
 
 

Delft University of Technology

Accelerating Blockchain Applications on IoT Architecture Models-Solutions and
Drawbacks

Kromes, R.G.; Verdier, Francois

DOI
10.1145/3626200
Publication date
2024
Document Version
Final published version
Published in
Distributed Ledger Technologies: Research and Practice

Citation (APA)
Kromes, R. G., & Verdier, F. (2024). Accelerating Blockchain Applications on IoT Architecture Models-
Solutions and Drawbacks. Distributed Ledger Technologies: Research and Practice, 3(2).
https://doi.org/10.1145/3626200

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3626200
https://doi.org/10.1145/3626200


14

Accelerating Blockchain Applications on IoT Architecture

Models—Solutions and Drawbacks

ROLAND KROMES, Delft University of Technology, the Netherlands

FRANÇOIS VERDIER, Université Côte d’Azur, CNRS, LEAT, France

More and more IoT use cases require trustworthy computing from cloud/back-end services, which cannot necessarily provide
a fully trusted execution environment, data immutability, and traceability. The integration of IoT with the blockchain technol-
ogy is one of the most promising solutions to achieve the previously mentioned features in the IoT networks. Researchers are
also interested in integration solutions, and several solutions are already present in the scientific literature. However, there
are still some uncertainties in establishing a direct and effective interaction between an IoT device and the given blockchain.
In this work, we propose the first IoT hardware architecture model designed to accelerate time-consuming operations of IoT-
Blockchain. The proposed IoT hardware architecture model is programmed in SystemC-TLM and can provide a significant
reduction in execution time, 53% and 18% when running Hyperledger Sawtooth and Ethereum applications, respectively.

CCS Concepts: • Computer systems organization→ Embedded software; Peer-to-peer architectures;

Additional Key Words and Phrases: IoT, blockchain, embedded systems, hardware modelling, SystemC

ACM Reference format:

Roland Kromes and François Verdier. 2024. Accelerating Blockchain Applications on IoT Architecture Models—Solutions and
Drawbacks. Distrib. Ledger Technol. 3, 2, Article 14 (June 2024), 24 pages.
https://doi.org/10.1145/3626200

1 INTRODUCTION

Blockchain technology is a peer-to-peer network in which all members of the network participants contain
the same data. As every participant has the same data, blockchain technology can also be called a database
or distributed ledger. Thanks to several cryptographic primitives (e.g., hash, digital signature), the technology
provides the immutability of the data and the traceability of every event happening in the Blockchain. The
execution of digital codes, the so-called smart contracts that can automatize operations in the Blockchain system,
can also be executed in the new generation of blockchains (since blockchain 2.0—Ethereum blockchain [49] is
an excellent example). The data contained by the blockchain is immutable. In addition to this unchangeable data
feature, all blockchain events are stored and visible to all blockchain network participants. It can be noted that
adding new data and interaction with smart contract can be done via transactions. The data adding and smart

R. Kromes and F. Verdier contributed equally to this research.
This work has been supported by the French government, through the ANR-19-CE25-0008, ANR-15-IDEX-0001, ANR-17-EURE-000 and by
European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101021727 (IRIS).
Authors’ addresses: R. Kromes (Corresponding author), Delft University of Technology, Delft, the Netherlands; e-mail: r.g.kromes@tudelft.nl;
F. Verdier, Université Côte d’Azur, CNRS, LEAT, Sophia-Antipolis, France; e-mail: francois.verdier@univ-cotedazur.fr.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
2769-6472/2024/6-ART14
https://doi.org/10.1145/3626200

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https://orcid.org/0000-0002-5773-6073
https://orcid.org/0000-0001-5038-4565
https://doi.org/10.1145/3626200
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626200
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626200&domain=pdf&date_stamp=2024-06-18


14:2 • R. Kromes and F. Verdier

contract interactions can be done according to a common agreement of the network participants, which also
make the overall system more trustworthy.

The Internet of Things (IoT) technology has several definitions. The IoT is the connection and communica-
tion of resource-constrained devices (devices with limited computational power, limited memory, limited battery
life) following specific automation without human intervention. In general, the intelligence of the automation is
provided by a central entity (e.g., server, cloud). The central unit can also be considered a third-party application
on which the overall IoT architecture relies. The central unit of such a complex system can also be considered a
drawback, because all components and IoT users/owners must trust that given central unit.

The replacement of this third-party (central unit) with a Blockchain can make the overall IoT network structure
a more trustworthy environment. According to References [31] and [39], the combination of IoT with blockchain
technology can provide data trustworthiness, which cannot be provided by a typical “centralized” IoT network
structure. However, integrating IoT-constrained devices with Blockchain technology can introduce specific re-
quirements, such as the computation of resource-intensive cryptographic and the valid transaction creation tasks
in these embedded IoT devices. For this reason, we believe that specific IoT-Blockchain APIs and new IoT hard-
ware architectures should be developed to compute these specific operations efficiently in terms of execution
time and energy consumption.

According to Reference [21], developing a new architecture or modifying an existing one is based on five
primary phases: Requirements, Design, Build, Test, and Operation. The mentioned study demonstrates the cost
ratio of fixing an error in the mentioned phases and highlights that error detection and fixing in Design can be
from 5 to 20 times less expensive than in the Build, Test, and Operation phases. For the IoT architecture designer
teams it is thus a better option to have a methodology that could help to create models of IoT architectures
that can be tested in the first early phases. Thanks to this methodology, fewer errors would be produced in the
Build phase. Also, fixing an error at the Design phase’s cost is more economical than at the end of the overall
architecture development.

The novelty of our study is that it proposes two software applications that enable interaction with the Hyper-
ledger Sawtooth and Ethereum blockchains and proposes an IoT hardware architecture model that enables the
optimal execution of the previously mentioned applications in terms of execution time. The study also provides
dedicated hardware acceleration methods and design modifications. We believe that this proposed hardware ar-
chitecture model is a generic solution for optimizing the execution time of IoT-blockchain related applications
and, thus, other blockchain applications than Hyperledger Sawtooth and Ethereum can also be accelerated. To
the best of our knowledge, this is the first work that provides a dedicated IoT hardware model for blockchain-
related applications, to achieve a more optimal execution time. The main research objective is to find a hardware
acceleration solution to IoT-blockchain-related applications, the simulation of the proposed hardware model, and
finally the execution of the APIs on the model.

1.1 Challenges of Integrating IoT with Blockchain

One of the main goals in our point of view of IoT integration with a given blockchain network is establishing
direct interaction between the IoT device and the given blockchain. One of the basic elements of valid transaction
creation is the digital signature of the transaction. The digital signature (e.g., Elliptic Curve Digital Signature) on
the transaction should be produced locally in the IoT device to allow the device’s authentication in the blockchain
network.

The transaction and payload creation requires applying also cryptographic schemes such as digital signatures
and hash algorithms. Executing the required cryptographic schemes on resource-constrained IoT devices can
be considered a challenge, because they require high computational power, and their execution time can be
significant. The significant amount of time taken by the transaction and payload creation for smart contracts
can also be considered problematic to be solved. The longer the time taken for the transaction and payload

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:3

creation due to cryptographic schemes, the greater the power consumption of the given IoT device. Most IoT
devices have limited battery life. To increase their battery lifetime, the procedure of transaction and payload
creation should be accelerated. The acceleration possibilities can be achieved at software and hardware levels.
Thus, this work focuses on the hardware acceleration possibilities of the essential cryptographic schemes applied
in the given IoT-Blockchain applications.

Another challenge in IoT blockchain integration is the amount of data to store on the blockchain. Typical
IoT structures collect a high amount of data that must be stored. Storing a significant amount of data on the
blockchain causes two main problems. First, data must be duplicated on each peers of the blockchain, which is not
economical. For example, today, Bitcoin blockchain contains more than 350 GBytes of data [3], and one Bitcoin
transaction takes around 500 Bytes. We can imagine how the size would increase if the simple IoT transaction
contain KBytes or MBytes of data. The second is that the quickly increasing data size to store in the blockchain
can risk the explosion of the whole infrastructure hosting the blockchain. Results of the related works will be
demonstrated that investigate resolving the rapid growth of data size in an IoT-Blockchain context.

1.2 Contributions

This work has two main contributions. The first provides API implementations designed for IoT devices to allow
interactions with Ethereum and Hyperledger Sawtooth smart contracts. The proposed APIs are deployed in
C/C++ programming languages, because these languages are more optimal for constrained IoT devices. The
proposed APIs meet all of the requirements of Ethereum and Hyperledger Sawtooth blockchains to create valid
transactions. These requirements include the formatting and encoding of the transaction and payload used by
smart contracts. As one of the main goals is establishing direct communication between the IoT device and the
given blockchain, the APIs must include several cryptography-related functionalities.

The second main contribution provides a design of a specific IoT hardware architecture model for IoT-
Blockchain applications to achieve a better performance when executing the APIs. For achieving a more accept-
able performance, our study presents an analysis of the most resource-intensive functions of the APIs related to
the cryptographic primitives to highlight which part of these functions can be hardware-accelerated.

It should be noted that this work proposes a model of architecture and not the prototype of real hardware. The
specific IoT hardware architecture model is simulated, thanks to a virtual platform combining the QEMU CPU-
architecture emulator and SystemC-TLM high-level hardware description language (the tools for modelling the
architecture are detailed in Section 6). Executing the API on top of the simulated IoT hardware model highlights
the possible performances that can be achieved in a real hardware architecture that would have been constructed
according to the model. The study also highlights the main advantages and interests in high-level architecture
modeling and virtual platforms.

1.3 Structure of the Article

The article is organized as follows: In Section 2, we briefly discuss the blockchain and IoT technologies, their
implementation possibilities, the related work, and the time constraints of valid blockchain transaction cre-
ation. Moreover, we introduce the basic requirements of the developed hardware architecture model. Section 4
demonstrates our proposed blockchain-IoT APIs allowing the interaction with Ethereum and Hyperledger Fabric
blockchains. Moreover, this section also provides an analysis of the mentioned APIs. Section 5 explains the pos-
sibilities of hardware acceleration of blockchain-related cryptographic functions. In this section, we also present
existing hardware accelerator modules and explain our choice of hardware accelerator modules that will be used
in the proposed IoT architecture model. In Section 6, we present our proposed IoT architecture model, and in
Section 7, we show the results obtained when executing the blockchain APIs on the proposed architecture. Fi-
nally, we discuss and conclude this article.

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:4 • R. Kromes and F. Verdier

2 BACKGROUND

2.1 Blockchain

Blockchain is a peer-to-peer network in which the participants are connected and authenticated in the network.
A member can be identified to the network by using its public key. The cryptographic digital signatures are used
to verify the provenance of the given transaction containing the data or the amount of the crypto to transfer.

