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A graph H is a vertex-minor of a graph G if it can be reached from G by the successive 
application of local complementations and vertex deletions. Vertex-minors have been the 
subject of intense study in graph theory over the last decades and have found applications 
in other fields such as quantum information theory. Therefore it is natural to consider 
the computational complexity of deciding whether a given graph G has a vertex-minor 
isomorphic to another graph H . Here we prove that this decision problem is NP-complete, 
even when restricting H and G to be circle graphs, a class of graphs that has a natural 
relation to vertex-minors.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A central problem in graph theory is the study of ‘sub-
structures’ of graphs. These substructures are usually de-
fined as the graphs that can be reached from a starting 
graph by a given set of graph operations. An well-studied 
example of such a substructure is the graph minor, where 
the central question is to decide whether a graph G can 
be transformed into a graph H through the successive ap-
plication of vertex deletions, edge deletions, and edge con-
tractions [1]. If this is the case we call H a minor of G . 
Many graph properties, such as planarity, can be tested by 
checking whether a graph has certain minors. In particular 
the Robertson-Seymour theorem [2] states that every set 
of graphs which is closed under taking minors is charac-
terized by a finite set of forbidden minors.1 To check if a 
graph is in the set, one can therefore check whether it con-
tains one of the forbidden minors. For example, the set of 
planar graphs is closed under taking minors [3] and so is 
the set of graphs of tree-width at most k, since tree-width 
can not increase under taking minors [4]. The problem 

* Corresponding author.
E-mail address: ipl@valleymnt.com (A. Dahlberg).

1 Also called obstructions.
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(MINOR) of deciding whether a graph H is a minor of G
is NP-complete when both H and G are part of the input 
to the problem [5]. However, given a fixed H , we can de-
fine the problem (H-MINOR) of deciding whether H is a 
minor of G , where only G is part of the input. As shown 
in Robertson & Seymour’s seminal series of papers [2], H-
MINOR is solvable in cubic time for any graph H .

Since then a great variety of minor-relations has been 
defined and for many of those the complexity has been 
studied. Recently, minor-relations related to the graph op-
eration of local complementation, i.e. vertex- and pivot-
minors, have received particular attention. These two mi-
nor structures have been studied within the graph theory 
community [6–9] but have also found surprising applica-
tions outside of it, notably in the field of quantum infor-
mation science [10–15]. Similarly to tree-width for minors, 
a complexity measure of graphs called rank-width can not 
decrease under taking vertex-minors. Furthermore, it has 
been shown that every set of graphs with bounded rank-
width which is closed under taking vertex-minors is char-
acterized by a finite set of forbidden vertex-minors. Ex-
amples of such sets include the set of distance-hereditary 
graphs, since these are exactly the graphs with rank-width 
one [6]. Another example of a set of graphs characterized 
by a finite set of forbidden vertex-minors are the circle 
ss article under the CC BY license 
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graphs [16], however, this set has unbounded rank-width 
([17, Proposition 6.3] and [18]).

The complexity of the vertex- and pivot-minor decision 
problems was a notable open problem (see question 7 in 
[19]). Recently it was proven in [20] that the pivot-minor 
problem is NP-complete if both G and H are part of the in-
put to the problem, but the complexity of the vertex-minor 
problem was left open. In [21] we proved, in the con-
text of quantum information theory, the NP-completeness 
of the labeled version of the vertex-minor problem, i.e. 
the problem of deciding if H is a vertex-minor of the 
graph G , taking labeling into account. The labeled ver-
sion of the vertex-minor problem is relevant in the context 
of quantum information theory since there the vertices of 
the graph correspond to physical qubits in, for example, a 
quantum network. However we did not discuss the com-
plexity of the related problem of deciding whether G has 
a vertex-minor isomorphic to H (on any subset of the ver-
tices). Here we close this gap, proving that the unlabeled 
version of the vertex-minor problem is also NP-complete. 
Moreover we prove that ISO-VERTEXMINOR remains NP-
complete even when H is restricted to be a star graph 
and G a circle graph. To avoid confusion with the prob-
lems studied in [21] we will call the unlabeled version of 
the vertex-minor problem ISO-VERTEXMINOR.

