑡𝐿(𝑞𝑡)

(6.21)

Substituting the above into (6.17), we obtain

lim
𝑁→+∞

1
𝑁

𝑁−1
∑
𝑡=0

ln
𝔼𝑞𝑡+1𝐿(𝑞𝑡+1)
𝔼𝑞𝑡𝐿(𝑞𝑡)

≤ −𝛼2 (6.22)

then
lim

𝑁→+∞

1
𝑁

ln
𝔼𝑞𝑁 𝐿(𝑞𝑁 )
𝔼𝑞0𝐿(𝑞0)

≤ −𝛼2 (6.23)
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Figure 6.2: Offline RL training process of orientation state estimator.

It means that ∀𝜖 > 0,∃𝑁𝜖 , 1
𝑁 ln

𝔼𝑞𝑁 𝐿(𝑞𝑁 )
𝔼𝑞0𝐿(𝑞0)

< −𝛼2+𝜖 < 0 holds when 𝑁 > 𝑁𝜖 , namely

𝔼𝑞𝑁 𝐿(𝑞𝑁 )
𝔼𝑞0𝐿(𝑞0)

≤ e𝑁 (−𝛼2+𝜖),∀𝑁 > 𝑁𝜖 (6.24)

So we get for sufficiently large 𝑁 > 𝑁𝜖 ,

𝔼𝑞𝑁∼𝑃(𝑞𝑁 |𝜌,𝜋,𝑁 )𝐿(𝑞𝑁 ) ≤ e𝑁 (−𝛼2+𝜖)𝔼𝑞0∼𝜌(𝑞0)𝐿(𝑞0) (6.25)

By Equation (6.16) we have the following result

𝔼𝑞𝑁∼𝑃(𝑞𝑁 |𝜌,𝜋,𝑁 )𝔼𝜋 ‖𝑞𝑁 ‖2

≤e𝑁 (−𝛼2+𝜖)𝔼𝑞0∼𝜌(𝑞0)𝔼𝜋 ‖𝑞0‖2+
𝛿
𝛼1

(6.26)

So far, it has been proved that the estimate error 𝑞𝑡 in (6.33) is exponentially bounded
according to Definition 1.

6.3.4 Lyapunov-based reinforcement learning orientation estimation
algorithm

In this section, we will combine SAC algorithm [65], one of the state-of-the-art RL algo-
rithms, with the theoretical result in Section 6.3.3 to learn the gain/policy 𝐾𝑡+1 for the state
estimator (6.8).

Considering MDP in (6.33), the orientation estimation problem can be viewed as a RL
problem in which the policy is sought after by minimising the expected accumulated cost.
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Here a stochastic policy is chosen as 𝜋(𝐾𝑡+1 ∣ 𝑞𝑡) ∼ (𝐾𝑡+1(𝑞𝑡),𝜎) from which the gain
𝐾𝑡+1 for a given state 𝑞𝑡 is sampled [115]. The corresponding Q-function (a.k.a, state-action
value function) is given as:

𝑄𝜋(𝑞𝑡 ,𝐾𝑡+1) = 𝐶𝑡(𝑞𝑡 ,𝐾𝑡+1)+𝛾𝔼𝑞𝑡+1[𝑉𝜋(𝑞𝑡+1)] (6.27)

To this end, 𝐾𝑡+1 can be learned by many existing RL algorithms.

Motivated by the works in [68, 116, 117], we propose to incorporate the theoretical
result in Theorem 6.1 to policy optimization in SAC as a constrained optimization problem.
First of all, a Lyapunov candidate needs to be selected at the first instance. In the context
of RL, a Lyapunov candidate will be parametrized/selected as the Q-function [67, 118]. In
this chapter, we choose 𝐿(𝑞𝑡) in (6.16) as:

𝐿(𝑞𝑡) = 𝔼𝐾𝑡+1∼𝜋[𝐿𝑐(𝑞𝑡 ,𝐾𝑡+1)] (6.28)

where 𝐿𝑐(𝑞𝑡 ,𝐾𝑡+1) = 𝑄(𝑞𝑡 ,𝐾𝑡+1). Then the constrained optimisation problem is:

min
𝜋

𝑄𝜋(𝑞𝑡 ,𝐾𝑡+1)

s.t. (6.16) and (6.17)
− ln(𝜋(𝐾𝑡+1 ∣ 𝑞𝑡)) ≥𝑡

(6.29)

where 𝑄𝜋(𝑞𝑡 ,𝐾𝑡+1) is defined in (6.27), the second constraint is the minimum entropy
constraint used in the SAC to improve the exploration in the action space [119] where 𝑡
is the desired bound.

Denote the parametrised actor and critic as 𝜋𝜃(𝐾𝑡+1|𝑞𝑡) and 𝑄𝜙(𝑞𝑡 ,𝐾𝑡+1) respectively,
where 𝜃 and 𝜙 are the parameters of the DNNs. To ensure the positiveness of a Lyapunov
function, 𝐿𝜙(𝑞𝑡 ,𝐾𝑡+1) is selected as the square of a DNN as 𝐿𝜙(𝑞𝑡 ,𝐾𝑡+1) = 𝑓 ⊤

𝜙 (𝑞𝑡 ,𝐾𝑡+1)𝑓𝜙(𝑞𝑡 ,𝐾𝑡+1),
where 𝑓 is the vector output of a DNN parameterised by 𝜙. On the other hand, the stochastic
policy 𝜋𝜃(𝐾𝑡+1|𝑞𝑡) is parametrised by a DNN 𝑓𝜃 that depends on the state 𝑞𝑡 and a Gaussian
noise 𝜖.