Another particularity of blockchain technology is that all network members contain the exact copy of the
same blockchain data (all data and the events on the blockchain). This data is readable to every participant; thus,
the technology also provides full visibility and traceability. Data can be added to the blockchain via transactions
that are first verified. After the verification, the transactions are put in the newly created block. The blocks are
connected between them with their hashes providing an immutable data structure. In most blockchains (for
example, in Reference [47]) smart contracts can also be executed that are intended to describe a business logic
and automatize particular tasks.

2.2 IoT

Most of the Internet of Things network architectures are based on IoT devices’ connections among them and with
a third central party application/back-end or entity. IoT includes diverse types of devices, such as constrained
embedded systems, edge devices, smartphones (run Linux-based or other lightweight operating systems), and
less-constrained devices. According to Reference [12], one of the primary goals of an IoT is the decision-making
and control of the IoT environment, which can be done according to a logic applied on the data provided by the
devices and sent to the central unit (or back-end service). This dependence can also be considered a weak point
of the system because of some possible main issues. First, the data management logic and process can be altered,
which can lead to false results. The second weak point is that an untrustworthy member can alter or delete the
data stored on the central unit [5]. Another weak point is that the central unit does the IoT device authentication,
which can also be problematic, because the authentication process can also be altered.

3 RELATED WORK

IoT-blockchain structures can be applied in supply-chain management use cases. The Agri-Food project from
Caro et al. [10] aims to trace agricultural production using blockchain. With the help of blockchain, each phase
of the production (planting, growing, packaging, transporting) can be recorded and later audited by the con-
sumer (buyer) of the product. The IoT devices in this scenario can send GPS and environmental information (e.g.,
temperature while delivering watering information during the lifetime of the plant) about the product.

In another project from Müller et al. [32], the goal is to prove that the products have been delivered from A to B
according to the requirements described in the agreement between the actors. To prove that delivery conditions
were respected, IoTs send information about the products’ environment. Service Level Agreements (SLA) can
also be deployed, thanks to specific smart contracts in this use case.

IoT-Blockchain structures are also used in smart city applications and use cases. Pincheira et al. [36] propose
a blockchain-IoT-based water management system in precision agriculture. In this work, the Ethereum public
blockchain replaces the centralized unit (cloud service) of the IoT-network architecture. In this architecture, the
IoT device can be considered a blockchain member that produces water consumption measurements and logs
these measurements, thanks to an API that sends logs directly to a specific smart contract. The authors also
developed smart contracts to realize business logic related to water consumption.

The automotive sector also showed a high interest in applying blockchain-IoT structures in specific use-cases.
For example, the car manufacturers Renault [29] and BMW [1] aim to develop digital vehicle passports in which
the car’s history can be stored (e.g., car’s maintenance, information about car’s selling). Thanks to blockchain
technology, this information can be immutable and auditable by the participants (or future car owners).

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:5

Renault car manufacturer also investigates to solve odometer-reading fraud problems. Samuel et al. [40] de-
veloped a possible solution in which the mileage readings information of the car (which contains an IoT device)
are sent to smart contracts of Ethereum blockchain when the vehicle’s engine starts and stops. According to the
author’s conclusion, the proposed solution can support 11 million vehicles making four trips per day.

Renault also imagined a car accident use case that could also impact other sectors than automotive. A complete
ecosystem is based on blockchain and IoT technologies in that use case. The ecosystem contains multiple actors
such as Renault car manufacturer, an insurance company, car mechanics, the police. The idea is that the vehicle
fleet of Renault will be able to interact with the blockchain-based ecosystem when an accident between the
vehicles occurs. In the use case, the vehicles are equipped with IoT devices that can measure the car’s environment
(speed, photos/videos about events around the car, etc.) and the driver’s behaviors (detection of drowsiness,
respect of safety distance, etc.) before the accident occurs. Thanks to these data, the insurance companies can
accelerate the faulty party detection and reimbursement procedure by using dedicated smart contracts. The car
mechanics can also be faster informed of which components are needed to repair the car.

In related work [27] Renault’s use case was realized. The Hyperledger Sawtooth blockchain was the core of
the system. The IoT devices can directly interact with the smart contract deployed on the blockchain in this
application. However, the data measurements related to the car’s environment, such as 360-degree photos, are
all sent to the blockchain. In this work, we concluded that the proposed IoT-Blockchain network architecture is
functional; however, the data related to accidents can take a high amount of size. The large size of the data per
transaction can be seen as a disadvantage, because the size of the blockchain data will grow too fast, resulting
in the crash of the infrastructure containing the blockchain.

In another study [17], Hyperledger Sawtooth blockchain-IoT structure was combined with an InterPlanetary
File System (IPFS) [8] to minimize the quickly growing data size of the blockchain. IPFS is a peer-to-peer dis-
tributed network such as the blockchain, but contrarily to the blockchain, it does not use a consensus algorithm
to add new data to the file system. IPFS is similar to a torrent file system in which not every peer contains the
same data. Using this latter advantage, IPFS can be used to send important data sizes in the range of 1 KB–1 GB
(car accident data) and use the blockchain to store the pointers of these data. The pointers of the data are the
cryptographic hashes of the data (in general, taking 256 bits of size). Smart contracts were developed to ensure
the data adding on IPFS network by filtering the messages coming from unregistered IoT devices. Sending only
the hash of the IoT data to the blockchain is a more optimal choice in IoT blockchain structures, especially when
the size of data to be sent is considerable. In this solution, the IoT device has to compute the hash of the data,
which can significantly increase the execution time of the IoT API. A complete study on the car accident use case
implementation possibilities in a cloud environment is provided in Reference [16].

3.1 Approach to Follow when Integrating IoT with Blockchain Technology

In realistic implementations, the IoT device should not contain the copy of the blockchain because, first, the
required storage placed in the IoT device is insufficient or it can be filled too quickly. Another problem is that
when an endpoint (whether it is a PC or IoT device with enough hardware resource) contains the copy of the
blockchain, it has to use a client application provided by the given blockchain. The majority of client applications
require their execution on top of an operating system. On the contrary, a so-called offline or off-chain solution
should be applied in a more realistic implementation. The basics of the off-chain approach for integrating IoT
with blockchain technology are presented in Figure 1.

As Figure 1 presents in this integration approach, the IoT device does not contain the copy of the blockchain.
However, it uses an API containing all the necessary tools to create valid blockchain transactions. In this figure,
it can be noticed that the IoT API also contains a key, which is the private key used for blockchain transaction
digital signatures. The blockchain possesses the public key pair of this private key. Thanks to this public key,
the signature can be verified if it comes from a blockchain member (a member signs the transaction; thus, the

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:6 • R. Kromes and F. Verdier

Fig. 1. Principles of the offline/off -chain approach for integrating IoT with blockchain technology.

IoT device’s private key was used for signature) or if the transaction was manipulated after its sending. It can be
noted also that the registration-enrollment process of new members to the blockchain is done according to the
given blockchain policies. In several cases, the blockchain generates the public-private key pairs, but they can
also be generated by the new member and added to the blockchain by the admin.

The digital signature creation is thus an essential operation in the offline approach. However, this operation
is resource-intensive, and it can take a significant amount of time. The time constraints of digital signature will
be detailed in Section 4.

The main advantage of the off-chain or offline approach is that the IoT device has to be connected to the
blockchain network only when it aims to send the transactions, which means that the transaction can be sent
at any time (obviously, when the networks connection is stable). If the IoT device had contained the copy of the
blockchain (the so-called on-chain approach), then sending the transaction would have been possible only when
the blockchain data on the device was the same as in the rest of the blockchain network. The same data on the
IoT device that we found on the blockchain could be achieved with synchronization requiring a quasi-continuous
connection of the device to the blockchain. In IoT applications, the number of communications processed by an
IoT device should be minimized as much as possible, because the data (package) sent by activating the device’s
radio module is expensive in terms of energy consumption.

In the offline approach, the device has to be connected to the blockchain only during the transaction sending,
which also means that the number of communications is less important than in the on-chain approach. Thus the
offline approach is a more efficient approach for IoT devices.

3.2 Timing Constraints of Valid Blockchain Transaction Creation

This section highlights the possible timing constraints when a given IoT device executes an API intended to
create a valid blockchain transaction. These timing constraints are retrieved from our previous studies and the
related works found in the literature.

The authors of Reference [35] aim for IoT devices to be are “direct actors” on the blockchain network, which
also means that the devices sign the blockchain transactions locally in the device. According to the authors,
this approach assures the “root of trust” for the sensed data by the given IoT devices. This work gave us a great
amount of inspiration, because they also used the offline approach to achieve a more secure authentication of
devices in IoT-Blockchain network structures.

The authors decided to use Ethereum public blockchain, one of the most popular platforms among users and
developers. For achieving the interaction between the device and the blockchain, the authors developed an IoT
API written in C language. One of the main contributions of their work is the execution time of the different
tasks while running the API on different IoT platforms such as STM32L031K6T6 (Cortex-M0+) and STM32L452
(Cortex-M4).The results highlight that the execution of the transaction signing operation takes more than 95%
of the total execution time on both constrained architectures.

The transaction is digitally signed by applying the Elliptic Curve Digital Signature Algorithm (ECDSA)
[23, 38] used in most blockchain technologies. According to these results, the authors highlighted that the most

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:7

resource-intensive task of transaction creation is the digital signature process, which should be improved to
execute it faster or more efficiently.

It should be noted that the digital signature is performed on the hash value of the data. The hash operation’s
execution time is dependent on the data size to be hashed. The higher the data size, the longer is the execution.
Authors of Reference [27] demonstrated that one-third of the execution time can be taken by the hash operation
of a IoT-blockchain API when the data to send exceeds the 1MByte size.

4 PROPOSED IOT-BLOCKCHAIN INTEGRATION

The section is structured as follows: First, it explains the essential requirements of an IoT API development
for IoT-Blockchain use cases when the offline integration approach is applied. A second part demonstrates the
Hyperledger Sawtooth and Ethereum APIs that we developed and the analysis of the APIs to determine their
most-called functions.

4.1 Essential Requirements

In the first initiatives for integrating IoT with a given blockchain, the IoT devices were not the direct “data
source” of the blockchain network, because the IoT device did not sign the blockchain transactions. In one of
the first such implementations [33], the IoT devices send their sensed data and their identifications via RPC pro-
tocol to a dedicated computer hosting an Ethereum blockchain node and an API, converting RPC messages into
transactions. In this Proof-of-Concept, it is the PC that signs the transactions and not the IoT devices themselves.

In Reference [20], the authors developed an IoT API in which the transaction’s payload only is formed and
signed by the IoT device locally. A dedicated smart contract could produce the verification of this payload signa-
ture. However, the transaction’s signature must be done in a dedicated Ethereum client run on a PC.