In [21], we introduced the problem of deciding if a 
graph allows for a semi-ordered Eulerian tour (SOET) and 
used this to prove hardness of the labeled VERTEXMINOR-
problem. Here we make use of a related reduction, how-
ever, using an unlabeled version of the SOET-problem (ISO-
SOET). Although similar in nature, the hardness of the 
labeled version of the SOET-problem does not imply hard-
ness of the unlabeled version and a substantially different 
proof is needed. The construction in [21] relies critically on 
the fact that the set of vertices V of the SOET are fixed 
in advance. Without this assumption the argument falls 
apart and additional ingredients are required. For example, 
in [21] we introduced a mapping, from 3-regular graphs 
to 4-regular multi-graphs, which we called the triangular 
expansion. The vertices from the original 3-regular graph 
have specific roles in the triangular expansion, which is not 
invariant under relabeling of the vertices. To take this into 
account, we introduce here a different mapping, also from 
3-regular graphs to 4-regular multi-graphs, which we call 
the K3-expansion.

Our work resolves the problem left open in [20]. How-
ever the related question posed in [19] where H is fixed 
and thus not part of the input to the problem, still remains 
open. Even though our work in this paper does not answer 
the second question directly, it excludes the possibility that 
the problem where H is part of the input is in P.

The paper is organized as follows: in section 2 we recall 
relevant graph theoretic notions such as vertex-minors and 
circle graphs. We also discuss the concept of semi-ordered 
Eulerian tours. In section 3 we prove the main result: the 
NP-completeness of the vertex-minor problem.

2. Preliminaries

In this section we review relevant graph theoretical no-
tions. We begin by recalling the local complementation op-
2

eration and the notion of vertex-minors before discussing 
a class of graphs called circle graphs. Here we also recall 
the notion of a semi-ordered Eulerian tour, which was in-
troduced in [21], and connect it to the unlabeled version 
of the vertex-minor-problem on circle graphs.

We will denote graphs by capital letters: G, H, F , R, ... 
Graphs are assumed to be simple unless otherwise indi-
cated. The vertex-set of a graph G is denoted V (G) and 
the edge-set is denoted E(G). Give a vertex v in a graph G
we denote the neighborhood of v (the set of vertices ad-
jacent to v in G) by Nv . Given a graph G and a subset of 
its vertices V ′ we will denote the induced subgraph of G
on those vertices by G[V ′]. We denote the fully connected 
graph on n vertices as Kn .

We denote words, i.e. ordered sequences of elements of 
a set (with repetition) by boldface letters, i.e. X, Y , Z , .... 
We denote the mirroring (reversing of the ordering of its 
letters) of a word X by X̃ . Throughout this paper we use 
the following notation for sets of consecutive natural num-
bers

[n) ≡ {i ∈N : 0 ≤ i < n} (1)

2.1. Vertex-minors

We review the definition of local complementation:

Definition 1 (Local complementation). A local complementa-
tion τv is a graph operation specified by a vertex v , map-
ping a graph G to τv(G) by replacing the induced subgraph 
on the neighborhood of v , i.e. G[Nv ], by its complement. 
The neighborhood of any vertex u in the graph τv(G) is 
therefore given by

N(τv (G))
u =

{
Nu�(Nv \ {u}) if (u, v) ∈ E(G)

Nu else,
(2)

where � denotes the symmetric difference between two 
sets.

Given a sequence of vertices v = v1 . . . vk , we denote 
the induced sequence of local complementations, acting on 
a graph G , as

τv(G) = τvk ◦ · · · ◦ τv1(G). (3)

A graph H that can be reached from another graph 
G using local complementations and vertex-deletions is 
called a vertex-minor [6] and is formally defined as:

Definition 2 (Vertex-minor). A graph H is called a vertex-
minor of G if there exist a sequence of local complemen-
tations and vertex-deletions that maps G to H . If H is a 
vertex-minor of G we write this as

H < G. (4)

Associated to the notion of vertex-minor is the natural 
decision problem:
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Problem 1 (ISO-VERTEXMINOR). Given a graph G and a 
graph H decide whether there exists a graph H̃ such that 
(1) H and H̃ are isomorphic, and (2) H̃ < G .

We can restrict this problem to a special case, where 
the graph H is a star-graph2 on k vertices. We call this 
problem ISO-STARVERTEXMINOR. Note that we must only 
specify k as there exists only one star-graph on k vertices 
up to isomorphism. Formally we have

Problem 2 (ISO-STARVERTEXMINOR). Given a graph G and 
an integer k decide whether there exists a subset V ′ of 
V (G) with |V ′| = k and a star graph on V ′ denoted S V ′
such that S V ′ < G .

2.2. Circle graphs

Here we review circle graphs and representations of 
these under the action of local complementations. Circle 
graphs are also sometimes called alternance graphs since 
they can be described, as explained below, by a double-
occurrence word such that the edges of the graph are the 
given by the alternances induced by this word. We will 
make use of this description here, which was introduced 
by Bouchet in [22] and also described in [16]. This de-
scription is also related to yet another way to represent 
circle graphs, as Eulerian tours of 4-regular multi-graphs, 
introduced by Kotzig in [23]. For an overview of the the-
ory and history of circle graphs see for example the book 
by Golumbic [24].

