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 A B S T R A C T

This paper analyzes the potential influence of digital mapping tools (with Google Maps as the primary example) 
on mode choice behavior. For the purpose of this study, we use survey data gathered in Vienna (Austria) 
during 2022. Almost 80% of respondents state that they regularly use Google Maps, and a large majority 
evaluate Google Maps positively concerning ease of use, trust, or general usefulness. Our analyses reveal that, 
on average, respondents perceive real-life travel times as somewhat longer than the corresponding Google-
Maps-based travel times (by 2%–11%). However, a large degree of heterogeneity is present, which seems to 
be at least partially driven by respondents’ speed choices. Based on a stated preference experiment, in which 
respondents were asked to choose between transport modes, assuming that the travel times stated in the 
experiment either originate from Google Maps (GoogleMaps treatment) or correspond to accurately measured 
average travel times (Baseline treatment), we can show that the perceived differences between real-life travel 
times and Google-Maps-based travel times are only considered to a limited extent in the mode choices. More 
specifically, such deviations are mainly acted upon when individuals expect to be faster than the Google Maps 
estimate.
1. Introduction

Digital mapping tools such as Google Maps are increasingly used 
by individuals to support mobility-related decision-making. These tools 
typically aim to provide easily accessible travel information (Lin and 
Batty, 2009; Ramadan et al., 2025), and in doing so, they influence 
the travel behavior of their users (Montello, 2018; Cornacchia et al., 
2024). As even the best maps have flaws and no human perception of 
geographic space is without distortions, it becomes particularly impor-
tant to study how maps influence human behavior (Montello, 1997; 
Quattrone et al., 2015; Wagner et al., 2021; Gentzel and Wimmer, 
2023). Despite the ubiquitous presence of digital mapping tools, their 
role in shaping user decision making remains understudied.

I We are grateful to the editor and several anonymous reviewers for their constructive comments. We also thank the City of Vienna for financial support via 
the Jubilee Fund of the City of Vienna for the project ‘‘Towards Realization of Accountable Multi-modal Smart Mobility in Vienna: Do Smartphone Apps Influence 
Mode Choice Behavior among Viennese Citizens? The Role of User-interface Design in Influencing Users’ Mobility Behaviour in Vienna" and Soheil Human for 
his contributions to the project. In addition, Françeska Tomori acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, and the European 
Union under grants [2021URV-MS-38 and the project PID2022-138754OB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER, UE].
∗ Corresponding author.
E-mail address: stefanie.peer@wu.ac.at (S. Peer).

In this paper, we investigate the influence of digital mapping tools 
on users’ mode choice decisions. More specifically, we aim at under-
standing (1) whether individuals believe that the travel times generated 
by digital mapping tools (such as Google Maps) correspond to their 
real-life travel times, and (2) to which extent individuals take any 
perceived deviations between actual and estimated travel times into 
account when deciding on a transport mode. For these research pur-
poses, we conducted a survey among 1321 citizens of Vienna (Austria). 
Respondents were asked about their use of digital mapping tools (in 
particular in the context of travel-related decisions). They were ran-
domly assigned to one of two treatments: Google Maps and Baseline. In 
the former, they were asked if and to what extent they perceive Google 
Maps (the most widely used mobility app) as over- or underestimating 
travel times (for each transport mode separately); possibly due to the 
https://doi.org/10.1016/j.trip.2025.101560
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underlying algorithms employed by Google Maps (which, for instance, 
ignore the time required to find a parking space and other types of 
‘time overhead’ Miotti and Hellweg, 2025) or their own speed choices 
(i.e., walking/cycling/driving relatively slow or fast, respectively). In 
the Baseline treatment, they were asked if they thought their own 
(mode-specific) travel times were faster or slower than objectively 
measured average travel times (here focusing on the role of their own 
speed choices). 

Our survey also included a stated preference (SP) experiment in 
which we collected hypothetical travel mode choice data from all 
respondents. Such SP experiments are frequently used in transport 
studies to measure the preferences of individuals for specific trip at-
tributes, with travel time and cost usually being the central ones. 
The trade-off between the time and money attribute can be expressed 
as monetary valuation of travel time savings, often abbreviated by 
‘‘value of time’’ (see, for instance, the review by Wardman et al., 
2016). The time valuations are a central element in transport eco-
nomics, as time savings are generally a large component of the benefits 
associated with infrastructure improvements (Mackie et al., 2001). 
In the SP experiment conducted here, respondents assigned to the
GoogleMaps treatment were told that the information on the (mode-
specific) travel times originates from Google Maps, while respondents 
assigned to the Baseline treatment were told that the (mode-specific) 
travel times correspond to objectively measured average travel times. 
Using state-of-the-art discrete choice modeling approaches, we can 
determine whether respondents take the stated travel times ‘‘at face 
value’’, or whether they actually take into account any perceived de-
viation between real-life travel times and Google Maps’/average travel 
times in their mode choices.

This paper adds to the literature on the impact of information 
on travel behavior by expanding our understanding of how digital 
mapping tools influence travel behavior. Although a large number of 
such studies have been conducted (Mokhtarian and Tal, 2013), studies 
focusing on the impact of digital mapping tools, in particular on mode 
choices, are scarce (Sun et al., 2021). Even more specifically, our paper 
has an explicit focus on the potential role of perceived discrepancies 
between digital map-based and real-life travel times, and therefore also 
contributes to the earlier literature that focuses on how discrepancies 
between different sources of travel time estimates may affect travel 
behavior, and in turn the implied time valuations (e.g. Peer et al., 
2013, 2014). Our study also adds to the existing literature on human–
computer interaction in the context of digital maps (mostly in the 
form of apps), by offering insights into how users perceive them, use 
them, and mentally process the provided information. This research 
therefore aims at deepening our understanding of the interplay between 
digital mapping tools, user cognition, and travel mode decisions. (e.g. 
Verplanken et al., 1997; Peer et al., 2014; Angelaki et al., 2020; Wagner 
et al., 2021; Aoustin and Levinson, 2021). The earlier literature is 
summarized in more detail in Section 2.

The potential implications of this research extend beyond academia. 
When discrepancies between actual door-to-door travel times and those 
estimated by digital mapping tools are perceived to be present but 
are not taken into account when deciding between transport modes, 
suboptimal transport mode choices will result. The same is true if 
such discrepancies objectively exist (as some recent evidence by Link 
et al. 2023 (for public transport) and Wagner et al. 2021 (for car 
travel) suggests) but travelers are not aware of them. Subsequently, 
this research may also inform further improvements in digital mapping 
tools, for instance with respect to their accuracy and usability.

The remainder of this paper is structured as follows. Section 2 gives 
an overview of the related literature. Section 3 discusses the design of 
the study, in particular the survey and the empirical specifications used 
for analyzing the stated preference choices made by the respondents. 
Section 4 presents the descriptive results derived from the survey, and 
Section 5 presents the results of the choice models. Finally, Section 6 
discusses the results obtained in this paper and concludes.
2 
2. Literature

There is a large body of literature focused on the extent to which 
travelers take into account external information sources in their travel 
decisions. They generally find that travelers do take into account 
external information sources in their choices; however, especially in 
the context of mode choices, the impact of information is substantially 
limited by travel habits (Verplanken et al., 1997; Chorus et al., 2006; 
Havlíčková et al., 2020). Moreover, there seems to be a large extent of 
heterogeneity in the information needs of travelers, with demand for 
information often being relatively high for public transport usage and 
real-time information (Tang et al., 2022).

In spite of the high usage rates of digital mapping tools, in par-
ticular, since the advent of smartphones, studies focusing on how 
the information provided by such tools affects decisions are relatively 
rare (Sun et al., 2021).

This is particularly true for its impact on mode choices, while the 
context of route choices (e.g. Chen, 2013; Cornacchia et al., 2024) 
and travel patterns in general (e.g. Casquero et al., 2022) seems to be 
covered more thoroughly in the literature. Exceptions are the studies 
by Gan (2015) and Meng et al. (2018), who have an explicit focus on 
mode choices. Similar to our study, they mostly rely on stated prefer-
ence data (in the case of Meng et al. (2018) also revealed preference 
data are used) to estimate the impact of travel information on mode 
choices (with both studies emphasizing the role of information on the 
use of multimodal alternatives). However, in contrast to our study, the 
provided information is not associated with a specific tool (such as 
Google Maps) but instead is generic. Even more importantly, unlike our 
study, they do not investigate the role of potential disparities between 
real-life travel times and those provided by the information source.

Among the few studies that do focus on such disparities, is Wagner 
et al. (2021) who study how predictions made by Google Maps influ-
ence users’ perceptions and travel choices. To analyze this influence, a 
pre-study in a classroom setting (n = 36) as well as an online survey 
(n = 521) were conducted. They study users’ intuitive perception of 
travel time, before using the Google Maps Mobile App as a ‘treatment’ 
to see how it influences their perceptions of travel time and choice of 
transport type. Then, they contrast this original Google Maps treatment 
to a mock-up ‘warning label version’ of Google which informs users 
about biases in Google Maps, and an ’unbiased version’ of Google 
Maps based on ground truth data. They also indicate that Google 
Maps systematically underestimates travel times by car: car travel time 
estimates do not take into account the walk to the nearest street (unlike 
for the public transport alternative, that does consider access and egress 
walk times). In addition, the time needed to find a parking space 
is not included in the calculation of the travel time. Wagner et al. 
(2021) suggest that these underestimates have an impact on users’ 
mode choices. While they go some way in teasing apart the complex 
ways in which human beings interpret geographic space, the study and 
its generalizability are quite limited, not at least because its sample 
consists only of students and university alumni (whereas our study 
relies on a large representative sample).

