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SUMMARY

In this thesis, we study local-to-global principles for continuous Chevalley-Eilenberg

cohomology of certain, infinite-dimensional Lie algebras of geometric origin (Part I),

and integral formulas for finite-dimensional Lie groups (Part II).

In Chapter 2, we begin with a detailed exposition of certain well-known results on

continuous cohomology of the Lie algebra of vector fields X(M) on a smooth manifold

M , or Gelfand-Fuks cohomology of M . We present a novel construction of cohomological

spectral sequences by Gelfand and Fuks based on a local-to-global principle closely

related to the modern theory of factorization algebras.

For a large class of smooth manifolds, e.g. M compact and orientable, these spectral

sequences converge towards so-called diagonal cohomology ∆k H•(X(M)) for k ∈N, and

their second pages can be fully specified in terms of known and easily calculable data,

namely continuous Chevalley-Eilenberg cohomology of formal vector fields and relative

homology of Cartesian powers M k with respect to their fat diagonals M k
k−1.

In Chapter 3, we apply the local-to-global principle prepared in the previous chapter

to continuous homology of gauge algebras, i.e. Lie algebras given by the sections

Γ(AdP → M) of the adjoint bundle associated to a principal fiber bundle P → M . Due

to isomorphisms of the form

gln(C∞(M)) ∼=C∞(M ,gln(R)), n ∈N

it will be helpful to begin by formulating a topological version of the Loday-Quillen-

Tsygan (LQT) theorem, which says that for an arbitrary unital algebra A one has

H•(gl(A)) ∼=Λ•Hλ
•−1(A),

where the left-hand side homology is algebraic Chevalley-Eilenberg homology and the

right-hand side homology is cyclic homology. We show that a topological/bornological

analog of this result holds for a certain class of Fréchet and LF-algebras A, including

A = C∞(M) for smooth manifolds M and A = C∞
c (Rn). The same spectral sequence

approach as in Chapter 2 yields, when P → M is a principal GLt (R)-bundle, a spectral

sequence converging to diagonal homology of Γ(AdP → M). A certain stable part of its

second page can be specified in terms of Čech homology of (topological tensor products

of) certain cosheaves given by associating to U ⊂ M the quotient of k-forms by exact

k-forms on U . This whole chapter requires a careful analysis of functional-analytic

details, since many homology spaces in question are infinite-dimensional Fréchet or

LF-spaces.
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xiv SUMMARY

In Chapter 4, let G be a real, semisimple Lie group G . We study the ratios

δF (U ) := µ
(⋂

g∈F Adg U
)

µ(U )
, δF (U ) := liminf

U∈U
δF (U )

where F ⊂G arbitrary, µ denotes the Haar measure, Ad denotes the adjoint action, U ⊂G

is a relatively compact neighborhood of the identity with nonzero Haar volume, and

U is a neighborhood basis of the identity in G . Lastly, we set δF as the supremum over

δF (U ) for all such U . If BG
ρ := {g ∈G : ∥Adg ∥ ≤ ρ} for some ρ > 0 and ∥ · ∥ the operator

norm, then we show, by constructing a specific neighborhood basis of the identity, that

δBG
ρ
≥ ρ−d/2,

where d is the maximal dimension of a nilpotent, adjoint orbit in the Lie algebra g :=
Lie(G). This is done through the means of certain orbital limit formulas due to Barbasch,

Harris, and Vogan, and Lie-theoretic integration formulas due to Harish-Chandra and

Varadarajan. Our result is useful for a quantitative analysis of the coefficients of non-

commutative de Leeuw inequalities in Harmonic Analysis.

Lastly, in Chapter 5, we explore for compact Lie groups G with bi-invariant Riemannian

metric 〈·, ·〉 the consequences of simple integration by parts formulas of the form∫
G
∆ρ(g )i jρ(g )kl dg =−

∫
G
〈dρ(g )i j ,dρ(g )kl 〉dg ,

where dg denotes its Haar measure, ∆ denotes the Laplacian associated to the Rieman-

nian metric, ρ : G → V is a finite-dimensional representation of G and ρ(g )i j are its

matrix entries with respect to some basis. Through the Peter-Weyl theorem and the

study of Casimir operators associated to ρ, this equation can provide nontrivial insights

into integrals of matrix coefficients on G , which we identify as the underlying principle

for many results in the literature, such as expectation values of Wilson loops in lattice

gauge theory, of Riemannian Brownian motions on Lie groups in stochastic calculus,

and for the calculation of Weingarten functions, i.e. expectation values of matrix coeffi-

cients in the Haar measure. We pay special attention in particular to the latter question,

which, using this integration by parts formula, can be rephrased as a question about

tensor invariants
(
V ⊗k ⊗ (V ∗)⊗l

)G
, a well-studied problem for many representations ρ.



SAMENVATTING

In dit proefschrift bestuderen we lokaal-naar-globaal-principes voor continue Che-

valley-Eilenberg cohomologie van bepaalde, oneindig-dimensionele Lie-algebra’s met

een geometrische oorsprong (Deel I), en integratieformules voor eindig-dimensionale

Lie-groepen (Deel II).

In Hoofdstuk 2 beginnen we met een gedetailleerde uiteenzetting van bepaalde bekende

resultaten over de continue cohomologie van de Lie-algebra van vectorvelden X(M)

op een gladde variëteit M , ook wel de Gelfand-Fuks cohomologie van M genoemd. We

presenteren een nieuwe constructie van cohomologische spectraalrijen, oorspronkelijk

van Gelfand en Fuks, gebaseerd op een lokaal-naar-globaal principe dat verwant is

aan de moderne theorie van factorisatie-algebra’s. Voor een grote klasse gladde vari-

ëteiten, zoals M compact en oriënteerbaar, convergeren deze spectraalrijen naar de

zogenaamde diagonale cohomologie ∆k H•(X(M)) voor k ∈N en kunnen hun tweede

pagina’s volledig worden gespecificeerd door bekende en makkelijk te bepalen data,

namelijk de continue Chevalley-Eilenberg-cohomologie van formele vectorvelden en

relatieve homologie van cartesische machten M k met betrekking tot hun dikke diagona-

len M k
k−1.

In Hoofdstuk 3 passen we het lokaal-naar-globaal-principe, dat in het vorige hoofdstuk

is voorbereid, toe op continue homologie van ijkalgebra’s, Lie-algebra’s gegeven door

snedes Γ(AdP → M) van de geadjungeerde bundel associeerd aan een hoofdvezelbun-

del P → M . Dankzij isomorfismen van de vorm

gln(C∞(M)) ∼=C∞(M ,gln(R)), n ∈N

is het om te beginnen nuttig om een topologische versie van de Loday-Quillen-Tsygan

(LQT) stelling te formuleren, die zegt dat voor een algebra A met eenheid er geldt dat

H•(gl(A)) ∼=Λ•Hλ
•−1(A),

waarbij de homologie aan de linkerkant de algebraïsche Chevalley-Eilenberg-homologie

is en die aan de recheterkant de algebraïsche cyclische homologie. We laten zien dat

een topologische/bornologische versie van dit resultaat geldt voor een bepaalde klasse

van Fréchet- en LF-algebra’s A, waaronder A = C∞(M) voor een gladde variëteit M

en A =C∞
c (Rn). Wanneer P → M een hoofdvezelbundel met vezel GLt (R) is, leidt de-

zelfde benadering als in Hoofdstuk 2 tot een spectraalrij die convergeert naar diagonale

homologie van Γ(AdP → M). Een stabiel deel van de tweede pagina kan worden ge-

specificeerd in termen van Čech-homologie van (topologische tensorproducten van)

xv



xvi SAMENVATTING

bepaalde co-schoven, gegeven door de afbeelding die het quotiënt van k-vormen op U

door exacte k-vormen op U toekent aan de open verzameling U ⊂ M . Omdat veel ho-

mologieruimten in kwestie oneindig-dimensionale Fréchet- of LF-ruimten zijn, vereist

dit hele hoofdstuk een zorgvuldige analyse van functioneel-analytische details.

Zij nu G een reële, halfenkelvoudige Lie-groep in Hoofdstuk 4. We bestuderen de ratio’s

δF (U ) := µ
(⋂

g∈F Adg U
)

µ(U )
, δF (U ) := liminf

U∈U
δF (U )

waarbij F ⊂G arbitrair is, µ de Haar-maat, Ad de geadjungeerde actie, U ⊂G een relatief

compacte omgeving van de identiteit is met Haar-maat ongelijk aan nul, en U een

omgevingsbasis van de identiteit in G . Tot slot definiëren we δF als het supremum

van δF (U ) voor alle dergelijke U . Zij BG
ρ := {g ∈ G : ∥Adg ∥ ≤ ρ} voor ρ > 0 en ∥ · ∥ de

operatornorm. Door een specifieke omgevingsbasis van de identiteit te construeren,

laten we zien dat

δBG
ρ
≥ ρ−d/2,

waarbij d de maximale dimensie is van nilpotente geadjungeerde banen in de Lie-al-

gebra g := Lie(G). Dit wordt gedaan door middel van bepaalde orbitale limietformules

van Barbasch, Harris en Vogan, en Lie-theoretische integratieformules van Harish-

Chandra en Varadarajan. Ons resultaat is nuttig voor een kwantitatieve analyse van de

coëfficiënten van niet-commutatieve de Leeuw ongelijkheden in harmonische analyse.

Ten slotte onderzoeken we in Hoofdstuk 5 voor een compacte Lie-groep G met bi-inva-

riante Riemann-metriek 〈·, ·〉 de gevolgen van eenvoudige, partiële-integratie-formules

van de vorm ∫
G
∆ρ(g )i jρ(g )kl dg =−

∫
G
〈dρ(g )i j ,dρ(g )kl 〉dg ,

waarbij dg de Haar-maat is, ∆ de Laplace-operator associeerd aan de Riemann-metriek,

ρ : G →V een eindig-dimensionele representatie van G , en ρ(g )i j de matrixcoëfficiën-

ten in een bepaalde basis. Vanwege de Peter-Weyl stelling en door Casimir-operatoren

geassocieerd aan ρ te bestuderen leidt deze vergelijking tot niet-triviale inzichten over

integralen van matrixcoëfficiënten op G . Deze zien we als het onderliggende prin-

cipe voor veel bekende resultaten in de literatuur, zoals als verwachtingswaarden van

Wilson-loops in roosterijktheorie, Riemanniaanse Brownse bewegingen op Lie-groepen

in stochastische calculus, en voor de berekening van Weingarten-functies, de verwach-

tingswaarden van matrixcoëfficiënten met betrekking tot de Haar-maat. We besteden

in het bijzonder aandacht aan de laatste vraag, die met behulp van partiële integra-

tie kan worden hergeformuleerd als een vraag over tensorinvarianten van de vorm(
V ⊗k ⊗ (V ∗)⊗l

)G
; een goed bestudeerd probleem voor vele representaties ρ.

Parts of the translation were provided by Milan Niestijl & Bas Janssens.
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INTRODUCTION

Understanding any mathematical problem or physical system generally relies on un-

derstanding its underlying symmetries. Of particular interest are the symmetry groups

governing the solutions of (partial) differential equations, which are of continuous type

and also called Lie groups. This continuity allows one to construct an infinitesimal coun-

terpart to Lie groups, their Lie algebras, which are often easier to analyze and whose

properties in many ways mirror properties of the corresponding Lie group. In this thesis,

we study methods to analyze Lie groups and Lie algebras from representation-theoretic,

measure-theoretic, and cohomological perspectives. The methods required to conduct

such analyses differ wildly depending on whether these objects are of infinite- or finite-

dimensional type, and since we study both situations, this document is divided into two

largely independent parts.

1.1. PART I: LOCAL-TO-GLOBAL PRINCIPLES FOR COHOMOL-

OGY OF INFINITE-DIMENSIONAL LIE ALGEBRAS

In the first part, we study certain geometric, infinite-dimensional Lie algebras, more

specifically, the Lie algebra of vector fields X(M) for a smooth manifold M , and the so-

called gauge algebra Γ(AdP → M) associated to a principal fiber bundle P → M . Here,

the aspect that we are most interested in is the calculation of the continuous Chevalley–

Eilenberg cohomology H•(g) of a Lie algebra g, a naturally assigned, graded vector space

containing certain invariants associated to g. In particular, degree 2 cohomology of a

Lie algebra g classifies central extensions of g, which are exact sequences of Lie algebras

1
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of the form

0 →R→ ĝ→ g→ 0. (1.1.1)

These, in turn, characterize projective representations of g and are hence of interest to

formulate quantizations of physical systems admitting g-symmetries. The Lie algebra

of vector fields occurs, in this sense, in conformal field theory. On the circle M = S1, this

Lie algebra admits an (up to isomorphism) unique nontrivial central extension called

the Virasoro algebra [Vir70].

1.1.1. AN EXPOSITION TO GELFAND–FUKS COHOMOLOGY

A study of continuous Chevalley–Eilenberg cohomology of vector fields, also called

Gelfand–Fuks cohomology, has already been conducted in the 1970s, giving rise to a

large body of literature [GF70a, GF69, GF70b, BS77]. However, many of these results are

not easily accessible to non-experts today as they rely on many (at the time) novel tech-

niques. The ideas discussed in these papers appear more relevant than ever in the new

millenium, with many new results appearing about Chevalley–Eilenberg cohomology

of similar Lie algebras, such as symplectic and Hamiltonian vector fields on a smooth

manifold [JV16, JV18]. Furthermore, in the last decade, factorization algebras have not

only been shown to offer a promising view on conformal field theory [CG17], but they

are also a perfectly suited structure with which to study cochains and cohomology

over topological spaces, closely mirroring some local-to-global techniques used in the

calculation of Gelfand–Fuks cohomology [HK18].

Hence, in Chapter 2, which is based on the preprint [Mia22b], we give a detailed con-

struction of some of the main results in the study of Gelfand–Fuks cohomology. We view

this setting as a prototype to calculate continuous Chevalley–Eilenberg cohomology for

similar infinite-dimensional Lie algebras of geometric origin. While the results in this

chapter are essentially all captured in the literature [Fuk86, Bot73], we do modernize

some of the language and provide novel proof techniques which easily generalize to

different settings, such as the continuous cohomology of gauge algebras that we study

in Chapter 3.

The traditional approach, which we will follow, is to first study the case of infinitesimal

Gelfand–Fuks cohomology, which is represented by continuous Chevalley–Eilenberg

cohomology of the Lie algebra of formal vector fields

Wn :=
{

n∑
i=1

fi∂i : f1, . . . , fn ∈RJx1, . . . , xnK

}
,

[
f ∂i , g∂ j

]
:= f · ∂g

∂xi
∂ j − g · ∂g

∂x j
∂i .

(1.1.2)

On this level, the continuity requirement is equivalent to cochains vanishing on formal

vector fields of sufficiently high degree, and the calculation of continuous cohomology
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is almost purely algebraic. One identifies the reductive Lie subalgebra

gln(R) ∼=
{

n∑
i , j=1

ai j xi∂ j : ai j ∈R
}
⊂Wn (1.1.3)

and uses this to construct a Hochschild–Serre spectral sequence for continuous Cheval-

ley–Eilenberg cohomology of Wn . All pages of this spectral sequence can be determined

completely, through an analysis of gln(R)-tensor invariants
(
V ⊗k ⊗ (V ∗)⊗l

)gln (R)
where

V = Rn , an application of the Bott transgression theorem, and using the functorial-

ity of the Hochschild–Serre spectral sequence. The most important information is

summarized in the following:

Theorem A (Gelfand, Fuks 1970). The space H k (Wn) is trivial when 1 ≤ k ≤ 2n or k >
n2 +2n. The wedge product of two cohomology classes of positive degree in H•(Wn) is

zero.

Building on this, one studies the local Gelfand–Fuks cohomology, represented by

the continuous Chevalley–Eilenberg cohomology of vector fields X(Rn) on Euclidean

space. Here, we have at our disposal the Euler vector field

E(x) :=
n∑

i=1
xi∂i , x ∈Rn , (1.1.4)

which generates a family of scaling diffeomorphisms {Tt }t>0. Reminiscent of Taylor

expansion, one can study the behavior of limits of vector fields

lim
t→0

t−k T ∗
t X , X ∈X(Rn),k ∈N, (1.1.5)

giving rise to a filtration of cochain complexes on the Gelfand–Fuks cochains. The same

filtration exists on Wn with the formal analog of the Euler vector field, and through the

limits (1.1.5) a correspondence between them can be established. To prepare our local-

to-global principle, we show that the same analysis holds for Gelfand–Fuks cohomology

of finite disjoint unions Rn ⊔·· ·⊔Rn , and we conclude:

Theorem B (Bott, 1973). Let M :=⊔r
i=1R

n be a disjoint collection of copies of Rn . Then

every choice of order on the copies of Rn induces an algebra isomorphism

H• (X (M)) ∼= H•(Wn)⊗
r
. (1.1.6)

We want to once again emphasize that, up to this point, our proof methods are largely

an elaboration, modernization, and occasionally slight correction of the ones available

in the literature. In the last part of Chapter 2, however, we use novel tools closely related

to the theory of factorization algebras1 to construct the spectral sequences of Gelfand

1Note that we do not describe the Chevalley–Eilenberg cochains as factorization algebras themselves here.

While this setting is natural in light of [CG17], we have not been able to use it to simplify our constructions.
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and Fuks that calculate the continuous cohomology of vector fields X(M) on a smooth

manifold, using a local-to-global principle.

While the results here are not new, this provides an approach that, in principle, can

be used as a local-to-global principle for continuous Chevalley–Eilenberg cohomology

of section spaces of more general Lie algebroids, an example of which we study in

Chapter 3. The rough idea is to consider the following double complex:

⊕
i C 1(X(Ui ))

⊕
i , j C 1(Γ(X(Ui j )) . . .

. . .

. . . . . .

⊕
i C 2(X(Ui ))

⊕
i , j C 2(Γ(X(Ui j ))

⊕
i C 3(X(Ui ))

⊕
i , j C 3(X(Ui j )) . . .

Here, the rows consist of cosheaf-theoretic Čech complexes associated to the precosheaf

structures on the continuous cochain spaces

U 7→C k (X(U )), U ⊂ M open, k ≥ 1 (1.1.7)

with respect to a fixed cover U of M . The column differentials are given by the direct

sum of Chevalley–Eilenberg differentials associated to the Lie algebras X(U ) for all

U ∈U . The idea is a standard spectral sequence argument for double complexes: If the

rows were well-behaved, flabby cosheaves, the spectral sequence arising from filtering

this complex by columns collapses on the second page into a single column given

by the Chevalley–Eilenberg cohomology of the global sections of the cosheaf. On the

other hand, the cohomology in the columns is simply Gelfand–Fuks cohomology on the

elements of the cover, which, ideally, have a more simple geometry than M , like the local

case of M =Rn . This gives rise to a spectral sequence whose entries are, ideally, built

from local Gelfand–Fuks cohomology, and which converges to global Gelfand–Fuks

cohomology.

There are many details swept under the rug in the above: One significant problem

that arises in this approach is the fact that the assignment U 7→ C k (X(U )) does not

define a cosheaf over M for k > 1, so the Čech complexes may be badly behaved in

general; However, if⊠ denotes the external tensor product of vector bundles, we can

link C k (X(U )) to the cosheaf given by the distributions of section spaces

U 7→ Γ
(
T M⊠k ∣∣

U →U
)∗

, U ⊂ M k open. (1.1.8)
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This is done through the isomorphism

C k (X(M)) ∼=
(
Γ

(
T M⊠k → M k

)Σ
k

)∗
, (1.1.9)

where Σk denotes the symmetric group in k elements, acting on the sections of the

external tensor product through antisymmetric permutation of the factors. The correct

open cover to work with in this setting are k-good covers, a generalization of the notion

of good covers from the theory of factorization algebras due to [BdBW13], useful in

the setting when a single cover is needed to capture information about the Cartesian

powers M , M 2, . . . , M k . This controls the cochain spaces C r (X(U )) up to degree ≤ k.

By replacing the higher degree cochain spaces by k-diagonal cochains ∆kC r (X(U )),

defined as the cochains which under the isomorphism (1.1.9) arise from distributions

whose support lies in a certain diagonal subspace M r
k ⊂ M r , all precosheaves in the

double complex can be related to cosheaves over the Cartesian powers and diagonals

M , . . . , M k , M k+1
k , M k+2

k , . . . , which can be fully controlled by k-good covers.

We call this double complex the Čech–Bott–Segal double complex, honoring similar but

different localization strategies carried out by Bott and Segal in [BS77]. Now, after an

analysis of the precosheaf structure associated to the assignments U 7→ H•(X(U )) for U

open disks in M , one can apply standard double complex techniques, we show that this

reproduces well-known Gelfand–Fuks spectral sequences:

Theorem C (Gelfand, Fuks 1969). Let M be an orientable manifold which admits a

finite, k-good open cover (e.g. if M is compact). There exists a cohomological spectral

sequence {E•,•
r ,dr } which converges to reduced k-diagonal cohomology ∆k H̃•(X(M)),

and the entries E p,q
2 of its second page are, for q ≥ 1, of the following form:

E p,q
2

∼= H−p (M)⊗H q (Wn)

⊕ ⊕
q1+q2=q

qi>0

(
H−p (M 2, M 2

1 )⊗H q1 (Wn)⊗H q2 (Wn)
)Σ2

⊕ . . .

⊕ ⊕
q1+···+qk=q

qi>0

(
H−p (M k , M k

k−1)⊗H q1 (Wn)⊗·· ·⊗H qk (Wn)
)Σk

.

(1.1.10)

Here, a permutation σ ∈Σr acts by simultaneous permutation of the Cartesian factors

of M k and the tensor factors H q (Wn).

1.1.2. BORNOLOGICAL LODAY–QUILLEN–TSYGAN THEOREMS AND CON-

TINUOUS COHOMOLOGY OF GAUGE ALGEBRAS

The second kind of infinite-dimensional Lie algebras we study are gauge algebras, spaces

of sections Γ(AdP → M) of the adjoint bundle associated to a principal fiber bundle
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P → M . The case of degree 2, which is relevant in the unitary representation theory

of gauge algebras, has been fully calculated in [JW13], in the case when the fibers K

of P are semisimple Lie groups with finitely generated π0(K ), and M is compact and

connected. Closely related to our investigation in Chapter 3, which is based on the

preprint [Mia22a], they used a sheaf-theoretic local-to-global principle to calculate the

continuous cohomology in this degree. More precisely, denote by K the typical fiber Lie

group of P , by k := Lie(K ) its Lie algebra, and by V (AdP ) → M the vector bundle arising

from applying the functor

Te K = k 7→ (S2k)k := S2k

k · (S2k)
. (1.1.11)

to every fiber of the adjoint bundle AdP = P ×Ad k→ M . Choose further a Lie connection

∇ on AdP .

In the local case, when the base M is just Euclidean space, one finds the following using

results from [Mai02]:

H 2(Γ(AdP →Rn)) ∼=
(
Ω2

c (Rn ,V (AdP ))

d∇Ω1
c (Rn ,V (AdP )

)∗
, (1.1.12)

where Ω•
c (Rn ,V (AdP )) denotes the compactly supported differential forms on Rn with

values in the vector bundle V (AdP ), and d∇ denotes the connection induced by ∇. The

dual is the continuous dual with respect to the standard LF-topology on the quotient

space. Through degree-specific calculations, they show that for a fixed principal bundle

P → M , both the assignment of open sets U ⊂ M to H 2(Γ(AdP |U → U )) an and the

assignment of open sets U ⊂ M to
(
Ω2

c (U ,V (AdP ))
d∇Ω1

c (U ,V (AdP )

)∗
define not only presheaves over M ,

but sheaves. Sheaf theory provides simple arguments to then prove that local isomor-

phisms lift to global ones, with which they show that under the given assumptions on P

and M , we have

H 2(Γ(AdP → M)) ∼=
(
Ω2

c (M ,V (AdP ))

d∇Ω1
c (M ,V (AdP )

)∗
. (1.1.13)

The obvious question, especially in conjunction with our work in Chapter 2, is if a similar

local-to-global principle is applicable to H k (Γ(AdP → M)) for k > 2.

In Chapter 3, we will study this question in the dual setting of continuous Chevalley–

Eilenberg homology H•(Γ(AdP → M)), which is defined in terms of certain topolog-

ical tensor products. We do this because in the analysis of Γ(AdP → M), nontrivial

functional-analytic arguments take place at the intersection of homological algebra

and functional analysis, and we find it helpful to separate topological phenomena of

multilinearity from phenomena of duality.

We explore the Loday–Quillen–Tsygan (LQT) theorem [LQ84, Tsy83], which says that

if A is a unital algebra and gl(A) := lim−−→gln(A), then in algebraic Chevalley–Eilenberg

cohomology, we have

H•(gl(A)) ∼=Λ•Hλ
•−1(A) and Hk (gln(A)) ∼= Hk (gl(A)) if n ≥ k, (1.1.14)
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where Hλ• (A) denotes the cyclic homology of the algebra A. Similar theorems are

available in the literature for the direct limit Lie algebras associated to other classical

Lie algebras, such as sl(A), sp(A) and so(A) [Lod92].

The reason this is interesting to us for the study of gauge algebra homology lies in

isomorphisms of the form

gln(C∞(M)) ∼=C∞(M ,gln(R)) ∼= Γ(M ×gln(R) → M), (1.1.15)

so that in the case A =C∞(M), the Lie algebras gl(A), sl(A) and so on are closely related

to gauge algebras associated to trivial principal fiber bundles whose typical fibers have

the Lie algebras gln(R), sln(R). What, however, is not available in the literature at this

point, is a version of the LQT theorem for continuous homology. The study of this is

one of the aims of Chapter 3, where we begin by studying the local case where M is

Euclidean space and the Lie algebra in question is either gl(C∞(M)) = lim−−→gln(C∞(M)) or

its compactly supported analog gl(C∞(M)) = lim−−→gln(C∞
c (M)), both equipped with their

natural LF-topologies arising from the direct limits. We find that the most natural way

to adapt the proof of the algebraic LQT theorem is to consider bornological Chevalley–

Eilenberg homology, which is the homology of the usual Chevalley–Eilenberg complex

with all involved tensor products replaced by completed bornological tensor products ⊗̂
[KM97]. The usefulness of this tensor product is its compatibility with inductive limits

and the fact that it reproduces Grothendieck’s inductive tensor product [Gro95] and the

projective tensor product [Sch71] on LF-spaces and Fréchet spaces, respectively.

Adapting the proof of the algebraic LQT theorem to the bornological setting is then

fairly easy whenever the algebra A is unital and Fréchet, and the most difficult part is a

necessary application of a Künneth formula

H•(C• ⊗̂D•) ∼= H•(C•) ⊗̂H•(D•) (1.1.16)

for chain complexes C•,D• of topological vector spaces. Such Künneth formulas exist for

chain complexes of Fréchet spaces, but require the differentials of both chain complexes

to be toplogical homomorphisms, which for linear, continuous maps of Fréchet spaces

is equivalent to their range being closed in the codomain. With this, we can adapt the

LQT theorem as follows:

Theorem D. Let A be a nuclear unital Fréchet algebra, and assume that the differential of

the bornological cyclic complex Cλ,born• (A) has closed range. Then we have, for all r,n ∈N
with r +1 ≤ n

H born
r (gln(A)) ∼=

(
Λ̂•Hλ,born

•−1 (A)
)

r
, (1.1.17)

and

H born
• (gl(A)) ∼= Λ̂•Hλ,born

•−1 (A). (1.1.18)
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We are also interested in the case of certain non-unital algebras, such as C∞
c (Rn)

with its LF-topology arising from

C∞
c (Rn) = lim−−→C∞

Dn
(Rn) (1.1.19)

where {Dn}n≥1 is any compact exhaustion of Rn and C∞
Dn

(Rn) denotes the smooth func-

tions on Rn whose support is contained in Dn . Algebraic LQT theorems exist for non-

unital algebras [Han88, Cor05], in the case they are H-unital, defined as their bar com-

plex being acyclic. We show that an analogous statement holds for bornological LQT

theorems, even if the necessary proof is a lot more involved. The reason for this is that in

the unital case, one can identify the reductive subalgebra gln(K) ⊂ gln(A). The existence

of such a subalgebra is the used to show that the homology of the Chevalley–Eilenberg

complex is equal to the homology of the gln(K)-invariant subcomplex, heavily simplify-

ing the process. In the non-unital case, a gln(K)-action on the complex still exists, but

one needs to instead decompose it into isotypic types and show that the non-invariant

components nontrivially involve the bar complex of the underlying algebra. Adapting

this to the bornological setting, one finds the following:

Theorem E. Let A be a nuclear Fréchet algebra, and assume that the differential of the

bornological cyclic complex Cλ,born• (A) has closed range. Additionally, assume that A is

bornologically H-unital, i.e. the bornological bar complex C bar,born(A) is acyclic.

Then we have, for all r,n ∈Nwith 2r +1 ≤ n:

H born
r (gln(A)) ∼=

(
Λ̂•Hλ,born

•−1 (A)
)

r
, (1.1.20)

and

H born
• (gl(A)) ∼= Λ̂•Hλ,born

•−1 (A) (1.1.21)

Finally, using a local-to-global principle as in Chapter 2, we can reconstruct from

the above results in spectral sequences analogous to the Gelfand–Fuks spectral se-

quences which provide insight into higher order bornological/continuous homology

of gauge algebras whose fibers are classical, simple Lie algebras. However, there are

some problems that do not show up in the Gelfand–Fuks setting which we are not able

to resolve at the current point in time. Specifically, since the local homology spaces

are infinite-dimensional, we end up having to calculate Čech homology of completed

tensor products of cosheaves with respect to a fixed cover. If Z 1, Z 2 are two cosheaves

of Fréchet spaces on M , and Z 1 ⊗̂Z 2 is a certain bornological tensor product cosheaf

over M 2, we can use the previous Künneth methods to deduce statements of the form

Ȟ•(U ×V , Z 1 ⊗̂Z 2) ∼= Ȟ•(U , Z 1) ⊗̂ Ȟ•(V , Z 2), (1.1.22)

for open covers U ,V of M and their product cover U × V = {U ×V : U ∈ U ,V ∈ V }.

However, since such product covers are not in general cofinal in the family of open covers
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over topological spaces, this argument is insufficient to calculate the Čech homology of

the manifold itself, and thus some arguments stay unavailable to us.

Nevertheless, in a similar way to Chapter 2, we arrive at the following spectral sequence:

Theorem F. Let M be a manifold of finite dimension n and P → M a principal GLt (R)-

bundle. Let Ad(P ) → M be the associated adjoint bundle, and q := ⌊ t−1
2 ⌋. Denote by Z k

for k ≥ 0 the cosheaves over M defined by

Z k (U ) := Ωk
c (U )

dΩk−1
c (U )

. (1.1.23)

Set also for all k ≥ 1:

ξn(k) := min{k,n + (k −n mod 2)}. (1.1.24)

Then there is a homological first-quadrant spectral sequence {E•
r,s }r,s≥0 with

E k
r,s =⇒ H born

r+s (Γc (Ad(P ))). (1.1.25)

For r ≥ 0 and 1 ≤ s ≤ q, the second page E 2
r,s equals

E 2
r,s =

⊕
k≥1

( ⊕
s1+···+sk=s

Ȟr

(
U k , Z ξn (s1−1) ⊗̂ · · · ⊗̂Z ξn (sk−1)

))
Σk

(1.1.26)

1.2. PART II: INTEGRATION FORMULAS ON FINITE-DIMENSIO-

NAL LIE GROUPS
In the second part, we restrict our attention to finite-dimensional Lie groups and Lie

algebras, more specifically, integration and measure theoretic methods thereon. Since

every finite-dimensional Lie group can be equipped with a canonical measure, the

Haar measure, Lie theory offers a large playground of well-behaved measure spaces to

conduct differential geometry and functional analysis on.

1.2.1. VOLUMES OF IDENTITY-NEIGHBORHOODS IN REAL REDUCTIVE LIE

GROUPS

In Chapter 4, which is based on the preprint [CJKUM22]2, we begin this investigation by

studying how the adjoint action transforms the volume of small neighborhoods of the

identity in a real, semisimple Lie group G . More precisely, we consider ratios of the form

δF (U ) := µ
(⋂

g∈F Adg U
)

µ(U )
, (1.2.1)

2This preprint is a joint effort together with Caspers, Krishnaswamy-Usha, and Janssens; the content given

within this thesis is a contribution by Janssens and the author.
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where F ⊂G is some subset, µ denotes the Haar measure, Ad denotes the adjoint action,

and U ⊂G is a relatively compact neighborhood of the identity with nonzero Haar vol-

ume. For a neighborhood basis U of the identity in G we set δF (U ) := liminfU∈U δF (U ),

and δF denotes the supremum of δF (U ) where U varies over all symmetric neighbor-

hood bases of the identity in G .

The main theorem in Chapter 4 is a nontrivial lower bound on δBG
ρ

, where

BG
ρ := {g ∈G : ∥Adg ∥ ≤ ρ} (1.2.2)

is a neighborhood of the identity in G , where the norm is the operator norm induced

by a Hilbert space structure on g based on an invariant bilinear form and a Cartan

involution:

Theorem G. If d is the maximal dimension of a nilpotent, adjoint orbit in the Lie algebra

g := Lie(G), then

δBG
ρ
≥ ρ−d/2. (1.2.3)

We derive this method by constructing a specific neighborhood basis {Vϵ,R ⊂ g}ϵ,R>0

of zero in the Lie algebra which exponentiates to a symmetric neighborhood of the iden-

tity in the Lie group G . The reason for the occurrence of nilpotent orbits is that if Bϵ(0)

is the nilpotent cone N ⊂ g lies at the center of every open, invariant neighborhood of

zero, in the sense that if Bϵ(0) is the ϵ-ball around zero with respect to the Hilbert space

structure on g, then ⋂
ϵ>0

AdG Bϵ(0) =N . (1.2.4)

Theorem G then arises by employing certain orbital limit formulas due to Barbasch,

Harris, and Vogan [BV80, Har12] and by employing analytic tools and integration for-

mulas on Lie algebras due to Harish-Chandra and Varadarajan [HC57, HC65, Var77].

Not only does Theorem G provide geometric insight into the scaling behavior of neigh-

borhood systems of G under the adjoint action, but it is also of interest in the setting of

harmonic analysis, noncommutative Lp -spaces and Fourier multipliers on Lie groups.

We will explain in the beginning of Chapter 4 very briefly the ideas on how to make this

connection and direct the interested reader towards [CJKUM22] for details.

1.2.2. EXPECTATION VALUES OF POLYNOMIALS AND MOMENTS ON COM-

PACT LIE GROUPS

Finally, in Chapter 5, which is based on the preprint [DM22] together with Tobias Diez,

we propose a general framework in which to work with expectation values of polynomi-

als of matrix coefficients based on representation theory and a simple integration by

parts formula. Such polynomials have ubiquitous applications and take a core role in

lattice gauge theory (LGT) [Wei78], which is the original motivation to our study. Specif-

ically, we consider expectation values of Wilson loops. If we fix a compact Lie group
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G and a finite-dimensional representation (ρ,V ) of G , then a Wilson loop is, briefly, a

function on finitely many copies of a Lie group G of the form

W : G ×·· ·×G →C, W (g1, . . . , gr ) := tr(ρ(gi1 )±1 . . .ρ(gis )±1), (1.2.5)

with certain choices of a subset {i1, . . . , is } ⊂ {1, . . . ,r } and signs ±1 in the exponents. We

will largely restrict ourselves to single-argument Wilson loops, where we keep all but

one argument fixed:

W : G →C, W (g ) := tr(c1ρ(g )±1c2ρ(g )±1 . . .csρ(g )±1), c1, . . . ,cs ∈G . (1.2.6)

In LGT, an important problem is the calculation of expectation values of products of

Wilson loops under a certain measure called the Wilson action. Performing analytic

calculations in this setting, however, is one of the most difficult challenges of LGT, and as

such, a lot of effort is spent on the development of techniques to simplify this problem.

In [Cha19], a so-called master loop equation is developed for G = SO(N ). This equa-

tion represents the expectation value of a product of Wilson loops as the expectation

value of a product of different Wilson loops. This is done in order to carrying out the ’t

Hooft limit N →∞ [tH74], in which the master loop equation simplifies and allows an

inductive calculation of the expectation values. They arrive at this equation through an

application of what they call Stein’s method and long explicit calculations with matrix

coefficients in SO(N ).

In Chapter 5, we show that there is a simple, representation-theoretic principle underly-

ing this master loop equation. For G an arbitrary compact Lie group with bi-invariant

Riemannian metric 〈·, ·〉, an elementary application of integration by parts gives rise to

formulas of the type∫
G
∆ρ(g )i jρ(g )kl dg =−

∫
G
〈dρ(g )i j ,dρ(g )kl 〉dg , (1.2.7)

where dg denotes the Haar measure and ∆ is the Laplacian associated to the Rieman-

nian metric. If the representation is irreducible, the Peter–Weyl theorem tells us that

the matrix coefficients are eigenfunctions of the Laplacian, hence the left-hand side of

(1.2.7) is directly related to the desired expectation value of polynomials of matrix coef-

ficients, whereas the right-hand side can be expanded further using the completeness

relation, represented by tensor K on the Lie algebra g := Lie(G) of the form

Ki j kl :=∑
a
ρ(ξ)a

i jρ(ξ)a
kl , (1.2.8)

with respect to an orthonormal basis {ξr : 1, . . . ,dimg} of g ∼= TidG . This operator is

closely related to the quadratic Casimir invariant associated to the representation ρ

and its tensor square ρ⊗2. As such, it is proportional to the identity on irreducible

subrepresentations and thus easily determined.
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It defines two operations on Wilson loops, the merging of Wilson loops M (Wl1 ,Wl2 )

in which two copies of G in different loops are contracted with one another, and the

twisting of a Wilson loop T (W ), which is essentially a merging of two copies of G within

the same loop. We delay the precise formulas to Chapter 5 and present the key theorem

of the chapter.

Theorem H. Let G be a compact Lie group equipped with a probability density ν, ρ : G →
V an irreducible, finite-dimensional representation and Wl1 , . . . ,Wlq : G →C a collection

of single-argument Wilson loops. Let λ ∈ C be the eigenvalue of the Casimir ρ(C ), and

denote the number of factors of g or g−1 in the canonical representation of the Wilson

loop Wlr by nr . Then we have

λ
q∑

r=1
nr ·

∫
G

Wl1 · · ·Wlq ν dg =

−2
q∑

r,s=1
r<s

∫
G

M (Wlr ,Wls ) ·Wl1 · · ·Ŵlr · · ·Ŵls · · ·Wlq ν dg

−
q∑

r=1

∫
G

T (Wlr ) ·Wl1 · · ·Ŵlr · · ·Wlq ν dg

+
∫

G
Wl1 · · ·Wlq ∆ν dg .

(1.2.9)

The proof of this is a simple twofold application of integration by parts and an appeal

to the Peter–Weyl theorem, but nonetheless this equation has far-reaching implications.

For one, this principle essentially replicates the master loop formula for the defining

representation of G = SO(N ) of the previously mentioned [Cha19] and for the defining

representation of G = SU(N ) from the related preprint [Jaf16] through a simple proof

which is, besides determining the tensor K , almost free of explicit calculations. We

explicitly show how to construct such master loop equations for the classical examples of

compact Lie groups G = SO(N ), Sp(N ), SU(N ), U(N ), and also the exceptional Lie group

G2. Beyond this, our method has far-reaching generelizations with respect to other

measures. We generalize results of Lévy and Dahlqvist about the large-time behavior of

the expectation value of moments of Riemannian Brownian motion [Lé08, Dah17], and

we provide a method for calculating such moments in the Haar measure, also called

Weingarten functions [Col03, CS06], based purely on an understanding of the tensor

invariants (V ⊗n ⊗ (V ∗)⊗n′
)G , which are well-explored for many Lie groups. We apply

this last method explicitly to G =G2 to construct some novel integral formulas.
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2
AN EXPOSITION TO

GELFAND–FUKS COHOMOLOGY

In this chapter, we lay out a detailed, easily accessible exposition on the continuous

Chevalley-Eilenberg cohomology of formal vector fields, of vector fields on Euclidean

space, and the construction of the Gelfand–Fuks spectral sequence that describes this

cohomology for vector fields on a more general class of smooth manifolds. While the

results in this section are well known, we employ a novel proof technique to construct

the Gelfand–Fuks spectral sequence for diagonal cohomology that is not captured in

the literature, using a generalization of good covers of a manifold from the theory of

factorization algebras.

This chapter is based on the preprint [Mia22].
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2.1. INTRODUCTION
Beginning around fifty years ago, a plethora of literature has been created to under-

stand the continuous Chevalley–Eilenberg cohomology X(M) of the vector fields on a

smooth manifold M . This cohomology carries the name Gelfand–Fuks cohomology, in

reference to the authors who opened the investigation of this subject with a series of

highly novel papers [GF69, GF70b, GF70a]. Initially, it was hoped that this cohomology

might contain invariants for the smooth structure of M , hence be a potential tool for a

classification of smooth structures on a given topological manifold.

Unfortunately, these hopes were denied by a paper by Bott and Segal, which showed

that the Gelfand–Fuks cohomology was isomorphic to the singular cohomology of a

mapping space that can be functorially constructed from M , and from which no new

invariants arise [BS77]. Regardless, these explorations brought with them a lot of ap-

plications, for example in the theory of foliations [Fuk73] or for the construction of

the Virasoro algebra [Vir70]. Further, many related open problems are still being pur-

sued, like the continuous cohomology of the Lie algebra of symplectic, Hamiltonian or

divergence-free vector fields on symplectic/Riemannian manifolds [JV16, JV18].

The goal of this document is two-fold: For one, we want to present a novel proof

technique, using so-called k-good covers from the theory of functor calculus and factor-

ization algebras (cf. [BdBW13]), to construct well-known spectral sequences which cal-

culate the Gelfand–Fuks cohomology of certain smooth manifolds, cf. [Fuk86, Theorem

2.4.1a, 2.4.1.b]. This approach is inspired by the treatment of Gelfand–Fuks cohomology

in the framework of factorization algebras in a preprint by Kapranov and Hennion

[HK18]. The idea is to use a local-to-global analysis to reconstruct the spectral sequence

for the Gelfand–Fuks cohomology of the manifold from the Gelfand–Fuks cohomology

on the local level. The use of k-good covers solves the problem that this reconstruction

necessarily compares data between different Cartesian powers M , M 2, M 3, . . . of a mani-

fold M . This is a natural problem to encounter here, since cochains for Gelfand–Fuks

cohomology are maps on multiple copies of X(M). An advantage of this approach over

previous proofs is that it is easily generalizable to other situations: we show in Section 3

that the Chevalley–Eilenberg cohomology of gauge algebras can be treated similarly.

The other goal of this document is to lay out a streamlined, detailed, and relatively

elementary path to the fundamental results of Gelfand–Fuks cohomology, accessible to

any researcher with a solid understanding of homological algebra, sheaf theory and dif-

ferential geometry. To this end, we largely follow the general strategies in [Fuk86, Bot73],

filling in nontrivial details that have been left to the reader in the original literature,

modernizing some of the language used, and replacing some of the arguments with

ones which the author perceives as clearer. We make no claim to exhaustiveness: we

restrict ourselves to Gelfand–Fuks cohomology with trivial coefficients, and direct the

reader to [Tsu81] for an overview of the study of other coefficient modules.

We begin in Section 2.2 with a study of continuous cohomology of the Lie algebra



2.2. THE LIE ALGEBRA OF FORMAL VECTOR FIELDS

2

21

of formal vector fields, i.e. vector fields whose coefficient functions are formal power

series. They represent the infinitesimal counterpart of X(M) and their cohomology is

calculated using a spectral sequence over which one can get full control. This section is

largely a review of [GF70a]. In Section 2.3, we tie the cohomology of formal vector fields

to the Gelfand–Fuks cohomology of Euclidean space, which may itself be understood as

the local counterpart to Gelfand–Fuks cohomology. This section is a review of [Bot73].

The Section 2.4, we examine the transformation behavior of Gelfand–Fuks cohomology

on Euclidean space under diffeomorphisms. The proofs and formulations are original,

though the results are implicitly used in the literature. This prepares the local-to-global

analysis of the Gelfand–Fuks cohomology on an arbitrary smooth manifold, which we

carry out in Section 2.5. We give a variation of the well-known spectral sequences that

calculate Gelfand–Fuks cohomology for a class of orientable, smooth manifolds. For

the sake of completion, we explain how it allows a full calculation of the Gelfand–Fuks

cohomology of the circle S1 and may be used to make certain general statements about

finite-dimensionality of the Gelfand–Fuks cohomology.

2.2. THE LIE ALGEBRA OF FORMAL VECTOR FIELDS
In this section, we mainly elaborate on the methods given in [Fuk86, Chapter 2.2] and

[GF70a] to analyze the Lie algebra of formal vector fields, an infinitesimal version of the

Lie algebra of vector fields on a smooth manifold. We also use methods from [GS73,

Corollary 1] to analyze stable Chevalley–Eilenberg cohomology of this space.

2.2.1. DEFINITION AND FIRST PROPERTIES

Definition 2.2.1 (Formal vector fields). Let n ∈N. We define the Lie algebra of formal

vector fields Wn to be equal to the topological Lie algebra

Wn :=RJx1, . . . , xnK⊗Rn . (2.2.1)

Its topology is induced by the projective limit topology ofRJx1, . . . , xnK and its Lie bracket

is given by

[ f ∂i , g∂ j ] := f
∂g

∂xi
·∂ j − g

∂ f

∂x j
·∂i , f , g ∈RJx1, . . . , xnK. (2.2.2)

Remark 2.2.2. There is a more geometric definition of Wn which we will use in Sec-

tion 2.3, as the space of infinity-jets J∞p X(Rn) of vector fields at an arbitrary point p ∈Rn .

Any choice of local frame around p induces a continuous Lie algebra isomorphism

J∞p X(Rn) ∼=Wn . (2.2.3)

We first examine the structure of Wn .
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Definition 2.2.3. The element E := ∑n
i=1 xi∂i ∈ g0 is the Euler vector field in Wn . The

eigenspaces

gk = {X ∈Wn : [E , X ] = k ·X } (2.2.4)

give Wn = ⊕̂
k≥Zgk as the completion of a graded Lie algebra. Elements of gk are called

homogeneous (of degree k).

More explicitly, we find for all k ∈Z

gk =
{

n∑
i=1

pi∂i ∈Wn : pi homogeneous polynomials of degree k +1

}
. (2.2.5)

In particular, gk = 0 if k < −1, and in low orders, we have the following Lie algebra

isomorphisms:

g−1 = span{∂i : i = 1, . . . ,n} ∼=Rn , (2.2.6)

g0 = span
{

xi∂ j : i , j = 1, . . . ,n
}∼= gln(R). (2.2.7)

Definition 2.2.4. Let g be a topological Lie algebra. Its continuous Chevalley–Eilenberg

cohomology is the cohomology of the cochain complex

C •(g) := ⊕
k≥0

C k (g). (2.2.8)

By C k (g) we denote the space of multilinear, skew-symmetric, continuous maps

c : gk →R, (2.2.9)

and the differential d : C •(g) →C •+1(g) of the complex is1

dc(X1, . . . , Xk+1) = ∑
1≤i< j≤k+1

(−1)i+ j−1c([Xi , X j ], X1, . . . , Xk+1), (2.2.10)

for all X1, . . . , Xk+1 ∈ g.

The space C •(g) assumes the structure of a differential graded algebra with the wedge

product

(c1 ∧ c2)(X1, . . . , Xk+l ) :=
1

k !l !

∑
σ∈Σk+l

sign(σ)c1(Xσ(1), . . . , Xσ(k))c2(Xσ(k+1), . . . , Xσ(k+l ))
(2.2.11)

for c1 ∈C k (g),c2 ∈C l (g), X1, . . . , Xk+l ∈ g.

1The definition of this differential is not uniform throughout the literature and may deviate from our choice

by a global sign. The one we give here is found, for example, in [Fuk86].
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Remark 2.2.5. If g is finite-dimensional, the continuity assumption for cochains in C •(g)

is redundant. If g = Wn with its projective topology, then the continuity assump-

tion on c ∈ C •(Wn) just means that there is a k ∈ Z so that c(X , ·, . . . , ·) = 0 for all X

with deg X > k. In particular, c is only nonzero on a finite-dimensional subspace

of Λ•Wn .

Recall the following:

Definition 2.2.6. Let g be a Lie algebra, Y ∈ g and c ∈C k (g) for some k ≥ 0.

i) Denote the natural Lie algebra action of an element Y on C k (g) by Y · c; the

formula is given for Y , X1, . . . , Xk ∈ g by

(Y · c)(X1, . . . , Xk ) :=−
k∑

i=1
c(X1, . . . , [Y , Xi ], . . . , Xk ), (2.2.12)

and Y · c = 0 if c ∈C 0(g).

ii) Denote by Y ⌟ c ∈C k−1(g) the interior product of c with Y , which is defined via

(Y ⌟ c)(X1, . . . , Xk−1) = c(Y , X1, . . . , Xk−1) (2.2.13)

and Y ⌟ c = 0 if c ∈C 0(g).

A straightforward calculation yields the following homotopy relation:

Lemma 2.2.7. Let g be a Lie algebra, c ∈C •(g) and Y ∈ g. Then we have the following

chain homotopy formula:

d(Y ⌟ c)+Y ⌟dc =−Y · c (2.2.14)

A well-known corollary of the previous statement is:

Corollary 2.2.8. The action of a Lie algebra g on its cochains C •(g) commutes with the

Chevalley–Eilenberg differential, and the induced action on H•(g) is trivial.