2.2.1. Double-occurrence words
Let us first define double-occurrence words and equiv-

alence classes of these. This will allow us to define circle 
graphs.

Definition 3 (Double occurrence word). A double-occurrence 
word X is a word with letters in some set V , such that 
each element in V occurs exactly twice in X .

Given a double-occurrence word X we will write 
V (X) = V for its set of letters.

Definition 4 (Equivalence class of double-occurrence words). 
We say that a double-occurrence word Y is equivalent to 
another X , i.e. Y ∼ X , if Y is equal to X , the mirror X̃ or 
any cyclic permutation of X or X̃ . We denote by dX = {Y :
Y ∼ X} the equivalence class of X , i.e. the set of words 
equivalent to X .

Next we define alternances of these equivalence classes, 
which will represent the edges of an alternance graph.

Definition 5 (Alternance). An alternance (u, v) of the equiv-
alence class dX is a pair of distinct elements u, v ∈ V such 
that a double-occurrence word of the form . . . u . . . v . . . u
. . . v . . . is in dX .

2 The problem remains the same if star graph is replaced with complete 
graph, since these are equivalent under local complementations.
3

Fig. 1. An example of a circle graph induced by the double-occurrence 
word adcbaebced.

Note that if (u, v) is an alternance of dX then so is 
(v, u), since the mirror of any word in dX is also in dX .

Definition 6 (Alternance graph). The alternance graph A(X)

of a double-occurrence word X is a graph with vertices 
V (X) and edges given exactly by the alternances of dX , 
i.e.

E(A(X)) ={(u, v) ∈ V (X) × V (X) : (u, v) is

an alternance of dX }. (5)

Note that since A(X) only depends on the equivalence 
class of X , the alternance graphs A(X) and A(Y ) are equal 
if X ∼ Y . Now we can formally define circle graphs.

Definition 7 (Circle graph). A graph G which is the alter-
nance graph of some double-occurrence word X is called 
a circle graph.

As an example, consider the following double-occurrence
word with letters in the set V 0 = {a, b, c, d, e}:

X0 = adcbaebced (6)

The alternances of dX0 are thus

(a,b), (a, c), (a,d), (b, e), (c, e) (7)

and their mirrors. The alternance graph A(X0) is therefore 
the graph in Fig. 1.

2.2.2. Eulerian tours on 4-regular multi-graphs
There is yet another way to represent circle graphs, 

closely related to double-occurrence words, namely as Eu-
lerian tours of 4-regular multi-graphs. A 4-regular multi-
graph is a graph where each vertex has exactly four inci-
dent edges and can contain multiple edges between each 
pair of vertices or edges only incident to a single vertex.

Definition 8 (Eulerian tour). Let F be a connected multi-
graph. An Eulerian tour U on F is a tour that visits each 
edge in F exactly once.

Any 4-regular multi-graph is Eulerian, i.e. has a Eulerian 
tour, since each vertex has even degree [25].

Furthermore, any Eulerian tour on a 4-regular multi-
graph F traverses each vertex exactly twice, except for the 
vertex which is both the start and the end of the tour. 
Such a Eulerian tour induces therefore a double-occurrence 
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word, the letters of which are the vertices of F , and con-
sequently a circle graph as described in the following def-
inition.

Definition 9 (Induced double-occurrence word). Let F be a 
connected 4-regular multi-graph on k vertices V (F ). Let 
U be a Eulerian tour on F of the form

U = x0e0x1 . . . x2k−2e2k−2x2k−1e2k−1x0, (8)

with xi ∈ V (F ) and ei ∈ E(F ). Note that every element of V
occurs exactly twice in U , except x0. From a Eulerian tour 
U as in eq. (8) we define an induced double-occurrence 
word as

m(U ) = x0x1 . . . x2k−2x2k−1. (9)

To denote the alternance graph given by the double-
occurrence word induced by a Eulerian tour, we will write 
A(U ) ≡A(m(U )).

Similarly to double-occurrence words, we also intro-
duce equivalence classes of Eulerian tours under cyclic per-
mutation or reversal of the tour.

Definition 10 (Equivalence class of Eulerian tours). Let F be a 
connected 4-regular multi-graph and U be an Eulerian tour 
on F . We say that an Eulerian tour U ′ on F is equivalent 
to U , i.e. U ∼ U ′ , if U ′ is equal to U , the reversal Ũ or 
any cyclic permutation of U or Ũ . We denote by tU the 
equivalence class of U , i.e. the set of Eulerian tours on F
which are equivalent to U .

