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ABSTRACT 
Architecture within the last twenty years has developed in many ways. One such 
direction was reintroducing the physical world and physical phenomenon back to 
architectural language and design space. This is especially true as buildings have 
had to become more and more environmentally sustainable and developable with 
programs such as LEED, BREEAM, and Zero House popping up. While less 
pronounced, the same is true for other aspects of architecture too; such as 
pedestrian flow, constructability, and structural design. Each design in hi-tech 
architecture has become a compromise of these systems. 

While significant funding has gone into understand how to design for energy 
efficient buildings, architects typically shy away from structural systems leaving 
these problems for structural engineers to solve. However, great design comes to 
fruition when the two systems work hand in hand. This method of design, 
integrated design, is starting to appear more and more in the design space with 
gridshell structures becoming classic icons of the beauty of this marriage. 

Gridshell structures are becoming more widely known as architects such as Foster 
+ Partners, Asymptote, and John McAslan & Partners have developed work that 
has become widely lauded and incredibly awe inspiring. These slender shapes still 
allow for large amounts of natural light as well as enable architects and designers 
to cover vast areas without the need of massive beams and a large amount of 
columns, instead finding rigidity in its own form. 

This research project, attempts to create a system for architects and designers to 
play with in order to develop an efficient and useful gridshell concept structure 
and does this by approaching the perspective from two points. On one side a 
computational system is built based on Finite Element Analysis (FEA) data and 
signal processing while on the other, structural concepts are explored in order to 
determine a geometric relationship between load, form, and principal stresses. 

 

 

 

 

Keywords: Gridshell, form finding, principal stress, topology, parametric design, 
performance based design, structural analysis 
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1 INTRODUCTION 
The goal of the project was to learn and develop a computational and parametric 
based methodology for designing non-standard gridshell structures. This was 
done through combining form finding and gridshell topology based on a base 
ground surface in order to develop a system that is structurally informed and 
intelligently optimized to reduce material and construction costs. 

1.1 PROBLEM STATEMENT 
‘Form follows function’, a quote first described by Louis Sullivan with the idea that 
the shape of the building should follow its intended uses, is a guiding theme seen 
throughout most of architectural history.  

This ideal pops up much earlier in the Vitruvian values as utilitas, and is adored 
even later on in time by Le Corbusier as he marvels over the aesthetic of pure 
functional form in ‘Towards a New Architecture’.  

However, with shell structures and gridshells specifically, this method of design 
seems to have been forgotten when examining grid generation. Instead of 
developing grids that follow the flow of forces within the shell structures, the grids 
are generated using patterning and tessellation. This paper tries to repair this issue 
by defining other methods of developing a topology for gridshells and identify the 
issues that are related to these current systems. 
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1.2 GOAL 
The goal of this thesis is to develop a quadrilaterally dominated gridshell layout 
that is created using straight bar elements. The goal is then to facilitate a potential 
design for the front entrance of the TU Delft Architecture Faculty. This structure 
of the gridshell should be laid out in a manner that optimizes mitigating the 
structural strain in gridshell structures. The thesis also compares the system to 
current more standard methods of developing gridshells. This thesis accomplishes 
a summary and review of methods that have been experimented with over the last 
several months. 
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1.3 RELEVANCE 
The research undergone in this process should allow architects and engineers the 
ability to design lighter gridshell structures. This reduction in weight of gridshell 
structures is dependent upon the optimization occurring along the main load paths, 
to deliver the reduction in the amount of steel or concrete needed to create these 
architectural forms. 
 
Steel and Portland cement production results in roughly 2 kg CO2 eq / kg and 0.85 
kg CO2 eq / kg respectively (MPA Cement, 2015). By reducing the amount needed 
in each structure, large steps can be made to reduce the CO2 output of the 
construction industry. 
 
This reduction in weight also leads to several other advantages. The demand for 
materials required to make concrete for example, especially quartz sand, is 
currently decimating local ecosystems as riverbeds and beaches are being 
stripped bare (NPR, 2017). Steel faces similar issues, with iron ore shortages 
already affecting many smaller steel plants in 2017(Bloomberg, 2017). 
 
While gridshells are already efficient at spanning large distances and creating 
large open spaces, the popularity of this method is growing significantly with 
recent large scale projects including Google Mountainview Campus, Kings Cross 
Station, Macallan Visitors Center, and Yas Hotel all finishing up within the last 10 
years. While many of these gridshells are highly efficient and beautiful, most of 
these systems rely on more traditional UV parameterization that is not informed 
by the flow of forces in the shell. This thesis attempts to tie the flow of forces to 
the geometry of the gridshells. 
 
 
 
 
 
 
 
 [1] MPA Cement. (2015, July 15). Fact Sheet 18 Embodied CO2e of UK cement, additions and 
cementitious material. Retrieved January 4, 2018, from 
http://cement.mineralproducts.org/documents/Factsheet_18.pdf 
[2] NPR. (2017, July 21)World Faces Global Sand Shortage. Retrieved January 04, 2018, from 
https://www.npr.org/2017/07/21/538472671/world-faces-global-sand-shortage 
[3] Ng, Williams & Engel. (2017, June 05). The Hard To Believe Steel Shortage That’s Unfolding 
in China. Retrieved January 4, 2018 from https://www.bloomberg.com/news/articles/2017-06-
05/the-hard-to-believe-steel-shortage-that-s-unfolding-across-china 

https://www.npr.org/2017/07/21/538472671/world-faces-global-sand-shortage
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1.4 RESEARCH QUESTION 
How can the creation of a gridshell by using principal stress directions be used to 
provide a more efficient structure that follows principal stress lines? 

1.4.1 Sub-questions 
How can rod paths be plotted along principal stress streamlines on freeform 
surfaces? 

What form finding methods are suitable for generating an efficient structural form 
with high percentage shell behavior (no out of plane forces) and low strain energy 
density (high stiffness)? 

Is there a considerable advantage in optimizing a gridshell structure based on 
principal stress stream lines and an arbitrary generated tessellation? 
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1.5 METHODOLOGY 
The thesis and research will be approached in the following way: 

The gridshell (as a nurbs multi-surface) is developed in a set of stages of 
parametric interpretation of a set of parameters. 

This project will be approached from two different perspectives. First, a streamline 
tracer method will be developed and compared to a standard 2 Dimensional UV 
mapping and a more advanced method known as Periodic Global 
Parameterization (PGP)(Ray, Li, Lévy, Sheffer, & Alliez, 2006). Secondly, structural 
mechanics research will be done to determine if a principal stress lines can be 
derived from the structure of the plate or shell rather than indirectly through the 
use of Finite Element Analysis vector sets, through the examination of Calladine’s 
two shell theory and Beranek’s plate theory. 

The initial parametrization of the shape is completed using standard UV 
parameterization tools in Grasshopper3D and rationalized into a quadrilateral 
mesh surface with UV parameterization depending on its geometry. This is done 
via two scripts depending on the complexity of the geometry inserted. 

The initial form finding is conducted using a linear solver/physics simulation tool 
known as Kangaroo (Piker, 2017) inside the Grasshopper3D (Rutten, 2014) 
environment. Here the form finding parameters are tested within 3 different 
structures of varying complexity and ranked based on the strain energy density 
and membrane vs moment behavior of the 3 different structures. From there, 
decisions are made based on the goal surface as to whether or not which parts of 
the form finding system will be useful in developing the final shape. Each shape 
will be directly and automatically exported to GSA (Oasys GSA, 2017) in order for 
FEA structural analysis to develop strain energy data and principal stress vectors. 

The two methods of topology generation are compared. The first method is 
streamline fitting along a conformal mapping through a script written by myself in 
Python, while the second is using conformal mappings to generate a new map 
directed along principal stress direction. The attempts at the latter step failed and 
therefore a black box program within the Grasshopper3D environment was used 
so that one option could be generated using a program known as Millipede 
(Panagiotis & Sawako, 2014) for comparison.  
 
Lastly, the structure is analyzed and sized using Karamba3D (Preisinger, 2016) 
and the strain energy of each base structure is compared to the man-made 
idealized solution and non-ideal solutions in order to ensure effectiveness.  
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2 LITERATURE STUDY 

2.1 GRIDSHELL STRUCTURES 

2.1.1 Introduction to Gridshells 
Gridshells or lattice shells are rigid structural bodies spanning long distances using 
the form of the structure itself to carry the loads. There has been contention over 
whether a gridshell is defined by the structural concepts of the structure or 
whether it is determined by the method of construction.   
 
The gridshell is according to Edmund Happold “a doubly curved surface formed 
from a lattice of timber bolted together [...]. Where the lattice is a mechanism with 
one degree of freedom." (Otto, 1974). 
 
Fixed Jointed gridshells are commonly seen with steel gridshells being built today. 
These style of gridshells are typically created with pre-curved elements. This 
means that the structure uses more standard methods to generate its form and 
relies on a combination of its own stiffness and approximated deflection to predict 
the final form (Otto, 1974).  

Pin jointed gridshells are typically generated from a series of flat members (most 
often wood) which are then lifted and fastened into position, thereby relying on 
the pre-stressing of the grid to also help maintain its structure. This method 
typically is developed through defining a base structure covering the goal surface 
and slowly flattened with the axial lathes warping out of planes rather than 
rotating (Otto, 1974). 

However, as Pellegrino and Miura state in their book “Structural Concepts” 
(Forthcoming), besides the stresses developed in the system by the lifting of the 
pin-jointed version, both types of structures behave similarly as if the nodes 
themselves were pins much like most frame structures (Miura & Pellegrino, 
Forthcoming). 
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2.1.2 Historical Background 
Despite the use of weaved and gridded structures in small scales, it was not until 
the end of the 1800s that Vladimir Shukhov created the first modern gridshell 
structures.  Figure 2-1 shows the doubly curved grid structure under construction 
in Vyksa, Russia in 1897. However, the first known thoroughly conducted studies 
were developed by Frei Otto at the Institute of Lightweight Structures in the 
1970’s (Otto, 1974).  
 
The work conducted at the institute focused on form finding through the use of 
hanging chain models through the construction of experimental small scale 
structures. Otto at this time named them as “gridshells” and defined them as the 
following: 
 
“... a spatially curved framework of rods and rigid joints. The rod elements form a 
planar grid with rectangular meshes and constant spacing between the knots. The 
form of a gridshell is determined by inverting the form of a flexible hanging net." 
(Otto, 1974) 
 
Therefore, in this paper a gridshell will be defined as: 

A long span lattice structure emulating the behavior of a shell structure with 
the majority of load being transmitted axially through the lattice members with 
nodes that behave as if they were pinned. 

This definition allows for the consideration of new steel based lattice structures 
while also not discounting the original lifted timber structures. This definition also 
defines the nodes as not being able to carry moment and therefore requires the 
structure to find a theoretically optimal solution. 

 

 
Figure 2-1: Shukov Shell, Russia (Source: Wikipedia Creative Commons) 
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The “hanging net” was an integral part of Otto’s 1970’s hanging chain models 
applied to construct the Multihalle. This type of technique had been used earlier 
by the likes of Gaudi for his form finding methods on non-gridshells in the 1880’s 
(Winslow, 2010). 
 
Until recently, there have been very few of these structures; however, there are 
some non-free form structures that are also of interest, specifically the Gatti Wool 
Factory. This project completed by Nervi is a set of projects that examines the 
structural efficiency of intelligently placed concrete. This project specifically looked 
at the principal stresses of the floor plate and placed thicker ribs along the 
trajectories (Figure 2-2). 

Typically a gridshell is developed by placing a 
preset pattern on a surface and relaxing the mesh 
until it fits properly. While this is a viable method, 
it lacks a feed forward approach to design with 
the focus on grid sizing rather than grid positions. 
 
However, this has recently changed. In the last 
few years several papers such as Winslow’s 
Thesis (Winslow, 2010) as well as that of Mark 
Tim Kam (Kam, 2014) have approached the 
subject in two different ways, focusing on 
principal stress directions. While Winslow 
examines the mapping of stress vectors using a 
global parameterization, Kam prefers to directly 
trace the vector sets on the 3D shell.  

2.1.3 Generation of Gridshell 
Gridshell generation typically occurs along a set pattern, curvature, or network. 
These patterns in turn provide the stability and form to a gridshell. Typically 
tetrahedral and triangular elements are either generated from these patterns or 
are used to generate the gridshell patterns. Once the pattern is set, the tessellation 
is then relaxed until it fits continuously over the surface. However, recent topology 
analysis and generation of non-uniform gridshell tessellation has also been 
examined by Smidt (Smidt, 2014). 

Figure 2-2: Gatti Wool Factory Roof 
(Winslow, 2010) 
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Regardless of the chosen pattern, all grid sizes are chosen initially by hand and 
developed by defining 
the distance of the 
nodes and creating a 
specific fineness of the 
mesh. From here a 
variety of options can be 
applied to either 
decrease or increase the 
node spacing as is 
sometimes done 
depending on the 
curvature of the 
gridshell. 

  

Figure 2-3: Hanging Net Structure of the Mannheim Multihalle (Otto, 1974) 
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2.2 FORM FINDING 
While the thesis not only focuses on form finding of the shell,  form finding analysis 
is still required to generate a proper shape for the gridshell bar structure to be 
generated on. Currently there are several methods used for the overall form finding 
for structural shells. These methods are outlined here for the development of shells 
and gridshells that rely on axial forces rather than bending moment in the shell to 
remain stiff. However, these form finding methods are not perfect.  

Typically there are two types of form finding, empirical and computational. This 
thesis focuses on computational form finding methods by using a subset of 
defined elements and the forces loaded onto the shape. The form finding section 
of the thesis uses an iterative method until the geometry and forces in the lattice-
spring structure efficiently counteract the loads applied to the structure.  

2.2.1 Direct Stiffness Method 
The essence of the direct stiffness method lies in establishing the relationship 
between applied forces at certain nodes of structure and the displacements 
occurring there. This relationship can be further denoted in the following equation 

𝑲𝑖𝑗𝒅𝑗 = 𝒇𝑖 

Equation 2-1: Relationship between Stiffness, displacement, and Forces for a Node. (Samuelsson & 
Zienkiewicz, 2006) 

Essentially, it is a matrix method that uses the relationship members' stiffness (𝑲) 
in order to determine either forces (f) or displacements (d) in structures with one 
or the other unknown. The direct stiffness method is the most common 
implementation of the finite element method, and therefore, is also inextricably 
linked with all structural optimization methods.  

The entire structure is then modeled as a subset of simpler elements connected at 
nodes. The stiffness properties of these elements are compiled into a matrix which 
determines the behavior of the entire structure from which the displacements and 
forces can subsequently be determined. This stiffness method is similar to the 
method Pelligrino and Calladine (1986) used to develop the matrices for Singular 
Value Decomposition (SVD) of the equilibrium matrix, but when using the direct 
stiffness method for form finding, the method includes member stiffness as part 
of the matrix rather than just the connected network as needed for SVD. 

2.2.1.1 Matrix Formulation 
In the 1930’s, Gabriel Kron developed a matrix formulation of these systems with 
each member creating a 12 x 12 matrix of the force-displacement relation and 
each of these matrices arranged diagonally in a large square matrix. This matrix 
was considered the tensor and the connections of frame were obtained by 
applying a transformation (Samuelsson & Zienkiewicz, 2006). 

https://en.wikipedia.org/wiki/Finite_element_method
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This formulation was later redeveloped by Argyris such that all component 
stiffnesses were arranged in diagonal matrix 𝑲 and introduced to a transformation 
A to construct matrix 𝑲 ’ as shown here in Equation 2-2 (Samuelsson & 
Zienkiewicz, 2006). 

𝑲′ = 𝑨𝑇𝑲𝑨 
Equation 2-2: Matrix Formulation of the Stiffness Matrix (Samuelsson & Zienkiewicz, 2006) 

Therefore by applying a set of forces as 𝑨 to a stiffness matrix K the new matrix 
K’ will be the matrix representation of the stiffness matrix for the new transformed 
geometry. 

2.2.2  Dynamic Equilibrium Methods 

2.2.2.1 Dynamic Relaxation Using Particle Springs 
This method involves generating the structural elements as masses on springs and 
using the equilibrium position of these masses and the forces applied to them. In 
order for equilibrium to be reached damping of the oscillation is used. 

Particle spring method is an 
updated subset of dynamic 
relaxation. In this method, 
springs and point masses are 
developed using a base mesh 
in order to simulate a gridshell 
structure. This method 
visualizes the mechanical 
energy through the use of a 
set of springs. Because these 
springs are modeled as ideal 
springs, they are unable to 
carry moment which along 
with the point masses creates 
a form found shape using the 
same principals as dynamic 
relaxation. 

However, since none of the 
springs can carry moment, at 
equilibrium ∑𝑚𝑝 = 0  at all points in the form, therefore creating a catenary 
structure. The mass (m) nodes of the spring move on in time steps due to out of 
balance forces and rely on the spring constant (𝑘𝑠) and the elongating tied springs 
to create static equilibrium such that the following holds true for a mass spring 
system with zero length springs. 

Figure 2-4: Forces on A 3-D Spring (Harding, 2011) 
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𝒇𝑖𝑗,𝑧 = 𝑘𝑠(𝒛𝑖+1,𝑗 + 𝒛𝑖,𝑗+1 + 𝒛𝑖−1,𝑗 + 𝒛𝑖,𝑗−1 − 4𝒛𝑖,𝑗) − 𝑚𝒇𝑔 

Equation 2-3: Fore at Node ji in the Z direction (Harding, 2011) 

For a spring system using non-zero length springs, the initial points are simply a 
non-zero value, therefore reducing the change in strain. In order to compensate 
for this, oftentimes a higher spring constant is chosen to ensure the development 
of a proper form. 

𝒇𝒊𝒋,𝒛 = 𝑘𝑠 ∙ (
(𝒛𝑖+1,𝑗

𝑡 − 𝒛𝑖,𝑗
𝑡 ) − (𝒛𝑖+1,𝑗

0 − 𝒛𝑖,𝑗
0 )

|𝒛𝑖+1,𝑗
0 − 𝒛𝑖,𝑗

0 |
+

(𝒛𝑖,𝑗+1
𝑡 − 𝒛𝑖,𝑗

𝑡 ) − (𝒛𝑖,𝑗+1
0 − 𝒛𝑖,𝑗

0 )

|𝒛𝑖,𝑗+1
0 − 𝒛𝑖,𝑗

0 |

+
(𝒛𝑖,𝑗−1

𝑡 − 𝒛𝑖,𝑗
𝑡 ) − (𝒛𝑖,𝑗−1

0 − 𝒛𝑖,𝑗
0 )

|𝒛𝑖,𝑗−1
0 − 𝒛𝑖,𝑗

0 |
+

(𝒛𝑖−1,𝑗
𝑡 − 𝒛𝑖,𝑗

𝑡 ) − (𝒛𝑖,𝑗−1
0 − 𝒛𝑖,𝑗

0 )

|𝒛𝑖−1,𝑗
0 − 𝒛𝑖,𝑗

0 |
)

− 𝑚𝒇𝒈 

𝒇𝒊𝒋,(𝒙,𝒚) = 𝑘𝑠 ∙ (
(𝒏𝑖+1,𝑗

𝑡 − 𝒏𝑖,𝑗
𝑡 ) − (𝒏𝑖+1,𝑗

0 − 𝒏𝑖,𝑗
0 )

|𝒏𝑖+1,𝑗
0 − 𝒏𝑖,𝑗

0 |
+

(𝒏𝑖,𝑗+1
𝑡 − 𝒏𝑖,𝑗

𝑡 ) − (𝒏𝑖,𝑗+1
0 − 𝒏𝑖,𝑗

0 )

|𝒏𝑖,𝑗+1
0 − 𝒏𝑖,𝑗

0 |

+
(𝒏𝑖,𝑗−1

𝑡 − 𝒏𝑖,𝑗
𝑡 ) − (𝒏𝑖,𝑗−1

0 − 𝒏𝑖,𝑗
0 )

|𝒏𝑖,𝑗−1
0 − 𝒏𝑖,𝑗

0 |
+

(𝒏𝑖−1,𝑗
𝑡 − 𝒏𝑖,𝑗

𝑡 ) − (𝒏𝑖−1,𝑗
0 − 𝒏𝑖,𝑗

0 )

|𝒏𝑖−1,𝑗
0 − 𝒏𝑖,𝑗

0 |
) 

Equation 2-4: Force at node ij at time t based on a 4 connected Node point with springs at rest at length 
during t=0. (Edited from: Harding, 2011) 

In Equation 2-4 the force applied to node i in the z direction is different than that 
to the x and y directions as the additional force of gravity is applied to the point 
mass at each node. The length of the springs are written as the differences in their 
x,y,z coordinates where the position is determined at time (t) while the original 
spring length occurs at time (0). This, therefore, generates two sets of equations: 
one for in the z direction, where the forces include a gravity force, and a second 
set for the x and y direction forces where gravity plays no role. Since the strength 
of the force is equal to the change in length of the spring over its original length, 
this can be rewritten in each dimension as a change in the length of the spring in 
each Cartesian coordinate. 

2.2.2.1.1 Kinetic Damping 
The particles, however, will oscillate forever if the springs are not dampened. 
There are currently two methods of damping available, Kinetic Damping and 
Viscous Damping. The following two sections will describe the differences in the 
two. In a mechanical system, the total energy (𝑈𝑡𝑜𝑡𝑎𝑙 ) is the sum of the kinetic 
energy (𝑈𝑘𝑖𝑛𝑒𝑡𝑖𝑐) and of the potential energy (𝑈𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙). 