Also Aoustin and Levinson (2021) look at Google Maps and resulting 
travel time perceptions. They show that individuals estimate real-life 
travel times to be longer compared to those stated by Google Maps, 
especially for travel times by car.1 Similar to our study, Aoustin and 
Levinson (2021) shed light on the divergence between real-life travel 
times and those provided by Google Maps; however, in contrast to 
our study, they do not attempt to link these to user behavior. A 
limitation (which the study of Aoustin and Levinson (2021) has in 

1 Interestingly, they also find that, with the exception of the car, the journey 
times for transport modes that respondents rarely use were reported as longer 
than the corresponding Google-Maps-based journey times. This is in line with 
earlier studies like Van Exel and Rietveld (2010) who find a similar pattern.
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common with our study) is that it only accounts for reported travel 
times rather than observed travel times. Studies like Peer et al. (2014) 
have systematically documented that reported travel times may deviate 
substantially from actual (realized) travel times. More specifically, they 
detect a clear tendency for travelers to exaggerate their actual travel 
times when reporting them.

A recently published working paper (Link et al., 2023) avoids the 
drawback of relying on reported travel times by comparing travel time 
estimates produced by Google Maps (for public transport) and a local 
OpenRouteService (ORS) installation based on OpenStreetMaps (for 
car, walking, and cycling trips) with GPS traces, based on which actual 
travel times can be derived. This analysis is a ‘byproduct’ of their 
mode choice analysis in the context of the 9-Euro ticket introduction 
in Germany. They discuss the generation of choice sets consisting of 
the chosen and several unchosen transport mode alternatives, such 
that discrete choice models can be estimated. Link et al. (2023) find 
a major underestimation of travel time for car routes (by almost one-
third when comparing mean durations) and a slight overestimation 
(around 4%) for public transport; in both cases the differences between 
estimated and observed travel times were higher for shorter trips. The 
authors attribute the bias in car travel times to the ORS not taking into 
account congestion, but are not sure how the overestimation in the case 
of public transport can be explained. Finally, they acknowledge that 
their research is not able to draw conclusions regarding the ‘‘extent 
to which travelers base their mode choice decision on such under- or 
overestimations’’ (Link et al., 2023, p.23) – a question that is at the 
center of our research presented in this paper.

Quattrone et al. (2015) connect the topic of travel behavior with the 
emergence of biases in crowd-sourced spatial datasets by investigating 
the differences between how power users and occasional users con-
tribute to such datasets. However, the authors themselves acknowledge 
that they are not able to look more closely at how these biases influence 
user behavior. More broadly, there are several valuable contributions 
that focus on the relationship between travel behavior and the use 
of digital mapping tools (Qiao et al., 2016; Dastjerdi et al., 2019; 
Gupta and Sinha, 2022). For instance, Gupta and Sinha (2022) find that 
younger users with higher education, more smartphone experience, 
medium-to-high household income, and lower vehicle ownership had 
a very high probability of being classified as a multimodal traveler. 
Another strand of the literature examines the role of digital mapping 
tools in measuring travel behavior (Sun and Wandelt, 2021; Svaboe 
et al., 2023).

Finally, several papers focus on the comparison between various 
digital mapping tools. Trapsilawati et al. (2019) investigate users’ trust 
and reliance on navigation systems, comparing Google Maps and Waze. 
The results of this study show that users have higher trust in Waze 
than in Google Maps, and Google Maps users changed their reliance 
on Google Maps to Waze upon experiencing Waze features. Wu (2019) 
conducted a comparative analysis of travel time data for Sydney, Aus-
tralia, drawing from both Google Maps and Uber Movement, in order to 
assess their consistency. The findings reveal that travel times from Uber 
Movement on average tend to be lower than those provided by Google 
Maps. Ciepłuch et al. (2010) describe a comparison of the accuracy 
of OpenStreetMap for Ireland with Google Maps and Bing Maps. The 
authors find that while there is no clear ‘‘winner’’ amongst the three 
mapping platforms each shows individual differences and similarities 
for each of the case study locations.

Our study complements and expands the existing knowledge by 
placing itself at the intersection of the literature regarding the impact of 
information on mode choices, the literature that focuses on discrepan-
cies between different travel time estimates (e.g., perceived vs. actual 
travel times) and their impact on time valuation (see for instance the 
review by Wardman et al., 2016), and the literature that concerns 
human–computer interaction, here in particular in the context of digital 
maps and even more precisely Google Maps. To our best knowledge it is 
the first paper that touches upon these three thematic areas at the same 
3 
time. Our approach of using stated preference experiments and discrete 
choice modeling techniques is probably the most widely used method 
to analyze travel-related decision-making, including the potential role 
of discrepancies between different sources of travel times estimates 
(e.g., between actual and perceived travel times Peer et al. 2014 or 
between actual and approximated travel times Peer et al. 2013).

3. Data collection, experimental design, and modeling framework

3.1. Overview

The empirical analysis presented in this paper is based on survey 
data collected in Vienna (Austria) in November and December 2022.2 
The survey was conducted online and the data were collected by a panel 
provider, resulting in 1321 complete responses.3 The main question 
blocks included in the survey concerned:

1. Socioeconomic characteristics
2. Travel behavior
3. Usage of digital mapping tools (in the context of travel)
4. Travel time perceptions
5. A stated preference (SP) mode choice experiment
6. Perceived quality and user-friendliness of Google Maps

Each respondent was (randomly) assigned to one of two different 
treatments. Question blocks (4) and (5) of the questionnaire differed 
depending on the treatment a respondent was assigned to, while all 
other parts were identical across treatments. The two treatments are 
defined as follows:

• GoogleMaps: In the GoogleMaps treatment, respondents are asked 
about the extent to which the travel times provided by Google 
Maps match their travel time expectations (question block 4). 
In the stated preference experiment (question block 5), they are 
informed that the stated travel times are based on Google Maps. 
We focus on Google Maps as an example of a digital mapping 
tool that already exists and is widely used in many regions 
world-wide.4

• Baseline: The Baseline treatment serves as a reference scenario. 
Here, in question block 4, respondents are asked to which extent 
their travel time expectations deviate from an accurately mea-
sured average travel time. Correspondingly, in the stated choice 
experiment (question block 5), respondents are told to imagine 
that the stated travel times are based on accurately measured 
door-to-door travel times. The Baseline treatment has been intro-
duced for two main reasons: (1) to determine to what extent the 
findings derived in the GoogleMaps framing are specific to Google 
Maps, or whether they are also applicable to other mobility apps 
(even those unknown to respondents, such as the, in reality, 
nonexistent RoutePlanner app, which is mentioned to respondents 
as an information source in the mode choice experiment); and 
(2) whether any deviations between app-generated and reported 
real-life travel times are due to app-generated travel times being 
perceived as incorrect versus own travel speed choices being the 
primary cause for the deviations.

2 The design of this study and the underlying survey have been informed 
by a pre-test conducted among 165 students of the Vienna University of 
Economics and Business Administration in summer 2022.

3 Due to the use of a panel provider, we have no information on the 
response rate.

4 For instance, in the United States, Google Maps is the most popular 
map application by a considerable margin (measured by the number of 
downloads) (Statista, 2023).
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3.2. Deviations between real-life and Google Maps/average travel times

For each main mode of transport 𝑚 (walking, cycling, public trans-
port, car), participants were asked to report what – based their experi-
ence – their expected (door-to-door) travel time would be if the travel 
time either resulting from Google Maps (in the GoogleMaps treatment) 
or the (correctly measured) average travel time (in the Baseline treat-
ment) was equal to 30 min (which is a fairly usual trip duration in 
Vienna; in fact, the average trip length for Vienna is 28 min BMVIT, 
2016). Specifically, they were asked the following questions (and were 
able to provide reasons behind their answers in open text fields):

GoogleMaps treatment: Suppose you are shown travel times for dif-
ferent modes of transport from Google Maps for a route in Vienna. In your 
experience, how long do you actually take for this route?

Baseline treatment: Suppose you are shown average travel times for 
different means of transport for a route in Vienna. In your experience, how 
long do you actually need for this route?

In further analyses, these reported (mode-specific) travel time ex-
pectations are denoted by 𝑇𝑇𝐸𝑋𝑃

𝑚 . Throughout the manuscript, we 
usually refer to them as reported real-life travel times (sometimes 
abbreviated to reported travel times or real-life travel times). It is 
important to recognize that these expectations are not trip-specific 
but reflect a general (transport-mode-specific) expectation that real 
life travel times differ from those provided by Google Maps or from 
the average travel time. While for the latter, the main source of any 
perceived discrepancy is likely to result from own speed choices (that 
is, individuals perceiving themselves as walking/cycling/driving slower 
or faster than the average), for the former it is likely a mix of own 
speed choices as well as Google-Maps-specific biases (e.g., induced by 
the underlying algorithms).