It is clear that if the Eulerian tours U and U ′ on a 
4-regular multi-graph F are equivalent, then so are the 
double-occurrence words m(U ) and m(U ′). Furthermore, as 
for double-occurrence words, two equivalent Eulerian tours 
on a connected 4-regular multi-graph induce the same al-
ternance graph.

Consider for example the 4-regular multi-graph in 
Fig. 2(a). This graph has a tour U0 with an induced double-
occurrence word

m(U0) = adcbaebced (10)

Note, that this is equal to the word in eq. (6) which shows 
that A(U ) is also the graph in Fig. 1.

2.2.3. Vertex-minors of circle graphs
When we are considering vertex-minors of circle graphs, 

it is useful to map the operations of local complementation 
and vertex deletion on an alternance graph of a double-
occurrence word to operations on that double-occurrence 
word. Here we fix some notation and recap results also 
discussed in [21].

We start by considering local complementation. Let 
X = Av B vC be a double-occurrence word with alternance 
graph A(X) and let v be an element in V (X). Local com-
plementation at the vertex v in the graph A(X) now cor-
responds to the mirroring of the sub-word B of X in be-
tween the two occurrences of v , i.e.
4

τv
(
A(X)

) = A(Av B̃ vC) (11)

Note that both the double-occurrence word X = Av B vC
and the double-occurrence word Av B̃ vC arise as words 
induced by Eulerian tours on the same 4-regular graph F . 
One can in fact show that two circle graphs are equivalent 
under the action of local complementation if and only if 
they arise as alternance graphs induced by Eulerian tours 
on the same 4-regular multi-graph [16].

Next we consider vertex deletion. We will denote by 
X \ v the deletion of the element v , i.e.

X \ v ≡ (Av B vC) \ v = A BC . (12)

The resulting word A BC is also a double-occurrence word 
and furthermore we have that

A(X) \ v = A(X \ v). (13)

If W = {w1, w2 . . . , wl} is a subset of V , we will write X \
W as the deletion of all elements in W , i.e.

X \ W = (. . . ((X \ w1) \ w2) . . . ) \ wl. (14)

Connected to this we can also define an induced double-
occurrence sub-word X[W ] = X \ (V \ W ). The reason for 
calling this an induced double-occurrence sub-word stems 
from its relation to induced subgraphs of the alternance 
graph as

A(X)[W ] = A(X[W ]). (15)

We can decide if a circle graph has a certain vertex-
minor by considering Eulerian tours of a 4-regular graph, 
which is captured in the following theorem, a proof of 
which can be found in [21]. This theorem states that 
vertex-minors of alternance graphs induced by a Eulerian 
tour on a 4-regular graph F are exactly the alternance 
graphs induced by sub-words formed by Eulerian tours on 
F .

Theorem 1. Let F be a connected 4-regular multi-graph and let 
G be a circle graph such that G = A(U ) for some Eulerian tour 
U on F . Then G ′ is a vertex-minor of G if and only if there exists 
a Eulerian tour U ′ on F such that

G ′ = A(m(U ′)[V (G ′)]). (16)

2.2.4. Semi-ordered Eulerian tours
From the previous sections we have seen that circle 

graphs and their vertex-minors can be described by Eule-
rian tours on connected 4-regular multi-graphs. One can 
thus ask, given a graph H , what properties a 4-regular 
multi-graph F must possess such that any of its alternance 
graphs3 has H as a vertex-minor. We answered this ques-
tion in [10] for the case when H is a star graph by intro-
ducing the notion of a Semi-ordered Eulerian Tour (SOET), 
defined as

3 Note that if H < A(U ) for some Eulerian tour U on F then H <

A(U ′) for all Eulerian tours U ′ on F .
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Fig. 2. Examples of two 4-regular multi-graphs. Fig. 2a is an example of 
a graph that allows for a SOET with respect to the set V ′ = {a, b, c, d}. 
A SOET for this graph is for example m(U ) = abcdaebced. The graph in 
Fig. 2b on the other hand does not allow for any SOET with respect to the 
set V ′ = {a, b, c, d}.

