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Abstract: A novel and simple approach to optical wavelength measure-
ment is presented in this paper. The working principle is demonstrated using
a tunable waveguide micro ring resonator and single photodiode. The initial
calibration is done with a set of known wavelengths and resonator tunings.
The combined spectral sensitivity function of the resonator and photodiode
at each tuning voltage was modeled by a neural network. For determining
the unknown wavelengths, the resonator was tuned with a set of heating
voltages and the corresponding photodiode signals were collected. The
unknown wavelength was estimated, based on the collected photodiode
signals, the calibrated neural networks, and an optimization algorithm. The
wavelength estimate method provides a high spectral precision of about
8 pm (5·10−6 at 1550 nm) in the wavelength range between 1549 nm to
1553 nm. A higher precision of 5 pm (3·10−6) is achieved in the range
between 1550.3 nm to 1550.8 nm, which is a factor of five improved
compared to a simple lookup of data. The importance of our approach is
that it strongly simplifies the optical system and enables optical integration.
The approach is also of general importance, because it may be applicable
to all wavelength monitoring devices which show an adjustable wavelength
response.

© 2013 Optical Society of America

OCIS codes: (120.4140) Monochromators; (120.6200) Spectrometers and spectroscopic in-
strumentation; (130.3120) Integrated optics devices; (140.4780) Optical resonators.
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1. Introduction

Measuring and controlling the wavelength of lasers is essential to a vast number of applica-
tions. Examples range from multichannel wavelength division-multiplexing (WDM) [1], op-
tical communication [2], linear and nonlinear spectroscopic applications [3–6], to laser based
metrology [7]. It is desirable to combine high precision and simplicity with small size and the
option of integration.

State-of-the-art wavemeters, such as double-folded Michelson interferometers [8], can read-
ily provide a high spectral resolution of better than 10−6. However, this comes at the cost of a
fairly large instrument size (in the order of 106 wavelengths, i.e., typically a meter).

There are also simplified wavemeters which are suitable for miniaturization. Their working
principle is based on two (or several) channels in which the transmission vs. wavelength is
different [9]. If the mapping between the transmission of the channels and the wavelength is
bijective (i.e., the transmission curve of each channel is strictly increasing or decreasing), the
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normalized transmission ratio of the channels can be calibrated in the form of a look-up ta-
ble (LUT). Miniaturization can be achieved by using the transmission functions of integrated
optical wavelength filters [10], such as thin-film interference filters, photonic crystal waveg-
uides [11], or multimode interference couplers [12]. This also allows the laser and its wave-
length monitor to be integrated into a single device [13]. However, the operational range is
confined to the region where the spectral sensitivities of all channels are either strictly increas-
ing or decreasing.

In this paper, we present a new method for wavelength and power estimation, based on the
calibrated transmission spectra of a micro-ring resonator (MRR), providing high precision and
extended measurement range suitable for integrated optics. A wavemeter was constructed in an
integrated optical design for verification of the method, which simply consists of a single, on-
chip tunable MRR as an optical transmission filter and a single photodiode. The MRR used here
is fabricated from Si3N4/SiO2 with a box-shaped waveguide cross section (TriPleXT M) [14].
The wavelength and power of the incident light is estimated by analyzing the photodiode signals
with neural networks and a nonlinear optimization algorithm.

The contribution of our work lies in the method for high-precision, range-extended wave-
length and power estimation, which simplifies the optical requirements for design, fabrication
and integration of the devices. Furthermore, with the proposed algorithm to estimate the wave-
length, the spectral sensitivity of the MRR is not necessarily required to be strictly increasing
or decreasing in the operational range. Therefore, the operational range is extended and more
tunings can be applied for wavelength estimate (i.e., more heating voltages can be applied to
the heater of the MRR), which results in a higher precision in the measurement. An advan-
tage of this wavelength estimation method is that monotonicity is not required, allowing one to
consider a larger number of physical implementations, including devices with randomly vary-
ing transmission. Thus, one may consider the transmission spectrum of a powder [15], or a
multi-mode fiber [16], for example, as long as the transmission function is reproducible.

2. Principle of wavelength and power estimation

Fig. 1 shows the schematic of the wavemeter. Laser light with an unknown wavelength λx and
unknown power Px passes through a tunable optical filter. The transmission of the filter vs.
wavelength, f (λ ,vk), can be modified with an external control parameter, vk. In our case, the
filter is a single MRR equipped with an electric heater (see Fig.2). The control parameter is the
voltage applied to the heater, which tunes the optical resonator length of the MRR and thereby
modifies its transmission function. To estimate the wavelength of the input light field, a number
of N different voltages are applied, where we define vk as the kth voltage. The transmitted light
illuminates a photodiode, which yields a set of measurement signals yk, in our case voltages.
The sensitivity of the photodiode is denoted as d(λ ), which is a function of the wavelength λ .
The measurement signal yk is given by the product of the incident laser power, the transmission
of the MRR, and the sensitivity of the photodiode. When including measurement noise, ηk, the
measurement signal can be expressed as

yk = Px f (λx,vk)d(λx)+ηk = PxS(λx,vk)+ηk. (1)

Here we have abbreviated the product of the MRR transmission and photodiode sensitivity as
the combined spectral sensitivity function S(λx,vk) = f (λx,vk)d(λx).

