

Delft University of Technology

SAGE: Intrusion Alert-driven Attack Graph Extractor

Nadeem, A.; Verwer, S.E.; Yang, Shanchieh Jay

DOI
10.1109/VizSec53666.2021.00009
Publication date
2021
Document Version
Final published version
Published in
18th IEEE Symposium on Visualization for Cyber Security

Citation (APA)
Nadeem, A., Verwer, S. E., & Yang, S. J. (2021). SAGE: Intrusion Alert-driven Attack Graph Extractor. In
18th IEEE Symposium on Visualization for Cyber Security (pp. 36-41). Article 9629418 IEEE.
https://doi.org/10.1109/VizSec53666.2021.00009

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/VizSec53666.2021.00009
https://doi.org/10.1109/VizSec53666.2021.00009

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

SAGE: Intrusion Alert-driven Attack Graph Extractor
Azqa Nadeem*

Delft University of Technology
Sicco Verwer†

Delft University of Technology
Shanchieh Jay Yang‡

Rochester Institute of Technology

ABSTRACT

Attack graphs (AG) are used to assess pathways availed by cyber
adversaries to penetrate a network. State-of-the-art approaches for
AG generation focus mostly on deriving dependencies between
system vulnerabilities based on network scans and expert knowl-
edge. In real-world operations however, it is costly and ineffective
to rely on constant vulnerability scanning and expert-crafted AGs.
We propose to automatically learn AGs based on actions observed
through intrusion alerts, without prior expert knowledge. Specifi-
cally, we develop an unsupervised sequence learning system, SAGE,
that leverages the temporal and probabilistic dependence between
alerts in a suffix-based probabilistic deterministic finite automaton
(S-PDFA) – a model that accentuates infrequent severe alerts and
summarizes paths leading to them. AGs are then derived from the
S-PDFA on a per-objective, per-victim basis. Tested with intrusion
alerts collected through Collegiate Penetration Testing Competition,
SAGE compresses over 330k alerts into 93 AGs. These AGs reflect
the strategies used by the participating teams. The AGs are succinct,
interpretable, and capture behavioral dynamics, e.g., that attackers
will often follow shorter paths to re-exploit objectives.

Index Terms: Security and privacy—Intrusion/anomaly de-
tection and malware mitigation—Intrusion detection systems;
Human-centered computing—Visualization—Visualization appli-
cation domains—Visual analytics; Computing methodologies—
Machine learning—Learning paradigms—Unsupervised learning;

1 INTRODUCTION

Security Operation Centers (SOCs) typically receive thousands of
intrusion alerts on a daily basis1. While alert correlation techniques
help to reduce alerts from intrusion detection systems (IDS) [1, 26,
27], they do not show the attack progression and attacker strategies,
i.e., they show what the attackers did, but do not provide insight into
how the infrastructure was exploited.

Attack graphs (AG) are models of attacker strategies that have
been widely used for visual analytics [2, 5] and network hard-
ening [15, 16]. Existing approaches to generate AGs are expen-
sive due to their expert-driven nature — they utilize a significant
amount of prior knowledge [1, 21, 22] and published vulnerability
reports [9, 12, 23, 25]. In real-world operations however, it is costly
and ineffective to rely on constant vulnerability scanning and expert-
crafted AGs. Meanwhile, SOCs often possess large volumes of
intrusion alerts from prior security incidents. We show, for the first
time, that these alerts can be used as a basis to generate AGs.

In this paper, we propose SAGE — IntruSion alert-driven Attack
Graph Extractor. SAGE leverages sequence learning to mine pat-
terns from intrusion alerts, models them using an automaton, and
represents them in the form of an attack graph. The two core phases
of SAGE are shown in Figure 1. A tool such as SAGE can have

*e-mail: azqa.nadeem@tudelft.nl
†e-mail: s.e.verwer@tudelft.nl
‡e-mail: Jay.Yang@rit.edu

1https://blog.paloaltonetworks.com/2020/09/secops-analyst-burnout/

important implications for the training and evaluation of defensive
controls. SAGE augments existing IDSs by compressing several
thousands of alerts into a handful of AGs. SOC analysts can triage
alerts by visualizing and filtering AGs of interest.