Solving the above constrained optimisation problem is equivalent to minimising the
following objective function:

𝐽 (𝜃) = 𝔼𝑞𝑡 ,𝑎𝑡 ,𝑞𝑡+1 ,𝑐𝑡∼𝐷[𝛼(ln(𝜋𝜃(𝑓𝜃(𝑞𝑡 , 𝜖)|𝑞𝑡))+𝑡)

+𝜆( ln𝐿𝜙(𝑞𝑡+1, 𝑓𝜃(𝑞𝑡+1, 𝜖))− ln𝐿(𝑞𝑡 , 𝑎𝑡)+𝛼2)]
(6.30)

where  is the replay memory of the training samples, 𝛼 and 𝜆 are Lagrange multipliers
which control the relative importance of constraints in (6.29).

In the actor-critic framework, the parameters of policy network are updated through
stochastic gradient descent of (6.30). The training process can be seen in Fig. 6.2. It can
be proved that the policy can converge to an optimal one that ensures the orientation
estimate error 𝔼[‖𝑞𝑡 ‖2] converges to a constant as 𝑡 →∞,∀𝑞𝑡 ∈ 𝑆. Pseudo code of the pro-
posed Lyapunov-based reinforcement learning orientation estimation (LRLOE) algorithm
is showed in Algorithm 1.
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Algorithm 1 LRLOE algorithm
1: Set the initial parameters 𝜙 for the Lyapunov function 𝜙, 𝜃 for the estimator gain

policy 𝜋𝜃(𝐾1|𝑞0), 𝜆 for the Lagrangian multiplier, 𝛼 for the temperature parameter, and
the replay memory 

2: Set the target parameter �̄� as �̄�← 𝜃
3: while Training do
4: for each data collection step do
5: Choose estimator gain 𝐾𝑘+1 using 𝜋𝜃(𝐾𝑘+1|𝑞𝑘)
6: Simulate (6.7) and (6.3) with the orientation estimator (6.8) to collect samples

𝑞𝑘
7: ←∪𝑞𝑘
8: end for
9: update 𝐿𝜙, 𝜋𝜃, 𝜆, 𝛼 by optimising (6.30)
10: end while
11: Output 𝜃∗, 𝜙∗, 𝜆∗, and 𝛼∗

6.4 RL compensated EKF algorithm
Different from using reinforcement learning to learn the estimator gain directly, we propose
to use RL to compensate the estimate residual in the EKF. Comparing to the direct RL
approach, the proposed RL compensated EKF (RLC-EKF) algorithm has the advantage of
being more interpretable and easier to implement.

6.4.1 Problem formulation

We first rewrite the residual of the EKF, i.e., �̂�nb ∈ ℝ3, on rotation group 𝑆𝑂(3) instead of
quaternion to drop the unit determinant condition, where �̂�nb = 𝑞nb⊗ (�̂�nb)⋆. When it is
changed back to quaternions, the exponential map in Eq. 6.12 will be used.

The high-level plan can be illustrated in Fig. 6.4. In the RL correction module, the
difference between the measurements 𝑦𝑡 from sensors and the estimated observation

�̃�𝑡 ∣𝑡 = ℎ(𝑞nb𝑡 ∣𝑡 ) =(
−�̃�bn

𝑡 ∣𝑡 𝑔
n

�̃�bn
𝑡 ∣𝑡𝑚

n )
from the EKFwhere ℎ(⋅) is a compact form of (6.3), 𝜀RL𝑡 = 𝑦𝑡− �̃�𝑡 ∣𝑡

is used to obtain the estimate residual �̂�nb,RL𝑡 by computing a gain 𝑈𝑡 , in order to get the
improved estimate �̂�nb𝑡 ∣𝑡 . The estimate residual �̂�nb,RL𝑡 computed using RL algorithms plays a
role of compensating the estimate 𝑞nb𝑡 ∣𝑡 obtained from the EKF.

Then we have the following equations:

�̂�nb,RL𝑡 = 𝑈𝑡𝜀RL𝑡

�̂�nb𝑡 ∣𝑡 = exp(
�̂�nb,RL𝑡

2 )⊗𝑞nb𝑡 ∣𝑡
(6.31)
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Figure 6.3: Schematic illustration of RLC-EKF algorithm.

Based on the filter process in (6.31), we have

�̂�nb,RL𝑡 = 2log(�̂�nb𝑡 ∣𝑡 ⊗ (𝑞nb𝑡 ∣𝑡 )
⋆)

= 2log((exp(
𝑈𝑡𝜀RL𝑡

2 )⊗𝑞nb𝑡 ∣𝑡 )⊗ (𝑞nb𝑡 ∣𝑡 )
⋆
)

(6.32)

where 𝑞nb𝑡 ∣𝑡 = 𝑓 (�̂�nb𝑡−1∣𝑡−1) = exp(
�̂�nb,RL𝑡−1

2 )⊗𝑞nb𝑡−1∣𝑡−1, and 𝑓 (⋅) denotes the estimation correction

step in the EKF.