In our implementations, we were interested to create all of the transaction components and the transaction
signatures by the IoT device. The blockchain network can then verify the transaction’s validity, and the IoT
device can be authenticated without necessarily running a smart contract. The requirements of valid blockchain
transaction creation can differ for each type of blockchain. However, three basic requirements can be considered
as expected for most blockchains. All blockchains require a specific type of transaction structure or format to
be respected. For example, the Ethereum blockchain uses the Recursive Length Prefix (RLP) encoding to
differentiate the transactions structure fields. In several cases, the transaction payload should also be encoded
or formulated in a specific way to be able to interact with the given smart contract (e.g., Application Binary
Interface must be used for interacting with Ethereum blockchain’s smart contracts).

All of the IoT APIs must include the cryptographic hash primitive, which is required by the given blockchain
(e.g., Ethereum applies the Keccak hash function producing a hash value of 256 bits). The hash value is an essential
component of the digital signature, and its importance will be explained in Section 4.5.

The third main component of valid blockchain transaction creation is the digital signature of the transaction.
As a heritage of Bitcoin blockchain, most blockchains apply the ECDSA [23]. The particularity of this type of
signature algorithm is that the size of its operands is less significant than other traditionally used algorithms like
RSA, for example (256/1,024 bits of public key size according to ECDSA/RSA). Depending on the blockchain, the
elliptic curve on which the operations are computed can be different (e.g., Ethereum uses the Secp256k1 curve,
Substrate blockchain framework applies edwards25519).

We describe in the following the Hyperledger Substrate and Ethereum blockchains and demonstrate the results
that we could obtain after analyzing the proposed APIs. A brief description of the analysis is also provided below.

4.2 API Analysis Description

The analysis of the proposed APIs consists of the identification of the most-called functions by the APIs. The
analysis results will also highlight the percentage taken by a given function compared to the total execution

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:8 • R. Kromes and F. Verdier

time of the API. Another advantage of this analysis is that it also highlights the most solicited components of
the most-called functions. This information can provide an idea of which parts of these most-called functions
can/should be software- or hardware-accelerated.

For the analysis of the APIs, we used a specific software called Callgrind taking part in Valgrind dynamic
analysis tool. Thanks to Callgrind profiling tool, we can obtain the call trees or call graphs of the called functions
of an executable software running in a Linux environment. When running the given executable, Callgrind catches
all memory accesses for tracing the call graphs. Callgrind results can be studied interactively using KCachegrind
[48], as this tool allows the visualization (via an interface) of the call graphs that can be browsed afterward.

It must be noted that the analysis studies the valid transaction creation without the sending phase of the
transaction to the given blockchain. The sending phase is not measured, because the time taken by sending
the transaction can differ according to the communication protocol applied, the transaction validation rate of
the blockchain, and the implementation allowing the interaction between the blockchain node and the external
application. We have already mentioned previously that according to related works, the transaction’s payload
size can influence the portion of time taken by the hash computation relative to the total execution time. In
the analysis, the transaction size is fixed to 32 bytes, which means that hashing the payload requires only one
computation. However, the hash functions are not only used for the payload hashing, as it will be clarified in the
following sections.

4.3 Hyperledger Sawtooth API

This subsection briefly introduces the Hyperledger Sawtooth blockchain [25] and explains the obtained result
analysis. Hyperledger Sawtooth blockchain is a member of the Hyperledger open-source blockchain family. This
blockchain can be implemented as a private or consortium blockchain. The primary purpose of this blockchain
is its application in ecosystems or enterprise use cases, because it is based on a modular structure that allows
developers to adapt to specific use case requirements easily.

The structural modifications on Hyperledger Sawtooth can also increase the performance in terms of transac-
tion validation rate. For example, this latter can be achieved by changing the Consensus Engine (i.e., applying
PBFT or PoET consensus rules will result in different transaction validation rates). The Hyperledger Sawtooth
network comprises validator nodes participating in transaction validation and block committing process. A sig-
nificant advantage of this blockchain is that the interaction from a so-called Client to the blockchain can be
established via a REST API integrated into the blockchain structure. The Client application does not have to
contain the copy of the blockchain but the basic requirements that as we mentioned on page 7.

Hyperledger Sawtooth provides official Client SDKs in Python, JavaScript, and Rust programming languages.
However, there is still no official C/C++ implementation that is more optimal for IoT devices. In this work, we
propose a C/C++ open-source API1 allowing the interaction with Hyperledger Sawtooth’s Transaction Proces-
sors (Smart Contracts). Smart contracts can be written in almost any language. The only important element is
that the transaction payload’s encoding format must be the same in both API and Transaction Processor sides
(e.g., CBOR).

Hyperledger Sawtooth provides an official Google protocol buffer for the data structure of the transactions
and batches. These protocol buffers can be easily converted into several programming languages. In our case,
the conversion results in five C++ classes (Batch, BatchHeader, BatchList, Transaction, and TransactionHeader). In
Hyperledger Sawtooth, a batch can contain multiple transactions depending on each other, but it has to contain
at least one transaction (in our case, the batch contains only one transaction).

4.3.1 The API’s Most-called Functions. The second row of Table 1 shows the results determined from the
call graph of a valid transaction creation for Hyperledger Sawtooth, with a transaction payload of 32 bytes. For

1Hyperledger Sawtooth optimized API project is available at: https:://github.com/KRolander/HyperledgerSawtooth-cpp-client-optimized

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https:://github.com/KRolander/HyperledgerSawtooth-cpp-client-optimized


Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:9

Table 1. Percentages Taken by the Different Functions in the Total Execution Time of the APIs

(Hyperledger Sawtooth and Ethereum)

main()
Setup

Contrac
tData()

build
signature() /

create
Transaction()

buildkey
Address()

sha256
Data()

sha512
Data()

keccak
256()

SignTx()/
SignTrezor()

ecdsa
sign

digest()

Sawtooth 100% X 100% 2.96% 2.52% 4.52% X 90.87% 90.87%
Ethereum 100% 5.25% 91.93% X <1% X 2.08% 79.29% 79.29%

The symbol “X” specifies that the function in question was not contained in the given blockchain API. Function
names are separated by the symbol “/” meaning that the name on the left side is related to Hyperledger Sawtooth,
and the right side to Ethereum.

interacting with the Transaction Processor (smart contract), the IntKey transaction processor officially provided
by Hyperledger Sawtooth was slightly modified to allow to initialize a variable of 32 bytes size.

The first row of the table contains the main functions that are required for a valid transaction creation in both
Hyperledger Sawtooth and Ethereum blockchain. In reality, the build_signature function takes 99.37% of the main
function, representing 100% of the total execution time of the API. As the build_signature function occupies al-
most the totality of the main function, we selected it as the father function (blue column), taking the totality of
the API’s execution time. The results show that almost 91% of the total API execution is occupied by the SignTx

function calling the ecdsa_sign_digest function of trezor-crypto2 open-source C library. The ecdsa_sign_digest

function realizes the digital signature of the transaction (first signature) and the batch (second signature). This
two signatures procedure is specific to Hyperledger Sawtooth, and the secp256k1 elliptic curve is applied. The
results also show that the sha512Data function corresponding to the SHA-512 cryptographic hash function com-
putation takes 4.52% of the total execution time. This hash algorithm is used to calculate the payload’s hash
value and create the address encoding needed to access the ledger state variables (address encoding can also be
performed by using SHA-256). The sha256Data function realizes an SHA-256 hash function computation and is
called for performing the hash value of the transaction and the batch. These hash values are one of the main
components of the digital signature (i.e., the hash value of the data that is signed not the data itself). The two
SHA hash functions above are implemented in Crypto++3 free and open-source C++ library.

4.4 Ethereum API

Ethereum was the first blockchain that allowed the deployment of smart contracts describing complete business
logic not necessarily related to cryptocurrencies [49]. Ethereum is one of the most popular public blockchains
among developers, and numerous research works are interested in this distributed ledger. Ethereum eases the
development of decentralized applications, because the results of the smart contracts can contain logs for which
the application can subscribe. Ethereum’s structure is based on miner and client nodes. The miner nodes partic-
ipate in the consensus rule, which were by default the Proof-of-Work but has been changed for a Proof-of-Stake
in June 2022. In this consensus, the miners resolve mathematical problems, and the fastest miner is rewarded.
As the miners must be rewarded, the transactions containing an amount of Ether (cryptocurrency of Ethereum)
or want to change the state (variable’s value in the smart contract) cannot be freely sent (a gas value must be
paid). The transaction is also composed of other elements, such as the nonce (number of transactions sent by the
account), gas limit (maximum quantity of gas available for the transaction), gas price (amount of crypto paid for
each gas unit), smart contract or account address, value of Ether to send, and data for the smart contract.

Ethereum also proposes a JSON-RPC interface to establish the interaction between the smart contracts and the
given API. Web3.js is an official JavaScript API allowing the interaction with an Ethereum node. This interface

2Trezor-crypto available at: https://github.com/trezor/trezor-crypto
3Crypto++ is available at: https://www.cryptopp.com/

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https://github.com/trezor/trezor-crypto
https://www.cryptopp.com/


14:10 • R. Kromes and F. Verdier

Table 2. Percentages Taken by the Different

Functions in the Total Execution Time of the

Signature Process

ecdsa
sign

digest
init_rfc6979 scalar_multiply bn_inverse

100% 3.09% 86.01% 19.79%

is up to date and also easy to use. However, it is not optimal for IoT applications. For this purpose, we developed
again a C/C++ open-source IoT API4 allowing the interaction with Ethereum smart contracts.

Ethereum uses Ethereum Virtual Machine (EVM) to run the smart contract written in Solidity language.
The transaction’s payload can call a specific function in the smart contracts and also provide the arguments for
the functions. The function calls and arguments must be encoded following the Application Binary Interface
(ABI) encoding. The ABI-encoded payload is contained by a transaction that must be RLP encoded and signed.
Our proposed API includes the RLP and ABI encoding functionalities and almost every variable types encoding
for smart contracts can be applied (e.g., uint8, uint16, uint32, uint256, uint arrays, bytes, and string). Moreover,
the API implementation allows signing the transaction and the payload. The payload signature can be useful
for creating multi-signatures. Reference [20] inspired us to add this feature to our implementation. In our git
repository, we also provide a smart contract that can verify the payload signature.