Class imbalance presents a major challenge for machine learn-
ing (ML) based attacker strategy identification — severe alerts are
scarce, and low-severity alerts (produced by network scans) are
prevalent, which are not very valuable for analysts [29]. While most
ML solutions discard infrequent patterns, we propose a suffix-based
probabilistic deterministic finite automaton (S-PDFA) — a model
that accentuates infrequent severe alerts, without discarding low-
severity alerts. The S-PDFA summarizes attack paths leading to
severe attack stages. It can differentiate between alerts that have
identical signatures but different contexts, e.g., scanning at the start,
and scanning midway through an attack are treated differently be-
cause the former indicates reconnaissance and the latter indicates
attack progression. AGs are then extracted from the S-PDFA on
a per-objective, per-victim basis. A vertex in an AG represents a
group of alerts generated by an attacker action, and an edge captures
the temporal relationship between actions (as determined by the
S-PDFA), showing attack progression. These graphs not only enable
forensic analysis of prior security incidents, they also unlock a new
means to derive intelligence regarding attacker strategies without
having to investigate thousands of intrusion alerts.

We demonstrate the effectiveness of SAGE on distributed multi-
stage attack scenarios, i.e., where multi-member teams progress
through various attack stages in order to compromise numerous
targets. Penetration testing competitions provide an ideal setting
to study such attacks. To this end, we use open-source intrusion
alerts collected through Collegiate Penetration Testing Competition
(CPTC)2. 93 AGs are generated from ∼330k alerts. The AGs reflect
the actual pathways taken by the penetration testers, even with an
imperfect IDS. They are succinct, and effective in highlighting strate-
gic differences between participating teams. They reveal behavioral
dynamics, e.g., that attackers often follow shorter paths to re-exploit
an objective after they have discovered a longer one. We also show
how to rank attackers based on the uniqueness and severity of their
actions. Thus, our contributions are:

1. We develop SAGE, a tool that automatically generates succinct
high-severity attack graphs from intrusion alerts, without prior
knowledge about vulnerabilities or network topology.

2. We apply SAGE on alerts from a penetration testing competi-
tion. The AGs are effective in attacker strategy comparison.

2 RELATED WORK

Attack graphs (AG) are a frequent area of research in the VizSec
community. Kaynar et al. [16] proposed a taxonomy of the exist-
ing expert-driven AG generation approaches in the network secu-
rity domain. These approaches generally utilize a knowledge base,
making them unsuitable for zero-day vulnerabilities. Specifically,
MulVAL [23] is an attack graph generator that has been widely used
as a foundation for other works [12, 25], which takes the network
topology and vulnerability information as input. Other techniques
focus on path reachability [5,32] and complexity reduction of expert-
driven AGs [11, 14], instead of exploring additional data sources

2https://www.globalcptc.org/

36

2021 IEEE Symposium on Visualization for Cyber Security (VizSec)

978-1-6654-2085-3/21/$31.00 ©2021 IEEE
DOI 10.1109/VizSec53666.2021.00009

20
21

 IE
EE

 S
ym

po
si

um
 o

n
V

is
ua

liz
at

io
n

fo
r C

yb
er

 S
ec

ur
ity

 (V
iz

Se
c)

 |
97

8-
1-

66
54

-2
08

5-
3/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
iz

Se
c5

36
66

.2
02

1.
00

00
9

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2022 at 07:58:05 UTC from IEEE Xplore. Restrictions apply.