𝑈𝑡𝑜𝑡  =  𝑈𝑘𝑖𝑛𝑒𝑡𝑖𝑐  +  𝑈𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 
Equation 2-5: Summation of Energy in a System (Fritzsche, 2013) 

Kinetic Damping works by resetting the velocity of the system to 0 at the point 
when it reaches maximum Kinetic Energy (or maximum average velocity) 
(Fritzsche, 2013). In order to use kinetic damping it must be assumed that that the 
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system is subject to conservative forces, and therefore the mechanical energy is 
conserved. 

𝑑𝑈𝑡𝑜𝑡

𝑑𝑡
=

𝑑𝑈𝑘𝑖𝑛𝑒𝑡𝑖𝑐

𝑑𝑡
+

𝑑𝑈𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝑑𝑡
= 0 

Equation 2-6: Energy Relationship between Total, Kinetic and Potential Energy (Fritzsche, 2013) 

 
In a static approach, the equilibrium corresponds to a minimum of the potential 
energy, or maximum kinetic energy, as at that point, no forces are acting on the 
system that increase kinetic energy and velocity. 
 
Since the mechanical energy is constant, it means that the kinetic energy reaches 
a maximum when the system is at the equilibrium position. The kinetic damping 
consists of looking for maxima of the kinetic energy to a structure subject to an 
artificial dynamic motion. When an approximate value for maximum is found, the 
structure is stopped and set to the approximate equilibrium position. From there, 
a new approximation of the maximum of the kinetic energy can be found. This 
iterative procedure converges to the equilibrium position. (Fritzsche, 2013) 

2.2.2.1.2 Viscous Damping 
In order for the particles to converge to their final positions, a damping factor can 
be used instead of the kinetic damping described in section 2.2.1.1. Kangaroo, 
according to the author of the program, Daniel Piker, utilizes a viscous damping 
factor depending on the particle’s velocity. A damping factor generates a 
‘resistance’ force that is antithetical to the current particle velocity (𝒖𝑖). Equation 
2-7 shows the relationship as the damping force at time t is proportional to and 
acts opposite to the velocity of the current particle.  

𝒇𝑣,𝑖
𝑡 ∝ −𝒖𝒊

𝒕 

Equation 2-7: Relationship between Viscous Damping Force and Velocity (own) 

By utilizing this viscous damping system, particles will converge within the system 
as the damping coefficient directs the velocity of the particles to 0. The system 
will however never reach exactly 0 velocity, thus instead the solver stops once a 
specific threshold is reached (Adriaenssens, Block, Veenendaal, Williams, & 
Williams, 2014). This damping factor can be rewritten in the following method 
(Equation 2-8) to be utilized within form finding programs.  

𝒖
𝑖𝑥

𝑡+
Δ𝑡
2 = 𝐴 × 𝒖

𝑖𝑥

𝑡−
Δ𝑡
2 + 𝐵 × (

Δ𝑡

𝑚𝑖
) 𝒇𝑖𝑥

𝑡  

𝑤ℎ𝑒𝑟𝑒 𝐴 =
1 −

𝐶
2

1 +
𝐶
2

, 𝐵 =
1 + 𝐴

2
, 𝐶 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

Equation 2-8: Viscous Damping Equation (Adriaenssens, Block, Veenendaal, Williams, & Williams, 2014) 
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Equation 2-8 shows how a damping factor (C) would result in a scalar decrease 
of the change in velocity on each time step (𝒖𝑖𝑥) but also the change in residual 
forces (f) (spring and gravity) acting to create acceleration in the i direction at time 
(t) on mass (m). 

By using this method, a set constant can be determined and altered allowing for 
differing levels of damping while ensuring that consistent convergence, without 
analyzing the energy of the system (Adriaenssens et al., 2014). 

2.2.3 Choice of methodology 
In the end a choice was made to examine dynamic equilibrium methods in the 
following chapters more closely and to determine the viable levels of integration 
into the Grasshopper3D environment. This is further explained and explored in the 
form finding section of the thesis in Chapter 5. The choice for dynamic equilibrium 
was chosen over direct stiffness as there are several systems that work well within 
the Grasshopper3D environment for quickly and efficiently developing usable 
structures in the Grasshopper3D environment.  
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2.3 STRUCTURAL OPTIMIZATION 
The main goal of the thesis is to develop an optimized gridshell structure, 
understanding the various forms of optimization and how these optimizations 
occur. This is vital to developing the ability to design and create the more 
streamlined method of developing the goal gridshell. All these processes use the 
total strain energy of the structure as described in Equation 2-9 as their ranking or 
optimization criterion. They all then apply as their optimization based on a 
minimization of strain energy where: 

𝑈𝑠𝑡𝑟𝑎𝑖𝑛 =
1

2
𝑉𝜎𝜖 =

1

2
𝑉𝐸𝜖2 =

1

2

𝑉

𝐸
𝜎2  

Equation 2-9: Various Methods to Calculate Strain Energy (Bendsoe & Sigmund, 2003) 

Where:   

U= strain energy 
 V= volume of structure 
 E= young’s modulus 
 𝜖= strain 
 σ= stress 

 

Here a tension is developed. Decreasing the volume of the structure would ideally 
also decrease the strain energy, however, as the volume decreases, the strain in 
each part of the structure increases. Due to the play between these two variables 
and the desire to minimize both, quite often structural optimization questions 
become multi-variable optimizations. For this reason minimizing strain energy is 
often used in both form finding and structural optimization as the objective 
function. 

2.3.1 Michell Trusses 
In 1904 Michell developed a series of analytically defined frame structures shown 
to be the most materially optimal for their support and load cases. These trusses 
are known as Michell trusses and are incredibly famous throughout structural 
computation as the main method of testing sizing, shape, and topology 
optimization. It is from these basic trusses that all topology optimization methods 
compare their initial runs to. An example of these is shown in Figure 2-5: 
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In this example the lines for the 
Michell structure are generated by the 
minimum volume (𝑉𝑚𝑖𝑛) of the frame 
such that the volume necessary is: 

𝑉𝑚𝑖𝑛 = 𝒇𝑎 × 𝑙𝑜𝑔
𝑎

𝑟𝑜
× (

1

𝑃
+

1

𝑄
) 

Equation 2-10: Minimum Volume of Michell 
Cantilever (Michell, 1904) 

Where (a) is the distance from the 
cantilever origin to the point of force 

at the tip, P and Q are the allowable stresses for tension and compression and ro 

being the radius of the small bar from which the cantilever extends (Michell, 1904). 

In all cases the minimum volume of the frame can also be rewritten for any generic 
frame in the following way: 

𝑉𝑚𝑖𝑛 =
∑ 𝑙𝑖|𝒇|

𝑃
=

𝛿𝑊

𝜖𝑃
=

∑ 𝜖𝒇𝑟𝑐𝑜𝑠𝜃

𝜖𝑃
=

∑ 𝒇𝑟 𝑐𝑜𝑠𝜃

𝑃
 

Equation 2-11: Minimum Volume of a Structure in the Generic Case (Michell, 1904) 

In Equation 2-11, Michell (1904) states that the 𝑓  is the applied force to the 
structure, 𝑙𝑖 is the length of any bar in the frame structure, r is the distance of the 
applied force’s application point to the fixed point, 𝜃 is the angle between between 
the line from the support to the load application point and the direction of the 
applied force, and P is the allowable stress in the material, 𝜖 is the strain in the 
structure, and 𝛿𝑊is the virtual work. 

This can be rewritten to state that the structure will minimize the virtual work, or 
maximize the stiffness of the structure based on the volume.  

Michell structures minimize their volume by defining bar orientation along the 
shear slip lines also known as the Hencky-Prandtl Net. These slip lines describe 
the plastic flow of a 2D surface based on plastic deformation of the material along 
the principal shear directions (Strang and Kohn, 1983).  

While Michell structures along Henky-Prandtl Nets are optimal structures under 
plastic yield, most structural design codes require the examination of structures 
under elastic yield. In order to optimize for elastic yield rather than plastic yield, 
bars are oriented along principal stresses directions as these directions have been 
analytically proven to be the optimum orientation (Brandmaier, 1970). 

For this reason the thesis will focus on principal stresses rather than the Hencky-
Prandtl Net. 

F 

Figure 2-5: Optimized Cantilever (Michell, 1904) 
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Optimizing based on Michell structures also requires analysis of plastic 
deformation and defining the yield functions in the plastic region of Prandtl-Reuss 
flow (Strang & Kohn, 1983) which is costly and difficult to generate. Instead, 
principal stresses, provide an elastic analysis which is quicker to generate and 
requires less material analysis (Li & Chen, 2010). The comparison between the 
principal stress lines and the idealized Michell structure can be seen in Figure 2-6 
below: 

 

 By utilizing principal stress orientations, the optimization requires only the elastic 
analysis and allows for residual strength should the material begin to yield before 
total failure occurs while creating a highly stiff geometry. 

The issue that arose was, how would a Michell structure develop for loads 
distributed across the entire domain and what are the other methods of 
developing these optimized systems? Considering Michell structures focus solely 
on supporting a stated load, what happens if each node itself becomes loaded in 
addition to providing support? Instead of trying to directly implement a Michell 
structure can we take the lessons learned about quadrilateral paneling along 
principal stress directions and apply it to other structures? 

Figure 2-6: Comparison of Principal Stress Orientation (Left) with Michell Structure (Right) of a 2 Point Supported Cantilever 
with Point Load (Li & Chen, 2010) 
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2.3.2 Optimization Types 
There are three distinct types of optimization, sizing optimization, shape 
optimization, and topology optimization. These types are based upon how they 
fundamentally approach optimization. Each has a different set of boundary 
conditions, and optimize discretely based upon a variety of constraints. 

2.3.2.1 Sizing optimization 
The first and most simple type of optimization is known as sizing optimization. 
Here the design domain is fixed to prechosen members. These members are then 
given different thicknesses based on a subset of variables, typically stress and 
deflection of the structure. By using these maxima and minima, the algorithm 
forms the new optimized structure. The stiffness method provides optimum 
criteria using a minimization of strain energy. This then allows for a reduction in 
either member size or complete removal of members until an optimum is reached 
such that elements do not fail. 

2.3.2.2 Shape Optimization 
The second method, known as shape optimization, allows for the members to 
move in a bounded space to position themselves in an optimal shape. From this 
boundary shape (domain), an optimum shape is found within the design domain 
such that minimal mass is used while examining the same variables in order to find 
an optimum shape for the member. This now rather than examining full members 
examines what are the elements and mesh in the FEA system, however, only 
around the specified area. A method of understanding this is that the nodes of the 
mesh defining the shape are essentially translated in 3 dimensions while the 
connectivity of those nodes remains the same.  

Figure 2-7: Types of Optimization: (a) Sizing (b) Shape (c) Topology (Bendsoe & Sigmund, 2003) 



21 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

2.3.2.3 Topology Optimization 
Topology optimization, on the other hand is fundamentally distinct. The design 
domain limits the maximum volume that the object can exist in but does not 
provide a full constraint. Instead, the constants are the locations of loads, supports, 
and the bounding volume. By using this method, an entirely new form is generated 
based on minimizing the strain energy of the overall form. As shown in Figure 2-
7, this results in shapes that provide optimum structural efficiency and generate 
these forms without the initial topology guesswork required for shape and sizing 
optimization. 

Thus, topology optimization is a determination of how each element is connected 
and whether that element is required to exist within the form or not. This allows 
the routine to remove unnecessary elements and ensure that only optimum 
elements remain. Due to the power and simplicity of topology optimization, it has 
become vogue to use within a variety of projects. Current systems have been 
analyzing the use of topology optimization in shells, beams, and 3D objected 
(Winslow, 2010). 

Topology optimization is currently done through a variety of methods. Each 
method approaches the minimum compliance of minimizing strain energy, shown 
in the equations at the beginning of 2.3. The most used methods are the following. 
2.3.2.3.1 SIMP 
The Solid Isotropic Material 
Penalization method or SIMP method 
uses the density of the material as a 
way of controlling for topology. By 
using Finite Element Analysis to 
generate individual elements, these 
elements are given a density based 
upon minimizing the strain energy of a 
structure given a specific volume 
fraction. This is shown in Figure 2-8 
from Bendsoe and Sigmund. 

Strain energy is the goal function, and 
is calculated as a summation of the 
deformation times the Young’s 
Modulus of the material times a density 
factor determined by the program. 
Using this summation subject to a 
volume fraction, elements are then 
given density values ranging from 0 to 1 
which is then penalized at an amount 

Figure 2-8: SIMP Process (Bendsoe & Sigmund, 2003) 
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dependent on the desired discretion. Using a discretion of 1 will in turn yield a full 
solid and fully void system where other systems will generate different values of 
grey. The volume was recalculated giving less dense elements a lower volume 
fraction such that 𝑉∗ = 𝜌 × 𝑉 (Bendsoe & Sigmund, 2003) and was repeated until 
the strain energy stopped reducing or reached its convergence limit. 

This method assumes that each element contains only isotropic material and, 
therefore, does not assume any directionality to the material (Bendsoe & Sigmund, 
2003). 

2.3.2.3.2 ESO 
ESO or Evolutionary Structural Optimization works by removing inefficient 
material from a structure by examining the stress or strain values of the structure 
at that specific point. This is because low strain material is considered to not be 
acting under the load and therefore underutilized. This cycle continues until a 
steady state is reached or the rejection ratio is reached.  (Huang & Xie, 2010) 

2.3.2.3.3 BESO 
The BESO or Bi-Directional 
Evolutionary Structural Optimization 
algorithm uses a different analysis 
logic and is non-gradient based. Due 
to using a variety of user subset 
functions such as inclusion and 
rejection ratios as well as target 
volume, the structural algorithm, in 
turn, leads to volumes not optimized 
based on materials and instead 
requires filtering a subset of 
sensitivities as shown in the logic chart 
in Figure 2-9. This in combination with 
the issues that BESO and ESO break down if 
the sensitivity to element density rapidly changes results in issues such as the 
algorithm only approaching local minima rather than a fully optimized structure. 
(Rozvany, 2008). 

2.3.2.3.4 Why Topology Optimization for Gridshell Structures Does not Work 
The design of shell structure is typically a function of tessellation. This tessellation 
is used as a method of tiling a preset, single layered pattern, often triangles, along 
the surface. This is done because a tessellation typically creates a distinct one layer 
form that is fully connected. 

Discrete Topology Optimization on the other-hand does not use a standard tiled 
element but instead uses a subset of pre-set lattices or connections. Because only 

Figure 2-9: BESO Decision Process (Rozvany, 2008) 
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connections previously defined can be considered, a sub-optimal grid may be 
selected, as the optimal topology was not included in the base structure. This 
allows for structure to exist where structure should not be required, thereby 
reducing the optimization usefulness.  

The method works very well in continuum mechanics because a prescribed volume 
can be used to generate a ground structure. However, for discrete topology 
optimization, this is not possible and, therefore, either a dense ground structure 
must be created or limitations in the allowable structural beam directions must be 
defined by the user. If too dense a ground structure is used, this also means that 
for a 2.5D surface, bars have the possibility of overlapping at places that are not 
nodes or existing at multiple heights which cannot be allowed in a single layer 
gridshell as shown in Figure 2-10.  

 
Figure 2-10: Issues with Developing Dense Ground Structures for Gridshell Topology Optimization 
(Richardson, Adriaenssens, Filomeno Coelho, & Bouillard, 2013) 

Currently, topology optimization and sizing optimization have been investigated 
in gridshell lattice structures (Richardson, Adriaenssens, Filomeno Coelho, & 
Bouillard, 2013). However, the structures as shown in Figure 2-11, leave much to 
be architecturally desired. While these lattice structures reduced the weight of the 
initial structure by as much as 50 percent while still remaining kinematically stable, 
they do not visualize formal structural logic as would be expected. The structural 
check for kinematic stability results in a system that re-inserts kinematically 
necessary elements and, therefore, results in bar orientations with low stresses 
and finds a local minimum solution rather than a global minimum solution 
(Adriaenssens et al., 2014). 

 
Figure 2-11: Topology and Shape Optimized Lattice Frames (Richardson, 2013) 
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2.4 DISCRETE DIFFERENTIAL GEOMETRY 
Since the problem of a gridshell topology is defined as a subset of discrete bar 
elements and panels, a significant part of the issue is creating a developable 
divided surfaces. Discrete geometry must be applied to ensure that the bar and 
node structure maintain their system rather than continuous geometry typically 
used in shells. Here the main factor that is being examined is a primarily 
quadrilateral mesh that is determined via a series of vectors or tensors. 

2.4.1 Conjugate vectors 
Conjugate vectors are vector sets where at any point, the two vectors are always 
orthogonal. These vector sets are typically named within association of each other 
such that the dot product of the interior angles is always zero. 

𝒗𝟏 ∙ 𝒗𝟐 = 0 
Equation 2-12: Definition of Perpendicular Vector Sets 

These sets of conjugate vectors are common throughout mechanics, physics, and 
geometry. They occur often times in wave phenomenon with the wave crest 
always being conjugate to the direction it travels, they occur in the relationship 
between electrical and magnetic forces and fields, and they also occur often in 
curvature and stresses.  

2.4.1.1 Stress Tensors 
In 2D elements, principal stresses (𝜎1, 𝜎2) are the maximum and minimum axial 
stresses that affect a finite element at any orientation. These are fundamentally 
determinable through a trigonometric calculations based off of the current axial 
stresses and the shear stress of each finite element. The principal stresses 
themselves are a rotation of this element to the point of zero shear with the 
directions of the force in compression and tension being the vector directions of 
the principal stress. Most commonly this can be seen in the equations shown in 
equations (2-13) and Figure (2-12) 

However, as the loads change throughout the structure the principal stress values 
and directions change too. Yet, these principal values are what are useful for 
developing gridshells. This is because if the bars are oriented along a principal 
stress field, there is theoretically no shear in the quadrilateral bars, creating only 
axial forces, thereby reducing the strain energy on the structure and reducing the 
amount of shear in each node. 
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Figure 2-12: Mohr's Circle and Principal Stresses (Own) 

𝜎1,2 =
𝜎𝑥 −  𝜎𝑦

2
± √(

𝜎𝑥 − 𝜎𝑦

2
+ 𝜏𝑥𝑦

2 ) 

𝜃 = (
1

2
) tan−1(0.5 ×

𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦
) 

Equation 2-13: Derivation of Principal Stress and Standard Method of Determining Stress Rotation (Li & 
Chen, 2010) 

However, because of the way that these vector sets are determined, the directions 
are 2nd order tensors and eigenvectors as shown here on Mohr’s Circle. This 
means that currently the only method to develop these directions and lines is 
through using discrete vectors on a surface and interpolating along them. While 
this is feasible, it becomes very messy and very difficult on more complicated 
surfaces. 

2.4.1.2 Curvature 
While curvature analysis can occur over a continuum if the shape has a 

mathematically defined surface, as with a nurbs surface, many times such 
curvature analysis is not possible. In this case the analysis occurs at discrete 
points. Oftentimes these points exist so close to one another, across such finite 
elements that it can appear as a continuum, but in principle the analysis works 
very similar to that of the finite element method. From this curvature analysis, just 
as with the structural analysis, a subset of tensors can be determined much like 
the stresses. However, unlike continuum geometry, discrete differential geometry 
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must deal with meshes and therefore a standard directional derivative of a 
functional surface is not possible; instead the value must be taken based on angles 
pertaining to a vertex. 

2.4.1.2.1 Principal Curvature 
Principal curvature (𝑐1, 𝑐2) are the two extremes of curvature at a specific position. 
The two are typically orthogonally related to each other and help define the shape. 
Principal curvature lines are useful in gridshell structures as beyond just an 
analysis tool. They are also used often as the beginning method for defining grid 
directions and location on a surface as well as determining whether the surface 
can be created. This is useful as it gives radial surfaces a radial UV pattern and 
surfaces that were highly one dimensional a linear UV pattern. In continuous 
geometry the principal curvatures are derivatives of the slope (𝑑𝜙) of the surface 
in 3D space. This is then used to develop a radius value (R) which is equivalent to 
the radius of a circle if the arc were to continue, and is written as follows in 
Equation 2-14: 

𝑐1 =
𝑑𝜙𝑚𝑎𝑥

𝑑𝑠
=

1

𝑅1
; 𝑐2 =

𝑑𝜙𝑚𝑖𝑛

𝑑𝑠
=

1

𝑅2
 

Equation 2-14: Definition of Principal Curvatures in a Continuum 

However, these values are only viable with continuous surfaces. Unfortunately 
most gridshells are made from meshes and thus the principal curvatures are 
defined based on the mean (𝑐𝐻) and Gaussian (𝑐𝑔) curvatures (Meyer, Desbrun, 
Schröder, & Barr, 2003). 

 2 2

1 2     H H g H H gc c c c and c c c c       

Equation 2-15: Definition of Principal Curvatures using Mean Curvature and Gaussian Curvature (Meyer et 
al., 2003) 

When compared to the principal stress equations in Equation 2-13, one 
notices a distinct similarity between Equations 2-13 and 2-15. This similarity 
arises in the way these values are determined. Both principal stress and principal 
curvature are 2nd order directional derivatives of the original functions (forces for 
principal stress and the shape of the surface for principal curvatures). For this 
reason both sets are difficult to get direct results for and instead are often found 
implicitly or discretely through orthogonal vector sets. 