4.4.1 The API’s Most-called Functions. Table 1 summarizes the results of the call graph for a single Ethereum
valid transaction creation process when the transaction’s payload size is 32 bytes. The payload calls a smart
contract function to set the value of a 32-byte variable in the ledger state. The API was tested with the Ganache5

tool providing a one-click Ethereum blockchain.
The main function of Ethereum API takes 100% of the API’s total execution time. All the functions taking less

than 2% of the execution time are not presented. The main function is divided into two branches. The first branch
starts with the SetupContractData function (5.25% of the total execution time), in which the payload will be ABI
encoded for the smart contract calling. The second, consists of the createTransaction function taking 91.93% of the
total execution time. This latter function is composed of three other functions. First, the RLPEncode (4%) is called
to RLP encode all of the transaction components (nonce, payload, gas price, gas limit, etc.); this function is not
presented in the table. After the RLP encoding, the keccak_256 function (Keccak cryptographic hash function) is
called to hash the RLP encoded elements. This function takes around 2% of the total execution time. Contrarily
to Hyperledger Sawtooth, for Ethereum transaction signature, the Keccak hash function is applied instead of
SHA-256. The third sub-function is the SignTrezor, which signs the hash value of the transaction. This function
uses the ecdsa_sign_digest function of the trezor-crypro library to perform the signature, such as the case in
Hyperledger Sawtooth. This signature procedure takes more than 79% of the total execution time, which is a
significant portion of the total execution.

We can note that in the case of Ethereum transaction creation, the digital signature procedure takes less time
of the total execution compared to the Hyperledger Sawtooth API. However, in Hyperledger Sawtooth API, a
double signature is created, one for the batch and one for the transaction contained by the batch.

4.5 Elliptic Curve Digital Signature

To better understand the components of the digital signature function (ecdsa_sign_digest) used in the proposed
APIs, we provide a table (see Table 2) with the results of call graph of the mentioned function.

4Ethereum-web3-cpp project is available at: https://github.com/KRolander/ethereum-web3-cpp
5Ganache one-click blockchain is available at: https://trufflesuite.com/ganache/index.html

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https://github.com/KRolander/ethereum-web3-cpp
https://trufflesuite.com/ganache/index.html


Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:11

The ecdsa_sign_digest function is considered taking 100% of the total execution time. We can observe that
the major part of this function is taken by the scalar_multiply function (85%), which is the point multiplication
operation on the elliptic curve. This process is the core operation of the ECDSA digital signature algorithm (more
details on how the elliptic curve point multiplication appears in the ECDSA algorithm are given in Section 4.5).
As the elliptic curve point multiplication (ECPM) operation takes a significant 85% of the ecdsa_sign_digest

function, it is clear evidence that this is the ECPM operation that must be accelerated/optimized to achieve better
performance.

The function init_rfc6979 takes 3% of the signature function, and it is based on the HMAC algorithm to create
a nonce for the signature process.

4.5.1 Conclusion. In this part of this study, we analyzed the proposed IoT APIs, and we could observe that the
most resource-intensive part of the APIs is due to the digital signature algorithm. We also highlighted that elliptic
curve point multiplication is the core operation of the digital signature algorithm. To achieve better performance,
this operation should be optimized by using a software or hardware approach.

In the following section, we collect the existing ECPM hardware accelerators found in the literature, which
can eventually be applied in new IoT hardware architectures. We also compare them and select the most optimal
hardware accelerator for ECPM. The selected design will be used in our proposed IoT hardware model.

The call graph analysis also highlighted that the hash functions take a small portion of the total execution
time. However, it should be noted that the time taken by the hash function can be different when the payload
size increases (it was also demonstrated in Reference [17]). The following section also lists some of the existing
hardware accelerators for hash function families that can be embedded in new hardware architectures. Our
proposed IoT hardware model also contains hardware acceleration for hash functions.

5 HARDWARE ACCELERATION OF IOT ARCHITECTURE

One of the main objectives of this section is to list the existing ECPM and hash hardware designs that can be
found in the literature. Another objective is the selection of the most optimal design that can be embedded in
our proposed IoT architecture model.

5.1 Elliptic Curve Point Multiplication (ECPM) Hardware Designs

This part of the article provides an introduction about the background of Elliptic Curve Digital Signature algo-
rithm and lists the existing ECPM hardware accelerators with highly detailed description. The conclusion of this
part highlights which is the most optimal choice of ECPM hardware accelerator to integrate into the proposed
IoT hardware design.

5.1.1 Elliptic Curve Digital Signature Background. In the previous section, we demonstrated that the execu-
tion of the elliptic curve digital signature can take almost at least 80% of the total execution time of the given
blockchain API. We also demonstrated that the elliptic curve point multiplication operation takes 85% of the
signature’s execution time. However, we did not detail how the elliptic curve multiplication appears in the signa-
ture algorithm. In the following, a brief description is given about the main steps of the ECDSA. We assume that
the description of ECDSA is illustrated similarly as in References [23, 34, 46] and RFC-6979 standard is detailed
in Reference [38].

The following algorithm demonstrates the ECDSA. The message that has to be signed is denoted asmsд.
The first step of the algorithm is the computation of the hash of the message to sign (e.g., the SHA-256 hash

algorithm). The second step is the secret integer generation (k) derived from the hmac (hash-based algorithm)
[26] of the message digest and the private key of the message signer. The private key is also an integer in the
range of [0, . . . ,n−1] with n, the order of the generator pointG (with x, y coordinates) lying on the given elliptic
curve E.

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:12 • R. Kromes and F. Verdier

ALGORITHM 1: ECDSA Sign Algorithm

(1) Calculate SHA256: h = hash(msд)
(2) Generate a secret integer k = hmac(h + privKey )
(3) Calculate the random point: R = k ×G → r = R.x

(4) Calculate the signature proof: s = k−1 ∗ (h + r ∗ privKey) (mod n)
(5) Return the signature: {r , s}

This integer is used in the third step for calculating a random point on the given elliptic curve (E). The random
point calculation is performed by the elliptic curve point multiplication of the generator point by the secret
integer (k). This operation corresponds to adding the point G to itself k times.

Ethereum and Hyperledger Sawtooth apply secp256k1 curve, a Weierstrass form curve that can be defined
over the finite field or prime field Fp , with p > 3, and can be described by the following equation:

E : y2 = x3 + ax + b (mod p), (1)

with an imaginary point of infinity ϑ , and with a,b ∈ Fp , and a condition to respect: 4a3+27b2 � 0 (mod p). The
fourth step uses the x coordinate of the random point (R (x ,y)) calculated in the previous step to determine the
signature proof (s). The final step represents the signature composed by the x coordinate of the random point
(R (x ,y)) and the signature proof (s). When using the secp256k1 curve, the signature is 64 bytes long.

5.1.2 List of ECPM Hardware Designs. This subsection presents the ECPM designs that we can find in related
works. We also provide a Table 3 summarizing the designs’ features regarding the type of the implementation,
operation latency, the frequency at the design works, and the speedup that can be achieved against the ECPM
executed on BCM2837 (Raspberry Pi 3 B+) ARM-based architecture.6

It must be specified that the ECPM hardware accelerator designs must allow working with the secp256k1
curve (required by Ethereum and Hyperledger Sawtooth). This requirement also implies that the given design
must operate over 256-bits prime field Fp (p ≤ 256) and not over the binary field F2n . The 256-bits prime field is
required because the secp256k1 curve is designed to be used with 256-bits operands. Hence, the goal is to find
designs compatible with the secp256k1 curve and eventually with other Weierstrass form curves. It must also
be noted that secp256k1 is not a NIST-recommended curve, which implies that hardware accelerator designs for
NIST-recommended curves cannot be an option in our research.

Most of the related works present FPGA implementations of the accelerator designs, which can also achieve
significant speedup and low latency. However, the ECPM hardware accelerators should be implemented in ASIC
in future IoT hardware architectures. The design implementation in ASIC will provide at least the same latency
and, theoretically, even lower than the FPGA implementation can provide.

Shah et al. [42] mention that the major part of today’s designs can work only with NIST-recommended curves,
which is a significant drawback. To address this problem, the authors propose an architecture compatible with
any of the Weierstrass form curves defined over the general prime field of 256 or 512-bits (Fp with 256 ≤ p ≤ 512).
The design implementation on Virtex-6 FPGA operating on curves defined over 256-bits prime field can achieve
a significant 0.65 ms of latency at a relatively low frequency of 144.5 MHz (see Design 1 in Table 3).

The authors of Reference [4] propose an ECC processor for accelerating the ECPM operation. This design
is programmable and can be used with any Weierstrass curves (the secp256k1 curve is included) defined over
the prime field of 256 bits. The design includes a pipelined Montgomery Modular Multiplier (pMMM) to
accelerate the operations and a BRAM to store the given curve’s parameters. As the curve’s parameters can be
stored, only the k random integer (see Algorithm 1) must be set before the point multiplication operation. The
authors implemented the design on Virtex-7 and XC72020 FPGA boards. The Virtex-7 implementation provides

6Specification of Raspberry 3B+: ARM Cortex A53 (quad core), @1.4 GHz, 1 GB RAM.

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:13

Table 3. Comparison of ECC Point Multiplication Hardware Accelerators

Design
Impl.

Type

Prime p 256-bit /

Curve

Latency

(ms)

Freq.

(MHz)
Speedup Reference

Design 1 Virtex-6 Any 0.65 221 2.5 [42]
Design 2 XC7Z020 Any 0.206 156.8 4.36 [4]
Design 2 Virtex-7 Any 0.158 204.2 4.74 [4]
Design 3 Virtex-6 Any 2.01 95 1.08 [22]
Design 4 Virtex-US+ secp256k1 0.176 181.8 4.59 [30]
Design 4 Virtex-7 secp256k1 0.25 125 4.06 [30]
Design 5 ASIC Any 23.06 100 – [37]
Design 6 ASIC Any 1.01 556 1.85 [11]

Here, Any means any curves of Weierstrass form. In orange, the design that is chosen to be
used in our IoT architecture model.

a latency of 0.158 ms at 204.2 MHz. The implementation on XC72020 can achieve a slightly higher latency of
0.206 ms but at a less high frequency of 156.8 MHz (see Design 2 in Table 3).

The hardware design proposed by the authors of Reference [22] allows the ECPM operation on all of the
“secure elliptic curves” [9] (including the secp256k1 curve) studied and tested by the team of Bernstein. The
design implementation on the Virtex-6 FPGA board can provide a latency of 2.01 ms at 95 MHz. Compared to
the two previous designs, this design is slower and its latency is higher (see Design 3 in Table 3).

The authors of Reference [30] propose a secp256k1 curve-specific ECPM design, which means that the design
can operate only on this curve. This design is intended to operate on Residue Number System (RNS), which
also means that the secret integer (k) and the result (coordinates of the random point R) are in RNS format.
Moreover, the coordinates are Jacobian (x,y,z) and not finite coordinates (x,y). The authors also adapted the
RNS architecture to multiple methods of ECPM and found that GLV (Gallant-Lambert-Vanstone) method of
computing scalar multiplication can provide the fastest operation. The design implementation on Virtex-7 FPGA
achieves 0.25 ms of latency at 125 MHz of frequency. The design on a more recent board Virtex-UltraScale+
provides a latency of 0.176 ms at 181.8 MHz of frequency (see Design 4 in Table 3).