Figure 1: SAGE workflow: Intrusion alerts go in, attack graphs come out. An S-PDFA is learned in the first phase, and the model is utilized in the
second phase to extract alert-driven attack graphs.

for AG construction. In addition, Process mining (PM) has been
used to visualize alert datasets [4, 6] without actually extracting
AGs. Hidden markov models (HMM) have been used to build alert
forecasting systems [10], and markov chains have been used to build
alert correlation systems [8]. Specifically, Moskal et al. [19] have
used markov chains to model attacker strategies from intrusion alerts
in the form of sequences. They use Jenson-Shannon divergence to
measure similarity between such sequences. These approaches do
not construct AGs and have several shortcomings if used to this aim:
PM uses alert signatures as identifiers, which makes it impossible to
differentiate alerts with identical signatures but different contexts,
i.e., those that lead to different paths. Markov chains have a simi-
lar weakness. HMMs do model context, but they are considerably
difficult to interpret due to their non-deterministic nature. In this
paper, we borrow initial ideas from [19] and leverage the temporal
and probabilistic dependence between alerts to generate alert-driven
AGs. The probabilistic deterministic finite automaton (S-PDFA)
that SAGE uses has more expressive power than markov chains, i.e.,
it does model context, and is easier to interpret. We show how to
construct objective-oriented AGs that visualize large volumes of
alerts without high cognitive load. To the best of our knowledge,
SAGE is the first successful approach for this challenging problem.

3 ALERT-DRIVEN ATTACK GRAPHS

SAGE (IntruSion alert-driven Attack Graph Extractor)3 takes raw
intrusion alerts as input, and transforms them into aggregated se-
quences that are used to learn a model summarizing attack paths in
the data. Attack graphs (AG) are extracted from this model on a
per-objective, per-victim basis (see Figure 1). The AGs are succinct
and interpretable as they compress large volumes of alerts in order
to show how an attack transpired. They also provide an effective
means for attacker strategy comparison. SAGE is agnostic to host
and network properties. It is released as a docker container for
cross-platform support.

The first step towards building AGs is to arrange intrusion alerts
in sequences that characterize an attacker strategy. An IDS alert
contains the attacker and victim IP addresses, the targeted service
tServ derived from destination port4, and the attack stage mcat de-
rived from the existing Action-Intent framework by Moskal et al.
[18] (see appendix), based on MITRE ATT&CK [28]. Raw intrusion
alerts are often noisy and contain duplicates. Thus, cleaning and
aggregating them is necessary. We aggregate alerts into groups, such
that they likely belong to the same attacker action. In literature,
such an aggregation is called a hyper-alert or an attack episode.
Grouping alerts that appear in bursts is a common way to construct

3https://github.com/tudelft-cda-lab/SAGE
4Derived from open-source Port→Service mapping from IANA.

episodes. We use the method in [19] to aggregate alerts into at-
tack episodes, and assume that the episodes closely characterize
attacker actions. For an attack stage mcat, an episode is defined as
〈st,et,mcat,mServ〉, where st and et are start/end times, and mServ
is the most frequently targeted service during the episode. We
create time-sorted episode sequences (ES) for each (attacker,victim)
combination, and partition the ES whenever a low-severity episode
follows a high-severity one, signaling the start of a new attack at-
tempt (see mcat → severity mapping in appendix). These are called
the episode sub-sequences (ESS).

We propose a suffix-based probabilistic deterministic finite au-
tomaton (S-PDFA), which is a suffix-variant of the probabilistic
deterministic finite automaton [30]. Instead of predicting the future,
the S-PDFA can be used to predict the past. Since the high-severity
mcat’s are at the end of episode sub-sequences, we specifically learn
a suffix model to determine which episodes eventually lead to high-
severity attack stages. We provide all the ESS’s from CPTC-2018 to
the Flexfringe automaton learning framework [31]. Flexfringe uses
univariate symbol sequences comprised of 〈mcat,mServ〉 to learn
the S-PDFA (see appendix). The model summarizes attack paths in
the dataset and clusters them based on behavioral similarity. It also
brings infrequent high-severity actions into the spotlight, without
discarding low-severity ones. This is tricky because while most clus-
tering approaches discard infrequent patterns, the S-PDFA salvages
them by setting appropriate parameters in Flexfringe (see Section 4),
which also results in an interpretable model.