Using the grading of Wn induced by the Euler vector field E , we can also define a

grading of the cochains:

Definition 2.2.9. Let r ∈Z and k ≥ 0 an integer. Define

C k
(r )(Wn) := {c ∈C k (Wn) : E · c =−r · c}. (2.2.15)

Remark 2.2.10. More explicitly, c ∈C k
(r )(Wn) if and only if we have for all homogeneous

formal vector fields X1, . . . , Xk ∈Wn

k∑
i=1

deg Xi ̸= r =⇒ c(X1, . . . , Xk ) = 0. (2.2.16)
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Proposition 2.2.11 ([Fuk86], Section 1.5 and 2.2). The spaces C •
(r )(Wn) fulfill the follow-

ing properties:

i) We have C •(Wn) =⊕
r∈ZC •

(r )(Wn).

ii) For all r ∈Z, the spaces C •
(r )(Wn) are subcomplexes of C •(Wn).

iii) For all r, s ∈Zwe have

C •
(r )(Wn)∧C •

(s)(Wn) ⊂C •
(r+s)(Wn). (2.2.17)

iv) If r <−k, then C k
(r )(Wn) = 0.

v) The inclusion C •
(0)(Wn) ⊂C •(Wn) induces an algebra isomorphism

H•(C •
(0)(Wn)) ∼= H•(Wn). (2.2.18)

Proof. i) The direct sum decomposition follows since every c ∈C k (Wn) is zero on ho-

mogeneous vector fields of sufficiently high degree, and its evaluation on any collec-

tion X1, . . . , Xk ∈ Wn can be uniquely decomposed into summands of homogeneous

vector fields.

ii) This follows since the action of E commutes with the Lie algebra differential by Lem-

ma 2.2.7.

iii) This is due to

E · (c1 ∧ c2) = (E · c1)∧ c2 + c1 ∧ (E · c2) ∀c1,c2 ∈C •(Wn). (2.2.19)

iv) Due to the pidgeonhole principle, any collection of k elements in Wn whose degrees

sum up to a value smaller than −k must have an element with degree smaller −1. Such

an element is necessarily zero, which shows the statement.

v) Lemma 2.2.7 shows that for all c ∈C •
(r )(Wn) we have

d(E ⌟ c)+E ⌟ (dc) =−r · c. (2.2.20)

Thus, for r ̸= 0, the map − 1
r (E ⌟ ·) defines a chain homotopy between the identity and

zero for the cochain complex C •
(r )(Wn), and hence H•(C •

(r )(Wn)) = 0. We conclude that

all cohomology classes of C •(Wn) admit a representative fully contained in C •
(0)(Wn).

This shows that the inclusion induces an isomorphism of vector spaces. By statement

iii) C •
(0)(Wn) is a subalgebra of C •(Wn) with respect to the wedge product, hence the

inclusion induces an algebra isomorphism on cohomology.

In the following we will write H•
(r )(Wn) := H•(C k

(r )(Wn)).
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2.2.2. STABLE COHOMOLOGY OF FORMAL VECTOR FIELDS

We first focus on certain low-dimensional cohomology, the so-called stable cohomology

of Wn , due to Guillemin and Shnider. They prove in [GS73, Corollary 1] that H k (Wn)

is trivial in dimension k = 1, . . . ,n. Note that their paper makes much more general

statements, in particular about stable cohomology of formal Lie algebras corresponding

to other classical vector field Lie algebras, e.g. formal Hamiltonian and divergence-free

vector fields.

Definition 2.2.12. Define for all r ∈Z,

∂C •
(r )(Wn) := {∂i · c ∈C •

(r+1)(Wn) : c ∈C •
(r )(Wn)}, (2.2.21)

and

∂C •(Wn) := ⊕
r∈Z

∂C •
(r )(Wn). (2.2.22)

Recall that ∂i · c denotes the action of ∂i ∈ g−1 on the cochain c (see Definition 2.2.6).

By Corollary 2.2.8, the Lie algebra action of g on C •(Wn) commutes with the Cheval-

ley-Eilenberg differential, and thus:

Lemma 2.2.13. For all r ∈Z, the space ∂C •
(r )(Wn) is a subcomplex of C •

(r+1)(Wn).

We need one more preparing definition, since the degree zero component of cochain

complexes is often troublesome.

Definition 2.2.14 (Reduced Complex). If C • is a cochain complex, define the reduced

complex C̃ • as

C̃ 0 = 0, C̃ k :=C k ∀k ≥ 1, (2.2.23)

equipped with the inherited differential from C •.

We denote by H̃• the cohomology of the reduced complex.

The aim of this section is the construction of a Koszul complex relating the com-

plexes C •
(r )(Wn) for different values of r .

Proposition 2.2.15. There exists an exact sequence of cochain complexes

0 → C̃ •
(0)(Wn)⊗Λng−1 → C̃ •

(1)(Wn)⊗Λn−1g−1 → . . .

→ C̃ •
(n)(Wn)⊗Λ0g−1 → C̃ •

(n)(Wn)/∂C̃ •
(n−1)(Wn) → 0,

(2.2.24)

where the differentials in every term are induced by the Chevalley–Eilenberg differential

of C •(Wn).
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Proof. Write V := g−1. Denote by ∨ the product of symmetric tensors, and define for

all r ≤ n −1 the map

σr : S•V ⊗Λr V → S•V ⊗Λr−1V ,

u ⊗ (∂i1 ∧·· ·∧∂ir ) 7→
r∑

j=1
(−1) j (∂i j ∨u)⊗ (∂i1 ∧·· · ∂̂i j · · ·∧∂ir ) ∀u ∈ S•V.

(2.2.25)

These maps give rise to the well-known, acyclic Koszul complex

0 → S•V ⊗ΛnV → S•V ⊗Λn−1V → . . .

→ S•V ⊗Λ1V → S•V ⊗Λ0V →R→ 0.
(2.2.26)

Taking the tensor product of the above exact sequence with S•V , and using the canonical

isomorphism S•(V 2) ∼= S•(V )⊗S•(V ), we get the exact sequence

0 → S•V 2 ⊗ΛnV → S•V 2 ⊗Λn−1V → . . .

→ S•V 2 ⊗Λ0V → S•V → 0,
(2.2.27)

and inductively, if we denote by V∆ ⊂V k the diagonal subspace, then we get an exact

sequence
0 → S•V k ⊗ΛnV → S•V k ⊗Λn−1V → . . .

→ S•V k ⊗Λ0V → S•(V k /V∆) → 0.
(2.2.28)

Let k ≥ 1 and denote by Σk the permutation group in k elements. The tensor prod-

uct S•(V k )⊗ (V ∗)⊗k admits a Σk action by signed, simultaneous permutation of the

tensor factors in (V ∗)⊗k and the direct summands in V k . Taking invariants with respect

to this action, we find (
S•(V k )⊗ (V ∗)⊗k

)Σk ∼=C k (Wn). (2.2.29)

Thus, taking the tensor product of the complex (2.2.28) with (V ∗)⊗k and taking invari-

ants under a finite group are exact functors of R-vector spaces, and as such we get for

every k ≥ 1 an exact sequence

0 →C k (Wn)⊗ΛnV →C k (Wn)⊗Λn−1V → . . .

→C k (Wn)⊗Λ0V →C k (Wn)/∂C̃ k (Wn) → 0.
(2.2.30)

The last nontrivial map in (2.2.30) is the canonical quotient projection, the others are:

C k (Wn)⊗Λr V →C k (Wn)⊗Λr−1V ,

c ⊗ (∂i1 ∧·· ·∧∂ir ) 7→
r∑

j=1
(−1) j (∂i j · c)⊗ (∂i1 ∧·· · ∂̂i j · · ·∧∂ir ) ∀c ∈ C̃ •(Wn).

(2.2.31)

By Corollary 2.2.8, the differential of C •(Wn) commutes with the action of S•V , and by

Lemma 2.2.13, the differential commutes with the projection

C •(Wn) →C •(Wn)/∂C •(Wn). (2.2.32)
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Hence, by taking the direct sum of the complexes (2.2.30) for all k ≥ 1, we receive the

following exact sequence of chain complexes

0 → C̃ •(Wn)⊗ΛnV → C̃ •(Wn)⊗Λn−1V → . . .

→ C̃ •(Wn)⊗Λ0V → C̃ •(Wn)/∂C̃ •(Wn) → 0.
(2.2.33)

With respect to the grading C̃ •(Wn) =⊕
r C̃ •

(r )(Wn) the maps (2.2.31) restrict to maps on

the graded components

C •
(k)(Wn)⊗Λr (V ) →C •

(k+1)(Wn)⊗Λr−1(V ) ∀k,r ∈Z, (2.2.34)

and the canonical quotient projection C •(Wn) →C •(Wn)/∂C •(Wn) restricts to

C •
(k)(Wn) →C •

(k)(Wn)/∂C •
(k−1)(Wn) ∀k ∈Z. (2.2.35)

Considering the graded component of (2.2.33) whose leftmost term is C •
(0)(Wn)⊗ΛnV

yields the desired statement.

Remark 2.2.16. The construction of this sequence in [GS73, Theorem 1] is carried out

differently. A detailed proof of their construction would require a study of Hopf algebra

theory, which we do not want to carry out here: they implicitly use that if M is a free

module over a Hopf algebra H , then so is Λk
K

M with its induced, diagonal action for

all k > 0. This can, for example, be shown with the methods of [DNR01, Chapter 7.2].

Proposition 2.2.17 ([GS73], Corollary 1). We have H k (Wn) = 0 if k = 1, . . . ,n.

Proof. Consider the exact sequence (2.2.24). We have established that C̃ •
(r )(Wn) is an

acyclic subcomplex whenever r ̸= 0, and as such, all terms in the exact sequence are

acyclic except for the leftmost and rightmost nontrivial ones. Now we can combine

this with the exactness of (2.2.24) and either apply a straightforward diagram chase,

or by view this sequence of cochain complexes as a double complex and comparing

the associated spectral sequences. Both methods allow one to deduce the following

isomorphisms:

H k (
C̃ •

(0)(Wn)
)∼= H k (

C̃ •
(0)(Wn)⊗Λng−1

)∼= H k−n (
C̃ •

(n)(Wn)/∂C̃ •
(n−1)(Wn)

)
. (2.2.36)

But, as a relative complex, the complex on the right-hand side is zero in all degrees

smaller than 1, hence so is its cohomology. Hence, for all k = 1, . . . ,n we have

H k (Wn) ∼= H k
(0)(Wn) = H̃ k

(0)(Wn) = 0. (2.2.37)
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2.2.3. A SPECTRAL SEQUENCE FOR THE COHOMOLOGY OF FORMAL VECTOR

FIELDS

One can do even better than Proposition 2.2.17: We will formulate a spectral sequence

due to Gelfand and Fuks [GF70a] which calculates the cohomology of Wn , and fully spec-

ify its differentials. In other words, we will be able to calculate the dimension of H•(Wn)

in every degree and for every n ∈N. The information from the previous section about

low degree cohomology will aid us for the analysis of this spectral sequence. To this

end, we begin with a short recollection of some representation and cohomology theory

of gln(R). We largely follow the proof in [Fuk86], with certain adaptations that will be

indicated.

Theorem 2.2.18 ([KMS93], Theorem 24.4). Write V = Rn , and consider V and V ∗

as gln(R)-modules with the defining representation and the dual thereof.

For every σ ∈Σr , define

Ψσ : V ⊗r ⊗ (V ∗)⊗r →R,

v1 ⊗·· ·⊗ vr ⊗α1 ⊗·· ·⊗αr 7→α1(vσ(1)) . . .αr (vσ(r )) ∀αi ∈V ∗, vi ∈V.

Then {Ψσ}σ∈Σr is a spanning set for

HomR

(
V ⊗r ⊗ (V ∗)⊗r ,R

)gln (R) ∼= (
(V ∗)⊗r ⊗V ⊗r )gln (R) (2.2.38)

For r ≤ n, the set {Ψσ} is linearly independent. Further, if r ̸= s, then

HomR

(
V ⊗r ⊗ (V ∗)⊗s ,R

)gln (R) = 0. (2.2.39)

Theorem 2.2.19 ([Fuk86], Theorem 2.1.1). The cohomology ring H•(gln(R)) is isomor-

phic to the exterior algebra

Λ•[φ1, . . . ,φ2n−1], (2.2.40)

where the φi are generators in degree i . The inclusion gl(n −1,R) → gl(n,R) induces a

morphism

H q (gl(n,R)) → H q (gl(n −1,R)) (2.2.41)

which is an isomorphism for q ≤ 2n −3.

Remark 2.2.20. Note that our reference states the above theorem in an erroneous way:

They state the map induced by the inclusion has a one-dimensional kernel for q = n,

which, for example, cannot be true when n = 2, since the second cohomology vanishes

for all gl(n,R). They also write that the inclusion only induces an isomorphism in

degree < n, but their spectral sequence argument actually shows the above, stronger

property (see also [Hat02, Corollary 4D.3].
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Lemma 2.2.21. Let n ∈N be arbitrary, and consider the Hochschild–Serre spectral se-

quence {E p,q
r ,dr } of the Lie-algebra-subalgebra pair g0 ⊂Wn in continuous cohomology

(cf. Appendix B).

We have for all p, q ≥ 0

E p,q
2 =

H q (g0)⊗ (Λrg−1 ⊗Λrg1)g0 if p even and p = 2r,

0 if p odd.
(2.2.42)

Proof. By definition of the Hochschild–Serre spectral sequence, the first page takes the

following form:

E p,q
1 = H q (

g0;Λp (Wn/g0)∗
)= H q

(
g0;Λp

(⊕
j ̸=0

g j

)∗)

= ⊕
p−1+p1+p2+···=p

H q

(
g0;

⊗
j ̸=0

Λp j g∗j

) (2.2.43)

Note that, as Lie algebras, g0 ⊂Wn is isomorphic to gln(R) = gl(V ) via

n∑
i , j=1

ai j xi∂ j 7→ (ai j )1≤i , j≤n . (2.2.44)

By Weyl’s complete reducibility theorem [Hal15, Theorem 10.9], all coefficient modules

in (2.2.43) are completely reducible. Together with reducibility of the Lie algebra gln(R)

and [HS53, Theorem 10], we may reduce the coefficient space in the above cohomologies

to the gln(R)-invariants. Hence,

E p,q
1 = ⊕

p−1+p1+p2+···=p
H q

(
g0;

(⊗
j ̸=0

Λp j g∗j

)gl(V ))

= H q (g0)⊗
( ⊕

p−1+p1+p2+···=p

(⊗
j ̸=0

Λp j g∗j

)gl(V ))
.

(2.2.45)

By definition, g∗j = (S j+1V )⊗V ∗ contains j +1 tensor factors that transform covari-

antly (i.e. copies of V ) under the gl(V ) action, and one tensor factor that transforms

contravariantly (i.e. a copy of V ∗), hence Λp j g∗j contains j ·p j covariant and p j con-

travariant tensor factors. Hence⊗
j ̸=0

Λp j g∗j ⊂ (V ∗)
∑

j ̸=0 p j ⊗V
∑

j ̸=0( j+1)p j (2.2.46)

The last part of Theorem 2.2.18 then implies that the space of gl(V )-invariants of the

space
⊗

j ̸=0Λ
p j g∗j is only nonzero if

∑
j ̸=0

p j =
∑
j ̸=0

( j +1)p j , or equivalently p−1 =
∞∑

j=1
j ·p j (2.2.47)
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Simultaneously, again from Theorem 2.2.18, we know that gln(R)-invariants in a tensor

module

V ⊗r ⊗ (V ∗)⊗r ∼= Hom((V ∗)⊗r ⊗V ⊗r ,R) (2.2.48)

can be described as the linear combinations of the functionals which contract all covari-

ant indices with permutations of the contravariant indices. Correspondingly, the gl(V )

invariants in the subspaces
⊗

j ̸=0Λ
p j g∗j are given by subjecting these functionals to the

required (skew-)symmetrizations. Hence if

p−1 >
∞∑

j=1
p j , (2.2.49)

then by the pidgeonhole principle, any invariant tensor contracts at least two contravari-

ant factors belonging to Λp−1g−1 with two covariant factors, both belonging to a single

copy of g j within Λp j g j = g j ∧·· ·∧g j for some j ≥ 1. However, in such a contraction

the contravariant factors would behave skew-symmetrically and the covariant ones

symmetrically under permutation, hence their contraction is zero. Thus, we get the

additional requirement

p−1 ≤
∞∑

j=1
p j (2.2.50)

Combining (2.2.47) and (2.2.50) we end up with pk = 0 for k ≥ 2 and p−1 = p1 =: r . This

implies that p = 2r is even whenever there are nontrivial invariants, and thus every

other column in the page E p,q
1 vanishes. Hence all differentials on the first page are

trivial, and E p,q
1 = E p,q

2 . This concludes the proof.

Since H q (g0), Λrg−1, and Λrg1 are nonzero only for finitely many q,r ≥ 0, and all

involved spaces are finite-dimensional in every degree, we have:

Corollary 2.2.22. For all q ≥ 0, the continuous cohomology H q (Wn) is finite-dimensio-

nal, and H q (Wn) ̸= 0 only in finitely many degrees.

Let us further analyze the invariant space (Λrg−1 ⊗Λrg1)g0 .

Lemma 2.2.23. Let {E•,•
2 ,dr } be the spectral sequence from Lemma 2.2.21 of the Lie-alge-

bra-subalgebra pair g0 ⊂Wn .

For all r = 1, . . . ,n, there exist multiplicative generators Ψ2r ∈ E 2r,0
2 so that

E•,0
2 =R[Ψ2,Ψ4 . . . ,Ψ2n]/〈Ψi1 . . .Ψik : i1 +·· ·+ ik > 2n〉. (2.2.51)

Proof. By Lemma 2.2.21 we have

E•,0
2 =⊕

r≥0

(
Λrg−1 ⊗Λrg1

)g0 . (2.2.52)
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By Theorem 2.2.18 the elements in the invariant space (Λrg−1 ⊗Λrg1)g0 arise by taking,

for every permutation σ ∈Σr , the functional

r⊗
V ×

r⊗(
V ∗⊗V ∗⊗V

)→R, (2.2.53)

with

(α1
1 ⊗ . . .⊗α1

r , (β1
1 ⊗β2

1 ⊗α2
r+1)⊗·· ·⊗ (β1

r ⊗β2
r ⊗α2

2r ))

7→β1
1(α1

1) . . .β1
r (α1

r ) ·β2
1(α2

σ(1)) . . .β2
r (α2

σ(r )), ∀αi ∈V , β1
i ,β2

i ∈V ∗,
(2.2.54)

skew-symmetrizing over the first r and the last r arguments, and symmetrizing over the

exchange β1
i ↔β2

i . Denote the arising functional byΨσ ∈ (Λrg−1 ⊗Λrg1)gl(V ). From the

skew-symmetry of the functionals in the first r and last r arguments, one deduces that

Ψσ =Ψτστ−1 ∀σ,τ ∈Σk . (2.2.55)

Another straightforward calculation shows that for σ ∈Σr and τ ∈Σl we have

Ψσ∧Ψτ =Ψστ ∈
(
Λr+lg−1 ⊗Λr+lg1

)gl(V )
. (2.2.56)

Because g−1 is n-dimensional, (Λrg−1 ⊗Λrg1)gl(V ) = 0 if r > n, so in particular

Ψσ∧Ψτ = 0 if σ ∈Σr ,τ ∈Σl ,r + l > n. (2.2.57)

Denote by Ψr ∈ (Λrg−1 ⊗Λrg1)gl(V ) the Ψσ corresponding to an r -cycle σ ∈Σr . This is

well-defined, since by (2.2.55) the functional Ψσ only depends on the conjugacy class

of σ, and all r -cycles are conjugate to one another.

Since every permutation can be uniquely (up to ordering) decomposed into a com-

position of cycles, (2.2.56) shows that (Λrg−1 ⊗Λrg1)gl(V ) is multiplicatively generated

by the Ψ2r ∈ (Λrg−1 ⊗Λrg1)gl(V ) for every r = 1, . . . ,n. Hence every element in E•,0
2 is

given as a unique (up to ordering) product of elements in {Ψ2, . . . ,Ψ2n}. Since all Ψσ

for σ ∈ Σr and r ≤ n are nonzero, the only relation between these generators is that

products Ψi1 . . .Ψik are zero if i1 +·· ·+ ik > 2n, and the lemma is proven.

To understand this spectral sequence further, we will need the Borel transgression

theorem. To formulate it, let us first define some terminology.

Definition 2.2.24. Let {E p,q
r ,dr }r≥0 be a cohomological first-quadrant spectral sequence.

Denote by κr+1
r : kerdr → E•,•

r+1 the natural quotient map from cocycles of the r -th page

differential dr to the r +1-th page, and

κs
r = κs

s−1 ◦ · · · ◦κr+1
r ∀s > r, (2.2.58)

where the domain of κs
r is defined inductively as all the c ∈ E•,•

r+1 in the domain of κs−1
r so

that κs−1
r c ∈ kerds−1. We call an element c ∈ E p,0

2 transgressive if, for all r with 2 ≤ r ≤ p,

we have that c is in the domain of κr
2.
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Intuitively, the transgressive elements in E p,0
2 are the ones which “survive” until the

very last moment: Only the differential dp+1 : E p,0
p+1 → E 0,p+1

p+1 , also called the transgres-

sion, can map it to something nontrivial. By abuse of notation, we often denote an

element in the domain of κs
r by the same symbol as its image under κs

r in the higher

page E•,•
s . The Borel transgression theorem was originally proven in [Bor53], but we cite

a slightly stronger version from [MT91, Theorem 2.9].

Theorem 2.2.25 (Borel transgression theorem). Consider two finite-dimensional, graded

vector spaces B• :=⊕
p∈N0 B p and F • :=⊕

q∈N0 F q . Assume there are elements xi ∈ F • of

odd degree such that

Λ•[x1, . . . , xl ] → F • (2.2.59)

is bijective in degrees ≤ N and injective in degree N +1. Let further {E p,q
r ,dr }r≥0 be a

cohomological spectral sequence whose second page has the form

E p,q
2 = B p ⊗F q , (2.2.60)

and which converges towards a graded vector space H• with H k = 0 if 0 < k ≤ N +2.

Then we can choose the generators xi to be transgressive, and if y1, . . . , yl ∈ B• denotes a

collection of elements with

ddeg xi+1xi = yi i = 1, . . . , l , (2.2.61)

then the map

R[y1, . . . , yl ] → B• (2.2.62)

is bijective for degrees ≤ N and injective for degree N +1.

Using this, we can fully describe the desired spectral sequence:

Theorem 2.2.26 ([Fuk86], Theorem 2.2.4). Let n ∈N be arbitrary, and consider the Hoch-

schild-Serre spectral sequence {E p,q
r ,dr } of the pair g0 ⊂Wn in continuous cohomology.

Its second page takes the form

E 0,•
2 =Λ•[φ1,φ3, . . . ,φ2n−1], (2.2.63)

E•,0
2 =R[Ψ2,Ψ4 . . . ,Ψ2n]/〈Ψi1 . . .Ψik : i1 +·· ·+ ik > 2n〉, (2.2.64)

E p,q
2 = E p,0

2 ⊗E 0,q
2 , (2.2.65)

and all differentials of the spectral sequence are fully specified on the generators by

di+1φi =Ψi+1 i ∈ {1,3, . . . ,2n −1}. (2.2.66)
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Proof. The form of the second page follows from Theorem 2.2.19, Lemma 2.2.21, and

Lemma 2.2.23. It remains to show the statement about the differentials. Consider the

Hochschild–Serre spectral sequence for the Lie-algebra-subalgebra pair (W3n ,gl3n(R)).

By Proposition 2.2.17, we know that H k (W3n) = 0 in degrees k = 1, . . . ,3n, and up to

degree 2n, the zeroth column of the spectral sequence is equal to Λ•[φ1,φ3, . . . ,φ2n−1],

the φi being the generators of H•(gl3n(R)). Hence we can apply the Borel transgression

theorem 2.2.25 with N = 2n −1, implying that generators φ̃1, . . . , φ̃2n−1 of the zeroth

column can be chosen so that

d2i φ̃i =Ψi+1, i ∈ {1,3, . . . ,2n −1}. (2.2.67)

Now the inclusion Wn →W3n induces a morphism from the Hochschild–Serre spectral

sequence for the Lie-algebra-subalgebra pair (W3n ,gl3n(R)) to the spectral sequence

for (Wn ,gln(R)). Under this morphism, the generators Ψi for W3n restrict to equivalent

ones for Wn by the explicit formula for them given in Lemma 2.2.23.

By functoriality of the Hochschild–Serre spectral sequence, the generators φ̃i must

then restrict to something nonzero in the space E 0,2i−1
2i of the spectral sequence for Wn .

By an inductive argument, this vector space is one-dimensional and generated by the

generator φi , so the image of φ̃i under this morphism must be a nonzero multiple of φi .

Hence, up to a nonzero constant, we have in the spectral sequence for Wn that

d2iφi =Ψi+1, i ∈ {1,3, . . . ,2n −1}. (2.2.68)

This proves that all generators φ1, . . . ,φ2n−1 in the spectral sequence for Wn map as de-

sired. Since the differential of the Hochschild–Serre spectral sequence is multiplicative

and all pages are generated by the φi and the Ψi , this fully specifies the differential on

every page.

Remark 2.2.27. In [Fuk86], the above argument is carried out with the Lie-algebra-

-subalgebra pair (W2n ,gl2n(R)) rather than (W3n ,gl3n(R)), which would not fulfill the

requirements of the version of the Borel transgression theorem we use here.

This allows one to fully calculate the dimensions of H•(Wn) in all degrees and even

offers some insight into the behavior of representatives of the cohomology classes.

We are going to sumarize the most important properties of H•(Wn) in the following

corollary:

Corollary 2.2.28. The space H k (Wn) is trivial when 1 ≤ k ≤ 2n or k > n2+2n. The wedge

product of two cohomology classes of positive degree in H•(Wn) is zero.

Proof. Any element in E p,q
2 with (p, q) ̸= (0,0) is a linear combination of terms of the

form

φi1 . . .φisΨ
m1
j1

. . .Ψmt
jt

, (2.2.69)
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Figure 2.1: The spectral sequences for W1 and W2, with nonvanishing differentials indicated. Every dot

represents one basis element of the term in the given position. The cohomology of W1 is only nontrivial in

degree 0 and 3, whereas the cohomology of W2 is nontrivial in degree 0,5,7 and 8, degree 5 and 8 having

multiplicity 2.

where we have ordered the groups of indices so that i1 < ·· · < is and j1 < ·· · < jt . We

further have

i1 +·· ·+ is = q, m1 j1 +·· ·+mt jt = p, (2.2.70)

and s and t are possibly zero, but not both at the same time. Theorem 2.2.26 shows:

i) If s = 0 or i1 > j1, then φ j1−1φi1 . . .φisΨ
m1−1
j1

. . .Ψmt
jt

maps to the term (2.2.69)

under the differential d2( j1−1).

ii) If t = 0 or i1 < j1, then the term (2.2.69) maps to φi2 . . .φisΨi1+1Ψ
m1
j1

. . .Ψmt
jt

under

the differential d2i1 .

Since necessarily i1 is odd and j1 is even, one of i) or ii) must hold. Let us show that under

the assumptions of ii), and if p ≤ n or p +q ≤ 2n, then the product Ψi1+1Ψ
m1
j1

. . .Ψmt
jt

is

nonzero. This is equivalent to showing

i1 +1+m1 j1 +·· ·+mt jt ≤ 2n. (2.2.71)

If t = 0, then this is trivial, so assume from here on t > 0 and i1 < j1. If p ≤ n, then we

know that

i1 < j1 ≤ m1 j1 +·· ·+mt jt = p, (2.2.72)

thus

i1 +1+m1 j1 +·· ·+mt jt ≤ 2p ≤ 2n. (2.2.73)

On the other hand, assume p + q ≤ 2n. Note that s = 1 is never the case, since i1 is

always odd and q is always even. Hence assume s > 1, so that i1 +1 ≤ i1 +·· ·+ is . But

then

i1 +1+m1 j1 +·· ·+mt jt ≤ i1 +·· ·+ is +m1 j1 +·· ·+mt jt = q +p ≤ 2n. (2.2.74)
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With this, we have shown that E p,q
∞ is zero when 0 < p +q ≤ 2n, implying that H k (Wn)

vanishes in degree 0 < k ≤ 2n. Further, we have shown that E p,q
∞ is zero when p ≤ n, so

two cohomology classes of positive degree in H•(Wn) correspond to two equivalence

classes in some spaces E p,q
∞ ,E p ′,q ′

∞ with p, p ′ > n. By multiplicativity of the Hochschild–

Serre spectral sequence, their product must then correspond to an equivalence class

in E p+p ′,q+q ′
∞ , which must be zero because p +p ′ > 2n. This proves the corollary.

2.3. GELFAND–FUKS COHOMOLOGY ON EUCLIDEAN SPACE
In this section, we calculate the Gelfand–Fuks cohomology H•(X(M)) for M =Rn . We

follow an elaborate outline by Bott, see [Bot73]. This approach will allow us to easily

extend our proof to the Gelfand–Fuks cohomology of finite disjoint unions Rn ⊔·· ·⊔Rn

and also to certain diagonal cohomologies thereof, a concept which we introduce in

Section 2.5.

2.3.1. DEFINITIONS AND CALCULATION

The Lie algebra of smooth vector fields X(Rn) on Euclidean space is a locally convex

Lie algebra with respect to the standard Fréchet topology. We are interested in its

continuous Chevalley–Eilenberg cohomology with respect to this topology. We can

express vector fields in the canonical coordinates

X(Rn) =
{

n∑
i=1

fi∂i : fi ∈C∞(Rn)

}
(2.3.1)

Let us again identify some structures:

Definition 2.3.1. Let t > 0. We define the family of scaling operators {Tt }t>0 as

Tt :Rn →Rn , x 7→ t x. (2.3.2)

We adopt the notation that if φ :Rn →Rn is a local diffeomorphism, then we denote

by φ∗ its pullback on vector fields X(Rn)

φ∗(X ) := (dφ)−1(X ◦φ). (2.3.3)

We overload our notation and also write φ∗ for the pullback on cochains C k (X(Rn)) for

all k ≥ 0:

(φ∗c)(X1, . . . , Xk ) := c(φ∗X1, . . . ,φ∗Xk ), ∀k ≥ 0. (2.3.4)

Note that for c ∈C 0(X(Rn)) this amounts to φ∗c = c.

For the scaling operators {Tt }t>0, this translates to

T ∗
t X = 1

t
(X ◦Tt ) ∀X ∈X(Rn),

(T ∗
t c)(X1, . . . , Xk ) := 1

t k
c(X1 ◦Tt , . . . , Xk ◦Tt ) ∀c ∈C k (X(Rn).
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Definition 2.3.2. We define the subspace Xpol(R
n) ⊂X(Rn) of polynomial vector fields

Xpol(R
n) :=

{
n∑

i=1
fi∂i : fi ∈R[x1, . . . , xn]

}
. (2.3.5)

It admits the structure of a graded Lie algebra

Xpol(R
n) = ⊕

k∈Z
Pk , Pk := {X ∈Xpol(R

n) : T ∗
t X = t k X ∀t > 0}. (2.3.6)

Elements of Pk are called homogeneous vector fields (of degree k).

Remark 2.3.3. Compare this to the grading Wn =⊕
k∈Zgk on formal vector fields. The

sets Pk are the images of the natural embeddings gk →X(Rn) that we get from consider-

ing finite formal vector fields in Wn as polynomial vector fields on Rn .

Definition 2.3.4. For all k ∈Z, q ≥ 0, define

F kC q (X(Rn)) :=
{

c ∈C q (X(Rn)) : lim
t→0

t−k T ∗
t c(X1, . . . , Xq ) exists ∀Xi ∈X(Rn)

}
. (2.3.7)

Lemma 2.3.5. The spaces F kC •(X(Rn)) for k ∈Z fulfill the following properties:

i) For every k ∈Z, the space F kC •(X(Rn)) is a subcomplex of C •(X(Rn)).

ii) We have a descending chain

· · · ⊂ F kC •(X(Rn)) ⊂ F k−1C •(X(Rn)) ⊂ F k−2C •(X(Rn)) ⊂ . . . (2.3.8)

iii) For all k, l ∈Zwe have

F kC •(X(Rn))∧F l C •(X(Rn)) ⊂ F k+l C •(X(Rn)). (2.3.9)

iv) For k ≤−n we have F kC •(X(Rn)) =C •(X(Rn)).

Summarizing, {F kC •(X(Rn))}k∈∈Z constitutes a descending filtration of the Chevalley-Ei-

lenberg complex C •(X(Rn)) which is bounded from above.

Proof. i) Pulling back vector fields along local diffeomorphisms is a Lie algebra homo-

morphism, so

T ∗
t [X ,Y ] = [T ∗

t X ,T ∗
t Y ] ∀X ,Y ∈X(Rn). (2.3.10)

Hence, the pullback on cochains T ∗
t commutes with the Lie algebra differential, so if

the appropriate limits exist for a cochain c, they also do for dc. Thus the F kC •(X(Rn))

are indeed subcomplexes.

ii) This follows since if the limit limt→0 t−k f (t) exists for some function t 7→ f (t), so
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does limt→0 t−(k−1) f (t ) = 0.

iii) The compatibility with the wedge product follows from

T ∗
t (c1 ∧ c2) = T ∗

t c1 ∧T ∗
t c2 ∀c1,c2 ∈C •(X(Rn)). (2.3.11)

iv) In degree zero the statement is clear, since

F kC 0(X(Rn)) =C 0(X(Rn)) ∀k ≤ 0. (2.3.12)

Assume now q > 0. Fix c ∈C q (X(Rn)) and X1, . . . , Xq ∈X(Rn). Applying the Hadamard

lemma to every one of the Xi shows that there are vector fields X (i )
k for all k = 1, . . . , q

and i = 1, . . . ,n so that

Xk (x) = Xk (0)+
n∑

i=1
xi X (i )

k (x), ∀x ∈Rn . (2.3.13)

Then

T ∗
t Xk (x) = 1

t
Xk (0)+

n∑
i=1

xi X (i )
k (t x) ∀x ∈Rn . (2.3.14)

Hence we can rewrite

T ∗
t c(X1, . . . , Xq ) = c

(
1

t
X1(0)+

n∑
i=1

xi X (i )
1 (t x), . . . ,

1

t
Xq (0)+

n∑
i=1

xi X (i )
q (t x)

)
. (2.3.15)

Decomposing this expression using multilinearity of c , we find that all the terms whose

order in t is lower than−n have to vanish, since any set {Xi1 (0), . . . , Xin+1 (0)} is necessarily

linearly dependent and c is skew-symmetric. Note also that on any compact set in Rn ,

the vector fields x 7→ xi X (i )
k (t x) converge uniformly to the vector field x 7→ xi X (i )

k (0)

for t → 0, and the same holds for their derivatives. Combining the two previous facts,

the continuity of c lets us conclude that the limit limt→0
1

t−n T ∗
t c(X1, . . . , Xq ) exists. This

proves the statement.

The analysis at the end of the previous proof motivates a different characterization

of the filtration:

Lemma 2.3.6. Let q > 0. A cochain c ∈C q (X(Rn)) lies in F kC q (X(Rn)) if and only if for

all homogeneous vector fields X1, . . . , Xq ∈Xpol(R
n) we have

q∑
i=1

deg Xi < k =⇒ c(X1, . . . , Xk ) = 0. (2.3.16)

Proof. ⇒: Let c ∈ F kC q (X(Rn)), and let X1, . . . , Xq ∈ Xpol(R
n) be any homogeneous

polynomial vector fields. Then

t−k T ∗
t c(X1, . . . , Xq ) = t

(∑q
i=1 deg Xi

)
−k

c(X1, . . . , Xq ). (2.3.17)
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If
∑q

i=1 deg Xi < k, this can only converge to a finite value in the limit t → 0 if c vanishes

on (X1, . . . , Xq ). This proves the first implication.

⇐: Let c ∈C q (X(Rn)) be so that it vanishes on all homogeneous vector fields whose de-

gree adds to a value smaller k. Set r := max{q +k,1}. Given any vector fields X1, . . . , Xq ∈
X(Rn), apply the Hadamard lemma to each of them r times to write, in multiindex

notation,

Xk (x) = Yk (x)+ ∑
α⃗∈Nn

0
|α⃗|=r+1

xα1
1 . . . xαn

n Z α⃗
k (x) =: Yk (x)+Zk (x), (2.3.18)

where Yk is a polynomial vector field whose homogeneous components are of degree ≤
r −1, and Z α⃗

k ∈X(Rn). Using multilinearity of c, decompose T ∗
t c(X1, . . . , Xq ) into sum-

mands of the form 1
t k T ∗

t c with all arguments being some Yk or some Zk for k = 1, . . . , q .

The limits limt→0 tT ∗
t Yk and limt→0 t−r T ∗

t Zk in X(Rn) exist for all k = 1, . . . , q . Thus any

summand in the decomposition of 1
t k

(
T ∗

t c
)

(X1, . . . , Xq ) is of the following form for a

certain s ≥ 0 and certain i1, . . . , is , j1, . . . , jq−s ∈ {1, . . . , q},:

1

t k

(
T ∗

t c
)

(Zi1 , . . . , Zis ,Y j1 , . . . ,Y jq−s )

= t r s−(q−s)−k (T ∗
t c)(t−r Zi1 , . . . , t−r Zis , tY j1 , . . . , tY jq−s ).

(2.3.19)

If s ≥ 1, then we have due to r ≥ q +k,

r s − (q − s)−k ≥ s ≥ 1, (2.3.20)

and the limit t → 0 exists.

If s = 0, then the summand is of the form 1
t k T ∗

t c(Y1, . . . ,Yq ). The Yk are polynomial

vector fields, so we may use multilinearity to decompose this term so that we get terms

of 1
t k T ∗

t c whose arguments are homogeneous polynomial vector fields. In every such

summand, 1
t k T ∗

t c can be replaced by tΣ−k c , whereΣ is the sum of the degrees of inserted

homogeneous vector fields. By assumption on c, every summand where Σ < k must

vanish. This implies that as t → 0, the term 1
t k T ∗

t c(Y1, . . . ,Yk ) converges to a finite value.

This concludes the proof.

2.3.2. GELFAND–FUKS COHOMOLOGY OF EUCLIDEAN SPACE

Let us now connect the Lie algebra X(Rn) to the Lie algebra of formal vector fields Wn .

To this end, fix, for the rest of the section some local frame of vector fields around 0 ∈Rn

to induce an isomorphism J∞0 X(Rn)
∼→ Wn , cf. Remark 2.2.2, so that every elements

of Wn can be written as the infinity-jet j∞0 X at zero of some X ∈X(Rn).

Definition 2.3.7. If X ∈X(Rn), denote by X̃ (r ) the polynomial vector field corresponding
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to the r -jet of X at zero. Define then for all k ∈Z the maps

γk : F kC •(X(Rn)) →C •
(k)(Wn),

(γk c)( j∞0 X1, . . . , j∞0 Xq ) := lim
r→∞ lim

t→0
t−k (T ∗

t c ′)(X̃ (r )
1 , . . . , X̃ (r )

q ),
(2.3.21)

βk : C •
(k)(Wn) → F kC •(X(Rn)), (βk c ′)(Y1, . . . ,Yk ) := c ′

(
j∞0 Y1, . . . , j∞0 Yk

)
. (2.3.22)

for all X1, . . . , Xq ∈Wn , Y1, . . . ,Yq ∈X(Rn), c ∈ F kC q (X(Rn)) and c ′ ∈C q
(k)(Wn).

Lemma 2.3.8. The maps βk and γk are well-defined chain maps with γk ◦βk = id.

Proof. Note first that γk is well-defined: By definition of the filtration, for every c ∈
F kC •(X(Rn)) the pointwise limit limt→0 t−k T ∗

t c exists. Further, the sequence(
lim
t→0

t−k (T ∗
t c)(X̃ (r )

1 , . . . , X̃ (r )
q )

)
r∈N

(2.3.23)

is eventually constant in r , since the cochain limt→0 T ∗
t c vanishes on homogeneous vec-

tor fields whose sum of degrees is larger than k, cf. (2.3.17). Further, if c ∈ F kC q (X(Rn)),

then by Lemma 2.3.6, c vanishes on polynomial vector fields the sum of whose degrees

is smaller than k. Hence γk c ∈C q
(k)(Wn).

Analogously, if c ∈C k
(r )(Wn), then βk c vanishes on polynomial vector fields whose sum

of degrees is smaller than k, hence Lemma 2.3.6 implies βk c ∈ F kC q (X(Rn)).

The identification of a finite formal vector field Xn with its Taylor polynomial in Xpol(R
n)

is a Lie algebra morphism, and so is the pullback of a vector field by the diffeomor-

phism Tt . Hence γk is a chain map.

The map βk is a chain map since taking the infinite jet of a vector field at zero is a Lie

algebra morphism X(Rn) →Wn .

It remains to check the composition of the two maps. Let us prove

(γkβk c)( j∞0 X1, . . . , j∞0 Xq ) = c( j∞0 X1, . . . , j∞0 Xq ) (2.3.24)

for all c ∈C q
(k)(Wn) and homogeneous formal vector fields j∞0 X1, . . . , j∞0 Xq ∈Wn whose

degree sums up to k. This suffices, since we have c,γkβk c ∈C q
(k)(Wn), so both cochains

vanish on all other homogeneous vector fields.

For a homogeneous vector field X and sufficiently large r , we have

j∞0 X̃ (r ) = j∞0 X and deg X̃ (r ) = deg j∞0 X . (2.3.25)

Hence, since if j∞0 X1, . . . , j∞0 Xq ∈ Wn are homogeneous formal vector fields whose

degree sums up to k, then

(γkβk c)( j∞0 X1, . . . , j∞0 Xq ) = lim
r→∞c( j∞0 X̃ (r )

1 , . . . , j∞0 X̃ (r )
q )

= c( j∞0 X1, . . . , j∞0 Xq ).
(2.3.26)

This concludes the proof.
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Corollary 2.3.9. For every k ∈Z,

0 → F k+1C •(X(Rn)) ,→ F kC •(X(Rn))
γk→C •

(k)(Wn) → 0 (2.3.27)

is a split exact sequence of cochain complexes.

Proof. Because {F kC •(X(Rn))}k∈Z constitutes a filtration of complexes for C •(X(Rn)),

we have that the inclusion F k+1C •(X(Rn)) → F kC •(X(Rn)) is a chain map. The map γk is

a chain map due to Lemma 2.3.8. Hence, the sequence is a sequence of chain complexes.

The injectivity of the first map is clear, and the second map is surjective, since it is split

by βk . Exactness at the middle term follows from the characterization of the filtration in

Lemma 2.3.6. This concludes the proof.

For the following lemma, recall the action of a Lie algebra on its Chevalley–Eilenberg

cochains and the interior product ⌟ defined in Definition 2.2.6.

Lemma 2.3.10. Let M be a smooth manifold, let {φt }t>0 a one-parameter semigroup

of diffeomorphisms on M, and {X t ∈X(M)}t>0 its time-dependent generator. Then, for

all t0, t1 > 0 and c ∈C •(X(M)) we have

φ∗
t1

c −φ∗
t0

c = Kt1,t0 dc +dKt1,t0 c, (2.3.28)

where Kt1,t0 :=−∫ t1
t0
φ∗

t (X t ⌟ c)d t.

Proof. By definition of the generator {X t }t∈R, we have for every Y ∈X(Rn)

d

d t
φ∗

t Y =φ∗
t [X t ,Y ] ∀t ∈R. (2.3.29)

By standard differentiation rules and the homotopy formula from Lemma 2.2.7 we have

for c ∈C q (X(M)) and Y1, . . . ,Yq ∈X(Rn):

d

d t
φ∗

t c(X1, . . . , Xq ) =
q∑

k=1
(φ∗

t c)(X1, . . . , [X t , Xk ], . . . , Xq )

=−(X t ·φ∗
t c)(X1, . . . , Xq ) =−d(X t ⌟φ

∗
t c)−X t ⌟ (φ∗

t dc).

(2.3.30)

An application of the fundamental theorem of calculus now gives the desired statement.

Corollary 2.3.11. The complex F 1C •(X(Rn)) is acyclic.

Proof. Consider for every t0, t1 > 0 the operator Kt0,t1 : C •(X(Rn)) → C •(X(Rn)) from

Lemma 2.3.10 associated to the one-parameter semigroup {Tt }t>0. By definition, for c ∈
F 1C k (X(Rn)) and all all X1, . . . , Xk ∈X(Rn), we have

lim
t→0

(T ∗
t c)(X1, . . . , Xk ) = 0. (2.3.31)
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But then

c(X1, . . . , Xk ) = lim
t→0

(T ∗
1 c −T ∗

t c)(X1, . . . , Xk )

= lim
t→0

(
K1,t dc +dK1,t c

)
(X1, . . . , Xk ) =: (K dc +dK c)(X1, . . . , Xk ).

(2.3.32)

In the above, we defined the operator K : C •(X(Rn) →C •(X(Rn)) as the pointwise limit

of the operators K1,t :

K c = lim
t→0

K1,t c =
∫ 1

0
T ∗

t (X t ⌟ c)dt , (2.3.33)

where X t is the generator of the semigroup of diffeomorphisms {Tt }t>0. Hence K is a

chain homotopy between the identity map and zero on F 1C •(X(Rn)), which proves the

statement.

Finally we can state a variation of Lemma 1 in Section 2.4.B. of [Fuk86]:

Theorem 2.3.12. The inclusion

F 0C •(X(Rn)) ,→C •(X(Rn)) (2.3.34)

and the maps

γ0 : F 0C q (X(Rn)) →C q
(0)(Wn), β0 : C q

(0)(Wn) → F 0C q (X(Rn)) (2.3.35)

from Definition 2.3.7 are quasi-isomorphisms and unital algebra morphisms.

In particular, there is an isomorphism of algebras

H•(X(Rn)) ∼= H•(Wn), (2.3.36)

and the wedge product of two elements of positive degree in H•(X(Rn)) is zero.

Proof. The compatibility of the maps with the algebra structure is immediate from the

multiplicativity of the filtration F kC q (X(Rn)) and the formulas for γ0,β0. By the split

exact sequence of Corollary 2.3.9, we have for every k ∈Z an isomorphism of cochain

complexes

F kC •(X(Rn)) ∼= F k+1C •(X(Rn))⊕C •
(k)(Wn). (2.3.37)

Inserting k = 0 into (2.3.37), the acyclicity of F 1C •(X(Rn)) by Corollary 2.3.11 shows that

we have algebra isomorphisms

H•(F 0C̃ •(X(Rn))) ∼= H•
(0)(Wn)

Prop. 2.2.11∼= H•(Wn), (2.3.38)
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hence γ0 and its splitting β0 must be quasi-isomorphisms.

Let further k =−1, . . . ,−n in (2.3.37). By Proposition 2.2.11, the complexes C̃ •
(k)(Wn) are

acyclic and we have isomorphisms

H•(F 0C •(X(Rn))) ∼= H•(F−1C •(X(Rn)))

∼= . . .

∼= H•(F−nC •(X(Rn)))

Lem. 2.3.5= H•(C •(X(Rn))) = H•(X(Rn)).

(2.3.39)

Hence the inclusion F 0C •(X(Rn)) ,→C •(X(Rn)) is a quasi-isomorphism.

The product of positive degree elements in H•(X(Rn)) is zero since this is true for H•(Wn)

by Corollary 2.2.28.

We end this section by an extension of our proof of H•(X(Rn)) ∼= H•(Wn) to the

setting of Gelfand–Fuks cohomology of a disjoint union of finitely many copies of

Euclidean space.

Remark 2.3.13. The isomorphism of topological Lie algebras

X(Rn ⊔Rn) ∼=X(Rn)⊕X(Rn) (2.3.40)

insinuates that the Gelfand–Fuks cohomology of such a disjoint union may be calculated

by the use of a Künneth formula: For finite-dimensional Lie algebras g,h over R, the

Künneth theorem implies

H•(g⊕h) ∼= H•(g)⊗H•(h). (2.3.41)

And indeed, such Künneth theorems in Lie algebra cohomology are well known in the

purely algebraic setting, but extending them to continuous Lie algebra cohomology

relies on nontrivial topological assumptions in order to deal with the arising topological

tensor products and their completion. For such formulas, the reader may, for example,

consult [GLW05]. We avoid this approach here.

Proposition 2.3.14. Let M :=⊔r
i=1R

n be a disjoint collection of copies of Rn . Then every

choice of order on the copies of Rn induces an algebra isomorphism

H• (X (M)) ∼= H•(X(Rn))⊗
r
. (2.3.42)

Proof. We mimic the proof for the r = 1 situation, but we expand the scaling of Rn to

the same scaling in every copy of Rn :

Tt :
r⊔

i=1
Rn →

r⊔
i=1
Rn , x 7→ t x. (2.3.43)
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The definition of the corresponding spaces F kC q (X(M)) is identical to in the r = 1 case,

and by the same proofs, they constitute a descending, filtration that is bounded from

below with

F kC •(X(M)) =C •(X(M)) ∀k ≤−r n. (2.3.44)

In analogy to Definition 2.3.7, we can define a map γ(r )
k , which, together with some

choice of ordering on the components of M gives rise to an exact sequence for every k ∈
Z:

0 → F k+1C •(X(Rn)) → F kC •(X(Rn))

γ(r )
k→ ⊕

k1+···+kr =k
C •

(k1)(Wn)⊗·· ·⊗C •
(kr )(Wn) → 0.

(2.3.45)

For the tensor product complex on the right-hand side, we can use the Künneth theorem

to calculate its cohomology, and due to acyclicity of C •
(k)(Wn) for k ̸= 0, the only one of

the complexes with nontrivial cohomology is the one with the condition k1+·· ·+kr = 0.

By the same steps as in Corollary 2.3.11 and Theorem 2.3.12 we arrive at the desired

isomorphism of vector spaces. This isomorphism respects the wedge product, as we see

with the arising quasi-isomorphism

β(r )
0 : C •

(0)(Wn)⊗
r →C •(X(M)), c1 ⊗·· ·⊗cr 7→β1

0c1 ∧·· ·∧βr
0cr , (2.3.46)

where βk
0 maps formal cochains exactly like the map β0 from the Definition 2.3.7, but

all jets of vector fields are evaluated at the zero in the k-th copy of Rn . Because the β0 in

the r = 1 case respect the wedge product, so does β(r )
0 .