3.3. Stated preference experiment

3.3.1. Design
We set up a simple (labeled) stated preference (SP) experiment in 

which respondents were asked to decide between four different trans-
port modes 𝑚: walking, cycling, public transport, and car (see Fig.  3 in 
the Appendix for a screenshot of the experiment). The transport modes 
differ in terms of travel times and costs. Respondents were shown 
eight of these hypothetical choice situations. The setup of the choice 
experiment was deliberately chosen to be simple, in order to focus on 
the role of travel times and corresponding perceptions rather than on 
other potentially relevant attributes like scheduling or crowding. The 
cost attribute was included in order to be able to derive monetary 
valuations of travel time. Besides travel habits, costs and travel time 
tend to be the main variables that explain mode choices (Wardman 
et al., 2016). We do not personalize the design of the survey (by varying 
the cost and time attribute around some reference trips); instead, we 
choose attribute values that are realistic for a large number of trips 
within the city of Vienna (according to the most recent mobility survey 
available for Austria BMVIT, 2016, 87.2% of trips within Vienna last 
less or equal to 45 min)5:

5 While personalized SP designs (e.g., by pivoting the attribute levels 
around a reference trip) have the advantage that they are more realistic 
to respondents, they may have substantial downsides in the context of our 
study: First, our focus was not on trips that respondents are already fairly 
familiar with, as in these cases mobility apps are probably less relevant and 
moreover, for such trips mode choices are often to a large extent determined 
by habits. This would have rendered the definition of an appropriate reference 
trip difficult. Second, even if we had tried to gather information on a trip that a 
respondent is only vaguely familiar with, we might have obtained considerable 
heterogeneity in terms of past mode choice and app usage habits on that 
trip that we would have to control for. Finally, there is little evidence that 
personalized SP designs reduce hypothetical biases (Hultkrantz and Savsin, 
2018).
4 
Travel time attribute (𝑇𝑇 𝑆𝑃
𝑚 ): The travel time attribute is de-

scribed as resulting from Google Maps (in the GoogleMaps treatment) or 
to represent accurate average travel estimates based on the (hypothet-
ical) Routeplanner app (in the Baseline treatment). It can assume the 
following values: 10, 15, 20, 30, or 45 min. We have chosen 45 min 
as the maximum, as the active travel mode options (cycling, walking) 
tend to have fairly low relevance above that threshold (an average 
walking trip in Vienna lasts around 17 min and an average cycling 
trip 19 min BMVIT, 2016). Finally, to avoid unreasonable attribute 
combinations, we constrain the walk alternative to always be slower 
than the bike alternative (while we do allow for active modes to be 
faster than public transport or car, which can be the case in dense urban 
settings).

Cost attribute (𝐶𝑜𝑠𝑡𝑆𝑃𝑚 ): The cost attribute (only relevant for the 
public transport and car alternatives) can amount to 1, 2, 3, or 4 Euro6. 
Again, to ensure a realistic presentation, the cost attribute is set to 0 
for the walking and cycling alternatives, respectively. The stated prices 
represent fairly realistic values for a car trip within Vienna (especially 
when including parking costs or when having to rent a car). The prices 
also cover a realistic range for public transport trips, which in reality 
amount to 2.40 Euros for trips within Vienna.

The experimental design was derived using the software NGENE.7 
The design consists of 12 blocks including 8 choice situations each. It 
is identical across the two treatments, with each respondent being ran-
domly assigned one of the 12 blocks. The design was optimized using 
the widely employed D-error efficiency criterion (Rose and Bliemer, 
2007), which minimizes the determinant of the asymptotic variance–
covariance matrix resulting from estimating a model using prior infor-
mation on parameter estimates. In our case, we use prior information 
on the parameters from a recent time valuation study conducted in 
Austria (Schmid et al., 2019), specifying a simple multinominal logit 
(MNL) model with alternative-specific constants (capturing intrinsic 
preferences/habits regarding specific modes), (mode-specific) travel 
time coefficients, and a cost coefficient.

3.3.2. Framing
Participants were told to imagine that they were about to leave 

home at 11 AM on a weekday to conduct a trip within the city of 
Vienna and that they check their smartphone app shortly before de-
parture to find out the travel times (and costs) associated with the four 
main transport modes (the trip hence corresponds to a non-urgent trip 
during a weekday). In the GoogleMaps treatment, the app corresponds 
to Google Maps, and in the Baseline treatment, it corresponds to the 
so-called RoutePlanner app.

This is explained to be a hypothetical application developed by 
Viennese scientists that indicates objective door-to-door travel times, 
which are based on accurate measurements made by Viennese scien-
tists. In the Baseline treatment, respondents might perceive the travel 
times stated in the SP as biased mainly because of their own speed 
choices, while in the GoogleMaps treatment both own speed choices as 
well as the perception that Google Maps provides biased travel time 
estimates (for a specific transport mode) may play a role.

6 A one-way ticket for public transport in Vienna costs e2.40, based on 
the City of Vienna’s pricing. The cost of car usage for a 10 min trip is 
derived from calculations by ADAC (2024) in Germany, adjusted for the 
distribution of cars by model to estimate a fleet-representative average of 
e0.5017 per kilometer. A study by Kalinowska and Steininger (2009) includes 
data from Austria and Germany, drawing on surveys of Austrian, German, and 
broader European research. This study evaluates road infrastructure costs and 
incorporates external average and marginal social cost calculations, applying 
consistent cost estimates for both countries.

7 NGENE: https://choice-metrics.com/.

https://choice-metrics.com/
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3.4. Discrete choice model

3.4.1. Model specifications
For the analysis of the choice data generated from the stated pref-

erence experiment, we estimate four different multiple discrete choice 
models, which are described in more detail below. While Model 1 
simply represents the trade-off between travel time and costs, Mod-
els 2, 3, and 4 additionally test whether respondents take into account 
their reported deviations between real-life and Google-Maps-based/av-
erage travel times when making their mode choices. In all models, we 
adopt additive utility functions. Moreover, we estimate all models in 
willingness-to-pay (WTP) space, with the WTP corresponding to the 
ratio of the travel time and the cost coefficient (Train and Weeks, 
2005). Compared to a separate estimation of the time and cost coef-
ficients, this approach has the advantage that the WTP for travel time 
savings (i.e. the value of (travel) time) can be estimated directly, hence 
avoiding the ex-post division of the coefficients, which can – especially 
in the context of random coefficients (as in the mixed logit case) – lead 
to implausible time valuation estimates (Daly et al., 2012). Three of the 
four models (1,2,4) are estimated as standard multinomial logit (MNL) 
models, whereas Model 3 is estimated as a mixed logit model (with 
random coefficients).

Model 1: Standard MNL model
The first model that we estimate is a standard MNL model with 

alternative-specific constants (𝛼𝑚), cost coefficient (𝛽𝑐𝑜𝑠𝑡), and the
mode-specific travel time valuations (𝑉 𝑂𝑇 𝑚). The alternative (mode-
)specific utility function can thus be written as follows (omitting 
subscripts for individuals 𝑛 ∈ {1,… , 𝑁} and choice situations 𝑡 ∈
{1,… , 8} for simplicity): 

𝑈𝑚 = 𝛼𝑚 + 𝛽𝑐𝑜𝑠𝑡 ∗ (𝐶𝑜𝑠𝑡𝑆𝑃𝑚 + 𝑉 𝑂𝑇 𝑚 ∗ 𝑇𝑇 𝑆𝑃
𝑚 ) (1)

Model 2: MNL model accounting for misperceptions
The second model extends the first model by adding a term that 

captures whether respondents react to the deviations they reported 
between a Google-Maps-based/average travel time (of 30 min) and the 
travel time they would expect based on their own experience (𝑇𝑇𝐸𝑋𝑃 ). 
The additional term contains the travel time attribute 𝑇𝑇 𝑆𝑃

𝑚  multiplied 
by (𝑇𝑇𝐸𝑋𝑃 /30-1), implying that the term becomes 0 if 𝑇𝑇𝐸𝑋𝑃  equals 
30 min (and hence no perceived deviation is present). The 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚
captures the time valuations attached to deviations: if 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  is not 
significantly different from 0, we can conclude that perceived devia-
tions between real-life travel times and Google Maps/average travel 
times are not taken into account when deciding between transport 
modes; on the contrary, if the 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  is similar in size to the 𝑉 𝑂𝑇 𝑚, 
we can conclude that the perceived travel time deviation are fully con-
sidered when choosing between transport modes. Similar specifications 
have been used in earlier studies by Peer et al. (2013,?), who study the 
impact of deviations between actual and approximated, and actual and 
reported, respectively, on travel-related choices.

Further, we also define 𝟏𝐺𝑜𝑜𝑔𝑙𝑒, which equals 1 if an individual is in 
the GoogleMaps treatment, and 0 otherwise. 𝛽𝐺𝑜𝑜𝑔𝑙𝑒

𝑚  then captures any 
potential difference in the 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  between the two treatments.

𝑈𝑚 = 𝛼𝑚 + 𝛽𝑐𝑜𝑠𝑡 ∗ (𝐶𝑜𝑠𝑡𝑆𝑃𝑚 + 𝑉 𝑂𝑇 𝑚 ∗ 𝑇𝑇 𝑆𝑃
𝑚 + 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚

∗ (1 + 𝟏𝐺𝑜𝑜𝑔𝑙𝑒 ∗ 𝛽𝐺𝑜𝑜𝑔𝑙𝑒
𝑚 ) ∗ (𝑇𝑇

𝐸𝑋𝑃

30
− 1) ∗ 𝑇𝑇 𝑆𝑃

𝑚 ) (2)

Model 3: MXL model accounting for mis-perceptions
Next, we re-estimate Model 2 as a mixed logit (MXL) model. The 

mixed logit model is specified such that we estimate the cost and 
the time coefficients as random coefficients (indicated by 𝛽𝑐𝑜𝑠𝑡, ̃𝑉 𝑂𝑇 𝑚,
̃𝑉 𝑂𝑇 𝑑𝑒𝑣 in Eq.  (3)). Besides that, the only difference between Models 2 

and 3 is that the latter does not any longer contain the term that 
captures differences between the two treatments (1 + 𝟏𝐺𝑜𝑜𝑔𝑙𝑒 ∗ 𝛽𝐺𝑜𝑜𝑔𝑙𝑒) 
𝑚