Only one ASIC implementation was found among the recent related works. This design was proposed in
Reference [37]. This EC co-processor allows using the curves defined over the general field. The latency of
this design is high: 23.06 ms at a clock frequency of 100 MHz, which is almost 100 times higher than the other
recent FPGA implementations presented above. This high latency is due to the architecture design being resistant
against Side-channel attacks. However, another recent work [24] achieved a successful Side-channel attack on
the mentioned design (see Design 5 in Table 3).

In less recent works, the only ASIC design found was published in Reference [11]. The design has a latency of
1.01 ms at a significant 556 MHz. That high frequency cannot be considered useful in IoT architectures (see Design

6 in Table 3). Table 3 represents the ECPM hardware accelerator designs we found in related works presented
above.

The table also contains the possible speedup that can be achieved against the execution of ECPM on BCM2837
(Raspberry Pi 3 B+) ARM-based architecture. The digital signature execution time of ECDSA on the BCM2837
is 2.6 ms. Thanks to the analysis results (see Table 2), we know that 85% of the execution time of the digital
signature (Ttotal ) on the hash of the message to sign (ecdsa_sign_digest) is taken by the ECPM operation. The
hardware accelerator is intended to accelerate this 85% of the ecdsa_sign_digest function, and its execution time
(TH ardwar eAcceler ator ) corresponds to the design’s latency. The 15% left is not accelerated. The speedup can be
calculated, thanks to the equation below.

Speedup =
Ttotal

Ttotal
′ =

Ttotal

(Ttotal ∗ 0.15) +TH ardwar eAcceler ator
, (2)

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:14 • R. Kromes and F. Verdier

with Ttotal the total execution time before the acceleration, and T ′
total

the total execution time after
acceleration.

The specifications of the listed designs demonstrate that most of the designs can provide a speedup against
BCM2837 quad-core architecture. The design that we aim to use in the IoT architecture model that we present
later (Section 6) should provide a high speedup at a relatively low frequency. Comparing these designs is not
evident, because the designs are implemented on different FPGA boards and as ASIC. However, we can compare
them according to the designs’ speedup, frequency, and other features.

We can state that Designs 5 and 6 (ASIC implementations) are slower than the other designs. It is also evident
that Design 3 cannot be chosen because of its low speedup. It can also be declared that Design 2 and Design 4

beat Design 1 in terms of speedup (almost twice higher) and frequency usage (lower). We can observe that Design

4 Virtex-Ultrascale+ implementation can slightly beat Design 2 XC7Z020 implementation in terms of speedup
and the Design 2 Virtex-7 implementation in terms of frequency usage. However, Design 4 has three drawbacks
compared to Design 2. First, the design uses Jacobian coordinates. When a software aims to use these results,
it must convert them to affine coordinates. Second, the coordinates must also be in RNS representation, which
again must be converted on the software side and which can take some additive time. The last drawback is that
this design can only be used with the secp256k1 curve. The Design 2 can be used with any Weierstrass form
curve of 256 bits, and this feature can also be considered a significant advantage. In future IoT-Blockchain use
cases where the given blockchain uses a different Weierstrass curve than the secp256k1, the design can still be
used (only its reprogramming is needed). We chose to use the XC7Z020 implementation of Design 2 as an ECPM
hardware accelerator in our IoT architecture model (see Section 6), because it uses almost 50 MHz less frequency
than the Virtex-7 implementation but almost provides the same high speedup. In the following, we consider that
this is Design 2, which will be used in the proposed IoT architecture model.

5.2 Cryptographic Hash Hardware Designs

The message to be signed in ECDSA must be hashed first. In Section 4, it was also highlighted that the most-
used cryptographic functions in Ethereum and Hyperledger Sawtooth blockchains are SHA-256, SHA-512, and
Keccak hash functions. To reduce the time needed for the hash creation procedure, we look for existing hardware
accelerator designs for SHA and Keccak hash families in the literature. We also compare the designs that we found
and select those that can be efficiently used in the proposed IoT hardware architecture model.

5.2.1 Cryptographic Hash Function—Background. The hash function provides a fixed size output value (e.g.,
256 bits), which is the unique representation of the input message. The hash function comprises two main com-
ponents: Padding and Compression Function.

As the message (m) can have arbitrary size, it must be divided into chunks (m1,m2...mn) of fixed size (e.g.,
512-bits chunks in case of SHA-256). The padding is needed to pad the chunks or last chunk with some additive
information. Each of the message chunks is consumed by the Compression Function, one after the other. The
Compression Function provides the internal hash (Hi ) of the given message chunk; this hash value is used for
producing the next chunk’s hash value (Hi+1). The hash of the last chunk corresponds to the hash of the mes-
sage. The most resource-intensive part of the hash algorithms is the Compression Function. Therefore, the hash
hardware accelerator designs realize this part of the algorithms.

5.2.2 List of Cryptographic Hash Designs. In this part of our work, we list, compare, and choose the hash
hardware accelerators that could be implemented in the proposed IoT architecture model. The following designs
were found in the literature, and most of them are implemented as IPs in ASIC. The comparison of the designs
is based on their latency, throughput, frequency, and speedup can be achieved against the execution time when
the hash is computed on a BCM2837 ARM-based architecture (Raspberry Pi 3 B+).

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:15

Table 4. Comparison of ASIC Implementation of

Cryptographic Hash Functions

Design Function
Tp

(Gbit/s)

Latency

(ns)

Freq.

(MHz)
Speedup Reference

Design 1 SHA-256 4.502 112.64 294.55 24.5 [19]
Design 2 SHA-256 20.9125 24.48 794 112.75 [28]
Design 2 SHA-512 31.836 32 746 293.18 [28]
Design 3 SHA-512 10.18 101 250 97.35 [41]
Design 1 Keccak 44.01 35.2 485.44 890 [19]
Design 4 Keccak 37.345 43 284 715 [43]

The latency and Throughput (Tp) were estimated for 40 nm CMOS technology. The
design marked in orange is chosen for accelerating SHA-256 hash function, the
design marked in green is chosen for accelerating SHA-512 hash function, and the
design marked in yellow is chosen for accelerating Keccak hash function in our IoT
architecture model.

These ASIC implementations are based on different CMOS transistor technologies, making it difficult to com-
pare them. Therefore, the CMOS scaling estimation method is applied to estimate the latencies corresponding
to the same designs but implemented on 40 nm CMOS technology [44].

The hardware accelerator proposed in Reference [19] allows accelerating the SHA-256, Keccak-256, and Blake
hash functions on a single chip. The Verilog source code7 of the design is still open-source and can be synthe-
sized as ASIC. The design provides a latency of 112.64 ns for one SHA-256 internal hash creation, which is 24.5
times faster (speedup) than the hash creation measured in the BCM2837 ARM-based quad-core architecture. This
significant speedup can be achieved when the design works at 294.55 MHz of frequency (see Design 1 in Table 4).

The hardware accelerator design for SHA-256 hash function published in Reference [28] (Design 2) can achieve
a significant 112.75 of speedup, which is more significant than the speedup of Design 1. However, this design
works at 794 MHz, which cannot be considered an optimal solution for IoT architectures. It is worth noting that
if the frequency of Design 1 was the same as Design 2, then its latency would have been only half that of Design

2. We can conclude that Design 1 provides a high enough acceleration (speedup) at an acceptable frequency.
The Design 2 can also accelerate the SHA-512 hash function by achieving a significant 293.18 times speedup

against the ARM-based architecture’s execution time (9832 ns). However, a high 756 MHz of frequency is re-
quired for such a performance. The design (see Design 3 in Table 3) proposed in this article can provide a less
significant speedup than Design 2. However, a speedup of 97.35 can still be considered a high enough speedup at
the frequency of 250 MHz, almost three times less than the frequency required by Design 2. As Design 2 requires
too significant frequency, its implementation in IoT architecture cannot be considered optimal.

Design 1 implements the Keccak hash function’s acceleration, and it provides a significant speedup of 890 at a
relatively high frequency of 485.44 MHz (execution on ARM-based architecture takes 30,768 ns). Another design
(see Design 4 in Table 4) found in Reference [43] also provide a significant speedup of 715 but at a lower (284
MHz) frequency than Design 1. Design 4 is chosen for our IoT hardware architecture model, thanks to its high
performance at an acceptable frequency.

The latencies of the hash function executed on the ARM-based architecture are all implemented in CryptoPP
C++ library. In the following parts of this article, we consider using Design 1 for accelerating the SHA-256 hash
function, Design 3 for accelerating the SHA-512 hash function, and Design 4 for the Keccak hash function.

6 PROPOSED IOT ARCHITECTURE HARDWARE MODEL

The main objective of this part is to present our IoT architecture model, including an ARM Cortex-A9 CPU
architecture presented below and the hardware accelerators selected in the previous section. Our proposed

7The source code of this architecture can be found at: https://iis-people.ee.ethz.ch/~sha3/

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https://iis-people.ee.ethz.ch/~sha3/


14:16 • R. Kromes and F. Verdier

Fig. 2. The basic architecture and the requirements.

IoT architecture is modeled with SystemC-TLM high-level modeling tools, detailed briefly in the following
subsections.

6.1 Requirements of the Proposed IoT Architecture

As mentioned earlier, most IoT devices have several constraints in computational power, limited memory for
storing the data, and limited battery life and applied CPU frequency. One of the first requirements of the ar-
chitecture that we model is that the CPU frequency should be around 600 MHz. The purpose of the hardware
accelerators is to accelerate certain operations. The frequency of these IPs should not exceed 300 MHz, which is
the second main requirement of the proposed architecture.

In this article, we propose an IoT architecture model based on an ARM Cortex-A9 Dual-core CPU architecture.
Figure 2 also presents the specific peripherals around the CPU architecture that could probably be interconnected
through an AMBA BUS model. The maximum frequency that can be used by this CPU architecture is around
600 MHz, which is a constraint compared to today’s CPU architectures applied in PCs (2–3 GHz). It should be
noted also that the frequency used by the CPU affects the architecture’s overall energy consumption, because
the power consumption is highly dependent on the applied frequency. Another critical requirement is that the
architecture should also be able to run a Linux operating system. This requirement also involves the need for
Kernel device drivers’ development allowing the interactions with the specific hardware accelerators that can
run specific functions faster.

6.2 High-level Hardware Modeling

The main advantage of high-level hardware modeling is the simplicity of the development. In the early phases of
high-level modeling, modelling each single bit operation of the architecture is not necessary. The main idea is to
model and verify the main functionalities of the required architecture. Another advantage is that the software-
level development for the architecture (blockchain IoT-APIs) can be tested in this early phase of the architecture
model development. Hence, the developers do not build but model the architecture, so detecting and fixing errors
is less expensive than in low-level architecture modeling.