2.4.1.2.2 Mean Curvature 
Mean curvature (𝑐𝐻) is defined as the average curvature of a surface, and is often 
written in continuous form as shown in Equation 2-16, where 𝑐1 and 𝑐2 are the 
maximum and minimum principal curvatures respectively: 
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𝑐𝐻 =
𝑐1 + 𝑐2

2
  

Equation 2-16: Mean Curvature in the Continuous Form 

However, these are not known directly in discrete curvature analysis. 

This method is not very useful for 
defining the look of a surface as 
everything from flat plates to minimal 
surfaces have a 0 mean curvature. 
However, it has use in discrete 
differential geometry and is therefore 
considered as part of an analytical 
tool. While Gaussian curvature is 
defined by the difference in the 
summation of interior angles from 2𝜋, 
divided by the sum of the distributed 
area pertaining to the vertex, the 
mean curvature is directly derivable 
from the Laplacian Cotangent 
Operator. 

 
   

      2

2
)( ( )

1

j i i

i ij ij j i

v N vi

f v cot cot f v f v
A v

 


     

Equation 2-17: Laplace Beltrami Operator via Cotangent Method (Meyer et al., 2003) 

Where A is 1/3 the area of each triangle containing the vertex 𝑣𝑖  with 
neighboring vertices and  j i iv N v  is every vertex connected to 𝑣𝑖 .  

Once the Laplace Beltrami cotangent operator is determined, the mean 
curvature at the vertex can also be easily found as the mean curvature is equal to 
½ the magnitude of the Laplace Beltrami cotangent operator. Note this Laplace 
Beltrami cotangent operator is not the same as the Laplace adjacency matrix.  

20.5 || ) ||(H ic v  f  

Equation 2-18: Mean Curvature Based on the Laplace Beltrami Operator (Modified from: (Meyer et al., 2003) 

2.4.1.2.3 Gaussian Curvature 
Most curvature analysis is conducted through the use of Gaussian curvature, 
which in continuous analysis is often defined as the multiplication of the two 
principal curvatures at a point (maximum and minimum). This analysis gives 
information on the typology of the curvature of the surface: 

 If the Gaussian curvature is 0, the curvature defines a flat plate or parabolic 
surface 

Figure 2-13: Cotangent Method for Developing the Laplace 
Beltrami Operator (source: 
computergraphics.stackexchange.com) 
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 If the Gaussian curvature is negative, the point at which the curvature 
analysis is being computed will be a saddle point  

 If the Gaussian curvature that is positive defines a bowl shape in the shell 
surface or a sphere 

These can all be seen as follows in Figure 2-14 where the Gaussian Curvature in 
the product of the two principal curvatures. 

𝑐𝑔 = 𝑐1 × 𝑐2 

The change in Gaussian curvature is also a useful tool for form finding of shell 
structures as too great a change in curvature will result in significant moment at 
the point of change, therefore reducing the shell-like behaviors of the structures 
and is also useful when comparing twin shell theory from Calladine (Calladine, 
1983). 

 
Figure 2-14: Curvature Typologies With Red and Green Lines showing 𝑐1 and 𝑐2 (Fritzsche, 2013) 

Gaussian curvature can also be explicitly defined in discrete differential geometry 
based on the Laplace Beltrami operator mentioned above in Equation 2-18. Here 
the Gaussian curvature can be defined as the following: 

 2 /g j

j

c A 
 

  
 

  

Equation 2-19: Interior Angle Summation for Discrete Gaussian 
Curvature (Meyer et al., 2003) 

Where 𝑐𝑔  is the Gaussian Curvature, 𝜃  is the 
internal angle of the vertex, and A is 1/3 the area 
of the corresponding mesh face triangle. Since 
gridshell roof forms are developed in action against 
gravity, there should always exist positive 
Gaussian curvature throughout the whole surface. 
Any point at which the Gaussian curvature shifts 
from positive to negative or zero Gaussian 

Figure 2-15: Summation of Internal Angles 
(source: 
computergraphics.stackexchange.com) 
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curvature defines an inflection point that would result in significant stress density. 

2.4.1.3 Vector Fields 
Vector fields are sets of values typically in 3D space giving direction and 
magnitude to a function at all points. Vector fields can be broken down into 2 parts, 
their direction and their magnitude. 

In order to understand the different relationships that exist within a vector field, it 
is often best to break it down into the gradient (or direction) and the scalar field 
(or magnitude) which can be written as 𝛁𝑓 = 𝑽, where f is the scalar field and 𝛁 is 
the gradient operator (or the vector of all partial derivatives) that exists on the 
scalar field to generate the gradient (Dawber, 1987). Such that: 

𝛁 = ∑ 𝒆𝒊

𝑛

𝑖=1

(
𝜕

𝜕𝑖
)  

Equation 2-20: Gradient Operator (Dawber, 1987) 

Equation 2-20 shows that this operator is the summation of all directional 
derivatives of the unit vector (e) in each direction (i) for a vector field.  

2.4.1.3.1 Divergence 
Divergence of a vector field is the amount at which vectors point either towards 
or away from each other. A vector field with 0 divergence will have all vectors be 
parallel in that field. 

The divergence of the field is then 𝛁 ∙ 𝒗, where if 𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑥𝒊 + 𝑣𝑦𝒋 + 𝑣𝑧𝒌 , then 
the divergence is equal to  

𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
 where i,j,k are unit vectors in 3 

dimensional reals space (Dawber, 1987).  

Convergence and divergence of a vector set from a line or point are what are 
known as singularities. Singularities become a major problem for parameterization 
as this means that the size of the parameterized elements as you approach the 
point become closer and closer to 0, resulting in overly dense meshes close to the 
singularity. 

2.4.1.3.2 Curl 
The curl of a field is also known as the rotation of a field such that in 2D space it 
is typically seen as the rotation of the vectors or the cross product of the gradient 
operator and the field.  ∇ × 𝑽 = 𝑐𝑢𝑟𝑙 𝑽 (Dawber, 1987). This is often visualized as 
a rotation in the field and is often seen orthogonal to the field leading to 
singularities. As rotation around a specific point means that the orthogonal vector 
set will either converge or diverge on that point. 
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2.4.2 Mesh Embedding 

Mapping and exploring the relationships between points through lines has been 
around since the time of Euler, where he famously tried to map out whether or not 
one could cross the seven bridges of Koningsburg only one time each and still 
cross every single one. However, before Tutte presented his paper in 1963 known 
as “How to Draw a Graph”, mapping and graph theory was not necessarily 
focused purely on straight lines and direct linear relationship. In his process Tutte 
algorithmically determines a proper projection of a complex surface based on 
network connectivity. This initial foray started the work into graph topology 
without using any curves. In this paper, Tutte (1963), goes on to describe an 
embedding known as barycentric mapping, or also known as spring theorem, in 
which the edges of a mesh could be modeled as springs that so long as the 
boundary was set and planar, with no holes (Kobourov, 2012). A standard 
example is that of a cube. By fixing the initial boundaries as a unit square, the 
position of the remaining vertices are calculated by linearly moving each position 
towards the barycenter of the connected points. 

This works as follows: 

Once the exterior is set to a convex boundary, the points are moved linearly 
towards each other as if they are zero length springs. This is defined the by 

average some of the neighbor’s positions 
or more succinctly as the barycenter or 
centroidal position. As long as the graph 
is at least 3 connected (containing 3 or 
more connections), the resultant graph 
will be a planar embedding. The iterative 
method shown below shows how this 
method is developed iteratively 
(Kobourov, 2012). 

  0 1 0 1: ,          &    ;Input G V E whereV V V with fixedV freeV     

0             and aconvex polygon P with V vertices  

:        vOutput position p for every vertex  

0  :            InitalizeV Place fixed verties at cornersof p

1  :            InitializeV place freevertices inside polygonat origin  

Figure 2-16: Tutte Embedding of a Cube (Source: 
Wikipedia Creative Commons) 
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Repeat     [0,| |] :ifor i v do  

   

 
,

1

deg
v u v x

u v E

x p p
v

 
   

 
  

  
   

 
,

1

deg
v u v y

u v E

y p p
v

 
   

 
            v vuntil x and y converge for all freevertices  

2.4.2.1 Planar Projections 
Planar projections are linear mappings of a 3D surface onto a 2D plane via a direct 
translation or orthographic projection. This method of embedding is useful for 
gridshells. Since no two points can occupy the same (x,y) coordinate, a mapping 
to the plane of z=0 always provides a unique crossing-free solution.  Since these 
projections are entirely linear, there is a much simpler remapping to occur in order 
to retransform from 𝑅2  to 𝑅3  space. This system matches closest to the Tutte 
Emedding system, except that here there is no energy minimization that occurs. 
For the thesis, planar embedding will be used to to examine the system, as this 
provides the simplest method for also modifying the stress direction vectors. Since 
for a gridshell, no points have the exact same X and Y values in real space a proper 
projection and embedding for most gridshells is to the XY plane. This results in 
Equation 2-21 

𝑛(𝑥, 𝑦, 𝑥) → 𝑛(𝑥, 𝑦) 
Equation 2-21: Vertical Projection Embedding for Each Point of the Gridshell to the XY Plane (Own) 

This method does lose information though, and therefore angles are not perfectly 
preserved and mesh faces that are mostly vertical will become much smaller than 
mesh faces that are horizontal. However, it does allow for the easy transformation 
of the principal stress vectors as the stress vector location also mirrors Equation 
2-21. 

This also allows for an easy mapping of the principal stress vectors. As the 
principal stress vectors are tangent to the mesh face, this means that the principal 
stress vector directions can also follow the transformation such that Equation 2-
22 also holds true. 

𝜎1(𝑥, 𝑦, 𝑥) → 𝜎1(𝑥, 𝑦) 
Equation 2-22: Transformation of Principal Stress Direction from Real 3D space to the XY Plane (Own) 

2.4.3 Mesh Parameterizations 
Since a comparison structure is generated using Periodic Global Parameterization, 
this section gives rough background information on the working of the mesh 
system to help understand why this method is effective and used in current 
quadrilateral meshing algorithms including Winslow’s 2010 thesis.  
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In order to get surfaces that are used every day out of real space and into a 2D 
plane, meshes would have to be represented as the following 

         , [ , ,  , , , ]Tu v x u v y u v z u vx  

Equation 2-23: 𝑆 ⊂ ℝ3 → ℝ2(Floater & Hormann, 2005) 

𝒙1 =
𝜕𝒙

𝜕𝑢
, 𝒙2 =

𝜕𝒙

𝜕𝑣
 

The first fundamental form is an important characteristic of differential geometry 
in which the square of the element of arc of a curve on the surface creates the 
following equation. 

    
2 2

2 1 1 2 2 2

1 1 1 2 2 22ds x x du x x du du x x du    

Equation 2-24: Derivative Form of the First Fundamental Form (Floater and Hormann, 2005) 

Or since these can be written in a symmetric matrix (I) by taking the transform 
Jacobian 𝒙(𝑢, 𝑣) and multiplying it by the Jacobian of 𝒙(𝑢, 𝑣) as shown in Equation 
2-25. 

 
11 12

12 22

T

x x

x y z u v

g gy yv v v

x y z g gu v

z zv v v

u v

  
      
                      
  
      

 
  

J J = I  

Equation 2-25: Identity Matrix of the First Fundamental Form (Floater and Hormann, 2005) 

This identity is then used to ensure that the transformation of the mapping is 
Isometric, Conformal, or another type of mapping.  

2.4.3.1 Types of Useful Mappings 

2.4.3.1.1 Isometric Maps 
Isometric Maps are length preserving maps. This means that any line or dimension 
on S* is the same length as on the main surface S. This is can only be defined in 
this way if the two have the same fundamental form which also means that they 
will have the same Gaussian curvature at corresponding points on the mesh. 
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Figure 2-17: Mapping between S and S* (Floater and Hormann, 2005) 

This means that for this to occur the mapping between the two surfaces must 
follow the following form:  

 *I I  

Equation 2-26: First Fundamental forms  I and I* are Equal (Floater & Hormann, 2005) 

2.4.3.1.2 Conformal Maps 
Conformal maps are angle preserving. This means that every angle on the surface 
S* is equal at the same point on S. One example of these is a Mercator projection. 

In order for this to occur, the first fundamental forms must be proportional. This is 
typically written as a function of the U and V coordinates as in Equation 2-27, 
where the first fundamental form of the mapped surface is equivalent to the first 
fundamental form of the original surface times a constant. 

   *,vf uI I  

Equation 2-27: Scaling of the First Fundamental Forms Between I and I* (Modified From Floater & Hormann, 
2005) 

This means for a surface to be conformal it must have a scalar function of the first 
fundamental form that holds true at all points. This does not mean the value has 
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to be constant, but rather that the value is scalar and is of some function the UV 
parameters 𝑓(𝑢, 𝑣). 

2.4.3.1.3 Harmonic Maps 
Harmonic maps are conformal maps where any mapping of (u(x, y), v(x, y)) can be 
represented based on the follow equations: 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑎𝑛𝑑 

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
= 0 

Equation 2-28: Requirements for Harmonic Maps 

Harmonic maps also have the advantage to be quickly computed. As long as a decent 
boundary condition is chosen, a non-linear solver will try to solve the partial 
differential equation through energy minimization where the energy is the value of the 
difference in area and angle through the following equation. 

𝑈𝐷(𝑓) =
1

2
∫(||∇𝑢||

2
+ ||∇𝑣||

2
)

𝑠

 

Equation 2-29: Dirichlet Energy Equation 

Therefore, in theory, these mappings should be significantly more powerful than a 
planar projection that will occur during the thesis and will provide a solid 
comparison for between the two sets. 

2.4.3.2 Periodic Global Parameterization (PGP) 
Periodic Global Parameterization is a method developed by Nicholas Ray that 
creates a smooth mesh parameterization based on two orthogonal vectors (Ray et 
al., 2006). The vectors used are typically principal curvature, but can also be 
principal stresses (Winslow, 2010). This method creates a globally smooth 
conformal map aligning by taking a triangular mesh and overlaying it with a 
quadrilateral mesh that minimizes the angle difference between the mesh edges 
and the principal stress vector field. 

The inputs required are a triangular mesh and the two vector sets that are required 
to be orthogonal to each other (𝑽, 𝑽⊥). Periodic Global parameterization is a quasi-
isometric mapping that utilizes several deep functions to create globally smooth 
charts. To begin, the parameterization starts by smoothing out the vector field and 
eliminating curl. This reduces the number of singularities in the field thereby 
creating a simpler parameterization, however, this curl reduction introduces 
inaccuracy to the field in order to create a more uniform parameterization (Ray et 
al., 2006).  

The global surface is a manifold, which is used to define the globally smooth 
parameterization and combination of multiple parameterizations of overlapping 
charts or sections by linking them with transition functions (Equation 2-30). In this 
case the whole surface or manifold shall be (S) and the sections shall be (C) with 
the second mapped section being (C’)(Ray et al., 2006). Each chart has its own 



35 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

mapping function to map them all to a different 2D domain that will be the global 
parameterization. The advantage is, as long as the 2D regions that intersect 
between each of the mappings is a topological disk, the sections are linked by a 
geometric transformation. 

       , C C p p    
   

Equation 2-30: Transition Function between Mappings (Ray et al., 2006) 

This scaling function (𝜏𝜙→𝜙′) can be any 
combination of rotation, translation, or 
scaling in order for the transition from 
one surface section to the other to fit, so 
that in the end the gradient along the 
parameter space  ,    matches the 
vector directions as shown in Equation 
2-31 (Ray et al., 2006). In other words, 
the parameter space is being warped to 
match the vector direction.  

These sets can then be theoretically 
mapped as parameters in the two 
directions using the equation  

; 00T T        V V  

Equation 2-31: Divergence of 
Parameterization in Comparison to the 
Vector Sets (Ray, et al, 2006) 

In other terms, the parameterization lines match up perfectly with the vector field 
so that the tangent of the parameterization lines matches exactly with each frame 
of the structure. 

However, since the vector fields are not without curl and do diverge, an energy 
function is instead introduced as written in Equation 2-32. This energy function is 
trigonometric function of the real parameterization and is used to minimize the 
difference between the UV parameterization on the Individual 2D chart and the 
vector map (Figure 2-18). 

  
2 2

min T T

S

F dS          V V  

Equation 2-32: Modification of the Dirichlet Energy Function for PGP (edited from: Ray et al., 2006)  

Figure 2-18: Process Used in Periodic Global Parameterization 
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2.5 PRECEDENT AND EXAMPLES 

2.5.1 Gridshells 

2.5.1.1 British Museum Courtyard 
Architect: Foster & Partners 

Engineer: Buro Happold 

 

The off-center reading room and tower 
provided a unique challenge to the 
design of the roof. In order to find the 
proper shape, the engineers used 
dynamic relaxation to ensure minimal 
structural thickness could be used 
before generating a smooth gridshell 
pattern across the surface. 

(www.fosterandpartners.com, n.d.)  

Figure 2-20: Exterior of British Museum Roof (Source: Buro Happold) 

Figure 2-19: Interior of British Museum Courtyard 
(Source: Buro Happold) 
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2.5.1.2 Smithsonian Courtyard 
Architect: Foster & Partners 

Engineer: Buro Happold 

 

A triple vaulted gridshell 
supported by 8 columns 
sits just above the rest of 
the Smithsonian portrait 
building creating a free 
standing and free 
flowing gridshell 
structure. Due to the 
orthogonal shape of the 
courtyard, a diagrid was 
used to develop a 
lightweight and complex 
roof. (www.fosterandpartners.com, n.d.)  

Figure 2-22: Interior of Smithsonian Courtyard (Source: Foster + Partners) 

Figure 2-21: Interior and Structure of Smithsonian Roof (Source: Foster + Partners) 
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2.5.1.3 Kings Cross Western 
Concourse 

Architect: John McAslan & 
Partners 

Engineer: ARUP 

“The diagrid shell structure of 
the new concourse roof spans 
to and is supported by 
perimeter tree columns and a 
central funnel structure – 
making it structurally 
independent of the sensitive 
Grade I-listed Western Range 
building. 

The envelope and structure of 
the roof are fully integrated. 
This gives it both an elegant, 
natural form and also a modular, 
repetitive construction that 
helps fabrication and 
erection.”(“Redevelopment of 
King’s Cross station - Arup,” 
n.d.) 

  

Figure 2-23: Western Concourse Top (Source: John McAslan & 
Partners) 

Figure 2-24: Western Concourse Interior (Source: ARUP) 
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2.5.1.4 Weald and 
Downland 
Gridshell 

Architect: Edward 
Cullinan Architects 

Engineer: Buro Happold 

 

“In order to correctly map 
the structure and ensure 
each joint in the lattice 
was positioned 
in a way that 
would allow the wood the appropriate degree of curvature to form the gridshell, 
our engineers developed customized software based on the ‘dynamic relaxation’ 
technique. This interactive process of computer analysis aims to solve a set of 
nonlinear equations, a technique that is also used for the modelling and analysis 
of tensile structures. 

Shaped into a giant peanut shell form, the undulating structure is an impressive 
50 meters long, 12 meters wide and 10 meters high. The gridshell is based on 
straight lines that are crisscrossed and twisted to form a rotating grid plane. To 
achieve this unique 
outcome the team applied 
new techniques 
developed especially for 
this project.” (“The Weald 
and Downland Gridshell - 
BuroHappold 
Engineering,” n.d.) 

  

Figure 2-25: Downland Gridshell Interior (Source: Buro Happold) 

Figure 2-26: Construction of Gridshell (Source: Buro Happold) 
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2.5.1.5 Yas Hotel, Abu Dhabi 
 

Architect: Asymptote 
Architecture 

Engineers: Schlaich 
Bergermann und Partner 
(SBP) 

“Yas Hotel is a five star 
signature hotel next to the 
Formula 1 racetrack on Yas 
Island. The iconic glazed 
veil visually connects two 
buildings located on both 
sides of the racetrack. Its 
structural system is a gridshell that consists of the triangulated mega structure 
and the quadrangular grid. The free flowing gridshell is structurally one piece 
without any expansion joints and is supported vertically by 10 V-shaped 
columns. Due to its size and extreme temperature changes, the gridshell must be 
able to slide under temperature movements. Therefore eight out of ten supports 
are able to slide in one direction, with the other two acting as fixed supports. 
Wind loads are transferred to the concrete hotel structure by horizontal struts. It 
is covered by 5.800 
pivoting diamond-shaped 
glass panels and features 
LED lighting at each node 
that allow for programmed 
lighting and image 
sequences over the whole 
surface.” (“Yas Hotel,” n.d.) 

  

Figure 2-27: Yas Facade (SBP) 

Figure 2-28: Yas Island Hotel ( SBP) 
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2.5.1.6 Mannheim 
Multihalle 

Architect: Frei Otto 

Engineer: Ove Arup & 
Partners (Edmund 
Happold & Ian Liddell) 

Originally a temporary 
pavilion, the 
Mannheim Multihalle 
was a timber gridshell 
spanning 60 meters 
by 60 meters. The 
form was found by 
using hanging chains 
and used a tetrahedral grid supported by cables to provide rigidity (Otto,1974). 
The frames themselves are four layers of timber connected with pins. This strained 
timber structure like the Weald and Downland Gridshell was developed from a 
lattice of straight timber that was bent into shape by lifting the gridshell and 
locking it into the exterior tension ring. 