The dynamics of the residual �̂�nb,RL𝑡 can be characterised as an MDP, in which the
stochasticity essentially comes from the sensor noise:

�̂�nb,RL𝑡 ∼  (�̂�nb,RL𝑡 |�̂�nb,RL𝑡−1 ,𝑈𝑡) ,∀𝑡 ∈ ℤ+, (6.33)

where the estimate residual �̂�nb,RL𝑡 ∈  is the state, the estimated gain 𝑈𝑡 ∈ is the action
sampled from the trained policy, (�̂�nb,RL𝑡 |�̂�nb,RL𝑡−1 ,𝑈𝑡) indicated the transition probability
function of the estimation.

To this end, the attitude estimation problem can be formulated as an RL problem, i.e.,
learn a policy 𝑈𝑡 to control the estimate residual �̂�nb,RL𝑡 .

6.4.2 RL compensated EKF algorithm

In the RL problem, a cost function2 (�̂�nb,RL𝑡−1 ,𝑈𝑡) ∈  will be used to measure the goodness
of a state-action pair, i.e.,

𝐶(�̂�nb,RL𝑡−1 ,𝑈𝑡) = 𝔼𝑃(⋅|�̂�nb,RL𝑡−1 ,𝑈𝑡 )
[‖�̂�nb,RL𝑡 ‖2] (6.34)

2We use cost function instead of reward function.
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Algorithm 2 RL Compensated EKF (RLC-EKF) Algorithm for Orientation Estimation

INPUTS: Initial data {𝑦𝑤,𝑡 ,𝑦𝑎,𝑡}𝑁𝑡=1, magnetometer data {𝑦𝑚,𝑡}, and the initial estimation of
the orientation 𝑞nb0∣0,
OUTPUTS: Improved estimation of the orientation �̂�nb𝑡 |𝑡 .

1: for t=1,2,3...N do
Prediction Update

2: Apply (6.4) with angular velocity.
EKF Correction:

3: Correction update using 𝑦𝑎,𝑡 and 𝑦𝑚,𝑡 as in (6.5)
Quaternion Normalisation:

4: Normalise the quaternion and its covariance as 𝑞nb𝑡 ∣𝑡 =
𝑞nb𝑡 ∣𝑡

‖𝑞nb𝑡 ∣𝑡 ‖2
, 𝑃EKF

𝑡 ∣𝑡 = 𝐽𝑡𝑃𝑡 ∣𝑡𝐽⊤𝑡 with

𝐽𝑡 = 1
‖𝑞nb𝑡 ∣𝑡 ‖

3
2
𝑞nb𝑡 ∣𝑡 (𝑞

nb
𝑡 ∣𝑡 )

⊤
.

RL Correction - estimate the residual in estimation:
5: Compute the residual �̂�nb,RL𝑡 and gain 𝑈𝑡 using Algorithm 3, where �̂�nb,RL𝑡 =

𝑈𝑡𝜀RL𝑡 , ,𝑈𝑡 = 𝜋(�̂�nb,RL𝑡−1 ), 𝜀RL𝑡 = 𝑦𝑡 −𝑦𝑡 |𝑡 , 𝑦𝑡 =(
𝑦a,𝑡
𝑦m,𝑡)

, and 𝑦𝑡 ∣𝑡 =(
−�̃�bn

𝑡 ∣𝑡 𝑔
n

�̃�bn
𝑡 ∣𝑡𝑚

n )
.

RL Correction - inject the estimate residual:
6: Inject the error into the quaternion state and adapt the covariance matrix �̂�nb𝑡 ∣𝑡 =

exp(
�̂�nb,RL𝑡

2 )⊙𝑞nb𝑡 ∣𝑡 and 𝑃𝑡 ∣𝑡 =𝑀𝑡𝑃𝑡 ∣𝑡𝑀⊤
𝑡 with 𝑀𝑡 =(exp(

�̂�nb,RL𝑡
2 ))

𝐿
.

7: end for
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Figure 6.4: RL compensated EKF workflow. First, gyroscope measurements are used to predict
the attitude using (6.4). Then an EKF correction is performed to update the prediction using
(6.5). Last, a RL policy is further used to compensate the residuals using (6.31).

and the return is the sum of discounted cost∑∞
𝜏=𝑡 𝛾 𝜏−𝑡𝐶(�̂�

nb,RL
𝑡−1 ,𝑈𝑡)with the discount factor

𝛾 ∈ [0, 1). Our aim is to learn the estimator gain 𝑈𝑡 = 𝜋(�̂�nb,RL𝑡−1 ) in (6.31) as a policy using
RL algorithm. And the policy will be learned/approximated by using a deep neural network.
This means any state-of-the-art deep RL algorithms can be readily applied.