To obtain the unknown wavelength, λx, and power, Px, of incident light from measurements
of yk, we proceed in two steps:

1. Device calibration
The first step is to obtain information on the spectral sensitivity function. In principle,
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Fig. 1. General scheme of the wavemeter. Laser light with wavelength λx and power Px

passes the tunable color filter, i.e., a micro-ring resonator (MRR) in this paper. The spectral
transmission function of the MRR can be changed by applying a heater voltage vk. The
transmitted light is collected by a photodiode, which yields a measurement signal yk.

IN

PD R

E

E500 µm

Fig. 2. Microscope picture of the waveguide chip (left) with micro-ring resonators (MRRs)
and a schematic drawing (right) of the same chip. ”R” denotes the MRR with the heater
on top (gray). ”E” denotes electrical contacts (gold colored) and the black lines represent
waveguides. The fiber from the tunable laser was connected to the MRR from ”IN”. ”PD”
denotes the position of the photodiode. Since only one MRR was used at the same time,
there was no crosstalk between the MRR and the heaters of neighboring MRRs.

S(λ ,v) may be derived via physical modeling of the MRR transmission and the photo-
diode response. However, in practice, the highest accuracy is achieved via calibration.
Calibration requires injecting light at a known power at a number of known input wave-
lengths, λ , into the MRR. For each wavelength, λ , the heating voltage, vk, of the MRR is
tuned to N values, i.e., k = 1, · · · ,N with N the number of tunings; and the corresponding
photodiode signals, yk, (k = 1, · · · ,N) are recorded for each pair of λ and vk.

Fig. 3 shows typical sets of photodiode measurement data. Each data set is recorded at a
different heater voltage vk. An approximation for S(λ ,v) can then be obtained by fitting
an analytical function to the data [17], such as a polynomial, a spline or a neural network
(NN). A 2-layer neural network is able to model a broad range of nonlinearities [18–20]
and, from a practical point of view, can be implemented and trained very conveniently,
e.g., with a neural network toolbox [21]. Therefore a 2-layer neural network with Q
neurons in the first layer and one in the second layer was chosen for our work. At a
certain control voltage vk, the output yk(λ ) of the neural network is given as

yk(λ ) = P · Ŝ(λ ,vk) = P
Q

∑
i=1

w1iktanh(w2ikλ + s1ik)+ s2ik. (2)

Eq. (2) models the spectral sensitivity curve as a superposition of step response functions
(neurons), in this case chosen as tangent hyperbolic functions. w1ik and w2ik are the input
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Fig. 3. Spectral sensitivity function S(λ ,v) at different v. ”+”: calibration data; lines: curves
fitted by neural networks. For clarity, curves are shown only for five heating voltages
v =0 V, 2.5 V, 5.0 V, 7.5 V and 10 V.

and output weights of the neural network, respectively; s1ik and s2ik are biases on the
input and output neurons, respectively. To obtain a good compromise between a best fit
and a minimum number of fit parameters, the number of neurons, Q, should be selected
according to the required fitting accuracy of the neural network [20, 21].

2. Wavelength and power estimation
In the second step, light with an unknown wavelength, λx, and power, Px, is sent into to
the wavemeter. A set of N photodiode signals, yk, is recorded via applying N different
heater voltages, vk (k = 1, · · · ,N). The heater voltages can be equally spaced (as in the
experiments described in this paper), randomly selected or designed by the user before-
hand. For each heater voltage, vk, a nonlinear equation, as described in Eq. (1) can be
formed. By stacking N equations, a set of nonlinear equations is obtained as

Y ≡

⎡
⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

PxS(λx,v1)+η1

PxS(λx,v2)+η2
...

PxS(λx,vN)+ηN

⎤
⎥⎥⎥⎦ . (3)

The unknown wavelength, λx, and power, Px, can be estimated by solving Eq. (3). Ob-
taining an analytical solution of Eq.(3) may be infeasible in practice. Alternatively, a
numerical solution can be obtained by solving a nonlinear least squares (NLLS) problem
as

(
λ̂x, P̂x

)
= arg min

λ̂x,P̂x

1
N

∣∣Y − Ŷ
∣∣2

︸ ︷︷ ︸
J

, (4)
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with Y defined in Eq. (3) and Ŷ defined as

Ŷ ≡

⎡
⎢⎢⎢⎣

ŷ1

ŷ2
...

ŷN

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

P̂xŜ(λ̂x,v1)

P̂xŜ(λ̂x,v2)
...

P̂xŜ(λ̂x,vN)

⎤
⎥⎥⎥⎦ . (5)

Here Ŝ(λ ,vk) is the approximated spectral sensitivity function that was obtained by cali-
bration in Step 1. The mean-square-error between the measurement vector Y and the ap-
proximation Ŷ at certain guesses, λ̂x and P̂x, is defined as the cost function J = 1

N |Y −Ŷ |2.