5 
as the estimation results of Model 2 suggest that no such differences 
exist: 
𝑈𝑚 = 𝛼𝑚+𝛽𝑐𝑜𝑠𝑡 ∗ (𝐶𝑜𝑠𝑡𝑆𝑃𝑚 + ̃𝑉 𝑂𝑇 𝑚 ∗ 𝑇𝑇 𝑆𝑃

𝑚 + ̃𝑉 𝑂𝑇 𝑑𝑒𝑣
𝑚 ∗ ( 𝑇𝑇

𝐸𝑋𝑃

30
−1) ∗ 𝑇𝑇 𝑆𝑃

𝑚 ) (3)

More specifically, as positive values of 𝛽𝑐𝑜𝑠𝑡 and negative values of 
the VOT (and 𝑉 𝑂𝑇 𝑑𝑒𝑣) would be unreasonable, we assume a log-normal 
distribution8 of the random coefficients for both:

𝛽𝑐𝑜𝑠𝑡𝑛 = −exp(𝛽𝑐𝑜𝑠𝑡 + 𝜎𝑐𝑜𝑠𝑡 ⋅ 𝜂
𝑐𝑜𝑠𝑡
𝑛 ), with 𝜂𝑐𝑜𝑠𝑡𝑛 ∼ 𝑁(0, 1) (4)

̃𝑉 𝑂𝑇 𝑚,𝑛 = exp(𝑉 𝑂𝑇𝑚 + 𝜎𝑉 𝑂𝑇 ,𝑚 ⋅ 𝜂𝑣𝑜𝑡𝑚,𝑛), with 𝜂𝑣𝑜𝑡𝑚,𝑛 ∼ 𝑁(0, 1) (5)
̃𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚,𝑛 = exp(𝑉 𝑂𝑇 𝑑𝑒𝑣
𝑚 + 𝜎𝑑𝑒𝑣𝑉 𝑂𝑇 ,𝑚 ⋅ 𝜂𝑑𝑒𝑣𝑚,𝑛 ), with 𝜂𝑑𝑒𝑣𝑚,𝑛 ∼ 𝑁(0, 1) (6)

Model 3 (as all other 3 models) does not account for interactions 
with socio-economic variables. Several variables (income, age, gender, 
education) have been interacted with the cost and the time coefficients 
(including (𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚 ) both in the MNL and MXL specifications, but 
mostly turned out to be insignificant. We have therefore decided to 
not include them in the final specification. Instead, we conduct an 
analysis of the posterior distribution of the ̃𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑚  to determine to 
which extent they are related to person-specific characteristics (see 
Section 5.1).

Model 4: MNL accounting for mis-perceptions separately for 
under- and over-estimations

Finally, we estimate an MNL model in which separate 𝑉 𝑂𝑇 𝑑𝑒𝑣
𝑚

coefficients are estimated for when one expects the real-life travel time 
to last longer than the 30 min associated with Google Maps or average 
travel times (𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑚 ) and when one expects them to last shorter
than 30 min (𝑉 𝑂𝑇 𝑑𝑒𝑣−

𝑚 ). This model can hence shed light on whether 
differences in valuations exist depending on whether one expects the 
travel time to be longer or shorter than the 30 min threshold.

𝑈𝑚 = 𝛼𝑚 + 𝛽𝑐𝑜𝑠𝑡 ∗ (𝐶𝑜𝑠𝑡𝑆𝑃𝑚 + 𝑉 𝑂𝑇 𝑚 ∗ 𝑇𝑇 𝑆𝑃
𝑚 + (𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑚 ∗ max[ 𝑇𝑇
𝐸𝑋𝑃

30
− 1, 1]

+ 𝑉 𝑂𝑇 𝑑𝑒𝑣−
𝑚 ∗ min[ 𝑇𝑇

𝐸𝑋𝑃

30
− 1, 1]) ∗ 𝑇𝑇 𝑆𝑃

𝑚 ) (7)

We have also tried to estimate this specification using a mixed logit 
model setup resembling that of Model 3, however, the coefficients were 
not entirely stable even with a large number of draws (>2000), most 
likely due to the high number of random coefficients (13 instead of 9) 
and several of them 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  coefficients being close to 0. We, therefore, 
do not present the corresponding model results here.

3.4.2. Model estimation
All models were estimated using the R-package Apollo.9 For the 

Mixed Logit Model, we use Modified Latin Hypercube Sampling (MLHS) 
as proposed by Hess et al. (2006) to generate the draws. We present 
here the results for R = 2500; however, the coefficients were already 
stable at a substantially lower number of draws (around R = 500). 
The Eicker-Huber-White sandwich estimator is used to calculate the 
standard errors, thereby also accounting for the panel structure of the 
dataset.

4. Descriptive results

4.1. Sample characteristics

The sample characteristics are summarized in Table  1, which shows 
descriptive statistics for the entire sample, as well as separately for 
the two treatment options (GoogleMaps and Baseline). As expected 
(due to the random assignment to the two treatments), we do not 
observe any statistically significant differences in the socio-economic 
and mobility-related characteristics of the two sub-groups.

8 Also normal distributions were tested but the resulting models performed 
worse in terms of coefficient stability and model fit.

9 Apollo: http://www.apollochoicemodelling.com/.

http://www.apollochoicemodelling.com/
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Table 1
Descriptive statistics of selected variables included in the survey.
 Characteristic Unit Overall Google Science p-value Pop. 
 N = 1321 N = 644 N = 677  
 Socioeconomic variables  
 Age years 44.33 44.12 44.53 0.7 41  
 Gender: male % 47.39% 47.20% 47.56% >0.9 49% 
 Household net income (per month) 0.8  
 0–1999 Euro % 25.89% 25.47% 26.29%  
 ≥2000 Euro % 58.14% 59.01% 57.31%  
 unknown % 15.97% 15.53% 16.40%  
 Education: high school or higher % 70.02% 72.20% 67.95% 0.10 79% 
 Children: ≥1 % 17.03% 19.10% 15.07% 0.061  
 People in household: ≥4 % 15.75% 16.61% 14.92% 0.4 14% 
 Reside in outer districts of Vienna % 78.35% 78.11% 78.58% 0.9 74% 
 Reside in Vienna since less than 6 years % 5.83% 4.66% 6.94% 0.10  
 Regularly used transport modes (>once/week)  
 Walking % 74.94% 75.16% 74.74% >0.9  
 Cycling % 13.10% 14.29% 11.96% 0.2  
 Public transport % 70.02% 71.43% 68.69% 0.3  
 Car % 43.07% 41.77% 44.31% 0.4  
 App usage   
 Regular use of Google Maps % 78.58% 78.42% 78.73% >0.9  
 Regular use of Wien Mobil % 46.63% 47.36% 45.94% 0.6  
 Regular use of Wiener Linien website % 30.43% 30.43% 30.43% >0.9  
 Regular use of Apple Maps % 20.59% 20.34% 20.83% 0.9  
 Never uses Google Maps % 10.83% 9.94% 11.67% 0.4  
 Travel decisions with app usage % 40.06 40.04 40.08 >0.9  
 Expected travel time for 30-min.-baseline (𝑇𝑇 𝐸𝑋𝑃

𝑚 )  
 Walking min. 31.82 30.57 33.00 <0.001  
 Cycling min. 31.43 31.17 31.68 0.2  
 Public transport min. 33.86 33.20 34.49 0.003  
 Car min. 32.16 32.23 32.10 0.8  
 Variables related to SP experiment  
 SP decisions were based on: 0.2  
 Comparing attributes % 67.30% 69.72% 64.99%  
 Predetermined preferences % 16.20% 15.68% 16.69%  
 Randomly % 6.13% 4.81% 7.39%  
 Other % 10.37% 9.78% 10.93%  
 Treatment was taken into account % 68.89% 68.94% 68.83% >0.9  
Mean; %
Welch Two Sample t-test; Pearson’s Chi-squared test
The final column (‘Pop.’) includes corresponding values for the entire population of Vienna (all for 2022)
based on official Viennese population statistics: https://www.wien.gv.at/statistik/bevoelkerung/.
Our sample is largely representative of the Viennese population, 
as indicated by the corresponding population statistics in Table  1 
(however, it should be noted that our survey only focuses on adults, 
whereas the population statistics comprise the entire population). One 
exception is that older people seem to be under-represented in the 
survey: while 24.2% of the adult Viennese population is older than 
65 years (Statistics Austria, 2023b), only 12.2% of our respondents are 
above 65 years. A likely reason is the lower digitization rate among the 
older population10: older persons might be less inclined to fill in online 
surveys, and also might be less familiar with (and interested in) digital 
mapping tools (i.e. the central theme of the survey).

Also in terms of the regularly chosen travel modes, our sample 
seems to be fairly representative of the Viennese population. A majority 
of respondents (75%) regularly walk and use public transport (70%). 
43% of respondents regularly drive a car, whereas only 13% cycle 
regularly. The latter result is in line with official modal split statistics 
for Vienna (e.g., in 2022, cycling had a modal split of 9% Wiener 
Linien, 2023), which however are measured at the trip level and are 
hence not entirely comparable.

10 A representative survey by Statistics Austria shows that only 70 percent 
of Austrians aged 65–74 have used the internet in the three months leading 
up to the survey in 2022 (Statistics Austria, 2023a).
6 
4.2. Usage of mobility apps and evaluation of google maps

A large share of respondents indicates that they regularly use digital 
mapping tools (mobility apps). Only 4.6% of respondents report that 
they never use one for any of their travel decisions. Fig.  2 in the 
appendix shows the distribution of the share of travel decisions for 
which respondents state to use a digital mapping tool.