The full pipeline is illustrated in Fig. 6.3. The proposed RL compensated EKF (RLC-EKF)
algorithm is summarised in Algorithm 2. It should be noted that the superscript ⋅̃ (not ⋅̂)
indicates the estimate is intermediate and still needs to be updated. More reliable estimation
of the orientation can be obtained after the two correction steps, i.e., EKF and RL Correction
in Algorithm 2, as depicted in Fig. 6.4.

6.4.3 Convergence of estimate error

In this attitude estimation task, it is desired that the estimate error �̂�nb,RL𝑡−1 converges to a real
number as small as possible. The vanilla EKF should be stable to ensure the convergence
of the attitude estimation. After introducing the reinforcement learning compensation
structure, the final estimate of the proposed filter is expected to be better than the vanilla
EKF and should not deteriorate the convergence of EKF. Inspired by the work [108, 116],
based on EKF, we will show that the mean square of the estimate residual in the RL-
compensated filter is guaranteed to converge within a positive bound.

The value function in reinforcement learning can be written as

 𝑖 (�̂�nb,RL𝑡 ) = −
∞
∑
𝜏=𝑡

𝛾 𝜏−𝑡𝐶𝑖(�̂�nb,RL𝑡−1 ,𝑈 𝑖
𝑡 ).

In the presented design, the RL mechanism is introduced to further improve the per-
formance of EKF. Hence, it is reasonable to assume that  𝑖 (�̂�nb,RL𝑡 ) is a continuously
differentiable function with

 𝑖 (�̂�nb,RL𝑡+1 )− 𝑖 (�̂�nb,RL𝑡 ) ≤ − (�̂�nb,RL𝑡 )+𝜇𝑖

where (�̂�nb,RL𝑡 ) is a continuous positive definite function, 𝜇𝑖 > 0, and 𝑖 denotes the 𝑖-th
iteration of the RL algorithm. There exists (�̂�nb,RL𝑡 ) > 𝜇. When 𝑖 = 0, it corresponds to
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Algorithm 3 RL algorithm for Step 5 in Algorithm 2

1: Initialise parameters 𝜃 for the critic 𝜃 (�̂�nb,RL𝑡 ), and 𝜙 for the actor network. The
initial value of 𝑈 0

𝑡 is from the vanila EKF module. Initialise the replay memory ← ∅.
2: Assign initial values to the critic parameter 𝜃← 𝜃0 and its target �̄�← 𝜃0
3: for Data collection steps do
4: Choose an action 𝑈𝑡 sampled from 𝜋(�̂�nb,RL𝑡 )
5: Run the simulator and EKF module & collect data
6: end for
7: for each gradient update step do
8: Sample a batch of data  from 
9: 𝜃← 𝜃− 𝑙𝑉∇𝜃𝐽𝑉 (𝜃)
10: 𝜙← 𝜙− 𝑙𝜋∇𝜙𝐽𝝅 (𝜙)
11: �̄�← 𝜅𝜃+(1−𝜅) �̄�
12: end for

the vanilla EKF scenario, as the RL policy has negligible initial values around zeros. Next,
let’s approve it also holds in the later iterations.

Let 𝑈 𝑖
𝑡 be the estimated gain of the 𝑖-th iteration of RL algorithm. Since  𝑖 (�̂�nb,RL𝑡 ) =

−𝐶𝑖(�̂�nb,RL𝑡 ,𝑈 𝑖
𝑡 )+𝛾 𝑖 (�̂�nb,RL𝑡+1 ), we have

(1−𝛾 ) 𝑖 (�̂�nb,RL𝑡+1 ) ≤ − (�̂�nb,RL𝑡 )+𝜇𝑖−𝐶𝑖(�̂�nb,RL𝑡 ,𝑈 𝑖
𝑡 )

In the policy evaluation, the following Bellman backup operation is repeatedly con-
ducted.

 𝑖+1 (�̂�nb,RL𝑡 ) = −𝐶𝑖+1(�̂�nb,RL𝑡 ,𝑈 𝑖+1
𝑡 )+𝛾 𝑖 (�̂�nb,RL𝑡+1 )

In the policy improvement, 𝑈𝑡 is updated to minimise the discounted accumulated cost, so

 𝑖+1 (�̂�nb,RL𝑡+1 )− 𝑖+1 (�̂�nb,RL𝑡 )
= 𝐶𝑖+1(�̂�nb,RL𝑡 ,𝑈 𝑖+1

𝑡 )+ (1−𝛾 ) 𝑖+1 (�̂�nb,RL𝑡+1 )
≤ 𝐶𝑖+1(�̂�nb,RL𝑡 ,𝑈 𝑖+1

𝑡 )+ (1−𝛾 ) 𝑖 (�̂�nb,RL𝑡+1 )
≤ − (�̂�nb,RL𝑡 )+𝜇𝑖−𝐶𝑖(�̂�nb,RL𝑡 ,𝑈 𝑖

𝑡 )+𝐶𝑖+1(�̂�nb,RL𝑡 ,𝑈 𝑖+1
𝑡 )

Hence, the RL algorithm will ensure stable performance for all iterations. At each iter-
ation of the policy improvement, the discounted accumulated cost will be reduced, so
𝐶𝑖+1(�̂�nb,RL𝑡 ,𝑈 𝑖+1