  

Figure 2-30: Mannheim Hanging Model (Otto, 1974) 

Figure 2-29: Mannheim Interior (Otto, 1974) 
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2.5.1.7 Het Scheepvaartmuseum, Amsterdam 
Architect: Dok Architecten 

Engineer: Ney + Partners 

“The roof of the Dutch Marine 
Museum courtyard in Amsterdam 
NL-had to offer an intrinsic added 
value to this historically preserved 
building. Based on wind roses of 
ancient marine maps of the 
museum collection, a steel structure 
is developed of 30m by 30m. This 
basic geometry was curved to a 
lightly bent dome that only 
transmits vertical loads onto the 
museum's existing walls” (“NEY & 
Partners | Projects | Glass roof 
Dutch Maritime Museum | 10915 | 
Amsterdam,” n.d.) 

The roof while based upon old 
navigation maps was also defined 
by a reciprocal Maxwell reciprocal 
diagram (Figure 2-33).    

Figure 2-32: Maxwell Reciprocal Frame of the Dutch Maritime 
Museum Roof (Adriaenssens et al., 2014) 

Figure 2-31:Roof Grid of Dutch Maritime Museum (NEY & 
Partners) 

Figure 2-33: Dutch Navigational Chart (NEY & Partners) 



43 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

2.6 SOFTWARE AND CHOSEN TOOLS 
In order to run the computation required, a set of software was chosen that 
facilitated the proper development of the form while also containing robust 
protocols for allowing the systems to communicate with each other. The main 
visual computing closet is developed in Grasshopper3D (Rutten, 2014). This is a 
visual modeling tool allowing for a set of plugins allowing for parametric geometry 
modification. This system is used to build generative algorithms and generate the 
geometry. Rhino5 (Rhino 5, 2017) runs as the 3D modeler for visualization. 

There are several components and plugins used within Grasshopper3D for this 
script, the three most utilized are GeometryGym (Mirtschin, 2015), GSA (Oasys 
GSA, 2017) and Kangaroo (Piker, 2017). These systems are each slightly different 
but are used for the structural form finding and analysis. 

Karamba3D (Preisinger, 2016), is used for final sizing optimization and final 
analysis of the structure. With GSA (Oasys GSA, 2017) being a more potent 
analysis program, it is used to develop the principal stress directions of the 
triangulated shell structures. While it seems odd to complete the setup in the 
method, GSA is a more robust tool that allows for proper analysis of the shell 
functions and generates a more robust vector field. 

Kangaroo is a physics engine that allows for creating a spring system that is vital 
to generating a particle spring solution for optimizing the initial shell structure. It 
is also used to develop a proper Tutte Spring Mapping Algorithm for the purposes 
of this report. 

Custom software is generated within Python. In order to perform discrete 
integration steps and apply some geometry processing such as support checks 
and the Euler Tracer itself. 
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3 THE DESIGN 
Roof Design 

With Building Technology and the School of Architecture not being only a research 
institution, but also a design institution, this paper will also implement a design 
scenario in order to showcase the method developed. The goal of the study is to 
verify the power of the tool across multiple boundary representation surfaces 
(breps) with varied support conditions. 

To complete this task and integrate the space in a known location, the area in front 
of the main entrance to TU Delft Bouwkunde was used. At this point in time the 
current space is fully open to the elements and contains only a small covered front 
porch. This, in turn, results in a large open space that is rarely used due to the lack 
of protection against the elements despite its prime location. By developing a 
roofing structure in this method, current bike storage would be covered allowing 
for reduced weathering and erosion on the bikes and a covered space for students 
and faculty to use for outdoor functions regardless of the meteorological 
conditions. The site is shown in Figure 3-1 in plan with the location for the gridshell 
developed in a light blue. 

 
Figure 3-1: Map of TU Delft Bouwkunde and Location of Gridshell (Source: Google Maps) 
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The design of the Gridshell Roof for the main entrance cannot be defined as one 
surface. This is because, unlike a standard roof or gridshell, this structure is 
designed to mirror the entrance of the faculty and the ingress points. 

This site must also contain few to no columns; not only do columns disrupt the 
flow of the gridshell, but they also break up the space further than necessary. 
Instead, the gridshell itself will connect to the ground at various positions in order 
to ensure that the system functions with diverse support criteria while also 
ensuring the minimal need for columns.  

The gridshell must not have a predetermined topology as the topology is instead 
developed through the use of the script. This should result in a bar topology that 
follows the principal stress and force flows of the gridshell as much as possible 
while still being developable without relying on predetermined guesswork. 

This site has several advantages for testing the validity of the script. By using two 
different main heights for the gridshell supports, the gridshell will have highly 
vertical sections creating distortions in most maps. The initial form is also complex 
enough of a shape to need to be developed by two polysurfaces. Since the 
gridshell will rest on the TU Delft Bouwkunde Building, there are several 
requirements that exist which simultaneously provide unique possibilities to 
develop irregular forms, for example, the brick walls will not be able to take 
moment and therefore the supports must be treated as a series of pins. 

The initial area and space where the gridshell will be implemented is shown in 
Figure 3-2. The base plan allows for the Architecture sign still be visible from 
approach while ensuring students and faculty arriving through the front have clear 
ingress and egress points. The space that the gridshell would be placed in has one 
line of symmetry and therefore this symmetry will be brought into the design of 
the gridshell as well.  
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Figure 3-2: Photos of TU Delft BK Entrance (Own Photos) 
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4 THE GENERATIVE MODEL 

4.1 MODEL AND DESIGN PATH: FULL MODEL SUMMARY 
The parametric form finding, analysis, gridshell topology, and cleanup can be 
considered as one full loop containing several smaller loops within Figure 4-1. This 
section of the paper will discuss the full loop and the roles of each set with the 
form finding, gridshell topology, and other sections being discussed in each 
subsection. This section will also identify locations where the loop can be improved 
for future work and how this method could be further optimized. 

This layout shows the four main sections that exist in this thesis. The start is the 
initial UV parameterization and Form Finding. This section is described in Part 1 
and is completed on the quadrangular parameterized initial surface. 

The second section is the FEA analysis and generation of the principal vector 
directions. This is completed on a mesh that is further divided into triangles using 
the loop subdivision.  

The third part is the streamline generation. This method is completed on the two 
dimensionally parameterized surface. This includes the generation, discretization 
and cleanup of the gridshell. 

Finally, the rationalization and final FEA analysis in order to determine the viability 
of this method in comparison to other methods is completed again in real 3D 
space. Here the final scores are determined from the volume, strain energy, and 
shell behavior of the final gridshell surfaces. 
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Figure 4-1: Layout of Generative Model 
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5 CONSTRUCTING A BASE STRUCTURE 

5.1 INPUTS 

5.1.1 The Supports 
The support structure also had to be well understood from the perspective of 
designers. While in a physical gridshell structure every support is a point support, 
the goal was to make the script understandable from the perspective of a designer. 
In this case the designer has the option of setting line supports or point supports 
wherever the designer wishes to support the structure. By utilizing this setup, the 
script will then divide the line supports accordingly as to generate the proper 
support positions for the form finding. 

 

5.1.2 The Shell 
The initial chosen technical basis for the entire system was determined by what 
were the most usable inputs in order to develop a proper grid system. Within 
Rhino there are a variety of possible different methods to model a 2.5D structure 
like gridshells. The most common method is through the development of surfaces. 
Freeform surfaces are a useful input as they are derived from either boundary 
curves or a subset of curves used to create a sweep either through or along them. 
Unlike the meshing algorithms in Rhino, this method of surface development 
contains an inherent 2D structure known as a U,V coordinate that parameterizes 
the entire surface across a UV of {0:1},{0:1}. This inherent data set allows for a 
quick and efficient method of parameterizing the surfaces for the needs in form 
finding and mesh generation. This method of parameterizing the initial shape of 
the surface allows for architects also to readily enter multiple connected surfaces 
and allows the script to generate a continuous UV system over the length of the 
entire design. 

With the supports and rough initial shape entered in by hand, the script generates 
a targeted UV meshing structure over the system and welds these UV meshes 
together before sending the output to the form finding algorithm. 
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5.2 HOUSEKEEPING SCRIPTS 

5.2.1 Basic Mechanics Check 
The script runs a quick check on the location and the number of supports. This is 
done by ensuring that all supports do not sit inline as this would guarantee the 
whole shell is statically unstable. The script is written in Python and is available in 
Appendix 2. 

This instability is because any linear system will result in the ability for rotation 
around said line, and linear support systems have no way of dealing with off axis 
loads as they create unsolvable moment around the supports. While it is 
theoretical that if the area centroid of the shell sit exactly along the line of action 
that the form would be possible, any wind load would shift the line of action 
outside of the line of supports, therefore a minimum of any area must be given. 
The pseudocode is written as below: 

Input SupportPos 
Output Boolean 
Define checkequal (pt) 
       iterator = iter(pt) 
       try: 
            first = next(iterator) 
        except StopIteration: 
            return True 
       return all (first == rest for rest in iteration) 

If supportcount <3: 
        print "Not enough supports” 
        output = none 
If supportPos is None: 
        print "Not enough supports” 
        output = none 
If supportPos.count()>=3: 
        print “You have enough supports” 
Decompose Support Positions 
        For I in range(len(supportpositions)): 
                X.supportloc = supportpositions[i][0] 
                Y.supportloc = supportpositions[i][1] 
        If checkequal(X.supportloc) | Print (“Your supports are in a line”) a=None 
        If checkequal(Y.supportloc) | Print (“Your supports are in a line”) a=None 
        Else Print (“Your supports are well placed”) a=x 
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5.2.2 Proper Initial Shell Form: 
The second check determines whether or not the initial 
form is a reasonable starting point. A shell structure is 
efficient through its geometry, in this case the forces 
throughout the shell flow directionally towards the 
edges and supports of the gridshell. As the form 
approaches the thrust network of the shell, the moment 
in the shell significantly reduces. However, if a 
structure were to be desired that loops back on itself, 
the structure would no longer be valid for shell analysis 
and form finding as significant moment would be 
generated in the curves exceeding verticality. 
Therefore, this subroutine checks to ensure that the 
desired surface has no points on the surface that are 
coincidental in the Z direction. This script was developed 
in Grasshopper3D. A quick example of how this works can be seen in Figure 5-1 
where lines are drawn from the UV coordinate points upwards to check for any 
curve – mesh intersections. 

 

  

Figure 5-1: Method of Checking for 
Shell Folding in Initial Surface 
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6  FORM FINDING 
Before the topology of a valid gridshell can occur, the form of the covered shell 
structure must be developed. The system chosen was a mass-spring model that 
models a digital system of a cable net structure. By developing this system, a 
dynamic catenary structure is developed that results in a near optimal shell 
configuration. As proper form finding is more important than that of the topology 
of the gridshell for minimizing the strain energy in a system and generating proper 
structural gridshells, significant time and focus was given to this subsection of the 
thesis. 

6.1 CHOICE OF METHODOLOGY 
Throughout the thesis several methods of form finding experimentation were 
conducted. These systems were then ranked based on a variety of requirements. 
The two main options were Dynamic Relaxation and Particle Spring methods. 
Both Dynamic Relaxation and Particle Spring Methodologies fall under what is 
known as dynamic equilibrium methods. Dynamic Equilibrium methods update 
velocities of mass spring particles with a defined bending resistance. Results from 
these systems were determined based on simplicity of development, accuracy, 
and level of customization for form finding.  

6.1.1 Choosing Particle Spring Method 
This system is a methodology that utilizes the same interactions as dynamic 
relaxation. Static analysis is conducted on a set of springs modeling the space that 
defines the area where a shell would like to be developed. Particle spring method 
was implemented using a physics simulator known as Kangaroo which linearly 
solves the position of particles under load until such a point that the particles have 
stopped moving and their position has converged on a final form.  
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 DYNAMIC 
RELAXATION 

PARTICLE SPRING 
METHOD 

SIMPLICITY OF 
DEVELOPMENT 

Requires Bending 
Stiffness, Axial Stiffness 
& Ground Structure 

Requires Ground 
Structure & Axial 
Stiffness  

PREVIOUS 
IMPLEMENTATION IN 
IDE 

Karamba Kangaroo 

LEVEL OF 
CUSTOMIZATION 

Set Material Properties Easily Modifiable 
Stiffness with Ability to 
Modify Stiffness Sets 

WORKING ORDER Works as Discrete Lines Works as A Mesh 

Table 6.1: Comparison of Kangaroo and Karamba 

In the end, while dynamic relaxation is more realistic for predefined forms, since 
this system is needing to work with meshes throughout the entire process, particle 
springs with Kangaroo was determined to be the most optimal strategy. Particle 
spring method also works much more fluidly with the goal of generating a tool for 
architectural form finding as the user define setup can be limited to as little as a 
spring stiffness. 
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6.2 IMPLEMENTATION 
The implementation of the form finding structure was developed based on the 
inherent UV structure of surfaces and polysurfaces that exist in Rhino. Depending 
on how the surface is developed, a standard UV system will be developed. Rails 
develop the system with U values parallel to the rails with V based values 
perpendicular to the rails. A lofted structure works with similar parameterization.  

If a polysurface is desired with varying surface lengths and height, the V values 
are determined not through the length of the swept or lofted surface, but by 
bounding the surface and placing V values based on the Z-coordinate. This 
ensures that the mesh generates a set of values that are at equivalent locations to 
ensure that the mesh can be welded together. 

When the springs are released from their position, 0izF   and the system starts 
to move in the z direction. This unbalanced force will then generate acceleration in 
the particles in correspondence with the particle spring system laid out in section 
2.2.2, utilizing the Kangaroo simulation plugin with viscous damping. A 
convergence value of average movement within the time step function is less than 
1e-10 meters was used and a spring stiffness of 750kN/m was used for the entire 
section.  
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6.3 SHELL SMOOTHING 
 

 
Figure 6-1: Form Found Mesh before Laplacian Smoothing 

One major issue the method of form finding is that the shell form finding will 
generate kinks if the spring structure reduces in span. In order for these issues to 
be mitigated, some post processing was conducted on the shell system. Laplacian 
smoothing (Equation 6-1) was completed on the shell. Laplacian smoothing is a 
method of normalizing point locations based on the values of their neighbors such 
that each nodal point becomes the mean value of the neighboring points in 3D 
space. 

 
1

1 N

i j

jN 

 
  
 

xx  

Equation 6-1: Laplacian Smoothing (Rework of Tutte Embedding Equation) [Hansen, 2005]  

Where: 

N = number of neighboring vertices 

�̅�𝑖 = the new mean nodal location 

xj = the position of the neighboring vertices 

This creates an average of the nodal positions and removes the creasing that 
occurs in shells with interior boundary conditions. With shells containing no 
interior boundaries, the effect is essentially minimal. Notice that the structure for 
position locations is similar to that of Tutte Embedding. It is also the same structure 
as the dynamic relaxation engine with zero length springs. 
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Figure 6-2: Form Found Mesh after Laplacian Smoothing 
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6.4 SHAPE SET FOR ANALYSIS 

 
Figure 6-3: Visualization of Base Test Shells 

The shapes seen in Figure 6-3 are used for the applied structural analysis. The first 
shape, which will be known as the Square Shell, show at the top is used to 
estimate the form finding with a structural system with 4 set points. The following 
structure in the middle is the structure used to develop a lofted surface with a full 
supported boundary, and will be called Shell with Fixed Boundary. Finally, the last 
structure developed uses a radial UV condition containing 4 different polysurfaces 
that are welded together as meshes, and will be called Conical Shell throughout 
the form finding section of the thesis. This system also contains different height 
support conditions in order to ensure that all variable methods of the system are 
tested.  

The UV coordinates are then set as springs. These springs are set with an initial 
lengths in the given form being considered their rest length. Any forces acting on 
the points at the end of the springs will cause them to move, putting tension on 
the spring system in accordance to Hookes law, following the Particle Spring 
System. 

Once this has been set, the springs are released from their initial positions and the 
points move until the sum of forces are equal. This equilibrium positions allows for 
the mesh to be consistently in tension with respect to the desired geometry.  
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Diagonal Springs or Quadrilaterals 

Once the selected method has been chosen for developing the form, another 
method must also be examined for developing proper form. When finding form for 
shells, a hanging chain or spring method containing quadrilaterals is typically used. 
However, this results in forms that ignore the Poisson’s ratio of the shell material. 
This results in two different issues, namely the difference in form and the 
introduction of tension into a structure. The goal of form finding is to 
fundamentally reduce these issues to create an efficient shell structure. The 
equations 6-2, show how the difference between the two subsets and how the 
diagonals are implemented. This method implements diagonal springs in data sets 
designated to mimic a Poisson’s Ratio. The implementation of the UV springs 
(upper) as well as the diagonals (lower) are shown in Figure 6-4. For a more 
detailed understanding of the script, please reference Appendix 1. 

 

 

 
Figure 6-4: Differing Layouts of Springs on Fully Bounded Mesh Quadrangular (top) vs Included Diagonals 
(bottom)(own) 

An introduction of additional springs brings new force sets into the equation as 
well. The introduction of additional springs now exist in the diagonals as well. 
Therefore additional nodal connections needed to be determined. This was done 
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by modifying the spring equations to include a diagonal forces 
(𝒇𝑖,𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 𝑑𝑖𝑟𝑒𝑡𝑖𝑜𝑛𝑠) and including a separate spring strength (𝑘𝑠,𝑑). 

𝒇𝒊,𝒅,(𝒙,𝒚,𝒛) = 𝑘𝑠,𝑑

∙ (
(𝒏𝑖+1,𝑗+1

𝑡 − 𝒏𝑖,𝑗
𝑡 ) − (𝒏𝑖+1,𝑗+1

0 − 𝒏𝑖,𝑗
0 )

|𝒏𝑖+1,𝑗+1
0 − 𝒏𝑖,𝑗

0 |

+
(𝒏𝑖−1,𝑗+1

𝑡 − 𝒏𝑖,𝑗
𝑡 ) − (𝒏𝑖−1,𝑗+1

0 − 𝒏𝑖,𝑗
0 )

|𝒏𝑖−1,𝑗+1
0 − 𝒏𝑖,𝑗

0 |

+
(𝒏𝑖+1,𝑗−1

𝑡 − 𝒏𝑖,𝑗
𝑡 ) − (𝒏𝑖+1,𝑗−1

0 − 𝒏𝑖,𝑗
0 )

|𝒏𝑖+1,𝑗−1
0 − 𝒏𝑖,𝑗

0 |

+
(𝒏𝑖−1,𝑗−1

𝑡 − 𝒏𝑖,𝑗
𝑡 ) − (𝒏𝑖−1,𝑗−1

0 − 𝒏𝑖,𝑗
0 )

|𝒏𝑖−1,𝑗−1
0 − 𝒏𝑖,𝑗

0 |
) 

Equation 6-2: Additional Spring Forces Due to Diagonals (Modified from: (Harding, 2011) 

Four versions of the form finding algorithm were used and then analyzed based 
on the strain energy per unit volume of the shell structure. Each system was 
analyzed using a consistent shell cross section and categorized based on the strain 
energy per cubic meter of shell and the average ratio of bending moment to in 
plane stress. This method was chosen as this averaging would allow for variations 
in shell area that are caused by the differing effects of the geometry of the springs. 
Since the flexural rigidity of plates is defined as: 

𝐷 =
𝐸ℎ3

12(1 − 𝝊2)
 

Equation 6-3: Flexural Rigidity of A Plate (Beranek, 1972) 

This means that the rigidity of a 0.1m thick steel plate would be 0.017GPa in 
comparison to a Young’s Modulus or Tensile Modulus of 200GPa. Most 
deformations and strain created in a plate will come from bending stress and 
therefore using strain energy density of a plate structure is a viable method of 
measuring shell efficiency. 

A second ranking (R) is performed based on the mean shell behavior ratio. The 
ratio is defined as the average of the maximum normal forces (𝑛𝑚𝑎𝑥) to total forces. 
Where total forces are the moment (𝑚𝑚𝑎𝑥 ) over the thickness of the shell (h) plus 
the normal forces in the element and therefore will be a ratio of the principal normal 
and principal bending moment as shown in Equation 6-4. 
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Equation 6-4: Shell Scoring Percentage (Oosterhuis, 2010) 
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 Each system was then meshed using the Weaverbird’s Loop subdivision such 
that the largest triangle was less than 0.2 square meters (Piacentino, 2015). The 
reasoning behind this was twofold: to ensure the validity of linear solvers and to 
allow for curvature analysis. In structural FEA programs, triangular meshes are 
solved linearly. This linear assumption is used later on in order to develop the 
principal stress direction. This triangulation is also used to develop principal 
curvature of the mesh so that future research can optimize based on a weighting 
function between the two orthogonal vector sets. 

The first method was a standard quadrilateral based structure with the form 
developed from traditional hanging chain models. These models are similar to 
those used by Frei Otto and Antoni Gaudi and used for form finding such as the 
Multihalle and La Sagrada Familia. This setup is significantly simpler and is 
generated upon any untrimmed mesh by using UV systems based on the 
dimensions of the gridshell area. 