Definition 11 (SOET). Let F be a 4-regular multi-graph 
and let V ′ ⊆ V (F ) be a subset of its vertices. Further-
more, let s = s0s1 . . . sk−1 be a word with letters in V ′
such that each element of V ′ occurs exactly once in 
s and where k = ∣∣V ′∣∣. A semi-ordered Eulerian tour U
with respect to V ′ is a Eulerian tour such that m(U ) =
s0 X0s1 . . . sk−1 Xk−1s0Y 0s1 . . . sk−1Y k−1 and where X0,

X1, . . . , Xk−1, Y 0, . . . , Y k−1 are words (possibly empty) 
with letters in V (F ) \ V ′ . This can also be stated as 
m(U )[V ′] = ss, for a word s.

Note that the multi-graph F is not assumed to be sim-
ple, so multi-edges and self-loops are allowed. A SOET is 
a Eulerian tour on F that traverses the elements of V ′ in 
some order once and then again in the same order. The 
particular order in which the SOET traverses V ′ will not 
be important here, only that it traverses V ′ in the same 
order twice. As an example, the graph in Fig. 2(a) allows 
for a SOET with respect to the set {a, b, c, d} but the graph 
in Fig. 2(b) does not.

The following theorem, a trivial corollary of Corollary 
2.6.1 in [10], connects the problem of finding star graphs4

as vertex-minors of circle graphs to the problem of finding 
SOETs on 4-regular multi-graphs.

Theorem 2. Let F be a connected 4-regular multi-graph and let 
G be a circle graph given by the alternance graph of a Eulerian 
tour U on F , i.e. G =A(U ). Furthermore let S V ′ be a star graph 
on the vertices V ′ . Then S V ′ < G if and only if F allows for a 
SOET (see Definition 11) with respect to V ′ .

This gives rise to a natural decision problem which we 
denote ISO-SOET:

Problem 3 (ISO-SOET). Let F be a 4-regular multi-graph 
and let k ≤ |V (F )| be an integer. Decide whether there is a 
subset V ′ ⊂ V (F ) of size |V ′| = k such that there exists a 
SOET U on F with respect to the set V ′ .

In [21] we proved that a version of Problem 3 where 
V ′ is part of the input to the problem, is NP-complete. In 
the next section we prove that also the problem of de-
ciding whether such a V ′ exists, i.e. Problem 3, is also 
NP-complete.

4 The theorem also holds if one replaces star graphs with complete 
graphs since they are equivalent under local complementations.
5

One can see that a SOET on a 4-regular multi-graph F
with respect to V ′ , imparts an ordering on the subset of 
vertices V ′ . We will in particular be interested in vertices 
in V ′ that are ‘consecutive’ with respect to the SOET. Con-
secutiveness is defined as follows.

Definition 12 (Consecutive vertices). Let F be a 4-regular 
graph and U a SOET on F with respect to a subset V ′ ⊆
V (F ). Two vertices u, v ∈ V ′ are called consecutive in U if 
there exist a sub-word u X v or v Xu of m(U ) such that no 
letter of X is in V ′ .

We also define the notion of a “maximal sub-word” as-
sociated with two consecutive vertices.

Definition 13 (Maximal sub-words). Let F be a 4-regular 
multi-graph and U a SOET on F with respect to a sub-
set V ′ ⊆ V (F ). The double-occurrence word induced by U
is then of the form m(U ) = s0 X0s1 . . . sk−1 Xk−1s0Y 0s1 . . .

sk−1Y k−1, where k = ∣∣V ′∣∣, {s0, . . . , sk−1} = V ′ and X0, . . . ,
Xk−1, Y 0, . . . , Y k−1 are words (possibly empty) with let-
ters in V (F ) \ V ′ .
For i ∈ [k), we call X i and Y i the two maximal sub-
words associated with the consecutive vertices si and 
s(i+1 (mod k)) .

Given two consecutive vertices u and v , we will denote 
their two maximal sub-words as X and X ′ , Y and Y ′ or 
similar.

3. NP-completeness of the vertex-minor problem

In this section we prove the NP-completeness of the 
vertex-minor problem. This we do in three steps. We 
will begin by (1) proving that ISO-SOET is NP-Hard. We 
do this by reducing the problem of deciding whether 
a 3-regular graph R is Hamiltonian to ISO-SOET. Next 
we (2) reduce ISO-SOET to ISO-STARVERTEXMINOR and 
ISO-STARVERTEXMINOR to ISO-VERTEXMINOR, thus prov-
ing the NP-hardness of ISO-VERTEXMINOR. Finally we (3) 
show that ISO-VERTEXMINOR is also in NP.

3.1. SOET is NP-hard

We first review the definition of a Hamiltonian graph 
and the associated CUBHAM decision problem.

Definition 14 (Hamiltonian). A graph is said to be Hamilto-
nian if it contains a Hamiltonian cycle. A Hamiltonian cycle 
is a cycle that visits each vertex in the graph exactly once.