The formula for the quasi-isomorphism β(r )
0 from the previous proof implies:

Corollary 2.3.15. Let B1, . . . ,Br ⊂Rn be pairwise disjoint sets diffeomorphic to Rn . As-

sume their union is contained in another set C ⊂Rn diffeomorphic to Rn . The extension

map

[ιCB1∪···∪Br
] :

r⊗
i=1

H•(X(Bi )) ∼= H• (X (B1 ∪·· ·∪Br )) → H•(X(C )) (2.3.47)

is given by

[c1]⊗·· ·⊗ [cr ] 7→ [ιCBi
c1 ∧·· ·∧ ιCBr

cr ]. (2.3.48)

2.4. COSHEAF-THEORETIC ASPECTS OF GELFAND-FUKS CO-

HOMOLOGY
The previous section concludes the analysis of the cohomology of X(Rn). This consti-

tutes an important building block to understand the Gelfand–Fuks cohomology for
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arbitrary smooth manifolds M . We will explore some properties related to extension

of the cochains from a smaller to a larger open set of M . The following presenta-

tion of these results, especially the framing in terms of cosheaf-theoretic data, is a

novel contribution to the literature, though the results themselves are implicitly used

in [GF69, GF70b, Fuk86]. We also remark a close similarity of these methods to the

standard constructions in the theory of factorization algebras [CG17].

Recall that we identify J∞0 X(Rn) ∼= Wn by a choice of local frame of vector fields

around 0. The group of local diffeomorphisms φ :Rn →Rn that fix zero admits a right

action on infinity-jets j∞0 X ∈ J∞0 X(Rn) via the pullback of vector fields:

φ∗ j∞0 X := j∞0 (φ∗X ). (2.4.1)

This action factors through to an action of the group of infinity-jets of diffeomorphisms

that fix zero, denoted J∞0 Diff(Rn). Hence, J∞0 Diff(Rn) acts on Wn and by pullback on the

complex C •(Wn), and we write for all φ ∈ Diff(Rn), all c ∈C k (Wn) and X1, . . . , Xk ∈X(Rn):

(( j∞0 φ)∗c)( j∞0 X1, . . . , j∞0 Xk ) := c( j∞0 (φ∗X1), . . . , j∞0 (φ∗Xk )). (2.4.2)

Lemma 2.4.1. Let φ :Rn →Rn be a local diffeomorphism.

i) The induced map [φ∗] : H•(X(Rn)) → H•(X(Rn)) is a unital algebra isomorphism.

ii) Assume φ is additionally orientation-preserving with respect to some fixed orienta-

tion on Rn . Then [φ∗] = id.

Proof. Lemma 2.3.10 shows that the maps induced on C •(X(Rn)) by translations

τa :Rn →Rn , x 7→ x +a, a ∈Rn (2.4.3)

are homotopic to the identity id = τ∗0 . Hence on cohomology τa acts as the identity for

all a ∈ Rn . Since all τa are orientation-preserving, we may without loss of generality

assume that, in all that follows, φ fixes zero.

i) Recall the map β0 : C •(Wn) →C •(X(Rn)) from Definition 2.3.7. By Theorem 2.3.12, β0

is a quasi-isomorphism, so every cohomology class in H•(X(Rn)) has a representative

of the form β0c for some c ∈C •(Wn). By definition of β0, it intertwines the action of the

group of local diffeomorphisms that fix zero on C •(X(Rn) with the action of J∞0 Diff(Rn)

on C •(Wn), meaning

φ∗(β0)c =β0(( j∞0 φ)∗c). (2.4.4)

Since φ is a local diffeomorphism, it admits a local inverse around 0, so the action

of j∞0 φ on c is invertible. Thusφ∗ : H•(X(Rn)) → H•(X(Rn)) is an isomorphism of vector

spaces.

The conditions φ∗(c1 ∧ c2) =φ∗c1 ∧φ∗c2 for all c1,c2 ∈C •(X(Rn)) and φ∗(1) = 1 follow
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directly from the definition of the pullback of local diffeomorphisms. Hence φ induces

a unital algebra isomorphism.

ii) Fix an arbitrary cocycle c ∈ C •(Wn). Since c is a continuous cochain, it is zero on

formal vector fields of sufficiently high degree. Hence, for some N ∈N, it factors through

to a multilinear map

cN :

(
Wn⊕∞

r=N+1gr

)k

→R. (2.4.5)

The action of J∞0 Diff(Rn) on Wn descends to an action of the Lie group J N
0 Diff(Rn) on

the quotient Wn⊕∞
r=N+1gr

, so that so that for all X1, . . . , Xk ∈X(Rn)

( j∞0 φ∗c)( j∞0 X1, . . . , j∞0 Xk ) = ( j N
0 φ

∗cN )( j N
0 X1, . . . , j N

0 Xk ), (2.4.6)

where the action on the right-hand side is defined analogously to the action of the

infinity-jets. The Lie algebra of J N
0 Diff(Rn) is given by

J N
0 X(Rn) ∼=

⊕∞
r=0gr⊕∞

r=N+1gr
⊂ Wn⊕∞

r=N+1gr
. (2.4.7)

Since φ is orientation-preserving, its N -jet at zero lies in the identity component of the

Lie group J N
0 Diff(Rn). This component is generated by the image of the exponential

map, there exist vector fields Y1, . . . ,Yr ∈X(Rn) so that for all X1, . . . , Xk ∈X(Rn)

( j∞0 φ∗c)( j∞0 X1, . . . , j∞0 Xk ) = ( j N
0 φ

∗cN )( j N
0 X1, . . . , j N

0 Xk )

= (exp( j N
0 Y1)∗ · · ·exp( j N

0 Yr )∗cN )( j N
0 X1, . . . , j N

0 Xk )

= (exp( j∞0 Y1)∗ · · ·exp( j∞0 Yr )∗c)( j∞0 X1, . . . , j∞0 Xk ).

(2.4.8)

The action of J∞0 X(Rn) ∼= Wn on H•(Wn) is trivial by Corollary 2.2.8, and as a conse-

quence

[φ∗]([β0c]) = [β0(exp( j∞0 Y1)∗ · · ·exp( j∞0 Yr )∗c)] = [β0c]. (2.4.9)

Hence [φ∗] = id as a map on cohomology, and the statement is shown.

We will now make use of the language of cosheaves to describe the extension of

Gelfand-Fuks cochains between open sets of a smooth manifold. While sheaf theory is

well known, the dual concept of cosheaves is less commonly considered. For self-con-

tainedness, we direct the reader to Appendix A, or [Bre97] for a more detailed study of

both sheaf and cosheaf theory.

Definition 2.4.2. Let M be a smooth manifold, and U ⊂V open subsets of M .

i) Define the extension of cochains

ιVU : C •(X(U )) →C •(X(V )) (2.4.10)
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on cochains of degree k > 0 as

(ιVU c)(X1, . . . , Xk ) := c(X1
∣∣
U , . . . , Xk

∣∣
U ) (2.4.11)

for all c ∈C k (X(U )), X1, . . . , Xk ∈X(V ).

On cochains of degree 0, we set ιVU : C 0(X(U )) →C 0(X(V )) to be the identity.

ii) The extension of cochains induces an extension of cohomology classes

ιVU : H•(X(U )) → H•(X(V )) (2.4.12)

which we will denote with the same symbol ιVU by an abuse of notation.

iii) We define a precosheaf H • of algebras over M , assigning to an open set U ⊂ M

the algebra H•(X(U )), and to an inclusion of open sets U ⊂ V the extension

map ιVU : H•(X(U )) → H•(X(V )).

An alternative perspective on the extension maps ιVU is that they are the pullback

along the inclusion map U → V , as defined in (2.3.4). This map is a local diffeomor-

phism, hence this pullback is well-defined.

For the next corollary, recall that a C-valued precosheaf on M is simply a covariant

functor from the category Open(M) of open sets of M to the category C.

Definition 2.4.3. Let A be a associativeR- algebra and X a locally connected topological

space. We define the constant precosheaf of algebras associated to A as the assignment

U 7→ A⊗π0(U ). (2.4.13)

Here, if π0(U ) =∞, we set A⊗π0(U ) to be the infinite coproduct of algebras, i.e.

A⊗π0(U ) := lim−−→ A1 ⊗·· ·⊗ An , (2.4.14)

and the inclusion maps A1 ⊗·· ·⊗ An → A1 ⊗·· ·⊗ Am for n ≤ m of this colimit are given

by

a1 ⊗·· ·⊗an 7→ a1 ⊗·· ·⊗an ⊗1⊗·· ·⊗1. (2.4.15)

The extension maps of the precosheaf are given by taking products along connected

components.

Remark 2.4.4. This is the categorical generalization of a constant cosheaf from the

category of vector spaces, replacing the coproduct ⊕ of vector spaces by the coproduct ⊗
of algebras. However, the category of R-algebras is not even preadditive. Hence, we

cannot define exact sequences, and hence cosheaves, in the way we did in Appendix A.

This is why we refrain from calling this construction a cosheaf.
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Corollary 2.4.5. Let M be a smooth, orientable manifold of dimension n. Consider the

full subcategory of Open(M) defined by finite unions of pairwise disjoint sets diffeomor-

phic to Rn :

BM := {U1 ∪·· ·∪Uk : k ∈N,Ui
∼=Rn ,Ui ∩U j =; for i ̸= j }. (2.4.16)

The functor associated to the restriction of the precosheaf H • to this subcategory is

naturally isomorphic to the analogous restriction of the functor associated to the constant

cosheaf of algebras U 7→ H•(X(Rn))⊗
π0(U )

.

Proof. Fix some orientation on Rn . Using orientability of M , we can construct for every

connected U ∈ BM a diffeomorphism φU : U → Rn so that if V ∈ BM is any other

connected set with U ∩V ̸= ;, the transition map (φU ◦φ−1
V )|φV (V ∩U ) is orientation-

preserving. Fix now some set U ∈ BM with connected components U1, . . . ,Uk . In

Proposition 2.3.14 we defined an isomorphism

H•(X(U1))⊗·· ·⊗H•(X(Uk )) ∼= H•(X(U )). (2.4.17)

Thus, under the identification (2.4.17) we can express every element in H•(X(U )) as a

span of elements of the form

[φ∗
U1

c1]⊗·· ·⊗ [φ∗
Uk

ck ], c1, . . . ,ck ∈C •(X(Rn)). (2.4.18)

Let us show that the collection of the maps

[φ∗
U1

]⊗·· ·⊗ [φ∗
Uk

] : H•(X(Rn))π0(U ) → H•(X(U )) (2.4.19)

for all U ∈ B induce the desired natural isomorphism of functors. By Lemma 2.4.1,

every tensor factor is an isomorphism of vector spaces, and by an explicit calculation

with the wedge product, the maps are compatible with the algebra structures. It remains

to show that the precosheaf extension maps are respected.

Let V ∈BM contain U . Assume first that two connected components of U , say U1,U2

lie in a single connected component of V , say V1. By Corollary 2.2.28 the wedge product

of H•(Wn) is zero in nonzero degree, so the extension map

H q1 (X(U1))⊗H q2 (X(U2)) → H q1+q2 (X(V1)) (2.4.20)

is zero if q1 and q2 are simultaneously nonzero.

If one of the q1, q2 is equal to zero, say q1 = 0, then the extension map H q1 (X(U1))⊗
H q2 (X(U2)) → H q1+q2 (X(V1)) is simply the isomorphism

R⊗H q2 (X(U2))
∼−→ H q2 (X(U2)), 1⊗ [c] 7→ [c]. (2.4.21)

For the constant precosheaf of algebras U 7→ H•(X(Rn))⊗π0(U ) analogous properties

hold, and as a consequence the maps (2.4.19) commute with inclusions where two
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connected components of U are contained in a single connected component of V .

Hence it remains to consider the case in which every connected component Vi of V

contains at most one connected component of U , so by reordering we may assume Ui ⊂
Vi for all i = 1, . . . ,k. It suffices to show that (φ−1

Vi
)∗ ◦ ιVi

Ui
◦φ∗

Ui
induces the identity map

on H•(X(Rn)) for all i = 1, . . . ,k. As maps on cochains C •(X(Rn) we have the identity

(φ−1
Vi

)∗ ◦ ιVi
Ui

◦φ∗
Ui

=
(
φ−1

Vi
|Ui ◦φUi

)∗
. (2.4.22)

Now φ−1
Vi

|Ui ◦φUi is an orientation-preserving local diffeomorphism, so by Lemma 2.4.1

the map (φ−1
Vi

)∗ ◦ ιVi
Ui

◦φ∗
Ui

equals the identity on cohomology and [ιVi
Ui

◦φUi ] = [φVi ].

Hence, the statement is shown.

Remark 2.4.6. In the non-orientable case, the previous proof shows that the restriction

of H • is naturally isomorphic to the restriction of a locally constant cosheaf U 7→ S(U ),

i.e. every point x ∈ M has an open neighborhood Ux so that the restriction of S to Ux is

a constant cosheaf.

2.5. GELFAND–FUKS COHOMOLOGY FOR SMOOTH MANIFOLDS
In this section, we construct a spectral sequence due to Gelfand and Fuks that calculates

the continuous Lie algebra cohomology for smooth manifolds, following a local-to-

global principle using sheaf theoretic ideas. The spectral sequences were originally

constructed in [GF69], by an involved global analysis of the cochain spaces C •(X(M)) in

terms of explicit distributions.

The proposed local-to-global principle has originally been outlined in [Bot73] and

[Bot75], and, according to the last reference, was initially suggested by Segal. However,

in these latter two references, there are some unaddressed subtleties: It is (indirectly)

claimed that the assignment of open sets U to C •(X(U )) is a cosheaf of graded vector

spaces, i.e. its Čech homology (see Appendix A) vanishes with respect to every good

cover U of M . We show in Proposition 2.5.1 that this is false. We present a novel proof

that works around this problem by using so-called k-good covers, an adaptation to the

concept of a good cover originating from [BdBW13]. This was inspired by the recent

preprint [HK18], treating Gelfand–Fuks cohomology in the setting of factorization alge-

bras.

However, we want to emphasize that this subtlety does not influence the validity of the

final results of Bott and Segal. The mistake is not repeated in [BS77] and [Fuk86], where

similar, but more sophisticated Čech-theoretic methods are used.

Regardless, our proof gives a more elementary way to calculate Gelfand–Fuks spectral

sequences for k-diagonal cohomology, an approximation of Gelfand–Fuks cohomol-

ogy which we will introduce in the following section. The expressions for the spectral

sequences have been given in [Fuk86] without an explicit proof for k ̸= 1; the proof

in [Bot73] is only a sketch, with previously mentioned issues, and the proof in [GF69]
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uses explicit, distribution-theoretic formulas which may be difficult for non-experts to

retrace.

The construction we propose in the following section is inspired by a preprint by Kapra-

nov and Hennion [HK18], in which they use the theory of factorization algebras to prove

that Gelfand–Fuks cohomology can be identified with singular cohomology of a certain

section space. We borrow from this theory a notion of generalized good covers which

makes it possible to construct the desired spectral sequences from a local-to-global

principle. This strategy is easily generalizable to construct local-to-global spectral se-

quences in other cohomology theories, as we will show in Chapter 3 with the example

of continuous Chevalley–Eilenberg cohomology of gauge algebras.

2.5.1. DIAGONAL FILTRATION

Fix a smooth manifold M of dimension n. The previously established precosheaf

structure (see Definition 2.4.2) of the cochains C •(X(M)) does not extend to a cosheaf

structure.

Proposition 2.5.1. Let M be a smooth manifold. If k > 1 and dim M > 0, then the

precosheaf U 7→C k (X(U )) from Definition 2.4.2 is not a cosheaf.

Proof. Because dim M > 0, there are smooth, nonzero X1, . . . , Xk ∈ X(M) whose sup-

ports are pairwise disjoint, and some c ∈ C k (X(M)) with c(X1, . . . , Xk ) ̸= 0. Then the

sets

Ui := M \

(⋃
j ̸=i

supp X j

)
, i = 1, . . . ,k (2.5.1)

define an open cover {Ui }i=1,...,k of M . If the assignment of an open set U ⊂ M to co-

chains C k (X(U )) was a cosheaf, then there would exist ci ∈ C •(X(Ui )) for i = 1, . . . ,k

with

c =
k∑

i=1
ιMUi

ci . (2.5.2)

But then, because Xi
∣∣
U j

= 0 for i ̸= j , it follows that

0 ̸= c(X1, . . . , Xk ) =
k∑

i=1
ci (X1|Ui , . . . , Xk |Ui ) = 0. (2.5.3)

A clear contradiction, hence, the precosheaf U 7→C k (X(U )) is not a cosheaf for k > 1.

Hence, as we increase the number of arguments in our cochains, we may get locality

or diagonality problems as in the above proof. It will be valuable to replace these spaces

by certain diagonal replacements:

Definition 2.5.2. Let U be an open subset of M .
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i) Define the graded vector space B•(X(U )) :=⊕
q≥0 B q (X(U )), where

B q (X(U )) := {
c :X(U )q →R | c multilinear and jointly continuous

}
. (2.5.4)

ii) Let {X1, . . . , Xq } ⊂X(U ) be a finite collection of vector fields and k ≥ 1 arbitrary.

We say that this collection has the property ∆k if for every finite set Γ ⊂ U of k

arbitrary points, there is an Xi that vanishes in a neighborhood of Γ.

iii) For q,k ≥ 1 integers, we define the k-diagonal distributions as those c ∈ B q (X(U ))

with

{X1, . . . , Xq } has property ∆k =⇒ c(X1, . . . , Xq ) = 0. (2.5.5)

Their collection is denoted ∆k B q (X(U )).

If q = 0, set ∆k B 0(X(U )) = B 0(X(U )) for all k ≥ 1.

iv) Define the k-diagonal cochains ∆kC q (X(U )) ⊂C q (X(M)) as the skew-symmetric

cochains which are contained in ∆k B q (X(U )).

Proposition 2.5.3. For all q ≥ 0 and all open U ⊂ M, we have the ascending chain

0 =:∆0C q (X(U )) ⊂∆1C q (X(U )) ⊂ . . .

⊂∆q−1C q (X(U )) ⊂∆qC q (X(U )) =C k (X(U )).
(2.5.6)

Further, the ∆kC •(X(U )) constitute a multiplicative filtration of the complex C •(X(U )).

Proof. The property ∆k for a set {X1, . . . , Xq } implies the property ∆k−1. This proves the

ascending chain of inclusions.

Further, a set {X1, . . . , Xk } of k vector fields can only have the property ∆k if one of

the Xi is zero everywhere. Hence ∆kC k (X(M)) = C k (X(M)). Further, notice that

if {X1, . . . , Xq+1} has the property ∆k , so does {[X1, X2], X3, . . . , Xq }. From this it follows

that

d(∆kC q (X(M)) ⊆∆kC q+1X(M). (2.5.7)

Lastly, if {X1, . . . , Xq+r } has the property ∆k+l , then the set {X1, . . . , Xq } must have the

property ∆k or the set {Xq+1, . . . , Xq+r } must have the property ∆l . Hence

∆kC •(X(M))∧∆l C •(X(M)) ⊆∆k+l C •(X(M)). (2.5.8)

Example 2.5.4. A set {X1, . . . , Xk } ⊂X(M) has the property ∆1 if and only if

k⋂
i=1

supp Xi =;. (2.5.9)
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Note that ∆qC q (X(U )) =C q (X(U )), hence

∆k H q (X(U )) = H q (X(U )) ∀k ≥ q +1. (2.5.10)

To put this in terms of more sheaflike data, let us view these cochains through a different

lens.

Definition 2.5.5. Given q ≥ 1 and the canonical projections pr1, . . . ,prq : M q → M ,

consider the vector bundle

⊠q T M :=
q⊗

i=1
pr∗i T M → M q . (2.5.11)

Equipping the space of sections X(M) with its standard Fréchet topology, it is a well-

known consequence of the Schwartz kernel theorem that there is a natural vector space

isomorphism

B q (X(M)) ∼= Γ(⊠q T M)∗, (2.5.12)

the star denoting the continuous dual with respect to the Fréchet topology (cf. [H0̈3] for

the distributional statement). This isomorphism is dual to the map

X(M)⊗·· ·⊗X(M) → Γ(⊠q T M), (X1, . . . , Xq ) 7→ X1⊠ · · ·⊠Xq ,

(X1⊠ · · ·⊠Xq )(x1, . . . , xq ) := X1(x1)⊗·· ·⊗Xq (xq ) ∀x1, . . . , xq ∈ M .
(2.5.13)

Definition 2.5.6. Let X be a topological space and k, q ∈ N. The k-th diagonal of X

in X q is the subspace

X q
k := {(x1, . . . , xq ) ∈ X q : |{x1, . . . , xq }| ≤ k}. (2.5.14)

Special examples are the thin diagonal M q
1 and fat diagonal M q

q−1, which take the

following form:

M q
1 := {(x, . . . , x) ∈ M q },

M q
q−1 = {(x1, . . . , xq ) ∈ M q | ∃i , j : i ̸= j and xi = x j }.

Clearly M q
1 ⊂ M q

2 ⊂ ·· · ⊂ M q
q = M q . Note that a set of vector fields {X1, . . . , Xq } has the

property ∆k if and only if the support of X1⊠ · · ·⊠ Xq is contained in M q \ M q
k . This

proves the following:

Lemma 2.5.7. An element c ∈ B q (X(M)) is k-diagonal if and only if the support of its

image under the Schwartz kernel map in HomR(Γ(⊠q T M),R) is contained in M q
k .

With this perspective, we can deduce:
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Lemma 2.5.8. For U ⊂ M q , the assignments

M q ⊃U 7→Bq (U ) :=HomR(Γ(⊠q T M)
∣∣
U ,R), (2.5.15)

M q
k ⊃U 7→B

q
k (U ) :={

c ∈ HomR(Γ(⊠q T M),R) : suppc ⊂U
}

, (2.5.16)

constitute flabby cosheaves on M q and M q
k , respectively, where the extension maps are

induced by the restriction maps of the section spaces.

Proof. The sheaves of distributions

M q ⊃U 7→Dq (U ) := HomR

(
Γc (⊠q T M)

∣∣
U ,R

)
, (2.5.17)

M q
k ⊃U 7→D

q
k (U ) := {

c ∈ HomR(Γc (⊠q T M),R) : suppc ⊂U
}

(2.5.18)

are shown to be soft using standard partition of unity arguments. Alternatively, this

follows since the first sheaf is a module over a soft sheaf of rings, namely the sheaf of

smooth functions on M q , and the second one is a restriction of the first sheaf to a closed

subspace, hence soft (see [Bre97, Chapter II, Theorems 9.2 & 9.16]). But Bq is exactly

the precosheaf of compactly supported sections of the sheaf Dq , and analogously

for B
q
k and D

q
k . By Proposition A.5, this implies that these precosheaves are flabby

cosheaves.

2.5.2. GENERALIZED GOOD COVERS

We have seen that the precosheaf U 7→C k (X(U )) for open sets U of a smooth manifold M

does not define a cosheaf for k ≥ 2. However, Lemma 2.5.8 gives some hope that we can

meaningfully study them over the Cartesian power M k . As such, we will need methods

to compare different Cartesian powers M , M 2, M 3, . . . of M . One such tool we can use is

the notion of a k-good cover in the sense of [BdBW13, Definition 2.9]:

Definition 2.5.9. Let k ≥ 1. An open cover U of M is k-good if:

i) Given k points x1, . . . , xk ∈ M , there is a U ∈U with x1, . . . , xk ∈U .

ii) Intersections of elements of U are diffeomorphic to a disjoint union of at most k

copies of Rn .

For k = 1 this agrees with the usual notion of a good cover.

Remark 2.5.10. The k-good covers are, in a sense, finite approximations to so-called

Weiss covers, which have property i) of the previous definition with no restriction on

the number k, but without any replacement for property ii), so the sets in the cover

may, a priori, be homologically wild. Weiss covers are heavily used in the theory of

factorization algebras, which have strong ties to our setting, see [CG17, HK18, Gin15].
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Definition 2.5.11. Let X be a topological space, U an open cover of X , and k, q ≥ 1

integers. Define

U q := {V ⊂ M q : V a connected component of U q for some U ∈U },

U
q
k := {V ∩M q

k : V ∈U q }.

Property i) of a k-good cover U implies that the sets U 1,U 2, . . . ,U k are open covers

of M , M 2, . . . , M k , making k-good covers useful tools in comparing data between Carte-

sian powers of M .

If U is a k-good cover, then the equation

(U ∩V )q =U q ∩V q (2.5.19)

shows that all intersections of the open cover U q are diffeomorphic to finite disjoint

unions of at most k-copies of Rqn . To show a similar result for the open cover U
q
k of M q

k ,

let us prepare an auxiliary statement:

Lemma 2.5.12. Let X be a topological space and q,k ≥ 1 integers. If X has finitely many

connected components and all of them are contractible, then the same holds for X q
k .

Proof. Let X1, . . . , Xs be the connected components of X . Every connected component C

of X q is then of the form

C = Xi1 ×·· ·×Xiq (2.5.20)

for some i1, . . . , iq ∈ {1, . . . , s}, not necessarily all different. By assumption, the X1, . . . , Xs

are contractible, hence, for all j = 1, . . . , s, there are deformation retracts F j : X j ×[0,1] →
X j of X j onto a point. Then the map

F : C × [0,1] →C , (x1, . . . , xq , t ) 7→ (Fi1 (x1, t ), . . . ,Fiq (xq , t )) (2.5.21)

is a deformation retract of C onto a point.

If C ∩X q
k is nonempty, this map restricts to a deformation retract of C ∩X q

k to a point.

Hence, if C is a connected component of U q , and C∩X q
k ̸= ;, then C∩X q

k is contractible.

But the connected components of X q
k are exactly the nonempty sets C ∩ X q

k for con-

nected components C of X q . Hence all connected components of X q
k are contractible.

Lastly, since X q only has finitely many connected components, so does X q
k . This finishes

the proof.

Lemma 2.5.13. Let X be a locally connected topological space, q,k ≥ 1 integers, and U a

k-good open cover of X . Then U
q
k is an open cover of X q

k . Further, all nonempty, finite

intersections of elements in U
q
k have finitely many connected components, and all these

connected components are contractible.
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Proof. If (x1, . . . , xq ) ∈ X q
k , then |{x1, . . . , xq }| ≤ k. But since U is k-good, there is some U ∈

U containing all x1, . . . , xk . Hence x ∈U q ∩X q
k . Since x was arbitrary, this shows that U

q
k

is an open cover of X q
k .

Let us now show that if V ,V ′ ∈U
q
k have nonempty intersection, then V ∩V ′ is a finite dis-

joint union of contractible sets. By definition there exist U ,U ′ ∈U so that V and V ′ are

connected components of U q
k and U ′q

k , respectively. Since U is a k-good cover, U ∩U ′

has only finitely many connected components, and all these connected components

are contractible. Thus by Lemma 2.5.12 the same holds for (U ∩U ′)q
k =U q

k ∩ (U ′)q
k .

Since X is locally connected, so are X q
k and its open subsets U q

k and (U ′)q
k . In a locally

connected space, all connected components are closed and open, hence V and V ′

are closed and open in U q
k and (U ′)q

k , respectively. Thus V ∩V ′ is closed and open

in U q
k ∩ (U ′)q

k , and hence must be a union of connected components of U q
k ∩ (U ′)q

k . But

we have seen that there are only finitely many connected components of U q
k ∩ (U ′)q

k ,

and that they are all contractible. This shows that the same holds for V ∩V ′.
By induction this extends to arbitrary finite intersections of sets V1, . . . ,Vq ∈U

q
k , and the

lemma is shown.

The first part of the following theorem is Proposition 2.10 in [BdBW13]:

Theorem 2.5.14. For every smooth manifold M, a k-good open cover exists. Further, if M

is compact, then M admits finite k-good open covers.

Proof. The existence of k-good open covers is shown in [BdBW13]. If M is compact,

choose any k-good cover U , then U k is a cover of M k , and since M k is compact, there

is a finite subcover Ũ ⊂U so that Ũ k is a cover of M k . Hence the set Ũ fulfills property

i) of being a k-good cover, and as a subset of a k-good cover, it also fulfills property

ii).

2.5.3. THE ČECH–BOTT–SEGAL DOUBLE COMPLEX

Finally, let us define a double complex which intertwines Čech complexes with the

Chevalley-Eilenberg complex structure. Analyzing this double complex will provide us

with spectral sequences that calculate the Gelfand–Fuks cohomology of M . We name

this double complex after Bott and Segal, in reference to their spirtually similar local-to-

global analysis in [BS77], though we emphasize that our double complex differs from

theirs.

Definition 2.5.15. Let U := {Ui }i∈I be an open cover of a smooth manifold M , and k ≥ 1.

For Ui1 , . . . ,Uiq ∈U , set

Ui1...iq :=Ui1 ∩·· ·∩Uiq . (2.5.22)

We define the k-th Čech–Bott–Segal (CBS) double complex for the cover U as the follow-

ing double complex:
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⊕
i ∆kC 1(X(Ui ))

⊕
i , j ∆kC 1(Γ(X(Ui j )) . . .

. . .

. . . . . .

⊕
i ∆kC 2(X(Ui ))

⊕
i , j ∆kC 2(Γ(X(Ui j ))

⊕
i ∆kC 3(X(Ui ))

⊕
i , j ∆kC 3(X(Ui j )) . . .

The horizontal maps are given by the Čech differentials associated to the precosheaf

structure, the vertical maps by the direct sum of Chevalley–Eilenberg differentials for

the complexes C •
(
X

(
Ui1...ip

))
. The grading is defined so that

⊕
i1,...,ip ∆kC q (X(Ui1...ip ))

lies in degree (p, q).

The k-th skew-symmetrized CBS double complex is the CBS double complex with all hor-

izontal Čech complexes replaced by their skew-symmetrized versions, see Remark A.3.

Remark 2.5.16. Many remarks on the form of this double complex are in order:

i) Note that the zeroth row of the CBS double complex is zero, and not, as one might

expect, the Čech complex associated to ∆kC 0(X(M)). Since the zeroth degree is

connected to the rest of the complex by a zero differential, we do not lose any

information by leaving it out.

ii) To deduce the ring structure on Gelfand–Fuks cohomology, it would be helpful if

we could define a product structure on the CBS double complex in a way which

extends the wedge product of cochains. At this point in time, it is unclear to the

author how to accomplish this.

iii) The CBS double complex is not a first-quadrant double complex: It mixes a

cohomological and a homological differential. A priori, this means there is an

ambiguity in defining the associated total complex, given by the choice of taking

either direct sums or direct products on the relevant diagonals, since there may

now be infinitely many nonzero terms on each such diagonal. The usual conver-

gence theorems for the spectral sequences arising from horizontal and vertical

filtration will, in general, not apply.

Especially part iii) of the previous remark poses a significant problem. We borrow

an argument from [BS77] to circument this:

Lemma 2.5.17. Let k ∈N and U a finite open cover of a smooth manifold M. The k-th

skew-symmetrized CBS double complex associated to U has only finitely many nonzero

columns. In particular, it is bounded as a double complex.
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Proof. By finiteness of U , there is a largest n such that there is a nonempty intersection

U1 ∩ ·· · ∩Un with Ui ̸= U j for i ̸= j . Hence all columns in degree > n vanish in the

skew-symmetrized double complex. This concludes the proof.

We begin with horizontal cohomology.

Proposition 2.5.18. Let k, q ≥ 1 be integers and U = {Ui }i∈I a k-good cover of a smooth

manifold M. The Čech complex⊕
i
∆k B q (X(Ui )) ←⊕

i , j
∆k B q (X(Ui j )) ← . . . (2.5.23)

is isomorphic to the Čech complex associated to the flabby cosheaf B
q
k on M q

k defined in

Lemma 2.5.8) with respect to the open cover {U q
k ⊂ M q

k : U ∈U } of M q
k .

The same statement holds for the skew-symmetrized Čech complex, and the isomorphism

is equivariant under the natural permutation action of the symmetric group Σq .

Proof. Note first that U
q
k is a cover of M q

k by Lemma 2.5.13. The (restriction of the)

Schwartz kernel maps (2.5.12) give us a family of isomorphisms {φU : U ⊂ M open} as in

Lemma 2.5.7, so that for all open U ⊂V the following diagram commutes:

∆k B q (X(U )) ∆k B q (X(V ))

B
q
k (U q

k ) B
q
k (V q

k )

φU φV

Hence, we have isomorphisms on the precosheaf data; this lifts to an isomorphism of

the two Čech complexes. This argument is independent of the choice of the standard or

the skew-symmetrized Čech complex. Since the sets U q
k are invariant under the natural

Σq -action on M q , both of the terms ∆k B q (X(U )) and B
q
k (U q

k ) admit a Σk -action by

permutation of vector fields. The Schwartz kernel map is equivariant with respect to

this permutation, as one finds from the explicit formula of its dual map 2.5.13.

Theorem 2.5.19. Let q,k ≥ 1 be integers, and consider the k-th (skew-symmetrized) CBS

double complex for a k-good cover U of M. The cohomology of the q-th row is equal to

∆kC q (X(M)) in degree zero, and trivial in all other degrees.

Proof. By Proposition 2.5.18, the Čech complex in this row, associated to the cover U

and the presheaf U 7→∆k B q (X(U )) over M , has the same homology as the Čech com-

plex of the flabby cosheaf U 7→ B
q
k (U ) over M q

k with respect to the cover U
q
k . Flabby

cosheaves have trivial Čech homology independent of the chosen cover by Proposi-

tion A.6, hence the homology is equal to ∆k B q (X(M)) in zeroth degree and zero in

higher degree.

The isomorphism identifying the two complexes is equivariant with respect to the Σq -

action on both spaces. The functor taking the complexes to its Σq -invariants is exact,
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0

A ⊂R

A2 ⊂R2

Figure 2.2: An illustration of Lemma 2.5.22: the set A has three connected components in R, so its square

A2 ⊂R2 has 9 = 32, all arising by taking products of connected components of A. The products of a connected

component of A with itself are exactly the connected components of A2 which intersect the diagonal in R2.

as it arises from the action of a finite group in characteristic zero. Hence, the skew-

symmetrized complex also has trivial cohomology in nonzero degree, and in degree

zero
(
∆k B q (X(M))

)Σq =∆kC q (X(M)). Since the skew-symmetrized complex is exactly

the q-th row of the skew-symmetrized CBS complex, this concludes the proof.

Corollary 2.5.20. Let k ≥ 1 and assume there exists a finite, k-good cover U of M, e.g.

when M is compact. The spectral sequences {E p,q
r ,dr } associated to the skew-symme-

trized k-th CBS double complex for U by filtering horizontally or vertically converges

to ∆k H̃•(X(M)). The tilde denotes reduced cohomology, cf. Definition 2.2.14.

Proof. By Theorem 2.5.19, filtering by rows makes the spectral sequence collapse on

the second page, with the indicated limit term ∆k H̃•(X(M)). Due to finiteness of U and

Lemma 2.5.17, the skew-symmetrized double complex has bounded rows, and for such

double complexes both filtrations yield spectral sequences which converge to the same

cohomology, see [CE56, Chapter XV]. This shows the statement.

2.5.4. SPECTRAL SEQUENCES FOR DIAGONAL COHOMOLOGY

To arrive at Corollary 2.5.20 we filtered the CBS double complex by rows, so now, let

us study its filtration by rows. The cohomology among the arising vertical complexes

amounts to calculating k-diagonal Lie algebra cohomology of X(U ), where the sets U

are finite disjoint unions of Rn . We begin by showing that our methods of Section 2.3

allow us to calculate k-diagonal cohomology for such U .

Proposition 2.5.21. Let 1 ≤ r ≤ k and U =⊔r
i=1R

n . The inclusion

∆kC •(X(U )) ⊂C •(X(U )) (2.5.24)
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induces an isomorphism

∆k H•(X(U )) ∼= H•(X(U )). (2.5.25)

Proof. The construction in the proof of Proposition 2.3.14 restricts without change to

the diagonally filtered complex. Specifically, the filtration F qC •(X(Rn)) restricts to a

filtration F q (∆kC •)(X(Rn)), it is straightforward to check that the exact sequence

0 → F q+1C •(X(Rn)) → F qC •(X(Rn))

→ ⊕
k1+···+kr =q

C •
(k1)(Wn)⊗·· ·⊗C •

(kr )(Wn) → 0 (2.5.26)

restricts to an exact sequence

0 → F q+1(∆kC •)(X(Rn)) → F q (∆kC •)(X(Rn))

→ ⊕
k1+···+kr =q

C •
(k1)(Wn)⊗·· ·⊗C •

(kr )(Wn) → 0, (2.5.27)

and the image of the splitting β(r )
0 : C •

(0)(Wn)⊗
r →C •(X(M)) from the proof of Proposi-

tion 2.3.14 is contained in ∆kC •(X(M)). Hence,

∆k H•(X(U )) ∼= H•(Wn)⊗
k ∼= H•(X(U )), (2.5.28)

so that all nontrivial cohomology classes in H•(X(U )) have representatives contained

in ∆k H•(X(U )). This shows that the inclusion of complexes induces an isomorphism

and the proposition is shown.

Consider now the CBS double complex for some k-good cover U , and the spectral

sequence with respect to the filtration by columns. Every intersection in the cover U is

diffeomorphic to a disjoint union of at most k copies of Rn . Hence, Proposition 2.5.21

applies in every column and we can replace diagonal cohomology with standard Lie

algebra cohomology. Hence, the first page of the spectral sequence assumes the form in

Figure 2.3. We state the following simple lemma without proof (cf. Figure 2.2):

Lemma 2.5.22. Let X be a topological space. The connected components of X q that do

not intersect X q
q−1 are exactly the Cartesian products of q pairwise different connected

components of X .

The following proposition makes use of relative Čech homology of a pair of topologi-

cal spaces (X , A) with respect to a cover U of X , cf. [ES52, Chapter IX]. In this situation,

the space

UA := {U ∩ A : U ∈U } (2.5.29)
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⊕
i H 1(X(Ui ))

⊕
i , j H 1(Γ(X(Ui j )) . . .

. . .

. . . . . .

⊕
i H 2(X(Ui ))

⊕
i , j H 2(Γ(X(Ui j ))

⊕
i H 3(X(Ui ))

⊕
i , j H 3(X(Ui j )) . . .

Figure 2.3: The first page of the spectral sequence associated to the CBS double complex by beginning with

taking the cohomology along the vertical, Chevalley–Eilenberg differential.

is a cover of A, and the relative complex is the quotient by the inclusion of Čech com-

plexes Č (UA) → Č (UX ). We denote the relative complex by Č•(UX ,UA) and its homol-

ogy by Ȟ•(UX ,UA). If U and UA are good covers of X and A, respectively, it is well

known that the Čech homologies are isomorphic to singular homology2

Ȟ•(UX ) ∼= H•(X ), Ȟ•(UA) ∼= H•(A). (2.5.30)

Hence, by an argument on long exact sequences in homology, one has an isomorphism

to relative singular homology.

Ȟ•(UM ,UA) ∼= Ȟ•(M , A) (2.5.31)

Proposition 2.5.23. Let q,k ≥ 1 be integers, M be a smooth, orientable manifold, and

U a k-good cover of M. Denote by {E p,q
r ,dr } the spectral sequence associated to the k-th

CBS double complex with respect to U , arising from the horizontal filtration by columns.

The q-th row of the first page E•,•
1 is naturally isomorphic to a direct sum of relative

Čech complexes with respect to covers (U r ,U r
r−1) of (M r , M r

r−1) for r = 1, . . .k (cf. Defini-

tion 2.5.11):

E•,q
1

∼= Č•(UM )⊗H q (Wn)

⊕

 ⊕
q1+q2=q
q1,q2>0

Č•(U 2
M 2 ,U 2

M 2
1

)⊗H q1 (Wn)⊗H q2 (Wn)


Σ2

⊕ . . .

⊕

 ⊕
q1+···+qk=q

q1,...,qk>0

Č•(U k
M k ,U k

M k
k−1

)⊗H q1 (Wn)⊗·· ·⊗H qk (Wn)


Σk

.

(2.5.32)

2see [GR09, Chapter VI.D, Theorem 4] for a proof in Čech cohomology. This easily dualizes to our setting.
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Here, the symmetric groups Σ2, . . . ,Σk act by simultaneous, skew-symmetric permutation

of the Cartesian factors U1 ×·· ·×Uk of any set in the covers (U k ,U k
k−1) and the tensor

factors of H q1 (Wn)⊗·· ·⊗H qk (Wn).

The same statement holds for the skew-symmetrized CBS complex, when the Čech com-

plexes in (2.5.32) are replaced by their skew-symmetrized versions.

Proof. Set n := dim M . Since U is k-good, all intersections of elements in U are dif-

feomorphic to a finite disjoint union of open balls in Rn . Hence we can apply Corol-

lary 2.4.5 to find that the Čech complex in q-th row of E•,•
1 is naturally isomorphic to

the Čech complex of the q-th degree component of the constant precosheaf of algebras

U 7→ H•(X(Rn))π0(U ), i.e.

U 7→ ⊕
q1+···+qπ0(U )=q

H q1 (X(Rn))⊗·· ·⊗H qπ0(U ) (X(Rn)). (2.5.33)

Denote this precosheaf by H q
M . The multiplication of H•(X(Rn)) is trivial on two ele-

ments of positive degree. Hence, if H q
M (U ) → H q

M (V ) is an extension map associated to

an inclusion U ⊂V , then the associated map

H q1 (X(Rn))⊗·· ·⊗H qπ0(U ) (X(Rn)) → H q ′
1 (X(Rn))⊗·· ·⊗H

q ′
π0(V ) (X(Rn)) (2.5.34)

is only nonzero if

|{r : qr > 0,r = 1, . . . ,π0(U )}| = |{r : q ′
r > 0,r = 1, . . . ,π0(V )}|. (2.5.35)

Hence the Čech complex associated to (2.5.33) decomposes into a direct sum of com-

plexes C1,C2, . . . , where Cr is defined as the subcomplex on which the number of tensor

factors of nonzero degree in every term equals r . Since U is a k-good cover, Cr = 0 if

r > k, so

Č (UM , H q
M ) =C1 ⊕·· ·⊕Ck . (2.5.36)

We are done if we can show that we have the following isomorphism of chain complexes:

Cr
∼=

 ⊕
q1+···+qr =q

q1,...,qr >0

Č•(U r
M r ,U r

M r
r−1

)⊗H q1 (Wn)⊗·· ·⊗H qr (Wn)


Σr

. (2.5.37)

Let now U be an intersection of elements of U , and write U1, . . . ,Us ⊂U for the con-

nected components of U , respectively. If s ≥ r , then there is a nontrivial direct summand

in the complex Cr associated to U , specifically⊕
q1+···+qs=q

|{i :qi>0,i=1,...,s}|=r

H q1 (X(Rn))⊗·· ·⊗H qs (X(Rn)) (2.5.38)

= ⊕
q1+···+qr =q

q1,...,qr >0

H q1 (X(Rn))⊗·· ·⊗H qr (X(Rn)). (2.5.39)



2.5. GELFAND–FUKS COHOMOLOGY FOR SMOOTH MANIFOLDS

2

61

Every term H q1 (X(Rn))⊗·· ·⊗ H qr (X(Rn)) in the latter direct sum is associated to a a

subset of r pairwise different connected components Ui1 , . . . ,Uir of U . The product

Uiσ(1) ×·· ·×Uiσ(r ) is a connected component of the set U r , and U is an intersection of

elements in U . Hence Uiσ(1) ×·· ·×Uiσ(r ) is an intersection of elements of the cover U r ,

and we can write ci1...ir ∈ Č•(U r
M r ) for the Čech simplex associated to it.

Now we can identify the term H q1 (X(Rn))⊗·· ·⊗H qr (X(Rn)) with a direct summand of

the right-hand side of (2.5.37):

H q1 (X(Rn))⊗·· ·⊗H qr (X(Rn)

∼=Rci1...ir ⊗H q1 (X(Rn))⊗·· ·⊗H qr (X(Rn)

∼=
( ⊕
σ∈Σr

Rciσ(1)...iσ(r ) ⊗H qσ(1) (X(Rn))⊗·· ·⊗H qσ(r ) (X(Rn))

)Σr

.

Lemma 2.5.22 shows that this isomorphism induces the isomorphism (2.5.37):

Firstly, the lemma implies that the Cartesian product of the pairwise different connected

components Ui1 , . . . ,Uir does not intersect the diagonal M r
r−1. Hence the Čech simplices

ci1...ir do not vanish in the relative Čech complex.

Secondly, the lemma implies that every direct summand in the relative Čech is associ-

ated to a product of r pairwise different connected components. Thus, this construction

exhausts the right-hand side of (2.5.37).

Hence the isomorphism (2.5.37) holds on a level of vector spaces, and it is straight-

forward to see that this identification respects extension maps. Hence it is even an

isomorphism of chain complexes, and the statement is shown.

By the argument before Proposition 2.5.23, the cohomology of the relative Čech

complexes in the previous proposition is isomorphic to relative singular homology of

the associated spaces. Together with Corollary 2.5.20 and a degree reflection p 7→ −p to

bring the spectral sequence into a cohomological form, we end up with the following

corollary:

Corollary 2.5.24. Let M be an orientable manifold which admits a finite, k-good open

cover (e.g. if M is compact). There exists a cohomological spectral sequence {E•,•
r ,dr }

which converges to reduced k-diagonal cohomology ∆k H̃•(X(M)), and the entries E p,q
2

of its second page are, for q ≥ 1, of the following form:

E p,q
2

∼= H−p (M)⊗H q (Wn)

⊕ ⊕
q1+q2=q

qi>0

(
H−p (M 2, M 2

1 )⊗H q1 (Wn)⊗H q2 (Wn)
)Σ2

⊕ . . .

⊕ ⊕
q1+···+qk=q

qi>0

(
H−p (M k , M k

k−1)⊗H q1 (Wn)⊗·· ·⊗H qk (Wn)
)Σk

.

(2.5.40)
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−4 −2 0
0

2

4

6

RR

RR

Figure 2.4: The spectral sequence for 2-diagonal Lie algebra cohomology forX(S1). For the k-diagonal spectral

sequences for k ≥ 2, this pattern continues into the upper-left direction.

Here, a permutation σ ∈Σr acts by simultaneous permutation of the Cartesian factors

of M k and the tensor factors H q (Wn).

Remark 2.5.25. These spectral sequences differ from the ones stated in [Fuk86], but only

insofar as [Fuk86] considers the quotient complexes ∆kC •(X(Rn)/∆k−1C •(X(Rn) rather

than the diagonal complexes themselves. This essentially gives one spectral sequence

for every row in (2.5.40).

For k ≥ q + 1, we have ∆k H q (X(M)) = H q (X(M)) so in principle, these spectral

sequences can be used to calculate the full Lie algebra cohomology of X(M), degree by

degree. In particular, since we know that the nontrivial cohomology of Wn is contained

within the degrees q = 2n +1, . . . ,2n +n2 and the relative cohomology of (M k , M k
k−1) in

degrees ≤ nk, we have the following:

Corollary 2.5.26. For all smooth manifolds M that admit finite k-good open covers for

all k ∈N, and all n ≥ 0, the Gelfand–Fuks cohomology H n(X(M)) is finite-dimensional.

Further, if 1 ≤ k ≤ dim M then H k (X(M)) = 0.

Example 2.5.27. We sketch here how one now can calculate the well-known Gelfand–

Fuks cohomology of M = S1. By using excision and Poincaré duality3, we can find

Hr

(
(S1)k , (S1)k

k−1

)
= H̃r

(
(S1)k \ (S1)k

k−1

)
=

R(k−1)! if r = k,k −1,

0 else,
(2.5.41)

where the copies of R in R(k−1)! are enumerated by permutations of the (k −1)-th sym-

metric group, and the invariant space under the action of the k-th symmetric groupΣk is

one-dimensional.4 Using this, we find that in the spectral sequence for k-diagonal coho-

mology, there is only ever at most a single nontrivial term on every diagonal p+q = const,

3We thank Moishe Kohan for communicating to us a proof idea for this.
4Note that in [GF69] it is incorrectly claimed that the nontrivial degrees of H•

(
(S1)k , (S1)k

k−1

)
are k(k −1)/2-

dimensional. Already (S1)3 \ (S1)3
2 has only 2, not 3 connected components.
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and those only exist on the diagonals p + q = 0,2,3,5,6,8,9, . . . . From lacunary argu-

ments, one concludes that all differentials beyond the second page must be trivial.

By retracing the construction of the spectral sequence, one can verify that the follow-

ing cocycles c2,c3 ∈C •(X(S1)) indeed are representatives of the nontrivial cohomology

classes in degree 2 and 3: For x0 ∈ S1 an arbitrary point, ∂φ the standard coordinate

vector field on S1, and f , g ∈C∞(S1), we set

c2( f ∂φ, g∂φ) =
∫

S1

(
f (φ)g ′(φ)− f ′(φ)g (φ)

)
dφ, (2.5.42)

c3( f ∂φ, g∂φ,h∂φ) = det

 f (x0) g (x0) h(x0)

f ′(x0) g ′(x0) h′(x0)

f ′′(x0) g ′′(x0) h′′(x0)

 . (2.5.43)

We note that higher cohomology classes arise as the wedge products of these diagonal

generators, but due to the lack of an obvious product on our spectral sequence, this is

difficult to see directly. In any case, as a ring, we have

H•(X(S1)) ∼= S•(Rc2)⊗Λ•(Rc3). (2.5.44)
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volume 235 of Monographs and Textbooks in Pure and Applied Mathematics.

Marcel Dekker, Inc., New York, 2001. An introduction.

[ES52] Samuel Eilenberg and Norman Steenrod. Foundations of algebraic topology.

Princeton University Press, Princeton, New Jersey, 1952.