The second method develops a standard diagonalized structure. This structure is 
developed using the same springs as developed in the previous method, but also 
with an additional set of springs with their own spring stiffness (𝑘𝑠,𝑑). In this case 
the shell is form found with the diagonals having the same strength as the main 
springs. With the introduction of diagonal springs, there is a noticeable visual 
difference: the stiffening “wings” that are visible in most concrete thin shell 
structures with point supports are now also visible in the model. However, these 
‘wings’ are overly exaggerated, and therefore create moment, introducing an 
increase in strain energy per unit volume of the shell. 

The third method introduces springs at 45 degrees with a strength proportional to 
the main springs. This method utilizes a set of triangulating springs in two 
directions in order to provide stability and introduce both the effect of the 
Poisson’s Ratio as well as shear stiffness. This can be seen as introducing a 
relationship constraint between the U and V springs, essentially acting as a low 
information Poisson’s ratio by applying a force of 𝑘𝑠,𝑑 ×

Δ𝑙

𝑙0
  as accordance with 

Hooke’s Law where ,

2

2

s
s d

k
k    ..  

The fourth and final method utilizes the same diagonal springs, but in this method, 
the springs are given a different strength based on the geometry and Poisson’s 
ratio of the material. Since the springs are drawn as diagonals, they must become 
a proportion of the Poisson’s Ratio. Baudet et al. (2007) modeled these 
parameters for 2D representations in the following Lagrangian equations starting 
with the shear modulus. 



61 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

 
 2 1

sd

E
Gk


 


 

Equation 6-5: Diagonal Spring Strength Based on Shear Modulus (Baudet et al, 2007) 

In equation 6-5, (G) is the shear modulus of a plate, (E) is the Young’s Modulus,  
𝝊 is the Poisson’s Ratio, and 𝑘𝑠𝑑 is the diagonal spring constant strength. 

When modified for non-square meshes, the shear modulus can be rewritten for a 
subset of any quadrilateral shear modulus as: 
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Equation 6-6: Non-Square Mesh Stiffness Based on Shear Modulus (Baudet, et al. 2007) 

Where: 

𝑙 is the length of the springs in direction 1 

𝑙⊥ is the length of the spring that is perpendicular to the first spring as each set 
of springs run along UV coordinates perpendicular to each other 

By using this value, any strain on the quadrilateral elements thus results in a force 
perpendicular to the load plane with a load value determined by the Poisson’s 
Ratio.  This allows for the generation of forces acting perpendicular to the strain. 
However, this also adds resistance to the strain developed at a rate similar to that 
of standard materials. By utilizing this system, a more accurate depiction of the 
behavior of the material in a specific shape is generated rather than that of either 
far too high a Poisson’s ratio a non-existent ratio. 
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 SQUARE SHELL 
STRAIN 
ENERGY 
DENSITY (KJ/M3) 

SHELL WITH 
FIXED 
BOUNDARY 
STRAIN ENERGY 
DENSITY (KJ/M3) 

CONICAL SHELL 
STRAIN 
ENERGY 
DENSITY (KJ/M3) 

QUADRILATERAL 
STRUCTURE 

5.77E-2 1.33E-3 1.06e-3 

STANDARD 
DIAGONAL 
SPRINGS 

2.10E-2 2.16E-3 1.22e-3 

GEOMETRICAL 
DIAGONAL 
SPRINGS 

1.81E-2 1.94E-3 1.26e-3 

SHEAR 
MODULUS 
DIAGONAL 
SPRINGS 

1.58E-2 1.74E-3 1.29e-3 

% DIFFERENCE 
BEST VS 2ND 

12.71% 23.56% 13.11% 

Table 6.2: Strain Energy Density of Quad vs Diagonal Spring Modeling Method 
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SQUARE 
SHELL 
BEHAVIOR 
RATIO 

SHELL WITH 
FIXED 
BOUNDARY 
BEHAVIOR 
RATIO 

CONICAL 
SHELL 
BEHAVIOR 
RATIO 

MEAN 
SCORE 

QUADRILATERAL 
STRUCTURE 

93.0 96.8 91.5 93.78 

STANDARD 
DIAGONAL 
SPRINGS 

87.2 96.7 92.2 92.03 

GEOMETRICAL 
DIAGONAL 
SPRINGS 

88.4 96.8 91.8 92.33 

SHEAR 
MODULUS 
DIAGONALS 

90.0 96.9 91.9 92.93 

Table 6.3: Mean Shell Behavior Scores for Shell Modeling Methods 

 
Figure 6-5: Shear Modulus Diagonals in Grasshopper3D 

In the end it was determined that the most efficient method was dependent on 
support criteria. A surface that was supported with line supports around its entire 
perimeter modeled using the quadrilateral method was most efficient in reducing 
strain energy 23% over the closest comparison. However, when examining point 
supports, the most efficient method was the method of shear modulus diagonal 
springs by as much as 12.7% over the second place. The quadrilateral spring 
structure was also considered to be the most efficient method of modeling based 
on the shell behavior ratios. Based on this data, the rest of the thesis will continue 
to be based on the modeling from this setup. Since the goal shape is primarily 
supported along line supports, the model will be developed with a quadrilateral 
mesh.  
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Figure 6-6 shows difference in form created between the Quadrilateral structure 
(top) and a structure with a modeled Poisson’s Ratio (bottom). Here it is clear that 
the introduction of the Poisson’s Ratio has resulted in a flattening of the structure 
and that the edges of the shell are being lifted to stiffen against moment. 

 

 

 
Figure 6-6: Difference in Form Finding Shape: Quadrilateral Springs (above) vs Shear Modulus Diagonal 

Springs (below) for a 4 Point Shell 
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6.5 FORCE AREA RATIO 
The force area ratio system is a script initially developed by Peter Eigenraam to 
generate a form where the load is based on the mesh area around each point. This 
system is developed in response to the initial method of calculating loading 
conditions for the form finding algorithm. The initial methodology and loading 
system determined loading based on area of the mesh structure projected onto a 
flat plane. By using this system, quick analysis can be made for determining rough 
initial forms. This, however, introduces inaccuracy as the shell structure becomes 
more vertical. Therefore, it becomes quite inaccurate for loading conditions of shell 
with dissimilar vertical support locations. In order to solve this issue, Peter 
Eigenraam created an updated method that rebuilds the mesh and calculates the 
area of loading based on the mesh face areas. This in turn provides a more 
accurate approximation of the loading behavior of the shell. The script as seen in 
Figure 6-7 is the process that develops this system.  

In other terms, the original method of Kangaroo uses meshA   rather than meshA . 
This results in unequal loading characteristics on parts of the shell which are more 
vertical. This can be corrected however, by factoring the loads being applied to the 
structure. This, however, does change the area being loaded and means that the 
previous results are not comparable to the new Force Area Ratio results. Therefore 
instead, the Force Area Ratio values are averaged and the mean value of the Force 
Area Ratio is applied to each node to establish the difference purely due to loading 
criteria. The version implemented in the Grasshopper3D script also determines the 
force area ratio a second time, after the form finding has started, in order to ensure 
that the system is not acting on a flat plate, but rather determining the mesh 
loading criteria itself. 

 
Figure 6-7: Script of Force Area Ratio 
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Table 6.4 shows that by utilizing this updated method of applying loading 
characteristics, the form found shells increase their efficiency by as much as 18.5% 
compared to uniform loading characteristics. This proves that just as structurally 
correct springs are required to create the proper expected forms, the Force Area 
Ratio method significantly increases the accuracy of form finding. However, with 
large datasets this module can become quite slow.  

This is because the module divides each mesh face into 4 components, with each 
mesh edge midpoint is determined and connected to the opposite midpoint. The 
result is then 4 different faces all one quarter the size of the original mesh face. 
Each new face only has one of the original vertices. This face is assigned to the 
new vertex. This is done for each mesh face so that each vertex will have 4 new 
mesh faces. The area of each mesh face is then summed and assigned to each 
original vertex for loading. 

 

 SQUARE SHELL 
STRAIN 
ENERGY 
DENSITY (KJ/M3) 

SHELL WITH 
ADDED POINT 
SUPPORT  
STRAIN ENERGY 
DENSITY (KJ/M3) 

CONICAL SHELL 
STRAIN ENERGY 
DENSITY (KJ/M3) 

BASE 
STRUCTURE 

2.32E-02 1.26E-03 1.39E-03 

FORCE AREA 
RATIO 

2.34E-02 1.17E-03 1.13E-03 

PERCENTAGE 
IMPROVEMENT 

-0.82% 7.18% 18.5 % 

Table 6.4: Shell Strain Energy Density of Normalized Shell Structures with Force Area Ration Implemented 

These results show that the force area ratio method does indeed increase the 
validity of the simulation tool as a software package. The reduction in strain energy 
density is significant for the fully supported systems. As the mean shell behavior 
of the initial shell structures was already above 90%, further valuation using this 
methodology would gain little further information. As a result, mean shell behavior 
was not considered for the rest of the form finding methods. Instead, the strain 
energy density of the structure was deemed a more useful determiner. 
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6.6 LOOPING OF LOADING RATIOS 
The looping algorithm updates the mesh area values of the force area ratio. This is 
done because the force area ratio method developed by Peter Eigenraam only 
applies loads based upon the initial form. While this is accurate for shells that start 
with an initial shape similar to that of the final shape, it does create significant 
distortions with large deformation systems. With the goal of the form finding 
system in and of itself being useful for large scale form finding applications and 
with architects often giving incorrect initial parameters, large scale deformation 
iteration must be both viable and accurate. The looping subroutine generated in 
this thesis updates this environment by applying a looping iteration as well as a 
termination condition. The script examines the updated mesh and compares the 
current area ratios to the previous iterations area ratios. The difference of each 
area ratio is taken and the absolute value of each set is calculated. This gives a 
normalized change in loading values. This normalized change is then delineated 
such that the script will loop up until this maximum change in loading area ratio 
for all mesh faces becomes less than one percent of the face area. By using this 
method, the final form found shape has significantly more accurate loading 
parameters based upon the final geometry rather than the initial geometry or 
generic loading requirements. 

This algorithm works such that: 
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Equation 6-7: Convergence Determined by the Percentage Change in Mean Area (own) 

Where: 

A = area ratio of each mesh face 

t= time step 

i = mesh face index 

B = convergence Boolean 

This was considered converged once a one percent difference in the maximum 
change in force area ratio between each iteration was determined. 

Due to the calculation time required to conduct the force area ratio analysis in 
Grasshopper3D, the looping analysis was conducted using a spring density of 0.5 
times that of the other form finding experiments. This, therefore works as an 
independent experiment, and the results can be extrapolated based on the initial 
structural efficiency of the Force Area Ratio, but they cannot be directly compared. 
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 SQUARE SHELL 
STRAIN 
ENERGY 
DENSITY (KJ/M3) 

SHELL WITH 
ADDED POINT 
SUPPORT 
STRAIN ENERGY 
DENSITY (KJ/M3) 

CONICAL SHELL 
STRAIN ENERGY 
DENSITY (KJ/M3) 

FORCE AREA 
RATIO 

2.34E-02 1.17E-3 1.13E-3 

LOOPED FORCE 
AREA RATIO 

2.35E-2 1.19E-3 1.14E-3 

% 
IMPROVEMENT 

-0.42% -1.7% -0.88% 

Table 6.5: Strain Energy Density (kJ/m^3) of Volume Normalized Shell Structures with Updated Loading 
Characteristics 

 

Interestingly, the results show that the looping of the force area ratio calculations 
to update loading conditions to the updated geometry seem to create a worse 
performing shell than that of the shells generated with initial force area ration 
calculations. The value should at worst exhibit no change in the structural 
efficiency, so this result is an area for further study. Due to this and the fact that 
looping can take up to an hour to form find, the looping will be left out of the form 
finding for the final design. 
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6.7 FINAL SHAPE FOR THE STRUCTURE 
When examining the previous methods, the final form found structure was 
generated using quadrilaterals, with the force area ratio applied, and the looping 
structure not taken into account. This resulted in the final shape of the structure 
being developed as shown in Figure 6-11. 

 
Figure 6-8: Base Polysurfaces for Gridshell 

This system was creating using two sets of UV coordinates welded together along 
the center of the two polysurfaces. These two polysurfaces can be seen here in 
Figure 6-9 and show the initial rough shape. 

This shape therefore is as the initial shape structure for the generation of the 
gridshell. This, in turn, allows for the creation of the structure in the following 
chapters. 

 
Figure 6-9: Base Discretized Layout 

This shape was chosen to specifically test the limits of the streamline iterator with 
planar projection. Unlike Winslow’s and Panagiotis’ parameterized meshing 
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system, the streamline tracer does not efficiently transpose to highly curved 
shapes. The system works best on a relatively flat shell with supports all at the 
same vertical position, but by testing the edges of this system’s boundaries, useful 
information can be determined about where significant improvements need to be 
made in the future. The initial form found shape can be seen in Figure 6-10 with 
the smoothened form shown in Figure 6-11. 

 

 
Figure 6-10: Shell Shape Post Form Finding 

 
Figure 6-11: Shell Shape Post Smoothing 
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6.8 FEA ANALYSIS 
In order to develop a proper subset of principal stress directions, a Finite Element 
Analysis Engine was required. In this case GSA was chosen as the analysis system 
for shell principal stress analysis. Communication protocols are handled through 
what is known as IFC, or industry foundation classes, a standard communications 
package that many building industry programs use. In order to handle this part of 
the algorithm, the plugin GeometryGym (Mirtschin, 2015) was used with the 
model shown in Figure 6-13. In order to develop a proper gridshell model, the 
simulation needed to be run to develop the 3D principal stress vector sets. 

However, the current mesh was far too coarse to develop a proper sampling of 
data, so the mesh had to be refined. The initial method was to utilize a method of 
rebuilding a surface through a set of patches. This works by defining the UV points 
used from the form finding to generate a smooth surface and allows for the use of 
continuum analysis on the surface to determine principal curvatures. Once the 
system was back as a surface, GeometryGym exported the brep to GSA which 
generated its own meshing for the structure. 

This however, led to major issues when two different surfaces were too close to 
each other. Therefore instead the form found mesh itself was used and mesh 
refinement algorithms were examined instead. 

 
Figure 6-12: Mesh Before Loop Subdivision 

In this case the mesh was divided into triangles by connecting the mesh faces 
edges from one set of diagonal points. Then each midpoint of each edge is divided 
and a set of four new smaller triangles area created. This was completed through 
the use of the algorithm developed by Charles Loop and implemented by 
Weaverbird (Piacentino, 2015). This produced a more refined mesh with many 
more vector points, allowing for a finer field that is easier to integrate over. 
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Figure 6-13: Mesh after Loop Subdivision 

This was then exported to GSA via GeometryGym to query principal stresses 
based on a global gravity load and subsequently the data was reimported to 
Grasshopper3D as shown in Figures 6-14 and 6-15: 

 
Figure 6-14: Principal Stress Directions for 𝜎1 Retrieved from Oasys GSA 

 
Figure 6-15: Principal Stress Directions for 𝜎2 Retrieved from Oasys GSA 

The vectors (𝜎1𝑎𝑛𝑑 𝜎2) and locations shown in Figures 6-14 and 6-15 were then 
used in the following steps in order to develop the streamline generation and 
Periodic Global Parameterization in the following chapters.  
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7 GRIDSHELL TOPOLOGY GENERATION 
According to Pilkington Glass, the maximum span of 6mm tempered glass is 1.1 
meters when a square panel is supported at its corners. Therefore, the spacing 
that is desired will be set to 1 meter. Panels could be longer with a one meter 
spacing in the primary direction; however, in order to develop evenly spaced grids, 
each quadrilateral panel will be developed as close to a square as possible. This 
will remain mostly true with some area and angle distortion on the projected 
gridshell tracing, with more curved gridshells having significantly more warp. This 
is one of the weak points of this methodology, hence a highly curved gridshell was 
chosen for the Euler Tracer to examine the effects of this warping.  
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7.1 METHODOLOGY 1: BASE GRID 
The base grid is developed from the form found mesh which was based on the 
initial UV surface parameterization. Once the mesh is form found, the standard UV 
parameters inherent to the initial surface are then utilized in order to develop a 
maximum of 1m spacing of the grid in both the U and V directions. This base grid 
was developed to ensure that an initial structure could be used to examine the 
strength of the process and ensure the validity of the results. This method provides 
the layout shown in Figure 7-1 for the gridshell roof. 

The three systems shown in Figures 7-1, 7-2, and 7-3 are developed from the 
base UV model and diagonals. These were then used as the baseline valuations to 
compare with the streamline and parameterization methods. 

The simplest system was the quadrilateral system shown in Figure 7-1. This 
quadrilateral system is directly generated from the UV grid of the original surfaces 
and develops a simple quadrilateral based analysis. The quadrilateral structure is 
the same UV grid layout as used for form finding and therefore allows for the 
analysis of this grid without any further iteration work. However, this UV mapping 
for this specific gridshell should closely follow the principal stress vectors as it 
generates relatively direct lines between the supports with a stabilizing hoop 
system in the V direction. Therefore while this was the simplest structure to set up 
in this system, it should be also one of the most efficient.  

One of the base grid forms is generated with the rationality of two point charges 
relating to one another. This results in a form that closely mirrors the principal 
stress orientations without any direct computational requirements. This makes 
this option incredibly interesting as it has the ability to be used as a ranking system 
and a solid efficiency criterion on which to examine the differences between a pure 
form finding algorithm with human estimation of the principal stresses and the 
other methodologies.  
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Figure 7-1: Base UV Subdivided Gridshell 
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The second quadrilateral panel section is shown in Figure 7-2. This is developed 
by taking the diagonals of the UV structure. This method results in the traditional 
“ribbon” wrapping which is often seen in gridshell columns such as the one at the 
Western Concourse. This “ribbon” version combines both primary and secondary 
systems, creating a more even distribution of force throughout the entire system, 
rather than creating a specific discrepancy between primary and secondary 
structure.  

 

 

 
Figure 7-2: Base Diagonalized Structure 

 

In a standard quadrilateral as the one in Figure 7-1, the mesh is defined as a set 
of radial and a set of ringed UV parameterization. In the diagonal method, this is 
no longer viable as both are just as radial. Therefore the U and V parameterization 
is done based on the direction the beams curve, with clockwise being U and 
counter clockwise being V. 
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The last set is a triangular system and therefore only uses flat panels, as a 
combination of the structures it should be able to leverage the strength of each. 
However, since it’s such a significant combination of the two structures, it in turn 
uses vastly more structural steel, this can be seen in in the following base: 

 
 

 
Figure 7-3: Base Diagonalized and Radial Structure 
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7.2 METHODOLOGY 2: STREAMLINE GENERATION WITH MESH MAPPING 

7.2.1 Bar Generation 
To create the optimized gridshell, a combination of Winslow’s (2010) and Tam’s 
(2014) methodologies were adapted to generate an appropriate gridshell. In the 
end, both systems generate a mapping function over a surface. While Winslow’s 
paper utilizes periodic global parameterization to develop a globally conformal 
map with minimal area distortion, Tam’s paper (2014) utilizes the shell surface 
directly, trying to implement stream lines across an FEA surface in 3D and 
removing set streamlines based on their strain energy. 

Spacing stream lines in and of itself is not a simple task, and doing so in 3D 
becomes impossible as distance measurements between the streamline sets 
become more convoluted and complex. By maintaining a 2D mapping 
representation, effective and efficient seeding strategies can be used to optimize 
streamline placement. 

7.2.2 Mesh Flattening 
In the case of this system, since polylines with very small iteration points are used, 
the primary goal will be focusing on generating a primarily quadrilateral grid all 
existing in a single layer. One way of ensuring that the entire grid is developed on 
the same layer is to map the layout in 2D and the remap that back to the 3D 
surface. 

The first iteration of the design meshed the gridshell into small set triangles, with 
each center point check being given a principal stress direction by the FEA 
analysis. This iteration then mapped these flat along the X-Y plane. This was done 
as an initial mapping system as Winslow’s paper mentions that this systems is 
somewhat easy to implement and derives a relatively low area distortion for flatter 
shells. This is because the mapping to the XY Plane of most gridshell surfaces 
creates a semi-isometric semi-conformal map. 

This flattening and mapping can been seen here in Figure 7-4: 

 
Figure 7-4: Planar Projection Mesh 
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While this flattened mesh is viable for low curvature gridshells, it provides 
significant issues with gridshells that are more vertical. This can be seen on the 
Figure 7.4 as the faces closest to the support points, i.e., the most vertical faces, 
appear smaller than the more horizontal faces, when in fact they are the same area 
in 3D space. In order to reduce this distortion, a different embedding was 
examined, Tutte Embedding.  

Mesh parameterization and embedding is the act of balancing length distortion of 
each mesh edge while pulling the mesh to a 2D surface. If all springs or mesh 
edges retain the same spring stiffness, the resulted embedding is known as a Tutte 
Embedding (Tutte, 1963). Tutte’s Spring Embedding theorem for planar graphs 
can be developed as shown in the pseudocode in Section 2.4.2 and again below, 
through the use of a Kangaroo script. The script pulls all points to the XY plane just 
as the previous flattening did, but now also uses the changing lengths of the 
springs to redevelop the mesh faces to a conformal global parameterization. This, 
in turn, reduces the angle distortion that was noticeable in the pure flattening 
algorithm. However, this method only works on convex polygons with a genus of 
0. This provides a reasonable improvement in the mapping between the Tutte 
meshing and the mesh flattening on highly distorted gridshells. Nevertheless, the 
area distortion is quite clear when looking at the size of the hole in this mesh in 
comparison to that of the original mesh shown in Table 7.1 and visible in the 
outputs based on Figures 7-4 and 7-5.  