𝑡 ) ≤ 𝐶𝑖(�̂�nb,RL𝑡 ,𝑈 𝑖
𝑡 ) and 𝜇𝑖−𝐶𝑖(�̂�nb,RL𝑡 ,𝑈 𝑖

𝑡 )+𝐶𝑖+1(�̂�nb,RL𝑡 ,𝑈 𝑖+1
𝑡 ) ≤ 𝜇𝑖. It implies

that each iteration will potentially reduce the ultimate bound of �̂�nb,RL𝑡 . In the implemen-
tation, accumulated discounted cost will be approximated by a multiple layer perceptron
(MLP) with parameters denoted by 𝜃. The actor network parameters are denoted by 𝜙. The
training process of the RL module in Step 5 of Algorithm 2 is summarised in Algorithm
3, in which 𝐽𝑉 and 𝐽𝜋 denote the optimisation objective for the critic and actor objectives
[108, 116].
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6.5 Experimental results
This section will evaluate the proposed algorithm (RLC-EKF) on both simulated and real
data. We compare with the EKF [51], the CF [59] and the RLF [107]. We evaluate the
performance in three scenarios: (1) inaccurate initial state estimate, (2) inaccurate filter
gain, (3) inaccurate noise model. Before going into the details, a quick summary of the
feature of the algorithms can be found in Table. 6.1

Table 6.1: Features of RLC-EKF compared with other methods.

Applicability EKF CF RLF RLC-EKF
Inaccurate initial estimation ×

√
×

√

Inaccurate filter gain × ×
√ √

Inaccurate noise model ×
√ √ √

A relatively trivial pattern of the angular velocity (see Fig.2 in our previous work [107])
is used as the training profile. The angular velocity profile remains the same in each training
episode, while the initial state 𝑞nb and the initial estimation of the state �̂�nb0∣0 are randomly
sampled with a uniform distribution 𝕌([−1,−1,−1,−1], [1,1,1,1]). The sampling rate is
100 Hz (consistent with that for real data in Section 6.5.2). During training, the sensor
noise is sampled with the following distribution [51]: 𝑒𝜔,𝑡 ∼ (0,Σ𝜔),Σ𝜔 = 0.0003𝐼3×3, 𝑒a,𝑡 ∼
 (0,Σa),Σa = 0.0005𝐼3×3, 𝑒m,𝑡 ∼ (0,Σm),Σm = 0.0003𝐼3×3.We independently train 20 poli-
cies and select the one with the lowest validate error for inference on unknown profiles.
The training of the RL policy in RLC-EKF used PPO2 [120] for Algorithm 3 in Section. 6.3.
The hyperparameters are the same as our previous work (see Table.1 in [107]).

6.5.1 Results for simulated data

Scenario 1: Inaccurate initial estimation

We compare our algorithm with EKF, CF and RLF when the initial estimate �̂�nb0∣0 is inaccurate
and randomly sampled with a uniform distribution �̂�nb0∣0 ∼ 𝕌([−1,−1,−1,−1], [1,1,1,1]).
The estimation is expected to converge to the true state as quickly as possible. The
hyperparameters for EKF and CF are directly adapted from [51, 59]. The CF gain 𝛽 is
set as 0.041. The adjustable measurement covariance in EKF is chosen as the true sensor
covariance. The results of the estimation performance are shown in Fig. 6.5. The results
indicate that our algorithm can quickly converge to the true state compared with EKF and
CF.

Scenario 2: Inaccurate filter gain

The performance of the filters largely depends on their filter gain. In CF it is the adjustable
parameter 𝛽. In the EKF, since 𝐾𝑡 ≜ 𝑃𝑡 ∣𝑡−1𝐻⊤

𝑡 (𝐻𝑡𝑃𝑡 ∣𝑡−1𝐻⊤
𝑡 +𝑅)−1 where the covariance of

measurement noise𝑅 needs to be specified/tuned in the beginning, the gain𝐾𝑡 is determined
by 𝑅. Experimental results of EKF and CF with different filter gains can be found in Fig. 6.6.
With different filter gains, their estimation performance varies a lot. It significantly stresses
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Figure 6.5: The attitude estimation performance of EKF, CF, RLF and RLC-EKF when the initial
estimation is randomly selected. The solid and dashed lines respectively represent the ground
truth and the average estimate. The shaded areas indicate the standard deviation over 50
independent runs.

the importance of parameter tuning.

Scenario 3: Inaccurate noise model

In this scenario, we test our algorithm onmeasurements with an inaccurate noise model. An
additional constant bias of 0.02 𝑟𝑎𝑑/𝑠 is added to the simulated gyroscope measurements.
The experimental result is shown in Figure. 6.7. Our proposed RLC-EKF method has shown
good performance regardless of the other bias. Simultaneously, the extra unexpected
noise has introduced a constant bias in the estimation of EKF. It is because such Kalman
filter-based methods are derived based on the assumption that the measurement noise has
a known covariance model and cannot deal with the case with an inaccurate noise model.
After being compensated by an RL policy, this constraint will not exist anymore.

6.5.2 Results for real data

Finally, we test the proposed algorithm on a real-world dataset. The data is collected from
the Trivisio Colibri Wireless IMU with a logging rate of 100Hz. The reference measurement
of the orientation is provided as ground truth from motion capture equipment by tracking
the optical markers fixed to the sensor platform. The optical and IMU data have been
time-synchronised and aligned beforehand.