The digital mapping tool most commonly used in the context of 
travel-related decision-making in Vienna is Google Maps (regularly used 
by almost 80% of respondents, and never used by only 10%), followed 
with some margin by the local app Wien Mobil (regularly used by 47%), 
and the website of the local public transport provider Wiener Linien, 
which 30% of respondents use regularly. Apple Maps is used regularly 
by about 20% of respondents, whereas only a very small share of 
respondents make regular use of alternative software options such as
Wegfinder, Transportr, OpenStreetMaps.

Our study design is in line with the widespread usage of Google 
Maps,11 as we also emphasize Google Maps; not only does one of the 
two treatments focus on Google Maps; additionally, we also included 
a question block in the survey, in which participants were asked to 

11 An exploratory pre-study among students of the Vienna University of 
Economics and Business (Austria) showed that Google Maps was by far the 
most widely used mobility information service. Based on that, we felt confident 
to focus on Google Maps also in the main (representative) survey.

https://www.wien.gv.at/statistik/bevoelkerung/
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Fig. 1. Kernel density distributions of the reported travel times (𝑇𝑇 𝐸𝑋𝑃
𝑚 ) for all four transport modes and the Google and Baseline treatments.
rate Google Maps on various aspects using a Likert scale ranging 
from ‘‘totally disagree’’ (1) to ‘‘completely agree’’ (7). In line with the 
relevant literature (Quattrone et al., 2015; Ohm et al., 2016; Schöning 
et al., 2014; Link et al., 2023; Wagner et al., 2021), the statements cover 
various aspects, including (1) trust in the accuracy and reliability of 
Google Maps, (2) the perceived risk associated with relying on Google 
Maps for navigation, (3) the perceived usefulness of Google Maps in 
assisting with their travel and navigation needs, (4) the perceived ease 
and user-friendliness of Google Maps, and finally (5) the inclination to 
use Google Maps in the future. All of these aspects were covered by 
multiple question items (see Table  4 in the Appendix).

As indicated by the results presented in Table  4, Google Maps 
is overall evaluated quite positively in terms of perceived usefulness 
and perceived ease of use, with most question items having a mean 
value of 5 to 6 on the 1–7 scale, with the upper endpoint indicating 
higher agreement with the provided statements. We find that generally, 
the behavioral intention to use Google Maps in the future is high 
with averages between 5.3 and 5.5. Trust in Google Maps (as well as 
in Google overall) is ranked somewhat lower with averages between 
4 and 5.1. A result also relevant for the next subsection (regarding 
deviations between app-provided and real-life travel times) concerns 
the perceived risk of arriving too early or too late at the destination 
when using Google Maps. Both risks are evaluated as relatively low, 
with the agreement of the underlying statements amounting to 3.08 for 
arriving too early, and 2.93 for arriving too late. Finally, we conduct 
an exploratory factor analysis and extract the resulting composite score 
7 
for each variable category. These will be used as explanatory variables 
in some of the analyses presented below.

4.3. Deviations between real-life and google maps/average travel times

Here, we discuss the findings related to the questions discussed 
in Section 3.2, i.e. the perceived deviation of reported real-life travel 
times (𝑇𝑇𝐸𝑋𝑃

𝑚 ) from the information provided by Google Maps (in the
GoogleMaps treatment) and from average travel times (in the Baseline
treatment). Respondents were not obliged to answer this question (the 
main reason being that not all respondents can be expected to be 
familiar with all types of modes); nevertheless, the overall response rate 
for this question amounted to 85% (out of 5284 (= 1321 ∗ 4) possible 
answers, 4488 were provided).12

In order not to lose any observations in further analyses, we make 
two adjustments to the data. First, we assume that in the case of 
respondents who did not provide an answer, the expected real-life 
travel time equals 30 min (i.e. the reference travel time mentioned in 
both treatments and for all transport modes). Second, we also observed 
that some respondents stated unrealistically long or short travel times. 
In order to avoid excluding these observations, we introduce bounds 

12 For the two treatments separately, we find similar response rates of 83% 
for the GoogleMaps treatment and 86% for the Baseline treatment.
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at 15 and 45 min: everyone reporting a real-life travel time less than 
15 min (above 45 min) is assigned the value of 15 (45) min.

The resulting distributions of real-life travel times reported by the 
respondents are presented in Fig.  1 (separately for each of the four 
transport modes and the two treatments).

All distributions are fairly symmetric around the mean, with public 
transport being the most clearly left-skewed distribution (for both treat-
ments). The means of the distributions (which are also reported in Table 
1), are somewhat higher than 30 min (ranging from 30.6 to 34.5 min) 
for all transport modes and both treatments. On average, respondents 
thus believe that real-life travel times tend to be longer compared to 
those foreseen by Google Maps (in the GoogleMaps treatment) as well 
as compared to average travel times (in the Baseline treatment). The 
differences in the averages between the two treatments are small (only 
for walking and public transport, 𝑇𝑇𝐸𝑋𝑃

𝑚  is significantly smaller for the
Baseline treatment). However, we can observe from Fig.  1 that there are 
substantially more observations with an exact travel time of 30 min 
for respondents in the GoogleMaps treatment compared to those in the
Baseline treatment for all transport modes. This is quite surprising given 
that the Baseline treatment was meant to represent unbiased travel 
times. Moreover, all distributions exhibit a pattern commonly observed 
for reported time distributions: respondents have a tendency to provide 
travel times that are rounded to the nearest 0 or 5 min value. Overall, 
the fact that the two treatment yield very similar distributions seems 
to suggest that travelers mainly think about their own speed choices 
as reason for any deviations of the 𝑇𝑇𝐸𝑋𝑃

𝑚  from the 30 min baseline. 
The limited differences between the treatments are inconsistent with 
a substantial role of biases induced by the algorithms employed by 
Google Maps.

Finally, also heterogeneity in the answers is quite high for both 
treatments and all transport modes. The deviations reported by re-
spondents, as documented in open-text fields, encompass a wide spec-
trum of reasons. These include individual variances in waiting times 
and transfer durations due to personal physical conditions, unforeseen 
operational disruptions within public transport systems, and broader 
external factors such as traffic congestion, roadworks affecting car 
travel, encountering red traffic lights while cycling, individual physical 
limitations, and deliberate preference for a leisurely walking pace.

To get a more systematic picture of what drives these stated devia-
tions from the Google Maps/average travel times, we estimate separate 
Ordinary Least Square (OLS) models for all four transport modes as 
well as the two treatments. In these models, the dependent variable 
equals the real-life travel time reported by respondents (𝑇𝑇𝐸𝑋𝑃

𝑚 ),13 with 
socio-economic and mobility-related variables as well as the variables 
representing evaluations of Google Maps (see Table  4) serving as ex-
planatory variables. The results of these eight regression models are 
shown in Table  5. Their explanatory power is, however, fairly modest, 
with the R-squared adjusted ranging from 0.005 to 0.09. Especially for 
walking, cycling (GoogleMaps treatment only), and car, we find that 
participants tend to state longer travel times for the transport modes 
that they regularly use. Also, older respondents tend to state longer 
travel times, especially for walking and public transport. Conversely, 
male respondents tend to state shorter travel times for all transport 
modes. Having a higher education tends to be associated with longer 
reported real-life travel times. The same is true for respondents living 
in more peripheral districts of Vienna. Those, who frequently use 
mobility apps report on average report shorter travel times. Finally, 

13 We have also run the OLS models with the dependent variable being 
equal to the absolute deviation from the 30 min baseline, as it can be 
expected that especially the psychometric variables like trust/risk/etc. are 
more closely associated with the deviation rather than the absolute times 
stated by respondents; however, the signs and sizes of those psychometric 
variables that are statistically significant were not different from the results 
presented here.
8 
the evaluations of Google Maps can only explain a small share of the 
variation in the dependent variable: the perceived ease of using Google 
Maps is associated with lower reported (real-life) travel times for most 
modes (except car), while the behavioral intention of using Google 
Maps in the future is associated with longer reported (real-life) travel 
times (especially in the Baseline treatment).

5. Choice modeling results

In this section, we present the choice modeling results of the models 
outlined in Section 3.4. To estimate the coefficients more precisely, 
we exclude those respondents who have indicated that they had made 
their choices in the stated preference experiment randomly (6.1%) 
or based on pre-determined preferences for specific modes (without 
considering the attributes) (16.2%) (see bottom of Table  1).14 The 
resulting sub-sample consists of 1026 individuals (and 1026*8=8202 
choice situations). Their distribution of choices over the 4 mode choice 
alternatives is fairly balanced: 29.9% choose walking, 15.4% cycling, 
31.4% public transport, and 23.3% choose the car.

Table  2 shows the estimation results for the four models. Across 
all models, we obtain realistic estimates of the time valuations. In the 
three MNL models, we find values of 23–24 Euro/h for walking, 16–19 
Euro/h for cycling, 11–12 Euro/h for public transport, and 10 Euro/h 
for car.15 Similar to that study, in our case, the valuations derived 
from the mixed logit model (Model 3) are significantly higher. The 
much higher Rho-square (adj.) of Model 3 shows there is substantial 
unobserved heterogeneity present across respondents (the correspond-
ing model without random coefficient yields a Rho-square (adj.) of 0.21 
as compared to 0.37 for Model 3) . Moreover, by comparing the results 
of Model 2 and 4 to those of Model 1 (which does not account for any 
deviations between reported real-life and Google-Maps-based/average 
travel times), we can observe that the time valuations are not much 
affected by whether we add the additional term capturing a possible 
deviation between real-life and Google-Maps/average travel times.