[Fuk73] D. B. Fuks. Characteristic classes of foliations. Uspehi Mat. Nauk,

28(2(170)):3–17, 1973.

[Fuk86] D. B. Fuks. Cohomology of infinite-dimensional Lie algebras. Contemporary

Soviet Mathematics. Consultants Bureau, New York, 1986. Translated from

the Russian by A. B. Sosinskĭı.
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3
CONTINUOUS COHOMOLOGY OF

GAUGE ALGEBRAS AND

BORNOLOGICAL

LODAY–QUILLEN–TSYGAN

THEOREMS

In this chapter, we investigate the well-known Loday–Quillen–Tsygan theorem, which

calculates the Lie algebra homology of the general linear algebra gl(A) for an associative

algebra A in terms of cyclic homology, and extend the proof to bornological Lie algebra

homology of Fréchet and LF-algebras. For Fréchet spaces, this equals the usual continuous

Lie algebra homology and is hence closely tied to the dual continuous cohomology. To this

end we prepare several statements about homological algebra of topological vector spaces,

and discuss when the differential of the bornological Hochschild and cyclic complex

are topological homomorphisms in the setting of Fréchet algebras. We apply the results

to the algebras of smooth functions on a smooth manifold and compactly supported

smooth functions on Euclidean space, and construct from a local-to-global principle

a Gelfand–Fuks-like spectral sequence which calculates the stable part of bornological

Lie algebra homology of non-trivial gauge algebras. This complements results by Maier,

Janssens and Wockel.

This chapter is based on the preprint [Mia22].
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3.1. INTRODUCTION

Beyond the previously discussed Lie algebra of vector fields, there are more infinite-

dimensional symmetries with great significance to physics, namely the infinite-dimen-

sional symmetry group of gauge transformations and its corresponding infinite-di-

mensional Lie algebra. This Lie algebra is modeled as the sections of a Lie algebra

bundle K → M , and we call section spaces of this shape gauge algebras. When the

fibers of the bundle are semisimple finite-dimensional Lie algebras, the second degree

cohomology is fully understood, see [Mai02] for the globally trivial case and [JW13] for

the general case of nontrivial gauge algebras. However, the methods within these papers

are very specifically suited to degree 2, which raises the question of how one might

calculate higher degree cohomology.

Independently, roughly 40 years ago, Loday, Quillen and Tsygan fully described the

algebraic Lie algebra homology of gl(A) = lim−−→
(
gln(K)⊗ A

)
for arbitrary unital algebras A

and fieldsKwithQ⊂K in terms of cyclic homology Hλ• (A), see [LQ84], [Tsy83]. Their

proof lays the groundwork for results about the homology of many so-called current

algebras, Lie algebras of the shape g⊗ A, where g is another Lie algebra and A is an

associative algebra. In particular, when g equals any of the classical simple Lie algebras,

their method allows one to extract quite a lot of information.

Now, if g is finite-dimensional, the current algebra g⊗C∞(M) ∼=C∞(M ,g) represents

exactly the gauge algebra of a globally trivial Lie algebra bundle with fibers equal to g,

establishing a connection between the work of Loday, Quillen and Tsygan, and the study

of gauge algebras. However, since one is in general not only interested in the algebraic

Lie algebra cohomology of gauge algebras, but their continuous counterpart, one may

ask the question if the proof of the Loday–Quillen–Tsygan (LQT) result holds when the

involved homology theories are modified to take topological data into account. This

would provide a unified way to calculate continuous (co-)homology of locally trivial

gauge algebras with many different fiber Lie algebras, providing information in more

than just low degree.

The goal of this chapter is to explore this question and answer it in the affirmative for

bornological Lie algebra homology. On the gl(A) = lim−−→gln(A), this is essentially Lie

algebra homology defined in terms of Grothendieck’s completed inductive topological

tensor product, rather than the more standard projective tensor product. Due to the fact

that this tensor product is compatible with the ubiquitous direct limit arguments in the

proof of the LQT theorem, this appears to be the most natural framing for a topological

LQT theorem.

Note that in [Fei88], a result for the continuous cohomology of gl(C∞(M)) for closed

manifolds M is stated, but lacking a full proof. They claim the jointly continuous

cohomology is freely generated by the continuous cyclic cohomology of the algebra;

in contrast, our result is that the bornological homology is equal to the topological

completion of this freely generated space. We cannot disprove their claim outright due
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to the difference in continuity notions. However, it seems likely that the statement

in joint continuity should also include such a completion, as the generators contain

infinite-dimensional components.

We begin by laying out the foundation of this study: we recall in Section 3.2 and 3.3

the definition and important properties of topological vector spaces, e.g. Fréchet and

LF-spaces, their associated topological tensor products, and bornological homology

theories for associative algebras. In particular, we prepare statements about the Fréchet

algebra A =C∞(M) and the LF-algebra A =C∞
c (Rn) and prove that the Hochschild and

cyclic differentials are topological homomorphisms in these cases.

In Section 3.4, the algebraic LQT-Theorem is extended to bornological Lie algebra

homology and (homologically) unital Fréchet algebras in Theorems 3.4.8 and 3.4.10. In

essence, this requires tracking through the algebraic proofs and making sure that all

algebraic isomorphisms lift to topological isomorphisms in the respective topologies

and on the completions of the tensor products. As an application, in Corollary 3.4.11

we fully state the bornological Lie algebra homology of gl(C∞(M)) = lim−−→gln(C∞(M))

and gl(C∞
c (Rn)) = lim−−→gln(C∞

c (Rn)), both spaces equipped with their respective direct

limit topologies.

Lastly, in Section 3.5 we globalize our results to approximate the bornological Lie algebra

homology of gauge algebras Γ(AdP → M) for principal bundles P → M . We restrict the

calculations to when the fiber Lie algebra is gln(K), but the general method is easily

transferrable to other classical, simple Lie algebras. We construct in Theorem 3.5.15 a

spectral sequence which calculates this homology in stable degree. This is parallel to our

local-to-global construction in Chapter 2 for Gelfand–Fuks cohomology. Unfortunately,

the entries of the second page of the spectral sequence can be specified only in terms

of a certain Čech homology of product cosheaves, which we are unable to calculate

and can only conjecture. This is due to the lack of a Künneth theorem in the cosheaf-

theoretical setting. Assuming this conjecture, however, this spectral sequence yields

a unified approach to compute low-dimensional bornological cohomology of a large

class of gauge algebras. An example of such results is given in Corollary 3.5.17.

A related approach is given in [GW21], which does not consider continuous, but local

Loday–Quillen–Tsygan Theorems, in the language of factorization algebras.

3.2. TOPOLOGICAL VECTOR SPACES, BORNOLOGIES, AND TEN-

SOR PRODUCTS

3.2.1. PRELIMINARIES AND DEFINITIONS

We want to begin by collecting some definitions and results regarding topological vector

spaces and their tensor products. For a more detailed discussion, we direct the reader to

[Trè67], [Sch71], [MV97]. Fix, once and for all,K=R or C. All vector spaces and algebras

in the following will be overK unless specified otherwise.
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Definition 3.2.1. Let V be a vector space.

i) We call V a topological vector space (TVS) if it is equipped with equipped with a

topology in which addition V ×V →V and scalar multiplication V ×V →V are

continuous with respect to the according (product) topologies.

ii) We call V locally convex vector space (LCTVS) if it is a TVS which is Hausdorff and

in which every point has a neighborhood basis consisting of convex sets.

iii) We call V a Fréchet space if it is a metrizable and complete LCTVS.

iv) We call V an LF-space if it is the inductive limit of a countable direct system of

Fréchet spaces (Vn)n∈N, equipped with the inductive limit topology.

v) An LF-space V = lim−−→Vn is a strict LF-space if the maps Vn → Vm in the direct

system (for m ≥ n) are topological embeddings.

vi) We call V a bornological algebra if it is a LCTVS with a bounded multiplication

map µ : V ×V →V that makes V into an associativeK-algebra.

vii) We call V a bornological Lie algebra if it is a LCTVS with a bounded map [·, ·] :

V ×V →V that makes V into aK-Lie algebra.

Remark 3.2.2. In the above context, a map V ×V →V is bounded if it maps products of

bounded sets to bounded sets, see [Mey99] for details.

Remark 3.2.3. A reader intimidated by the word “bornological” showing up here may

console themselves as follows: if V is a Fréchet space, then bounded multilinear maps

are exactly the continuous multilinear maps. If V is an LF-space, the bounded multilin-

ear maps are exactly the separately continuous multilinear maps, see [Mey99, Section

2.1.2] for further details. The correspondence will become even clearer in Proposi-

tion 3.2.8.

Example 3.2.4. Let M be a smooth manifold. Our main Fréchet space of interest will be

the space of smooth functions on M , denoted C∞(M) with its standard topology. This

topology is sequential, and a sequence ( fn ∈C∞(M))n∈N converges to f ∈C∞(M) if and

only if all (locally defined) derivatives of the fn uniformly converge to the derivatives of f

on all compact sets K contained within charts. The standard pointwise multiplication is

easily shown to be continuous (hence bounded) with respect to this topology, making it

into a Fréchet algebra.

These considerations are straightforwardly extended to the space of sections Γ(E) of a

finite-dimensional vector bundle E → M , giving it a Fréchet structure.

Example 3.2.5. An important LF -space for us will be gl(K) := lim−−→gln(K). Since all gln(K)

are finite-dimensional, they admit canonical Fréchet space structures, and they make up
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a direct system via the inclusions gln(K) → glm(K) for n ≤ m. The matrix multiplication

is compatible with these inclusion maps. Note that if y ∈ glm(K) ⊂ gl(K), we have that

mn,y : gln(K) → gl(K), x 7→ x · y

is continuous for all n ∈N, as a composition of continuous maps

gln(K) → gln+m(K) ,→ gl(K).

Hence, by [Trè67, Proposition 13.1] the induced multiplication maps m∞,y : gl(K) →
gl(K) are continuous for all y ∈ gl(K). This shows that the multiplication map gl(K)×
gln(K) → gl(K) and, as a consequence, the arising commutator Lie bracket on gl(K) are

separately continuous (hence bounded) with respect to the LF-topology.

3.2.2. TOPOLOGICAL TENSOR PRODUCTS

In contrast to the finite-dimensional case, tensor products become very delicate in

infinite dimensions. Certainly one always has the algebraic tensor product ⊗=⊗K, but

there are multiple non-equivalent ways to equip this with a topology. For our purposes

we will recall two such notions.

Definition 3.2.6. Let V ,W be two LCTVS and consider the canonical map

φ : V ×W →V ⊗W. (3.2.1)

i) The projective tensor product V ⊗πW denotes the vector space V ⊗W equipped

with the strongest locally convex topology such that φ is continuous.

ii) The inductive tensor product V ⊗ιW denotes the vector space V ⊗W equipped

with the strongest locally convex topology such that φ is separately continuous.

iii) The bornological tensor product V ⊗βW denotes the vector space V ⊗W equipped

with the strongest locally convex topology such that φ is bounded, meaning

if B ⊂V ×W is bounded, then φ(B) ⊂V ⊗βW is, too.

Remark 3.2.7. The tensor products here should not be confused with the injective tensor

product, generally denoted by ⊗ϵ.

See [Sch71, Chapter 3.6], [Gro95, Chapter 1], [KM97] for proofs of the existence of

these tensor product topologies and additional details. In particular, it may be inter-

esting to the reader that all presented tensor products fulfill the expected universal

properties with respect to jointly continuous, separately continuous, or bounded bilin-

ear maps.

In our setting, it suffices to work only with⊗β, and we denote by V ⊗̂W :=V ⊗βW the

completion of the bornological tensor product. We set no notation for the completion

with respect to other tensor products.



3

72 3. CONTINUOUS COHOMOLOGY OF GAUGE ALGEBRAS

Topological tensor products appear to have somewhat of a bad reputation, and in

complete generality, they may well deserve it. However, in our setting, the categorical

properties of the tensor products are fairly pleasant, especially the bornological tensor

product:

Proposition 3.2.8. Let V ,W,U be LCTVS.

i) [Trè67, Chapter 34.2, Chapter 43] [KM97, Chapter 5] If V and W are Fréchet, then

all separately continuous bilinear maps V ×W →U are continuous,

V ⊗πW ∼=V ⊗ιW ∼=V ⊗βW, (3.2.2)

and V ⊗̂W is Fréchet.

ii) [Mey99, Appendix A.1.4] If V and W are nuclear strict LF-spaces

V = lim−−→Vi , W = lim−−→W j , (3.2.3)

then V ⊗̂W is a nuclear strict LF-space, and

V ⊗ιW ∼=V ⊗βW, V ⊗̂W = lim−−→(Vi ⊗̂W j ). (3.2.4)

iii) [Mey99, Proposition 2.25] We canonically have

(U ⊗̂V ) ⊗̂W ∼=U ⊗̂ (V ⊗̂W ), U ⊗̂V ∼=V ⊗̂U . (3.2.5)

Remark 3.2.9. Note that commutativity follows quite easily using the topological iso-

morphism X ×Y ∼= Y ×X . However, the associativity is not generally quite so obvious:

For general topological tensor products, the natural vector space isomorphisms be-

tween X ⊗ (Y ⊗Z ) and (X ⊗Y )⊗Z might not necessarily be continuous, see [Glö04].

Lastly, we have an exactness property of ⊗̂. The following is a consequence of [EP96,

Theorem A1.6]:

Proposition 3.2.10. Let U ,V ,W and H be nuclear Fréchet spaces, and

0 →U
f→V

g→W → 0 (3.2.6)

an exact sequence, in the sense that f and g are continuous and linear, f is injective, g is

surjective, and im f = ker g . Then

0 →U ⊗̂H
f ⊗̂id→ V ⊗̂H

g ⊗̂id→ W ⊗̂H → 0 (3.2.7)

is exact in the same sense.
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3.3. BORNOLOGICAL HOCHSCHILD AND CYCLIC HOMOLOGY

3.3.1. PRELIMINARIES AND DEFINITIONS

In this section, we recall how to modify the algebraic notions of Hochschild/cyclic ho-

mology to include topological information. For a succinct presentation of the algebraic

picture of Hochschild and cyclic homology and certain topological modifications, we

cite [Lod92], [Kha13], [Con85]. A related discussion of the topological modifications

also takes place in [BL01]. We lay no claim to originality within this section, with the

exception of investigating the property of differentials to be topological morphisms; we

will explain this below.

Definition 3.3.1. Let A be a bornological algebra. The bornological Hochschild complex

of A with coefficients in itself is given by

HC born
• (A) := ⊕

k≥0
HCk (A), HCk (A) := A⊗̂k+1

. (3.3.1)

where the differential is induced by the Hochschild differential, so

b : HC born
k (A) → HC born

k−1 (A),

b(a0 ⊗·· ·⊗an) :=
n−1∑
i=0

(−1)i a0 ⊗·· ·⊗ai ai+1 ⊗·· ·⊗an

+ (−1)n+1an a0 ⊗a1 ⊗·· ·⊗an−1.

(3.3.2)

The homology of this complex is called the bornological Hochschild homology of A and

denoted H H born• (A).

Remark 3.3.2. A reader who is not familiar with bornology may instead be interested in

replacing ⊗β with, say, the completion of ⊗π or ⊗ι rather than ⊗̂ =⊗β, to get something

which could reasonably be called (jointly) continuous or separately continuous homol-

ogy. Due to Proposition 3.2.8, this is possible whenever A is, respectively, Fréchet or a

strict LF-space. These cases will be studied further in Section 3.4.

Remark 3.3.3. Note that for nonunital algebras A, the above definition is the bornologi-

cal version of what, in [Lod92], is called the naive Hochschild homology. This does not

necessarily agree with the “correct” version of Hochschild homology. However, in our

applications, all algebras will be (bornologically) H-unital, a term we define later on,

which suffices for both notions of Hochschild homology to coincide.

Definition 3.3.4. Let A be a bornological algebra. The bornological Connes complex

of A is given by

Cλ,born
• (A) := ⊕

n≥0
Cλ,born

n (A), Cλ,born
n (A) := HC born

n (A, A)Z/(n+1)Z, (3.3.3)
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where the action of the generator τ ∈Z/(n +1)Z on HC born
n (A) is given by cyclic permu-

tation, meaning

τ · (a0 ⊗·· ·⊗an) := (−1)n an ⊗a0 ⊗·· ·⊗an−1 ∀a0, . . . , an ∈ A. (3.3.4)

The differential of this complex is induced by the Hochschild differential, which factors

through to this complex. The homology of this complex is called bornological cyclic

homology.

Like in the algebraic setting, we show the compatibility with an alternative definition

of cyclic homology, in terms of the following double complex, see [Lod92, Chapter 2]:

Definition 3.3.5. Let A be a bornological algebra. The bornological cyclic double com-

plex CC born•,• (A) of A is given by

. . . . . . . . . . . . . . .

A⊗̂3
A⊗̂3

A⊗̂3
A⊗̂3

. . .

A⊗̂2
A⊗̂2

A⊗̂2
A⊗̂2

. . .

A A A A . . .

b −b′ b −b′

b
1−τ

−b′
N

b
1−τ

−b′
N

b
1−τ

−b′
N

b
1−τ

−b′
N

1−τ N 1−τ N

(3.3.5)

Here:

• b is the Hochschild differential as in Definition 3.3.1,

• b′ : A⊗̂n+1 → A⊗̂n
is the bar differential, which is defined as the Hochschild differ-

ential without the last summand, so

b′(a0 ⊗·· ·⊗an) :=
n−1∑
i=0

(−1)i a0 ⊗·· ·⊗ai ai+1 ⊗·· ·⊗an , (3.3.6)

• τ is the cyclic permutation as in Definition 3.3.4,

• N : A⊗̂n → A⊗̂n
is the norm operator, defined as

N := 1+τ+τ2 +·· ·+τn−1. (3.3.7)

All squares anticommute, and we denote the total complex by CC born• (A), also called

the bornological cyclic complex of A.

Analogously, one defines the cohomological bornological Hochschild, Connes, and

cyclic double complexes, by taking the continuous dual of all spaces in the above. We

respectively denote them by

HC •
born(A, A), C •

λ,born(A), CC •,•
born(A). (3.3.8)
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Proposition 3.3.6. Let A be a bornological algebra over R. The canonical quotient

CC born
• (A) →Cλ,born

• (A) (3.3.9)

onto the zeroth column and the canonical inclusion

C •
λ,born(A) →CC •

born(A) (3.3.10)

into the zeroth column are quasi-isomorphisms, i.e. chain maps which reduce to isomor-

phisms of vector spaces on homology.

Proof. Both maps are straightforwardly chain maps, so it remains to show that they

induce isomorphisms on (co-)homology.

We begin with a sketch of the algebraic, homological case, see [Lod92, Theorem 2.1.5].

There, one constructs homotopy operators h′,h on every row of the algebraic double

complex CC•,•(A), fulfilling

h′N + (1−τ)h = id = N h′+h(1−τ), (3.3.11)

showing that, all rows are acyclic in nonzero degree, and degree zero homology of the n-

th row equals the algebraic cyclic complex Cλ
n (A). This shows the algebraic case. Now,

all involved operators in [Lod92, Theorem 2.1.5] are easily seen to be continuous and

hence extend to the respective topological completions, hence the homotopy argument

extends to CC born• (A) and C •
λ,born(A).

The cohomological statement follows identically by dualizing the above homotopy

operators.

If A is additionally unital, there is another complex which calculates cyclic homol-

ogy:

Definition 3.3.7. Let A be a unital bornological algebra. The bornological (b,B)-double

complex B born•,• (A) of A is defined as

. . . . . . . . .

A⊗̂3
A⊗̂2

A

A⊗̂2
A

A

b b b

b b

B B

b
B

(3.3.12)

Here b is the Hochschild differential and B is the Connes operator, defined as

B = (1−τ)sN , (3.3.13)
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with τ the cyclic permutation, N the norm operator (see Definition 3.3.5) and s the extra

degeneracy, defined as

s : A⊗̂n → A⊗̂n+1
, a1 ⊗·· ·⊗an 7→ 1⊗a1 ⊗·· ·⊗an . (3.3.14)

All squares anticommute, and we denote the total complex by B born• (A).

Proposition 3.3.8. Let A be a unital bornological algebra, then B born• (A) and CC born• (A)

are continuously homotopy equivalent.

Proof. Similar to the proof of Proposition 3.3.6, one builds homotopy operators by

compositions of the continuous operators N , s, (1−τ), thus the well-known algebraic

homotopy equivalence lifts to a topological one. See [Kha13, Proposition 3.8.1] for

details.

3.3.2. CLOSED RANGE THEOREMS

In the following we will need to understand whether the range of the differential of

the cyclic complex is a topologically closed subspace of the complex. This condition

makes the complex more well-behaved, in the situation of Fréchet spaces turning all

differentials into topological homomorphisms, and allowing for the use of a Künneth

formula. In this subsection, we will only consider Fréchet spaces, so we may always

think of ⊗̂ as the closure of the projective tensor product due to Proposition 3.2.8. The

following statement due to Serre is occasionally helpful:

Theorem 3.3.9. [Ser55, Lemma 2] Let d : A → B be a continuous, linear map of Fréchet

spaces. If d(A) is cofinite-dimensional in B, then d(A) is closed and complemented.

We cite the following Theorem from [GLW05, Corollary 5.3], a rudimentary version

of which was already given in [Gro].

Theorem 3.3.10. Let A,B be chain complexes of nuclear Fréchet spaces, bounded from

below in the sense that

An = Bn = 0 if n < 0. (3.3.15)

If the differentials of both complexes have closed range, we have an isomorphism of TVS

H•(A ⊗̂B) ∼= H•(A) ⊗̂H•(B). (3.3.16)

Note that in the above situation, H•(A ⊗̂B) is again canonically Fréchet, and thus

the differential of A ⊗̂B has closed range. Hence we can iterate this formula:

Corollary 3.3.11. If A1, . . . , An are finitely many complexes of nuclear Fréchet spaces, and

all differentials have closed range, we have

H•
(

A1 ⊗̂ · · · ⊗̂ An
)∼= H• (A1) ⊗̂ · · · ⊗̂H• (An) . (3.3.17)
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However, there does not seem to be a simple argument for why the Hochschild/cyc-

lic differentials should have closed range in large generality. In the cases that interest us,

we can make use of the following easy proposition:

Proposition 3.3.12. Let (C•,dC ), (D•,dD ) be complexes of Hausdorff TVS, and let there

be a continuous quasi-isomorphism φ : C• → D•.

i) If dD has closed range, then dC has closed range.

ii) If C• and D• admit a continuous homotopy equivalence, then dC has closed range

if and only if dD does.

Proof. i) Since the range of dD is closed and fully contained in kerdD , the projection

π : kerdD → kerdD

ImdD [−1]
= H•(D•) (3.3.18)

is a continuous, linear map of TVS. Denote by φ̃ the continuous, linear map arising from

the composition

kerdC
φ→ kerdD

π→ H•(D•). (3.3.19)

Since φ reduces to an isomorphism on homology and ImdC ⊂ kerφ, we have that the

image of dC is equal to ker φ̃, hence ImdC is the kernel of a continuous, linear map.

Since all involved spaces are Hausdorff, this kernel is closed, and we are done.

ii) This follows from i) since a continuous homotopy equivalence of chain complexes

induces continuous quasi-isomorphisms in both directions.

Proposition 3.3.13. [MV97, Theorem 26.3] If φ : E → F is a continuous linear map of

Fréchet spaces, its range is closed if and only if its transposeφ∗ : F∗ → E∗ has closed range,

where we denote by E∗ and F∗ the respective strong duals of E and F .

Corollary 3.3.14. Let A be a Fréchet algebra.

i) The differential of the Connes complex Cλ,born• (A) has closed range if and only if

the differential of CC born• (A) has closed range.

ii) If A is unital, then all differentials of the complexes

Cλ,born
• (A), CC born

• (A), B born
• (A) (3.3.20)

have closed range if and only if a single one of them does.

Proof. i) =⇒: If Cλ,born• (A) has closed range, then the quasi-isomorphism from Propo-

sition 3.3.6 together with Proposition 3.3.12 shows that CC born• (A) has closed range as

well.

⇐=: If CC born• (A) has closed range, then by Proposition 3.3.13 so does the cohomological



3

78 3. CONTINUOUS COHOMOLOGY OF GAUGE ALGEBRAS

complex CC •
born(A) since all spaces in the homological total complex are Fréchet and all

differentials of the cohomological complex are induced by dualization. Again Proposi-

tions 3.3.6 and 3.3.12 show that the cohomological complex C •
λ,born(A) has closed range

as well. By Proposition 3.3.13 this extends to Cλ,born• (A). The equivalence is shown.

ii) This follows from i) and the continuous homotopy equivalence in Proposition 3.3.8.

3.3.3. THE CASE OF SMOOTH FUNCTIONS

The most important algebra in our context is A =C∞(M), the algebra of smooth func-

tions on a smooth manifold M with its standard Fréchet structure, see for example

[Trè67, Chapter 10.1] for details. The following theorem on its bornological/continuous

Hochschild homology with coefficients in itself its well-established, see [Con85] for

the cohomological proof when M is compact, and [Pfl98], [Tel98] for extensions to the

noncompact case.

Theorem 3.3.15. Let M be a smooth manifold (possibly with boundary). Equipping the

Fréchet space of forms Ω•(M) with the zero differential, the map

HC born
• (C∞(M),C∞(M)) →Ω•(M),

f0 ⊗·· ·⊗ fn 7→ f0ddR f1 ∧·· ·∧ddR fn ∀ fi ∈C∞(M)
(3.3.21)

is a quasi-isomorphism.

The calculation of bornological cyclic homology of C∞(M) builds on the above

fact and is also well-established. We will state it here together with the additional

information that the differential has closed range.

Theorem 3.3.16. Let A =C∞(M) with its standard Fréchet space structure. Then

Hλ,born
n (C∞(M)) = Ωn(M)

ddRΩn−1(M)
⊕H n−2

dR (M)⊕H n−4
dR (M)⊕ . . . (3.3.22)

and the differential of the Connes complex Cλ,born• (C∞(M)) has closed range.

Proof. The first statement is proven, for example, in [Kha13, Example 3.10.1], and we

sketch the proof. The isomorphism from Theorem 3.3.15 induces continuous chain

map from the bornological (b,B)-double complex of C∞(M) to the following complex
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of Fréchet spaces:
. . . . . . . . .

Ω2(M) Ω1(M) Ω0(M)

Ω1(M) Ω0(M)

Ω0(M)

0 0 0

0

ddR

0

ddR

0

ddR

(3.3.23)

This map is compatible with the differentials, and if we filter both double complexes by

their columns and consider the induced spectral sequences, the map descends to an

isomorphism on the first page. Thus, by the spectral sequence comparison theorem

(see [Wei94, Theorem 5.2.12]), the original map is a quasi-isomorphism of the total

complexes. Then the calculation of bornological cyclic homology of C∞(M) follows

from the easy calculation of the total homology of (3.3.23). [Pal72, Proposition 5.4] states

that the de Rham differential associated to a smooth manifold has closed range, hence

also the total differential of the double complex (3.3.23)). Thus, by Proposition 3.3.12,

so do the differentials of the total complex of the bornological (b,B)-double complex,

and by Corollary 3.3.14 also the differential of Cλ• (A). This proves the statement.

3.3.4. THE CASE OF COMPACTLY SUPPORTED FUNCTIONS

In preparation for results about compactly supported gauge algebras, we want to estab-

lish some properties of algebras related to compactly supported functions. Specifically,

recall that one generally defines the topology of C∞
c (Rn) as a direct limit: For every

compact K ⊂Rn , define the Fréchet subalgebra

C∞
K (Rn) := { f ∈C∞(Rn) : supp f ⊂ K } ⊂C∞(Rn). (3.3.24)

Denote by D̄r (0) ⊂Rn the closed disk of radius r around 0. Then the inclusions D̄r (0) ⊂
D̄r ′ (0) for r ′ > r induce a direct system {C∞

D̄r (0)
(Rn)}r>0 with

C∞
c (Rn) = lim−−→C∞

D̄r (0)
(Rn). (3.3.25)

All spaces within this direct system are Fréchet spaces, so if one equips C∞
c (Rn) with

the inductive limit topology, it is a strict LF-space. We will avoid working with this

LF-space directly and just work with the underlying Fréchet spaces, since homology

and ⊗̂ commute with direct limits on strict LF-spaces. However, we want to remark

that the LF-algebra C∞
c (Rn) itself also has good properties with respect to bornological

homology theories, see [Mey10]. From here on, set D := D̄1(0) ⊂ Rn . We first cite the

following important factorization result from [Voi84, Theorem 3.4]:
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Theorem 3.3.17. The Fréchet algebra C∞
D (Rn) fulfills the bounded strong factorization

property: For every bounded set B ⊂C∞
D (Rn), there is a z ∈C∞

D (Rn), a continuous linear

operator T : C∞
D (Rn) →C∞

D (Rn) and a sequence {φn}n≥1 ⊂C∞
D (Rn) with

z ·T (x) = x, T (x) = lim
n→∞φn · x ∀x ∈ B. (3.3.26)

Remark 3.3.18. Note that in [Voi84, Definition 1.1], the definition of the strong factoriza-

tion property is stated slightly different, and weaker in one particularly important aspect:

They require that for every x ∈ B , the element T (x) must be contained in C∞
D (Rn) · x, the

closed ideal generated by x. This, too, would imply T (x) = limn→∞φn · x for some φn ,

but the choice of φn may depend on x. The stronger statement that the φn can be

chosen independent of x is also true, as seen in the proof [Voi84, Proposition 2.7] which

is used to prove the above theorem. This goes unstated in our cited material, but is

important not only for our application, but also for other users of this material such as

[Ewa04, Proposition 3.4], [Gon92, Theorem 7], [Wod89, Theorem 6.1].

Corollary 3.3.19. For all f ∈C∞
Dk ((Rn)k ), there are g ∈C∞

D (Rn), h ∈C∞
Dk ((Rn)k ) with

f (x1, . . . , xk ) = g (x1) ·h(x1, . . . , xk ) ∀xi ∈ D, (3.3.27)

so that if f in the above is a cycle in bar homology, so is h.

Proof. Since C∞
Dk ((Rn)k ) ∼= (C∞

D (Rn))⊗̂
k

, [Trè67, Theorem 45.1] implies that we can rep-

resent every f ∈C∞
Dk ((Rn)k )) as a certain series, i.e. there are null sequences

{ f n
1 }n≥1, . . . , { f n

k }n≥1 ⊂C∞
D (Rn) (3.3.28)

and a sequence of complex numbers {λn}n≥1 with
∑∞

n=1 |λn | < 1, so that

f =
∞∑

n=1
λn f n

1 ⊗·· ·⊗ f n
k , (3.3.29)

where the sum is absolutely convergent as a series of Fréchet space elements, meaning

that for a generating sequence of seminorms {pi }i≥0 of the topology of C∞
D (Rn), the

following real-valued series converges for all i1, . . . , ik ≥ 0:

∞∑
n=1

λn ·pi1 ( f n
1 ) . . . pik ( f n

k ). (3.3.30)

Since the set { f n
1 }n≥1 is convergent, it is bounded, and we can apply Theorem 3.3.17

to get a continuous operator T : C∞
D (Rn) → C∞

D (Rn), a function g ∈ C∞
D (Rn) and a se-

quence {φm}m≥1 ∈C∞
D (Rn) with

f n
1 = g ·T f n

1 , T f n
1 = lim

m→∞φm · f n
1 ∀n ∈N. (3.3.31)
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By continuity of T the sequence

h :=
∞∑

n=1
λn(T f n

1 )⊗·· ·⊗ f n
k (3.3.32)

is also absolutely convergent and thus defines an element in C∞
Dk ((Rn)k ). Thus

f (x1, . . . , xn) = g (x1) ·h(x1, . . . , xn) ∀xi ∈Rn . (3.3.33)

Additionally, if f is a cycle in bar homology, then, since the bar differential b′ is continu-

ous and C∞
D (Rn)-linear with respect to multiplication in the first tensor argument, we

have

lim
m→∞b′((φm f n

1 )⊗·· ·⊗ f n
k ) = lim

m→∞φm ·b′( f n
1 ⊗·· ·⊗ f n

k ). (3.3.34)

But then b′(h) = limm→∞φm ·b′( f ), so if f was a cycle in bar homology, so is h. This

concludes the proof.

Corollary 3.3.20. The bornological bar complex of C∞
D (Rn) is acyclic.

Proof. In the notation of Corollary 3.3.19, every bar chain f ∈C bar
k (C∞

D (Rn)) fulfills f =
b′(g ⊗h)+ g ⊗b′(h), with b′( f ) = 0 implying b′(h) = 0. This shows the statement.

Proposition 3.3.21. In the notation of Appendix D, consider the space

Ω•
flat(D,∂D) := {ω ∈Ω•(D) : ( j∞ω)

∣∣
∂D = 0} ⊂Ω•(D). (3.3.35)

If Ω•
flat(D,∂D) is equipped with the zero differential, then the quasi-isomorphism on the

bornological Hochschild complex

HC born
• (C∞(D)) →Ω•(D) (3.3.36)

from Theorem 3.3.15 restricts to a quasi-isomorphism

HC born
• (C∞

D (Rn)) →Ω•
flat(D,∂D). (3.3.37)

Proof. In the sense of [BL09, Section 2], the bornological Hochschild complex of the

subalgebra C∞
D (Rn) ⊂C∞(D \∂D) is locally isomorphic to the bornological Hochschild

complex of C∞(D \∂D). But then [BL09, Proposition 2.2] shows that the bornological

Hochschild homology of C∞
D (Rn) is, via the above morphism, isomorphic to the subal-

gebra of differential forms of Ω•(D \∂D) generated by the functions in C∞
D (Rn). But this

is exactly the space Ω•
flat(D,∂D).

We investigate this flat de Rham complex more in Appendix D. From the results

there, we conclude the following:
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Theorem 3.3.22. The differential of the bornological cyclic complex of C∞
D (Rn) has closed

range and

Hλ,born
k (C∞

D (Rn)) = Ωk
flat(D,∂D)

ddRΩ
k−1
flat (D,∂D)

⊕H k−2
sg (D,∂D)⊕H k−4

sg (D,∂D)⊕ . . . (3.3.38)

where the relative homology denotes relative singular homology.

Proof. By Lemma D.1, the differential ofΩ•
flat(D,∂D) has closed range, thus the quotient

map

Ω•
flat(D,∂D) → Ω•

flat(D,∂D)
dΩ•

flat(D,∂D)[−1] (3.3.39)

is a continuous map of Fréchet spaces.

The composition of the quasi-isomorphism HC born• (C∞
D (Rn)) →Ω•

flat(D,∂D) from Pro-

position 3.3.21 with this quotient map gives us a continuous morphism from the double

complex CC born•,• (C∞
D (Rn)) to the following:

...
...

...
...

...
...

Ω2
flat(D,∂D)

ddRΩ
1
flat(D,∂D)

0 H 2
sg(D,∂D) 0 H 2

sg(D,∂D) . . .

Ω1
flat(D,∂D)

ddRΩ
0
flat(D,∂D)

0 H 1
sg(D,∂D) 0 H 1

sg(D,∂D) . . .

Ω0
flat(D,∂D) 0 H 0

sg(D,∂D) 0 H 0
sg(D,∂D) . . .

(3.3.40)

All differentials in (3.3.40) are set to zero. By Lemma D.1, H k
sg(D,∂D) is either zero

or equal to
Ωn

flat(D,∂D)

ddRΩ
n−1
flat (D,∂D)

for all k ≥ 0, so the zero map and the quotient map (3.3.39)

suffice to construct the indicated map of double complexes. Calculate the spectral

sequence of C born•,• (C∞
D (Rn)) arising from filtration by columns. By Proposition 3.3.21

and Corollary 3.3.20 the first page E•,•
1 containsΩ•

flat(D,∂D) in even-numbered columns

and 0 in odd-numbered columns, so we have E•,•
1 = E•,•

2 .

By unravelling the connecting homomorphisms using the homotopy equation in the

proof of Corollary 3.3.20 and the construction of the elements in the equation from

Corollary 3.3.19, one can explicitly spell out the differential on the second page, showing

that the nontrivial differentials Ω•
flat(D,∂D) →Ω•+1

flat (D,∂D) are equal to the de Rham

differential. The cohomology of this flat, relative de Rham complex is equal to relative

singular homology, see Lemma D.1. Hence the third page of the spectral sequence is

exactly equal to the double complex (3.3.40). Hence the map of double complexes we
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constructed is an isomorphism between the third pages of the spectral sequences. By the

spectral sequence comparison theorem [Wei94, Theorem 5.2.12], this implies that the

original map of double complexes is a quasi-isomorphism of the total complexes. This

calculates the bornological cyclic homology as stated. Lastly, since the total differential

of the double complex (3.3.40) is zero, it is closed, and hence the differential of the total

complex CC born• (C∞
D (Rn)) has closed range by Proposition 3.3.12. This concludes the

proof.

Corollary 3.3.23. We have for all k ≥ 0

Hλ,born
• (C∞

c (Rn)) ∼= Ωk
c (Rn)

ddRΩ
k−1
c (Rn)

⊕H k−2
dR,c (Rn)⊕H k−4

dR,c (Rn)⊕ . . . (3.3.41)

where H•
dR,c (Rn) denotes compactly supported de Rham cohomology of Rn .

Proof. This follows from Theorem 3.3.22 and the direct limit C∞
c (Rn) = lim−−→C∞

Dr (0)
(Rn),

since homology, the cyclic action, and the bornological tensor product commute with

strict direct limits, and

Ωk
c (Rn)

ddRΩ
k−1
c (Rn)

= lim−−→
Ωk

flat(D̄r ,∂D̄r (0))

ddRΩ
k−1
flat (D̄r (0),∂D̄r (0))

. (3.3.42)

Remark 3.3.24. In preparation for what follows, we want to note that the above methods

generalize to finite, topological direct sums of copies of C∞
D (Rn), meaning

H bar,born
•

(
r⊕

i=1
C∞

D (Rn)

)
= 0, Hλ,born

k

(
r⊕

i=1
C∞

D (Rn)

)
∼=

r⊕
i=1

Hλ
k

(
C∞

D (Rn)
)

. (3.3.43)

3.4. LODAY–QUILLEN–TSYGAN THEOREMS FOR FRÉCHET AL-

GEBRAS
In this section, we want to extend the classical Loday–Quillen–Tsygan theorem to the

setting of certain bornological algebras. For a detailed exposition of the algebraic Loday–

Quillen–Tsygan theorem, we direct the reader to [Lod92, Chapter 9 & 10], or, for an

abridged version of the relevant details, Appendix C.

3.4.1. A GENERAL TOPOLOGICAL LQT-THEOREM

Definition 3.4.1. Let A be a bornological algebra and n ∈N. Consider the bornological

Lie algebra

gln(A) := gln(K) ⊗̂ A (3.4.1)
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whose Lie bracket is induced by the products on gln(K) and A in the following way:

[g ⊗a,h ⊗b] := (g h)⊗ (ab)− (hg )⊗ (ba) ∀g ,h ∈ gl(K), a,b ∈ A. (3.4.2)

For m ≥ n, the inclusions gln(A) → glm(A) define a direct system of Lie algebras, and we

can define

gl(A) := gl∞(A) := lim−−→gln(A) (3.4.3)

Remark 3.4.2. Note that all gln(K) for 1 ≤ n <∞ are finite-dimensional. Hence if A is a

complete bornological algebra, we can equivalently write

gln(K) ⊗̂ A = gln(K)⊗β A = gln(K)⊗ A. (3.4.4)

If A is Fréchet, then all gln(K)⊗ A are Fréchet, so gl(A) is a strict LF-space. In this case,

since the bornological tensor product on strict LF-spaces is compatible with inductive

limits, we have

gl(A) = lim−−→(gln(K) ⊗̂ A) ∼= gl(K) ⊗̂ A. (3.4.5)

Definition 3.4.3. Let g be a bornological Lie algebra. We define bornological Lie algebra

homology of this g to be the homology of the bornological Chevalley–Eilenberg chain

complex

C born
• (g) :=

(
K

0← Λ̂1g
d← Λ̂2g

d← . . .
)

, (3.4.6)

where Λkg denotes the coinvariants of ⊗kg with respect to the action of the symmetric

group Σk by antisymmetrization, and the hat denotes completion in the bornological

tensor product. The differential is the extension of the Chevalley–Eilenberg differential

to the completion:

d(g1 ∧·· ·∧ gn) := ∑
i< j

(−1)i+ j−1[gi , g j ]∧ g1 ∧·· · ĝi · · · ĝ j · · ·∧ gn ∀gi ∈ g. (3.4.7)

Proposition 3.4.4. For every n ∈N and bornological algebra A, the space gln(A) admits

an action by gln(K). If A is unital, then the reduction to coinvariants

C born
• (gln(A)) →C born

• (gln(A))gln (K) (3.4.8)

is a quasi-isomorphism.

Proof. Clearly, gln(K) acts on gln(A) ∼= gln(K)⊗ A by a tensor product of the adjoint

action and the trivial action. Unitality of A implies that gln(K) ⊂ gln(A) exists as a

subalgebra, and hence gln(K) acts on the gln(A)-cochains. By Proposition 3.2.8, the

completed bornological tensor product is associative and commutative, and if one of
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its factors is finite-dimensional, it agrees with the algebraic tensor product as a vector

space. Hence:

C born
k (gln(A)) ∼=

(
gln(K)⊗

k ⊗ A⊗̂k )
Σk

. (3.4.9)

We know that since gln(K) acts trivially on A, and the finite-dimensional tensor mod-

ule gln(K)⊗
k

is completely reducible, hence C born
k (gln(A)) is completely reducible. From

here on, the proof is essentially identical to the proof in algebraic setting, see [Lod92,

Proposition 10.1.18]. Complete reducibility gives us

C born
• (gln(A)) =C born

• (gln(A))gln (K) ⊕L•, (3.4.10)

where L• is a direct sum of simple modules, all of which gln(K) acts nontrivially on. Since

the gln(K)-action commutes with the Lie algebra differential, this is even a decomposi-

tion into subcomplexes. We can further decompose L• = Z•⊕K•, where Z• = L•∩kerd ,

and K• is a module-theoretic complement of Z• in L• so that both Z•,K• are direct

sums of simple modules. Clearly, H•(L•) = H•(Z•). A simple gln(K)-module M ⊂ Z• is

generated by any of its elements that gln(K) acts nontrivially on. As a consequence,

every element of L• is of the form X · c ∈ Z• for some cochain c ∈ Z• and X ∈ gl(K). We

further have, for all X ∈ gln(K) and c ∈C•(gln(A)) the homotopy equation

X · c = d(X ∧ c)+X ∧dc. (3.4.11)

Hence every element of Z• is of the form X · c = d(X ∧ c), so a boundary. This shows

that Z• and L• are acyclic, and the proof is done.

Corollary 3.4.5. If A is a unital Fréchet algebra, then

H born
• (gl(A)) ∼= H•

(⊕
k

(
K[Σk ]⊗ A⊗̂k )

Σk

)
. (3.4.12)

Proof. By Proposition 3.2.8, the tensor product ⊗̂ commutes with direct limits on LF-

spaces, so

C born
k (gl(A)) =

(
gl(K)

⊗k
β ⊗β A⊗̂k

)
Σk

= lim−−→
(
gln(K)⊗

k ⊗ A⊗̂k )
Σk

= lim−−→C born
k (gln(A)).

(3.4.13)

By Proposition 3.4.4, the reduction to coinvariants

C born
• (gln(A)) →C born

• (gln(A))gln (K) (3.4.14)

is a quasi-isomorphism for all n ∈N. From the case A =K considered in Propostion C.2,

we get, for n ≥ k, the isomorphism

C born
• (gln(A))gln (K)

∼=
((
gln(K)⊗

k
)
gln (K)

⊗ A⊗̂k
)
Σk

∼=
(
K[Σk ]⊗ A⊗̂k )

Σk
. (3.4.15)



3

86 3. CONTINUOUS COHOMOLOGY OF GAUGE ALGEBRAS

Finally, since homology commutes with direct limits, and as every graded component

of C born• (gln(A))gln (K) becomes constant at some point in the direct limit, we get the

following chain of isomorphisms:

H born
• (gl(A)) ∼= lim−−→H born

• (gln(A))

∼= lim−−→H•(C born
• (gln(A))gln (K)) ∼= H•

(⊕
k

(
K[Σk ]⊗ A⊗̂k )

Σk

)
.

(3.4.16)

Hence we may work with the latter complex instead, which is in some sense simpler:

Since all Σk are finite groups, it is a complex of Fréchet spaces. A drawback is that the

differential on this subcomplex is more difficult to describe. Regardless, we have the

following:

Proposition 3.4.6. Let A be a Fréchet algebra. The isomorphism of chain complexes

θ :Λ•Cλ
•−1(A) → ⊕

k∈N

(
K[Σk ]⊗ A⊗k

)
Σk

(3.4.17)

from Proposition C.3 extends to a continuous isomorphism of chain complexes

θ̂ : Λ̂•Cλ,born
•−1 (A) → ⊕

k∈N

(
K[Σk ]⊗ A⊗̂k )

Σk
. (3.4.18)

Proof. By definition of θ, we can decompose

Λ•Cλ
•−1(A) = ⊕

k≥1

⊕
[σ]⊂Σk

Z[σ], (3.4.19)

where the direct sum over [σ] is carried out over all conjugacy classes [σ] ∈Σk , and Z[σ]

the span of all elements [u1]∧·· ·∧ [ur ] ∈Λ•Cλ
•−1(A) with

∃τ ∈ [σ] : θ([u1]∧·· ·∧ [ur ]) = [τ⊗ (u1 ⊗·· ·⊗ur )] . (3.4.20)

For each k ≥ 1 and conjugacy class [σ] ⊂Σk , choose a representative σ in cycle decom-

position

σ= (1 · · · k1)◦ (k1 +1 · · · k2)◦ · · · ◦ (kr−1 +1 · · · kr ). (3.4.21)

Then, on Z[σ], the map θ arises from the continuous map

A⊗k →K[Σk ]⊗ A⊗k
, a1 ⊗·· ·⊗ak 7→σ⊗a1 ⊗·· ·⊗ak , (3.4.22)

by composition with the quotient map

K[Σk ]⊗ A⊗k →
(
K[Σk ]⊗ A⊗k

)
Σk

, (3.4.23)
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factoring through the kernel, and then restricting to the direct summand Z[σ] in the

kernel. These actions leave continuity invariant, so θ, when restricted to the direct

summand Z[σ], inherits continuity. But then θ itself is continuous. Also, for every

conjugacy class [σ] ⊂ Σk , the restriction θ
∣∣

Z[σ]
: Z[σ] → θ(Z[σ]) admits a continuous

inverse, induced in the same way by a map

K[[σ]]⊗ A⊗k → A⊗k
, (τ−1στ)⊗a1 ⊗·· ·⊗ak 7→ aτ(1) ⊗·· ·⊗aτ(k). (3.4.24)

The above assignment defines a continuous map due to the finiteness of the conjugacy

class [σ]. Since both θ and its inverse are continuous, they extend to continuous

maps between the completions of their respective domains and codomains, and these

extensions still compose to the identity. Thus, these extensions are isomorphisms of

chain complexes, proving the statement.

Corollary 3.4.7. Let A be a unital Fréchet algebra. There is a continuous quasi-isomor-

phism

C born
• (gl(A)) → Λ̂•Cλ,born

•−1 (A). (3.4.25)

Corollary 3.3.11 then finally implies:

Theorem 3.4.8. Let A be a nuclear unital Fréchet algebra, and assume that the differential

of the bornological cyclic complex Cλ,born• (A) has closed range. Then we have, for all r,n ∈
Nwith r +1 ≤ n

H born
r (gln(A)) ∼=

(
Λ̂•Hλ,born

•−1 (A)
)

r
, (3.4.26)

and

H born
• (gl(A)) ∼= Λ̂•Hλ,born

•−1 (A). (3.4.27)

Remark 3.4.9. Note that the only place where it mattered that we used gl(A) rather

than any of the other limits of classical simple Lie algebras sl(A), sp(A) or so(A) was

in the explicit form of the coinvariants for the tensor modules gl(K)⊗
k

. We will not

explicitly present this, but we do want to remark that one can gain statements analogous

to Theorem 3.4.8 for these other Lie algebras with very little modification, save that

one occasionally may need to replace cyclic homology with the closely related dihedral

homology, which we have not defined here. We direct the reader to [Lod92, Chapter 9 &

10] for a detailed discussion of the algebraic setting.

Lastly, these results extend to certain non-unital algebras as well. Specifically, in the

algebraic setting one can weaken the assumption of unitality to H-unitality, a property

which is defined as the acyclicity of the algebraic bar complex of A, see [Han88] for a

proof in the finite-dimensional setting and the preprint [Cor05] (supplementing the

publication [Cn06]) for an explicit generalization to infinite-dimensional algebras. We

delay the lengthy proof to Section 3.7:
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Theorem 3.4.10. Let A be a nuclear Fréchet algebra, and assume that the differential of

the bornological cyclic complex Cλ,born• (A) has closed range. Additionally, assume that A

is bornologically H-unital, i.e. the bornological bar complex C bar,born(A) is acyclic. Then

we have, for all r,n ∈Nwith 2r +1 ≤ n:

H born
r (gln(A)) ∼=

(
Λ̂•Hλ,born

•−1 (A)
)

r
, (3.4.28)

and

H born
• (gl(A)) ∼= Λ̂•Hλ,born

•−1 (A) (3.4.29)

We give a rough sketch of the proof here: The complex C born• (gln(A)) can be de-

composed into isotypic components with respect to the action of gln(K). In the unital

case, we have seen that only the invariant component contributes to homology. In

a similar vein to the proof of Proposition 3.4.6, one constructs a morphism of every

component to a certain complex involving combinations of the bar complex and the

Connes complex of A, see the construction of φ in [Cor05, Theorem 3.1]. As one takes

the direct limit n →∞, these morphisms become stable isomorphisms. In every isotypic

component in which the bornological bar complex appears nontrivially, the acyclicity

of the bornological bar complex forces the whole component to become acyclic; this

leaves only the invariant component to contribute to homology, and this component is

related to the cyclic complex exactly as in the unital setting.