The dataset is 100 seconds long and split into training and inference datasets separately.
The first half of the collected data is used for training and the rest for inference. We randomly
selected a consecutive sequence of a length of 1000 samples as a training episode in the
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Figure 6.6: The top figure shows the experimental results of EKF with different covariance
matrices. We set the estimated measurement covariance of the gyroscope, accelerometer, and
magnetometer as their real covariance, respectively times a, b and c. The bottom figure shows
the experimental results of the CF with different initial filter gain, 𝛽. We set 𝛽 as 0.041, 0.081,
0.121, 0.41 and 4.1 respectively.

training dataset. The test results are shown in Fig. 6.9. With an uncertain starting point,
all the filters successfully converged to the true state and have shown similar estimation
performance after convergence. Here we compare the filters’ performance on the second
half of the trajectory. The results can be found in Table 6.2.
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Figure 6.7: The attitude estimation performance of RLC-EKF and EKF on measurements with
and without an accurate noise model. One only includes a known Gaussian noise. The other
includes a known Gaussian noise with unknown extra bias. The solid, dashed, and dash-dot
lines represent the ground truth, the RLC-EKF estimation, and the EKF estimation.

Table 6.2: RMSE of the orientation estimates

RMSE Yaw[𝑟𝑎𝑑] Pitch[𝑟𝑎𝑑] Roll[𝑟𝑎𝑑]

RLC-EKF 0.241 0.020 0.038
EKF 0.186 0.175 0.041
CF 0.260 0.019 0.041

Figure 6.8: Real dataset (adapted from Fig. 4.2 and 4.3 in [51]). Left: A snapshot of the platform
for collecting real dataset Right: Measurements from an accelerometer (𝑦a,𝑡 , top), a gyroscope
(𝑦𝜔,𝑡 , middle) and a magnetometer (𝑦m,𝑡 , bottom) for 100 seconds of data collected with the
IMU shown in the left figure.).
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Figure 6.9: Estimated Euler angles for real data. The attitude estimation is expressed in a
more intuitive manner with Euler angles instead of quaternions. The solid and dashed lines
correspond to the ground truth and the mean estimation respectively. The shaded areas indicate
the standard deviation over 50 independent runs.
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6.6 Conclusions
Orientation estimation using inertial sensors combinedwith amagnetometer is well-studied,
and many algorithms have been proposed. However, there hardly exist any algorithms
with theoretical guarantees of estimation convergence. In this chapter, we propose a
reinforcement learning based orientation estimation method and prove that its estimate
error converges to a positive scalar in mean square with a guarantee. The proposed method
shows superior estimation performance compared with some well-known ones in terms of
arbitrary estimation initialization and adaptation to very large angular velocities.

What’s more, we introduced a novel attitude estimation method by combining the
classic EKF with a deep reinforcement learning algorithm. The proposed algorithm has a
faster convergence speed than the pure RL approach, and it shows the advantage that it is
insensitive to (1) inaccurate initial estimate, (2) inaccurate initial gain, and (3) inaccurate
noise model. The effectiveness of the proposed approach is demonstrated on both simulated
and real datasets.
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7.1 Conclusions
This thesis explores the challenge of delivering unwieldy objects using mobile robots,
addressing the problem from two main perspectives.

In Chapter 3, we propose a stable manipulation approach that emphasizes maintaining
a stiff contact between the robot and the object during manipulation. This fixed contact
reduces uncertainties during manipulation and simplifies planning. We derive a concise
linear motion constraint for stable pushing with differential-drive mobile robots, which
allows us to formulate the pushing planning problem as a constrained optimization problem
using nonlinear model predictive control (NMPC). This approach is easily implementable
within existing robot navigation frameworks and achieves a high success rate in real-world
applications. Our experiments demonstrate that the NMPC-based planner outperforms a
reactive pushing strategy in terms of efficiency, reducing the robot’s traveled distance by
23.8% and time by 77.4%. Furthermore, our method requires four fewer hyperparameters
and decision variables than the Linear Time-Varying (LTV) MPC approach, making it easier
to implement. We validate the proposed method through real-world experiments with two
differential-drive robots, Husky and Boxer, under various friction conditions.

However, the stable pushing approach also limits the range of forces that can be
transmitted, thereby restricting the system’s maneuverability. To overcome this limitation,
Chapter 4 introduces a free pushing method. This approach allows the robot to maneuver
freely around the object, enabling a wider range of pushing forces. We model the robot-
object contact as a sliding joint, which smooths transitions across different contact points.
Additionally, to ensure the feasibility of the planned pushes, we develop a robot-object
contact model that accounts for the shape and kinematics of the robot in pushing modeling
and planning. Finally, a Model Predictive Controller solves the pushing planning problem in
real time. Experimental results show that the proposed method achieves an average success
rate of 83% with an accuracy of 0.085m when pushing to the selected goals. Compared
to the stable pushing method, this approach improves the agility and efficiency of mobile
pushers and demonstrates robustness in achieving the task while tolerating modeling
errors.