The states in an S-PDFA can be considered as milestones achieved
by attackers, providing contextual meaning to the episodes’ attack
stages. Prior work by Lin et al. [17] has utilized this context to
cluster similar car-following behaviors. We follow the same idea and
convert episode sequences into state sequences (ESQ): we replay
each ESS through the S-PDFA and augment it with state identifiers
(sID), resulting in its corresponding ESQ. Finally, the ESQs are
transformed into a graph (AG) via Graphviz (see Figure 2). These
graphs are generated on a per-objective (ob j), per-victim (vic) basis.
An ob j is defined as 〈mcat,mServ,sID〉, i.e., one of the high-severity
attack stages from [18] (since they specify end-goals), the targeted
service, and the state identifier. For an AG with the root vertex
〈vic,ob j〉, only the ESQs concerning the victim vic, and containing
an episode with ob j are included. If an ob j is achieved multiple
times in an ESQ, each attempt is shown as an individual path in
the graph. The S-PDFA may assign different sID’s to the same
〈mcat,mServ〉, corresponding to the different contextual means of
obtaining the ob j, each of which appears as a sub-objective in the
graph. Also, all attackers that obtain ob j are shown in one graph to
aid strategy comparison. Thus, an AG is a compressed representation
of intrusion alerts related to 〈vic,ob j〉. It shows how an attack
transpired, including similarities between attacker strategies.

37

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2022 at 07:58:05 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Notional alert-driven AG showing paths towards an objective.
Vertex labels are 〈mcat,mServ,sID〉, i.e., attack stage, targeted service
and state identifier. Low-severity actions are ovals, medium-severity
are boxes, high-severity are hexagons. The first action in a path is
yellow, while the objective-variants are red. Actions that occur too
infrequently for Flexfringe are dotted. Edge label shows time since first
alert. Edge style shows team: T1 (Dashed), T5 (Solid), T8 (Dotted).

Table 1: Workload reduction in the CPTC-2018 dataset.

Alerts
(raw)

Alerts
(filtered) Episodes ES/

ESQ ESS AGs

T1 81373 26651 655 103 108 53
T2 42474 4922 609 86 92 7
T5 52550 11918 622 69 74 51
T7 47101 8517 576 63 73 23
T8 55170 9037 439 67 79 33
T9 51602 10081 1042 69 110 30

4 EXPERIMENTAL SETUP

Dataset. We generate attack graphs for the open-source Collegiate
Penetration Testing Competition dataset, i.e., CPTC-2018 [20]. It
contains Suricata alerts generated by different student teams tasked
with compromising a fictitious network, i.e., an automotive company.
Each team has access to fixed-IP machines. Beyond the attackers’
IP information, no ground truth is available regarding the attacker
strategies and attack progression. Six teams (i.e., T1, T2, T5, T7,
T8, T9) produce 330,270 alerts. The competition lasted 9 hours.

Parameter selection. SAGE has five parameters: we set t = 1.0 sec
to discard repeated alerts [19], and window length w = 150 sec to
aggregate alerts into episodes. We set three Flexfringe parameters:
symbol count, state count and sink count, all set to 5. These pa-
rameters are selected based on the properties of the dataset, primarily
dependent on the frequency of severe alerts. The experiments are
executed on Intel Xeon W-2123 quad-core processor, 32 GB RAM.

S-PDFA model quality. Quantifying S-PDFA model quality is a
difficult problem [7, 24]. A common option is to measure its predic-
tion power using Perplexity [3, 30]. Compared with suffix trees and
markov chains, our S-PDFA achieves the best perplexity, showing
its ability to capture patterns in the sequences (see appendix).