3.4.2. APPLICATION TO FRÉCHET ALGEBRAS OF SMOOTH FUNCTIONS

We now apply the results of the previous section to the case when A equals some spaces

of smooth functions.

Corollary 3.4.11. Let M be a smooth manifold, we have

H born
• (gl(C∞(M))) ∼= Λ̂•Hλ,born

• (C∞(M)), (3.4.30)

H born
• (gl(C∞

c (Rn))) ∼= Λ̂•Hλ,born
• (C∞

c (Rn)). (3.4.31)

Proof. We have established in Theorem 3.3.16 that the closed-range assumption of

Theorem 3.4.8 holds for the nuclear Fréchet algebra C∞(M), so the first isomorphism is

shown. Further, we have shown in Corollary 3.3.20 and Theorem 3.3.22 that C∞
D̄r (0)

(Rn)

is bornologically H-unital for arbitrary r > 0 and fulfills the closed-range assumption of

Theorem 3.4.10. This shows

H born
• (gl(C∞

D̄r (0)
(Rn))) = Λ̂•Hλ,born

•−1 (C∞
D̄r (0)

(Rn)). (3.4.32)

Now, homology and ⊗̂ commute with direct limits, and so we have

H born
• (gl(C∞

c (Rn))) = lim−−→H born
• (gl(C∞

D̄r (0)
(Rn)))

= lim−−→Λ̂•Hλ,born
•−1 (C∞

D̄r (0)
(Rn)) = Λ̂•Hλ,born

• (C∞
c (Rn)).

(3.4.33)
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3.5. BORNOLOGICAL HOMOLOGY OF NONTRIVIAL GAUGE AL-

GEBRAS
Now, let M be a finite-dimensional, smooth manifold, H a finite-dimensional Lie group

with associated Lie algebra h, and P → M a principal H-bundle. Consider the adjoint

bundle AdP := P ×Ad h. We would like to understand the bornological Lie algebra ho-

mology of the compactly supported gauge algebra Γc (AdP ). For small open sets U ⊂ M ,

sections of AdP
∣∣
U →U can be identified with h⊗C∞(U ). As a consequence, for simple

classical Lie algebras h, the methods of the previous section allow a calculation of the

stable part of bornological homology H born• (h⊗C∞
c (U )). By repeating the local-to-global

methods from Chapter 2, we will be able to deduce information about H born• (Γc (AdP ))

from this local data. As a model of the more general case, we will only consider the

case h = gln(K) for some 1 ≤ n < ∞, as this connects directly to the methods from

Section 3.4. We emphasize again that these methods are not exclusive to Gelfand–Fuks

cohomology or gauga algebras: In more generality, they can be applied to calculate

bornological Lie algebra homology of Γc (A) for any Lie algebroid A → M , assuming that

the bornological Lie algebra homology of Γc (A
∣∣
U ) can be calculated whenever U is a

small disk over which A trivializes.

3.5.1. COSHEAVES OF LIE ALGEBRA CHAINS

Fix in this subsection a smooth, locally trivial Lie algebra bundle K → M with finite-

dimensional fiber gln(K) for some 1 ≤ n <∞. Whenever we speak of (pre-)cosheaves

in the following, we think of them as valued in the category of abelian groups as in

Appendix A, but this is largely unimportant. We first introduce some notation: Define

for a compact K ⊂ M the closed Fréchet subspace

ΓK (K ) := {s ∈ Γ(K ) : supp s ⊂ K } ⊂ Γ(K ). (3.5.1)

Then, given any compact exhaustion {Kn} of M , the topology on the compactly sup-

ported section space arises from the direct limit topology Γc (K ) = lim−−→ΓKn (K ). It is well

known that if we have two vector bundles A,B → M , then

Γ(A) ⊗̂Γ(B) ∼= Γ(A⊠B), (3.5.2)

where A⊠B := pr∗1 A ⊗pr∗2 B → M × M denotes the exterior tensor product of vector

bundles, see for example [Trè67, Theorem 51.6] for the statement in trivial fibers. Then,

using Proposition 3.2.8:

Γc (K )⊗̂
k ∼= lim−−→ΓKn (K )⊗̂

k ∼= lim−−→ΓKn×···×Kn (K ⊠k
) ∼= Γc (K ⊠k

). (3.5.3)

This justifies the following definition:
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Definition 3.5.1. We define, for every k ≥ 1 the precosheaf Bk (K , ·) over M k , assigning

to an open set U ⊂ M k the set

Bk (K ,U ) := Γc (K ⊠k ∣∣
U ). (3.5.4)

The precosheaf map Γc (K ⊠k ∣∣
U ) → Γc (K ⊠k ∣∣

V ) associated to the inclusion U ⊂ V is

defined via extension by zero.

Remark 3.5.2. From this definition and the previous isomorphism, we get the bornolo-

gical Lie algebra complex via restricting to global sections and Σk -coinvariants, i.e. for

all k ≥ 1 we have

C born
k (Γc (K )) ∼= (Bk (K , M k ))Σk . (3.5.5)

Note in particular that we set the zero degree part to zero, so we think of Bk as a reduced

complex.

Since the precosheaf Bk (K , ·) arises from the compactly supported sections of a soft

sheaf (given by the sections of a smooth vector bundle), Proposition A.5 implies:

Lemma 3.5.3. For every k ≥ 1, the precosheaf Bk (K , ·) over M k is a flabby cosheaf.

3.5.2. COSHEAVES OF COMPACTLY SUPPORTED DIFFERENTIAL FORMS

Fix a smooth manifold M of dimension n, and some k ∈N0 with 0 ≤ k ≤ n.

Definition 3.5.4. Define the precosheaves Ωk
c and Z k , respectively given by assigning

to an open U ⊂ M the compactly supported k-forms Ωk
c (U ) and

Z k (U ) := Ωk
c (U )

ddRΩ
k−1
c (U )

. (3.5.6)

The extension maps of Ωk
c are induced by the extension of compactly supported forms

by zero. They induce the extension maps on the quotient Z k .

We find:

Lemma 3.5.5. The precosheaves Ωk
c and Z k over M are cosheaves. Further, Ωk

c is flabby

and Z k admits the flabby coresolution

0 →Ω0
c →Ω1

c →···→Ωk
c → Z k → 0, (3.5.7)

where the last nontrivial map is the canonical quotient map, and the other nontrivial

maps are given by the de Rham differential.

Proof. TheΩk
c are flabby cosheaves by Proposition A.5, since they arise as the precosheaf

of compactly supported sections of the soft sheaf of differential forms on M . The de
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Rham differential induces a cosheaf morphism Ωk−1
c →Ωk

c whose cokernel precosheaf

equals exactly Z k , and cokernels precosheaves of cosheaf morphisms are automatically

cosheaves [Bre97, Chapter VI, Proposition 1.2]. The Poincaré lemma for Ω•
c (Rn) implies

that the sequence (3.5.7) is locally exact, and hence it is a flabby coresolution for Z k .

The statement is proven.

The coresolution shows, together with Proposition A.8:

Corollary 3.5.6. The Čech homology of Z k equals

Ȟr (M , Z k ) =
Z k (M) if r = 0,

H k−r
dR,c (M) if r > 0,

(3.5.8)

where H•
dR,c (M) denotes compactly supported de Rham cohomology of M.

We will be working with certain products of the above cosheaves over the cartesian

products M 1, M 2, M 3, . . . . Let us formalize what we mean by this:

Lemma 3.5.7. Let l ∈N and 0 ≤ k1, . . . ,kl ≤ n. There is a cosheaf Z k1 ⊗̂ · · · ⊗̂Z kl over M l

with the property that for all open U1, . . . ,Ul ⊂ M we have

(Z k1 ⊗̂ · · · ⊗̂Z kl )(U1 ×·· ·×Ul ) := Z k1 (U1) ⊗̂ · · · ⊗̂Z kl (Ul ), (3.5.9)

and the cosheaf map associated to an inclusion U1 × ·· ·×Ul ⊂ V1 × ·· ·×Vl equals the

tensor product of the extension maps of the Z k1 , . . . , Z kl .

Proof. For simplicity, we treat the case l = 2, from which the general case easily follows.

Note also that this proof relies on the concept of a cosheaf on a topological base, which

we elaborate on in Appendix A.

Consider the topological base B := {U ×V : U ,V ⊂ M open} of M 2, and the precosheaf

Ω
k1
c ⊗̂Ωk2

c on B given by

(Ωk1
c ⊗̂Ωk2

c )(U ×V ) :=Ωk1
c (U ) ⊗̂Ωk2

c (V ) ∀U ×V ∈B. (3.5.10)

Similar to (3.5.2), we have for all open U ,V ⊂ M the isomorphism

Ω
k1
c (U ) ⊗̂Ωk2

c (V ) ∼= Γc

((
Λk1 T ∗M⊠Λk2 T ∗M

)∣∣
U×V

)
, (3.5.11)

which extends to an isomorphism of precosheaves on the base B. The right-hand side

defines a cosheaf on M 2 as the cosheaf of compactly supported sections of a vector

bundle. Hence, it restricts to a cosheaf on the base B, and thus U×V 7→Ω
k1
c (U )⊗̂Ωk2 (V )

defines a cosheaf on the base B. Consider the morphism of cosheaves on B given by

ddR ⊗̂ id :Ωk1−1
c ⊗̂Ωk2

c →Ω
k1
c ⊗̂Ωk2

c . (3.5.12)
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IfΩ•
K (U ) denotes the Fréchet space of differential forms on an open set U whose support

is contained in a compact set K , and {Kn}n≥1 and {Ln}n≥1 denote compact exhaustions

of open sets U ,V ⊂ M , then the image of the morphism d ⊗̂ id at the open set U ×V is

lim−−→ddRΩ
k1−1
Kn

(U ) ⊗̂Ωk2
Ln

(V ) = ddRΩ
k1−1
c (U ) ⊗̂Ωk2

c (V ). (3.5.13)

The range of the de Rham differential d :Ωk
Kn

(U ) →Ωk+1
Kn

(U ) is closed (c.f. Lemma D.1),

so using Proposition 3.2.10 we deduce

Ω
k1
c (U ) ⊗̂Ωk2

c (V )

ddRΩ
k1−1
c (U ) ⊗̂Ωk2

c (V )
∼= lim−−→

Ω
k1
Kn

(U ) ⊗̂Ωk2
Ln

(V )

ddRΩ
k1−1
Kn

(U ) ⊗̂Ωk2
Ln

(V )

∼= lim−−→
Ω

k1
Kn

(U )

ddRΩ
k1−1
Kn

(U )
⊗̂Ωk2

Ln
(V ) ∼= Z k1

c (U ) ⊗̂Ωk2
c (V ).

(3.5.14)

By Proposition A.11 the cokernel of ddR ⊗̂ id defines a cosheaf on the base B, and, by

the previous calculations, this cosheaf on B assumes on U ×V ∈B the shape Z k1 (U ) ⊗̂
Ωk2 (V ); we denote this cosheaf by Z k1 ⊗̂Ωk2 . Analogously by considering the cokernel

of

Z k1 ⊗̂Ωk2−1
c

id⊗̂ddR→ Z k1 ⊗̂Ωk2
c (3.5.15)

we find the cosheaf Z k1 ⊗̂Z k2 on the base B, which admits for all U ×V ∈B the desired

local form

(Z k1 ⊗̂Z k2 )(U ×V ) = Z k1 (U ) ⊗̂Z k2 (V ). (3.5.16)

Now the statement follows since a cosheaf on B extends uniquely to a cosheaf on M by

Theorem A.10.

Unfortunately, we are currently not able to confidently state the Čech homology

of these product cosheaves. Let us remark the difficulties. Consider open covers U ,V

of M , and the arising product cover U ×V := {U ×V : U ∈U ,V ∈ V } of M 2. Then one

can deduce

Ȟ•(U ×V , Z k1 ⊗̂Z k2 ) ∼= Ȟ•(U , Z k1 ) ⊗̂ Ȟ•(V , Z k2 ), (3.5.17)

using that the respective Čech complex for Z k1 ⊗̂Z k2 factorizes, together with a direct

limit argument and the Künneth formula from Theorem 3.3.11. However, product

covers U ×V do not generally constitute a cofinal subsystem in the directed system of

open covers of M 2, and as a consequence, the Čech homology can not be deduced from

the associated inverse system. Without this cofinality, it is unclear to the author how to

arrive at a Künneth theorem in the topological setting, such as [Cas73] and [Kau67] –

see also [Kau68], where the non-cofinality of product covers is acknowledged. We state

the likely Künneth formula for our setting as a conjecture.
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Conjecture 3.5.8. If U is a cover of M l so that any intersection of elements in U are

diffeomorphic to a finite union of Euclidean spaces, then

Ȟ•(U , Z k1 ⊗̂ · · · ⊗̂Z kl ) ∼= Ȟ•(M , Z k1 ) ⊗̂ · · · ⊗̂ Ȟ•(M , Z kl ). (3.5.18)

3.5.3. A GLOBALIZING ČECH DOUBLE COMPLEX

Let us use the tools developed so far to examine homology of nontrivial glt (K)-bundles.

The idea of using local-to-global principles for the cohomology of section spaces orig-

inates from Bott, Segal, Gelfand and Fuks, who used a similar strategy to describe

the continuous Lie algebra cohomology of vector fields, see [BS77] and [GF69]. We

transfer this idea to our current setting, using methods closely related to the theory of

factorization algebras, see [CG17].

Definition 3.5.9. Let q ≥ 1 and U := {Uα} an open cover of M . The Čech-gauge double

complex associated to U is the following double complex

...
...

⊕
αC2(K ,Uα)

⊕
α,βC2(K ,Uα∩Uβ) . . .

⊕
αC1(K ,Uα)

⊕
α,βC1(K ,Uα∩Uβ) . . .

(3.5.19)

The horizontal differentials are given by the Čech differentials associated to the pre-

cosheaves Ck (K , ·), and the vertical differentials arise from the Chevalley–Eilenberg

differential.

Remark 3.5.10. Once again, we disregard the zeroth homology groups on purpose,

since they do not behave quite as neatly in the cosheaf-theoretic sense, and are only

connected to the complex by a zero differential.

As in Chapter 2, it will prove insightful to calculate the spectral sequences associated

to this double complex in certain cases. However, since this is a first quadrant double

complex, we do not need to be as careful regarding convergence phenomena. This,

in particular, allows us to skip defining diagonal cochains and k-good covers as in

Definition 2.5.9.

For the rest of the chapter, equip the manifold M with an arbitrary Riemannian metric.

Definition 3.5.11. We say that U ⊂ M is strongly convex if all two points x, y ∈U are

connected by a unique, minimizing geodesic contained in U . The geodesic Weiss cover

U associated to M is given by

U := {B1 ∪·· ·∪Br : r ∈N, Bi ∩B j =; for i ̸= j , Bi ⊂ M open & geodesically convex}.
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Remark 3.5.12. The geodesic Weiss cover is indeed a Weiss cover in the language of

factorization algebras, cf. Remark 2.5.10 or [CG17]. Note further that that if n = dim M ,

then nonempty strongly convex sets in M are well known to be diffeomorphic to Rn ,

and intersections of strongly convex sets remain strongly convex. Hence, this cover has

the property that all nonempty, finite intersections of elements of U are diffeomorphic

to a finite, disjoint union of copies of Rn .

Proposition 3.5.13. For every r ≥ 1, the r -th row of the Čech-gauge double complex

associated to the geodesic Weiss cover U are acyclic in nonzero degree, and their zeroth

homology is C born
r (Γc (K )).

Proof. Recall from Remark 3.5.2

Cr (K ,U ) = (
Br (K ,U r )

)
Σr

. (3.5.20)

As a consequence, the r -th row of the double complex is equal to the Σr -coinvariants

associated to the Čech complex of the cosheaf Br (K , ·) with respect to the cover U r of

M r . Taking coinvariants with respect to the finite group Σr is an exact functor, hence

the calculation of the homologies of the rows reduces to calculating the Čech homology

of the cosheaf Br (K , ·) and taking coinvariants afterwards. But this cosheaf is flabby

and thus has trivial Čech homology, see Proposition A.6. This proves the statement.

Corollary 3.5.14. The total homology of the Čech-gauge double complex associated to

the geodesic Weiss cover is equal to H born• (Γc (K )).

Hence the spectral sequence associated to the horizontal filtration will give us infor-

mation about the desired global homology, assuming we understand the homology of

the restricted algebras on all U ∈U , and we understand the Čech homology associated

to the precosheaves of the homology groups U 7→ H•(C•(K ,U )) associated with the

geodesic Weiss cover U .

For a simple presentation of the following spectral sequence, let us introduce a piece

of notation. Fix some n ∈N. Then we set, for all k ∈N0:

ξn(k) := min{k,n + (k −n mod 2)}, (3.5.21)

in other words, the sequence {ξn(k)}k≥0 assumes the shape

0,1,2, . . . ,n −1,n,n +1,n,n +1,n, . . . (3.5.22)

Then, due to the periodic nature of cyclic homology, we can rephrase Corollary 3.3.23 in

the following way:

Hλ,born
k (C∞(Rn)) ∼= Ω

ξn (k)
c (Rn)

ddRΩ
ξn (k)−1
c (Rn)

= Z ξn (k)(Rn) ∀k ≥ 0. (3.5.23)



3.5. BORNOLOGICAL HOMOLOGY OF NONTRIVIAL GAUGE ALGEBRAS

3

95

Theorem 3.5.15. Let M be a manifold of finite dimension n and P → M a principal fiber

bundle with generic fiber GLt (R), and set q := ⌊ t−1
2 ⌋. Denote by Z k for k ≥ 0 the cosheaves

over M from Definition 3.5.4 for k ≥ 0. Then there is a homological first-quadrant spectral

sequence {E•
r,s }r,s≥0 with

E k
r,s =⇒ H born

r+s (Γc (Ad(P ))). (3.5.24)

For r ≥ 0 and 1 ≤ s ≤ q, we can express the second page E 2
r,s with the notation (3.5.21):

E 2
r,s =

⊕
k≥1

( ⊕
s1+···+sk=s

Ȟr

(
U k , Z ξn (s1−1) ⊗̂ · · · ⊗̂Z ξn (sk−1)

))
Σk

(3.5.25)

Remark 3.5.16. Assuming Conjecture 3.5.8, we find that, graded by its diagonals, the

second page {E 2
r,s }r,s≥0 looks exactly like the compactly supported analog of the contin-

uous homology H•(gl(C∞(M)) = Λ̂•Hλ,born
•−1 (C∞(M)) in total degree ≤ q , all instances

of C∞(M) and Ω•(M) replaced by C∞
c (M) and Ω•

c (M), respectively. Thus, while it is not

instantly recognizable, the second page of this spectral sequence is a double grading of

what one would expect bornological Lie algebra homology of gln(C∞
c (M)) to be, inter-

twining the homological grading with a certain grading that encodes the “locality” of

the data.

Proof of Theorem 3.5.15. We consider the Čech-gauge double complex associated to the

geodesic Weiss cover U , and consider the spectral sequence arising by filtering along

the columns. By standard arguments, this first quadrant spectral sequence converges

towards the total homology of the double complex, which is equal to H born• (Γc (Ad(P )))

due to Corollary 3.5.14. It remains to describe the second page. The differential on

the zeroth page is simply given by taking the homology in vertical direction. If s ≤ q

and U ∈U , then

H born
s (glt (C∞

c (U ))) ∼= H born
s (gl(C∞

c (U ))). (3.5.26)

If further U ∼=⊔r
i=1R

n , then

Γc (K
∣∣
U ) ∼=

r⊕
i=1

gl(C∞
c (Rn)). (3.5.27)

With Remark 3.3.24 and (3.5.23) we get

H born
• (gl(C∞

c (U ))) ∼= Λ̂•
(

r⊕
i=1

Hλ,born
•−1 (C∞

c (Rn))

)
∼= Λ̂•

(
Z ξn (•−1)(U )

)
. (3.5.28)

In degrees, this translates to:

H born
s (Γc (K

∣∣
U )) ∼=

⊕
k≥1

( ⊕
s1+···+sk=s

Z ξn (s1−1)(U ) ⊗̂ · · · ⊗̂Z ξn (sk−1)(U )

)
Σk

. (3.5.29)
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This calculates the first page of the spectral sequence. Now, recall that the horizontal

differential of the double complex arises from a Čech differential. To understand how

this differential acts on the first page, it suffices to understand, for open sets U ⊂V ⊂Rn

with U ∼=V ∼=Rn , the composition

H born
k (glt (C∞

c (U ))) ∼= H born
k (Γc (K

∣∣
U ))

→ H born
k (Γc (K

∣∣
V )) ∼= H born

k (glt (C∞
c (V ))),

(3.5.30)

where the middle map is induced by the extension map

C born
k (Γc (K

∣∣
U )) →C born

k (Γc (K
∣∣
V )). (3.5.31)

The differential of the first page is then given as a the usual Čech-theoretic, antisym-

metric linear combination of such maps. Under the identification of H born
k (gl(C∞

c (U )))

with antisymmetrized tensor products of terms Z k (U ), the map (3.5.30) is induced by

extensions ιVU : Z k (U ) → Z k (V ), up to an action by the transition function gUV : U ∩V →
GLt (R) arising from the choice of local trivializations on U and V . Now recall that

on Ad(P ), the transition functions act by the adjoint action of GLt (K). However, in the

calculation of H ι
k (glt (C∞

c (U ))) we have seen that we may reduce to the glt (K) tensor

invariants, which are equal to the GLt (K) tensor invariants by [Lod92, Lemma 9.2.5].

Thus the transition functions act trivially on this space. Hence, under the isomorphism

(3.5.29), the map (3.5.30) can be identified with the appropriate direct sum of extension

maps for the product cosheaves Z s1−1 ⊗̂ · · · ⊗̂Z sk−1. As a consequence, the r -th row on

the first page of the spectral sequence can be identified with the Σr -coinvariants of the

direct sum of Čech complexes of product cosheaves with respect to the cover U r . This

concludes the proof.

Writing out the spectral sequence in low degrees, the previous theorem gives us the

following corollary:

Corollary 3.5.17. Let P → M be a principal GLt (K)-bundle and dim M ≥ 1, and assume

that Conjecture 3.5.8 holds.

i) If t ≥ 3, then

H born
1 (Γc (Ad(P ))) ∼=Ω0

c (M). (3.5.32)

ii) If t ≥ 5, then

H born
2 (Γc (Ad(P ))) ∼=

(
Ω0

c (M)⊗̂
2)
Σ2

⊕ Ω1
c (M)

ddRΩ
0
c (M)

. (3.5.33)

iii) If t ≥ 7, then

H born
3 (Γc (Ad(P )) ∼=(

Ω0
c (M)⊗̂

3)
Σ3

⊕
(

Ω1
c (M)

ddRΩ
0
c (M)

⊗̂Ω0
c (M)

)
⊕ Ω2

c (M)

ddRΩ
1
c (M)

⊕H 0
c (M).

(3.5.34)
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We emphasize once again that, using the analogs of the LQT theorems for G any of

the other classical Lie groups (cf. Remark 3.4.9), our methods can straightforwardly be

adapted to construct spectral sequences for principal G-bundles.

3.6. COMMENTS AND FURTHER OUTLOOK ON THE SPECTRAL

SEQUENCE
We want to dedicate this section to a large amount of comments that can be made about

Theorem 3.5.15, its assumptions and possible outlooks for future generalizations.

Firstly, the only reason we needed to restrict to bundles Ad(P ) → M was to make sure that

the transition functions of the bundle can be chosen to act by inner automorphisms of

the Lie algebra glt (K). In a more general Lie algebra bundle, outer automorphisms may

show up, i.e. automorphisms which are not in the image of Ad : GLt (K) → Aut(glt (K)).

In this case, one may need to twist the cosheaf structure of the Z k by a locally constant

system depending on the bundle. Hence, by including this data, it should be a straight-

forward exercise to generalize Theorem 3.5.15 to more general glt (K)-bundles.

Secondly, in contrast to Theorems 3.4.8 and 3.4.10, one cannot phrase Theorem 3.5.15

in terms of Lie algebra bundles with infinite-dimensional fiber gl(K), since the local

sections in this situation use the wrong tensor product: [Trè67, Theorem 44.1] implies

C∞
c (U ,gl(K)) ∼=C∞

c (U )⊗π gl(K), (3.6.1)

which is not necessarily equal to C∞
c (U ) ⊗̂gl(K) = gl(C∞

c (U )), as in general ⊗β ̸= ⊗π on

LF-spaces.

Thirdly, the reader may be tempted to consider the non-compactly supported analog of

Theorem 3.5.15. Constructing this would, in some ways, be more standard, as this would

rather use the sheaf theory associated to the sheaf of sections of Ad(P ) → M , rather than

the cosheaf theory of its compactly supported counterpart. Another advantage would

be that the stabilization

H born
k (gl(C∞(Rn))) ∼= H born

k (gln(C∞(Rn))) (3.6.2)

occurs already when k+1 ≤ n, which is strictly stronger than the stabilization for C∞
c (Rn)

in Theorem 3.4.10, occurring only when 2k +1 ≤ n. However, the crucial difference is

that the arising double complex would not be of first-quadrant anymore, as it arises as

a mixture of a cohomological Čech complex with a homological Lie algebra complex.

Such double complexes are in many ways more inconvenient: For one, it is not imme-

diately clear whether the spectral sequences associated to the horizontal and vertical

filtration converge to the same infinity-page, and even if they do, the relevant diagonals

of the spectral sequence may hit infinitely many nonzero terms.

In particular, knowing only a part of the second page E p,q
2 , as it is the case in The-

orem 3.5.15, is then a lot less helpful, as it does not significantly restrict the size of
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any total homology group. The relevant diagonals of the double complex cross an

unbounded, unidentified part of the spectral sequence. For further material on similar

calculations with non-first-quadrant complexes, we direct the reader to [BS77]. Further-

more, one may be interested to construct explicit cochains that generate the terms of

the spectral sequence. To this end, it may be helpful to compare this to [GM92, Chapter

3]; there, continuous cochains for gln(K)-Lie algebra bundles are constructed from

elements in
(

Ω•(M)
dΩ•−1(M)

)∗
. When the bundle equals the endomorphism bundle End(E ) of

some vector bundle E → M , these cochains equal the antisymmetrizations of the cyclic

cochains constructed in [Qui88, Chapter 7].

Finally, we want to remark that to remove the condition s ≤ q in the description of E 2
r,s in

Theorem 3.5.15, one requires a full description of the unstable bornological homology

groups of the Lie algebras gln(C∞
c (Rn)). Already in the algebraic setting, this appears

to be highly nontrivial: Conjecture 10.3.9 in [Lod92] attempts to give a description for

Lie algebra homology of gln(A) when A is commutative and unital, and it is stated that

their conjecture implies a certain case of the Macdonald conjectures. In [Tel02], the

conjecture is verified for many special cases, but it is also shown that, in full generality,

it does not hold. To our knowledge, a satisfying, general description of these unstable

homology groups is an open problem.

3.7. PROOF OF THEOREM 3.4.10
The strategy and proof of Theorem 3.4.10 takes some preparation. The material and

notation of this section originates from [Han88], and we also refer to the related preprint

[Cor05]. There, the algebraic analog of Theorem 3.4.10 was proven, and our contribution

will be the extension of the results to nuclear Fréchet algebras. We closely follow the

outline of the proof of [Cor05] and make remarks to how this extends to our setting at

the appropriate places.

Definition 3.7.1. Let m,n ≥ 1.

i) We say that α := (α1, . . . ,αl ) ∈Zl
>0 is a partition of m of length l = l (α) if

∑l
i=1αi =

m and α1 ≥ ·· · ≥αl .

Additionally, we define ; to be a partition of 0 of length 0.

The set of partitions of m is denoted by P (m).

ii) Let α,β be two partitions of m, and l (α)+ l (β) ≤ n, then we set

[α,β]n := (α1, . . . ,αl (α),0, . . . ,0,−βl (β), . . . ,−β1) ∈Zn . (3.7.1)

iii) Let V be a gln(K)-representation and µ ∈Zn , then we define the highest weight

module Vµ via

Mµ(V ) := {v ∈V : ei j · v = 0, ekk · v =µk · v ∀k, ∀i < j }, (3.7.2)

Vµ :=U (gln(K)) ·Mµ(V ). (3.7.3)
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Here, ei j ∈ gln(K) denotes the elementary matrix with a one in the (i , j )-th entry

and zeroes everywhere else.

Lemma 3.7.2. Let n,k ≥ 1, and A be any bornological algebra. Then:

C born
k (gln(A)) = ⊕

m≥0

⊕
α,β∈P (m)

l (α)+l (β)≤n

C born
k (gln(A))[α,β]n . (3.7.4)

Proof. Consider gln(K) and its tensor products gln(K)⊗
k

as a gln(K)-representation

in the natural way, via the adjoint action and tensor products thereof. Since gln(K)

is a reductive Lie algebra, its adjoint representation is completely reducible, and the

decomposition of the following finite-dimensional tensor modules is standard (for a

detailed discussion, see [Han88, p.211f.])

gln(K)⊗k = ⊕
m≥0

⊕
α,β∈P (m)

l (α)+l (β)≤n

(
gln(K)⊗k

)
[α,β]n

. (3.7.5)

Now, since gln(K) acts trivially on A, this extends to a decomposition for the gln(K)-

module
(
gln(K)⊗k ⊗ A⊗k

)
Σk

. Lastly, since completion commutes with topological direct

sums, this extends to C born
k (gln(A)) and the statement is shown.

The action of a Lie algebra respects associated Chevalley–Eilenberg differentials, so

we have the subcomplexes

C born
• (gln(A))[α,β]n ⊂C born

• (gln(A)), (3.7.6)

M[α,β]n (C born
• (gln(A))) ⊂ M[α,β]n (C born

• (gln(A))). (3.7.7)

By reducing to the finite-dimensional highest weight theory as in Lemma 3.7.2, one

shows:

Lemma 3.7.3. Let A be any bornological algebra. For every n ≥ 1,m ≥ 0 and α,β ∈ P (m)

with l (α)+ l (β) ≤ n, we have

H•(C born
• (gln(A))[α,β]n ) ∼=U (gln(K)) ·H•(M[α,β]n (C born

• (gln(A)))). (3.7.8)

Some last definitions before we get to the relevant theorems: Given a partition α ∈
P (m), we denote by V α the well-known Specht Σm-module associated to α, see [Han88,

p.216] for a detailed definition. Lastly, given a chain complex C•, denote by T m(C•) :=
(C•)⊗

m
the chain complex given by the m-th algebraic tensor power of C•. The following

will be our main proposition:

Proposition 3.7.4. Assume A is a nuclear Fréchet algebra. For every n,m ≥ 1 and α,β ∈
P (m) with l (α)+ l (β) ≤ n, there is a chain morphism

M[α,β]n (C born
• (gln(A))) →

Λ̂•(Cλ,born
•−1 (A))⊗

(
ˆ̃T m(C bar,born

• (A))⊗V α⊗V β
)
Σm

,
(3.7.9)
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which is an isomorphism of TVS in degree ≤ n
2 . Here, T̂ , ˆ̃T and Λ̂ denote the completions

of the (reduced/exterior) tensor algebra in the bornological tensor product topology, and

the codomain is equipped with the product differential arising from the cyclic and bar

differentials.

Proof. Assume first that A is an arbitrary TVS, not necessarily with an algebra structure.

Set

S(A) := T •(T̃ •(A))⊗ (T̃ m(C bar
• (A))⊗V α⊗V β). (3.7.10)

We first construct a map of graded vector spaces

ψ̃A : S(A) → M[α,β]n T •(gln(A)) (3.7.11)

as follows: Denote by ei j ∈ gln(K) the elementary matrix with a one in the (i , j )-th entry

and zeroes everywhere else. Set then for c = a1 ⊗·· ·⊗ap ∈ A⊗p
and 1 ≤ r, s ≤ n:

ζr s (c) := ∑
i2,...,ip

(er i2 ⊗a1)⊗ (ei2i3 ⊗a2)⊗ . . .

· · ·⊗ (eip−1ip ⊗ap−1)⊗ (eip s ⊗ap ) ∈ (gln(A))⊗
p

.

(3.7.12)

With this we define

θ̃ : T •(T̃ •(A)) → T •(gln(A)) (3.7.13)

as the graded algebra map induced by, for a1 ⊗·· ·⊗ap ∈ T 1(T p (A)):

θ̃(a1 ⊗·· ·⊗ap ) : = ∑
1≤k≤n

ζkk (a1 ⊗·· ·⊗ap )

= ∑
i1,...,ip

(ei1i2 ⊗a1)⊗·· ·⊗ (ein i1 ⊗an).
(3.7.14)

Further, recall that for some partition γ of a number m, the Specht module V γ is defined

as generated by equivalence classes of standard Young tableaux of shape γ in a certain

way [Han88, p.216]. Two standard Young tableaux are considered equivalent if their rows

contain the same numbers. Let x be such a Young diagram of length ≤ n and 1 ≤ i ≤ m,

then we set ρi (x) to be the row of x containing the number i . We define:

ϵ̃ : T̃ m(C bar
• (A))⊗V α⊗V β→ T •(gln(A)),

(c1 ⊗·· ·⊗cm)⊗x ⊗ y 7→ ζρ1(x),n+1−ρ1(y)(c1)⊗·· ·⊗ζρm (x),n+1−ρm (y)(cm)
(3.7.15)

Then, finally, we define

ψ̃A : S(A) → M[α,β]n T •(gln(A)) (3.7.16)
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as the tensor product of θ̃ and ϵ̃. [Han88, Theorem 3.4] shows that this indeed maps into

the highest weight module M[α,β]n T •(gln(A)). Note also that ψ̃A intertwines the actions

Z/k1Z

⟳

T k1 (A), Σk2

⟳

T k2 (T̃ •(A)), Σm

⟳

(T̃ m(C bar
• (A))⊗V α⊗V β) (3.7.17)

on the domain with corresponding permutations of Σm on the codomain, and the

invariants of both spaces with respect to these actions are

RΣ(A) :=Λ•(Cλ
•−1(A))⊗

(
T̃ m(C bar

• (A))⊗V α⊗V β
)Σm

, (3.7.18)

RΣ(A) :=Λ•(Cλ
•−1(A))⊗

(
T̃ m(C bar

• (A))⊗V α⊗V β
)
Σm

, (3.7.19)

and M[α,β]n C•(gl(A)). Denote by ψA : RΣ(A) →C •(gl(A)) the arising map on invariants.

We show now:

Lemma 3.7.5. Let A be a complete TVS. Consider RΣ(A) and M[α,β]n (C•(gln(A))) as

TVS with the topology induced by the projective tensor product. Then ψA extends to a

morphism of topological graded vector spaces on the completions

RΣ(A) → M[α,β]n (C born
• (gln(A))), (3.7.20)

which is an isomorphism in degree ≤ n
2 .

Proof. [Han88, Theorem 3.6] shows that for every finite-dimensional A, the map ψA

is an isomorphism of vector spaces in degree ≤ n
2 . Maschke’s theorem implies that in

characteristic zero and for a finite group G , we can always assign to every equivariant

morphism f : U → V between G-modules an equivariant morphism h : V →U , with

the property that if f reduces to an isomorphism on invariants f G : UG →V G , then hG

inverts f G . Hence in the case A =K there is a linear map

κ̃K : T •(gln(K)) → S(K), (3.7.21)

intertwining the actions (3.7.17), whose reduction to invariants κK : C•(gln(K)) → R(K)

inverts ψK in degree ≤ n
2 . Note that the domain and codomain of κ̃K have finite-dimen-

sional graded components and hence κ̃K and κK are automatically continuous. In the

case of A being an arbitrary TVS, we can use canonical isomorphisms to identify

S(A) ∼= S(K)⊗T •(A), T •(gln(A)) ∼= T •(gln(K))⊗T •(A). (3.7.22)

These isomorphisms identify ψ̃A with ψ̃K⊗ idT •(A). Under these identifications, con-

sider κ̃A := κ̃K⊗ idT •(A). The equivariance of κ̃A and ψ̃A under the actions (3.7.17) show

that the reduction to invariants κA : C•(gln(A)) → R(A) is a two-sided inverse to ψA in

degree ≤ n
2 , just as in the case A =K. This map is continuous as the tensor product of

continuous maps. Hence ψA has a continuous inverse, and thus lifts to a continuous

morphism of graded TVS on the topological closures, and that this lift is an isomorphism

in degree ≤ n
2 . The lemma is shown.
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Now, assume A is a nuclear Fréchet algebra. We use the previously constructed

map ψA , which only induced a morphism of TVS, to induce a morphism of chain

complexes. Denote by A∗ the strongly continuous dual of A and by A∨ the algebraic

dual. Define the following maps for a ∈ A,β ∈ A∗, g ,h ∈ gl(K):

ev : A → (A∨)∨, ev(a)(β) :=β(a), (3.7.23)

ν : gln(A) → gln(A∨)∨, ν(g ⊗a)(h ⊗β) := tr(g T ·h) ·ev(a)(β), (3.7.24)

K : Cλ
• (A) →Cλ

• (A), K ([a1 ⊗·· ·⊗an]) := n · [a1 ⊗·· ·⊗an]. (3.7.25)

In [Cor05, Theorem 3.1], a continuous graded chain map φ is defined which makes the

following diagram commute:

M[α,β]n C•(gln(A)) RΣ(A)

M[α,β]n C•(gln(A∨))∨
(
RΣ(A∨)

)∨
φ

(ψA∨◦(K⊗1))T

Here, the left vertical arrow is induced by ν, the right vertical arrow by ev. Since nuclear

Fréchet algebras are automatically reflexive, ev and ν are topological isomorphisms

when all algebraic duals are replaced with strongly continuous duals and C• with C born• .

We have also proven in Lemma 3.7.5 that ψA∗ extends to an isomorphism of TVS in

degree ≤ n
2 on the completion, and so does its transpose ψT

A∗ . Hence, if in the above

diagram the algebraic duals are replaced with continuous duals and C• with C born• , the

bottom arrow, too, is a topological isomorphism. Hence all arrows except φ in the above

diagram induce topological isomorphisms in degree ≤ n
2 under the given replacements.

Hence φ does, too. Hence the extension of φ to the closures is a morphism of chain

complexes and an isomorphism in degree ≤ n
2 . This concludes the statement.

Proof of Theorem 3.4.10. Due to the Lemmata 3.7.2 and 3.7.3, we have

H born
• (gln(A)) ∼= H•

(
C born
• (gln(A))[;,;]n

)
⊕ ⊕

m≥1

⊕
α,β∈P (m)

l (α)+l (β)≤n

U (gln(K)) ·H•
(
M[α,β]n (C born

• (gln(A)))
)

. (3.7.26)

If A is bornologically H-unital, then its bornological bar complex is acyclic, and thus its

differential has closed range. By assumption on A, the differential of the cyclic complex

has closed range, we can calculate the homology of the codomain of (3.7.9) via the

Künneth isomorphism from Corollary 3.3.11. But acyclicity of the bar complex then

implies acyclicity of this product complex. Since (3.7.9) is a chain isomorphism in

degree r ≤ n
2 , it induces isomorphisms of homology groups in degree 2r +1 ≤ n. Thus,

if 2r +1 ≤ n, we have

H born
r (gln(A)) ∼= Hr

(
C born
• (gln(A))[;,;]n

)
= Hr

(
C born
• (gln(A))gln (K)

)
, (3.7.27)
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and the calculation of the homology of the invariant complex C born• (gln(A))gln (K) is

carried out exactly as in the unital case in Section 3.4. In particular, this homology

stabilizes so that H ι
r (gl(A)) ∼= H ι

r (gln(A)) ∼= H born
r (gln(A)) when 2r +1 ≤ n. Hence the

statement is shown.
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4
VOLUMES OF

IDENTITY-NEIGHBORHOODS IN

REAL REDUCTIVE LIE GROUPS

Bas JANSSENS, Lukas MIASKIWSKYI

We study ratios δF (U ) := µ
(⋂

g∈F Adg U
)

µ(U ) of Haar measures of identity neighborhoods in real

reductive Lie groups, measuring their volume changes under the adjoint action. We study

adjoint orbits within both the Lie group and its associated Lie algebra, orbital limits

due to Barbasch, Harris, and Vogan, and use integration formulas by Harish-Chandra

and Varadarajan. Using this, we conclude that there exists a neighborhood basis U

so that if BG
ρ = {g ∈ G : ∥Adg ∥ ≤ ρ}, then limsupU∈U δBG

ρ
(U ) ≥ ρ−d/2, where d is the

maximal dimension of a nilpotent orbit in g. This gives quantitative insight into norm

coefficients for noncommutative de Leeuw inequalities in Harmonic Analysis as studied

by, for example, Caspers, Parcet, Perrin, and Ricard.

This chapter is an excerpt of the preprint [CJKUM22].
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4.1. INTRODUCTION
In this section, we study for a real, reductive Lie group G , ratios of the form

δF (U ) := µ
(⋂

g∈F Adg U
)

µ(U )
, (4.1.1)

where F ⊂G is some subset, µ denotes the Haar measure, Ad denotes the adjoint action,

and U ⊂G is a relatively compact neighborhood of the identity with nonzero Haar vol-

ume. For a neighborhood basis U of the identity in G we set δF (U ) := liminfU∈U δF (U ),

and δF denotes the supremum of δF (U ) where U varies over all symmetric neighbor-

hood bases of the identity in G .

The study in this section is, perhaps surprisingly so, based in noncommutative har-

monic analysis and the so-called de Leeuw theorems. Let us lay out the essential ideas

that guide us there. For now, let G be a locally compact, unimodular group, and denote

by λ : L2(G) → L2(G) its left-regular representation. One defines the non-commutative

Lp -spaces Lp (Ĝ) as a collection of elements of the group von Neumann algebra L (G)

with a certain finite p-trace. The notation reflects the fact that if G abelian, this is iso-

morphic to the Lp -space of the Pontryagin dual of G . We set for λ( f ) := ∫
G f (s)λ(s)ds for

f ∈ Lp (G), and denote by ⋆ the convolution product of compactly supported functions

Cc (G).

One says that a bounded, continuous map m ∈Cb(G) is a p-multiplier if there exists a

bounded operator Tm : Lp (Ĝ) → Lp (Ĝ) with

Tm(λ( f )) =λ(m f ) ∀ f ∈Cc (G)⋆Cc (G). (4.1.2)

In [CJKUM22], a variation of a non-commutative de Leeuw restriction theorem is proven,

c.f. [CPPR15], the study of which originates from [dL65]: If m ∈Cb(G) is a p-multiplier,

Γ<G is a discrete subgroup, and 1 ≤ p <∞, then

c(supp(m|Γ))∥Tm|Γ : Lp (Γ̂) → Lp (Γ̂)∥ ≤ ∥Tm : Lp (Ĝ) → Lp (Ĝ)∥, (4.1.3)

where c(supp(m|Γ)) := inf
{√

δF |F ⊂ supp(m|Γ) finite
}

. For the example G = SL(n,R)

and Γ= SL(n,Z), the existence of nontrivial multipliers for n > 3 is still an open problem.

To this end, inequalities on δF can be used to gather information about the factor c in

inequality (4.1.3), and this is valuable to provide quantitative insight into the necessary

behavior of multipliers on Γ.

While we do not pick up on this background again, this explains the interest in being

able to quantify δF . Our main theorem will be a nontrivial inequality for δBG
ρ

, where

BG
ρ := {g ∈G : ∥Adg ∥ ≤ ρ}, ρ > 0. (4.1.4)

To be precise, if d is the maximal dimension of a nilpotent, adjoint orbit in the Lie

algebra g := Lie(G), then we prove that

δBG
ρ
≥ ρ−d/2, ∀ρ > 0. (4.1.5)
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Our result is based on the construction of a well-behaved neighborhood basis of the

identity in G and a careful analysis of the geometry of G and its associated Lie algebra

g, based on orbital limit theorems due to Barbasch, Harris, and Vogan [BV80, Har12]

and Lie theoretic integration formulas due to Harish-Chandra and Varadarajan [HC57,

HC65, Var77].

We begin in Section 4.2 by recalling some essentials on Lie theory of real reductive

Lie groups and transferring the problem from a study of the Lie-group-theoretic quantity

δF to the study of the Lie-algebraic quantity

lim
ϵ→0

Λ(V g
ϵ,ρR )

Λ(V g
ϵ,R )

, (4.1.6)

where Λ denotes the Lebesgue measure and {V g
ϵ,ρ}ϵ,ρ>0 is a certain family of zero-neigh-

borhoods in g, whose exponentials constitute the desired neighborhood basis in G .

In particular we show that the Haar measure on G can, in an infinitesimal sense, be

replaced by the Lebesgue measure gained from the vector space structure on g, and

that the analysis only depends on the maximal semisimple ideal g0 ⊂ g. This makes

it possible to replace the original question with a question in the tightly controllable

setting of semisimple Lie algebras. Here, the Vϵ,ρ take the shape

V g
ϵ,R = AdG (Bg

ϵ )∩Bg
R , (4.1.7)

where Bg
R denotes the unit ball with respect to a certain Hilbert space structure on g.

In Section 4.3 we recall a standard toolbox for the structure of semisimple Lie algebras,

and expand on the earlier announced orbital limit theorem due to [BV80, Har12]. This

will show that the cone of nilpotent elements N ⊂ g is directly related to invariant zero

neighborhoods in g, and that the dimensionality of the former influences the scaling

behavior of the latter. This will be an essential component of the calculation of (4.1.6).

Using analytic results due to Harish-Chandra and Varadarajan [HC57, Var77], we show

that their orbital limits do not only converge in the pointwise sense, but uniformly over

a certain domain of orbits.

Lastly, in Section 4.4 we combine the results of the previous section with a Fubini-like

Lie algebraic integral formula due to Harish-Chandra and Varadarajan, which expresses

integrals on g as iterated integrals over its adjoint orbits Oh ⊂ g and quotient spaces

G/H , where H denotes the respective stabilizer of the orbit Oh [HC65, Var77]. This

will make the measures in (4.1.6) explicit enough that, together with the orbital limit

formulas, we can calculate the limit exactly.

4.2. PRELIMINARIES
Let G be a real reductive Lie group with Lie algebra g, Cartan involution θ, maximal

compact subgroup K , and invariant bilinear form B , cf. [Kna96, Chapter VII.2]. The
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inner product

Bθ(x, y) :=−B(x,θy) (4.2.1)

on g endows End(g) with the operator norm A 7→ ∥A∥. For ρ ≥ 1, we denote by

BG
ρ := {

g ∈G ; ∥Adg ∥ ≤ ρ
}

(4.2.2)

the preimage under the adjoint representation Ad: G → End(g) of the closed ball of

radius ρ around the origin. The aim of this section is to prove the following lower bound

on δBG
ρ

in terms of the radius.

Theorem 4.2.1. If d is the maximal dimension of a nilpotent orbit of G in g, then

δBG
ρ
≥ ρ−d/2. (4.2.3)

Remark 4.2.2. As the adjoint orbit OX of a nilpotent element X ∈ g is a symplectic

manifold, the coefficient d/2 in (4.2.3) is an integer. Since TX OX = g/gX is the quotient

of g by the centralizer gX of X , the maximal dimension d can be expressed as

d = dim(g)− min
X∈N

dim(gX ), (4.2.4)

where N ⊆ g is the nilpotent cone of g. In particular, d = 0 if g is compact or abelian,

d = dim(g)−rank(g) if g is split (or quasisplit [Rot72, Theorem 5.1]), and d = 2(dimC(g)−
rankC(g)) if g is complex. In particular, d = n(n − 1) for SL(n,R) and GL(n,R), and

d = 2n(n −1) for SL(n,C) and GL(n,C).

Let g = k⊕ p be the Cartan decomposition of g, let a be a maximal abelian sub-

space of p, and let A be the corresponding analytic subgroup. If g = k1ak2 is the

K AK -decomposition of g ∈ G (see [Kna96, §VII.3]), then ∥Adg ∥ = ∥Ada ∥ since both

B and θ are invariant under Ad(K ). Let g = g0 ⊕⊕
λ∈Σgλ be the restricted root space

decomposition, where the sum runs over the set Σ⊆ a∗ of restricted roots. Since A is

simply connected, the set BG
ρ can be equivalently described as

BG
ρ = KρP K := K exp

(
log(ρ)P

)
K , (4.2.5)

where P ⊆ a is the polygon P = {h ∈ a ; α(h) ≤ 1 ∀α ∈ Σ}. From this description, the

following result easily follows.

Proposition 4.2.3. The sets BG
ρ are invariant under inversion, and under left and right

multiplication by K . Furthermore,
⋃
ρ>1 BG

ρ =G and
⋂
ρ>1 BG

ρ = K .

Proof. Invariance under left and right multiplication by K is clear from (4.2.5), and

invariance under inversion follows from the fact that Σ=−Σ. The formula for the union

is obvious, and the formula for the intersection follows from
⋂
ρ>1 BG

ρ = BG
1 , and the fact

that ∥Adexp(±h) ∥ = ∥exp(ad±h)∥ = 1 for h ∈ a if and only if h = 0.
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4.2.1. A NEIGHBORHOOD BASIS

The reductive Lie algebra g decomposes as the direct sum g= g0 ⊕ z of the maximal se-

misimple ideal g0 = [g,g] and the center z. The former admits the Cartan decomposition

g0 = k0 ⊕p0, with k0 = k∩g0 and p0 = p∩g0.

Let Bz
r ⊆ z and Bg0

r ⊆ g0 be the open balls of radius r with respect to the inner product

Bθ in z and g0, respectively. Both are K -invariant, and the global Cartan decomposition

G = K exp(p) implies that Bz
r ⊆ z is invariant under all of G .