Problem 4 (CUBHAM). Let R be a 3-regular graph. Decide 
whether R is Hamiltonian.

The reduction of CUBHAM to ISO-SOET is done by going 
through the following steps.

1. Introduce the notion of a (4-regular) K3-expansion 
�(R) of a 3-regular graph R . This is done in Defini-
tion 15.
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Fig. 3. Figure showing (a) the complete graph K V on vertices V =
{a, b, c, d} and (b) its associated K3-expansion �(K V ).

2. Prove that if a 3-regular graph R is Hamiltonian then 
the K3-expansion �(R) of R allows for a SOET of size 
2|V (R)|. This is done in Lemma 1.

3. Prove that if the K3-expansion �(R) of a 3-regular 
graph R allows for a SOET of size 2|V (R)| then R is 
Hamiltonian. This is done in Lemma 3.

Note that 2. and 3. above provide necessary and suffi-
cient conditions for whether a 3-regular graph R is Hamil-
tonian in terms of whether �(R) allows for a SOET of a 
certain size. This implies that CUBHAM reduces to ISO-
SOET and hence that ISO-SOET is NP-hard.

We begin by introducing the K3-expansion: a mapping 
from 3-regular graphs to 4-regular multi-graphs. Note that 
this expansion differs from the triangular-expansion used 
in [21].

Definition 15 (K3-expansion). Let R be a 3-regular graph. A 
K3-expansion �(R) of a 3-regular graph R is constructed 
from R by performing the following two steps:

1. Replace each vertex v in R with a subgraph isomor-
phic to K3 as below

(17)

where x, y and z are the neighbors of v . We will de-
note the K3-subgraph associated to the vertex v with 
T v , i.e. T v = G[{v(x), v(y), v(z)}].

2. Double any edge that is incident on two subgraphs T v , 
T v ′ for distinct v , v ′ .

The graph �(R) will be called a K3-expansion of R . A 
multi-graph F that is the K3-expansion of some 3-regular 
graph R will also be referred to as a K3-expanded graph. 
Furthermore, the number of vertices in �(R) is 3 · |V (R)|
and the number of edges is 2 · |E(R)| + 3 · |V (R)|. In Fig. 3
we show an example of a 3-regular graph and its K3-
expansion.

We now argue that if a 3-regular graph R is Hamilto-
nian then its K3-expansion allows for a SOET on 2|V (R)|
6

Fig. 4. Figure showing (a) a Hamiltonian path (blue dashed arrows) on 
the complete graph on vertices V = {a, b, c, d} and (b) the correspond-
ing disjoint trails described by the words V (blue dashed arrows) and W
(pink dashed-dotted arrows) from eqs. (18) and (19) on the associated 
K3-expansion �(K V ). The edges used to extend the tour to a Eulerian 
tour as captured by Algorithm 1 are show as green dotted arrows.

Algorithm 1 Algorithm for lifting the tour U V W to a Eule-
rian tour on �(R).

for i ∈ [k) do
if x(vi )

i v(xi )

i x(vi )

i �⊂ W then

Insert v(xi )

i x(vi )

i into W right after x(vi )

i
end if

end for

vertices and thus providing a necessary condition for a 3-
regular graph being Hamiltonian.

Lemma 1. Let R be a 3-regular graph with k vertices and let 
�(R) be its K3-expansion. If R is Hamiltonian then �(R) allows 
for a SOET of size 2k.

Proof. Let M be a Hamiltonian tour on R . Choose x0 ∈
V (R) and let L = x0x1 · · · xk−1 be the word formed by 
walking along M when starting on x0. Note that
xi, x(i+1 (mod k)) are adjacent in R for all i ∈ [k). Now con-
sider the K3-expansion �(R) of R . We will argue that 
�(R) allows for a SOET with respect to the set V ′ =
{x

(xk−1)

0 , x(x1)
0 , x(x0)

1 , x(x2)
1 , . . . , x(xk−2)

k−1 , x(x0)

k−1}. For all i ∈ [k] let 
vi be the unique vertex adjacent to xi in �(R) that is not 
x(i−1 (mod k)) or x(i+1 (mod k)) . Now consider the following 
words on V (�(R)).

V := x
xk−1
0 x(x1)

0 x(x0)
1 x(x2)

1 x(x1)
2 x(x3)

2 . . . x
(xk−2)

k−1 x(x0)

k−1 (18)

W := x
xk−1
0 x(v0)

0 x(x1)
0 x(x0)

1 x(v1)
1 x(x2)

1 x(x1)
2 x(v2)

2 x(x3)
2

. . . x
(xk−2)

k−1 x
(vk−1)

k−1 x(x0)

k−1 (19)

These words describe disjoint trails on �(R) as illustrated 
for an example graph in Fig. 4.