The Tutte meshing is found using an energy minimization of all points such that: 

 𝑣𝑖,𝑗 =
∑𝑣𝑛

𝑛
 

Equation 7-1: Vertex locations 

Where ,i jv  is the mesh vertex index location, 𝑣𝑛  are the neighboring vertex 
positions, and n is the number of neighboring vertex positions (Equation 7.1). This 
means that each vertex position becomes the average location of its neighbors 
(Equation 7.2) with the boundaries set as shown in section 2.4.2. 

 1, , 1 1, , 1,  , , n i j i j i j i jv v v v v     

Equation 7-2: Definition of neighboring vertex locations 

While most planar mapping functions cannot support non-topological disks, by 
giving the option of either a standard projection or an embedding, most gridshell 
structures should be mappable within the Grasshopper3d environment. By 
examining the area distortions between a Tutte and planar projection, one can 
choose which system most accurately maps the original shell. 
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Pseudocode for Tutte Barycentric Embedding 

Import MeshPoints, MeshEdges, Boundary, Threshold 
Output Mesh 

Project Boundary 
Construct Circumcircle 
Check Interior Angles 
 if Angle > 180: Pull PtsBoundary to Circle 
 else Do Nothing 

Place Interior Points 
Replace MeshEdge with spring 

Set SpringL_0 to 0 
Define PtPositions 
While SumDelta > Threshold 
     For I in Points 
 NewPtLocation = sum ( 
 Delta = (NewPtLocation[i] – PtPostion[i]) 
 SumDelta = Sum (Delta) 

This was implemented using the same system as listed in the literature review in 
section 2.4.2 through Kangaroo with the use of 0 length springs, which in turn pull 
each vertex point that is not set to the barycenter of the neighboring vertices. 

 
Figure 7-5: Tutte Barycentric Mapping 
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 MAXIMUM 
DIFFERENCE 
IN AREA 

MINIMUM 
DIFFERENCE 
IN AREA 

MEAN 
DIFFERENCE 
IN AREA 

MEDIAN 
DIFFERENCE 
IN AREA 

PROJECTION 0.197 1.65E-7 0.018 0.003 
TUTTE 
EMBEDDING 

0.205 3.5E-5 0.101 0.099 

Table 7.1: Difference In Mesh Face Areas Between Original Mesh and Flattened Meshes 

While Tutte Embedding is specifically useful for Genus 0, convex graphs, it cannot 
be guaranteed that every system will be so, just like this system is not. For this 
reason a planar projection will be used in this case. It can be seen here that the 
mean and median difference in area is much larger with the Tutte Embedding than 
with the planar projection. Therefore, the decision was made to continue with 
using the Planar Projection.  

7.2.3 CUSTOM TRACER FOR DISCRETE VECTOR FIELD 
Once the mesh flattening occurred, a custom Python script was developed 
(Appendix 2). This script utilizes streamlines generated via the Euler method with 
a step size of 0.2 meters and a weighted average vector movement by weighting 
the unit vector of the nearest point with their previous vector. This weighting 
allows for reduced movement throughout the field and allows for area 
normalization.  

The streamline generator uses a Gaussian filter function (g(x)) across the entire 
vector domain in order to smooth the vector field towards mean values and 
remove noise in the data (Shapiro & Stockman, 2000). This is used to create the 
weighted values as shown in Equations 7-5.  

  
 

2

22

x

g x ce


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


  

Equation 7-3: Gaussian distribution for Individual Value (Shapiro & Stockman, 2000) 

This weighted average by distance allows for distinct discrete streamlines to be 
generated over the dense field using a direct Euler integration rather than a more 
complex tracer while still retaining high levels of accuracy. The equation for which 
is:  

𝑑𝑖,𝑗 = |𝒏𝒊 − 𝒏𝒋| 

Equation 7-4: Distance Formula (Own) 

𝑊ℎ𝑒𝑟𝑒:  
𝑑𝑖,𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗 

𝒏𝒊 = 𝑛𝑜𝑑𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 
𝒏𝒋 = 𝑛𝑜𝑑𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 

By finding the Gaussian distribution of each vector based on the distance from 
the current position to each vector, a smoothed field can be generated where: 
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𝑤𝑗 = 𝑒
−(𝑑𝑖,𝑗−𝜇)

2

2𝜎2  

𝑤𝑠𝑢𝑚 =  ∑ 𝑒
−(𝑑𝑖,𝑗−𝜇)
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𝑛

𝑗=1

 

𝝈𝟏,𝒊 = ∑ 𝝈𝟏,𝒋 ∗
𝑤𝑗

𝑤𝑠𝑢𝑚
 

𝑛
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Equation 7-5: Creating the Gaussian Weighted Stress Direction at Point I (Modified from (Shapiro & 
Stockman, 2000) 

In this equation, w is the weight applied to the stress vectors from the FEA 
analysis, with 𝑤𝑗 being an individual weight from the weighting function of vector 
at position j on 𝜎1,𝑗 and 𝑤𝑠𝑢𝑚 being the total weights of all positions on the stress 
vector 𝜎1,𝑖. 

The section of the code relating to generating this streamline weighting is shown 
here: 

#Gaussian function   

def gauss_fun(values,sig=1,mu=0):   

    return [ math.exp(-(x-
mu)**2/(2*sig**2)) for x in values]   

   

#Compute stress at location   

def stress(loc):   

    dist = rs.Distance(loc,field_loc)   

    weights = gauss_fun(dist,sigma)   

    weights_sum = sum(weights)    

   return functools.reduce(lambda x,y: rs.PointAdd(x,y), [ w*s/weights_sum for 
s,w in zip(field_dir,weights)])   

 

Unlike Kam’s (2014) streamline tracer, this tracer works specifically in 2D to 
ensure proper mesh mapping and proper weighting of the Gaussian function. 
Kam’s paper uses what is known as an n+1 vector averaging set, where all vectors 
within the streamline step radius are averaged in order to develop the step 
direction. While this method is viable with either a very dense vector field or a 

Figure 7-6: Lower Value Sigma's Increase the Weighting of 
Closer Streamlines (Own) 
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large step size, it does not work well with non-smooth systems. The method 
presented in this paper uses the summation of Gaussian weighted vectors on a 
2D surface to smoothen and process the vector field.  This means that a weighted 
average of all vectors in the field is based on the distance they are from the current 
step point as shown in Equation 7-5. Here, the sigma value was set at 0.1 for this 
streamline tracer to ensure that the nearest subset of vector directions have a 
greater effect on the direction of the streamline tracer as shown in Figure 7-6. 

7.2.3.1 Boundary Detection 
The streamline tracer itself ends based on two different conditions: leaving the 
boundary domain or looping. If the streamline leaves the domain, the streamline 
will end and select the boundary curve intersection point as the final point in the 
streamline. This is a vital end condition that allows for the streamline to terminate 
properly and is standard for on surface streamline tracers. This must be checked 
in both directions and ensures proper termination of the main boundary condition. 

This method is developed by ensuring that the streamline point is “on mesh” or 
has a distance to the mesh of 0 before each step function. By using this system 
the streamline will terminate the first step function after leaving the mesh. While 
this does not give the exact position of the last vertex, this is determined 
afterwards when the boundary curve is reintroduced during cleanup, and the end 
points are defined as the intersection between the boundary curves and the 
streamlines.  

7.2.3.2 Ensuring Proper Step Direction 
Since the principal stress vectors 
are 2nd order tensors, their 
direction can be defined either in 
the positive or negative direction. 
This means that at times the 
principal stress vectors do not 
flow smoothly but, instead, 
suddenly switch directions. This 
can be seen in Figure 7-7 where 
the vectors suddenly rotate 180 
degrees. In order for the 
streamline not to oscillate at these 
points, a directional check was 
developed. Figure 7-8 shows the 
logic that built the system. Using the previous step direction, the following 
principal stress direction is checked. If the dot product of the two vectors is less 
than 0, then the angle between the vectors is greater than 90 degrees and the 

Figure 7-7: Converging Vector Direction in Principal Stress 1 from GSA 

Output 
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step would cause inconsistencies and oscillations in the stream line. Therefore, if 
the dot product is less than 0, the following principal stress direction is rotated 
180 degrees, in turn creating a new angle with a dot product greater than 0. At 
this point the streamline steps to the following iteration. 

 

7.2.3.3 Looping 
The second requirement for streamline tracing was defining a looped line. This 
was completed in the end by having each point during the iteration check for the 
other line at a distance of 99% of one step size. This method was integrated into 
the script via the use of a call distance function between the start and current step 
of the process. This part was vital to the function of the script as ring stresses often 
occur in gridshells. When trying to ensure that the streamlines do maintain a 
proper hoop, each step searches for another streamline step point within a small 
radius. If the two points are close together, the streamline will complete the ring 
and stop the integrator. By having the streamline move in both directions 
simultaneously, it also means that the expected error that occurs during the 
streamline tracing is halved. This makes the looping search much more effective 
than attempting to search for the start point after a full loop. Figure 7-9 shows the 
differences that these methods make in developing discrete loops with 
Karamba3D: the figure on the left shows continual steps and no termination 

Figure 7-8: Process for Determining Proper Step Direction to Avoid Oscillation 
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through their streamline tracer, whilst the figure on the right shows my script 
detailing several fully terminated streamlines. 

 

Figure 7-9: Comparison of Karamba3D (Left) to Looping of Own Script Right (Own Images) 

 

7.2.3.4 Singularities 
Finally, there is the condition of the streamlines when they approach singularities. 
In these positions streamlines will start to misbehave. The streamline will either 
circle back around on and in turn cross over itself, or the streamline will begin to 
switch back after circling the singularity. This typically leaves two more boundary 
conditions that are required to be satisfied. Either way it is in these points that the 
streamline will no longer continue to the boundary or loop fully around on itself.  

One other advantage of using a Gaussian function is that the system smooths the 
vector field enough to ensure that the streamline is able to move through the 
singularity without too much distortion. However, the singularity does implement 
some issues as seen in Figure 7-10. Specifically, there is a noticeably higher 
density of streamlines in and around the singularity, resulting in a highly dense 
structure.  

These singularity points have also been a major point of trouble within the discrete 
differential geometry field, with many times the solution being to either leave them 
out or apply a “quick fix” to smoothing them out of the mapping (see Figure 7-16). 
Nicholas Ray for instance uses a vector field smoothing and a curl correction 



Investigating Principal Stress Lines: Optimization of Gridshell Structures | 86 
 

algorithm in order to minimize the number of singularities in the data at the 
expense of accuracy (Ray et al., 2006). Winslow (2010) takes this a step further 
by integrating an area function into the energy minimization, such that each U and 
V isocurve maintain similar spacing throughout the entire parameterization, 
essentially removing them entirely. For the main issues experienced here, a 
pruning system was set up. This system ranks the importance of loops ahead of 
single line streamlines, thereby cleaning up any formed loops in the system. 
Regardless of the location of the loop in the streamline, any intersection in the 
streamline with itself will signal to the program to stop and cull the ends off of the 
loop. 

The pseudocode below shows how these complications are dealt with by using 
the pruning functions within the script to ensure for closed looped streamlines 
even when the singularity begins to distort the streamline tracer.  

If the streamline were to start exactly on the singularity, the streamline would 
generate an oscillation, leading to the streamline culling itself to a length of 0. Since 
the seeding strategy is based on the farthest point, this would result in the seeding 
strategy reselecting this point. In order to solve this issue a command was inserted 
for the script to generate a circle with a radius of 0.1m. This was implemented to 
ensure that the point would not be reused in the seeding selection algorithm while 
being small enough that it would eliminate itself during cleanup. This would occur 
as the polyline around this point would only have 1 intersection point and thus not 
create a line. 

  

Figure 7-10: Singularity in P1 Stresses (Own Image) 
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INPUTS(Field_Location,Field_Direction,StartPt,StepSize,Sigma,Mesh) 
OUTPUTS(Streamline) 
Coerce Inputs 
Define Gaussian_Function(values,sigma,mu) 

    return (
 

2

22

x

e








) for x in values 
 
Define stress(location) 
    dist = distance(location to each field location) 
    weights = Gaussian_Function(distance, sigma) 
    weights_sum = sum(weights) 
    stressvec = functools.reduce(lambda x,y: rs.PointAdd(x,y),[w*s/weights_sum 
for s,w in zip(field_direction, weights) 
    return stressvec 
 
Define step(loc,dir,stress) 
    stress = stress.normalized() 
    dir = dir.normalized() 
    if dotproduct(stress,dir)<0: 
  stress = reverse(stress) 
    delta = stress*stepsize 
    return = loc+delta, stress 
 
Define check_boundary(mesh,loc) 
    return IsPointOnMesh(mesh,loc) 
 
Define check_looping(loc, pointlist) 
    dist = distance(loc,pointlist) 
    min_dist = min(dist) 
    return point_list[(dist.index(min_dist)] if min_dist<0.99*step_size else None 
 
Define prune_head (point, line) 
    try: 
        return line[0: line.index(point)+1] 
    except: 
        return [] 
 
Define prune_back (point, line) 
    try: 
        return line[line.index(point)-1::] 
    except: 
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        return [] 
 
Define iterr (loc, dir): 
    line1, line2 = [loc],[loc] 
    loc1, loc2 = loc, loc 
    dir1, dir2 = dir, dir.reverse() 
    run1, run2 = true, true 
    for I in range (iterations): 
 run1 = run1 and check_boundary(loc1) 
 if run1: 
  loc1, dir1 = step(loc1,dir1,stress(loc1) 
  point = check_looping(loc1, line1+line2) 
                       if point is not None: 
                           line2 = prune_head(point, line2) 
                           if check_looping(loc, line1) is not None: 
                               line1 = prune_back(point,line1) 
                           line1.append(point) 
                           break 
                       else 
                          line1.append(loc1) 
          run2 = run2 and check_boundary(loc2) 
          if run2: 
    repeat run1 (loc1 = loc2, dir 1 = dir2, line1 = line2) 
          if not run1 and not run2 
  break 
return list(reversed(line2[1::]))+line1 

line=iterr(start,stress(start)/vectorlength(stress(start))) 
try: 
          line = addpolyline(line) 
except:  #If Line length is 0 or None# 
          line = addcircle(start, 0.1) 
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7.2.4 EVEN SEEDING OF STREAMLINES 
As mentioned earlier, the bar structures need to be spaced evenly across the 
surface with a distance of roughly 1 meter. 

While Kam’s system is also based on developing streamlines, his system utilizes 
alternating between the 𝜎1 and 𝜎2 sets of Vectors (Kam, 2014). His algorithm uses 
the midpoint of the previous streamline and creates a new polyline in both 
directions until such polyline reaches the boundaries. Once this is completed, the 
polyline finds all intersection points and creates straight bar structures between 
them. While this script is simple and useful, it does run into some issues. The script 
then does large amounts of cleanup using a variety requirements such as clumping 
of grouped streamlines and defining each set by an average strain energy. 
According to the author the streamline cleanup took up to 3 months before it was 
presentable. This system was only tested on standard shell shapes: primarily a 3 
point, 4 point and 5 point supported shell. These specifically do not contain 
principal stress singularities and thus fundamentally avoids one of the major 
problems (Kam 2014). 

It was therefore determined in the end that this method of combining 
parameterized maps and streamline generation had the highest chance to be 
viable. The only way to solve the major issues that come with streamline 
generation for gridshell structures would be to be able to maintain singular 
streamlines that are generated on a 2D surface where each streamline is 
purposefully placed.  

Once a streamline has been developed, the script creates a Delaunay mesh across 
the boundary of the flattened mesh and streamline. Based on the Delaunay mesh, 
the largest span distance is determined by circumscribing each interior triangle. 
From this, each circle’s diameter was determined and the center point of the circle 
was used as the new point to start the Euler Tracer for Streamline. This can be 
seen here in Figure 7-11. This method is a modification on Abdelkrim Mebarki’s 
(2006) farthest point seeding strategy in which their system utilizes a kicking of 
the mesh faces affected, followed by a re-computation of the mesh in the area. My 
method redevelops the mesh anew each time and creates a new triangulation 
scheme. 
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Figure 7-11: 0th, 7th, and 20th Iteration Delaunay Meshes 

  



91 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

However, the base system does not work fully with the holes that exist in the 
mesh. Therefore, a constraint had to be placed on the Delaunay triangulation. The 
reason it does not work is that many meshes were being generated within the 
mesh holes or outside of the mesh. Since the scheme is a 2D scheme, the center 
of each circumcircle must exist on base mesh that the streamlines are being 
mapped onto itself in order for the streamline to be developed.  

This allows for all circumcircles with a center point that exist outside of the mesh 
area to be culled and removed from the possible analysis start points. 

The streamline tracer is run until the desired density is reached as shown in Figure 
7-12. 

  
Figure 7-12: Raw Streamline Output 

As seen, this system is far too messy to generate a proper gridshell, despite that 
the system is better than the Karamba streamline functionality. In order to use this 
system as a developable structure, more cleanup is needed. 

7.2.5 Cleanup of streamlines: 
The cleanup of the system is developed through ideas brought through in Kam 
(2014) and a personal parametrization method. The main issues here are the 
convergence of streamlines at singularities and the set looping for hoop stresses. 

The standard streamline cleanup was completed after the streamlines have been 
generated. There are 3 data trees, one for each set of lines: the U parameters, V 
parameter, and boundaries. Each polyline has its own data in each list within the 
tree. Any change to a point will only occur to the individual poly line that needs to 
be modified. From here, the network of intersections between the U and V 
parameters create the new points for the polylines. This approach creates straight 
lines between the intersection points which become the straight bar structure for 
the gridshell. 
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From here, the system is developed by reintroducing the boundaries and defining 
intersection points between U or V lines and the boundaries. Now that the 
discretized boundaries are developed, the full structure is developed with the 
straightened bar version is shown here in Figure 7-13. 

 
Figure 7-13: Cleaned Up and Discretized Streamlined Structure 

When this is completed, the polylines are simplified to the intersection points 
becoming the control points. This generates closed quadrilateral-panels, however 
it does not control for planarity or convergence. 

7.2.6 Mapping Back 
Mesh stream lines in 3D have the problem of diverging from the shell shape. This 
typically occurs as the streamline steps over a mesh boundary utilizing data from 
the previous step and therefore diverge from the surface. In order to remove this 
possibility, meshes can be flattened and portrayed in 2 dimensions and, as long as 
a 1:1 mapping exists back to the original mesh, the optimized streamline can be 
brought back to the original shell by sending an ordered structure of points 
through the mapping and by rebuilding the polylines on the other end. 

It is at this point that parts of the shell can be seen to have significant area 
distortion, especially in the spacing of the rings around the more vertical sections 
of the shell. In order to ensure that the solution is viable, the parametric process is 
broken and the gridshell is finalized by hand.  
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Figure 7-14: Final Streamline Structure when Finished By Hand 

During the last weeks of work, an algorithm was developed where points that 
existed within 0.2m of each other were grouped and given a mean nodal location. 
This resulted in triangulating the converging streamlines to single points at these 
locations resulting in the result shown in Figure 7-15. This was done to ensure 
that bars would not run parallel to one another at a distance that would result in 
the steel bars overlapping. This in turn provides the beginning basis for a method 
of further rationalizing the gridshell under constructability requirements and 
removes much of the hand cleanup that was required in the initial gridshell 
streamline development. 
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Figure 7-15 Nodal Averaging of Converging Bar Structures without Hand Work 
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7.3 METHOD 3: GRIDSHELL GENERATION THROUGH PGP 
 

In order to develop another comparison, a new method of grid generation was 
analyzed for sake of structural efficiency. The mapping must be pseudo-isometric 
and conformal as any other mapping will distort the gridshell spacing too much or 
distort the angles of the gridshell too far from 90 degrees. One useful mapping 
that fits this criteria is that from Nicholas Ray called Periodic Global 
Parameterization (Ray et al., 2006). This is a complex algorithm that uses a set of 
conjugate vectors to reparametrize a pseudo-conformal and pseudo-isometric 
mapping of a grid along two discrete orthogonal vector sets.  

This mapping method is the same as what Winslow used to develop his gridshell 
in his PhD thesis (2010). This method works as outlined earlier in the thesis and 
by minimizing the energy differential between the vector direction and the UV 
map, it is an incredibly powerful method of generating very efficient meshes along 
a cross-vector field. 

The UV parameterization requires complex sub-maps linked via transition 
functions. The computer system to generate this analysis would require significant 
modifications, the CGAL system is developed in C++ rather than .NET interface, 
hence development of this modification was not practical within the scope of this 
project. 

Efforts were made to try to develop this system in Grasshopper3D. However, since 
the UV parameterization requires complex sub-maps linked via transition 
functions, it was determined to be out of the scope of the thesis, especially when 
further examined in other papers. When examining Winslow’s paper and N. Ray’s 
base parameterization it was noted that access to CGAL was required in order to 
generate a working example. Unfortunately, the current CGAL system is written 
explicitly for C++ which means there is no .NET interface making it infeasible to 
develop given the time constraints. Therefore another option was examined. The 
parameterization also needs principal stress vectors at each node point, rather 
than at each mesh face which is also not an output GSA or Karamba have 
available.  