We are interested in the neighborhood basis

V g
ϵ,R,r := (

AdG (Bg0
ε )∩Bg0

R

)×Bz
r , (4.2.6)

obtained by intersecting the G-invariant neighborhoods

Uε := AdG (Bg0
ε )× z (4.2.7)

with the bounded sets Bg0
R ×Bz

r . It will be convenient to write V g
ϵ,R,r =V g0

ε,R ×Bz
r , where

V g0
ε,R is the bounded open subset of g0 defined by

V g0
ε,R := AdG (Bg0

ε )∩Bg0
R . (4.2.8)

Remark 4.2.4 (K -invariance). Since Bg0
ε is K -invariant, the global Cartan decomposition

G = K exp(p) yields AdG (Bg0
ε ) = Adexp(p)(Bg0

ε ). Further, since z acts trivially on g0, we

have AdG (Bg0
ε ) = Adexp(p0)(Bg0

ε ) for p0 = p∩g0. It follows that V g
ϵ,R,r = V g0

ε,R ×Bz
r is the

product of the K -invariant set V g0
ε,R ⊆ g0 that depends only on the restriction of Bθ to

g0, and the G-invariant set Bz
r ⊆ z that depends only on the restriction of Bθ to z. In

particular the sets V g
ϵ,R,r ⊆ g are K -invariant, and they depend only on the triple (g,θ,B),

not on the Lie group G .

The lower bound (4.2.3) will be established by calculating

δ0
BG
ρ

:= limsup
(ϵ,R,r )→0

µ
(⋂

g∈BG
ρ

Adg−1 exp(V g
ϵ,R,r )

)
µ(exp(V g

ϵ,R,r ))
, (4.2.9)

where µ is a Haar measure on G . Since V g
ϵ,R,r =−V g

ϵ,R,r , the sets exp(V g
ϵ,R,r ) constitute a

symmetric neighborhood basis of the identity. It follows that δBG
ρ
≥ δ0

BG
ρ

, so in order to

establish (4.2.3), it suffices to prove that δ0
BG
ρ
≥ ρ−d/2.

4.2.2. RELATION BETWEEN HAAR MEASURE AND LEBESGUE MEASURE.
The first step is to reformulate this in terms of the Lebesgue measure on the Lie algebra

g.

Let VolG be a left invariant volume form on G , so that integrating against VolG
corresponds to a left Haar measure µ on G . Let Volg be a constant volume form on g,



4

114 4. VOLUMES OF IDENTITY-NEIGHBORHOODS

corresponding to a Lebesgue measure Λ on g. We normalize these volume forms in

such a way that Volg agrees with exp∗VolG at the origin in g. Then exp∗VolG = νVolg,

where the density ν of exp∗VolG with respect to the Lebesgue measure satisfies ν(0) = 1.

We show that ν can be chosen arbitrarily close to 1 on Uε ⊆ g for small ε.

Proposition 4.2.5. The density is given by ν(x) = det(Φx ), where Φ : g→ End(g) is the

left logarithmic derivative of the exponential map. The function ν : g→ R is smooth,

G-invariant, and equal to 1 on z⊆ g. Moreover, there exists a constant cg0 > 0 (depending

only on g0) such that for ε sufficiently small, ∥ν−1∥∞ ≤ cg0 ε uniformly on Uε.

Proof. Let Φ : g → End(g) be the left logarithmic derivative of the exponential map,

defined by Φx (y) := (Dexp(x)Lexp(x)−1 )◦ (Dx exp)(y), where Lg : G →G denotes left multi-

plication by g . Then for all x, y1, . . . , yn ∈ g,

(exp∗VolG )x (y1, . . . , yn) = (VolG )exp(x)(Dx exp(y1), . . . ,Dx exp(yn))

= (VolG )exp(x)(D1Lexp(x)Φx (y1), . . . ,D1Lexp(x)Φx (yn))

= (VolG )1(Φx (y1), . . . ,Φx (yn))

= det(Φx )(Volg)0(y1, . . . , yn),

(4.2.10)

where the last two steps use that VolG is left invariant, and that exp∗VolG agrees with

Volg at the origin. It follows that ν(x) = det(Φx ). Since exp: g→G is equivariant with

respect to the adjoint action on g and the conjugate action on G , its logarithmic deriva-

tive satisfies ΦAdg (x) = Adg ◦Φx ◦Adg−1 . In particular, ν(x) = det(Φx ) is invariant under

the adjoint action.

In fact, the left logarithmic derivative Φx : g→ g of the exponential map is explicitly

given (cf. [Far08, Theorem 2.1.4]) by the convergent power series

Φx = Id−exp(−adx )

adx
= Id− 1

2!
adx + 1

3!
(adx )2 + . . . (4.2.11)

Note that the determinant of the real linear map Φx : g→ g is equal to the determinant

over C of the complexification ΦCx : gC→ gC. In terms of the Jordan–Chevalley decom-

position adx = adxs +adxn into a semisimple and a nilpotent element of gC, we thus

find

ν(x) =
∣∣∣∣detC

(
Id−exp(−adxs )

adxs

)∣∣∣∣= dimg∏
i=1

∣∣∣∣1−e−µi

µi

∣∣∣∣ , (4.2.12)

where µi are the eigenvalues of adx as a complex linear transformation of gC.

In particular, ν(x) depends only on the second factor in g= z⊕g0, and we can write

ν(x) = ν0(adx ) for a smooth function ν0 : g0 → R with ν0(0) = 1. It follows that for any

cg0 > ∥∇ν0(0)∥, there exists an ε0 > 0 such that ∥ν0 −1∥ ≤ cg0ε uniformly on Bg0
ε for all

ε< ε0. The uniform estimate for ν on Uε now follows from G-invariance.
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For r and R smaller than the injectivity radius of the exponential exp: g→G , we can

therefore relate the Haar measure of exp(V g
ε,R,r ) to the Lebesgue measure of V g

ε,R,r ,

(1− cg0 ε)Λ(V g
ε,R,r ) <µ(

exp(V g
ε,R,r )

)< (1+ cg0 ε)Λ(V g
ε,R,r ). (4.2.13)

Since exp is equivariant under the adjoint action on g and G , this allows us to express

δ0
BG
ρ

in terms of the Lebesgue measure on g,

δ0
BG
ρ
= limsup

(ε,R,r )→0

Λ
(⋂

g∈BG
ρ

Adg−1 (V g
ε,R,r )

)
Λ(V g

ε,R,r )
. (4.2.14)

Proposition 4.2.6. The number δ0
BG
ρ

depends on G only through the maximal semisimple

ideal g0 = [g,g], and the restriction of Bθ to g0.

Proof. By Remark 4.2.4 the sets V g
ε,R,r are K -invariant. If g = k exp(p) is the global Cartan

decomposition of g ∈G = K exp(p), we thus have

Adg−1 (V g
ε,R,r ) = Adexp(−p)(V

g
ε,R,r ). (4.2.15)

Further, since z acts trivially on g, the decomposition p = p0 +pz of p ∈ p with respect

to p= p0 ⊕ (z∩p) yields

Adg−1 (V g
ε,R,r ) = Adexp(−p0)(V

g0
ε,R )×Bz

r . (4.2.16)

Since BG
ρ is K -invariant (Proposition 4.2.3), we have k exp(p) ∈ BG

ρ if and only if exp(p) ∈
BG
ρ , which is the case if and only if exp(p0) ∈ BG

ρ . But since Adexp(p0) acts by the identity

on second factor of g= g0 ⊕ z, we have ∥Adg
exp(p0) ∥ ≤ ρ for the adjoint action on g if and

only ∥Adg0
exp(p0) ∥ ≤ ρ for the adjoint action on g0. If G0 denotes the connected adjoint

group of the semisimple Lie algebra g0, we thus have

Λg
(⋂

g∈BG
ρ

Adg−1 (V g
ε,R,r )

)
Λg(V g

ε,R,r )
=
Λg

(⋂
g0∈B

G0
ρ

Adg−1
0

(V g0
ε,R )×Bz

r

)
Λg(V g0

ε,R ×Bz
r )

=
Λg0

(⋂
g0∈B

G0
ρ

Adg−1
0

(V g0
ε,R )

)
Λg0 (V g0

ε,R )
,

(4.2.17)

where Λg and Λg0 denote the Lebesgue measure on g and g0, respectively.

4.2.3. PROOF OF THEOREM 4.2.1
By Proposition 4.2.6, it suffices to prove Theorem 4.2.1 for the case where G is the adjoint

group of the semisimple Lie algebra g0. The proof hinges on the following lemma.
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Lemma 4.2.7 (Key Lemma). Let G be a connected, real reductive Lie group with semisim-

ple Lie algebra g. Then for all R > 0 and all ρ > 1, we have

lim
ϵ→0

Λ(V g
ϵ,ρR )

Λ(V g
ϵ,R )

= ρd/2. (4.2.18)

The proof of this lemma requires a rather detailed discussion of limits of orbital

integrals, and will be deferred to Section 4.4. Assuming Lemma 4.2.7, the proof of

Theorem 4.2.1 is quite straightforward.

Proof of Theorem 4.2.1, assuming Lemma 4.2.7. In view of (4.2.4), the maximal dimen-

sion d of the nilpotent orbits is the same in g and g0. By Proposition 4.2.6, we may

therefore assume without loss of generality that G is a connected, real reductive Lie

group with semisimple Lie algebra g.

Since ∥Adg ∥ ≤ ρ, we have Adg−1 (Bg
R ) ⊇ Bg

R/ρ . Since AdG (Bg
ε ) is AdG -invariant, we

find for Vε,R = AdG (Bg
ε )∩Bg

R that

Adg−1 (Vε,R ) = AdG (Bg
ε )∩Adg−1 Bg

R ⊇Vε,R/ρ . (4.2.19)

From (4.2.14) (without r because z= {0}) we thus find

δ0
BG
ρ
= limsup

ε,R→0

Λ
(⋂

g∈BG
ρ

Adg−1 (V g
ε,R )

)
Λ(V g

ε,R )
≥ limsup

ε,R→0

Λ(V g
ε,R/ρ)

Λ(V g
ε,R )

≥ lim
R→0

lim
ϵ→0

Λ(V g
ε,R/ρ)

Λ(V g
ε,R )

= ρ−d/2.

(4.2.20)

The strategy to prove Lemma 4.2.7 is as follows. Since the closure of an adjoint

orbit Ox through x ∈ g contains 0 if and only if x is nilpotent, the set
⋂
ε>0 Vε,R is the

intersection of the nilpotent cone N with the unit ball Bg
R (0). The union of the nilpotent

orbits OX of maximal dimension is a dense open subset of the nilpotent cone. Using

results of Harish-Chandra and Barbasch–Vogan on limiting orbit integrals, we will show

that as ε approaches 0, the volume of Vε,R with respect to the Lebesgue measure on

g scales with R in the same way as the Liouville volume of the symplectic manifold

OX ∩Bg
R (0). Since the Kostant–Kirillov–Souriau symplectic form ωKKS

OX
on the cone OX

scales as R under dilation, the corresponding Liouville volume form VolKKS
OX

scales as

Rd/2, yielding the factor ρd/2 in Lemma 4.2.7.

4.3. LIMITS OF ORBITAL MEASURES
In the remainder of this section, we focus on the proof of Lemma 4.2.7. From now on,

we assume that the Lie algebra g is semisimple, and that the invariant bilinear form B is
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the Killing form κ. We will generally denote generic elements of g by x, y, z, elements of

a Cartan subalgebra h⊂ g by h, and elements of the nilpotent cone N ⊂ g by X ,Y , Z .

For a subset A ⊆ g, we denote the centralizer and the normalizer in g by Zg(A) and

Ng(A) respectively. On the group level, we similarly define

ZG (A) := {g ∈G : Adg y = y ∀y ∈ A}, NG (A) := {g ∈G : Adg A ⊂ A}. (4.3.1)

4.3.1. REGULAR ELEMENTS OF LIE ALGEBRAS

We recall the notion of regularity in g. For x ∈ g consider the characteristic polynomial

det(ad x − t ) =:
∑
k≥0

ak (x)t k , t ∈R. (4.3.2)

Let k(x) be the minimal index so that ak(x)(x) ̸= 0. If k(x) = miny∈g k(y), we say x is

regular. If A ⊂ g is any subset of g, we define Areg to be the set of regular elements in A.

If h is a Cartan subalgebra (CSA) and C is a connected component of hreg, we call C an

open Weyl chamber of h.

Remark 4.3.1. Our notion of regularity is different from a common definition where x is

regular if its centralizer has minimal dimension among the centralizers of all x ′ ∈ g. Our

current definition is used, for example, in [Bou05].

We will use the following standard properties of regular elements:

Lemma 4.3.2. Let g be a real Lie algebra.

i) Regular elements in g lie in a unique CSA given by their centralizer.

ii) If a single element in an adjoint orbit Ox ⊂ g is regular, then all elements are.

iii) The set of regular elements is dense and open in g, and its complement in g is a

Lebesgue null set.

Proof. i) The semisimplicity statement is [Bou05, Chapter VIII.4, Cor 2], and the state-

ment about the CSA is [Bou05, Theorem VII.3.1].

ii) This follows since the characteristic polynomial is invariant under the adjoint action.

iii) From [Bou05, Chapter VIII.2] we know that the set of regular elements is Zariski-open,

which implies that it is dense and open in the standard topology. The non-regular ele-

ments, as a complement of a Zariski-open set, are intersections of closed submanifolds

of lower dimension, hence they constitute a Lebesgue null set by Sard’s Theorem.

4.3.2. MEASURES AND DISTRIBUTIONS ON ORBITS

Let x ∈ g, and let Ox be the adjoint orbit through x ∈ g. Since Ox can be identified with

a coadjoint orbit via the invariant bilinear form, it comes equipped with a canonical

symplectic form. The Kostant–Kirillov–Souriau (KKS) form ωKKS
Ox

∈Ω2(Ox ) is given by(
ωKKS

Ox

)
x′ (adx′ y,adx′ z) = κ(x ′, [y, z]), ∀x ′ ∈Ox , y, z ∈ g. (4.3.3)
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This induces a volume form called the Liouville form

VolOx := 1

k !
(∧kωKKS

Ox
), (4.3.4)

where k = dimOx /2. By [RR72, Theorem 2] the assignment of Borel sets A ⊂ g to

µOx (A) :=
∫

Ox∩A
VolOx (4.3.5)

defines a Radon measure µOx on g. In particular, it is finite on compact subsets of g. On

nilpotent orbits, these measures are homogeneous:

Lemma 4.3.3. Let A ⊂ g be a Borel set, let X ∈ g a nilpotent element, and let k = dimOX /2.

Then for all ρ > 0, we have

µOX (ρ · A) = ρkµOX (A). (4.3.6)

Proof. By the Jacobson–Morozov theorem, the nilpotent orbit OX is a cone, i.e. ρ ·OX =
OX for all ρ > 0. Thus we have

(ρ · A)∩OX = ρ · (A∩OX ). (4.3.7)

Denote by mρ : OX →OX the multiplication by ρ. By definition of the KKS form we have

for all X ′ ∈OX and y, z ∈ g:

(m∗
ρω

KKS
OX

)X ′ (adX ′ y,adX ′ z) = (ωKKS
OX

)ρX ′ (adρX ′ y,adρX ′ z)

= κ(ρX ′, [y, z])

= ρ ·κ(X ′, [y, z]),

(4.3.8)

hence

m∗
ρω

KKS
OX

= ρ ·ωKKS
OX

. (4.3.9)

From (4.3.4) we then find

m∗
ρVolOX = ρk ·VolOX , (4.3.10)

so that

µOX (ρ · A) =
∫

mρ (A∩OX )
VolOX =

∫
A∩OX

m∗
ρVolOX = ρkµOX (A) (4.3.11)

as required.

The measure µOx on the adjoint orbit Ox through x ∈ g yields the distribution DOx

on g defined by

DOx : C∞
c (g) →R, DOx ( f ) := 1

(2π)2k

∫
Ox

f |Ox VolOx , (4.3.12)
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again with k := dim(Ox )/2. The 2π-normalization factor ensures that the orbital distri-

butions DOx coincide with the ones in [Har12], where this normalization occurs in the

volume form VolOx . Let h⊂ g be any θ-invariant Cartan subalgebra, and H := ZG (h) the

associated Cartan subgroup. Since G and H are unimodular, we can fix a G-invariant

volume form VolG/H on the quotient G/H . Note that VolG/H is unique up to a nonzero

scalar. Let h ∈ g be any element with centralizer H . Then the orbit map g 7→ Adg (h)

descends to a diffeomorphism ι : G/H
∼−→Oh , and the pullback ι∗VolOh of the KKS vol-

ume form on Oh defines yet another invariant volume form on G/H . The two invariant

volume forms agree up to a scalar which depends only on h,

ι∗VolOh =π(h)VolG/H , (4.3.13)

yielding a function π : h→R.

Proposition 4.3.4. In the above setting, there is some c > 0 depending only on the choice

of VolG/H , so that for all h ∈ h,

|π(h)| = c · ∏
α∈∆+

|α(h)|. (4.3.14)

Here, ∆+ ⊂∆(gC,hC) is a choice of positive roots for the complexified Lie algebra gC with

respect to the CSA hC.

Proof. It suffices to consider the volume forms ι∗VolOh and VolG/H at a single point

of G/H , hence we restrict to T[e](G/H) ∼= g/h. We identify g/h∼= h⊥, where h⊥ denotes

the orthogonal complement of h ⊂ g with respect to the inner product κθ. There is

some scalar c̃ ̸= 0 so that c̃ · (VolG/H )[e] =Volh⊥ , where Volh⊥ is the volume form on h⊥

associated to the inner product κθ and some choice of orientation on h⊥. Consider the

map θ ◦adh : g→ g for h ∈ h. Since it preserves h and is skew-symmetric with respect

to the inner product κθ, it restricts to a skew-symmetric endomorphism of h⊥. The

pullback of the KKS form at [e] ∈G/H is given, for x, y ∈ h⊥, by

ι∗ωKKS
Oh

(x, y) = κ(h, [x, y]) = κθ(x,θ ◦adh(y)). (4.3.15)

Recall that if (V ,B) is an oriented inner product space of even dimension 2k, then the

Pfaffian of a skew-symmetric linear map A : V →V is defined by

1

k !

(
∧kωA

)
= Pf(A)Vol, (4.3.16)

where Vol ∈∧2kV ∗ is the volume form associated to the inner product B on the oriented

vector space V , and ωA(v, w) = B(v, Aw) is the 2-form associated to A with respect to

the inner product B . With V = h⊥ and A = θ ◦adh , this yields

ι∗VolOh = 1

k !
∧k (ι∗ωKKS

Oh
)[e] = Pf

(
(θ ◦adh)

∣∣
h⊥

)
Volh⊥ . (4.3.17)
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Recall that the Pfaffian is related to the determinant by

Pf
(
(θ ◦adh)

∣∣
h⊥

)2 = det
(
(θ ◦adh)

∣∣
h⊥

)
=±det

(
adh

∣∣
h⊥

)
. (4.3.18)

Since the determinant is the product of the eigenvalues over C, we can determine |π(h)|
from the eigenvalues of adh on the complexification (h⊥)C ∼= gC/hC. In view of the root

space decomposition gC/hC ∼= ⊕
α∈∆+ gα⊕g−α, the eigenvalues of the complex linear

map adh are ±α(h). This proves the statement with c = |c̃|.

4.3.3. SLODOWY SLICES AND POINTWISE ORBITAL LIMITS

Let N ⊂ g be the nilpotent cone. For any nonzero X ∈ N , there exists an sl2-triple

{X ,Y , H } containing X as the nilpositive element by the Jacobson–Morosov Theorem.

We denote by

SX := X +Zg(Y ) (4.3.19)

the corresponding Slodowy slice through X , cf. [Slo80, Chapter 7.4]. It is transversal to

the orbit OX due to the decomposition

g= adX g⊕Zg(Y ), (4.3.20)

cf. [Bou05, Chapter VIII.2]. It is indeed transversal to all orbits Ox with x ∈ SX , and in

particular, the set G ·SX is an open neighborhood of the orbit OX , cf. [Slo80, Chapter

7.4]. We recall from [Har12, Chapter 2] the construction of a canonical measure mx,X

on the intersection SX ∩Ox : we can consider the composition

adx g ,→ g→ adX g, (4.3.21)

where the first map is the natural embedding and the second map the projection of the

direct sum (4.3.20) onto the first direct summand. Since the Slodowy slice intersects Ox

transversally, the composition of these two maps is surjective. Using TxOx
∼= adx g

and TX OX
∼= AdX g, this surjective map induces the following exact sequence:

0 → Tx (Ox ∩SX ) → TxOx → TX OX → 0. (4.3.22)

We obtain a canonical volume form on Ox ∩SX as the quotient of the KKS volume forms

on Ox and OX , which in turn gives rise to the measure mx,X . In [Har12, Chapter 2], the

following limit of orbits is defined for all x ∈ g:

Nx :=N ∩ ⋃
ϵ>0

Oϵx . (4.3.23)

One may think of this set as the limit of the orbits Oϵx as ϵ approches zero, hence as the

orbits approach the nilpotent cone. Let us first show that every nilpotent orbit arises, in

this sense, as a limit of regular orbits:
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Lemma 4.3.5. Every nilpotent orbit OX lies in the set Nx for some regular x ∈ g.

Proof. The idea of this proof is essentially due to [BV80, p.48]. If X is nilpotent, choose

an sl2-triple {X ,Y , H } with X as the nilpositive and H as the semisimple element. Con-

sider the associated Slodowy slice SX = X +Zg(Y ). Since G ·SX is an open neighborhood

of OX , and since the set of regular elements is dense in g, there exists a regular element

x ∈G ·SX . In other words, there exist g ∈G and V ∈ Zg(Y ) with

Adg x = X +V. (4.3.24)

The centralizer Zg(Y ) is stable under adH , hence we can decompose it into the eigenspa-

ces of adH on this space. Due to the structure theory of finite-dimensional sl2-modules

(cf. [Bou05, Chapter VIII.2]), the eigenvalues λ on these eigenspaces are all nonpositive:

Zg(Y ) = ⊕
λ≤0

(Zg(Y ))λ, V = ∑
λ≤0

Vλ. (4.3.25)

Consider then the element g t := exp
(− 1

2 log(t )H
) ∈G . Then we have

Adg t g t x = t Adg t X + t Adg t V (4.3.26)

= t exp(− log(t ))X + ∑
λ≤0

t exp

(
−λ

2
log(t )

)
Vλ (4.3.27)

= X + ∑
λ≤0

t 1−λ/2Vλ
t→0→ X . (4.3.28)

But this means that X ∈N ∩⋃
t>0 AdG (t x) =Nx .

Remark 4.3.6. A closer inspection of such orbital limits is given in [FM21]. Their defini-

tion of Nx coincides with the one given here by [FM21, Remark 3.6].

We will need the following asymptotic expression for the orbital integrals. It is proven

in [Har12, Corollary 2.3], relying on [BV80, Theorem 3.2].

Definition 4.3.7. For x ∈ g, we define

m(x) := min
OX ⊂Nx

1
2 (dimOx −dimOX ) , (4.3.29)

where the minimum is taken over all adjoint orbits OX contained in Nx .

Theorem 4.3.8. Let g be a real, reductive Lie algebra, and let x ∈ g. Then for all f ∈C∞
c (g)

we have

lim
ϵ→0

ϵ−m(x)DOϵx ( f ) =∑
OX

Vol(SX ∩Oh)DOX ( f ), (4.3.30)

where the sum is taken over the set of nilpotent orbits OX ⊂Nx which are of maximal

dimension among all orbits contained in Nx , and the volume of SX ∩Ox is calculated

with respect to the measure mx,X .
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Remark 4.3.9. If C is an open Weyl chamber of some CSA h, one actually has Nh =Nh′

for all h,h′ ∈C by [Har12, Corollary 2.4] (originally attributed to [BV80]). In particular,

the number m in Theorem 4.3.8 is equal for all h in one such open Weyl chamber. In

this case we also write m(C ) for the m associated to any h ∈C .

4.3.4. UNIFORM ORBITAL LIMITS

Using results of Harish-Chandra and Varadarajan, we will show that the convergence

in Theorem 4.3.8 is uniform on certain subsets of h. For an open subset C ⊆ V of a

vector space V , we denote by C k (C ,R) the space of functions u : C →R that are k times

continuously differentiable on C , and whose derivatives of order at most k extend

continuously to the closure. The following result follows from [HC57, Theorem 3] (see

also [Var77, Theorem I.3.23]).

Theorem 4.3.10. Let h⊂ g be a Cartan subalgebra, C ⊂ h an open Weyl chamber, and

let f ∈C∞
c (g,R). Then the function u f : C →R defined by

u f (h) :=DOh ( f ) (4.3.31)

is in C∞(C ,R).

Remark 4.3.11. In fact, u f extends to a Schwartz function on the connected component

of the non-zero sets of the singular imaginary roots.

Remark 4.3.12. The definition of the invariant integral in [HC57] is, up to a positive

scalar, equivalent to ours by Proposition 4.3.4.

Proposition 4.3.13. Let C be an open cone in V and u ∈C m+1(C ,R) with Dm−1u(0) = 0.

Then for any compact K ⊆C ,

lim
ε→0+

ε−mu(εv) = 1

m!
∂m

v u(0) (4.3.32)

uniformly for v ∈ K .

Proof. Let p(t ) := u(t v). Then since p ∈C m+1([0,1],R), Taylor’s Theorem yields p(ε) =
1

m!ε
m∂m

v u(0)+R, where R = 1
(m+1)!ε

m+1∂m+1
v u(θv) for some θ ∈ [0,ε]. Since (v, w) 7→

∂m+1
v u(w) is uniformly bounded on K ×K , the result follows.

Fix again an open Weyl chamber C of some Cartan subalgebra h⊂ g. From Theo-

rem 4.3.8, Theorem 4.3.10, and the fact that integrals over compact domains commute

with uniform limits, it immediately follows that

lim
ϵ→0

∫
K∩C

ϵ−mDOϵh ( f )w(h)dΛh(h) =∑
OX

∫
K∩C

Vol(SX ∩Oh)DOX ( f )w(h)dΛh(h),

(4.3.33)
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for all compact K ⊂ h, all f ∈ C∞
c (g) and all continuous functions w : h→ R. In par-

ticular, the integral on the right-hand side is well-defined. A similar statement holds

with DOX ( f ) replaced by µOX (BR (0)).

Corollary 4.3.14. Let h⊂ g be a Cartan subalgebra, K ⊂ h a compact subset, and C ⊂ h

an open Weyl chamber. Let w : h→R be a continuous function, and let R > 0. Then

lim
ϵ→0

∫
K∩C

ϵ−mµOϵh (BR (0))w(h)dΛh(h)

=∑
OX

∫
K∩C

Vol(SX ∩Oh)µOX (BR (0))w(h)dΛh(h),
(4.3.34)

with the sum over the OX as in Theorem 4.3.8, and the right-hand side is integrable.

Proof. The following proof is essentially taken from [Kal17, Lemma 4.1]. Choose se-

quences of functions { fn ∈C∞
c (g)}n≥1, {gn ∈C∞

c (g)}n≥1 with monotone, pointwise con-

vergence

fn ↗ 1BR (0), gn ↘ 1BR (0). (4.3.35)

Let k = dimOX /2 for any of the orbits OX in the sum. Since w can be written as the

difference of two nonnegative functions, we may assume without loss of generality that

w is nonnegative. Then, for all n ∈N, we have

(2π)2k
∑
OX

∫
K∩C

Vol(SX ∩Oh)DOX ( fn)w(h)dΛh(h)

≤ liminf
ϵ→0

∫
K∩C

ϵ−mµOϵh (BR (0))w(h)dΛh(h)

≤ limsup
ϵ→0

∫
K∩C

ϵ−mµOϵh (BR (0))w(h)dΛh(h)

≤ (2π)2k
∑
OX

∫
K∩C

Vol(SX ∩Oh)DOX (gn)w(h)dΛh(h).

(4.3.36)

Note that µOX (BR (0)) = µOX (BR (0)) for all nilpotent elements X . Indeed, since OX is

a cone, the boundary ∂BR (0) intersects OX transversally so that the intersection OX ∩
∂BR (0) ⊂ OX is either empty (when X = 0) or a submanifold of codimension at least

one (when X ̸= 0). Its Liouville measure is thus zero by Sard’s Theorem. Finally, the

statement follows by taking the monotone limits n →∞ in (4.3.36).

4.4. PROOF OF THE KEY LEMMA 4.2.7
In all that follows, fix a maximal set of mutually nonconjugate, θ-stable CSAs h1, . . . ,hn

of g, with associated Cartan subgroups H1, . . . , Hn ⊂ G defined by Hi := ZG (hi ). We

denote by W j := NG (h j )/H j the Weyl group associated to h j . We will need the follow-

ing Lie algebraic version of the well-known Harish-Chandra integral formula [HC65,

Lemma 41], see e.g. [Var77, Part I, Section 3, Lemma 2].
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Lemma 4.4.1. Let g be a reductive Lie algebra with connected adjoint group G, and

let f ∈ L1(g,Λg) be an integrable function on g. Then, for j = 1, . . . ,n, there are G-

invariant volume forms VolG/H j on G/H j , so that∫
g

f (x)dΛg(x) =
n∑

j=1

1

|W j |
∫
h j

(∫
G/H j

f (Adg h)VolG/H j ([g ])

)
|π j (h)|2 dΛh j

(h). (4.4.1)

Here, |π j | is a product of positive roots of (gC, (h j )C) as in Proposition 4.3.4.

Lemma 4.4.2. Let h⊂ g be a CSA, and define

V h
ϵ := AdG Bϵ(0)∩h. (4.4.2)

Then for all ϵ,R > 0 we have

(Vϵ,R )reg =
n⊔

j=1
{Adg h : h ∈ (V

h j
ϵ )reg, Adg (h) ∈ BR (0)}. (4.4.3)

Proof. To see that the right-hand side is indeed a disjoint union, suppose that Adg h =
Adg ′ h′ for regular elements h ∈ hi , h′ ∈ h j and g , g ′ ∈G . Since h and h′ are regular, hi =
Zg(h) and h j = Zg(h′). Since h is conjugate to h′, hi is conjugate to h j . As the various

CSAs are mutually nonconjugate, we conclude that hi = h j .

⊂: Let Adg x ∈ (Vϵ,R )reg with g ∈ G and x ∈ Bϵ(0). Since x is regular, it lies in a unique

CSA, and is conjugate to an element h ∈ h j for some j , i.e.

∃g ′ ∈G : Adg ′ x = h ∈ h j . (4.4.4)

By Lemma 4.3.2, the orbit of a regular element consists only of regular elements. Hence

we have h ∈ (V
h j
ϵ )reg and Adg (g ′)−1 h = Adg x ∈ BR (0). Hence Adg x lies in the right-hand

side.

⊃: Let Adg h lie in the right-hand side. Because h ∈ AdG Bϵ(0), we can write h = Adg ′ x

for some g ′ ∈ G and x ∈ Bϵ(0). But then Adg h = Adg g ′ x ∈ AdG Bϵ(0), and since h was

regular, so is every element in its orbit, and we have Adg h ∈ (Vϵ,R )reg.

Lemma 4.4.3. Let h be a θ-invariant CSA. For all ϵ> 0, the sets V h
ϵ = AdG Bϵ(0)∩h are

bounded.

Proof. With respect to the inner product κθ : g×g→R, we have

κθ(adx y, z) =−κ([x, y],θz) = κ(y, [x,θz])

= κ(y,θ([θx, z])) =−κθ(y,adθx z).
(4.4.5)

It follows that ad∗
h =−adθh . Since [h,θh] = 0, the operator adh : g→ g is normal, and its

operator norm ∥adh ∥ with respect to the inner product κθ satisfies

∥adh ∥ = max
λ∈Spec(adh )

|λ| . (4.4.6)
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Let g ∈ G such that Adg (h) ∈ Bε(0). Since adAdg h is conjugate to adh , it is a normal

operator with the same eigenvalues, so in particular ∥adh ∥ = ∥adAdg h ∥. So since the

operator norm is bounded on Bε(0), it is bounded on AdG (Bε(0))∩h as well, and the

latter is a bounded subset of h.

Recall that Vϵ,R differs from (Vϵ,R )reg only in a Lebesgue null set. Also, we can write ev-

ery (h j )reg as the union of its open Weyl chambers C j ,r . Hence, we can use Lemma 4.4.1

and the decomposition (4.4.3) to find

Λ(Vϵ,R ) =
n∑

j=1

1

|W j |
∫

(V
h j
ϵ )reg

(∫
{[g ]∈G/H j :∥Adg h∥≤R}

VolG/H j

)
|π j (h)|2 dΛh j

(h)

=
n∑

j=1

∑
C j ,r ⊂h j

1

|W j |
∫

V
h j
ϵ ∩C j ,r

(∫
{[g ]∈G/H j :∥Adg h∥≤R}

VolG/H j

)
|π j (h)|2 dΛh j

(h).

(4.4.7)

To simplify, we will fix a single CSA h j and a single open Weyl chamber C j ,r , and suppress

the indices:

H := H j , π :=π j , h := h j , VolG/H :=VolG/H j , C :=C j ,r . (4.4.8)

For now, let us look at the single summand of (4.4.7) corresponding to h and C .

Lemma 4.4.4. Fix the notation as in (4.4.8), let m := m(h) as in Definition 4.3.7 for an

arbitrary h ∈C , and R > 0 arbitrary. Then there is some c ̸= 0 which does not depend on R

so that

lim
ϵ→0+

ϵ−m−dimh−|∆+|
∫

V h
ϵ ∩C

(∫
{[g ]∈G/H :∥Adg h∥≤R}

VolG/H

)
|π(h)|2 dΛh(h)

= c
∑
OX

∫
V h

1 ∩C
Vol(SX ∩Oh)µOX (BR (0))π(h)dΛh(h),

(4.4.9)

where the sum is taken over all nilpotent orbits OX contained in Nh for an arbitrary

h ∈C , cf. Remark 4.3.9.

Proof. Recall the notation µOh for the measure defined in Section 4.3, and that π(h)

was defined in Equation (4.3.13) as the volume density function of the orbit-stabilizer-

diffeomorphism G/H →Oh with respect to a fixed invariant volume form on G/H and

the KKS volume form on Oh . Using this property of π(h), we find that there exists some

nonzero scalar c depending only on the choice of invariant measure VolG/H on G/H
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with:∫
V h
ϵ ∩C

(∫
{[g ]∈G/H :∥Adg h∥≤R}

VolG/H

)
|π(h)|2 dΛh(h)

= c ·
∫

V h
ϵ ∩C

(∫
BR (0)∩Oh

VolOh

)
π(h)dΛh(h)

= c ·
∫

V h
ϵ ∩C

µOh (BR (0))π(h)dΛh(h)

= ϵdimh+|∆+|c ·
∫

V h
1 ∩C

µOϵh (BR (0))π(h)dΛh(h).

(4.4.10)

In the last step, we used that V h
ε = ϵV h

1 , that dΛh(εh) = εdimhdΛh(h), and that π(εh) =
ε|∆+|π(h). By Corollary 4.3.14 and compactness of V h

1 ∩C (Lemma 4.4.3), we have:

lim
ϵ→0

∫
V h

1 ∩C
ϵ−mµOϵh (BR (0))π(h)dΛh(h)

=∑
OX

∫
V h

1 ∩C
Vol(SX ∩Oh)µOX (BR (0))π(h)dΛh(h).

(4.4.11)

This shows the statement.

Finally, we use this to prove the key lemma:

Proof of key Lemma 4.2.7. Let OX ⊂ g be a nilpotent orbit of dimension d . Lemma 4.3.5

and Remark 4.3.9 imply that there is some CSA h⊂ g and some open Weyl chamber C ⊂
hreg so that OX ⊂Nh for all h ∈C . Since OX is of maximal dimension, the number m :=
m(x) from Definition 4.3.7 is minimal among m(x ′) for all x ′ ∈ greg. Then, by (4.4.7) and

Lemma 4.4.4, there are numbers c j ,r ̸= 0, independent of R, such that

lim
ϵ→0+

ϵ−m−dimh−|∆+|Λ(Vϵ,R )

=
n∑

j=1

∑
C j ,r ⊂h j

∑
OX

1

|W j |
c j ,r ·

∫
V h

1 ∩C
Vol(SX ∩Oh)µOX (BR (0))π j (h)dΛh j

(h),
(4.4.12)

where the sum over the OX is carried out over all nilpotent orbits OX ⊂Nh of dimen-

sion d . Note that this sum is independent of the choice of h ∈ C j ,r for fixed j and r ,

cf. Remark 4.3.9.

All summands in the above sum are positive as they arise from volumes of subsets of g,

and thus the total sum is nonzero. Lastly, the sum is homogeneous of degree d/2 in R

by Lemma 4.3.3. Hence we may consider their quotient and conclude the proof:

lim
ϵ→0+

Λ(Vϵ,ρR )

Λ(Vϵ,R )
= limϵ→0+ ϵ

−m−dimh−|∆+|Λ(Vϵ,ρR )

limϵ→0+ ϵ−m−dimh−|∆+|Λ(Vϵ,R )
= ρd/2. (4.4.13)
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5
EXPECTATION VALUES OF

POLYNOMIALS AND MOMENTS ON

COMPACT LIE GROUPS

Tobias DIEZ, Lukas MIASKIWSKYI

We develop a powerful framework to calculate expectation values of polynomials and

moments on compact Lie groups based on elementary representation-theoretic arguments

and an integration by parts formula. In the setting of lattice gauge theory, we generalize

expectation value formulas for products of Wilson loops by Chatterjee and Jafarov to

arbitrary compact Lie groups, and study explicit examples for many classical compact

Lie groups and the exceptional Lie group G2. Extending classical results by Collins and

Lévy, we use our framework to derive expectation value formulas of polynomials of

matrix coefficients under the Haar measure, Brownian motion, and the Wilson action. In

particular, we construct Weingarten functions for general compact Lie groups by studying

the underlying tensor invariants, and apply this to SU(N ) and G2.

This chapter is based on the preprint [DM22].

129
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5.1. INTRODUCTION
Integration over Lie groups plays a central role in many areas of mathematics and theo-

retical physics. It lies at the core of random matrix theory and has become an important

tool to describe a wide range of physical systems including lattice gauge theory [Wei78],

quantum chaotic systems [CHJLY17], many-body quantum systems [GMGW98], quan-

tum information theory [CN16] and matrix models for quantum gravity and Yang–Mills

theory in two dimensions [DFGZJ95, Xu97]. In this chapter, we develop a general frame-

work to calculate expectation values of polynomials of group elements and their inverses

on a compact Lie group G of the form∫
G

trρ(c1g±1 · · ·cn g±1)ν(g )dg , ci ∈G , (5.1.1)

where dg denotes the normalized Haar measure, ν is a probability density and the trace

is taken in a given representation ρ of G . Expanding the integrand, the problem reduces

to a computation of the expectation value of the so-called moments∫
G

gi1i ′1
· · ·gip i ′p

g−1
j1 j ′1

· · ·g−1
jq j ′q

ν(g )dg , (5.1.2)

where gi j = ρ(g )i j are the matrix entries of g ∈G in the representation ρ.

Given the numerous applications, these integrals are well-studied in the literature.

For matrices drawn randomly from the Haar distribution (ν= 1), the calculation of the

moments has been initiated by theoretical physicist [Wei78] motivated by problems

in lattice gauge theory. [Col03] developed a rigorous mathematical framework for

computing moments for the unitary group, which has been extended to the orthogonal

and symplectic group by [CS06]. In the unitary case, the developed Weingarten calculus

expresses the integral (5.1.2) as a sum over so-called Weingarten functions, which

are functions defined on the symmetric group. This approach makes heavy use of

representation theory in the form of Schur–Weyl duality. Recently, the Weingarten

calculus has been rephrased in terms of Jucys–Murphy elements [Nov10, ZJ10, MN13].

A special but important case is the computation of joint moments of traces of powers of

group elements, that is, essentially integrals of the form (5.1.1) with all coefficients ci set

to the identity element. For the unitary group, this has been extensively studied in [DS94,

DE01] where it was used to obtain central limit theorems of eigenvalue distributions;

see also [PV04, HR03] for analogous results for other groups.

Lattice gauge theories are a natural area where integrals over Lie groups play a

central role. They were originally introduced by Wilson as discrete approximations

to quantum Yang–Mills theory and evolved to become one of the most promising

approaches to study non-perturbative effects in QCD such as quark confinement. The

most important gauge-invariant observables in lattice theory are Wilson loops (traced

holonomies) whose long range decay serves as an indicator for the confining behavior.

In the Euclidean formulation of the theory, the expectation value of a Wilson loop is
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an integral of the form (5.1.1) with the probability density ν being a Boltzmann weight

relative to the Yang–Mills action. However, explicitly computing expectation values of

and correlations between Wilson loops is a difficult, if not impossible, challenge. One

thus usually resorts to numerical methods such as classical Monte Carlo simulation to

approximate such integrals.

Indeed, an analytical understanding of the Wilson loop expectation values in the

continuum and infinite volume limit is an essential ingredient to solve the Yang–Mills

mass gap problem, which is one of the seven Millennium Problems posed by the Clay

Mathematics Institute. [tH74] realized that, when the rank N of the gauge group tends

to infinity, the theory simplifies in many ways and can be solved analytically in certain

cases. In particular, the Wilson loops then satisfy the Makeenko–Migdal equations and

factorize, i.e., the expectation value of a product of Wilson loops equals the product of

the expectation values of the individual Wilson loops. Recently, [Cha19] established in

the large N -limit of SO(N ) lattice gauge theory an asymptotic formula for expectation

values of products of Wilson loops in terms of a weighted sum of certain surfaces. These

surfaces are defined starting from the collection of loops using the four operations of

merging, splitting, deformation and twisting. The proof proceeds by a complicated and

lengthy calculation which hinges on Stein’s method for random matrices. Analogous

results have been obtained for SU(N ) in [Jaf16] using similar methods. This develop-

ment sparked renewed interest, leading to further progress for large-N gauge theories

[CJ16, BG18, Cha21].

Another approach to a rigorous definition of a quantum Yang–Mills theory is the

construction of the Yang–Mills measure and thus of the path integral using Brownian

motion on the structure group. This direction has been pioneered by [Dri89, GKS89]

in two dimensions. We refer the reader to [Sen08] for a relative recent review of two-

dimensional Yang–Mills theory. In the physics literature, the Yang–Mills measure is

taken to be the Lebesgue measure on the space of connections, weighted by a Boltzmann

density involving the Yang–Mills action. To make sense of this formal description, one

usually uses the holonomy mapping to define the Yang–Mills measure in terms of

group-valued random variables indexed by embedded loops whose distribution is given

by the heat density (at a “time” proportional to the area enclosed by the loop). For

this reason, the calculation of expectation values of polynomials on Lie groups with

respect to a Brownian motion attracted a lot of attention, especially in the large-N

limit. In particular, combinatorial integration formulas for the expectation values of

polynomials under the heat kernel measure have been obtained by [Xu97, Lé08] and

recently generalized by [Dah17] to also allow polynomials in inverses of group elements.

The study in the aforementioned papers rely on heavy machinery from represen-

tation theory in the form of Schur–Weyl duality or Jucys–Murphy elements, or on a

detailed probabilistic analysis using for example Stein’s method. Due to this complexity,

the results have usually been obtained first for the unitary group, and then generalized
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in subsequent papers to other groups such as the orthogonal or symplectic group. More-

over, the methods have been tailored to the specific probability measure under study

which made it hard to transfer progress from one scheme to another. In contrast, we

here deduce and extend the main results of these papers from an elementary integration

by parts formula. This allows us to generalize these results to arbitrary compact Lie

groups and to analyze the Haar, Wilson and heat kernel cases simultaneously and on

equal footing.

Our first main result is Theorem 5.3.6 which describes the expectation value of a

product of Wilson loop observables in terms of other Wilson loops that are obtained

from the initial family through two operations that we call twisting and merging1.

This is a generalization of the results of [Cha19, Jaf16] to arbitrary compact Lie groups,

arbitrary probability measures and arbitrary group representations. Our construction

shows that the operations of twisting and merging are determined by an operator in the

universal enveloping algebra of the Lie algebra that can be seen as an operator-theoretic

counterpart to the so-called completeness relations. Moreover, these two operations

can be represented in a diagrammatic way that resembles the Feynman path integrals

rules. This diagrammatic calculus is similar but different to the one developed by [BB96]

for the unitary group, cf. also [Cvi76]. For the Haar measure and for the Brownian

motion, the resulting equations for the expectation of a product of Wilson loops lead to

a recursive formula that can be solved using a straightforward algorithm. In the case

of the Haar integral over the unitary group, we recover the recursion relations given

in [Sam80, Section III]. For the Yang–Mills Wilson action, the equation takes a relative

simple form which does not involve merging of Wilson loops with plaquette operators

as in [Cha19] and which has the additional benefit to reduce the operations on the

family of loops needed from four to two. Moreover, in the case of the unitary group, the

structure of the equation is particularly well-suited to a large-N limit. As applications

of our general framework, the result for the groups SO(N ), Sp(N ), U(N ), and G2 are

discussed in more detail in Section 5.5.

In the second part of the chapter, we investigate the moment integrals (5.1.2) for

an arbitrary compact Lie group. Theorem 5.4.2 shows that the moments satisfy an

eigenvalue equation whose particular form depends on the probability measure. For

the Haar measure, the moments yield a projection onto the subspace of invariants.

Specialized to the unitary group, this result is a restatement of the well-known fact that

the moments yield a conditional expectation onto the group algebra of the symmetric

group [CS06, Proposition 2.2]. Moreover, Theorem 5.4.6 yields an explicit expansion

of the moments as a sum over a spanning set of invariants. In particular, we define a

Weingarten map for every compact Lie group (depending on the group representation

and on the spanning set of invariants) and show that it gives the coefficients in this

1For the unitary group, these operations correspond to the Fission and Fusion processes of [Sam80, Section III],

respectively.
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expansion of the moments. This is similar in sprit to the definition of the Weingarten

map as a pseudoinverse in [ZJ10] and equivalent to the results of [Col03, CS06] for the

unitary, orthogonal and symplectic group. As a novel application, we determine in

Section 5.5.5 the Weingarten map, and thus the moments, for the exceptional group

G2 in its natural 7-dimensional irreducible representation. In the case of Brownian

motion, the moments can be calculated using the eigenvalues of the Casimir operator

and converge for large times to the moments with respect to the Haar measure, see

Corollary 5.4.4. This is a refinement and extension of the results of [Lé08, Dah17], where

only the groups U(N ), O(N ), and Sp(N ) were considered.

As we have mentioned above, at the heart of our approach lies a simple integration

by parts formula. This is perhaps most similar to the derivation of the Schwinger–Dyson

equation for the Gaussian unitary ensemble, see, e.g., [AGZ10, Equation (5.4.15)]. To

illustrate how integration by parts can be used to calculate moments, consider the

simple example of Ti j kl =
∫

G gi j g−1
l k dg . After inserting the Laplacian in the first factor,

integration by parts yields∫
G

(∆gi j )g−1
lk dg =−

∫
G
〈dgi j ,dg−1

lk 〉 dg . (5.1.3)

The Schur–Weyl lemma implies that gi j is an eigenvector of the Laplacian with, say,

eigenvalue λ. Thus, the left-hand side equals λTi j kl . On the other hand, the right-

hand side can be calculated by using an orthonormal basis ξa for the Lie algebra g and

introducing the operator Ki j kl = ξa
i jξ

a
kl (implicitly summing over a). In summary, we

obtain

λTi j kl = Kr j l s Ti r ks . (5.1.4)

For the fundamental representation of G = U(N ), the completeness relation is of the

form Kr j l s =−δr sδ j l and thus

λTi j kl =−δ j l Ti r kr =−δ j lδi k , (5.1.5)

where the second equality follows from the definition of Ti j kl . The calculation of matrix

coefficients of higher degree involves more delicate combinatorics, but the strategy

remains the same: integration by parts yields an eigenvalue equation for the matrix

coefficients, which is then solved by using a group-dependent completeness relation.

5.2. SETTING

5.2.1. DIFFERENTIAL GEOMETRY ON LIE GROUPS

In all that follows, we are using the Einstein summation convention where repeated

indices are automatically summed over. Occasionally, this convention will be overridden

by explicit summation symbols, when we want to more closely specify the range of

summation.
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For the rest of the chapter, consider the following setting: We are given a compact Lie

group G and a finite-dimensional, complex, irreducible representation ρ : G → GL(V ).

For all g ∈G , write

trρ(g ) := tr(ρ(g )). (5.2.1)

Equip the Lie algebra g= TeG of G with an AdG -invariant positive-definite symmetric

bilinear form κ. In the examples we consider, G is usually semisimple and κ a negative

multiple of the Killing form. By translation, the inner product κ induces a canonical

bi-invariant Riemannian metric 〈·, ·〉 on G . We normalize the volume form so that G as

unit volume, and denote the corresponding probability measure by dg .

We fix an orthonormal basis {ξa ∈ g} of g with respect to κ, and use it to define a

global frame of T G by left translation. Analogously, the dual basis {ϵa ∈ g∗} associated

to {ξa} defines a global frame of the cotangent bundle T ∗G .

We collect some abuses of notation: We will denote the global frames of TG and

T ∗G with the same letters ξa ,ϵa as the pointwise objects. Similarly, we identify elements

of g with left-invariant vector fields on G and with derivations on C∞(G). Further, the

Lie group representation ρ induces a Lie algebra representation g→ End(V ) which we

will denote by the same letter ρ.

The Riemannian metric naturally induces the musical isomorphisms

♭ : T G → T ∗G , vp 7→ 〈vp , ·〉, (5.2.2)

♯ := ♭−1 : T ∗G → TG . (5.2.3)

We extend the inner product on the fibers of TG to T∗G by declaring

〈α,β〉 = 〈α♯,β♯〉 (5.2.4)

for α,β ∈ T∗G in the same fiber.

The Laplace–Beltrami operator is defined by

∆ : C∞(G) →C∞(G), f 7→∆ f :=∇·∇ f = ξa(ξa f ), (5.2.5)

where the sections ξa are viewed as a vector fields on G , hence derivations on C∞(G).