Now consider the word VW. This word describes a trail 
U V W on �(R) that visits every vertex in V ′ exactly twice 
in the same order. This means U V W is a semi-ordered tour. 
It is however not Eulerian. To make it Eulerian we have to 
extend the tour U V W to include all edges in �(R). Note 
that these edges are precisely the edges connecting the 
vertices x(vi)

i , v(xi)

i for all i ∈ [k). We can lift U V W to a Eu-
lerian tour by adding vertices to W by the following algo-
rithm. It is easy to see that the tour described by VW after 
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running Algorithm 1 is also Eulerian and is hence a SOET 
with respect to the set V ′ . This completes the lemma. �

Next we prove a necessary condition (Lemma 3) for the 
existence of a SOET on a subset V ′ of the vertices of a 4-
regular graph F .

Lemma 2. Let F be a 4-regular graph and V ′ ≥ 4 be a subset 
of its vertices. If there exists three distinct vertices in V ′ which 
are all mutually adjacent, then F does not allow for a SOET with 
respect to V ′ .

Proof. Assume that F has three vertices {u, v, w} ⊂ V ′
which are all mutually adjacent. Let U be a Eulerian tour 
on F (note that U always exists). Assume by contradiction 
that U is a SOET with respect to V ′ . It is easy to see that 
since u and v are adjacent in F they must also be con-
secutive in U . However the same is true for u and w and 
also w and v . This means a tour starting at u and must 
traverse v , then w , and then immediately u again (up to 
interchanging u and w). Since {u, v, w} is a strict subset of 
V ′ (since by assumption |V ′| ≥ 4) this means that, when 
starting at u, the tour U does not traverse all vertices in 
V ′ before returning to u. This gives a contradiction with 
the definition of SOET from which the lemma follows. �

Now we will leverage Lemma 2 to prove that if the K3-
expansion �(R) of a 3-regular graph R allows for a SOET 
with respect to a vertex-set V ′ with |V ′| = 2|V (R)| then 
the graph R must be Hamiltonian.

Lemma 3. Let R be a 3-regular graph and �(R) its K3-
expansion. If there exists a set V ′ ⊂ V (�(R)) with |V ′| =
2|V (R)| such that �(R) allows for a SOET with respect to V ′
then R must be Hamiltonian.

Proof. Assume that there exists a subset V ′ of V (�(R))

with |V ′| = 2|V (R)| such that �(R) allows for a SOET U
with respect to V ′ .

Note first that since |V (�)| = 3|V (R)| and |V ′| =
2|V (R)| we must have, by Lemma 2 that |V [Tu] ∩ V ′| = 2
for all u ∈ V (R). This is easiest seen by contradiction. As-
sume that there exists a u ∈ V (R) such that |V [Tu] ∩ V ′| <
2. From the fact that (1) V (T v) ∩ V (T v ′ ) = ∅ for all v, v ′ ∈
V (R), (2) |V (�)| = 3|V (R)| and (3) |V ′| = 2|V (R)| we 
then know that there must also a exist a u′ ∈ V (R) such 
that |V (Tu′ ) ∩ V ′| = 3. This means that V (Tu′ ) ⊂ V ′ . How-
ever the induced subgraph �(R)[Tu′ ] is isomorphic to K3
(this is easily seen from the definition of K3-expansion). 
By Lemma 2 we must thus conclude that �(R) does not 
allow for a SOET with respect to V ′ leading to a contra-
diction. Hence we must have that |V (Tu) ∩ V ′| = 2 for all 
u ∈ V (R).

Now consider two vertices x, x′ ∈ V ′ such that x, x′ are 
consecutive in the SOET U . Note that, by definition of 
�(R), there must exist w, w ′ ∈ V (R) such that x ∈ T w

and x′ ∈ T w ′ . We will now argue that we must have ei-
ther w = w ′ or w, w ′ are adjacent in R . We argue this by 
contradiction. Assume thus that w, w ′ are neither equal 
7

nor adjacent in R . Now let Y be one of the two max-
imal sub-words of m(U ) associated to x, x′ . Since w, w ′
are neither equal nor adjacent in R , the trail described by 
the word Y must pass through a triangle subgraph differ-
ent from T w and T w ′ , i.e. there exists a vertex w ′′ ∈ V (R)