Despite these advancements, challenges persist. The underactuated nature of non-
prehensile manipulation systems can lead to the controller becoming trapped in local
optima, and the high nonlinearity complicates planning. Moreover, a significant challenge
in planning and controlling for nonprehensile manipulation lies in the discontinuity of
system dynamics. The first two chapters focus on modeling the manipulation system
continuously. However, uncertainties during contact sometimes lead to unexpected contact
loss, requiring a contact-implicit planner capable of reacting to these unforeseen circum-
stances. To address this, we propose a holistic approach in Chapter 5 by formulating the
initial contact point as a decision variable, enabling seamless integration of reaching and
pushing tasks within a unified trajectory optimization framework. Additionally, we prove
that the underactuated pushing system is differentially flat. By exploiting this property, we
simplify the pushing planning problem into a trajectory optimization problem for the object,
addressing the challenges posed by the system’s high nonlinearity. The entire manipulation
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plan, including reaching and manipulating, only takes an average of 2 milliseconds to solve.
With the benefit of fast calculations, our method offers robustness, ensuring quick recovery
from disturbances or uncertainties during manipulation.

Readers may wonder why we shifted focus from nonprehensile manipulation planning
and control to state estimation research in Chapter 6. In fact, the work presented in Chapter
6 was conducted during the first year of my PhD, when I was still exploring various research
interests. State estimation is a fundamental topic in robotics, underpinning both control
and planning processes.

Leveraging advancements in deep learning technologies, we demonstrated that state
estimators can be trained in an unsupervised manner, significantly reducing the need for
laborious human intervention. Our approach began with the introduction of a deep rein-
forcement learning algorithm for orientation estimation, where we proved the convergence
of the estimate error for the learned policy. Rather than training the policy from scratch,
we then employed reinforcement learning to enhance the classical extended Kalman filter
estimation. The proposed approach is able to learn the filter gain directly from sensor
measurements, demonstrating superior performance compared to conventional methods,
particularly in challenging scenarios such as inaccurate initial state estimates, imprecise
filter gains, and even non-Gaussian noise environments.

This work, while distinct from our later focus on nonprehensile manipulation, con-
tributes valuable insights on the potential of machine learning techniques in improving
fundamental estimation processes. There are also many planning and control approaches
based on reinforcement learning. However, when I surveyed the literature, I found that
purely learning-based approaches for planning and control often require excessive data and
are less efficient than classic model-based methods. Inspired by the pure Reinforcement
Learning state estimator and the RL-compensated EKF in Chapter 6, I believe that a hybrid
approach combining model-based and learning-based methods could lead to more efficient
manipulation policy learning, balancing the data efficiency of model-based methods with
the adaptability of learning-based approaches.

Recognizing the wealth of existing scientific knowledge about physical models, I chose
to focus on model-based approaches for nonprehensile manipulation in my PhD. My goal
is to first have a better understanding of physics while addressing planning and control for
manipulation. After that, I aim to combine model-based and learning-based methods in
manipulation planning and control. This is left as my future work.

7.2 Future work
Two research topics are explored in this thesis: planning and control for unwieldy object
delivery, with a focus on the usage of nonholonomic mobile robots, and state estimation
with a focus on the usage of deep reinforcement learning. Based on the experience gained
from these two topics, I propose the following future research directions:
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Physics accelerated policy learning for robot manipulation

As discussed in Chapter 7.1, deep learning-based approaches such as imitation learning and
reinforcement learning often require vast amounts of data, which significantly limits their
efficiency. Rather than learning from scratch, a more promising approach is to develop
algorithms that combine the data efficiency of model-based methods with the adaptability
of model-free reinforcement learning.

For instance, recent works like [121] and [122] leverage differentiable physics models
to accelerate the learning process. Differentiable simulation offers the promise of faster
convergence and more stable training by computing low-variance first-order gradients
using the robot model. Furthermore, developing meta-learning algorithms that can quickly
adapt to new manipulation tasks by leveraging learned physical principles presents an
exciting avenue for research. This approach could significantly enhance the generalizability
and efficiency of learning-based manipulation systems.

By integrating physics-based models with learning algorithms, we can potentially over-
come the data efficiency limitations of pure learning-based approaches while maintaining
their flexibility and adaptability to complex, real-world scenarios.

System identification for contact-based manipulation

While significant progress has been made in model-based control for robotics (as shown in
Chapters 3, 4, and 5), accurately modeling contact dynamics remains a formidable challenge,
particularly in scenarios involving rich, complex interactions. No model can perfectly
capture the intricacies of real-world physics, especially at the interface of contact.

A promising direction for future research lies in developing hybrid approaches that
combine simplified models with adaptive learning techniques. For example, [123] model
complicated contact with a simplified model, then quickly identify its parameters and use
these to train a policy parameterized by the learned model. Building on this approach,
future work could:

1. Investigate how solutions from simplified physical models can serve as initial policies,
which can then be fine-tuned with reinforcement learning for more complex, realistic
scenarios.

2. Develop methods for continuously updating contact model parameters during task
execution, allowing for real-time adaptation to changing conditions.

These strategies could lead tomore robust and adaptive control in complexmanipulation
tasks.