In our sign convention, ∆ has negative eigenvalues.

The Laplace–Beltrami operator is tightly connected to the Casimir invariant C :=
ξaξa ∈ U(g). Under the identification of the universal enveloping algebra U(g) with the

left-invariant differential operators on G , the Casimir invariant maps to the Laplace–

Beltrami operator.

Furthermore, consider the tensor product representation

ρ⊗ρ : g→ End(V ⊗V ), ξ 7→ ρ(ξ)⊗ id+ id⊗ρ(ξ), (5.2.6)

and the image of the Casimir invariants under ρ and ρ⊗ρ
ρ(C ) = ρ(ξa) ·ρ(ξa),

(ρ⊗ρ)(C ) = (
ρ(ξa)⊗ id+ id⊗ρ(ξa)

) · (ρ(ξa)⊗ id+ id⊗ρ(ξa)
)

.
(5.2.7)
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We immediately find

(ρ⊗ρ)(C ) = ρ(C )⊗ id+ id⊗ ρ(C )+2ρ(ξa)⊗ρ(ξa). (5.2.8)

The Casimir invariant C is well known to be independent of the choice of orthonormal

basis, hence, by the above equation, so is the following important operator:

K := ρ(ξa)⊗ρ(ξa) = 1

2

(
(ρ⊗ρ)(C )−ρ(C )⊗ id− id⊗ ρ(C )

) ∈ End(V ⊗V ). (5.2.9)

Relative to a basis in V , it assumes the shape

Ki j kl = ξa
i jξ

a
kl . (5.2.10)

The operator K defined in Eq. (5.2.9) is independent of the choice of the basis ξa

(but depends on κ) and it is sometimes called the split Casimir operator. Indeed, the

nondegenerate bilinear form κ on g yields the isomorphism Hom(g,g) = g⊗g∗ ≃ g⊗g.

Composing this with the representation ρ : g→ End(V ) gives a map Hom(g,g) → g⊗g→
End(V )⊗End(V ). The image of the identity under this map is K . The operator K is

related to the image of the Casimir invariant C through contraction:

ρ(C )i j = Ki kk j . (5.2.11)

If the representation ρ is unitary, then for each ξ ∈ g the operator ρ(ξ) is skew-Hermitian

and the operator K has the following symmetry properties:

Ki j kl = K j i l k , Ki kk j = K j kki . (5.2.12)

In particular, ρ(C ) is a Hermitian operator.

Lastly, recall that, by Schur’s Lemma, the images of the Casimir invariants under ρ

and ρ⊗ρ are proportional to the identity on irreducible components of V and V ⊗V ,

respectively. By the second representation of K in Eq. (5.2.9), the same holds for K .

5.2.2. BROWNIAN MOTION ON LIE GROUPS

In this section we recall the definition of the Brownian motion on a compact Lie group.

The systematic study of this subject goes back to the pioneering work of [Hun56, Yos52,

Itô50], and we refer the reader to [Lia04] [RW94, Section V.35] for textbook treatments.

As before, G is a compact Lie group whose Lie algebra g is endowed with an AdG -

invariant scalar product κ, and {ξa} denotes an orthonormal basis of g. Let (Wt )t≥0 be

the unique centered Gaussian process on g with covariance matrix

E
(
W a

t W b
s

)= min(t , s)δab , t , s ≥ 0, (5.2.13)

where W a
t = κ(ξa ,Wt ). The (Riemannian) Brownian motion on G starting at g ∈G is the

unique G-valued stochastic process (g t )t≥0 which solves the Stratonovich stochastic

differential equation

dg t = ξa(g t )◦dW a
t , g0 = g . (5.2.14)
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That is, for every f ∈C∞(G),

f (g t ) = f (g )+
∫ t

0
(ξa f )(gs )◦dW a

s . (5.2.15)

Converting into the Itô calculus yields

f (g t ) = f (g )+
∫ t

0
(ξa f )(gs )dW a

s + 1

2

∫ t

0
(∆ f )(gs )ds . (5.2.16)

Moreover, g t is a Feller diffusion process on G whose infinitesimal generator, restricted

to smooth functions, is one half of the Laplace operator ∆.

For f ∈ C (G) and g ∈ G , we denote by Eg
(

f (g t )
) = E( f (g t )|g0 = g

)
the conditional

expectation of f given that g t starts at g . The resulting semigroup is a contraction on

C (G) and satisfies

Eg
(

f (g t )
)= ∫

G
f (a) pt (g−1a) da, (5.2.17)

where, for t > 0, pt : G →R is the smooth probability density satisfying the heat equation

1

2
∆pt = ∂

∂t
pt , lim

t→0
pt = δe . (5.2.18)

Usually, we are interested only in processes starting at the identity and then abbreviate

E≡ Ee .

5.2.3. WILSON LOOPS

In this section, we recall basic elements of the lattice gauge theory. The reader is referred

to the textbooks [RS17, MM97] for a detailed treatment.

Consider a directed graph (Λ0,Λ1), which one may think of as being embedded

either in space or spacetime. Here, Λ0 is the set of all vertices which we assume to be

finite, and Λ1+ is the set of all directed edges (i.e., ordered pairs of vertices). For an edge

e, let s(e), t (e) ∈Λ0 be its source and target vertices, respectively, and let e−1 be the edge

going in the opposite direction. We denote by Λ1− = {e−1 : e ∈Λ1+} the set of all edges

with their orientation reversed, and set Λ1
± =Λ+∪Λ−. A (field) configuration is a map

g : Λ1+ → G assigning to each edge e a group element g (e) that should be thought of

as the approximation of the parallel transport along that edge. We extend g to a map

g :Λ1
± →G by setting g (e−1) = g (e)−1.

An (oriented) path l = (e1, . . . ,er ) is an ordered tuple of edges ei ∈ Λ1
± such that

t(ei ) = s(ei+1) for all 1 ≤ i < r . A path is called a loop if the edges form a cycle, i.e.

t(er ) = s(e1). If, additionally, each edge occurs only once then the loop is called a

plaquette (or face). Given a path l , the product of a configuration g along l is defined by

g (l ) = g (e1) · · ·g (er ). Given a choice of a set Λ2 of plaquettes, the probability density on

the space of configurations is given by the Wilson action

g 7→ 1

Z
exp

(
β

∑
p∈Λ2

trρ
(
g (p)

))
, (5.2.19)
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where Z is a normalization factor (the partition function) and β ∈ R is the so-called

inverse temperature. Here, the trace is taken with respect to a representation ρ of G ,

which usually is assumed to be irreducible or even to be the fundamental representation.

One is mainly interested in expectation values of Wilson loop observables. These are

functions Wl on the space of configurations indexed by loops l = (e1, . . . ,er ) and are

given by

Wl (g ) = trρ
(
g (l )

)= trρ
(
g (e1)±1 · · ·g (er )±1) , (5.2.20)

where the sign in the factor g (ei )±1 is determined based on whether ei is an element of

Λ1+ or Λ1−. In other words, one is lead to calculate integrals of the form∫
Wl (g ) exp

(
β

∑
p∈Λ2

trρ
(
g (p)

))
dg . (5.2.21)

Since dg =∏
e∈Λ1+ dge is the product of Haar measures, one can evaluate such an integral

by successively integrating over copies of G .

In the following, we are mainly concerned with the resulting integral over a single

edge. For this, it is convenient to change the notation and language slightly and consider

restrictions to a single edge. For the lattice gauge theory calculations that one may want

to perform in the end, it is good to remember that Wilson loops do, in fact, depend on

many copies of G .

Definition 5.2.1 (Wilson Loops). Let ρ : G → End(V ) be a finite-dimensional represen-

tation of G , and for some natural number r ∈N, fix an element

l = ((c1,σ1), . . . (cr ,σr )) ∈ (G × {±1})r . (5.2.22)

The (single-argument) Wilson loop Wρ,l associated with this data is given by

Wρ,l : G →C, Wρ,l (g ) = trρ(c1gσ1 c2g±1 · · ·cr gσr ). (5.2.23)

Often the representation is clear from the context and we simply write Wl in this case.

Moreover, we say that the g±1 between cs and cs+1 is in the s-th position.

In this setting, we consider the probability measure to be a single-argument version

of the Wilson action:

νW (g ) = 1

Z
exp

(
β

∑
p

Wp (g )

)
, g ∈G , (5.2.24)

where Z is a suitable normalization factor, β ∈R a fixed number, the sum is over a finite

set that is not further specified, and Wp is a single-argument Wilson loop of the form

Wp (g ) = trρ(Cp g±1), Cp ∈G . (5.2.25)

Below, we also need a slight generalization of a single-argument Wilson loop for

which the coefficients are not necessarily elements of the same group.
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Definition 5.2.2 (Generalized Wilson Loops). Letρ : G → End(V ) be a finite-dimensional

representation of G , and for some natural number r ∈N, fix an element

l = ((c1,σ1), . . . (cr ,σr )) ∈ (End(V )× {±1})r . (5.2.26)

The generalized Wilson loop Wρ,l associated with this data is given by

Wρ,l : G →C, Wl (g ) = trV
(
c1ρ(gσ1 )c2ρ(gσ2 ) · · ·crρ(gσr )

)
. (5.2.27)

A (generalized) Wilson loop is called linear if there is only one factor of g in the

above representation, i.e. r = 1; otherwise it is called polynomial.

The notion of a generalized Wilson loop is inspired by the concept of spin networks.

In fact, a generalized Wilson loop can be visualized as a loop in a graph consisting of

two vertices and n+1 directed edges, where one edge is decorated by ρ(g ) and the other

edges by the endomorphisms ci .

A linear generalized Wilson loop (with, say, positive exponent on the g factor) is

completely determined by its coefficient c ∈ End(V ). We thus obtain a map

End(V ) →C 0(G ,C), c 7→Wρ,(c) = trV
(
c ρ(·)). (5.2.28)

Under the isomorphism End(V ) ∼= V ∗ ⊗V this is nothing but the usual embedding

of matrix coefficients. In other words, linear generalized Wilson loops are just linear

combinations of matrix coefficients, and every matrix coefficient is a linear generalized

Wilson loop.

Proposition 5.2.3. Every (generalized) Wilson loop Wρ,l can be written as a finite linear

combination of linear generalized Wilson loops associated with irreducible representa-

tions. That is, there exists a finite set of irreducible representations (τ,Vτ) of G and a

collection of endomorphisms cτ ∈ End(Vτ) such that

Wρ,l =
∑
τ

Wτ,(cτ). (5.2.29)

Proof. Note that a (generalized) Wilson loop transforms as Wρ,l (ag ) =Wρ,a·l (g ), where

the action a · l of a ∈G on the coefficients ci is either by left or right translation or conju-

gation depending on the signatures. This shows that the linear span of all generalized

Wilson loops (relative to a given representation ρ) is a left G-translation invariant sub-

space of C 0(G ,C). By choosing a basis in End(V ), we obtain a finite spanning set so that

spanWρ,· is finite-dimensional. Hence, every (generalized) Wilson loop is a so-called

representative function, see [BtD95, Definition III.1.1]. By [BtD95, Proposition III.1.5],

every representative function is a finite linear combination of matrix coefficients with

respect to irreducible representations. As we have remarked above, the latter are linear

generalized Wilson loops.
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5.3. EXPECTATION VALUES OF WILSON LOOPS
The following identity is of fundamental importance for us, and it is derived by a simple

application of integration by parts.

Lemma 5.3.1. Let G be a compact Lie group and let ν be a probability density with respect

to the normalized Haar measure on G. For smooth functions F1, . . . ,Fq on G,

q∑
r=1

∫
G

(∆Fr )F1 · · · F̂r · · ·Fq ν dg =
∫

G
F1 · · ·Fq ∆ν dg

−2
q∑

r,s=1
r<s

∫
G
〈dFr ,dFs〉F1 · · · F̂r · · · F̂s · · ·Fq ν dg

(5.3.1)

where the hat signifies omission of the corresponding term.

Proof. Using integration by parts twice, we obtain

−∑
r

∫
G

(∆Fr )F1 · · · F̂r · · ·Fq ν dg

=∑
r

∫
G
〈dFr ,dν〉F1 · · · F̂r · · ·Fq dg

+ ∑
r ̸=s

∫
G
〈dFr ,dFs〉F1 · · · F̂r · · · F̂s · · ·Fq ν dg

=−∑
r

∫
G
∆νF1 · · ·Fq dg

+2
∑
r<s

∫
G
〈dFr ,dFs〉F1 · · · F̂r · · · F̂s · · ·Fq ν dg

(5.3.2)

and the claimed equality follows immediately.

In this section, we will make use of this basic lemma by applying it to a collection

of single-argument Wilson loops Wl1 , . . . ,Wlq . For simplicity, we consider only the

case where all Wilson loops are defined with respect to the same representation ρ and

where the coefficients are elements of the group (i.e., normal Wilson loops instead of

generalized ones). However, with minor modifications, everything we say generalizes

to generalized Wilson loops with respect to possibly different representations, see

Remark 5.3.10 below for more details. The significance of Lemma 5.3.1 lies in the fact

that, for Wilson loops, both sides of the relation can be evaluated and this yields a non-

trivial identity. Moreover, both sides have interpretations as systematic operations on

Wilson loops: The Laplacian ∆Wl of a Wilson loop gives rise to what we call the twisting

of Wl , and the inner product 〈dWl ,dWl ′〉 of two Wilson loops yields their merging.

5.3.1. MERGING: CALCULATION OF THE RIGHT-HAND SIDE

Within this subsection, we will focus on the calculation of the term involving the inner

product of two Wilson loops. Given a Wilson loop Wl , let E+(l ) be the positions j
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where Wl has the identity g and E−(l ) the positions where Wl has the inverse g−1.

Let E(l ) := E+(l ) ∪ E−(l ). Similarly for E+(l ′),E−(l ′) and E(l ′). Consider the matrix

component functions gi j := ρ(g )i j : G →C and ξi j := ρ(ξ)i j : g→C. We find:

d gi j = gi l ·ξa
l j ·ϵa , d(g−1)i j =−ξa

i l · (g−1)l j ·ϵa . (5.3.3)

Using these expressions for the differentials d gi j and d g−1
i j , and the expression (5.2.23)

for a general single-argument Wilson loop, we find

dWl =∑
j∈E+(l )

(c1g±1 · · ·c j−1g±1c j g )k1k2
ξa

k2k3
(c j+1g±1 · · ·cn g±1)k3k1

dξa

− ∑
j∈E−(l )

(c1g±1 · · ·c j−1g±1c j )k1k2
ξa

k2k3
(g−1c j+1g±1 · · ·cn g±1)k3k1

dξa .

(5.3.4)

To simplify notation, we introduce the following definition.

Definition 5.3.2 (Merging loops in general representations).

For two single-argument Wilson loops of the form Wl (g ) = trρ(C gσ1 ),Wl ′ (g ) = trρ(Dgσ2 )

with C ,D ∈G and exponents σ1,σ2 ∈ {±1}, we define their merging M (Wl ,Wl ′ ) : G →C,

depending on the value of the tuple of exponents (σ1,σ2), as follows:

M (Wl ,Wl ′ )(g ) =



+ trρ(C gξa) · trρ(Dgξa) if (σ1,σ2) = (+,+),

− trρ(C gξa) · trρ(Dξa g−1) if (σ1,σ2) = (+,−),

− trρ(Cξa g−1) · trρ(Dgξa) if (σ1,σ2) = (−,+),

+ trρ(Cξa g−1) · trρ(Dξa g−1) if (σ1,σ2) = (−,−).

(5.3.5)

Note the implicit sum over the Lie algebra index a in all of the above. The merging of

two generalized Wilson loops is defined analogously. Since the above case distinctions

depending on the tuple (σ1,σ2) will occur more often later, we will adopt the following

equivalent notation for brevity:

M (Wl ,Wl ′ )(g ) =



(+,+) : + trρ(C gξa) · trρ(Dgξa),

(+,−) : − trρ(C gξa) · trρ(Dξa g−1)

(−,+) : − trρ(Cξa g−1) · trρ(Dgξa),

(−,−) : + trρ(Cξa g−1) · trρ(Dξa g−1).

(5.3.6)

For two arbitrary single-argument Wilson loops Wl and Wl ′ with distinguished factors

g±1 in the, respectively, j -th and j ′-th position, their merging M j j ′ (Wl ,Wl ′ ) at the j -th

and j ′-th positions is defined by the same formulas after the Wilson loops have been

expressed in the above form2 with C ,D possibly depending on g . The total merger of

2That is, using the cyclicity of the trace: Wl (g ) = trρ(c1g±1c2g±1 · · ·cn g±1) =
trρ (c j+1g±1c j+2g±1 · · ·cn g±1c1g±1c2g±1 · · ·c j g±1).
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two loops Wl ,Wl ′ is defined as

M (Wl ,Wl ′ ) := ∑
j∈E(l ),
j ′∈E(l ′)

M j j ′ (Wl ,Wl ′ ). (5.3.7)

Remark 5.3.3. Note that this is not equal to what in [Cha19] is called the merging of

loops when G = SO(N ). However, there is a relation between the notions, which is

outlined in Section 5.5.1.

The particular form of the merge operation depends on the Lie algebra under study,

and it is completely controlled by the operator K Eq. (5.2.10). In fact, we have

M (Wl ,Wl ′ )(g ) = Ki j kl ·



(+,+) : +C j s gsi Dl t g tk ,

(+,−) : −C j s gsi D tk g−1
l t ,

(−,+) : −Csi g−1
j s Dl t g tk ,

(−,−) : +Csi g−1
j s D tk g−1

l t .

(5.3.8)

Identities expressing K in terms of elementary matrices are called completeness relations.

These relations usually allow one to rewrite M j j ′ (Wl ,Wl ′ ) as a linear combination of

certain Wilson loops. Below in Section 5.5 we discuss this exemplarily for G = O(N ),

Sp(N ), U(N ), SU(N ) in more detail. Note, however, that in general the merging of two

Wilson loops is not a linear combination of Wilson loops again as the example of G2

shows. On the other hand, the class of generalized Wilson loops is closed under the

merging operation.

Proposition 5.3.4. The merging of two generalized Wilson loops

WC1,θ1 (g ) = trV
(
C1ρ(g θ1 )

)
, WC2,θ2 (g ) = trV

(
C2ρ(g θ2 )

)
(5.3.9)

equals the generalized Wilson loop

M (WC1,θ1 ,WC2,θ2 )(g ) = trV θ1,θ2

(
K θ1,θ2 ψθ1,θ2 (C1,C2)ρθ1,θ2 (g )

)
, (5.3.10)

where, depending on the signatures (θ1,θ2), the representation ρθ1,θ2 is defined by

V θ1,θ2 =



(+,+) : V ⊗V ,

(+,−) : V ⊗V ∗,

(−,+) : V ∗⊗V ,

(−,−) : V ∗⊗V ∗,

ρθ1,θ2 =



(+,+) : ρ⊗ρ,

(+,−) : ρ⊗ρ∗,

(−,+) : ρ∗⊗ρ,

(−,−) : ρ∗⊗ρ∗,

(5.3.11)

and the map ψθ1,θ2 : End(V )2 → End(V θ1,θ2 ) is defined by

ψθ1,θ2 (C ,D) =



(+,+) : C ⊗D,

(+,−) : C ⊗D∗,

(−,+) : C∗⊗D,

(−,−) : C∗⊗D∗,

(5.3.12)
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and K θ1,θ2 = ρθ1 (ξa)⊗ρθ2 (ξa) with ρ+ = ρ and ρ− = ρ∗.

Proof. For simplicity, we only give the proof for the case (θ1,θ2) = (+,−); the other cases

are analogous. Since the trace is invariant under transposition, we have

trV
(
Cρ(ξ)ρ(g−1)

)= trV ∗
(
ρ(g−1)∗ρ(ξ)∗C∗)=− trV ∗

(
ρ∗(g )ρ∗(ξ)C∗)

(5.3.13)

for C ∈ End(V ), ξ ∈ g and g ∈G . Thus, by (5.3.2), we find

M (WC1,θ1 ,WC2,θ2 )(g ) =− trV
(
C1ρ(g )ρ(ξa)

) · trV
(
C2ρ(ξa)ρ(g−1)

)
= trV

(
ρ(ξa)C1ρ(g )

) · trV ∗
(
ρ∗(ξa)C∗

2 ρ
∗(g )

)
= trV ⊗V ∗

(
ρ(ξa)⊗ρ∗(ξa)◦C1 ⊗C∗

2 ◦ρ(g )⊗ρ∗(g )
)
,

(5.3.14)

which finishes the proof.

With the above notation and Equation (5.3.4), we arrive at the following expression:

〈dWl ,dWl ′〉 =
∑

j∈E(l ),
j ′∈E(l ′)

M j j ′ (Wl ,Wl ′ ) =M (Wl ,Wl ′ ) (5.3.15)

5.3.2. TWISTING: CALCULATION OF THE LEFT-HAND SIDE

Let us now examine what the action of the Laplacian on a Wilson loop. We start off by

using the higher-order product rule

∆( f ·h) = f ·∆h +∆( f ) ·h +2〈d f ,dh〉 (5.3.16)

for f ,h ∈C∞(G). In the representation (5.2.23) for a single-argument Wilson loop Wl ,

this yields:

∆Wl =
n∑

j=1
(c1g±1 · · ·c j )i1i2∆(g±1

i2i3
)(c j+1 · · ·cn g±1)i3i1

+ ∑
j ̸=k

〈d g±1
i2i3

,d g±1
i4i5

〉(c1g±1 · · ·c j )i1i2 (c j+1 · · ·ck )i3i4 (ck+1 · · ·cn g±1)i5i1 .
(5.3.17)

Recall that by the Peter–Weyl theorem, matrix elements of irreducible representations

are eigenfunctions of the Laplacian, and matrix elements to the same irreducible rep-

resentation lie in the same eigenspace. Hence, the first sum in the above is a scalar

multiple of Wl . The mixed term takes a form that is very similar to the mergers of

Definition 5.3.2, except that the loop is “merged with itself ”, in two different locations.

Let us make this precise with the following definition.

Definition 5.3.5 (Twisting loops in general representations). Given a single-argument

loop Wl (g ) = trρ(C gσ1 Dgσ2 ) with C ,D ∈G and exponents σ1,σ2 ∈ {±1}. We define its
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twisting T (Wl ) : G →C, depending on the value of the tuple of exponents (σ1,σ2), as

follows:

T (Wl )(g ) =



(+,+) : + trρ(C gξaDgξa),

(+,−) : − trρ(C gξaDξa g−1),

(−,+) : − trρ(Cξa g−1Dgξa),

(−,−) : + trρ(Cξa g−1Dξa g−1).

(5.3.18)

For an arbitrary single-argument Wilson loops Wl with distinguished factors g±1 in the,

respectively, j -th and j ′-th position, its twisting T j j ′ (Wl ) at the j -th and j ′-th positions

is defined by the same formulas after the Wilson loops have been expressed in the above

form with C ,D possibly depending on g (cf. Definition 5.3.2). The total twisting of a

loop Wl is defined as

T (Wl ) := ∑
j , j ′∈E(l )

j ̸= j ′

T j j ′ (Wl ). (5.3.19)

Note that the twisting of a Wilson loop, too, is completely determined by the operator

K :

T (Wl )(g ) = Ki j kl ·



(+,+) : +Cl s gsi D j t g tk ,

(+,−) : −Ct s gsi D j k g−1
l t ,

(−,+) : −Cl i g−1
j s Dst g tk ,

(−,−) : +Ct i g−1
j s Dsk g−1

l t .

(5.3.20)

This formula should be compared with the expression (5.3.8) for the merging, which

has the same structure in K and ρ(g±1)⊗ρ(g±1) but the contraction with the tensor

ρ(C )⊗ρ(D) is different. As a consequence of Schur’s lemma, the matrix elements are

eigenfunctions of the Laplace operator ∆. Using its definition (5.2.5) and Eq. (5.2.11),

we find

λgi j
!=∆gi j = ξa(ξa gi j ) = gi lξ

a
lkξ

a
k j = gi l Klkk j = gi lρ(C )l j . (5.3.21)

Hence the eigenvalue λ of the Laplace operator equals the eigenvalue of the Casimir

invariant C ∈ U(g) in the representation ρ:

ρ(C )i j = Ki kk j =λδi j . (5.3.22)

Thus we can rewrite the Laplacian of a Wilson loop Wl in terms of the twisting T (Wl ),

the eigenvalue λ, and the number n counting the amount of g±1-factors contained in

Wl :

∆Wl =λ ·n ·Wl +
∑

j ̸= j ′∈E(l )

T j j ′ (Wl ) =λ ·n ·Wl +T (Wl ). (5.3.23)
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5.3.3. SYNTHESIS

Combining the calculated terms with Lemma 5.3.1 we get the following theorem.

Theorem 5.3.6. Let G be a compact Lie group equipped with a probability density ν,

ρ : G → V an irreducible, finite-dimensional representation and Wl1 , . . . ,Wlq : G → C a

collection of single-argument Wilson loops. Let λ ∈ C be the eigenvalue of the Casimir

ρ(C ), and denote the number of factors of g or g−1 in the canonical representation of the

Wilson loop Wlr by nr . Then we have

λ
q∑

r=1
nr ·

∫
G

Wl1 · · ·Wlq ν dg =

−2
q∑

r,s=1
r<s

∫
G

M (Wlr ,Wls ) ·Wl1 · · ·Ŵlr · · ·Ŵls · · ·Wlq ν dg

−
q∑

r=1

∫
G

T (Wlr ) ·Wl1 · · ·Ŵlr · · ·Wlq ν dg

+
∫

G
Wl1 · · ·Wlq ∆ν dg .

(5.3.24)

As applications, let us state Theorem 5.3.6 for the three different choices of probabil-

ity densities ν introduced above.

Corollary 5.3.7 (Haar measure). In the setting of Theorem 5.3.6, we have

λ
q∑

r=1
nr ·

∫
G

Wl1 · · ·Wlq dg =

−2
q∑

r,s=1
r<s

∫
G

M (Wlr ,Wls ) ·Wl1 · · ·Ŵlr · · ·Ŵls · · ·Wlq dg

−
q∑

r=1

∫
G

T (Wlr ) ·Wl1 · · ·Ŵlr · · ·Wlq dg .

(5.3.25)

Corollary 5.3.8 (Brownian motion). In the setting of Theorem 5.3.6, we have∫
G

Wl1 · · ·Wlq pt dg =Wl1 (e) · · ·Wlq (e)

+ 1

2
e

t
2λ

∑q
r=1 nr

∫ t

0
MT (s)e−

s
2λ

∑q
r=1 nr ds,

(5.3.26)

where

MT (t ) = 2
q∑

r,s=1
r<s

∫
G

M (Wlr ,Wls ) ·Wl1 · · ·Ŵlr · · ·Ŵls · · ·Wlq pt dg

+
q∑

r=1

∫
G

T (Wlr ) ·Wl1 · · ·Ŵlr · · ·Wlq pt dg .

(5.3.27)
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Proof. Using the heat equation, (5.3.24) reduces, for the Brownian motion, to a first-

order linear differential equation of the form

c f (t )−2 f ′(t ) = h(t ), (5.3.28)

where f (t) is the expectation of the product of Wilson loops, and h(t) includes the

merging or twisting terms. This equation has the general solution

f (t ) = f (0)− 1

2
e

c
2 t

∫ t

0
h(s)e−

c
2 s ds. (5.3.29)

Since the heat kernel approaches the delta distribution at the identity as t → 0, the

initial value is f (0) =Wl1 (e) · · ·Wlq (e). This completes the proof.

Corollary 5.3.9 (Wilson action). In the setting of Theorem 5.3.6, we have

λ
q∑

r=1
nr ·

∫
G

Wl1 · · ·Wlq νW dg =

−2
q∑

r,s=1
r<s

∫
G

M (Wlr ,Wls ) ·Wl1 · · ·Ŵlr · · ·Ŵls · · ·Wlq νW dg

−
q∑

r=1

∫
G

T (Wlr ) ·Wl1 · · ·Ŵlr · · ·Wlq νW dg

+βλ∑
p

∫
G

Wp ·Wl1 · · ·Wlq νW dg

+β2
∑
p,p ′

∫
G

M (Wp ,Wp ′ ) ·Wl1 · · ·Wlq νW dg .

(5.3.30)

Proof. The general identity ∆exp( f ) = (
∆ f + 〈d f ,d f 〉)exp( f ) implies for the Wilson

action defined in (5.2.24) that

∆νW =
(
β

∑
p
∆Wp +β2

∑
p,p ′

〈dWp ,dWp ′〉
)
νW

=
(
βλ

∑
p

Wp +β2
∑
p,p ′

M (Wp ,Wp ′ )
)
νW ,

(5.3.31)

where, in the second line, we used that Wilson loops with a single argument of g are

eigenfunctions of the Laplacian and that the scalar product of two such loops equals

their merging. Inserting this equality in (5.3.24) yields (5.3.30).

Corollary 5.3.9 is essentially a generalization of [Cha19, Theorem 8.1], which studies

the case G = SO(N ) in the fundamental representation. The main difference between

our and their presentation is that we have used integration by parts as the basic tool

rather than Stein’s method. One can obtain Chatterjee’s result on the nose by carrying

out integration by parts once. However, in our derivation of Theorem 5.3.6 we have used
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it twice. This has the added benefit that now the Wilson loop observables decouple

from the plaquette variables and one no longer has mergers (or deformations in the

terminology of [Cha19]) between Wilson loops and plaquettes.

Remark 5.3.10. In Theorem 5.3.6 and its corollaries, we have assumed that Wl1 , · · · ,Wlq

are single-argument Wilson loops with respect to the same representation. A careful

inspection of the calculation reveals that, with minor modifications, those results gen-

eralize to generalized Wilson loops in possibly different representations. For example,

the merger of two Wilson loops with different representations ρ and ρ′ is defined by

essentially the same formula as in Definition 5.3.2 with the only difference that one trace

is taken with respect to ρ and the other one with respect to ρ′. Similarly, the eigenvalue

λ in Theorem 5.3.6 may now depend on the Wilson loop so that the factor λ
∑q

r=1 nr

needs to be replaced by
∑q

r=1 nrλr .

By Proposition 5.2.3, we have seen that every polynomial Wilson loop can be written

as a linear combination of linear generalized loops with respect to different representa-

tions. Note that for linear loops Theorem 5.3.6 simplifies as there is no longer a twisting

term. In particular, for the Haar measure and the Brownian motion, the relations in

Corollaries 5.3.7 and 5.3.8 simplify to recursion relations involving less and less products

of loops. This observation can be used to calculate the expectation values of the product

of arbitrary Wilson loops Wl1 , . . . ,Wlq according to the following algorithm.

1. Expand each Wilson loop Wli in terms of linear generalized loops (with respect to

irreducible representations) as in Proposition 5.2.3.

2. For linear loops, solve the recursion relation in Corollaries 5.3.7 and 5.3.8 by

induction over the number of loops involved.

3. For a single linear loop Wρ,(c) with respect to a non-trivial irreducible representa-

tion (ρ,V ), the expectation value can be calculated using the results of the next

section. In particular, the expectation∫
G

Wρ,(c) dg = trV

(
c
∫

G
ρ(g )dg

)
(5.3.32)

vanishes since
∫

G ρ(g )dg is the projection onto V G = {0}. This serves as the

induction start in the case of the Haar measure.

For the Brownian motion, Corollary 5.4.4 below implies that∫
G

Wρ,(c) pt dg = trV

(
c
∫

G
ρ(g ) pt dg

)
= exp

(1

2
cρ t

)
trV (c), (5.3.33)

where cρ is the Casimir eigenvalue.

The following example illustrates this algorithm for the simplest case, namely G = U(1).
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Example 5.3.11 (Circle group). The irreducible representations of U(1) are one dimen-

sional and given by ρn(z) = zn for some n ∈Z. Thus, irreducible Wilson loops are of the

form Wn,c = czn with n ∈Z and c ∈C. Note that the Casimir invariant of ρn is −n2.

As an example, let us calculate the expectation value of the product of two arbitrary

Wilson loops W1 and W2 according to the above algorithm.

1. The expansion of W1 according to Proposition 5.2.3, in this case, just amounts to

writing it as a Fourier series:

W1 =
∞∑

n=−∞
Wn,c1,n , (5.3.34)

where only finitely many constants c1,n ∈C are non-zero. Similarly, for W2 with

constants c2,n .

2. By Corollary 5.3.7, we have

−(n2 +m2)
∫

U(1)
Wn,c (z)Wm,d (z)dz =−2

∫
U(1)

M (Wn,c ,Wm,d )(z)dz. (5.3.35)

The merger is given by M (Wn,c ,Wm,d )(z) = c(in)zn ·d(im)zm , cf. Definition 5.3.2

and Remark 5.3.10. In line with Proposition 5.3.4, this is again a generalized

Wilson loop, namely M (Wn,c ,Wm,d ) =Wn+m,−cdnm .

3. Clearly,
∫

U(1) Wn,c dz vanishes except if n = 0.

Thus, in summary,∫
U(1)

W1(z)W2(z)dz =
∞∑

n,m=−∞

∫
U(1)

Wn,c1,n Wm,c2,m (z)dz

=
∞∑

n,m=−∞
2

n2 +m2

∫
U(1)

Wn+m,−c1,n c2,m nm(z)dz

=
∞∑

n=−∞
c1,nc2,−n ,

(5.3.36)

which, of course, coincides with the result one gets by a direct calculation.

The same strategy can be used to calculate the mixed moments of the random

variable g 7→ trρ(g k ). In this case, the expansion of trρ(g k ) as a linear combination

of linear Wilson loops can be achieved by decomposing the k-th tensor power into

irreducible components. For the latter, Schur–Weyl duality can be used and then the

second step in the above algorithm essentially boils down to an orthogonality relation

of the characters of the dual group. For Haar distributed variables, this recovers [DS94,

Theorem 2] [DE01, Theorem 2.1] for the unitary group, and [HR03, Theorem 3] for the

orthogonal and symplectic group. We leave the details to the reader.
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Remark 5.3.12. The same algorithm does not work when the Wilson probability measure

is added, because the right-hand side of (5.3.30) contains terms with more Wilson loops

than the original integral. In fact, it is a notoriously hard problem to calculate Wilson

loop expectation values with respect to the Wilson action, and one has to resort to

certain limits to obtain a reasonable result. The effect of the two most common limits,

namely the strong-coupling expansion and the large N -limit for U(N ) or SU(N ), is

readily apparent from (5.3.30). In the strong-coupling limit β→ 0, the additional terms

with more Wilson loops are suppressed. Similarly, the merging and twisting terms as

well as λ scale with N or simplify in the large N -limit. This limit has been extensively

studied in [Cha19, Jaf16].

5.4. POLYNOMIALS OF MATRIX COEFFICIENTS
In this section, we discuss how the basic integration by parts formula of Lemma 5.3.1

can be used to determine polynomials of matrix coefficients.

As before, let G be a compact connected Lie group and ν be a probability density

with respect to the normalized Haar measure on G . For a (not necessarily irreducible)

real or complex representation ρ : G → GL(V ) of G on a finite-dimensional vector space,

define T (ν) : V →V by

T (ν) =
∫

G
ρ(g )ν(g )dg . (5.4.1)

Example 5.4.1. Let ϱ be a representation of G on the vector space W . Usually, this is

taken to be the fundamental representation of G . Consider the tensor representation

ρ = ϱ⊗n,⊗n′ = ϱ⊗ ·· · ⊗ϱ⊗ϱ∗⊗ ·· · ⊗ϱ∗ on V = W ⊗n ⊗ (W ∗)⊗n′
with n factors of ϱ and

n′ factors of the dual representation ϱ∗(g ) = ρ(g−1)∗. Using bold-face multi-indices

i = (i ; i ′) = (i1, . . . , in ; i ′1, . . . , i ′n′ ) to denote the components of elements of W ⊗n ⊗(W ∗)⊗n′
,

we find

T (ν)ij =
∫

G
gi1 j1

· · ·gin jn
g−1

j ′1i ′1
· · ·g−1

j ′
n′ i

′
n′
ν dg , (5.4.2)

where gkl = ϱ(g )kl are the matrix coefficients of g in the representation ϱ. Thus, in

this case, T (ν) completely encodes the ν-expectation value of polynomials in matrix

coefficients and their inverses. The formulation in terms of the tensor product linearizes

the problem of determining the polynomial coefficients on G to a study of the linear

operator T (ν).

Somewhat surprisingly the simple integration by parts formula of Lemma 5.3.1 com-

bined with basic representation theory of compact Lie groups allows us to determine

T (ν). Before we discuss this in detail, let us recall the isotypic decomposition. Consider

a representation ρ of G on a vector space V . Since G is compact, V decomposes into a

direct sum of irreducible representations Vτ, see, e.g., [Kna02, Corollary IV.4.7]3. For a

3[Kna02] only discusses the case of a complex representation. The proof in the real case is almost identical

except that one uses a G-invariant real inner product.
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given irreducible representation τ, define the isotypic component V[τ] to be the sum

of all Vτ′ for which τ′ is equivalent to τ; with the convention that V[τ] = {0} if there is no

such subrepresentation. The resulting direct sum decomposition

V = ⊕
[τ]∈Ĝ

V[τ] (5.4.3)

is called the isotypic decomposition. Here the sum is over the set Ĝ of equivalence classes

of irreducible representations of G . Note that the isotypic component corresponding to

the trivial representation is the set V G of invariant elements.

Theorem 5.4.2. Let G be a compact connected Lie group and ν be a probability density

with respect to the normalized Haar measure on G. For a real or complex representation

ρ : G → GL(V ) of G, the operator T (ν) : V → V defined in (5.4.1) respects the isotypic

decomposition (5.4.3) and satisfies

c[τ]T (ν)|V[τ] = T (∆ν)|V[τ] (5.4.4)

for each irreducible subrepresentation τ, where c[τ] ∈ R are non-positive constants de-

pending only on the isomorphism type of the representation τ. Moreover, c[τ] = 0 if and

only if τ is the trivial representation.

Proof. Lemma 5.3.1 applied to the matrix coefficients gi j = ρ(g )i j yields∫
G

gi j ∆ν(g ) dg =
∫

G
∆gi j ν(g ) dg = Klkk j

∫
G

gi l ν(g ) dg , (5.4.5)

where the second equality follows from (5.3.21). Rewriting this equality in terms of

operators gives T (∆ν) = T (ν)ρ(C ) with ρ(C ) being the Casimir invariant.

By going back to their definition, T (ν) and ρ(C ) respect the decomposition of V

into irreducible representations and so also the isotypic decomposition. We have to

show that the Casimir invariant ρ(C ) acts as a scalar multiple of the identity on each

irreducible component Vτ and that the corresponding eigenvalue cτ is real and non-

positive. If τ is a complex representation, this is exactly [Bou05, Proposition IX.7.6.4].

Moreover, cτ = 0 if and only if τ is the trivial representation. By the same proposition, cτ
can be expressed in terms of the highest weight associated with τ and so it only depends

on the isomorphism type of the representation τ.

Now, for an irreducible real representation τ : G → End(Vτ), we can pass to its

complexification τC : G → End(V C
τ ). Clearly, the complex-linear extension of the Casimir

τ(C ) is the Casimir τC(C ) of the complexified representation. By [BtD95, Theorem 6.3

and Proposition 6.6], the representation V C is either irreducible or a direct sum of the

form U ⊕Ū or U ⊕U for an irreducible complex representation U . In either case, the

above argument shows that the Casimir τC(C ) acts as a scalar multiplication, because

the Casimir eigenvalue of the complex conjugate representation Ū is the same as the

one of the representation U . By restricting to the real part, we conclude that τ(C ) is a

scalar multiple of the identity. This finishes the proof.
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Corollary 5.4.3 (Haar measure). Let G be a compact connected Lie group. For a real

or complex representation ρ : G → GL(V ) of G, the operator T (ν = 1) : V → V defined

in (5.4.1) is the projection onto V G along the isotypic decomposition (5.4.3).

Proof. For ν = 1, we have ∆ν = 0 and so c[τ]T (1)|V[τ] = 0 for every irreducible subrep-

resentation τ. Because c[τ] is strictly negative for non-trivial representations τ, the

restriction T (1)|V[τ] has to vanish for such representations. Finally, the restriction of T (1)

to V G is clearly the identity operator.

Corollary 5.4.4 (Brownian motion). Let G be a compact connected Lie group and let

ρ : G →V be a real or complex representation of G. The expectation value of the GL(V )-

valued random variable ρ relative to the Riemannian Brownian motion (g t )t≥0 respects

the isotypic decomposition (5.4.3) and satisfies

E
(
ρ(g t )

)
|V[τ]

= exp
(1

2
c[τ]t

)
id|V[τ] . (5.4.6)

for each irreducible subrepresentation τ, where c[τ] ∈ R are the same non-positive con-

stants as in Theorem 5.4.2. Equivalently, E
(
ρ(g t )

)= exp
(

t
2ρ(C )

)
. Moreover,

lim
t→∞E

(
ρ(g t )

)= T (1). (5.4.7)

Proof. By definition, E
(
ρ(g t )

) = T (pt ) with pt being the heat density. Using the heat

equation (5.2.18), Theorem 5.4.2 implies that the expectation value satisfies

c[τ]E
(
ρ(g t )

)
|V[τ]

= 2
d

dt
E
(
ρ(g t )

)
|V[τ]

. (5.4.8)

For the initial condition, note that limt→0E
(
ρ(g t )

)= ρ(e) = idV . This shows that the ex-

pectation value is given by (5.4.6). Since c[τ] are the eigenvalues of the Casimir operator,

we get E
(
ρ(g t )

)= exp
(

t
2ρ(C )

)
.

For a non-trivial subrepresentation τ, the constant c[τ] is strictly negative and thus

E
(
ρ(g t )

)
|V[τ]

converges to 0 as t →∞. On the other hand, E
(
ρ(g t )

)
|V G = idV G . Thus, in

summary, E
(
ρ(g t )

)
converges to the projection onto V G .

In the case of the classical groups G = U(N ),O(N ),Sp(N ), the expectation value

formula E
(
ρ(g t )

) = exp
(

t
2ρ(C )

)
has been obtained in [Lé08, Proposition 2.4], [Dah17,

Lemma 4.1 and 4.2] using the explicit expression of the corresponding Casimir operator.

Moreover, the long time asymptotic behavior has been established in this case using a

rather complicated calculation, cf. [Dah17, Theorem 4.3 and Lemma 5.1]. In contrast,

our proof shows that this is a direct and straight-forward consequence of the non-

positivity of the spectrum of the Casimir.

For the tensor representation, the following result shows that the isotypic decom-

position and the constants c[τ] can be obtained from an eigenvalue problem for an

operator determined by the operator K defined in Eq. (5.2.9). In particular, the isotypic
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decomposition of the tensor representation on V ⊗n ⊗ (V ∗)⊗n′
for arbitrary integers n

and n′ is completely given in terms of data associated with the tensor representation on

V ⊗V ∗. This is particularly important for determining the decomposition in concrete

examples using computer algebra systems.

Proposition 5.4.5. Let G be a compact connected Lie group, and let ϱ : G → V be an

irreducible representation of G. Let λ ∈R be the eigenvalue of the Casimir invariant ϱ(C ).

For non-negative integers n and n′, the isotypic decomposition of the tensor represen-

tation ϱ⊗n,⊗n′ = ϱ(g )⊗n ⊗ (
ϱ(g−1)∗

)⊗n′
on V ⊗n ⊗ (V ∗)⊗n′

coincides with the eigenspace

decomposition of the operator

Cij = (n +n′)λδij

−2
n∑

r,s=1
r<s

Kir jr is jsδi1 j1 · · · r̂ · · · ŝ · · ·δin jnδi ′ j ′

−2
n′∑

r,s=1
r<s

K j ′r i ′r j ′s i ′sδi ′1 j ′1 · · · r̂ · · · ŝ · · ·δi ′
n′ j ′

n′
δi j

+2
n∑

r=1

n′∑
s=1

Kir jr j ′s i ′sδi1 j1
· · · r̂ · · ·δin jn

δi ′1 j ′1 · · · ŝ · · ·δi ′
n′ j ′

n′
.

(5.4.9)

Moreover, the constants c[τ] of Theorem 5.4.2 are equal to the corresponding eigenvalues

of C .

Proof. As discussed above, the isotypic decomposition coincides with the eigenspace

decomposition of the Casimir element ϱ⊗n,⊗n′
(C ). To calculate the components Cij of

this operator, note that

ξij =
n∑

r=1
ξir jr

δi1 j1
· · · r̂ · · ·δin jn

δi ′ j ′ −
n′∑

r=1
ξ j ′r i ′r δi jδi ′1 j ′1 · · · r̂ · · ·δi ′

n′ j ′
n′

(5.4.10)

for ξ ∈ g. Consequently, the operator K (see Eq. (5.2.9)) for the tensor representation

ϱ⊗n,⊗n′
takes the form

Kijkl =
n∑

r,s=1
Kir jr ks lsδi1 j1

· · · r̂ · · ·δin jn
δk1l1

· · · ŝ · · ·δkn ln
δi ′ j ′δk ′l ′

+
n′∑

r,s=1
K j ′r i ′r l ′s k ′

s
δi ′1 j ′1 · · · r̂ · · ·δi ′

n′ j ′
n′
δk ′

1l ′1 · · · ŝ · · ·δk ′
n′ l

′
n′
δi jδkl

−
n∑

r=1

n′∑
s=1

Kir jr l ′s k ′
s
δi1 j1

· · · r̂ · · ·δin jn
δk ′

1l ′1 · · · ŝ · · ·δk ′
n′ l

′
n′
δi ′ j ′δkl

−
n′∑

r=1

n∑
s=1

K j ′r i ′r ks ls
δi ′1 j ′1 · · · r̂ · · ·δi ′

n′ j ′
n′
δk1l1

· · · ŝ · · ·δkn ln
δi jδk ′l ′

(5.4.11)
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Our objective is to calculate the Casimir element Cij = Kikkj, with implicit summation

over k understood. For this purpose, notice that, for each r ̸= s and with summation

over k, we have

Kir kr ks jsδi1k1 · · · r̂ · · ·δin knδk1 j1 · · · ŝ · · ·δkn jn = Kir jr is jsδi1 j1 · · · r̂ , ŝ · · ·δin jn . (5.4.12)

On the other hand, for r = s, we obtain

Kir kr kr jr δi1k1 · · · r̂ · · ·δin knδk1 j1 · · · r̂ · · ·δkn jn =λδi j . (5.4.13)

Using these and similar identities in each of the four summands yields

Cij = Kikkj

=
n∑

r,s=1
r ̸=s

Kir jr is jsδi1 j1 · · · r̂ , ŝ · · ·δin jnδi ′ j ′ +nλδi jδi ′ j ′

+
n′∑

r,s=1
r ̸=s

K j ′r i ′r j ′s i ′sδi ′1 j ′1 · · · r̂ , ŝ · · ·δi ′
n′ j ′

n′
δi j +n′λδi jδi ′ j ′

−
n∑

r=1

n′∑
s=1

(
Kir jr j ′s i ′s +K j ′s i ′s ir jr

)
δi1 j1

· · · r̂ · · ·δin jn
δi ′1 j ′1 · · · ŝ · · ·δi ′

n′ j ′
n′

= (n +n′)λδij

+2
n∑

r,s=1
r<s

Kir jr is jsδi1 j1 · · · r̂ · · · ŝ · · ·δin jnδi ′ j ′

+2
n′∑

r,s=1
r<s

K j ′r i ′r j ′s i ′sδi ′1 j ′1 · · · r̂ · · · ŝ · · ·δi ′
n′ j ′

n′
δi j

−2
n∑

r=1

n′∑
s=1

Kir jr j ′s i ′sδi1 j1
· · · r̂ · · ·δin jn

δi ′1 j ′1 · · · ŝ · · ·δi ′
n′ j ′

n′
.

(5.4.14)

This finishes the proof.

In applications, one can often use invariant theory to obtain a spanning set for the

space of invariants
(
V ⊗n ⊗ (V ∗)⊗n′)G . This is well-studied for the classical groups, see

[GW09], and also for some exceptional groups, see for example [Sch88] for the group

G =G2 and its 7-dimensional irreducible representation. The following theorem shows

that such a spanning set is already enough to calculate the operator T for the Haar

measure (ν = 1). This generalizes the main results of [Col03, CS06] for the classical

groups G = U(N ),O(N ),Sp(N ) to arbitrary compact Lie groups.

Theorem 5.4.6. Let G be a compact Lie group and let ρ : G →V be a finite-dimensional

real or complex representation of G leaving the inner product 〈·, ·〉 on V invariant. Let

A be a finite-dimensional inner product space over the same field as V and let τ : A →
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V ⊗n ⊗ (V ∗)⊗n′
be a linear map. Denote by τ∗ : V ⊗n ⊗ (V ∗)⊗n′ →A the adjoint of τ with

respect to the following inner product4 on V ⊗n ⊗ (V ∗)⊗n′
:

〈v ⊗α, w ⊗β〉 = 〈v1, w1〉 · · · 〈vn , wn〉〈α1,β1〉 · · · 〈αn′ ,βn′〉. (5.4.16)

There exists a unique map Wg : A →A satisfying the following properties:

1. τ∗ ◦τ◦Wg◦τ∗ ◦τ= τ∗ ◦τ,

2. Wg◦τ∗ ◦τ◦Wg = Wg,

3. Wg∗ ◦τ∗ ◦τ= τ∗ ◦τ◦Wg,

4. τ∗ ◦τ◦Wg∗ = Wg◦τ∗ ◦τ.

If the image of τ is
(
V ⊗n ⊗ (V ∗)⊗n′)G , then

T (1) = τ◦Wg◦τ∗, (5.4.17)

with T defined as in (5.4.1) relative to the tensor representation ρ⊗n,⊗n′
. In particular, the

coefficients of T (1) with respect to an orthonormal basis of V are given by

T (1)ij =
∑
k,l
τ(ak )iτ(al )j 〈Wg(ak ), al 〉, (5.4.18)

where {ak } is an orthonormal basis of A .