such that |Y ∩ V (T w ′′ )| ≥ 2. However since by construction 
|V (T w ′′ ) ∩ V ′| = 2 (as shown above) and |V (T w ′′ )| = 3 we 
must have that |V ′ ∩ Y| ≥ 1. This, however, contradicts the 
assumption that Y is a maximal sub-word. Hence we must 
have that w = w ′ or that (w, w ′) ∈ E(R). Now consider 
the word m(U ) associated to the SOET U and the induced 
sub-word m(U )[V ′]. By the above, and the fact that if two 
vertices in V ′ are adjacent in �(R), they must also be con-
secutive in U (this is a consequence of U being Eulerian 
and thus having to traverse the edge connecting these ver-
tices), we have that m(U )[V ′] must be of the form

m(U )[V ′] = x0x′
0x1x′

1x2x′
2 . . . xk−1x′

k−1x0x′
0 . . . xk−1x′

k−1

(20)

where xi, x′
i ∈ T wi and {w1, . . . wk} = V (R) and moreover 

that (wi, wi+1) ∈ E(R) for all i ∈ [k) and also (wk, w0) ∈
E(R). This immediately implies that the word M = w1 w2
. . . wk describes a Hamiltonian tour on R , and hence that 
R is Hamiltonian. �

Since Lemma 3 and 1 provide necessary and suffi-
cient conditions for a 3-regular graph being Hamiltonian in 
terms of whether a K3-expanded graph allows for a SOET, 
we can now easily prove the hardness of Problem 3.

Theorem 3. ISO-SOET is NP-Hard.

Proof. Let R be an instance of CUBHAM, that is, a 3-
regular graph on k vertices. From R we can construct 
the 4-regular K3-expansion �(R). Note that this can be 
done in poly-time in k. Now note that (�(R), 2k) is an 
instance of ISO-SOET. If R is a YES instance of CUBHAM, 
that is, R is Hamiltonian, then by Lemma 1 we have that 
(�(R), 2k) is a YES instance of ISO-SOET. On the other 
hand, if (�(R), 2k) is a YES instance of ISO-SOET, then 
R is a YES instance of CUBHAM by Lemma 3. By contra-
position this means that if R is a NO instance of CUBHAM, 
then (�(R), 2k) is a NO instance of ISO-SOET. This means 
CUBHAM is Karp-reducible to SOET. Since CUBHAM is NP-
complete [26], this implies that SOET is NP-hard. �
3.2. ISO-VERTEXMINOR is NP-hard

Note first that ISO-STARVERTEXMINOR trivially reduces 
to ISO-VERTEXMINOR, as it is a strict sub-problem. This 
means that if ISO-STARVERTEXMINOR is NP-hard then so is 
ISO-VERTEXMINOR. In this section we show that the ISO-
SOET reduces to ISO-VERTEXMINOR, which follows from 
Theorem 2.

Theorem 2 states that a 4-regular multi-graph F allows 
for a SOET with respect to a subset of its vertices V ′ ⊆
V (F ) if and only if an alternance graph A(U ) (which is a 
circle graph), induced by some Eulerian tour on F , has a 
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star graph S V ′ on V ′ as a vertex-minor. We therefore have 
the following theorem.

Theorem 4. The decision problem ISO-SOET reduces to ISO-
STARVERTEXMINOR.

Proof. Let (F , k) be an instance of ISO-SOET, where F is a 
4-regular multi-graph and k ≤ |V (F )| some integer. Also let 
G be a circle graph induced by some Eulerian tour U on F . 
From Corollary 2 we see that G has S V ′ as a vertex-minor 
for some subset of vertices V ′ of G if and only if F allows 
for a SOET with respect to this vertex set V ′ . Since an Eu-
lerian tour U can be found in polynomial time [27] and 
since G can be efficiently constructed given U [21], con-
sidering the case of |V ′| = k concludes the reduction. �
3.3. ISO-VERTEXMINOR is in NP

Next we argue that the problem ISO-VERTEXMINOR 
is in NP. This just follows from the fact that the non-
isomorphic vertex-minor problem is in NP.

Theorem 5. The decision problem ISO-VERTEXMINOR is in NP.

Proof. From [21] we know that there exists a polynomial-
length witness for the problem of deciding if a labeled 
graph G has a vertex-minor equal to another graph H
on some fixed subset of its vertices. Since GRAPHISOMOR-
PHISM is in NP we can also construct a polynomial-length 
witness for ISO-VERTEXMINOR, i.e. to decide if G has a 
vertex-minor isomorphic to H . We thus conclude that ISO-
VERTEXMINOR is in NP. �
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