5 RESULTS AND DISCUSSION

SAGE compresses 330,270 alerts into 93 attack graphs (AG), and
discovers 70 objectives that are obtained by targeting 19 victim hosts.
This leads to a considerable workload reduction. Table 1 shows this
reduction on a per-team basis. Note that multiple teams can share
one AG if they all obtain that objective. Furthermore, the AGs are

Figure 3: Data exfiltration/remoteware by T1, T5, and T8. T1 and T5
make two attempts, while T8 makes a single attempt. The S-PDFA
discovers three contextual ways of exfiltrating data from this victim.

succinct and effective in highlighting differences between attacker
strategies. We evaluate the complexity of the AGs using the model

simplicity metric given in [6], i.e., Simplicity(AG) =
|V |
|E| , where |V |

and |E| are the number of vertices and edges, respectively. The AGs
have an average simplicity of 0.81, with 21.7 vertices on average,
where AGs with more than 30 vertices are considered as complex [6].
Each AG represents about 500 alerts, on average.

1. AGs show attack pathways: The AGs provide insight into
attacker strategies. Figure 3 shows that three teams (T1, T5, T8)
use remoteware-cl to exfiltrate data from 10.0.0.20 (the absence of
other teams means they were unable to obtain this objective). The
teams self-reported that they had found a chatting application on
this host that contained credentials, which were exfiltrated using a
combination of privilege escalation and arbitrary code execution.
T1 finds two distinct paths to complete this objective, first after 5.8
hours and then again after 7.5 hours since the start of the competition.
T5 also finds two paths, but considerably earlier in the competition.
The S-PDFA identifies three contextually distinct exfiltration states
based on the differences in the paths that lead up to the objective. For
example, 〈data exfiltration, remoteware-cl, 116〉 can be
reached with much fewer steps compared to the others, and it also
happens much later in the competition, implicitly capturing attackers’
increasing experience. Moreover, in cases where multiple attack
attempts are made, the subsequent attempt is shorter than the first in
84.5% of the cases, providing evidence for SAGE’s ability to capture
behavioral dynamics.

38

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2022 at 07:58:05 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Data manipulation/remoteware is a sub-graph of Figure 3.

2. AGs show strategic differences: Interestingly, an AG of
data manipulation (Figure 4) over the same victim and service
from Figure 3 are partial sub-graphs of each other, due to over-
lap in paths that attain both objectives. There are three variants
of data manipulation, of which two are also present in the exfil-
tration AG, i.e., 〈data manipulation, remoteware-cl, 100〉
and 〈data manipulation, remoteware-cl, 280〉. T5 finds an
additional path to reach 〈data manipulation, remoteware-cl,
19〉 after it has reached the objective 〈data exfiltration,
remoteware-cl, 18〉 from the previous AG. This actionable intel-
ligence can be used to disrupt the cyber kill-chain [13]. Additionally,
the AG shows differences in attacker strategies, e.g., T5 and T8
perform account manipulation while T1 does not; and resource hi-
jacking is a step in one of T5’s paths but not in the other. It also
shows that T1 has found the shortest path to perform data manipula-
tion on the victim using remoteware-cl.

3. AGs allow attacker performance evaluation: Each ver-
tex in the attack graphs signifies a new milestone achieved by
the teams. We argue that the fraction of unique milestones, i.e.,
〈mcat,mServ,sID〉, discovered by a team provides a metric for its
performance. A medium-severity attack stage forms a stepping-
stone towards a high-severity attack stage. Hence, high-severity
vertices are twice as important as medium-severity vertices, i.e.,
(2∗sev)+(1∗med)

3 , where sev and med are the number of high- and
medium-severity milestones discovered by a team, respectively. Ta-
ble 2 shows the evaluation of all six teams based on the 93 AGs,
ranked according to their score. It shows the number of unique
high- and medium-severity vertices discovered by the teams during
the competition. T5 scores the highest points, while T2 scores the
lowest points. T1 comes in second, solely because they discover the
highest number of medium-severity vertices compared to any other
team. Overall, this metric provides a simple way to rank attackers
based on the uniqueness and severity of the alerts they raise.

Table 2: Attacker evaluation based on the fraction of unique vertices
discovered during CPTC-2018 (rank = score).