Regarding the 𝑉 𝑂𝑇 𝑑𝑒𝑣 coefficients, we find that they are signifi-
cantly different from 0 (𝑝 ≤ 0.05) for public transport and car in Model 2 
and for bike and car in Model 3 (the MXL specification) (note that the 
term capturing the 𝑉 𝑂𝑇 𝑑𝑒𝑣 is missing in Model 1, whereas Model 4 
contains 𝑉 𝑂𝑇 𝑑𝑒𝑣+ and 𝑉 𝑂𝑇 𝑑𝑒𝑣−, the results of which will be discussed 
below). These findings provide some (albeit not fully consistent) evi-
dence that for these modes, respondents react to the travel times shown 
in the stated preference (SP) experiment (𝑇𝑇 𝑆𝑃

𝑚 ) by adjusting them by 
their own travel time expectations (captured by 𝑇𝑇𝐸𝑋𝑃

𝑚 ). However, the 
extent to which they do so is limited, as all 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  estimates that 
are significantly different from 0 are much smaller in size than the 
corresponding time valuations (𝑉 𝑂𝑇𝑚), implying that – on average – 
these deviations are not accounted for to the same extent as the travel 
times stated in the SP experiment. Finally, Model 2 also shows that 

14 While excluding those who choose randomly is fairly undisputed and 
common, there can be reasons to keep non-trading respondents in the sample 
(as their behavior is can still be considered to be the result of utility maximiza-
tion; see for instance Hess et al. 2010). In our case, however, the main aim 
was to estimate the 𝑉 𝑂𝑇𝑚 and 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  as accurately as possible; including 
respondents who say they have not considered the attributes would run 
counter to this aim. Re-running the model with the entire set of observations, 
shows that the Rho-square (adj.) drops substantially for Models 1, 2, and 4, 
while it remains roughly constant for Model 3.
15 These values are somewhat different from the results of a recent time 
valuation study conducted in Austria, which finds (population-weighted) time 
valuations for walking of 10 Euro/h, for cycling of 12 Euro/h, for public 
transport of 8 Euro/h, and for car of 12 Euro/h (Schmid et al., 2019), even 
though they are of a similar magnitude. Given that the study of Schmid et al. 
(2019) includes also revealed preference data, makes use a fairly different SP 
design, and has been conducted in Austria as a whole (as opposed to Vienna 
only) it is unsurprising to find differences in the resulting time valuations.
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Table 2
Choice modeling results (𝑡-statistics in brackets)
 Model 1 Model 2 Model 3 Model 4
 Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat.

 𝛼𝑤𝑎𝑙𝑘 1.54∗∗∗ (12.25) 1.54∗∗∗ (12.22) 2.61∗∗∗ (8.83) 1.54∗∗∗ (12.25)  
 𝛼𝑏𝑖𝑘𝑒 −0.69∗∗∗ (−5.7) −0.69∗∗∗ (−5.66) 0.54∗∗ (2.23) −0.66∗∗∗ (−5.33)  
 𝛼𝑝𝑢𝑏𝑙𝑖𝑐 0.54∗∗∗ (6.63) 0.54∗∗∗ (6.62) 0.61∗∗∗ (4.12) 0.54∗∗∗ (6.59)  
 𝑉 𝑂𝑇𝑤𝑎𝑙𝑘 23.13∗∗∗ (16.68) 23.14∗∗∗ (16.55) 31.65∗∗∗ (12.51) 23.79∗∗∗ (16.22)  
 𝑉 𝑂𝑇𝑏𝑖𝑘𝑒 16.49∗∗∗ (15.59) 16.36∗∗∗ (15.53) 53.09∗∗∗ (11.87) 18.68∗∗∗ (14.06)  
 𝑉 𝑂𝑇𝑝𝑢𝑏𝑙𝑖𝑐 11.77∗∗∗ (18.53) 11.31∗∗∗ (17.96) 16.27∗∗∗ (13.58) 11.84∗∗∗ (16.48)  
 𝑉 𝑂𝑇𝑐𝑎𝑟 10.47∗∗∗ (18.25) 10.25∗∗∗ (17.95) 18.98∗∗∗ (15.01) 10.33∗∗∗ (15.87)  
 𝛽𝑐𝑜𝑠𝑡 −0.34∗∗∗ (−18.8) −0.34∗∗∗ (−18.78) −0.56∗∗∗ (−14.49) −0.34∗∗∗ (−18.78) 
 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑤𝑎𝑙𝑘 0.32 (0.21) 0.76 (1.01) −1.64 (−0.87)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑏𝑖𝑘𝑒 5.35 (1.62) 8.08∗ (2.75) −5.53∗∗ (−2.07)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑝𝑢𝑏𝑙𝑖𝑐 3.24∗∗ (2.34) 1.15 (0.99) 1.66 (1.03)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑐𝑎𝑟 3.43∗∗ (2.29) 2.48∗∗∗ (2.92) 2.97 (1.57)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑤𝑎𝑙𝑘 −1.64 (−0.87)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑏𝑖𝑘𝑒 −5.53∗∗ (−2.07)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑝𝑢𝑏𝑙𝑖𝑐 1.66 (1.03)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑐𝑎𝑟 2.97 (1.57)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣−

𝑤𝑎𝑙𝑘 6.44∗∗∗ (2.33)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣−

𝑏𝑖𝑘𝑒 20.71∗∗∗ (5.18)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣−

𝑝𝑢𝑏𝑙𝑖𝑐 8.25∗∗∗ (3.09)  
 𝑉 𝑂𝑇 𝑑𝑒𝑣−

𝑐𝑎𝑟 4.71∗∗ (2.02)  
 𝛽𝐺𝑜𝑜𝑔𝑙𝑒

𝑤𝑎𝑙𝑘 3.29 (1.13)  
 𝛽𝐺𝑜𝑜𝑔𝑙𝑒

𝑏𝑖𝑘𝑒 −0.17 (−0.04)  
 𝛽𝐺𝑜𝑜𝑔𝑙𝑒

𝑝𝑢𝑏𝑙𝑖𝑐 1.45 (0.67)  
 𝛽𝐺𝑜𝑜𝑔𝑙𝑒

𝑐𝑎𝑟 −0.18 (−0.08)  
 𝜎𝑉 𝑂𝑇 ,𝑤𝑎𝑙𝑘 0.26∗∗∗ (11.72)  
 𝜎𝑉 𝑂𝑇 ,𝑏𝑖𝑘𝑒 0.93∗∗∗ (20.08)  
 𝜎𝑉 𝑂𝑇 ,𝑝𝑢𝑏𝑙𝑖𝑐 −0.64∗∗ (−17.46)  
 𝜎𝑉 𝑂𝑇 ,𝑐𝑎𝑟 1.1∗∗ (24.89)  
 𝜎𝑐𝑜𝑠𝑡 0.63∗∗∗ (12.91)  
 𝜎𝑑𝑒𝑣

𝑉 𝑂𝑇 ,𝑤𝑎𝑙𝑘 2.22∗∗∗ (4.71)  
 𝜎𝑑𝑒𝑣

𝑉 𝑂𝑇 ,𝑤𝑎𝑙𝑘 0.05 (0.11)  
 𝜎𝑑𝑒𝑣

𝑉 𝑂𝑇 ,𝑤𝑎𝑙𝑘 −1.89∗∗∗ (−2.83)  
 𝜎𝑑𝑒𝑣

𝑉 𝑂𝑇 ,𝑤𝑎𝑙𝑘 1.28∗∗∗ (12.5)  
 Nr. of Indiv. 1026 1026 1026 1026
 Nr. of choices 8202 8202 8202 8202
 Model type MNL MNL MXL MNL
 Nr. of coef. 8 16 21 16
 LL(final) −8991.82 −8956.23 −6986.53 −8920.4
 Adj.Rho-square 0.189 0.192 0.367 0.195
∗𝑝 < 0.1; ∗∗𝑝 < 0.05; ∗∗∗𝑝 < 0.01
Note 1: Standard errors in brackets
Note 2: The adj. Rho-square is calculated for the observed modal split (rather than equal shares). The LL of a model accounting only for the alternative-specific constants
(𝛼) is equal to -11096.79.
these findings do not significantly differ between the GoogleMaps and 
the Baseline framing.

Model 4 shows that a potential reason for the differences across 
modes 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  coefficients might be due to the extent of over- vs. 
underestimation inherent in the modes (see Fig.  1). All the 𝑉 𝑂𝑇 𝑑𝑒𝑣−

𝑚
estimates are significantly different from 0 at the 5% level, whereas 
among the 𝑉 𝑂𝑇 𝑑𝑒𝑣+

𝑚  estimates, only the 𝑉 𝑂𝑇 𝑑𝑒𝑣+
𝑤𝑎𝑙𝑘  has a t-statistic 

larger than 1.96 (2.07). This provides an indication that respondents 
predominantly consider those travel times and modes in their choices, 
for which they expect the real-life travel to be shorter than the Google-
Maps-based/average travel time.

5.1. Analysis of the heterogeneity in 𝑉 𝑂𝑇 𝑑𝑒𝑣
𝑚

Model 3 shows that a substantial amount of heterogeneity exists 
in the estimated 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚 , which we intend to explore further in this 
section. For this purpose, we derive individual-specific estimates for the 
𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  and the 𝑉 𝑂𝑇𝑚 by estimating their most likely value, given the 
choices observed for that individual (conditionals): for each individual, 
posterior model parameter distributions are simulated (again using 
R = 2500 draws), with their mean corresponding to the most likely 
(individual-specific) value for the 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  and the 𝑉 𝑂𝑇𝑚 (see Train
2009; Chapter 11).
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We then use the individual-specific values for the 𝑉 𝑂𝑇 𝑑𝑒𝑣
𝑚  as the 

dependent variable in 8 regressions (one for each combination of 
treatment type and transport mode). For consistency reasons, we only 
include those respondents who report a deviation from the 30 min 
baseline in the regressions,16 as for those who do not report such a 
deviation the 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  carries little meaning. In terms of explanatory 
variables, we include the person-specific posterior estimates of the 
𝑉 𝑂𝑇𝑚, as well as various other socio-economic, mobility-related, and 
Google-Maps-related variables (see Table  3).