6.2.1 SystemC-TLM. The hardware accelerators identified in the previous section are modeled in SystemC-
TLM high-level description language. System-C is an open-source C++ library standardized by IEEE 1666. This
tool is usually used in the industrial domain in the early phase development of hardware architectures. The main
elements of SystemC are that modules are similar to C++ classes. The modules can be instantiated as objects
in C++ language and can contain SC_THREADs or SC_METHODs. The SC_THREADs are executed only one
time and can be triggered, thanks to events that are notified according to the logic that the user develops. The
SC_METHODS are executed multiple times and triggered when a specific input signal is present. In SystemC,

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:17

Table 5. Comparison of the Co-simulation Platforms

Synchronization’s
Master

Applying
SystemC-TLM

wait(time)

Functional
Model

Realization

Timed
Model

Realization

Open-source
Code

Hiventive
Platform

QEMU ✗ ✓ ✗ ✓

QBox SystemC Kernel ✓ ✓ ✓ ✗
TLM Co-Sim

(Xilinx)
QEMU ✓ ✓ ✓ ✓

two different time domains are distinguished. The wall clock is the time taken on the host machine while the
SystemC simulation is executing. The simulated time is the time viewed by the modules, which is modeled in
the design. This also means that timed modeling is possible with SystemC. The time can be modeled by calling
the wait() function accepting a femtosecond to second time quantity. In our model, we also used the Transaction
Level Modeling (TLM) [18] blocking interface (“b_transport”) to enable communication between the modules.
The TLM blocking interface (TLM LT or Loosely-Timed) is not the only one used in TLM; the other is the non-
blocking interface (TLM AT or Approximate-Timed), which is more refined and adapted to some specific bus
protocols like AXI, for example. This refinement from LT to AT could express the specific out-of-order execution
or the sending of data in pipeline before receiving the responses.

6.2.2 QEMU. QEMU or Quick EMUlator [7] is an open-source CPU architecture emulator including the
emulation of peripherals and other components implemented near to the processor. Today, QEMU allows the
emulation of more than 200 different architectures such as ARM, SPARK, x86, and many others. The emulation of
an architecture (guest machine) is performed by the host machine by running one-by-one on the guest machine’s
instructions. The “-icount n” option can set the time taken for emulating one instruction (2n nanoseconds per
instruction).

6.2.3 Virtual Platforms. If we look at Figure 2, then we can see that QEMU emulates the ARM CPU architec-
ture, and the hardware accelerators are modeled in SystemC-TLM. SystemC-TLM and QEMU work on different
time environments, making it hard to establish communication between the SystemC-TLM and QEMU instances.
These instances must be synchronized to achieve a joint simulation; for this purpose, a virtual platform can be
used. We have summarized the different features of the three solutions that exist today in Table 5.

The Hiventive Platform [14] emulates a quad-core ARM Cortex-A53 CPU by a QEMU instance, and the pe-
ripherals (UART, etc.) are modeled in SystemC-TLM. This platform allows functional modeling; however, when
a SystemC instance applies a wait() function, the QEMU instance cannot handle the synchronization of the wait
time between QEMU and the SystemC instances, which makes the overall simulation stall. Because of this issue,
this platform cannot provide the time modeling we were expected.

In QBox platform [6, 13, 15], the master is the SystemC kernel, and the QEMU is treated as a SystemC module.
This also means that QEMU and SystemC modules are synchronized, thanks to the global quantum. A synchro-
nization must occur after the initiator module local time reaches the multiple of the quantum value. Thanks
to this feature, a wait time applied in a SystemC module can wait in the QEMU without stalling the overall
simulation. Unfortunately, this platform is not open-source anymore.

SystemC-TLM 2.0 Co-Simulation (Xilinx) [2, 50] is an open-source project in which a Xilinx modified QEMU
is the master of the simulation, but thanks to libSystemCTLM-SoC and the Remote-Ports, the QEMU instance can
be treated as a SystemC module. The basic idea of this virtual platform is to emulate the Processing System
(PS) of Xilinx boards (e.g., Zynq, Versal ACAP) and deploy architectures in the Programmable Logic (PL) by
modules written in SystemC-TLM. The SystemC-TLM 2.0 wrapper encapsulates the PL to enable the Remote
Port connection with the PS. When memory transactions or wire updates occur in QEMU, the emulator sends
timestamps to the SystemC-TLM instance for synchronization. The periodic synchronizations also occur when
the global quantum is achieved. This virtual platform allows the complete time modeling when using the icount

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:18 • R. Kromes and F. Verdier

Fig. 3. The proposed IoT architecture model on the left side. The Generic representation of the hash and ECPM modules are

on the right side. The number of input buffer cells of the Hash modules is calculated as: N = message chunk’s bit length/32

bits; the number of output buffer cells is calculated as: M = hash digest’s bit length/32 bits. In the case of ECPM modules, k ,

Qx ,Qy are represented in 256-bit.

options at the QEMU side by using the wait() function in SystemC modules. Note that the Xilinx QEMU guide
recommends setting the ‘icount’ parameter to 7. According to our experiments, this parameter can significantly
increase the boot time of a Linux operating system. When emulating the Zynq-7000 board running a Linux/arm
5.4.0 Kernel with the icount parameter set to 7, the boot time is around 15 minutes. Applying an icount equal to
1, the boot time will result in around 30 seconds.

In our opinion, this platform is the most optimal choice for modeling a high-level IoT architecture, because it
enables time modeling, and it is an open-source platform with an active community. In the rest of our work, we
consider using this virtual platform.

6.3 The Proposed IoT Architecture Model

Figure 3 depicts the proposed IoT architecture model, which contains a QEMU-emulated ARM Cortex-A9 dual-
core 32-bit processor with peripherals such as I2C, SPI, GPIO, and AMBA Interconnect.

The hardware accelerators of the cryptographic primitives identified in Section 5 are modeled in SystemC-
TLM (the motif “DE” refers to Design Element). We can also observe that the hardware accelerators and the
ARM CPU are connected to a BUS module, which is also implemented in SystemC-TLM and provided by the
Virtual Platform to facilitate the communication between the QEMU instance the SystemC modules. The BUS
is also connected to the libSystemCTLM-SoC to allow the communication between the QEMU instance and the
SystemC-TLM modules via the blocking b_transport communication.

Previously, we mentioned that the emulated CPU architecture has to run a Linux operating system to execute
the blockchain-IoT APIs. The objective is to run the identified cryptographic primitives in the hardware acceler-
ator modules rather than the CPU (software execution). When the cryptographic primitive must be run, the CPU
has to call the corresponding hardware accelerator module by writing the input data to its Input register. When
the hardware accelerator finishes its computation, the CPU can read back the results. However, the CPU must
be informed about the finishing of the hardware accelerator’s computation (when it can read back the results).
Each hardware accelerator is connected to the CPU by an Interrupt ReQuest (IRQ) to indicate that it finished
the computation. The results are saved in the Output register. The CPU can read back the results to the API by
using these registers. This protocol of the CPU communication with the accelerators is also depicted in Figure 4.

The CPU first writes the data to the hardware accelerator’s (IP) Input register after it writes to the IP’s Control

register to specify that the Input register is complete and the IP can start its computation. The thread of the
computation in the SystemC-TLM module waits for the writing notification to the Control register. As we can

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:19

Fig. 4. Basics of modules functioning. The computation Thread and the IRQ Thread take part in the Module (SystemC-TLM).

IP denotes Intellectual Property.

create a timed modeled design, the time required for the computation (see latencies in Table 3 and Table 4) can be
simulated by calling the wait(time) function. After the computation, the results are written to the output buffer,
and an IRQ signal can be generated to inform the CPU that it can read back the results.

The generic representation of the ECPM and hash hardware accelerator models are shown in Figure 3. The
hash accelerator model has a bidirectional Output buffer that allows setting the hash values of the Initial hash
value (H0).

6.4 Specific Device Driver for Hardware Accelerators

Previously, we described that the CPU writes/reads the registers and receives IRQs from the hardware accelera-
tors when one of the cryptographic primitives must be run in the API. However, we did not mention that calling
the hardware accelerator IPs from the API cannot be done directly (from the “user space”), because the CPU
also executes a Linux operating system. The API must call Linux kernel device drivers to access the hardware
IPs. In our architecture model implementation, we developed specific kernel device drivers that can handle the
write/read access to/from the hardware devices (e.g., writes message chunks and reads the final hash value of
the hash IPs). The kernel device driver also subscribes to the IP’s IRQ. When the driver writes the input data to
the IP’s Input register and writes to the Control register specifying that the IP can compute, the API will run the
read procedure. The driver, at this point, will set the task of the read procedure to sleep mode. This also means
that the API must wait until the IRQ does not arrive in the CPU. When the IRQ arrives, the device driver wakes
up the task, and it can read back the data from the IP’s Output register and provide it to the API.

It must be noted that suspending and waking up a task will introduce a certain time penalty (around 100 us),
because Linux is not a real-time OS. The negative effect of using device drivers will be presented in the results
section.

7 RESULTS

This section will present the results obtained after running the Ethereum and Hyperledger Sawtooth APIs on
top of the IoT architecture model presented in the previous section. The results consist of measuring the APIs
execution time and the execution time reduction when using the hardware accelerators. Three acceleration logics
were applied. First is only the ECPM operation, which is hardware-accelerated. Second, in addition to the ECPM
hardware acceleration, the hash functions (SHA, Keccak) are also hardware-accelerated. In the third, the ECPM
and the hash primitives are all hardware-accelerated, but the hash hardware accelerators are equipped with a
wide buffer to be able to compute 10 internal hash creation in a row. The importance of this hardware design
modification is explained later. Table 6 represents the results obtained when running Hyperledger Sawtooth and

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:20 • R. Kromes and F. Verdier

Table 6. Overall Total Execution Time of the Proposed Architecture when

Running Hyperledger Sawtooth and Ethereum APIs

Acceleration

logic

Hyperledger Sawtooth

Total Execution

Time

Hyperledger Sawtooth

Total Time

Reduction

Ethereum

Total Execution

Time

Ethereum

Total Time

Reduction

No Acceleration 12.4 ms 0% 14.5 ms 0%
ECPM only 5.9 ms 53% 12 ms 18%

ECPM+Keccak – – 13.2 ms 9%
ECPM+Keccak

wide buffer
– – 12.2 ms 16%

ECPM+SHA 12 ms 3.5% – –
ECPM+SHA

wide buffer
9.5 ms 23.5% – –

The payload size is 32 bytes. Three different acceleration logics were applied.
“-” denotes that, in the given API, the Keccak or SHA hash functions are not accelerated.

Ethereum APIs applying the different acceleration logics. It must be noted that the transaction payload size is
32 bytes.