Team Severe vertices
(out of 70)

Medium vertices
(out of 148)

Weighted average
percentage

T5 28 (40%) 40 (27%) 35.67
T1 18 (26%) 62 (42%) 31.33
T9 23 (33%) 36 (24%) 30.0
T7 22 (31%) 26 (18%) 26.67
T8 15 (21%) 32 (22%) 21.33
T2 3 (4%) 8 (5%) 4.33

5.1 Discussion: Visual Analytics enabled by SAGE
Utilizing observables such as intrusion alerts to obtain intelligence
regarding attacker strategies will noticeably benefit SOC analysts.
Visualizing such strategies in a way that communicates the correct
message to SOC analysts is another important challenge. SAGE is
one of the first attempts toward addressing these challenges: SAGE
extracts targeted (objective-oriented) attack graphs (AG) from intru-
sion alerts without prior knowledge. In doing so, SAGE opens up
numerous research opportunities for the VizSec community.

• Although SAGE significantly reduces the volume of alerts to
analyze, it still ends up with several AGs. The prioritization of
AGs in general, and attack paths in particular, remains an open
problem. A query mechanism to filter and replay specific parts
of an attack, e.g., vaguely similar to PERCIVAL [2], will be
highly useful.

• SAGE can be used to improve IDS rules. It utilizes most of
the alerts, which are aggregated for visual analytics. Executing
test attacks for which no corresponding paths can be found in
the resulting AGs hint towards missing or faulty IDS rules.

• Comparative visual analytics for AGs is another open chal-
lenge. For a given victim that is attacked by different attackers
at different times, highlighting the attack progression similarity
for visual comparison is an interesting direction.

• In forensic analysis, alert-driven AGs can be used to point
towards specific victim machines for which additional evidence
is required. This evidence can be used to corroborate the
success of critical milestones for an investigated attack. For
example, an AG containing data exfiltration step highlights the
need for investigating other data sources to check whether data
were indeed exfiltrated.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose SAGE, a novel unsupervised sequence
learning tool that generates succinct attack graphs (AG) directly from
raw intrusion alerts, without a priori knowledge. SAGE is capable
of representing several thousands of alerts in just a handful of AGs,
which is beneficial for alert triaging and visual analytics. SAGE
models the temporal and probabilistic dependence between alerts in
a suffix-based probabilistic deterministic finite automaton (S-PDFA).
The S-PDFA brings infrequent severe alerts into the spotlight and
summarizes paths leading to them. AGs are then extracted from
the S-PDFA on a per-objective, per-victim basis. SAGE generates
93 AGs from ∼330k alerts collected through Collegiate Penetration
Testing Competition with six attacker teams. The AGs provide a
clear picture of the attack progression, and show strategic differences
between attackers, e.g., they show that attackers often follow shorter
paths to re-exploit an objective. They are also used to rank interesting
attackers based on the severity of the alerts they raise.

Future work will focus on applying SAGE to additional datasets,
adding interactive capabilities to alert-driven AGs, evaluating AGs
with security analysts, and leveraging readily-available domain
knowledge to map AG vertices to high-level attacker actions.

39

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2022 at 07:58:05 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. M. Alserhani. Alert correlation and aggregation techniques for reduc-

tion of security alerts and detection of multistage attack. International
Journal of Advanced Studies in Computers, Science and Engineering,

5(2):1, 2016.

[2] M. Angelini, N. Prigent, and G. Santucci. Percival: proactive and

reactive attack and response assessment for cyber incidents using visual

analytics. In 2015 IEEE Symposium on Visualization for Cyber Security
(VizSec), pp. 1–8. IEEE, 2015.

[3] B. Balle, R. Eyraud, F. M. Luque, A. Quattoni, and S. Verwer. Re-

sults of the sequence prediction challenge (spice): a competition on

learning the next symbol in a sequence. In International Conference
on Grammatical Inference, pp. 132–136, 2017.

[4] Y. Chen, Z. Liu, Y. Liu, and C. Dong. Distributed attack modeling

approach based on process mining and graph segmentation. Entropy,

22(9):1026, 2020.

[5] M. Chu, K. Ingols, R. Lippmann, S. Webster, and S. Boyer. Visualizing

attack graphs, reachability, and trust relationships with navigator. In

Proceedings of the Seventh International Symposium on Visualization
for Cyber Security (VizSec), pp. 22–33, 2010.