The main algorithm used in Grasshopper3D was developed by Panagiotis and 
Sawako and is defined under the Millipede component (Panagiotis & Sawako, 
2014). This system allows for a fundamental base of Nicholas Ray’s algorithm in 
the Grasshopper3D environment. This method requires an input of the desired 
orthogonal vector parameter fields and a desired mesh density. From this data a 
new UV parameterization is developed that minimizes the difference between the 
direction in angle between the UV parameterization and the vectors. 
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When the chosen design was applied to the principal stress vector field, the 
following shape was developed as shown in Figure 7-16.  

 
Figure 7-16: Initial Output of the Parametrized Grid Including Gaps and Unstable Joints 

As shown in Figure 7-16, this method of parameterization also leads to significant 
discontinuities in the developed grid. Due to the singularities in the corners and 
problems with the parameterization at edges of a surface, the parameterization 
cannot fully complete. This is because singularities cause null points in the mesh, 
causing mesh edges to be zero length, and thus collapse. Instead, in this case parts 
of the grid are cut away in order to ensure a smooth global mesh while leaving 
local discrepancies (Figure 7-17). The system also struggles to parameterize near 
edges, and therefore, has to have the boundaries reinserted and cleaned up by 
some parametric processing and manual hand cleanup. This is visible in Figure 7-
17. Several points along the mesh edge, two curves will nearly intersect, creating 
an unstable joint as visible in Figure 7-16. These joints were fixed using the 
algorithmic grid refinement. 

 
Figure 7-17: Results of Periodic Global Parameterization Near Singularities 
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7.3.1 Refining the Grid 
The Grid in both methods defines essentially different UV subsets of lines. In order 
for the parameterization to be viable across the entire gridshell, the output had to 
be cleaned up and completed.  

The first option is to develop the grid by hand this method leads to a quicker 
method of synthesizing the gridshell structure as lines are followed by hand. 
However, this does break the flow of data meaning that optimization based on 
structural or planarity criteria is impossible. 

 
Figure 7-18: Script Cleanup of PGP Mesh 

First, a gridshell cleanup was developed, where any points that existed within 0.05 
m from each other were unified. This means that there are significantly less small 
bar structures than in the original gridshell, it also turns some quadrilaterals into 
triangles, but this is not an issue as triangles are far more stable and these triangles 
therefore give stability to the structure. It however, does not fix the gaps in the 
structure. Those were then required to be fixed by hand. 
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Figure 7-19: Final Cleaned-Up Grid from Parametrization When Finished By Hand 
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7.4 SHELL THEORY 
 

Since the efficiency of the form of a gridshell comes directly from the same 
methods as a shell structure, it seemed logical that perhaps utilizing the method 
in which shell structures are analyzed could yield some results.  

If a circular plate is loaded uniformly with 
the area 𝐴 = 𝜋𝑟2, a cross section of the plate 
can be modeled and defined as in Figure 7-
20. Taking a slice of the plate as 𝜃 means 
that we can develop an infinitesimally small 
cross section as 𝑑𝜃. However, since 𝑑𝜃 still 
contains a depth difference between the 
plate at the full radius and at the center. The 
load changes linearly over the full length as 
shown in the top diagram for Figure 7-21.  

This generates a loading, shear and moment 
condition depicted in Figure 7-22: 

 The moment in the beam can 
therefore be modeled as: 

3 21 1
   

6 6
m x r

r
   

Equation 7-6: Moment for a Section (dθ) of 
a circular plate 

Where: 

r = circular radius 
  x = radial point on the 
shell 
  𝑚 = moment 

For a circular plate this moment 
line can become a moment hill for 
the plate by rotating it around the 

position 𝑟
2
, giving the full moment circle for the plate. Provided the plate is twist-

less, this results in a moment hill that when, used as a shell, provides a shape 
containing in plane stresses of as much as 1.11𝐸 − 6 N/m2 and maximum out of 
plane moments up to 443 N as shown in Figure 7-22: 

 

Figure 7-21: Loads and Beam Behavior of Shell Section (𝑑𝜃) 

Figure 7-20: Subdivision of Circular Plate 
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Figure 7-22: Moment Hill Out of Plane Moment (𝑚𝑦𝑦) vs Moment Hill In Plane Stress (S3) 

  



101 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

Based on this idea, we can apply 
Calladine’s (1983) twin shell 
theories to examine the 
relationships between the 
bending and stretching surface 
of this shell. Calladine (1983) 
proposed splitting a shell 
structure into two discrete 
surfaces, the B-surface or 
bending surface and the S-
surface or stretching surface as 
shown in Figure 7-23. This 
allows for the divorcing of the in 
plane interactions from out of 
plane forces. This in turn means 
that the S-surface has no 
bending stiffness and cannot 
twist; instead it takes all normal forces and in plane shear (𝑛𝑥𝑥 , 𝑛𝑦𝑦, 𝑛𝑥𝑦, 𝑛𝑥𝑦) . 
Whereas the B-surface only takes bending, out of plane shear and twisting into 
account (𝑚𝑥𝑥, 𝑚𝑦𝑦, 𝑚𝑥𝑦, 𝑚𝑦𝑥, 𝑣𝑥 , 𝑣𝑦) when a force (P) is applied to the shell. In light 
of this, all loads and divide them between the shells. Despite divorcing these 
behaviors, the shell must maintain its wholeness and thus any deformations that 
occur in one shell must occur in the other. This oneness is set by forcing the 
Gaussian curvatures ( 𝑐𝑔)  of both shells to be equal (Equations 7-7) and by 
ensuring that the sum of forces acting on the two shells is equal to the total force 
(Equation 7-8). Therefore, to maintain this interaction the following requirements 
and coupling are set. 

 s B

g gc c  

Equation 7-7: Gaussian Curvature Relationship Between Bending and Stretching Shells 

 tot s B
PP P   

Equation 7-8: Loading Relationship between Bending and Stretching Shells 

Where 
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Equation 7-9: Stretching and Bending Loading Values 

Figure 7-23: The Twin Shells (Blauwendraad & Hoefakker, 
2014) 
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This means that, since the curvature is one over the radius of curvature, the total 
load can be rewritten as the following: 

𝜂𝑥𝑥

𝑅1
+

𝜂𝑦𝑦

𝑅2
−

𝜕𝑣𝑥

𝜕𝑥
−

𝜕𝑣𝑦

𝜕𝑦
= 𝒑𝑡𝑜𝑡 

Equation 7-10: Unified Loading 

 

Now, knowing that the relationship exists around the Gaussian curvatures of the 
shells and the loads applied to each case, one can state that the following 
relationships exist: 

𝑚𝑥𝑥 = 𝐷𝜅𝑥𝑥, 𝑚𝑦𝑦 = 𝐷𝜅𝑦𝑦, −𝑚𝑥𝑦 =  −𝐷𝜅𝑥𝑦 

Equation 7-11: Relationship between Moment and curvature in the moment shell 

And: 

𝜖𝑦 =
1

𝐸𝑡
𝑛𝑦𝑦, 𝜖𝑥 =

1

𝐸𝑡
𝑛𝑥𝑥,

1

2
𝛾𝑥𝑦 =

1

𝐸𝑡
𝑛𝑥𝑦 

Equation 7-12: Relationship between strain and in plane stresses 

From these sets of equations we can determine that the following ratios exist: 

 𝑛𝑥𝑥 ↔ 𝜅𝑦𝑦, 𝑛𝑦𝑦 ↔ 𝜅𝑥𝑥, 𝑛𝑥𝑦 ↔ −𝜅𝑥𝑦 

Equation 7-13: Relationship Between Curvature of the Moment Shell and the In Plane Forces (Oosterhuis, 
2010) 

Where: 

𝜅 = 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑏𝑦 𝑚𝑜𝑚𝑒𝑛𝑡 

𝑛 = 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 

This means that the curvature of the moment shell should be proportional to the 
normal forces, therefore principal curvatures should be related to the principal 
normal forces.  

Theory states that for a twistless case, the absolute moment values of a plate 
should be the idealized shell form when projected into 3D space. This idea was 
first introduced by Beranek (1972) and was later explored through analysis from 
Oosterhuis (2010). This can be rewritten as the following: 
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Equation 7-14: Moment Hill Definition 
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Since principal shear force is the directional derivative of this moment hill, and 
shear is a first order tensor, this meant that the isolines of the moment hill of a flat 
plate are the minimum shear, with the maximum shear being the steepest gradient 
of the moment hill. From this idea a steepest ascent calculator was created by 
Oosterhuis (2010) using finite difference methods as shown in Figure 7-24. This 
gave rise to the idea that the principal normal force should also be plottable along 
a steepest gradient function 

 

Figure 7-24: Moment Hill and Principal Shear Force Trajectories (Oosterhuis, 2010) 

 

The first idea was to examine the moment hill itself, however, it became clear that 
the only derivation possible from the moment hill was that of utilizing the principal 
shear and generating sets of orthogonal vectors at 45 degrees from the steepest 
descent. While this information is useful, it unfortunately remains a continued 
issue of integrating with a discrete vector step. 

Therefore, the main issue of deriving principal normal force without relying on 
Mohr’s circle proves challenging and continuously a problem. Since both moment 
and normal stress remain 2nd order tensors affined by 1st order tensors as shown 
in Equation 7-15.  

  
yy

y y

yy

m
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n
    

Equation 7-15: Relationship between Tensors Rotation(𝜙𝑦), Moment (𝑚𝑦𝑦), Normal Force (𝑛𝑦𝑦), and Shear 
(𝑣𝑦) 

If perhaps the principal moment trajectories can be mapped, a relationship 
between the moment in a plate and the normal forces in a shell can created. 

The next idea came from Beranek’s paper on Moire lines and flat plates (Beranek, 
1972). If the principal moment hill can lead to an idealized shell, which means that 
the moment trajectories in a twistless flat plate translate to the membrane forces 
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in a shell structure. This would mean that the principal moment trajectories in a 
flat plate are in turn the principal axial stresses in the shell.  However, principal 
moment trajectories are typically defined as a conjugate vector set such as 
principal stresses. 

We know that the first order derivative of the rotation gives the same form as the 
second order derivative of the moment; the question becomes which partial 
derivatives are needed. 

This is shown constitutively in the twin shell theory where the equilibrium 
equations rewrite the principal stresses as 

 
Figure 7-25: Failure of a Plate Due to Principal Moments and Mapping of Principal Moment Curves 

(Beranek, 1972) 

For this reason flat plates were examined in order to see if a proper mapping could 
be developed. In 1972, Prof Beranek created a paper based on the work of 
Ligtenberg’s examination of moiré patterns of flat plates. For his experiments he 
uses a 1.4:1 aspect ratio plate. In these experiments curved mirrors and screens 
containing line filters were used to examine what relationships could be 
determined from plate curvature.  

In the meantime other options were examined. This system itself was the principal 
slope of the angle of the plate. Beranek in his lecture notes (1972) mentions using 
a second order Moire photo set (2 Moire line patterns over each other) to generate 
a principal moment diagram.  

This work led to the development of contour plots of moment on the surface of the 
plate, where Beranek was able to model failure locations of a flat plate based on 
the lines generated from the trajectory projections of principal moment. From this 
the idea arose that the possibility may exist to map these principal moments to a 
shell.  
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Since the moment hill of a flat plate is the optimal shell configuration for said 
floorplan, we know that the principal moment trajectories and isocurves become 
principal stress curves and isocurves. However, the goal is to map this requirement 
to that of a geometric property of the plate itself such that the use of vector 
directions are no longer needed. In order to explore relationships between shell 
normal forces and plate bending, a script written by Oosterhuis (2010) based on 
Bernarek’s (1976) concept of rain flow analogy was used. This system uses 
steepest descent in order to determine the principal gradient of the surface. 
Isolines are then drawn by taking planar cuts of the surface every 1/20th the depth 
of the surface. By using this method we could examine the principal gradient of a 
variety of surfaces.  

From Beranek (1972) for a plate the principal moments in a twistless case would be: 

𝑚1 =
1

2
(𝑚𝑥𝑥 + 𝑚𝑦𝑦) + √

1

4
(𝑚𝑥𝑥 + 𝑚𝑦𝑦)

2 

𝑚2 =
1

2
(𝑚𝑥𝑥 + 𝑚𝑦𝑦) − √

1

4
(𝑚𝑥𝑥 + 𝑚𝑦𝑦)

2 

Equation 7-16: Calculation of principal moments (𝑚1𝑎𝑛𝑑 𝑚2) (Modified from: Beranek, 1972) 

As 𝜏xy is zero. Therefore a logical method of examining the patterning of these values 
would be to overlay the 𝑚y𝑦 𝑎𝑛𝑑 𝑚𝑥𝑥 Moire patterns over one another.  

If the relationship for principal moment trajectories can be related to moment, 
deflection, or rotation of the plate surface, a mapping of the moment surface as 
the ideal shell surface should allow for the mapping of these principal moment 
lines to principal stress lines.  

An examination tested the relationship between the flat shell displacements due 
to vertical loads in comparison to the total displacement of a shell. The idea came 
from the fact that if the plate moment hill is equivalent to the idealized shell shape 
then the plate surface stresses caused by moment (m) should be the shell principal 
stresses in membrane action. Therefore, since stresses ( 𝜎)  are directly 
proportional to strain (𝜖) and strain is the first order derivative of the displacement 
of the plate, this should mirror quite closely to the stresses in a closed shell. In a 
flat plate these values would be the principal moment as the lines would be the 
fiber stresses on the surfaces of the plate, but since the moment shell is based on 
the idealized moment surface, these values are translated to in plane stress, 
specifically the principal stress lines. 
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𝜖1,2 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 ∈ 𝜎1,2 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ∈ 𝑚1,2 𝑝𝑙𝑎𝑡𝑒 

Equation 7-17: Relationship Between Bending Strain, Membrane Stress, and Principal Moment (Own Work) 

This however, also does not match expected results and instead appears to be 
very similar to the principal shear as visible in Figure 7-26.  

In a twistless flat plate all rotation and deflection are the result of moments. 
Therefore on a twistless flat plate Equation 7-13 can be rewritten as in Equation 
7-18: 

𝑛𝑥𝑥 ↔ 𝜅𝑦𝑦 ↔ 𝑐𝑦𝑦, 𝑛𝑦𝑦 ↔ 𝜅𝑥𝑥 ↔ 𝑐𝑥𝑥, 𝑛𝑥𝑦 ↔ −𝜅𝑥𝑦 ↔ −𝑐𝑥𝑦 

Equation 7-18: Relationships Between In Plane Forces, Curvature from the moment shell, and full shell 
curvature (modified from Oosterhuis, 2010) 
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Figure 7-26: Comparison of Principal Gradient of the Deflected Form with Principal Moment (Own Image) 
and (Beranek, 1972) 
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Since we know that curvature is the derivative of the plate rotation, the principal 
curvature of the plate and thus the principal stresses should be equal to the 
steepest ascent of the rotation hill. Here in Equation 7-19, the principal descent of 
the angle of a flat plate, or principal curvature of the plate where the  -hill 
(rotation hill) can be expressed as follows, where t is the steepest direction along 
the rotation hill: 

 tt

d
n

dt

 
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 
 

 x
xx xx
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Equation 7-19: Links between Rotation, moment and normal forces in a flat plate (Modified From: Beranek, 
1972) 

These equations state that by defining the curvature as the change in rotation, the 
maximum curvature (𝑐𝑚𝑎𝑥) should be the maximum change in rotation or, in other 
words, the principal curvature (𝑐1) should be along the trajectory of the largest 
normal forces in a shell (𝑛𝑡𝑡), which in turn is the principal moment in the plate. 
Since the curvature in a plate is created entirely from moment, the curvature (c ) 
should be equal to the curvature in the moment surface (𝜅) and therefore the 
principal normal force (𝑛1)should be equal in direction to the principal moment 
(𝑚1). 
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Figure 7-27: Isolevels and Streamlines of Total Rotation in an Edge Supported Plate (Own Image) and 
(Beranek, 1972) 
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One can see that while Figure 7-27 resembles the principal moments, it is not 
entirely correct. Therefore, the question became why does this not work? Is there 
perhaps twisting that needs to be accounted for? The current hypothesis is that 
twist would result in the streamlines experiencing convergence and curl. This is 
likely the culprit as convergence can be seen in the middle of the plate and in the 
corners where none is to be expected.  

There also appears to be a combination occurring of the principal directions as the 
vector set does not mention which set contains the highest stresses at that point. 
Therefore it could be that some streamlines are shifting from 𝜎1 to 𝜎2. 
 
If a method can be developed that utilizes the relationships between moment in a 
plate and normal forces in a thin shell, the pattern developed by this method could 
be easily mapped using set moment values and isolines to create the trajectories 
and map set values using UV mapping onto the shell surface. However, research 
in this area was limited and unfortunately did not yield a full result within the last 
several months of search.   



111 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

8  FINAL SIZING AND LOADING 

8.1 LOADING CONDITIONS: 
Eurocode EN 1990 was used to develop the correct load conditions on the 
structure as laid out in the following paragraphs. This load was calculated as a 
value for the whole roof per unit area on which a load ratio script was used to 
distribute the load values to the proper joint locations. This assumes the worst 
case scenario for construction in which the glass is only structurally connected to 
the gridshell at the joints rather than evenly along the edge of each panel. 

 Self-Weight is calculated based on the weight of the glass rather than the 
steel sections as most of the weight of the structure comes from the glass mesh. 
The glass has depth of 6mm. According to CES Edupack 2016, the average weight 
of annealed glass is 2750 kg/m3. Assuming that standard 6mm panes of glass are 
used to span the roofing structure the self-weight load is measured out to be 
161.85 kN / m2 

 Snow load according to Eurocode EN-1990 is defined by location. The 
Netherlands is located within Zone 3. Based on this location, the required snow 
load calculation is (0.614*Z-0.082+ (A/966)). Substituting in a Z of 0.4 for the zone 
parameter for the Netherlands and a A for the average height of the shell to be 
roughly 10m, the snow load is 0.17 kN/m2. The thermal coefficient is 1. While it 
would normally be higher for a primarily glass structure, due to the fact that the 
space underneath is not air conditioned unlike other roof structures, a normalized 
value must be used. The final coefficient is the exposure coefficient, this value is 
listed at 1.2 as accordance to Eurocode EN-1990-3. With all these values 
combined the structural load used per square meter on the structure is 163.94 
kN/m2. Due to uncertainty, the load is multiplied by 1.4, the steel safety factor, 
giving a final loading condition of 229.51 kN/m2. 

 Since the full length of the courtyard is approximately 63 meters a 
serviceability requirement would be the 𝑀𝑎𝑥 𝑆𝑝𝑎𝑛

250
. Therefore, required maximum 

displacement was 25cm. 
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8.2 SIZING OF STRUCTURAL STEEL AND STRUCTURAL PERFORMANCE: 
The sizing of structural steel is typically conducted across three different sets of 
data for this parameterization, structural volume, strain energy, and mean shell 
behavior.  

The first is structural volume; this is determined primarily by the axial stress and 
the bending moment in the beams. The bending moment in the beams will develop 
the structural depth of the beams and the axial stress in the system will generate 
a required area and thus thickness of the system required. This setup will therefore 
generate a minimum size CHS for each beam in order to generate a minimum 
theoretical structural volume The structure will be developed using a subset of 
Circular Hollow Sections (CHS) in order to reduce issues with angle 
implementation. 

The second structural ranking will be developed based on strain energy. This 
valuation examines the amount of strain placed on the structure per unit volume 
and develops a consistent method of examining which system more accurately 
resolves the forces in the gridshell. Based on these two values, a proper 
assessment can be made about the validity of the results of this structural system. 

The third ranking is the mean ratio of beam axial force to beam axial moment of 
the gridshells. Theoretically a perfect gridshell would have no moment, however, 
due to the nature of straight bar structures being impossible to follow the moment 
hill perfectly, there will never be 100% shell structure. 

The final ranking is an average of the previous 3. With the highest scoring design 
receiving a score of 1 and each following, scoring percentage of that score. 

 
3

lowest lowest

highest

mass strainenergy shellbehavior

mass strainenergy shellbehavior
Score

 

  

Equation 8-1: Scoring Methodology 
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TYPE MASS 
(KG) 

STRAIN 
ENERGY 
(KJ) 

MEAN 
SHELL 
BEHAVIOR 

SCORE 

BASE 1 368794 2527 0.8083 0.911 
BASE 2 
(DIAGONALS) 

719527 2043 0.8736 0.838 

BASE 3 
(COMBINED) 

669424 2535 0.7515 0.739 

STREAMLINE 509424 2135 0.7894 0.861 
STREAMLINE 
WITH MEAN 
CONVERGED 
NODES 

509488 2139 0.7892 0.860 

PGP 517174 2281 0.8615 0.865 
Table 8.1: Scoring of Structural Options 

The initial base that was in this case highly aligned with the principal stresses 
showed to be the most efficient method for this case. However, the second and 
third most efficient methods were in fact the Periodic Global Parameterization and 
the Streamline Generated method. This final score provides further validity of this 
system when compared to structures of similar density. This can be seen in Table 
8.1 where the score for the streamline method generated in this thesis is 5.48% 
less efficient than optimized base method and less than 1% less efficient than the 
periodic global parameterized method. Considering the complexity of the 
parameterization scheme, this analysis is surprising.  