Whole-body contact-rich manipulation

Contact detection and prediction remain challenging topics in robotics. In this thesis, we
simplified the contact problem by using rectangle and cylinder-shaped mobile robots for
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delivery tasks, resulting in either point contacts around the cylinder or line contacts along
the rectangle’s edges. However, to achieve truly dexterous manipulation, we must move
beyond these simplified contact models and leverage the full body of the robot for more
robust and versatile interactions.

Future research in whole-body contact manipulation could focus on:

1. Continuous Contact Surface Modeling. Extend contact models beyond discrete point
and line contacts to continuous surface contacts, but it requires a better model of the
contact surface. This could enable more natural and stable interactions, especially
for tasks involving complex object geometries.

2. Tactile-Visual Fusion for Better Contact State Estimation. Combine high-resolution
tactile sensing with visual information to accurately estimate and predict complex
contact states during whole-body manipulation. This multi-modal approach could
provide a more comprehensive understanding of the robot’s interaction with its
environment.

Task and motion planning with LLM

Reinforcement learning, imitation learning, and model-based optimization approaches typ-
ically target short-horizon manipulation tasks. However, for long-horizon tasks, integrated
task and motion planning is essential. To simplify this planning process, we can leverage
task planning and decomposition techniques.

Large LanguageModels (LLMs) offer promising opportunities to enhance these planning
processes in robotics. They can help break down complex manipulation tasks into simpler
subtasks and effectively guide lower-level control algorithms. Moreover, LLMs show
promise in synthesizing vast amounts of information about object properties, manipulation
strategies, and physical principles to inform planning and control algorithms. We can utilize
LLM-derived knowledge about object affordances and typical manipulation strategies to
guide sampling-based motion planners.

Finally, LLMs have the potential to simplify manipulation programming by creating
interfaces that allow non-expert users to specify complex manipulation tasks using natural
language. These LLMs can then translate these instructions into executable robot plans,
making advanced robotics more accessible to a broader user base.
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Glossary

Notation
Throughout this thesis, scalers are denoted by plain lowercase letters, e.g. 𝑥 , vectors by bold
lowercase, e.g. 𝐱, matrices by plain uppercase, e.g. 𝑀 , and sets by calligraphic uppercase,
e.g.  . The superscript 𝐱⊤ or 𝐴⊤ denotes the transpose of a vector 𝐱 or a matrix 𝐴.

Denote by {}, {}, and {}, the global world frame, the robot body frame, and
the object body frame, respectively. For example, a vector expressed in the robot frame
is denoted by a superscript, such as 𝐱. 𝐱 is always omitted. A rotation matrix that
transforms from the robot frame to the world frame is denoted as 𝑅.

𝐱r_e the extended robot state.
𝐱r the robot state.
𝐱o the object state.
𝐩r robot position (the geometric center of its four wheels).
𝐮r the control input of the robot.
𝑣r the linear velocity of the robot.
𝜔r the angular velocity of the robot.
𝑎r the linear accelerations of the robot.
𝜉r the angular accelerations of the robot.
𝐯o the twist of the object.
𝐰p wrench applied by the pusher.
𝐟p the pushing force.
𝐼𝑅𝐶 instantaneous center of rotation.
p a convex hull of all possible wrenches.
o all possible twists of the object.
𝜙 the angle between the object and the robot frame.
𝑑 the 𝑦 coordinate of robot center in the object frame.
𝑓x,p the x-component of the push force in the object frame.
𝐰g the friction wrench exerted by the ground on the object.
�̃�g the simplified friction wrench exerted by the ground to the object.
𝑀o the inertia matrix of the object.
𝑊o,𝐿o the width and length of the object.
𝑟r radius of the robot.
𝜏(𝑡) a geometric path on x-y plane.
𝑇 (𝑡) the path’s tangent direction.
𝑁 (𝑡) the unit normal vector of the path.
𝜅(𝑡) the curvature of the path.
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Specific sets

ℝ real numbers.
ℝ𝑛 real 𝑛-vectors.
ℝ𝑚×𝑛 real 𝑚×𝑛 matrices.

Model predictive control

𝑁 number of time steps in receding horizon planning.
Δ𝑡 time step.
⋅𝑡 the super index 𝑡 indicates value of the variable at stage 𝑡.
𝐽 𝑡(⋅) the 𝑡-th stage cost.
𝐽𝑁 (⋅) the terminal stage cost.
𝐡(⋅) the path constraint

List of abbreviations

NAMO navigation among movable obstacles
NMPC nonlinear model predictive control
MPC model predictive control
OCP optimal control problem
MPPI model predictive path integral
LTV linear time-varying
DRL deep reinforcement learning
IMU inertial measurement units
EKF extended Kalman filter
UKF unscented Kalman filter
CF complementary filter
RRT rapidly-exploring random tree
RL reinforcement learning
LRLOE Lyapunov-based reinforcement learning orientation estimation
RLC-EKF reinforcement learning compensated EKF
MDP Markov decision process
DNN deep neural network
SAC soft actor-critic
PPO proximal policy optimization
IRC instantaneous center of rotation
PID proportional-integral-derivative
DAE differential-algebraic equation
IRK implicit Runge-Kutta
GCM generalized coordinate model
LLM large language model
ROS robot operating system
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