After observing the results, we can conclude that in the case of Hyperledger Sawtooth, a significant 53% of
total time reduction can be achieved when accelerating only the ECPM operation. However, when accelerating
only the ECPM operation, an 18% reduction of the total execution time can be achieved in the execution of
Ethereum API. However, it must be noted that accelerating the ECPM operation and the hash computing (SHA
or Keccak) in both APIs provides a less significant reduction of the overall execution time than accelerating the
ECPM operation alone.

The significant difference between the wide buffer and simple buffer hardware accelerators can also be ob-
served. The performance of the API’s acceleration decreases when accelerating the hash-related functions, be-
cause Linux is not a real-time OS. The IRQ waiting in the Linux kernel device driver introduces around 100 us of
waiting every time the task must wake up or be set in sleep mode. This is due to the Linux tasks’ scheduling time.
The first results on the basic hash hardware accelerators highlighted that the buffer’s size should be increased
to avoid as many IRQ waiting as possible. We increased the buffer size to 10, which avoids 9 IRQ waitings. The
results clearly show the evolution between the modified and the basic hash designs. However, it is also clear that
we cannot significantly increase the number of buffers, because it would affect the overall IoT architecture’s size
and energy consumption.

It is worth noting that accelerating only the ECPM operation results in a more efficient execution time than ac-
celerating both the ECPM and the hash operations. However, in these results, the payload size was only 32 bytes.

The following table (see Table 7) represents the execution time of Hyperledger Sawtooth API when the pay-
load size is 32 Kbytes (1,024 times more) and when the different acceleration logics are applied. The SHA hash
accelerators are equipped with large buffers.

In the related work cited in Reference [17] it was also demonstrated that the time taken by the total execution
time could increase significantly when the payload size increases. One-third of the total execution time can
be taken by the hash operation when the payload is grater than one megabyte. The results of Table 7 show
that even if the size of the payload is significant and the hash accelerators avoid 9 IRQ waiting in a row, the
acceleration of ECPM operation alone is still more efficient in terms of execution time than accelerating both
ECPM and SHA operations.

8 DISCUSSION

According to the results of the previous sections, we can state that the acceleration of ECPM operation alone
seems a more efficient hardware acceleration logic than accelerating the ECPM and the hash operations together.
The results also showed that this latter conclusion does not depend on the payload size. However, the hash
hardware accelerators were equipped with a wide buffer to store 10 input data for 10 internal hash creations in a
row. We assumed that increasing the hash IPs’ buffer size will negatively influence the IoT architecture’s overall

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:21

Table 7. Overall Total Execution Time

of the Proposed Architecture when Running

Hyperledger Sawtooth API when the Size of the

Payload is 32 KBytes

Acceleration

logic

Total Execution

Time

Total Time

Reduction

No Acceleration 20.89 ms 0%
ECPM only 16.27 ms 22.1%
ECPM+SHA 18.64 ms 10.8%

The results help to compare the hardware acceleration
strategies: when the SHA functions are accelerated by
hardware and executed by software. The SHA hardware
accelerators are equipped with large buffers.

execution time. In future works, we should determine the size of the buffer, which can provide a more efficient
execution time than the execution of the ECMP operation alone.
Implementation and System limits: As a potential implementation issue, we have introduced in our work a
simulation model for the proposed IoT hardware architecture model. In this model, we have used an “elementary”
BUS between the CPU and the potential hardware accelerators. However, in a concrete physical implementation
of the model, it would be more sophisticated to apply a more complex physical interconnection BUS such as AXI
interconnect or Network-On-Chip. In our simulation model, we have applied 22 nm CMOS technology to adapt
all the IPs to the same CMOS technology. Nevertheless, technological properties (e.g., frequency and timings)
of the CPU have only been estimated for older CMOS technology. This aspect must be taken into account for
future physical implementation.

In this work, we have elaborated on the execution time and acceleration of the blockchain-related operations,
however, a more in-depth study is needed on the overall energy consumption of our proposed solution. Obviously,
reducing execution time can lead to a more efficient energy consumption. However, a concrete analysis is needed
as part of future work. In our work, we have only emulated a CPU that allows frequency scaling; in an extensive
future work, we will also have to employ CPUs that allow voltage scaling. The application of frequency and
voltage scaling techniques will provide a broader view on the energy consumption that can be achieved.

Most of today’s blockchains apply the ECDSA primitive with the secp256k1 curve for signing the transac-
tions. According to this fact, our work is focused on finding hardware accelerators of ECPM operation that are
compatible with Weierstrass curves (including the secp256k1 curve). However, there is also a tendency to ap-
ply different curves and different signing algorithms in newer versions of blockchain technology. In addition to
the new trends in signature algorithms and curves used in blockchain technology, there is also a new tendency
to use Zero-Knowledge-Proof (ZKP) techniques [45]. Although, if ZKP techniques are also based on elliptic
curve operations and point multiplications on the elliptic curves, then further research is required to determine
whether our solution can accommodate these specific operations.

Another limitation of our solution is related to real-time functionality. In our work, we run a Linux operating
system on our simulation model, and, since a default Linux operating system cannot provide real-time func-
tionality, our approach cannot provide real-time execution of blockchain-related operations on the proposed
hardware architecture. However, it is possible to run other real-time operating systems that can provide
real-time execution of blockchain transaction generation on the proposed architecture model. Nevertheless,
blockchain technology cannot provide real-time execution, so real-time interaction between an IoT device and
a blockchain cannot be ensured.

9 CONCLUSION

The main objective of our research is thus completed, since we were able to propose a complete model of IoT
hardware architecture adapted to the acceleration of blockchain-related operations. Through the analysis of the

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.



14:22 • R. Kromes and F. Verdier

most requested functions of the proposed Ethereum and Hyperledger Sawtooth APIs, we were able to identify
that the most resource-intensive functions are related to cryptographic operations. We believe that most exist-
ing and future IoT applications that allow direct communication with the given blockchain will be constrained
because of these same operations. Hardware accelerator designs were listed that can accelerate the mentioned
cryptographic operations and were chosen to be implemented in the proposed model. The previously mentioned
APIs were executed on the top of the proposed IoT architecture model containing the hardware accelerators
and an ARM-based CPU. The results showed that a significant reduction in execution time could be achieved
by speeding up the ECMP operation: 53% and 18% for Hyperledger Sawtooth and Ethereum, respectively. The
results also highlighted that more studies are needed about the modification of buffer size of the hash design to
obtain a significant time reduction without affecting the size and the energy consumption of the design.

REFERENCES

[1] Dr. Andre Luckow, Online, BMW’s website. 2001. How Blockchain Automotive Solutions Can Help Drivers. Retrieved from https://www.
bmw.com/en/innovation/blockchain-automotive.html

[2] Joe Komlodi, Xilinx Wiki, Online. 2017. Co-simulation. Retrieved from https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/862421112/
Co-simulation

[3] Raynor de Best, Statista (Online). 2021. Size of the Bitcoin Blockchain from January 2009 to May 20, 2021. Retrieved from https://www.
statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/

[4] Asep Muhamad Awaludin, Harashta Tatimma Larasati, and Howon Kim. 2021. High-speed and unified ECC processor for generic
Weierstrass curves over GF(p) on FPGA. Sensors 21, 4 (2021). DOI:https://doi.org/10.3390/s21041451

[5] Farag Azzedin and Mustafa Ghaleb. 2019. Internet-of-things and information fusion: Trust perspective survey. Sensors 19, 8 (2019).
DOI:https://doi.org/10.3390/s19081929

[6] Calypso Barnes. 2017. Verification and Validation of Wireless Sensor Network Protocol Properties through the System’s Emulation. Ph. D.
Dissertation. Université Côte d’Azur. Retrieved from https://tel.archives-ouvertes.fr/tel-01618142

[7] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX Annual Technical Conference. 41–46.
[8] Juan Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. arXiv:1407.3561 [cs.NI].
[9] Daniel J. Bernstein and Tanja Lange. 2017. Safe Curves: Choosing Safe Curves for Elliptic-curve Cryptography. Retrieved from http:

//safecurves.cr.yp.to/rigid.html
[10] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda. 2018. Blockchain-based traceability in agri-food supply chain management: A practical

implementation. In IoT Vertical and Topical Summit on Agriculture—Tuscany (IOT Tuscany’18). 1–4. DOI:https://doi.org/10.1109/IOT-
TUSCANY.2018.8373021

[11] Gang Chen, Guoqiang Bai, and Hongyi Chen. 2007. A high-performance elliptic curve cryptographic processor for general curves over
GF(p ) based on a systolic arithmetic unit. IEEE Trans. Circ. Syst. II: Expr. Briefs 54, 5 (2007), 412–416. DOI:https://doi.org/10.1109/TCSII.
2006.889459

[12] Sonia Chhabra, Parveen Mor, Hussain Falih Mahdi, and Tanupriya Choudhury. 2021. Block Chain and IoT Architecture. Springer Inter-
national Publishing, Cham, 15–27. DOI:https://doi.org/10.1007/978-3-030-65691-1_2

[13] Guillaume Delbergue. 2017. Advances in SystemC/TLM Virtual Platforms: Configuration, Communication and Parallelism. Ph. D. Disser-
tation. Université de Bordeaux.