The optimization is further validated based on the summation of the shear at 
nodes in the gridshell. For the streamline method the shear of the final gridshell is 
2.40967E5kN. This compares well to the 1.33278E5 kN of the base UV design 
that follows the principal stresses and is an order of magnitude less in comparison 
to the 1.687E6 kN of the diagonalized gridshell. 

Table 8.1 also shows that the expected further cleanup of the structure for 
constructability does begin to affect the shell behavior as the lines are forced to 
deviate from exactly along principal stress directions to mean nodal coordinates. 

Figures 8-1 and 8-2 show the gridshell with mean converged coordinates in 
location spanning across the courtyard. 
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Figure 8-1: Streamline Gridshell In Courtyard 

 
Figure 8-2: Elevation of Streamline Gridshell In Courtyard 

  



115 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

8.3 DETAIL: 
The detail developed in Figure 
8-3 shows what sort of 
structural member would be 
best suited and how the 
structure would be best 
positioned for capping and 
developing a quick to 
construct system that has 
minimal issues with beam 
twist. 

Since many methods of beam 
structure rely on orienting flat 
surfaces outwards, significant 
variations in bar orientations 
can occur at nodes. This 
makes the development of 
nodes for gridshells a very 
time consuming and costly 
process. Typically there are 
two solutions to this problem: 

The first solution is to parametrically model every node and examine nodes that 
are developed from the parametric meshing to see if there are any major issues. 
This method allows for the use of multiples sizes and shapes of profiles. However, 
it does create costly nodes and front ends the work to parametric design. 

A simpler solution is to use CHS profiles. By using a CHS profiles any orientation 
of the profile is exactly the same. This means that as long as the glass for the 
structure is either set after the construction of the node and beam structure, which 
is almost guaranteed, and allows for a more rapid assembly of joints. This system 
also allows for the plates to be either attached only at the nodes, or fully along the 
bar structure without having to worry about the rotation of the surface, as a circle 
is always tangent to a plane at a single point. From here the glass direction is 
projected to the center of the beam allowing for the alignment of the connectors 
between the beam and the pieces of glass. This point connection also allows for 
significant discrepancies between the two panes and still have a decent 
connection. 

 

  

Figure 8-3: Possible Beam and Glass Connection Detail (Own) 
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9  CONCLUSION AND REFLECTION: 

9.1 RESEARCH QUESTION 
How can the creation of a gridshell by using principal stress directions be used 
to provide a more efficient structure that follows principal stress paths? 

The principal stress paths can be traced using a streamline operator on a 2D flat 
mapping. This methodology generates a solution that is nearly as efficient as the 
Periodic Global Parameterization of similar density and is more efficient than an 
arbitrarily generated gridshell. However, the spacing on the structure is not tightly 
controlled as the system measures mapping distances on the 2D parameterized 
plane rather than in 3D which results in significant area distortion in some parts of 
the shell. 

The streamline generator, however, was more efficient than most generic 
structural tessellations as shown in Results Table 8.1. A better mapping such as 
with Periodic Global Parameterization provides a slightly more efficient structure 
although not a considerable improvement. 

9.1.1 Sub-questions 
How can rod paths be plotted along principal stress streamlines on freeform 
surfaces? 

Rod paths can be plotted using principal stress vectors through the use of a 
streamline generator. This generator is most viable on a 2D plane and therefore 
requires the mapping to and from a 3 dimensional surface in order to create proper 
rod pathing. 

What form finding methods are suitable for generating an efficient structural 
form with high percentage shell behavior (no out of plane forces) and low strain 
energy density(high stiffness)? 

The particle spring system was determined to be the most suitable method for 
implementation into the form finding section of the thesis due to the level of 
customization and integration facilitated by the Grasshopper3D environment via 
the Kangaroo plugin. This allowed for shells to be generated with highly 
customizable and definable parameters with mean shell behavior scores of over 
90%, as shown in Table 6.3.   

Is there a considerable advantage in optimizing a gridshell structure based on 
principal stress stream lines and an arbitrary generated tessellation? 

Compared to arbitrary gridshell structures of similar density, there is an advantage 
to developing gridshell structures using both streamline mapping and 
parameterization. If the principal stress directions of the structure are difficult to 
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determine, then this method provides a useful solution to generating a concept 
structure for future development.  

However, if the structure has easily determinable principal stress directions, 
creating a UV structure via intuition would be a more efficient process. Of note, 
the system does not integrate all required construction limitations that would be 
necessary for this system to create a viable panelization scheme. The most 
important check would be the curvature of the panels. Since both the stream and 
periodic global parameterization systems do not area normalize, there is a 
significant probability that many of the glass panels for the roofing would need to 
be pre-formed off site via hot bending techniques.   

  



Investigating Principal Stress Lines: Optimization of Gridshell Structures | 118 
 

9.2 POSSIBLE FUTURE STEPS: 

9.2.1 Computational 
While the current tracer does account for some vector field smoothing, there are 
still significant issues that occur around the singularities. The large amounts of curl 
that occur in these areas distort and warp both streamline and parameterizations 
and thus creates discontinuities in the bar paths and orientation. 

There are a significant number of possible steps to be taken in future 
investigations. 

9.2.1.1 Better Tracing and Streamline Analysis 
One method of advancing this system would be to integrate constructability 
requirements into the data set so that beam spacing, too close together or too far 
apart, signal the necessity for beam convergence or insertion. However, to do this 
and maintain a proper UV mapping, the main streamline tracer would have to be 
rewritten to allow for parallel input points and allow for a continual distance check 
between the points as the streamlines are generated. Another approach would be 
to cleanup all points by checking their relative spacing in the same grid direction 
and all points within a specified distance, for example all points within 0.2m, are 
consolidated to a mean point. This would bring converged streamlines together 
and create a more even spread of streamlines on the vector field.  

If this system is properly implemented and a bar structure can be created without 
manual input, full parametric design can occur with fluid data flow. This data flow 
would allow for much more analysis to occur such as optimizing for 
constructability by checking warping or area conformance and structural sizing. 

9.2.1.2 Generating a Curvature Field 
Based on current technology glass panels can be cold bent to provide some 
geometric flexibility. Since the current grid is based on polyline coordinates and 
thus generated from straight bar elements, there cannot be any single curvature 
in the panels, only skewness, generating double curvature. Schober in his 2015 
book “Transparent Gridshells” states that current limits as follows. 

 /175W D  

Equation 9-1: Glass Panel Warping Limitations (Schober, 2015) 

Where the warping factor (W) is based on the average diagonal length of the 
quadrilateral panel (D) where 𝑑1and 𝑑2 are the two diagonal lengths.  

 1 2

2

d d
D


  

Equation 9-2: Average Diagonal Length (Schober, 2015) 
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Quadrilateral planarization can be completed in several methods. Typically Planar 
Quad (PQ) meshes are generated using the principal curvature as a guiding vector 
set for generating a quadrilateral system in geometry processing libraries. Using 
principal curvatures is the simplest method to generate a planar quadrilateral 
approximation of the surface; this is because by aligning the principal curvature 
with the planar quadratic meshes, the resultant mesh will have as little skew as 
possible (Ray et al., 2006).  

Winslow (2010) opted instead for a formula utilizing an area normalization 
coefficient and ignored the curvature vectors of the gridshell. He therefore ignored 
the skewness, arguing that most panels would be developable as most gridshells 
exhibit low curvature and therefore low skewness. This is not necessarily robust 
across all designs and leaves the designer exposed to some non-conformance. 

A curvature analysis can be used in order to create the principal curvatures 𝑐1 
and 𝑐2 directions at each node point would allow for the weighting of these 
vectors in comparison to the principal stress vectors (𝜎1 and 𝜎2).  

However, for a gridshell not every panel has to be perfectly planar. Therefore in 
order to develop a planar surface, the principal curvature of a patched surface is 
determined at the same point of analysis. Once each principal curvature vector is 
matched to a principal stress vector (based on which angle in each orthogonal set 
is the smallest) a weighting scheme is developed to generate a new vector grid.  
Where: 

  1ˆ ˆ ˆW W  r s c  

Equation 9-3: Vector Weighting Function for Defining Principal Stress vs Curvature Lines (Own Work) 

In which: 

 ˆ      unitized rationalized vector setr  

  W scalar weighting  

      ˆ unitized stress vector sets  

 ˆ      unitized curvaturevector setc  

While this set was not used in the end for computation, it is hopefully useful in 
further investigations. 

9.2.1.3 Using Conformal Mapping / Periodic Global Parameterization 
In comparison to Panagiotis and Sawako’s Millipede(Panagiotis & Sawako, 2014) 
algorithm the other main shortcoming appears to be the regularity of the grid. This 
can be explained by the parameterization choice: if instead a pseudo-isometric 
parameterization could be generated, then the streamline spacing algorithm 
would have less spacing variability. 
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Therefore, it is probable that a proper pseudo-isometric or conformal map would 
generate a closer representation of this parameter. However, for this to work the 
translation function would need to be known for each mesh face in order to ensure 
that the transformation also occurs to the corresponding vector set, which was 
unfortunately not possible within the mapping available while using Kangaroo. 

9.2.2 Analytical Analysis 
An attempt was made at the analytical derivation of the principal stresses in a shell 
so that significant computational work and complexity of the geometric process 
could be simplified. By approaching the system from a fundamentals perspective, 
there is a chance that these methods may be derivable from the loading 
characteristics of a flat plate. It is already known that the moment hill ( m ) of a flat 
plate with identical load conditions will create the idealized funicular shape when 
Calladine’s two surface theory is used.  

From here it is also possible to develop the principal shear direction which happens 
to be the principal curvature of the moment hill shell. There appear to be several 
usable relationships that could possibly generate the same relationship for 
principal stresses, specifically analyzing the rotation values of a plate in 
comparison to the mapped shell form. If this is the case, a proper relationship can 
be determined between principal moments and in plate surface geometry, then 
the ability to generate usable isocurves is much more stable and results in fewer 
issues such as vector field singularities. Instead, these will be low points in the 
surface and, therefore, not induce the same amount of uncertainty and rotation 
that is created in the parameterization and streamline method. 
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9.3 REFLECTION 
The form finding methods outlined in this thesis were a success, and the 
application of a variety of form finding algorithms did yield more efficient structural 
solutions within the standard context of particle spring loading methodologies. 
These methods more accurately model real world loading characteristics to a 
digital form finding mechanism. Form finding via analytical solutions through 
determining the moment surface is also a viable option for most shells. The system 
yields results with average shell behaviors often high in the 90%+ range, as shown 
in Table 6.3, while dealing with complications that analytical structures have 
difficulties with, including mixed height supports. This form finding system was 
also shown to be viable for gridshells developed from this structure reaching 
scores averaging 81.7% from Table 8.1 

The second part of the thesis, however, was less successful. There were several 
issues that occurred within the thesis. Firstly, streamlines even when mapped to a 
2D mesh of the original shape to reduce integration step errors are not usable as 
a method of optimization. The streamline generation along principal stress vectors 
for gridshell development requires the result to become a discrete grid unlike most 
other engineering applications of streamlines. Typically streamlines are used for 
visualization of flow analysis rather than generating a connected network. Even 
through the use of mapping to a 2D surface and only working with orthogonal 
vectors, the system still did not efficiently work. The result yielded a messy and 
unrefined structural flow that in turn resulted in major manual cleanup. 

Other methods such as a periodic global parameterization through the Millipede 
black box parameterization engine did also not work. These two systems, 
streamline tracing and periodic global parameterization, both ran into significant 
issues around the singularities that may be resolved with more focus utilizing 
discrete differential mathematics.  

The primary issues with the current methodology are singularities in the vector 
field and area distortion. These singularities cause discrepancies in the flow data 
and thus result in a point of convergence or divergence of the vector field due to 
curl. Despite efforts in using evenly spaced streamline algorithms, this approach 
was still unsuccessful. 

 The area distortion also yields some panels larger than the 1 meter desired 
spacing, especially around the areas where the gridshell is highly vertical. This can 
clearly be seen when comparing the periodic global parameterization 
methodology with that of the streamline algorithm. 

The mathematics and mappings of parameterization are still unfortunately 
complex and unwieldy with some simple gridshells requiring multiple sub-maps 
and joining functions which was beyond the scope of this thesis. 
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While this paper does eventually develop a gridshell, it requires significant manual 
editing and development that is unsatisfactory for a fully parametric model for 
optimization. Some of the reduction was developed later on in the thesis, but 
would need to be more rigorously tested before implemented fully in an 
optimization algorithm.  One of the designs chosen to compare against the base 
system was also in the end developed via black box methods. This was because 
the periodic global parameterization engine was not viable to run within the 
Grasshopper3D system. This would have needed to be fully rewritten from base 
discrete differential geometry in order to be implemented, which was 
unfortunately beyond my current capabilities and the time scope of this thesis.  

Instead, this paper in turn explored multiple current methodologies with none 
being quite satisfactory from a parametric perspective. While this is in no small 
part due to my failure at understanding the complex mathematics of discrete 
differential geometry, it shows that this method is relatively impractical for the 
architecture student. This is confirmed by the primary papers in the field being a 
PhD thesis from civil engineering and other conformal mapping papers being co-
written by mathematicians focusing in discrete differential geometry.  

Instead, the research presented at the end of the paper that focuses on the plate 
behavior and utilizing structural theory may provide a better solution.    

My belief is that this method of examining principal grid layout appears to be 
correct on the surface in order to generate grids for all forms, but is inherently 
flawed. Since principal stresses are a second order tensor and a directional 
derivative of derived stresses, these are often non-smooth. In order for the data to 
be viable either intensive smoothing processing or curl correction would need to 
be applied. Secondly, often times, principal stresses can be plotted far more quickly 
by hand than by utilizing this system, while slightly more difficult on more complex 
surfaces, often time engineering intuition will be faster than that of utilizing 
parametric systems. 

The thesis relates to Building Technology by attempting to map 2nd order tensor 
sets using computation to generate more efficient lightweight and thin structures. 
Thin, lightweight and open structures such as gridshells are becoming more 
common around the world by the year because of their high span to structural 
depth ratio due to their form. This therefore attempts to further discretize the 
issues of the structure and also optimize their topology. 

Discrete mapping of principal stresses would be useful in a variety of structures, 
however, there are more efficient ways of developing such structure if loads are 
concentrated at a point. But for structural systems under continuous load 
conditions made of bar elements, further work is required and my belief is this 
thesis has highlighted directional areas for future investigation in order to achieve 
these objectives. 
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9.4 RESEARCH PATH 
The research method was unfortunately not well defined. The examination began 
at wanting to optimize along principal stress directions which took a turn into 
examining mappings and mesh parameterization, while also diverging to examine 
plate mechanics and shell mechanics at the same time. I believe that members of 
the academic community with more advanced mathematical knowledge will be 
able to derive a more useful surface, and in fact in some cases have done so as 
seen with Winslow’s PhD Thesis. Had this thesis focused instead on only one 
singular direction and track, a clearer and more developed thesis would likely have 
been developed. The main issue is that there were far too many parameters to 
examine in the scope of one master’s thesis and would make a much better 
doctoral thesis, as evidenced by Winslow’s thesis from 2010.  

There were no conflicts of interest during the thesis.  

During the research some extra scripts were also generated in expectancy of a 
successful generation of a grid generation. These are available in the final 
appendix.  
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11APPENDICES 

11.1 APPENDIX 1: GRASSHOPPER3D SCRIPT 

11.1.1 Appendix 2: UV Generation 
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11.1.2 Appendix 3: Form Finding and Remeshing 
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11.1.3 Orthogonal and Diagonal Lines of a Quad Mesh 
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11.1.4 Force Area Ratio 
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11.1.5 Appendix 4: Principal Stress FEA 
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11.1.6 Vector Weighting (Unused) 
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11.1.7 Mapping to 2D and Tracer with Evenly Seeded Streamline 
Algorithm 
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11.1.8 Bounded Delaunay Mesh 
 

 

 

11.1.9 UV Discretization 
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11.1.10 : Point Grouping and UV Simplification 
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11.1.11 Final Structural Analysis 
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11.2 APPENDIX 2: PYTHON CODE 

11.2.1 Streamline Generator 

1. import math   
2. import functools   
3. import rhinoscriptsyntax as rs   
4. import Rhino.Geometry as rg   
5.    
6. #Coerce    
7. field_loc = rs.coerce3Dpointlist(field_loc)   
8. field_dir = rs.coerce3Dpointlist(field_dir)   
9. start     = rs.coerce3Dpoint(start)   
10.    
11. #Gaussian funciton   
12. def gauss_fun(values,sig=1,mu=0):   
13.     return [ math.exp(-(x-mu)**2/(2*sig**2)) for x in values]   
14.    
15. #Compute stress at location   
16. def stress(loc):   
17.     dist = rs.Distance(loc,field_loc)   
18.     weights = gauss_fun(dist,sigma)   
19.     weights_sum = sum(weights)   
20.     return functools.reduce(lambda x,y: rs.PointAdd(x,y), [ w*s/weights_sum for s,w in zip(field_dir,

weights)])   
21.    
22. #Compute one step for Euler integration   
23. def step(loc,dir,stress):   
24.     # Norm stress vector   
25.     stress = stress/rs.VectorLength(stress)   
26.     # Norm direction   
27.     dir = dir/rs.VectorLength(dir)   
28.     # Follow tangent   
29.     if rs.VectorDotProduct(stress,dir)<0:   
30.         stress = rs.VectorReverse(stress)   
31.     # Compute step delta   
32.     delta  = stress*step_size   
33.     # Return   
34.     return loc+delta,stress   
35.    
36. #Check boundary condition   
37. def check_boundary(loc):   
38.     return rs.IsPointOnMesh(mesh,loc)   
39.    
40. #Check for looping   
41. def check_looping(loc,locations):   
42.     #return None   
43.     dist = rs.Distance(loc,locations)   
44.     min_dist = min(dist)   
45.     return locations[dist.index(min_dist)] if min_dist<0.99*step_size else None   
46.    
47. #Prune line from loop   
48. def prune_head(point,line):   
49.     try:   
50.         return line[0:line.index(point)+1]   
51.     except:   
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52.         return []   
53.    
54. def prune_back(point,line):   
55.     print(len(line))   
56.     print(line.index(point))   
57.     try:   
58.         return line[line.index(point)-1::]   
59.     except:   
60.         return []   
61.            
62. ############## Main ################   
63. def iterr(loc, dir):   
64.     line1,line2 = [loc],[loc]   
65.     loc1,loc2 = loc,loc   
66.     dir1,dir2 = dir,rs.VectorReverse(dir)   
67.     run1,run2 = True,True   
68.     for i in range(iterations):   
69.         run1 = run1 and check_boundary(loc1)   
70.         if run1:   
71.             loc1,dir1 = step(loc1,dir1,stress(loc1))   
72.             point = check_looping(loc1,line1+line2)   
73.             if point is not None:   
74.                 line2 = prune_head(point,line2)   
75.                 if check_looping(loc1,line1) is not None:   
76.                     line1 = prune_back(point,line1)   
77.                 line1.append(point)   
78.                 break   
79.             else:   
80.                 line1.append(loc1)   
81.         run2 = run2 and check_boundary(loc2)   
82.         if run2:   
83.             loc2,dir2 = step(loc2,dir2,stress(loc2))   
84.             point = check_looping(loc2,line1+line2)   
85.             if point is not None:   
86.                 line1 = prune_head(point,line1)   
87.                 if check_looping(loc2,line2) is not None:   
88.                     line2 = prune_back(point,line2)   
89.                 line2.append(point)   
90.                 break   
91.             else:   
92.                 line2.append(loc2)   
93.         if not run1 and not run2:   
94.             break   
95.     return list(reversed(line2[1::]))+line1   
96.    
97.    
98.    
99.    
100. line = iterr(start,stress(start)/rs.VectorLength(stress(start)))   
101. try:   
102. #Normal Polyline Generation   
103.     line = rs.AddPolyline(line)   
104. except:   
105. #Circle Developed if Point Starts Directly in Singularity   
106.     line = rs.AddCircle(start, 0.1)   



141 | Investigating Principal Stress Lines: Optimization of Grid Shell Structures  
 

11.2.2 Support Checks 

1. import math   
2. import rhinoscriptsyntax as rs   
3.    
4. xValues = []   
5. yValues = []   
6. equalX = None   
7. equalY = None   
8. x = rs.coerce3Dpointlist(x)   
9.    
10. def checkEqual1(iterator):   
11.     iterator = iter(iterator)   
12.     try:   
13.         first = next(iterator)   
14.     except StopIteration:   
15.         return True   
16.     return all(first == rest for rest in iterator)   
17.    
18.    
19. ### Main Condition Check ###   
20. if x is None:   
21.     print "Not enough supports"   
22.     a = None   
23. else:   
24.     if len(x)<3:   
25.         print "Not enough supports"   
26.         a = None   
27.        
28.     if len(x)>=3:   
29.         print "You have enough supports"   
30.        
31.         for i in x:   
32.             xValues.append(i[0])   
33.             yValues.append(i[1])   
34.    
35.         equalX = checkEqual1(xValues)   
36.         equalY = checkEqual1(yValues)   
37.         if equalX == True:   
38.             print "Your supports are in a line"   
39.             a = None   
40.         if equalY == True:   
41.             print "Your supports are in a line"   
42.             a = None   
43.         else:   
44.             print "Your supports are well placed"   
45.             a=x   

 

 