[6] S. C. De Alvarenga, S. Barbon Jr, R. S. Miani, M. Cukier, and B. B.

Zarpelão. Process mining and hierarchical clustering to help intrusion

alert visualization. Computers & Security, 73:474–491, 2018.

[7] C. De la Higuera. Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[8] O. B. Fredj. A realistic graph-based alert correlation system. Security
and Communication Networks, 8(15):2477–2493, 2015.

[9] N. Gao, Y. He, and B. Ling. Exploring attack graphs for security risk

assessment: a probabilistic approach. Wuhan University Journal of
Natural Sciences, 23(2):171–177, 2018.

[10] I. Ghafir, K. G. Kyriakopoulos, S. Lambotharan, F. J. Aparicio-Navarro,

B. AsSadhan, H. BinSalleeh, and D. M. Diab. Hidden markov models

and alert correlations for the prediction of advanced persistent threats.

IEEE Access, 7:99508–99520, 2019.

[11] J. Homer, A. Varikuti, X. Ou, and M. A. McQueen. Improving attack

graph visualization through data reduction and attack grouping. In In-
ternational Workshop on Visualization for Computer Security (VizSec),
pp. 68–79. Springer, 2008.

[12] H. Hu, J. Liu, Y. Zhang, Y. Liu, X. Xu, and J. Huang. Attack sce-

nario reconstruction approach using attack graph and alert data mining.

Journal of Information Security and Applications, 54:102522, 2020.

[13] E. M. Hutchins, M. J. Cloppert, R. M. Amin, et al. Intelligence-

driven computer network defense informed by analysis of adversary

campaigns and intrusion kill chains. Leading Issues in Information
Warfare & Security Research, 1(1):80, 2011.

[14] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling

modern network attacks and countermeasures using attack graphs. In

2009 Annual Computer Security Applications Conference, pp. 117–126.

IEEE, 2009.

[15] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs.

In Proceedings 15th IEEE Computer Security Foundations Workshop.
CSFW-15, pp. 49–63. IEEE, 2002.

[16] K. Kaynar. A taxonomy for attack graph generation and usage in

network security. Journal of Information Security and Applications,

29:27–56, 2016.

[17] Q. Lin, Y. Zhang, S. Verwer, and J. Wang. Moha: A multi-mode

hybrid automaton model for learning car-following behaviors. IEEE
Transactions on Intelligent Transportation Systems, 20(2):790–796,

2018.

[18] S. Moskal and S. J. Yang. Framework to describe intentions of a cyber

attack action. arXiv preprint arXiv:2002.07838, 2020.

[19] S. Moskal, S. J. Yang, and M. E. Kuhl. Extracting and evaluating similar

and unique cyber attack strategies from intrusion alerts. In 2018 IEEE
International Conference on Intelligence and Security Informatics (ISI),
pp. 49–54. IEEE, 2018.

[20] N. Munaiah, A. Rahman, J. Pelletier, L. Williams, and A. Meneely.

Characterizing attacker behavior in a cybersecurity penetration testing

competition. In 2019 ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM), pp. 1–6. IEEE,

2019.

[21] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios

through correlation of intrusion alerts. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, pp. 245–254,

2002.

[22] P. Ning, D. Xu, C. G. Healey, and R. S. Amant. Building attack scenar-

ios through integration of complementary alert correlation method. In

NDSS, vol. 4, pp. 97–111, 2004.

[23] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based

network security analyzer. In USENIX security symposium, vol. 8, pp.

113–128. Baltimore, MD, 2005.

[24] R. Parekh and V. Honavar. Learning dfa from simple examples. Ma-
chine Learning, 44(1-2):9–35, 2001.

[25] S. Roschke, F. Cheng, and C. Meinel. A new alert correlation algorithm

based on attack graph. In Computational intelligence in security for
information systems, pp. 58–67. Springer, 2011.