[14] Guillaume Delbergue. 2017. bcm2837. Retrieved from https://github.com/hiventive/bcm2837
[15] Guillaume Delbergue, Mark Burton, Frederic Konrad, Bertrand Le Gal, and Christophe Jego. 2016. QBox: An industrial solution for

virtual platform simulation using QEMU and systemc TLM-2.0. In 8th European Congress on Embedded Real Time Software and Systems

(ERTS’16). Retrieved from https://hal.archives-ouvertes.fr/hal-01292317
[16] Luc Gerrits, Edouard Kilimou, Roland Kromes, Lionel Faure, and François Verdier. 2021. A blockchain cloud architecture deployment

for an industrial IoT use case. In IEEE International Conference on Omni-layer Intelligent Systems (COINS’21). 1–6. DOI:https://doi.org/
10.1109/COINS51742.2021.9524264

[17] Luc Gerrits, Roland Kromes, and François Verdier. 2020. A true decentralized implementation based on IoT and blockchain: A vehicle ac-
cident use case. In International Conference on Omni-layer Intelligent Systems (COINS’20). 1–6. DOI:https://doi.org/10.1109/COINS49042.
2020.9191405

[18] Frank Ghenassia. 2005. Transaction-level Modeling with SystemC. Vol. 2. Springer, Dordrecht, the Netherlands.
[19] Frank K. Gürkaynak, Kris Gaj, Beat Muheim, Ekawat Homsirikamol, Christoph Keller, Marcin Rogawski, Hubert Kaeslin, and Jens-

Peter Kaps. 2012. Lessons learned from designing a 65nm ASIC for evaluating third round SHA-3 candidates. In 3rd SHA-3 Candidate

Conference.
[20] Mohamed Tahar Hammi, Badis Hammi, Patrick Bellot, and Ahmed Serhrouchni. 2018. Bubbles of trust: A decentralized blockchain-

based authentication system for IoT. Comput. Secur. 78 (2018), 126–142. DOI:https://doi.org/10.1016/j.cose.2018.06.004

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https://www.bmw.com/en/innovation/blockchain-automotive.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/862421112/Co-simulation
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://doi.org/10.3390/s21041451
https://doi.org/10.3390/s19081929
https://tel.archives-ouvertes.fr/tel-01618142
http://arxiv.org/abs/1407.3561
http://safecurves.cr.yp.to/rigid.html
https://doi.org/10.1109/IOT-TUSCANY.2018.8373021
https://doi.org/10.1109/TCSII.2006.889459
https://doi.org/10.1007/978-3-030-65691-1_2
https://github.com/hiventive/bcm2837
https://hal.archives-ouvertes.fr/hal-01292317
https://doi.org/10.1109/COINS51742.2021.9524264
https://doi.org/10.1109/COINS49042.2020.9191405
https://doi.org/10.1016/j.cose.2018.06.004


Accelerating Blockchain Applications on IoT Architecture Models—Solutions and Drawbacks • 14:23

[21] Jonette M. Stecklein, Jim Dabney, Brandon Dick, Bill Haskins, Randy Lovell, and Gregory Moroney. 2004. 8.4.2 error cost escalation
through the project life cycle. INCOSE Int. Symp. 14 (06 2004), 1723–1737. DOI:https://doi.org/10.1002/j.2334-5837.2004.tb00608.x

[22] Khalid Javeed, Xiaojun Wang, and Mike Scott. 2017. High performance hardware support for elliptic curve cryptography over general
prime field. Microprocess. Microsyst. 51 (2017), 331–342. DOI:https://doi.org/10.1016/j.micpro.2016.12.005

[23] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1,
1 (01 Aug. 2001), 36–63. DOI:https://doi.org/10.1007/s102070100002

[24] Ievgen Kabin, Zoya Dyka, Dan Klann, Nele Mentens, Lejla Batina, and Peter Langendoerfer. 2020. Breaking a fully balanced ASIC
coprocessor implementing complete addition formulas on Weierstrass elliptic curves. In 23rd Euromicro Conference on Digital System

Design (DSD’20). 270–276. DOI:https://doi.org/10.1109/DSD51259.2020.00051
[25] Kelly Olson, Mic Bowman, James Mitchell, Shawn Amundson, Dan Middleton, and Cian Montgomery. 2018. Sawtooth: An Introduc-

tion. Technical Report. The Linux Foundation. Retrieved from https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_
Sawtooth_WhitePaper.pdf

[26] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-Hashing for Message Authentication. RFC 2104. DOI:https:
//doi.org/10.17487/RFC2104

[27] Roland Kromes, Luc Gerrits, and François Verdier. 2019. Adaptation of an embedded architecture to run Hyperledger Sawtooth ap-
plication. In IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON’19). 0409–0415.
DOI:https://doi.org/10.1109/IEMCON.2019.8936264

[28] Yong Ki Lee, Herwin Chan, and Ingrid Verbauwhede. 2007. Iteration bound analysis and throughput optimum architecture of SHA-
256 (384,512) for hardware implementations. In Information Security Applications, Sehun Kim, Moti Yung, and Hyung-Woo Lee (Eds.).
Springer Berlin, 102–114.

[29] Vanessa Loury. 2020. Groupe Renault tested a blockchain project to go further in the certification of vehicle compliance. Re-
nault Group, Online: https://media.renaultgroup.com/groupe-renault-tested-a-blockchain-project-to-go-further-in-the-certification-
of-vehicle-compliance/

[30] Mohamad Ali Mehrabi, Christophe Doche, and Alireza Jolfaei. 2020. Elliptic curve cryptography point multiplication core for hardware
security module. IEEE Trans. Comput. 69, 11 (2020), 1707–1718. DOI:https://doi.org/10.1109/TC.2020.3013266

[31] Daniel Minoli and Benedict Occhiogrosso. 2018. Blockchain mechanisms for IoT security. Internet Things 1-2 (2018), 1–13. DOI:https:
//doi.org/10.1016/j.iot.2018.05.002

[32] M. MÃĳller, S. R. Garzon, M. Westerkamp, and Z. A. Lux. 2019. HIDALS: A hybrid IoT-based decentralized application for logistics and
supply chain management. In IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON’19).
0802–0808. DOI:https://doi.org/10.1109/IEMCON.2019.8936305

[33] O. Novo. 2018. Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet Things J. 5, 2 (Apr. 2018),
1184–1195. DOI:https://doi.org/10.1109/JIOT.2018.2812239

[34] Christof Paar and Jan Pelzl. 2009. Understanding Cryptography: A Textbook for Students and Practitioners. Springer Science & Business
Media.

[35] M. Pincheira and M. Vecchio. 2020. Towards trusted data on decentralized IoT applications: Integrating blockchain in con-
strained devices. In IEEE International Conference on Communications Workshops (ICC Workshops’20). 1–6. DOI:https://doi.org/10.1109/
ICCWorkshops49005.2020.9145328

[36] Miguel Pincheira, Massimo Vecchio, Raffaele Giaffreda, and Salil S. Kanhere. 2021. Cost-effective IoT devices as trustworthy data sources
for a blockchain-based water management system in precision agriculture. Comput. Electron. Agric. 180 (2021), 105889. DOI:https:
//doi.org/10.1016/j.compag.2020.105889

[37] Niels Pirotte, Jo Vliegen, Lejla Batina, and Nele Mentens. 2018. Design of a fully balanced ASIC coprocessor implementing complete
addition formulas on Weierstrass elliptic curves. In 21st Euromicro Conference on Digital System Design (DSD’18). 545–552. DOI:https:
//doi.org/10.1109/DSD.2018.00095

[38] Thomas Pornin. 2013. Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm
(ECDSA). RFC 6979. DOI:https://doi.org/10.17487/RFC6979

[39] Ana Reyna, Cristian MartÃŋn, Jaime Chen, Enrique Soler, and Manuel Díaz. 2018. On blockchain and its integration with IoT. challenges
and opportunities. Fut. Gen. Comput. Syst. 88 (2018), 173–190. DOI:https://doi.org/10.1016/j.future.2018.05.046

[40] C. N. Samuel, S. Glock, D. Bercovitz, F. Verdier, and P. Guitton-Ouhamou. 2020. Automotive data certification problem: A view on effec-
tive blockchain architectural solutions. In 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference

(IEMCON’20). 0167–0173. DOI:https://doi.org/10.1109/IEMCON51383.2020.9284886
[41] Akashi Satoh and Tadanobu Inoue. 2007. ASIC-hardware-focused comparison for hash functions MD5, RIPEMD-160, and SHS. Integra-

tion 40, 1 (2007), 3–10. DOI:https://doi.org/10.1016/j.vlsi.2005.12.006
[42] Yasir Ali Shah, Khalid Javeed, Shoaib Azmat, and Xiaojun Wang. 2018. A high-speed RSD-based flexible ECC processor for arbitrary

curves over general prime field. Int. J. Circ. Theor. Applic. 46, 10 (2018), 1858–1878. DOI:https://doi.org/10.1002/cta.2504

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https://doi.org/10.1002/j.2334-5837.2004.tb00608.x
https://doi.org/10.1016/j.micpro.2016.12.005
https://doi.org/10.1007/s102070100002
https://doi.org/10.1109/DSD51259.2020.00051
https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf
https://doi.org/10.17487/RFC2104
https://doi.org/10.1109/IEMCON.2019.8936264
https://media.renaultgroup.com/groupe-renault-tested-a-blockchain-project-to-go-further-in-the-certification-of-vehicle-compliance/
https://doi.org/10.1109/TC.2020.3013266
https://doi.org/10.1016/j.iot.2018.05.002
https://doi.org/10.1109/IEMCON.2019.8936305
https://doi.org/10.1109/JIOT.2018.2812239
https://doi.org/10.1109/ICCWorkshops49005.2020.9145328
https://doi.org/10.1016/j.compag.2020.105889
https://doi.org/10.1109/DSD.2018.00095
https://doi.org/10.17487/RFC6979
https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1109/IEMCON51383.2020.9284886
https://doi.org/10.1016/j.vlsi.2005.12.006
https://doi.org/10.1002/cta.2504


14:24 • R. Kromes and F. Verdier

[43] Meeta Srivastav, Xu Guo, Sinan Huang, Dinesh Ganta, Michael B. Henry, Leyla Nazhandali, and Patrick Schaumont. 2013. Design and
benchmarking of an ASIC with five SHA-3 finalist candidates. Microprocess. Microsyst. 37, 2 (2013), 246–257. DOI:https://doi.org/10.
1016/j.micpro.2012.09.001

[44] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate prediction of CMOS device performance from 180nm to 7nm.
Integration 58 (2017), 74–81. DOI:https://doi.org/10.1016/j.vlsi.2017.02.002

[45] Xiaoqiang Sun, F. Richard Yu, Peng Zhang, Zhiwei Sun, Weixin Xie, and Xiang Peng. 2021. A survey on zero-knowledge proof in
blockchain. IEEE Netw. 35, 4 (2021), 198–205. DOI:https://doi.org/10.1109/MNET.011.2000473

[46] Nakov Svetlin. 2018. Practical Cryptography for Developers. MIT license, Sofia. Retrieved from https://cryptobook.nakov.com/
[47] Nick Szabo. 1997. Formalizing and securing relationships on public networks. First Mond. 2, 9 (Sep. 1997). DOI:https://doi.org/10.5210/

fm.v2i9.548
[48] Josef Weidendorfer. 2017. KCachegrind Call Graph Viewer. Retrieved from https://kcachegrind.github.io/html/Documentation.html
[49] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ether. Proj. Yell. Pap. 151 (2014).
[50] Xilinx. 2018. Xilinx Quick Emulator User Guide (UG1169). Technical Report. Xilinx. Retrieved from https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2018_2/ug1169-xilinx-qemu.pdf

Received 14 December 2022; revised 17 July 2023; accepted 22 September 2023

Distributed Ledger Technologies: Research and Practice, Vol. 3, No. 2, Article 14. Publication date: June 2024.

https://doi.org/10.1016/j.micpro.2012.09.001
https://doi.org/10.1016/j.vlsi.2017.02.002
https://doi.org/10.1109/MNET.011.2000473
https://cryptobook.nakov.com/
https://doi.org/10.5210/fm.v2i9.548
https://kcachegrind.github.io/html/Documentation.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1169-xilinx-qemu.pdf