As shown in Table  3, we find in almost all models that – not 
surprisingly – there is a positive correlation between the individual-
specific conditionals of the 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  and the 𝑉 𝑂𝑇𝑚. Reporting a higher 
real-life travel time (𝑇𝑇𝐸𝑋𝑃

𝑚 ∕30), however, is only associated with a 
higher 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  for the case of walking. Socio-economic variables seem 
to matter little; we dropped most of them from the final specification as 
none of the corresponding coefficients was significantly different from 
0. In contrast, various indicators for how Google Maps is perceived 
(see Table  4 for the variable definitions; here we use the scores from 
the exploratory factor analysis as explanatory variables) seem to be 

16 Moreover, we exclude overall 12 outliers with a 𝑉 𝑂𝑇 𝑑𝑒𝑣
𝑚  amounting to 

more than 100 Euro/hour.
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Table 3
OLS regression results: explaining variation in the 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  coefficients (based on conditionals)
 Dependent variable: 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚

 Walking Cycling Public transport Car

 Google Baseline Google Baseline Google Baseline Google Baseline

 𝑉 𝑂𝑇𝑚 0.56∗∗∗ 0.76∗∗∗ 0.0000 0.0001∗∗ 0.36∗∗∗ 0.23∗∗∗ 0.02∗∗∗ 0.01∗∗∗  
 (0.11) (0.11) (0.0001) (0.0001) (0.05) (0.04) (0.01) (0.005) 
 𝑇𝑇 𝐸𝑋𝑃

𝑚 /30 6.56∗∗∗ 3.14∗∗ 0.004 −0.003 −0.07 −0.83 −0.19 0.03  
 (1.67) (1.24) (0.01) (0.01) (1.65) (1.20) (0.43) (0.33)  
 Socio-economic variables  
 Age (in years) 0.01 0.04 0.0001 0.0003∗ 0.06∗∗ 0.03 −0.02∗∗ −0.01  
 (0.03) (0.03) (0.0002) (0.0002) (0.03) (0.02) (0.01) (0.01)  
 Gender: male −2.16∗∗ 0.72 −0.01 −0.0001 −1.63∗∗ −0.15 0.37 −0.35  
 (0.95) (0.88) (0.005) (0.005) (0.83) (0.72) (0.24) (0.23)  
 Perceptions of Google Maps  
 Perceived risk 0.01 0.13 −0.003 0.003 −1.27∗∗ 1.75∗∗∗ 0.32∗∗ −0.11  
 (0.67) (0.57) (0.003) (0.003) (0.58) (0.46) (0.16) (0.15)  
 Perceived easy of use −1.48 1.15 −0.01∗∗ −0.0003 −0.14 0.53 −0.75∗∗∗ 0.10  
 (1.01) (0.92) (0.01) (0.005) (0.90) (0.74) (0.25) (0.24)  
 Perceived usefulness 2.30∗∗ −0.34 0.01∗∗∗ 0.003 0.27 0.80 0.78∗∗∗ −0.29  
 (1.04) (1.00) (0.01) (0.01) (0.90) (0.80) (0.25) (0.25)  
 Regularly used modes (>1/week)  
 Walking 0.33 −4.75∗∗∗  
 (1.30) (1.15)  
 Cycling 0.0003 0.02∗∗  
 (0.01) (0.01)  
 Public transport −3.42∗∗∗ −1.55∗  
 (1.02) (0.88)  
 Car 0.06 −0.18  
 (0.26) (0.25)  
 Constant −18.02∗∗∗ −20.11∗∗∗ 8.08∗∗∗ 8.07∗∗∗ 0.63 2.79 5.78∗∗∗ 5.51∗∗∗  
 Observations 331 340 238 267 336 376 305 357
 R2 0.16 0.22 0.06 0.05 0.26 0.15 0.13 0.06
 Adjusted R2 0.14 0.20 0.03 0.02 0.24 0.14 0.11 0.04

Note:∗𝑝 < 0.1; ∗∗𝑝 < 0.05; ∗∗∗𝑝 < 0.01.
related to 𝑉 𝑂𝑇 𝑑𝑒𝑣
𝑚  (as expected, especially for respondents assigned to 

the GoogleMaps treatment): for instance, we find that higher perceived 
ease of using Google Maps is associated with a lower 𝑉 𝑂𝑇 𝑑𝑒𝑣

𝑚  in the
GoogleMaps treatment, possibly because those who perceive Google 
Maps as being easy to use exhibit a more ‘‘naive way’’ of interacting 
with it, taking the travel times at face value.

6. Discussion and conclusions

Digital mapping tools, particularly Google Maps, play a central role 
in travel-related decision-making. Our survey – broadly representative 
of the Viennese population – shows that the majority of respondents 
regularly use such tools within Vienna, with Google Maps being the 
most widely used (80% report regular use), followed by locally de-
veloped alternatives. Only 4.6% of participants reported never using 
digital mapping tools for travel decisions. Given Google Maps’ broad 
user base in Austria and internationally, it was used as the primary 
example throughout the survey.

Consistent with the findings of Aoustin and Levinson (2021), re-
spondents generally perceive real-life travel times to be slightly longer 
than the estimates provided by Google Maps. On average, reported 
travel times range from 30.6 min for walking to 33.2 min for public 
transport, compared to a standardized Google Maps estimate of 30 min. 
However, the reported travel times exhibit considerable variability, 
with a notable share of respondents expecting to reach their destination 
faster than suggested by the app, indicating that some users perceive 
Google Maps to overestimate travel durations in certain contexts.

Overall, respondents express predominantly positive evaluations of 
Google Maps. In particular, most perceive the risk of arriving either too 
early or too late when relying on its travel time estimates as relatively 
low. These descriptive findings suggest that Google Maps’ travel time 
estimates are not widely perceived as systematically biased. Instead, 
10 
Fig. 2. Density plot of travel decision for which digital mapping tools are used.

discrepancies between reported real-life travel times and Google Maps 
estimates appear to stem largely from individual- and mode-specific 
speed choices, especially for cycling and car travel. This interpretation 
is supported by observed patterns in the data: older respondents tend to 
report longer travel times, particularly for walking and public transport, 
while male respondents report shorter travel times across all modes. 
Notably, for all four transport modes, more respondents believe that 
Google Maps estimates align with their actual travel times than believe 
that average travel times derived from objective measurements do. 
This further suggests that respondents place considerable weight on 
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Fig. 3. Screenshot Stated Preference Experiment.
Table 4
Google Maps perceptions.
 "With respect to using Google Maps, to which extent  
 Compound variable would you agree with the following statements?" Mean sd. Cronbach’s 𝛼 
 Trust Google Maps is trustworthy. 4.91 1.53 0.78  
 Google Maps keeps promises and commitments. 5.14 1.38  
 I trust Google Maps because the company has my best interests in mind. 4.04 1.63  
 Perceived risk If I use Google Maps, I risk arriving too early at my destination. 3.08 1.49 0.71  
 If I use Google Map, I risk arriving too late at my destination. 2.93 1.45  
 If I use Google Map, I risk choosing the wrong means of transport. 2.91 1.50  
 Perceived usefulness Overall, I find Google Maps useful. 5.68 1.40 0.92  
 I think Google Maps is valuable to me. 5.21 1.55  
 The content of Google Maps is useful to me. 5.46 1.41  
 Google Maps is functional. 5.51 1.36  
 Perceived ease of use My interaction with Google Maps is clear and understandable. 5.32 1.44 0.91  
 Interacting with Google Maps does not require much mental effort. 5.44 1.51  
 I find Google Maps easy to use. 5.49 1.48  
 I find it easy to find the information I need with Google Maps. 5.36 1.44  
 Behavioral intention If I have the opportunity, I will use Google Maps. 5.28 1.57 0.92  
 If I have the opportunity, I predict that I will use Google Maps in the future. 5.50 1.51  
 It is likely that I will use Google Maps in the near future. 5.52 1.55  
 Observations 1321  
Note: The answers to the question items were recorded along a Likert scale with 7 levels ranging from ‘‘completely disagree" (1)
to ‘‘completely agree" (7).
their personal speed choices when evaluating the accuracy of app-based 
estimates.

Importantly, our findings indicate that mode choice behavior – 
and in turn, time valuations – are only marginally influenced by the 
inclusion of a variable capturing perceived deviations between reported 
real-life and Google Maps or average travel times. In other words, 
even if these deviations are reported to exist, they appear to have 
limited impact on actual decision-making. This aligns with previous 
research, such as Peer et al. (2014), which suggests that discrepancies 
between reported and actual travel times tend to play a minor role in 
influencing behavioral choices. Interestingly, respondents seem more 
likely to account for these deviations when they believe real-life travel 
will be shorter than the app-based or average travel time estimate, re-
vealing a behavioral asymmetry in how travel information is processed. 
A plausible explanation is that individuals are typically more familiar 
with the modes in which they perceive themselves as faster, and are 
therefore more inclined to choose those modes in stated preference 
scenarios.
11 
The broader implications of our research become evident when situ-
ated within the context of recent studies by Link et al. (2023) and Wag-
ner et al. (2021). Link et al. (2023) report that Google Maps tends to 
overestimate public transport travel times in Germany, while Wagner 
et al. (2021), focusing on Vienna, find some evidence that door-to-
door travel times involving car use are underestimated. They argue that 
such biases are particularly relevant in cities like Vienna, where public 
transport networks are highly developed: Google Maps includes access 
and egress times for public transport but typically omits equivalent 
components, such as walking to and from parking, in car travel time 
estimates. Miotti and Hellweg (2025) refers to these additional compo-
nents as ‘‘time overhead’’ and shows that they are longest for car trips 
in dense urban areas, adding an average of seven minutes compared to 
walking trips. Our findings suggest that most Viennese respondents are 
not fully aware that Google Maps car travel time estimates exclude such 
‘‘time overheads’’. However, we cannot entirely rule out the possibility 
that respondents deliberately omitted these considerations from their 
survey responses, possibly viewing them as beyond the intended scope 
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of digital mapping tools, while still accounting for them in real-world 
decision-making.