[26] R. Sadoddin and A. Ghorbani. Alert correlation survey: framework and

techniques. In Proceedings of the 2006 international conference on
privacy, security and trust: bridge the gap between PST technologies
and business services, pp. 1–10, 2006.

[27] S. Salah, G. Maciá-Fernández, and J. E. Dı́Az-Verdejo. A model-based

survey of alert correlation techniques. Computer Networks, 57(5):1289–

1317, 2013.

[28] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pen-

nington, and C. B. Thomas. Mitre att&ck: Design and philosophy.

Technical report, 2018.

[29] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer. Comprehensive

approach to intrusion detection alert correlation. IEEE Transactions
on dependable and secure computing, 1(3):146–169, 2004.

[30] S. Verwer, R. Eyraud, and C. De La Higuera. Pautomac: a probabilistic

automata and hidden markov models learning competition. Machine
learning, 96(1-2):129–154, 2014.

[31] S. Verwer and C. A. Hammerschmidt. Flexfringe: a passive automaton

learning package. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 638–642. IEEE, 2017.

[32] L. Williams, R. Lippmann, and K. Ingols. Garnet: A graphical at-

tack graph and reachability network evaluation tool. In International
Workshop on Visualization for Computer Security (VizSec), pp. 44–59.

Springer, 2008.

A APPENDIX

A.1 Attack stages

Table 3 provides the Action-Intent mapping that is used by SAGE to
map default alert signatures to attack stages.

Table 3: Attack stages and their severity from Moksal et al.

Acronym Attack stage Severity
SURFING Surfing Low
HOST DISC Host Discovery Low
SERVICE DISC Service Discovery Low
VULN DISC Vulnerability Discovery Low
INFO DISC Information Discovery Low
USER PRIV ESC User Privilege Escalation Med
ROOT PRIV ESC Root Privilege escalation Med
BRUTE FORCE CREDS Brute force Credentials Med
ACCT MANIP Account Manipulation Med
PUBLIC APP EXP Public Application Exploitation Med
REMOTE SERVICE EXP Remote Service Exploitation Med
COMMAND AND CONTROL Command and Control Med
LATERAL MOVEMENT Lateral movement Med
ARBITRARY CODE EXE Arbitrary code execution Med
PRIV ESC Privilege escalation Med
NETWORK DOS Network Denial of Service High
RESOURCE HIJACKING Resource hijacking High
DATA MANIPULATION Data manipulation High
DATA EXFILTRATION Data exfiltration High
DATA DELIVERY Data delivery High
DATA DESTRUCTION Data destruction High

A.2 S-PDFA for CPTC-2018

Figure 5 shows the S-PDFA learned for the entire CPTC-2018.

40

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2022 at 07:58:05 UTC from IEEE Xplore. Restrictions apply.

Figure 5: The S-PDFA for 6 teams in CPTC-2018. State color denotes
severity: red = high, blue = medium, white = low.

A.3 S-PDFA model quality
Model quality is often quantified using a model selection criterion,
measuring a trade-off between model size and fit. Perplexity is

defined as 2−
1
N ∑N

i=1 log2P(xi) where N is the number of traces and
P(xi) returns the probability of the xi trace. The lower the value, the
better the model fits with the data. We compute perplexity for both
the training data and an unseen test set using an 80-20 split. The
former shows how well the model fits with the training data, and the
latter shows how well the model captures patterns in the overall data.
We compare the perplexity values against two suffix models: (a)
suffix tree and (b) markov chains. Table 4 shows the perplexity for
each variant on both training and test data. It shows that a suffix tree
provides the best fit with the training data, as expected. The S-PDFA
is about twice as “perplexed”. On the test data, the S-PDFA gives
the best perplexity value, demonstrating that the model accurately
captures many of the patterns present in the data that are missed by
the other models.

Table 4: Perplexity of suffix models (bold = best value).

Suffix tree Markov chains S-PDFA
Training data 1265.4 13659.6 2397.8
Holdout test set 13020.7 11617.8 9884.6

41

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2022 at 07:58:05 UTC from IEEE Xplore. Restrictions apply.