For the fundamental representation ρ of G = U(N ), as we will discuss in detail in

Section 5.5.3, a generating set of G-invariant elements of V ⊗n ⊗ (V ∗)⊗n is given in terms

of permutations. That is, an orthonormal basis of A is indexed by permutations σ ∈ Sn

and the expression 〈Wg(σ),ς〉 in (5.4.18) recovers the so-called Weingarten function on

Sn . For this reason, we will refer to Wg as the Weingarten map for the group G (relative

to τ).

Proof. Recall that the pseudoinverse (or Moore–Penrose inverse) of an operator A :

H1 → H2 between finite-dimensional inner product spaces is an operator A+ : H2 → H1

satisfying

1. A A+A = A,

2. A+A A+ = A+,

3. A A+ and A+A are self-adjoint.

4Under the identification V ⊗n ⊗ (V ∗)⊗n′ ≃ Hom
(
V ⊗n′

,V ⊗n)
, this inner product corresponds to the inner

product

〈S1,S2〉 = tr
(
S∗

2 S1
)
, S1,S2 ∈ Hom

(
V ⊗n′

,V ⊗n)
. (5.4.15)
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It is well known that every operator has a unique pseudoinverse (in the finite-dimen-

sional setting). Moreover, the pseudoinverse satisfies A+ = (A∗A)+A∗ and the operator

A A+ : H2 → H2 is the orthogonal projector onto the image of A.

Now the properties (1) to (4) entail that Wg is the pseudoinverse of τ∗◦τ. In particular,

such an operator Wg exists and is uniquely defined by these properties. Moreover,

τ+ = (τ∗ ◦τ)+ ◦τ∗ = Wg◦τ∗. Hence,

τ◦τ+ = τ◦Wg◦τ∗ (5.4.19)

is the orthogonal projector onto the image of τ, which is
(
V ⊗n ⊗ (V ∗)⊗n′)G by assump-

tion.

On the other hand, Corollary 5.4.3 shows that T (1) equals the orthogonal projection

onto
(
V ⊗n ⊗ (V ∗)⊗n′)G along the isotypic decomposition. Since ρ leaves the inner

product 〈·, ·〉 invariant, T (1) is easily seen to be self-adjoint. Thus, T (1) is an orthogonal

projector onto
(
V ⊗n ⊗ (V ∗)⊗n′)G and thus coincides with τ◦Wg◦τ∗.

Remark 5.4.7. The proof shows that the Weingarten map Wg is the pseudoinverse

of τ∗ ◦τ. This observation can be used to calculate Wg using one of the well-known

constructions of a pseudoinverse. For example, one could exploit the fact that τ∗ ◦τ is

self-adjoint as follows. By the spectral theorem, we can write τ∗◦τ=U DU∗ for a unitary

operator U and a diagonal matrix D . Reordering the entries of D , we may assume that

D = diag(λ1, . . . ,λk ,0, . . . ,0) where λk ∈R is non-zero. Then

Wg =U diag(λ−1
1 , . . . ,λ−1

k ,0, . . . ,0)U∗ (5.4.20)

is the pseudoinverse of τ∗ ◦ τ. For the fundamental representation of the classical

groups G = U(N ),O(N ),Sp(N ), the decomposition τ∗ ◦τ = U DU∗ can be calculated

using character theory of a certain associated finite group (the Schur–Weyl dual group).

In this way, we recover the description [CS06, Proposition 2.3 and 3.10] of the Weingarten

map in these cases.

Of course, expectation values of products of Wilson loops can be calculated, at

least in principle, once all polynomials in matrix coefficients are known. Thus, one

could use Theorem 5.4.2 for the tensor representation to establish the factorization

Theorem 5.3.6. On the other hand, Theorem 5.3.6 applied to well-chosen Wilson loops

yields Theorem 5.4.2, showing that these two theorems are hence equivalent. The

following remark explains this in more detail.

Remark 5.4.8. For every 1 ≤ i , j ≤ dimV , let D : V → V be defined by Dpq = δp jδqi

relative to a chosen basis of V . That is, D is the matrix whose only non-zero entry is in

the j -th column in the i -th row. Then the generalized Wilson loop Wl (g ) = tr(Dϱ(g±1))

evaluates to the matrix element Wl (g ) = g±1
i j . This construction shows that the prescrip-

tions Wlk
(g ) = gik jk

and Wl ′k
(g ) = g−1

j ′k i ′k
define generalized Wilson loops. Using (5.3.8),
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the merging of two such loops is given by

M (lr , ls ) =+Kp jr q js gir p gis q , (5.4.21a)

M (lr , l ′s ) =−Kp jr j ′s q gir p g−1
qi ′s

, (5.4.21b)

M (l ′r , l ′s ) =+K j ′r p j ′s q g−1
pi ′r

g−1
qi ′s

. (5.4.21c)

Thus Theorem 5.3.6 (cf., also Remark 5.3.10) implies

λ(n +n′)Ti i ′ j j ′ (ν)−Ti i ′ j j ′ (∆ν) =

−2
n∑

r,s=1
r<s

Kp jr q js Ti i ′ ( j1...p...q ... jn ) j ′ (ν)

+2
n∑

r=1

n′∑
s=1

Kp jr j ′s q Ti i ′ ( j1...p... jn )( j ′1...q ... j ′n )(ν)

−2
n′∑

r,s=1
r<s

K j ′r p j ′s q Ti i ′ j ( j ′1...p...q ... j ′n )(ν),

(5.4.22)

where p and q always occur at the r -th and s-th position in the multi-indices, respec-

tively. Comparing this equation with Proposition 5.4.5 establishes Theorem 5.4.2.

5.5. EXAMPLES
In this section, we explore how Theorem 5.3.6 reproduces important Wilson loop formu-

las from [Cha19, Jaf16] for the groups G = SO(N ) and SU(N ) in a straightforward way,

using basic representation-theoretic information rather than the lengthy, explicit calcu-

lations employed in the cited papers. We also study equivalent Wilson loop formulas for

other examples that, to the authors’ knowledge, do not yet appear in the literature: the

classical groups Sp(N ) and U(N ), and the exceptional group G2.

5.5.1. DEFINING REPRESENTATION OF SO(N )
Let us sketch how Theorem 5.3.6 reproduces [Cha19, Theorem 8.1] for G = SO(N ).

Consider the defining representation ρ : SO(N ) → RN×N . A basis {ξa} of the associ-

ated Lie algebra so(N ) ⊂RN×N is given in terms of elementary antisymmetric matrices
1p
2

(
Ei j −E j i

)
for i ̸= j (where Ei j ∈ RN×N with (Ei j )r s = δi rδ j s ). The matrices ξa con-

stitute an orthonormal basis of so(N ) relative to the following inner product

κ(X ,Y ) :=− tr(X ·Y ) ∀X ,Y ∈ so(N ), (5.5.1)

which is − 1
N−2 times the Killing form. A straightforward calculation gives the following

completeness relation:

ξa
i jξ

a
kl = δi kδ j l −δi lδ j k . (5.5.2)
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Figure 5.1: A visualization of the merging rules for the defining representations of Sp(N ), SO(N ), and U(N ),

see (5.5.3) and (5.5.10). The sets of rules only differ by the value of the scalar ϵ. One sets ϵ= 1 for Sp(N ) and

SO(N ), and ϵ= 0 for U(N ).

Figure 5.2: A visualization of the twisting rules for the defining representations of SO(N ),Sp(N ), and U(N ),

see (5.5.5) and (5.5.11). The sets of rules only differ by the choice of signs for the ± and ∓, and the value of

the scalar ϵ. One chooses the upper signs for SO(N ) and the lower signs for Sp(N ) and U(N ); further ϵ= 1 for

SO(N ) and Sp(N ), and ϵ= 0 for U(N ).
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Figure 5.3: A visualization of some merging rules for the 7-dimensional irreducible representation of G2, see

(5.5.41). The ellipses represent similar merging rules as the ones for SO(N ), but we also find terms which no

longer are expressible as a simple linear combination of Wilson loops.

Given two Wilson loops Wl (g ) = tr(C g±1),Wl ′ (g ) = tr(Dg±1) with C ,D ∈ G . Then, de-

pending on the given exponents, Equation (5.5.2) implies:

M (Wl ,Wl ′ )(g ) =



(+,+) : tr(C D−1)− tr(C g Dg ),

(+,−) : tr(C D)− tr(C g D−1g ),

(−,+) : tr(C D)− tr(C g−1D−1g−1),

(−,−) : tr(C−1D)− tr(C g−1Dg−1),

(5.5.3)

This corresponds to a linear combination of what in [Cha19] is called the negative and

positive mergers Wl⊖i , j l ′ ,Wl⊕i , j l ′ of the loops Wl ,Wl ′ . In an analogous way, all other

sums can be handled, and in their notation we find:

〈dWl ,dWl ′〉 =
∑

j∈E(l ),
j ′∈E(l ′)

(
Wl⊖ j , j ′ l ′ −Wl⊕ j , j ′ l ′

)
. (5.5.4)

Further, let Wl (g ) = tr(C g±1Dg±1) be a single-argument Wilson loop with C ,D ∈ G .

Then we have, depending on the exponents:

T (Wl )(g ) =



(+,+) : tr(C D−1)− tr(C g ) tr(Dg ),

(+,−) : − tr(g−1C g D−1)+ tr(C ) tr(D),

(−,+) : − tr(C g−1D−1g )+ tr(C ) tr(D),

(−,−) : tr(C D−1)− tr(g−1C ) tr(g−1D),

(5.5.5)
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Again, this corresponds to linear combinations of what in [Cha19] is called twistings

W∝ j , j ′ l and splittings W×1
j , j ′

,W×2
j , j ′

of Wl . Recall that the Laplacian can be written as

∆= ξaξa . Together with the completeness relation (5.5.2) this implies:

∆gi l =
∑
a
ρ(ξa)i jρ(ξa) j k gkl =

(
δi jδ j k −δi kδ j j

)
gkl = (1−N )gi l . (5.5.6)

Note that by orthogonality, (g−1)i l = gl i is itself just a generic matrix element, so the

above equation also holds under the replacement g ⇝ g−1. Thus, the Casimir eigen-

value λ equals (1−N ). In the defining representation of SO(N ), Theorem 5.3.6 implies

[Cha19, Theorem 8.1] as a corollary, the only differences coming from the fact that we

used integration by parts twice rather than once in our derivation of Theorem 5.3.6.

5.5.2. DEFINING REPRESENTATION OF Sp(N )
The compact symplectic group Sp(N ) = Sp(2N ,C)∩U(2N ) consists of unitary 2N ×2N

matrices M satisfying MT J M = J , where J =
(

0 IN
−IN 0

)
. Elements of its Lie algebra sp(N )

are block matrices of the form ι(a,b) =
(

a b
−b̄ ā

)
with a∗ =−a and bT = b. Accordingly, a

basis of sp(N ) is given by the following elements

1

2
ι
(
Eab −Eba ,0

)
,

1

2
ι
(
iEab + iEba ,0

)
,

1p
2
ι
(
iEcc ,0

)
, (5.5.7a)

1

2
ι
(
0,Eab +Eba

)
,

1

2
ι
(
0, iEab + iEba

)
,

1p
2
ι
(
0,Ecc

)
,

1p
2
ι
(
0, iEcc

)
(5.5.7b)

where 1 ≤ a < b ≤ N and 1 ≤ c ≤ N and where the matrix Eab is defined by (Eab)kl =
δakδbl as before. These elements form an orthonormal basis with respect to the inner

product

κ(X ,Y ) =− tr(X Y ), X ,Y ∈ sp(N ), (5.5.8)

which is − 1
2N+2 times the Killing form. A direct calculation shows that the completeness

relation for sp(N ) reads

Ki j kl = Ji k J j l −δi lδ j k , (5.5.9)

see also [Dah17, Appendix A].

Thus, the merging of the loops Wl (g ) = tr(C gσ) and Wl ′ (g ) = tr(Dg ς) with C ,D ∈
Sp(N ) is given by

M (Wl ,Wl ′ )(g ) =



(+,+) : tr(C D−1)− tr(C g Dg ),

(+,−) : tr(C D)− tr(C g D−1g ),

(−,+) : tr(C D)− tr(C g−1D−1g−1),

(−,−) : tr(C−1D)− tr(C g−1Dg−1),

(5.5.10)
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depending on the signatures (σ,ς). Similarly the twisting of the loop Wl (g ) = tr(C gσDg ς)

with C ,D ∈ Sp(N ) takes the form

T (Wl )(g ) =



(+,+) : − tr(C D−1)− tr(C g ) tr(Dg ),

(+,−) : tr(C g D−1g−1)+ tr(C ) tr(D),

(−,+) : tr(C g−1D−1g )+ tr(C ) tr(D),

(−,−) : − tr(C D−1)− tr(C g−1) tr(Dg−1).

(5.5.11)

Comparing (5.5.3) and (5.5.10), we find that the rules for merging of SO(N ) and Sp(N )

are completely identical, whereas the twisting rules (5.5.5) and (5.5.11) are only almost

identical, differing by a single sign per equation.

Finally, we find the Casimir eigenvalue by the following calculation:

∆gi l = (Ji j J j k −δi kδ j j )gkl =−(1+2N )gi l . (5.5.12)

5.5.3. DEFINING REPRESENTATION OF U(N )
The Lie algebra of U(N ) is the set of all skew-hermitian N ×N -matrices and a basis is

given by the following elements:{
ip
2

(
E ab +E ba

)}
a<b

∪
{

1p
2

(
E ab −E ba

)}
a<b

∪
{

i E aa
}

1≤a≤N
(5.5.13)

where Eab ∈RN×N with (Eab)r s = δarδbs . The symmetric Ad-invariant bilinear form

κ(X ,Y ) :=− tr(X Y ), ∀X ,Y ∈ u(N ), (5.5.14)

is positive-definite because κ(X , X ) = ∑
i j |Xi j |2. Note that κ is not a scalar multiple

of the Killing form of U(N ) as the latter is degenerate. The basis introduced above is

orthonormal with respect to κ.

A direct calculation shows that the completeness relation for u(N ) reads

Ki j kl =−δi lδ j k . (5.5.15)

According to (5.3.8), the merging of two Wilson loops Wl (g ) = tr(C g±1),Wl ′ (g ) = tr(Dg±1)

with C ,D ∈ U(N ) is thus given by

M (Wl ,Wl ′ )(g ) =



(+,+) : − tr(C g Dg ),

(+,−) : + tr(C D),

(−,+) : + tr(C D),

(−,−) : − tr(C g−1Dg−1).

(5.5.16)

Furthermore, by (5.3.20), the twisting of a Wilson loop Wl (g ) = tr(C g±1Dg±1) with
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C ,D ∈ U(N ) is:

T (Wl )(g ) =



(+,+) : − tr(C g ) tr(Dg ),

(+,−) : + tr(C ) tr(D),

(−,+) : + tr(C ) tr(D),

(−,−) : − tr(C g−1) tr(Dg−1).

(5.5.17)

By (5.3.22), for the eigenvalue λ of the Laplace operator, we obtain

λδi j = Ki kk j =−Nδi j . (5.5.18)

We now discuss the definition of the unitary Weingarten map based on our general

result Theorem 5.4.6. For this we first recall a few well-known facts concerning the

representation theory of the symmetric group Sn . By, e.g., [GW09, Section 9.1] the

isomorphism classes of irreducible representations Gλ of Sn are bijectively indexed by

partitions λ of n. Moreover, the group algebra of Sn decomposes as a direct sum

CSn ≃ ⊕
λ⊢n

End(Gλ) (5.5.19)

of simple algebras, see [GW09, Section 9.3.2]. Let pλ ∈ CSn be the minimal central

idempotent that under this isomorphism acts by the identity on Gλ and by zero on the

other components.

Let V =CN be the fundamental representation of G = U(N ). Every permutation σ ∈
Sn acts on V ⊗n by mapping v1 ⊗·· ·⊗vn to vσ−1(1) ⊗·· ·⊗vσ−1(n). Let τ :CSn → End(V ⊗n)

be the linear extension of this representation. A moment’s reflection convinces us that

τ(σ)∗ = τ(σ−1). The Schur–Weyl theorem shows that the image of τ coincides with the

set of invariants
(
V ⊗n ⊗ (V ∗)⊗n

)G ≃ EndG (V ⊗n). Thus we are in the position to apply

Theorem 5.4.6. For this purpose, endow CSn with an inner product by declaring the

basis σ ∈ Sn to be orthonormal. Then a simple calculation shows that the adjoint of τ

with respect to the inner pairing 〈S1,S2〉 = tr(S∗
2 S1) on End(V ⊗n) is

τ∗(S) = ∑
ς∈Sn

tr
(
τ(ς−1)S

)
ς. (5.5.20)

According to Remark 5.4.7 the Weingarten map can be obtained by diagonalizing the

operator

τ∗ ◦τ(σ) = ∑
ς∈Sn

tr
(
τ(ς−1)τ(σ)

)
ς= ∑

ς∈Sn

tr
(
τ(ς−1σ)

)
ς=σ ∑

ς∈Sn

tr
(
τ(ς)

)
ς . (5.5.21)

In fact, it turns out that
∑
ς∈Sn tr

(
τ(ς)

)
ς = ∑

λ⊢n kλ pλ for some constants kλ. In other

words, the decomposition (5.5.19) is the eigenspace decomposition of τ∗ ◦τwith {kλ} as

the associated eigenvalues. The above identity can be established in two different ways:
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• First, we can use Schur–Weyl duality again to express ς 7→ tr
(
τ(ς)

)
in terms of

the characters χλ of the irreducible representation Gλ and the dimension of

the associated Weyl module F N
λ

with highest weight λ. Then the relation pλ =
dimGλ

n! χλ, see [GW09, Theorem 9.3.10], yields

∑
ς∈Sn

tr
(
τ(ς)

)
ς= n!

∑
λ⊢n

l (λ)≤N

dimF N
λ

dimGλ
pλ , (5.5.22)

where l (λ) is the number of parts of the partition λ. This is the approach taken by

[CS06, Proposition 2.3.2].

• Secondly, since τ(ς) is a permutation matrix, tr
(
τ(ς)

)
coincides with the dimension

of the set of fixed points. Thus,∑
ς∈Sn

tr
(
τ(ς)

)
ς= ∑

ς∈Sn

N ♯ςς, (5.5.23)

where ♯ς is the number of cycles of ς. This equality can be further simplified by

using the Jucys–Murphy elements Xk . In fact,
∑
ς∈Sn N ♯ςς=∏n

k=1(N +Xk ). Now

using the fact the Gelfand–Tsetlin vectors indexed by standard Young tableaus are

joint eigenvectors of the Jucys–Murphy elements one gets∑
ς∈Sn

tr
(
τ(ς)

)
ς= ∑

λ⊢n
l (λ)≤N

∏
(i , j )∈λ

(N + j − i ) pλ . (5.5.24)

The Hook length formula gives an expression for the dimensions of F N
λ

and Gλ,

implying equality of the eigenvalues with the above description. Following this

route leads to the relation of the Weingarten map with the Jucys–Murphy elements

discovered in [Nov10, Theorem 1.1] and [ZJ10, Proposition 2].

Thus, in summary, Theorem 5.4.6 in combination with Remark 5.4.7 recovers [Col03,

Theorem 2.1], [CS06, Corollary 2.4] in the following form.

Theorem 5.5.1. Let ρ : U(N ) → CN be the fundamental representation of U(N ). For

non-negative integers n,n′, define

T n,n′
(S) =

∫
G
ρ⊗n(g )◦S ◦ρ⊗n′

(g )dg (5.5.25)

for S ∈ Hom
(
(CN )⊗n′

, (CN )⊗n
)
. Then T n,n′ = 0 if n ̸= n′, and otherwise

T n,n = τ◦Wg◦τ∗, (5.5.26)

where τ and τ∗ are defined above and Wg :CSn →CSn is given by

Wg(σ) = ∑
λ⊢n

l (λ)≤N

∏
(i , j )∈λ

(N + j − i )−1 pλ . (5.5.27)
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5.5.4. DEFINING REPRESENTATION OF SU(N )
In [Jaf16], Wilson loop identities of the shape of Theorem 5.3.6 are derived for SU(N ),

using Stein’s method and many technical, auxiliary lemmas. In comparison, we will see

that our framework allows us to drastically reduce the amount of necessary calculation

needed to arrive at the same conclusion.

Consider SU(N ), with the Lie algebra su(N ) of skew-hermitian matrices with vanishing

trace, and inner product

κ(X ,Y ) :=− tr(X Y ) ∀X ,Y ∈ su(N ), (5.5.28)

which is a renormalization of the Killing form by a factor − 1
2N . By [BK08], an orthonor-

mal basis {ξa} is given by{
ip
2

(
E j k +E k j

)}
j<k

∪
{

1p
2

(
E j k −E k j

)}
j<k

∪
{

ip
2l (l+1)

(
l∑

j=1
(E j j −E l+1,l+1

)}
1≤l≤N−1

.
(5.5.29)

The corresponding completeness relation turns out to be

ξa
i jξ

a
kl =−δi lδ j k +

1

N
δi jδkl . (5.5.30)

Again, the merging of two loops Wl (g ) = tr(C g±1) and Wl ′ = tr(Dg±1) turns out to be,

depending on the exponents:

M (Wl ,Wl ′ )(g ) =



(+,+) : − tr(C g Dg )+ 1
N tr(C g ) tr(Dg ),

(+,−) : + tr(C D)− 1
N tr(C g ) tr(Dg−1),

(−,+) : + tr(C D)− 1
N tr(C g−1) tr(Dg ),

(−,−) : − tr(g−1C g−1D)+ 1
N tr(C g−1) tr(Dg−1).

(5.5.31)

These expressions are linear combinations of what, in [Jaf16], are called positive mergers

Wl⊕ j , j ′ l ′ , negative mergers Wl⊖ j , j ′ l ′ and the product of the unchanged loops Wl ·Wl ′ .

Similarly, the twisting of a loop Wl (g ) = tr(C g±1Dg±1) yields:

T (Wl )(g ) =



(+,+) : − tr(C g ) tr(Dg )+ 1
N tr(C g Dg ),

(+,−) : + tr(C ) tr(D)− 1
N tr(C g Dg−1),

(−,+) : + tr(C ) tr(D)− 1
N tr(C g−1Dg ),

(−,−) : − tr(g−1C ) tr(g−1D)+ 1
N tr(g−1C g−1D).

(5.5.32)

Similarly, these expressions are linear combinations of what Jafarov calls the splitting

W×1
j , j ′

W×2
j , j ′

and the original unchanged loop Wl .

Finally, the Casimir eigenvalue λ is gotten via
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λgi j
!=∆gi j =

(
−δi kδl l +

1

N
δi k

)
gk j =

(
−N + 1

N

)
gi j , (5.5.33)

Inserting this information into Theorem 5.3.6 reproduces a version of [Jaf16, Theo-

rem 8.1], the only differences coming from the fact that we used integration by parts

twice rather than once in our derivation of Theorem 5.3.6.

5.5.5. IRREDUCIBLE 7-DIMENSIONAL REPRESENTATION OF G2

In all previous examples, the merging and twisting of two Wilson loops were polynomials

of Wilson loops again. This is not true in full generality, as we will demonstrate by

considering the exceptional, real, compact Lie group G2.

This Lie group is of dimension 14, and its smallest nontrivial irreducible representation

(ρ,V ) is of dimension 7. We cite from [Sch88] a construction of this representation

based on the octonions O. Recall the 8-dimensional, real, non-associative division

algebra given by the octonions O. With respect to the standard basis {ei }7
i=0 of O, the

multiplication is specified by

ei e j =


ei if j = 0,

e j if i = 0,

−δi j e0 +ψi j k ek else,

(5.5.34)

where {ψi j k }i , j ,k∈{1,...,7} denotes a totally antisymmetric symbol, assuming the value 1

on the ordered triples

(i , j ,k) = (1,2,3), (1,4,7), (1,6,5), (2,4,6), (2,5,7), (3,5,4), (3,6,7), (5.5.35)

and zero on all (i , j ,k) which do not arise from the above triples by permutation. This

algebra admits a linear involution by extension of

ei =
e0 if i = 0,

−ei if i > 0,
(5.5.36)

and a linear tracial map τO :O→R by extension of

τO(ei ) := δi 0. (5.5.37)

Now G2 is the Lie group of algebra automorphisms of O. Set V := kerτO, then G2 acts

irreducibly and unitarily on V with respect to the inner product

B(x, y) := τO(x y) ∀x, y ∈V.
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In [Mac01], an explicit basis {H a}a=1,...,14 of g2 := Lie(G2) as a subalgebra of su(7) is

constructed, fulfilling the following5:

tr(H a H b) = δab , (H a)T =−H a , ∀a,b ∈ {1, . . . ,14}. (5.5.38)

These generators constitute an orthonormal basis with respect to the inner product

κ(X ,Y ) := tr(X
T

Y ). (5.5.39)

By [Mac01], the completeness relation of g2 is then equal to

(H a)i j (H a)kl =
1

2

(
δi kδ j l −δi lδ j k

)− 1

6
ψr i jψr kl . (5.5.40)

In the basis {ei }i∈{1,...,7} of V , define the endomorphisms Ψr := (ψr i j )i , j∈{1,...,7} ∈ End(V )

for r ∈ {1, . . . ,7}. The merging of two Wilson loops Wl (g ) = tr(C g±1),Wl ′ (g ) = tr(Dg±1)

with C ,D ∈G2 can be expressed as

M (Wl ,Wl ′ )(g ) =

(+,+) : 1
2

(
tr(C D−1)− tr(C g Dg )

)− 1
6 tr(C gΨr ) tr(DgΨr ),

(+,−) : 1
2

(
tr(C D)− tr(C g D−1g )

)− 1
6 tr(C gΨr ) tr(DΨr g−1),

(−,+) : 1
2

(
tr(C D)− tr(C g−1D−1g−1)

)− 1
6 tr(CΨr g−1) tr(DgΨr ),

(−,−) : 1
2

(
tr(C−1D)− tr(C g−1Dg−1)

)− 1
6 tr(CΨr g−1) tr(DΨr g−1).

(5.5.41)

Here and in the following, summation over the common index r is understood.

The twisting of Wl (g ) = tr(C g±1Dg±1) with C ,D ∈G2 is given by

T (Wl )(g ) =

(+,+) : 1
2

(
tr(C D−1)− tr(C g ) tr(Dg )

)− 1
6 tr(C gΨr ) tr(DgΨr ),

(+,−) : 1
2

(− tr(g−1C g D−1)+ tr(C ) tr(D)
)− 1

6 tr(C gΨr ) tr(DΨr g−1),

(−,+) : 1
2

(− tr(C g−1D−1g )+ tr(C ) tr(D)
)− 1

6 tr(CΨr g−1) tr(DgΨr ),

(−,−) : 1
2

(
tr(C D−1)− tr(g−1C ) tr(g−1D)

)− 1
6 tr(CΨr g−1) tr(DΨr g−1),

(5.5.42)

It seems unlikely that the expressions involving the matrices Ψr can be simplified

any further, and as such, we do not have a polynomial of Wilson loops, but only of

generalized Wilson loops in the sense of Definition 5.2.2.

We can also apply Theorem 5.4.6 and Remark 5.4.7 to G2 to calculate certain Weingarten

functions: Denote by GC
2 the complex Lie group given by the automorphisms of the

complexified octonion algebra. It also assumes an irreducible, unitary representation

5Our choice of generators {H a } differs from the ones in [Mac01] by a factor of i /
p

2, in order to achieve

orthonormality and since we need to view su(7) as a Lie algebra of skew-hermitian rather than hermitian

matrices to achieve the right behavior under exponentiation.
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on the complexification VC = (kerτO)C and in [Sch88], generators for invariant spaces

(V ⊗n
C

⊗C (V ∗
C

)⊗n′
)GC

2 have been calculated. Due to connectedness of GC
2 , we have for

every GC
2 -module M

MGC
2 = M Lie(GC

2 ) = M (g2)C ,

denoting by (g2)C the complexification of the Lie algebra g2. As such, we can deduce

from this the G2 invariants (V ⊗n ⊗ (V ∗)⊗n′
)G2 = (V ⊗n ⊗ (V ∗)⊗n′

)g2 .

The representation space V admits an invariant, non-degenerate bilinear form

α : V ⊗V →R, ei ⊗e j 7→ −τO(ei e j ),

hence V ∼= V ∗ as G2-modules and one may restrict to the invariants (V ⊗n)G2 without

loss of generality.

For simplicity, let us study the case n = 2. An analysis of n > 2 is possible, but finding

a basis of (V ⊗n)G2 becomes more difficult due to the presence of nontrivial relations

between the generators determined in [Sch88]. Now, (V ⊗V )G2 is one-dimensional and

is generated by u :=∑7
i=1 ei ⊗ei . This element is dual to α ∈V ∗⊗V ∗ due to the relation

τO(ei e j ) = −δi j for 1 ≤ i , j ≤ 7. We set A = Ru ⊂ V ⊗V , equip this subspace with the

inner product 〈u,u〉 = 1, and define τ : A →V ⊗V to be the embedding of this subspace.

The adjoint τ∗ with respect to the scalar product on V ⊗V defined in Theorem 5.4.6 is

given by

τ∗(ei ⊗e j ) = δi j u, ∀1 ≤ i , j ≤ 7,

so (τ∗τ)(u) = 7u. Hence, by Remark 5.4.7, we find

Wg = 1

7
idA . (5.5.43)

Now, Theorem 5.4.6 allows us to deduce that for all 1 ≤ i , j ≤ 7 we have∫
G2

ρ⊗2(g )(ei ⊗e j )dg = (τ◦Wg◦τ∗)(ei ⊗e j ) = 1

7
δi j

7∑
k=1

ek ⊗ek

or, as a scalar integral, ∫
G2

ρ(g )i1 j1ρ(g )i2 j2 dg = 1

7
δi1i2δ j1 j2 .
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A
COSHEAVES AND ČECH HOMOLOGY

In this appendix, we will recall the definition of (pre-)cosheaves, Čech homology of

precosheaves and simple properties thereof from [Bre97]. For the remainder of this

section, fix a topological space X .

Definition A.1. [Bre97, Chapter V.1]

i) A precosheaf (of R-vector spaces) P on X is a covariant functor from the cate-

gory of open sets of X , morphisms given by inclusions, into the category of R-

vector spaces. Given an inclusion U ⊂V of open sets, we denote the associated

mapping P (U ) →P (V ) by ιVU , called the extension map from U to V of the pre-

cosheaf P .

ii) A cosheaf is a precosheaf P with the property that for every open cover U =
{Ui }i∈I of an open set U ⊂ X , the sequence⊕

i , j
P (Ui ∩U j ) →⊕

i
P (Ui ) →P (U ) → 0 (A.1)

is exact, where the maps are given by

(ai j )i , j 7→
(∑

j
ι
Ui
Ui∩U j

(ai j −a j i )

)
i

, (bi )i 7→
∑

i
ιUUi

bi . (A.2)

iii) A morphism of (pre-)cosheaves is a natural transformation between the functors

defining the (pre-)cosheaves.

Unless mentioned otherwise, all our (pre-)cosheaves take values in the category

of R-vector spaces.
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Definition A.2. Let S be a precosheaf over a topological space X , and U = {Uα} an

open cover of X . Write α := (α1, . . . ,αp+1) for the p-simplex defined by a collection of

indices αi , and write

Uα :=Uα1 ∩·· ·∩Uαp+1 . (A.3)

Define for a p-simplex α and a number i ∈ {1, . . . , p +1} the (p −1)-simplex α(i ) as the

simplex which arises from removing the i -th index from α. For all p ≥ 0, we define the

space of Čech p-chains for S associated to the cover U as

Čp (UX ;S) := ⊕
α=(α1,...,αp+1)

S(Uα). (A.4)

We may then express elements c ∈ Čp (UX ;S) as formal linear combinations

c =∑
α

cα, cα ∈ S(Uα1 ∩·· ·∩Uαp+1 ), (A.5)

so that only finitely many cα are nonzero.

The Čech differential ∂̌ : Čp (UX ;S) → Čp−1(UX ;S) via

∂̌(cαα) :=
p+1∑
i=1

(−1)i−1
(
ι
U
α(i )

Uα
cα

)
α(i ). (A.6)

The Čech homology associated to the cover U and the precosheaf S, denoted by Ȟ•(UX ;S),

is defined as the homology of the chain complex Č•(UX ;P ) :=⊕
p≥0 Čp (UX ;S).

The Čech homology of S is defined as

Ȟ•(X ;S) := lim←−− Ȟ•(UX ;S) (A.7)

where the inverse limit is taken with respect to refinement of covers.

Remark A.3. The symmetric groupΣp acts on multiindicesα of length p by permutation

of the entries, and we denote this permutation by σ ·α. Recall now the notation from

(A.5). If c = ∑
α cα ·α and α = (α1, . . . ,αp ) is one of the multiindices, we call c skew-

symmetric if

cσ·α = sign(σ)cα ∀α. (A.8)

The skew-symmetrized Čech complex is defined as the subcomplex

Č a
• (UX ;S) ⊂ Č•(UX ;S) (A.9)

of skew-symmetric cochains. Dualizing the corresponding results for Čech cohomology

of a sheaf [God58, Section 3.8], one finds that the inclusion Č a• (UX ;S) ,→ Č•(UX ;S) is a

quasi-isomorphism.
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We want to remark on a special class of cosheaves on which Čech homology is trivial.

Definition A.4. A cosheaf is called flabby if all its extension maps are injective.

Proposition A.5 ([Bre97, Chapter V, Proposition 1.6]). Let P be a soft sheaf over a topo-

logical space X . Then compactly supported sections of P admit the structure of a flabby

cosheaf over X , where the extension maps extend sections by zero.

Proposition A.6 ([Bre97, Chapter VI, Corollary 4.5]). Let S be a flabby cosheaf over X

and U an open cover of X . Then

Ȟp (UX ;S) =
S(X ) if p = 0,

0 else.
(A.10)

Just like Čech cohomology of a sheaf can be calculated in terms of resolutions, we

shall calculate Čech homology in terms of coresolutions:

Definition A.7. [Bre97, Chapter VI.7]

i) A precosheaf P on M is called locally zero if for every x ∈ M and every open

neighborhood U of x there is an open neighborhood V ⊂U so that ιVU = 0.

ii) A sequence of precosheaves

P1
f→P2

g→P3 (A.11)

is called locally exact is the precosheaf

U 7→ Im f (P1(U ))

ker g (P2(U ))
(A.12)

is locally zero.

iii) A coresolution of a cosheaf P is a locally exact sequence of cosheaves

· · ·→P2 →P1 →P0 →P → 0. (A.13)

The coresolution is called flabby if the P0,P1, . . . (but not necessarily P ) are

flabby.

To calculate Čech homology of cosheaves, the following result will be helpful:

Proposition A.8 ([Bre97, Theorems VI.7.2, VI.13.1]). Let P be a cosheaf on M with flabby

coresolution

· · ·→P2 →P1 →P0 →P → 0. (A.14)
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i) Čech homology Ȟ•(M ;P ) is equal to the homology of the complex

· · ·→P2(M) →P1(M) →P0(M) → 0. (A.15)

ii) If U is an open cover of M with the property that

· · ·→P2(U ) →P1(U ) →P0(U ) →P (U ) → 0 (A.16)

is exact whenever U is a finite intersection of elements of U , then

Ȟ•(U ;P ) = Ȟ•(M ;P ). (A.17)

One concept which one might hope for in the theory of cosheaves is a dual version of

the well-known concept of sheafification, in other words, a way to universally assign to

every precosheaf an appropriate cosheaf. For sheaves, one speaks of a left-adjoint func-

tor to the inclusion of presheaves into sheaves, and sheafification exists for presheaves

in most standard categories, e.g. the category of sets or abelian groups. Since sheafifica-

tion respects stalks, locally, the original presheaf and its associated sheafification carry

the same information.

Surprisingly, the dual concept of “cosheafification” is a lot more involved, and even

existence of this concept in most standard categories is a difficult question, let alone

constructing it explicitly, see for example [Cur14].

Instead, we will consider the concept of a cosheaf on a base. While the dual notion

of sheaves on a base is well-studied, we are not aware of any mention in the literature of

the cosheaf-theoretic version thereof.

Definition A.9. Let B be a topological base of M . In the following, view B as a subcate-

gory of the category of open sets of M .

i) A precosheaf S on B is a (covariant) functor from B to the category of abelian

groups.

ii) For every U ∈ B, choose an open cover {Ui }i∈I of U by elements in B. Choose

further for all indices i , j ∈ I an open cover {Vi j ,k }k∈K of Ui ∩U j by elements in

B. A precosheaf S on B is called a cosheaf on B if, for all such choices, the Čech

sequence

0 ← P (U ) ←⊕
i

P (Ui ) ←⊕
i j k

P (Vi j ,k ) (A.18)

is exact.

iii) A morphism of (pre-)cosheaves on B is a natural transformation of the functors

defining the (pre-)cosheaves.
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The sequence is the analog of the cosheaf condition, but rather than working with

all open sets, we just work with elements of a topological base B. If B is chosen as the

topology of M , then this definition is equivalent to the definition of a cosheaf on M .

This is precisely the dual of the well-studied concept of sheaves on a base, by viewing

Ab-valued cosheaves as Abop-valued sheaves.

Theorem A.10. Given a topological space M and a topological base B of M. An Ab-

valued cosheaf on B extends, up to cosheaf isomorphism, uniquely to a cosheaf on M. A

morphism between two cosheaves on B of M extends uniquely to a morphism between

the induced cosheaves on M.

Proof. The following proof is due to [jh]. The analog statement for C -valued sheaves

is true whenever C is a complete category (see [Vak17] or [Liu02, Lemma 2.2.7]). How-

ever, since Ab is a cocomplete category, Abop is a complete category. This proves the

statement.

It is known that the setwise cokernels of cosheaf morphisms are again cokernels

[Bre97, Proposition VI.1.2], the proof being a simple diagram chase. This straightfor-

wardly extends to cosheaves on a base:

Proposition A.11. Let B be a topological base of M.

Let further φ : P → S be a morphism of cosheaves on B, and define a precosheaf

cokerφ by assigning to B ∈B

cokerφ(B) :=S (B)/φ(P (B)), (A.19)

with extension maps induced by the cosheaf maps of S . Then cokerφ defines a cosheaf

on B.
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B
THE HOCHSCHILD–SERRE

SPECTRAL SEQUENCE FOR LOCALLY

CONVEX LIE ALGEBRAS

In the finite-dimensional setting, the Hochschild–Serre spectral sequence is standard

and a proof is laid out in [Fuk86, Chapter 1.5.1] and [HS53]. For general locally convex

Lie algebras and continuous cohomology, one generally needs a number of topologi-

cal assumptions. For example, restriction maps of continuous cochains like C q (g) →
C r (h,Λq−r (g/h)∗) are not necessarily surjective if the subspace h is not complemented.

We formulate some assumptions which suffice for the setting in this paper:

Theorem B.1. Let g be a complete, barreled, locally convex, nuclear Lie algebra whose

strong dual space g∗ is complete, h ⊂ g a finite-dimensional Lie subalgebra, and A a

complete, locally convex space on which g acts continuously. There is a cohomological

spectral sequence {E p,q
r ,dr } converging to continuous cohomology H•(g) with

E p,q
1 = H q (

h,C p (g/h, A)
)

, (B.1)

where C p (X ,Y ) denotes skew-symmetric, jointly continuous, multilinear maps

X ×·· ·×X︸ ︷︷ ︸
p times

→ Y , (B.2)

and cohomology is taken with respect to continuous cochains. This spectral sequence

is contravariantly functorial, in the sense that a diagram of continuous Lie algebra

morphisms
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h g

h̃ g̃

induces linear maps

E p,q
r (g̃, h̃) → E p,q

r (g,h) (B.3)

compatible with the differentials for all p, q,r ≥ 0.

Proof. We define on the continuous cochains C •(g) the filtration

F pC p+q (g; A) := {c ∈C p+q (g, A) : c(X1, . . . , Xp+q ) = 0 when X1, . . . , Xq+1 ∈ h}. (B.4)

This is an ascending filtration with

C r (g, A) = F 0C r (g, A) ⊃ ·· · ⊃ F r C r (g, A) ⊃ F r+1C r (g, A) = 0, (B.5)

and

dF pC p+q (g; A) ⊂ F pC p+q+1(g; A). (B.6)

Denote by Λ̂q the functor assigning to a locally convex vector space X the closure of the

skew-symmetric tensors in its iterated projective tensor product X ⊗̂q
, see for example

[Sch71, Chapter III.7, IV.9]. We have a well-defined map

F pC p+q (g, A) → L(Λ̂qh ⊗̂ Λ̂pg/h, A), c 7→ c̃,

c̃((h1 ∧·· ·∧hq )⊗ [g1]∧·· ·∧ [gp ])) := c(h1, . . . ,hq , g1, . . . , gp ).
(B.7)

This map is independent of the choices of representatives gi by definition of the filtra-

tion and it is surjective because finite-dimensional subspaces are always complemented,

so g∼= h⊕g/h as a direct sum of locally convex vector spaces. The kernel of this map

equals F p+1C p+q (g, A). The image of this map is also indeed contained in the continu-

ous linear maps by continuity of elements in the domain. Since h is finite-dimensional,

we trivially have

(h ⊗̂g/h)∗ ∼= h∗ ⊗̂ (g/h)∗. (B.8)

By the assumptions on g and A, we may apply [Trè67, Proposition 50.5] twice to find

L(Λ̂qh ⊗̂ Λ̂pg/h, A) ∼= L(Λ̂qh,L(Λ̂pg/h, A)) ∼=C q (h,L(Λ̂pg/h, A)). (B.9)

Hence we get an isomorphism of vector spaces

F pC p+q (g, A)/F p+1C p+q (g, A) ∼=C q (
h,L(Λ̂pg/h, A)

)
. (B.10)



REFERENCES

B

181

The differential of C •(g, A) descends to the differential of this complex like in the purely

algebraic case, so the spectral sequence associated to this filtration indeed has first

page:

E p,q
1 = H q (

h,L(Λ̂pg/h, A)
)

. (B.11)

The functoriality with respect to Lie algebra pairs (g,h) is analogous to the purely alge-

braic setting.

Remark B.2. This spectral sequence in the algebraic setting is generally also phrased

with information about the second page if h is an ideal. Adapting this to the continuous

setting would require stronger assumptions, since this in particular requires commuting

the projective tensor product with the cohomology.
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C
THE ALGEBRAIC

LODAY–QUILLEN–TSYGAN

THEOREM

We recall from the presentation in [Lod92, Chapter 10] the outline of the proof of the

algebraic Loday–Quillen–Tsygan theorem, originally developed in [LQ84] and even

earlier in [Tsy83]. Fix a unital algebra A in this section.

Theorem C.1 (Loday, Quillen, Tsygan). Let A be a unital algebra and

gl(A) := lim−−→gln(A) := lim−−→gln(K)⊗ A. (C.1)

Then we have the following relation of the Lie algebra homology H•(gl(A)) and the cyclic

homology Hλ• (A):

H•(gl(A)) ∼=Λ•Hλ
•−1(A). (C.2)

All above tensor products and homologies are taken algebraically.

Due to the unitality of A, for all finite n ∈ N the Lie algebra gln(A) contains the

reductive subalgebra gln(K), and thus the reduction C•(gln(A)) →C•(gl(A))gln (K) is a

quasi-isomorphism, see [Lod92, Proposition 10.1.8].

Proposition C.2. Denote by Σk the permutation group on k elements.

If n ≥ k, then there is an isomorphism

φn :
(
gln(K)

⊗k
)
gln (K)

→K[Σk ], (C.3)
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of Σk -modules, where Σk acts on the left-hand side by permutation of tensor factors and

on the right-hand side by the adjoint action.

We can make this isomorphism map explicit (see [Lod92, Chapter 9.2]): Define

g := g1 ⊗·· ·⊗ gk 7→ ∑
σ∈Σk

T (σ)(g )σ ∀gi ∈ gln(K), (C.4)

where, if σ ∈Σk assumes a cycle decomposition

σ= (i1 . . . ik )( j1 . . . jr ) . . . (t1 . . . ts ), (C.5)

we set

T (σ)(g ) := tr(gi1 . . . gik ) tr(g j1 . . . g jr ) . . . tr(g t1 . . . g ts ). (C.6)

By the invariance of the trace under cyclic permutations, it is straightforward to show

that this map factors through to C•(gln(A))gln (K). A careful analysis then shows that

this yields a bijection of the spaces. The family of isomorphisms {φn}n≥k is compatible

with the inclusions induced by gln(K) → glm(K) for m ≥ n ≥ k, meaning the following

diagram commutes: Hence, since homology commutes with direct limits, we get

(
gln(K)⊗

k
)
gln (K)

(
glm(K)⊗

k
)
glm (K)

K[Σk ]

φn

φm

H•(gl(A)) ∼= lim−−→H•(gln(A)) ∼= lim−−→H•
(
C•(gln(A))gln (K)

)
, (C.7)

and as in the direct limit n →∞, every graded component of C•(gln(A))gln (K) becomes

constant at some point, we can identify

lim−−→C•(gln(A))gln (K)
∼=C•(gl(A))gl(K)

∼=
⊕
k≥0

(
K[Σk ]⊗ A⊗k

)
Σk

. (C.8)

The Σk -action on the last term is given by the tensor product of the signed permutation

action on A⊗k
and the adjoint action on K[Σk ] The last ingredient is to relate the last

cochain complex space and the differential it inherits to the cyclic complex of A and

the cyclic differential. Recall that (1 · · · k) ∈ Σk denotes the cyclic permutation of k

elements.

Proposition C.3. Consider the map

Cλ
•−1(A) → ⊕

k≥0

(
K[Σk ]⊗ A⊗k

)
Σk

,

[a1 ⊗·· ·⊗ak ] 7→ [(1 · · · k)⊗ (a1 ⊗·· ·⊗ak )].

(C.9)
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This map is well-defined, intertwines the differentials, and extends to an isomorphism of

chain complexes

θ :Λ•Cλ
•−1(A) → ⊕

k≥0

(
K[Σk ]⊗ A⊗k

)
Σk

(C.10)

by setting, for [u1], . . . , [ul ] with [ui ] ∈Cλ
ki−1(A) and N :=∑

i ki :

θ([u1]∧·· ·∧ [ul ]) :=
[(

(1 · · · k1)◦ (k1 +1 · · · k2)◦ · · · ◦ (kl−1 +1 · · · kl )
)

⊗ (u1 ⊗·· ·⊗ul )] ∈
(
K

[
ΣN

]
⊗ A⊗N

)
ΣN

.
(C.11)

Remark C.4. The reader is invited to check that the final product map is well-defined

on all levels: It is independent of the ordering of [u1]∧·· ·∧ [ul ], as a different ordering

is equivalent to a permutation by ΣN , and we map into the ΣN -coinvariants. It is

also independent of the choice of representatives ui ∈ [ui ] ∈ Cλ
ki−1(A), since this is

equivalent to a cyclic permutation acting on ui , and the cycle (ki−1 +1 · · · ki ) is fixed

under conjugation by itself.

The differential on the domain of θ is simply the differential of tensor product

complexes. Hence, the Künneth theorem finally implies

Λ•Hλ
•−1(A) ∼= lim−−→H•

(
C•(gln(A))gln (K)

)∼= H•(gl(A)). (C.12)
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D
THE FLAT DE RHAM COMPLEX

Let M be an smooth, n-dimensional manifold (possibly with boundary), N ⊂ M a

closed submanifold, both of

dim H k (N ), dim H k (M) <∞ ∀k ∈N0. (D.1)

In this section, we want to make a short excursion in understanding the flat de Rham

complex

Ω•
flat(M , N ) := {ω ∈Ω•(M) : ( j∞ω)|N = 0}, (D.2)

i.e. the subcomplex of Ω•(M) given by forms which are flat on N .

Lemma D.1. Consider the complex

0 →Ω0
flat(M , N ) →···→Ωn

flat(M , N ) → 0, (D.3)

with the differential given by the restriction of the de Rham differential. Its homology

equals relative singular cohomology of the pair (M , N ), and the differential has closed

range.

The proof utilizes some basic knowledge of sheaves and sheaf cohomology, for

which we direct the reader to [Bre97].

Proof. The proof idea uses ideas from [hn]. Denote by R the constant sheaf on M and

by Ωk the soft sheaf of k-forms on M . Then there is the well-known resolution

0 →R→Ω0 →Ω1 → . . . (D.4)
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Assigning to a sheaf S on M the sheaf SM\N on M with stalks

(SM\N )x :=
Sx if x ̸∈ N ,

0 if x ∈ N
(D.5)

is an exact functor, since exactness of sequences of sheaves may be checked on stalks,

see [Bre97, Section I.2]. Further, if S was soft, then so is SM\N [Bre97, Prop II.9.13].

Then the sheaf Ω•
M\N assigns to an open U ⊂ M the set Ω•

flat(U ,U ∩N ), and, if U ⊂ M is

diffeomorphic to Rn then for RM\N we have

RM\N (U ) :=
R if U ∩N =;,

0 if U ∩N ̸= ;.
(D.6)

Thus

0 →RM\N →Ω0
M\N →Ω1

M\N →···→Ωn
M\N → 0 (D.7)

is a soft resolution of the sheaf RM\N , and the complex (D.3) calculates its sheaf co-

homology. But by standard sheaf-theoretical arguments using resolutions by singular

cochain spaces, the sheaf cohomology of RM\N equals relative singular cohomology of

the pair (M ,n), see for example [Bre97, Chapter III.1]. Now, since we assumed M and N

to have finite-dimensional cohomology, the image of the de Rham differential is, in ev-

ery degree, cofinite-dimensional within its kernel kerddR. Together with Theorem 3.3.9

and closedness of kerdk+1, this shows the statement.

Remark D.2. It is likely possible to drop the assumption of finite-dimensionality of the

cohomology groups of M and N and proceed in a similar manner as [Pal72, Proposi-

tion 5.4], but we do not need this here.
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