Taken together, our results highlight several important insights 
for transport planners and policymakers. The widespread reliance on 
digital mapping tools, coupled with generally positive user perceptions, 
suggests that platforms like Google Maps now serve as central reference 
systems for everyday travel decisions. Although many users recognize 
deviations between app-based and real-life travel times, these are rarely 
accounted for in mode choices, indicating a high degree of trust in the 
platform’s estimates. But even though these perceived discrepancies do 
not substantially influence mode choice, their salience suggests they 
may still inform how users perceive different travel modes. To better 
align perceived travel conditions with actual experiences and to support 
more informed and sustainable mobility decisions, digital mapping 
tools should incorporate additional behaviorally relevant information, 
such as parking search time or expected crowding. Since widely used 
platforms like Google Maps are proprietary and offer limited trans-
parency, there is a clear need for greater public oversight. Promoting 
open-source or co-developed alternatives that integrate these additional 
dimensions could ensure that digital travel tools support broader goals 
related to sustainability, equity, and multi-modal accessibility.

Given the exploratory nature of this study, further research is nec-
essary to develop a more comprehensive understanding of how digi-
tal mapping tools affect decision-making. Various improvements and 
extensions of the research design employed in this study seem worth-
while:

• It would be insightful to conduct studies similar to ours but using 
revealed preference (real-life) data rather than stated preference 
data on mode choice behavior. Studies such as Krčál et al. (2019) 
suggest that respondents tend to simplify their choice behavior in 
hypothetical settings and may not account for biases to the same 
extent as they would in real-life settings.

• The research design would likely benefit from more concreteness 
as opposed to the rather generic framing adopted in its current 
version. Both the elicitation of perceived discrepancies between 
Google-Maps-based/average travel times and experienced travel 
times as well as the framing of the SP experiment could be 
personalized (e.g., by basing them on real-life revealed preference 
(RP) data). This would render the setting more realistic and spe-
cific for respondents, and allow us to study differences between 
routes, time-of-the-day, or the extent of pre-existing routines. In 
the current version, we have refrained from doing so; as this is 
the first paper with this particular research focus, we wanted to 
avoid introducing too much heterogeneity, which might later on 
be challenging to control for (e.g., due to confounding variables 
and selection effects). Instead, we have opted for a design that is 
likely to be realistic to a large number of respondents. For sim-
ilar reasons, future SP-based studies should expand the attribute 
space to include aspects such as comfort, reliability, safety, and 
environmental considerations.

• Related to the previous point, a main limitation of the current 
design is that due to the generic way of asking about discrep-
ancies between real-life and Google-Maps-based/average travel 
times and the fact that each respondent was subject only to 
one treatment, it turned out to be difficult to explain the re-
spondents’ answers by person-specific variables. It would have 
been preferable if this question was accompanied by a more 
specific explanation, also regarding the type of trip (e.g., the 
amount of walking included to go from origin to destination), and 
if we had asked subjected the respondents to both treatments. 
This would probably have allowed us to better disentangle the 
different sources for the perceived discrepancies (in particular 
own speed choices vs. algorithm-induced biases), and then test 
which of them actually affects mode choice behavior.
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• A considerable degree of heterogeneity exists in the information 
requirements of travelers, which has not been accounted for in 
this study. For instance, demand for information tends to be 
particularly high when it comes to public transport usage and 
real-time information (Tang et al., 2022). Also, specific user 
groups and user contexts (for example tourists, students, etc.) 
might exhibit a higher demand for information.

• The observed effects may be context-dependent. For instance, 
given Vienna’s strong public transport network, perceived travel 
time deviations may have a more limited influence than they 
would in more car-dependent cities. Future studies should com-
pare different urban and user contexts to assess the generalizabil-
ity of our findings.

• Lastly, it would be quite straightforward to extend the scope of 
this research to other digital mapping tools, other geographical 
areas, as well as other choice dimensions including for instance 
the departure time preferences and participation in car-sharing or 
park-and-ride programs.

Finally, to underpin the relevance of the research conducted in this 
paper, an important avenue for future research would be to conduct 
other studies similar to that of Link et al. (2023) in order to gather 
more knowledge on how closely travel times estimates by Google Maps 
correspond to actual door-to-door travel times.
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Appendix A. App usage

See Fig.  2.

Appendix B. Screenshot stated preference experiment

See Fig.  3.

Appendix C. Perception of Google Maps

Table  4 shows for each of the five variable categories Cronbach’s 
𝛼, which can range from 0 to 1, with a high value signaling a high 
internal consistency of the question items included in that category. For 
all variable categories, Cronbach’s 𝛼 is above the often cited validity 
threshold of 0.7, with three of the variable categories even exhibiting 
a value above 0.9.

Appendix D. Perceived deviations from Google Maps/average
travel times

Table  5 presents OLS regression results with the reported real-life 
travel times (as opposed to the 30 min travel times communicated 
by Google Maps (Google Maps treatment) and average travel times 
(Baseline treatment)) serving as dependent variable.



S. Peer et al. Transportation Research Interdisciplinary Perspectives 33 (2025) 101560 
Table 5
OLS regression results with reported real-life travel times (𝑇𝑇 𝐸𝑋𝑃  as dependent variable)
 Dependent variable: reported real-life travel times
 Walking Cycling Public transport Car

 Google Baseline Google Baseline Google Baseline Google Baseline

 Socio-economic variables  
 Age (in years) 0.08∗∗ 0.11∗∗∗ −0.07∗ −0.0003 0.07∗∗ 0.07∗∗ 0.03 0.03  
 (0.03) (0.04) (0.04) (0.04) (0.03) (0.03) (0.04) (0.04)  
 Gender: male −3.70∗∗∗ 1.47 −1.20 −0.03 −3.42∗∗∗ −2.10∗∗ −1.43 −2.31∗∗  
 (1.03) (1.13) (1.19) (1.18) (0.91) (0.92) (1.08) (1.08)  
 Education: high school or higher 1.29 0.48 2.50∗ 1.60 2.53∗∗ 1.50 2.54∗∗ 2.35∗∗  
 (1.16) (1.21) (1.31) (1.26) (1.02) (1.00) (1.20) (1.16)  
 District: outer 1.58 0.72 3.12∗∗ 1.77 2.37∗∗ 3.67∗∗∗ 2.75∗∗ −0.19  
 (1.25) (1.37) (1.42) (1.42) (1.10) (1.12) (1.31) (1.31)  
 Google Maps perceptions  
 Trust 1.27 −1.03 1.28 −0.27 −0.03 −0.29 0.10 −0.04  
 (0.83) (0.88) (0.95) (0.92) (0.73) (0.72) (0.86) (0.84)  
 Perceived risk −0.75 0.08 −0.58 −0.11 −0.41 −1.46∗∗∗ −0.12 0.49  
 (0.65) (0.67) (0.74) (0.70) (0.58) (0.55) (0.68) (0.64)  
 Perceived usefulness 1.04 −0.24 1.06 1.41 1.55 0.47 3.85∗∗ 0.37  
 (1.44) (1.56) (1.64) (1.61) (1.27) (1.27) (1.50) (1.48)  
 Perceived ease of use 0.07 −2.10∗ −0.27 −2.61∗∗ 1.18 −2.80∗∗∗ 0.10 0.15  
 (1.11) (1.25) (1.27) (1.30) (0.98) (1.02) (1.16) (1.19)  
 Behavioral intention −0.13 3.93∗∗∗ 1.44 2.70∗∗ −1.20 3.29∗∗∗ −1.33 2.21∗  
 (1.15) (1.26) (1.31) (1.31) (1.02) (1.03) (1.20) (1.20)  
 % travel decisions with app usage (%) −0.01 −0.005 −0.06∗∗∗ −0.01 −0.02 0.01 −0.06∗∗∗ −0.03∗  
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)  
 Regularly used transport modes (>1/week)  
 Walking 1.39 2.66∗∗  
 (1.22) (1.32)  
 Cycling 6.31∗∗∗ −0.10  
 (1.71) (1.80)  
 Public transport 0.91 −0.91  
 (1.02) (1.01)  
 Car 3.48∗∗∗ 2.58∗∗  
 (1.11) (1.09)  
 Constant 21.97∗∗∗ 20.71∗∗∗ 24.39∗∗∗ 23.57∗∗∗ 25.75∗∗∗ 27.03∗∗∗ 23.44∗∗∗ 26.58∗∗∗ 
 (2.48) (2.71) (2.71) (2.73) (2.22) (2.29) (2.50) (2.50)  
 Observations 644 677 644 677 644 677 644 677
 R2 0.07 0.05 0.09 0.02 0.08 0.07 0.11 0.05
 Adjusted R2 0.05 0.03 0.08 0.005 0.06 0.05 0.09 0.04

Note: standard errors in brackets ∗𝑝 < 0.1; ∗∗𝑝 < 0.05; ∗∗∗𝑝 < 0.01.
Data availability

Data will be made available on request.
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