Eq. (4) aims to find an appropriate λ̂x and P̂x such that the approximation Ŷ is as close as
possible to the measurement Y , i.e., J is minimized. In this way, the unknown wavelength,
λx and power Px, of the incident light field are estimated, i.e., the wavelength readout is
obtained. By accurately approximating the spectral sensitivity, S(λ ,vk), and increasing
the number of tunings (i.e., more equations are used), the accuracy of λ̂x and P̂x can be
improved.

The special feature of our method is that the spectral sensitivity function, Ŝ(λ ,vk), is not
necessarily bijective (i.e., strictly increasing or decreasing) with respect to wavelength, λ , in
the operational range, as compared with the LUT method. Because of this, not only is the
operational range of our wavemeter extended (non-monotonous regions are also allowed), but
also the accuracy of the estimates is improved. Since monotonicity is not required, sensitivity
curves with local peaks and troughs (and even multi-peaked and multi-troughed sensitivity
functions) can be used for wavelength estimate. As more equations are added in Eq. (5), the
accuracy of the estimate improves.

3. Experiments and results

Although our wavelength estimation method is not limited to one specific tunable optical fil-
ter, for an experimental demonstration, we used an available MRR. It consists of single-mode
waveguide with a designed waveguide width of 450 nm. The waveguide chip is covered with a
top cladding of 12 μm, upon which the heaters and electrodes are deposited. The cross section
of the waveguide is box-shaped. The waveguide fabrication process is described in [14]. The
radius of the MRR is R=85.47 μm and the group index is ng =1.73. The coupling gap between
the straight waveguide and the MRR is about 1.1 μm, resulting in a power coupling coefficient
of about 0.26. This corresponds to a free spectral range of about 2.6 nm and a Q-factor of about
6000. The through port of the MRR is connected to an independently calibrated, fiber-coupled
tunable laser source (HP81689A, Agilent). The light transmitted through the MRR is coupled
directly to a photodiode (FGA10, Thorlabs). The signal of the photodiode (i.e., yk) is amplified
and recorded by a computer via a data acquisition card (PCIe-6251, National Instruments). The
heater voltage vk is provided by the computer and a power amplifier.

To calibrate the sensitivity function, S(λ ,v), and to test the wavelength estimate method, two
data sets were collected, denoted as {λ ,v,yc} and {λ ,v,yt}, respectively. These two data sets
were generated using a set of known wavelengths and heater voltages. The laser was tuned over
the wavelength range from 1549 nm to 1553 nm, in 400 equal steps of 0.01 nm. The power
was constant at 2 mW. For each wavelength, N = 21 heater voltages were applied, from 0 V to
10 V in steps of 0.5 V, and the corresponding photodiode signals were collected twice, one for
calibration (i.e., yc) and the other for test (i.e., yt ). Thus, in total, 401×21 = 8421 data points
were recorded for calibration and the other 8421 data points for testing.

The settling time of the photodiode signal is about 0.5 milliseconds in case of a step heating
voltage input. During data collection, the original sampling rate of the data acquisition card
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is 1 kHz. To reduce the noise in the photodiode signal, 100 original samples are averaged to
generate one data point. Readout takes about 0.04 seconds. Therefore getting one data point
takes about 0.14 seconds. Because the communication between the control computer and the
tunable laser and the tuning of the laser wavelength both take seconds, a typical time required
for collecting both the calibration and test data sets is about two hours.

It can be seen in Fig. 3, that S(λ ,vk) consists of a broad range of nonlinear variations vs.
wavelength, resembling a set of mutually shifted Fabry-Perot resonator transmission functions.
At longer wavelengths, the depth of the modulation decreases. This can be attributed to the
overall heating of the optical waveguide chip, which causes the alignment between the optical
filter and the waveguide to change over the course of the measurements.

During calibration, each sensitivity function at a particular voltage as a function of wave-
length is approximated by a neural network, i.e., 21 neuronal network fits are performed, one
for each heater voltage. To select an appropriate number of neurons, Q, in the network as pre-
sented by Eq. (2) (2 layers, with Q neurons in the first layer and one neuron in the second layer),
the variance accounted for (VAF) was used as a criterion [22]. The VAF is defined by

A(ŷk,yk) =

(
1− var(ŷk − yk)

var(yk)

)
×100%. (6)

Here, A(ŷk,yk) is the VAF between ŷk and yk, ranging from −∞ to 100%. var(yk) is the variance
of yk. Fig. 4 shows the VAF of neural networks with respect to Q. As more neurons are used,
the accuracy of the neural network increases until Q = 14. For Q > 14, the fitting accuracy
is limited by the measurement noise in the data. Accordingly we decided to use 14 neurons
in our network. The corresponding VAF (averaged over all 21 neural networks) is 99.63%,
indicating an accurate approximation of the spectral sensitivity functions. This can be seen in
Fig. 3, which shows an excellent agreement between the neural network fitting functions and
the experimental data.

6 8 10 12 14 16 18
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Number of neurons

V
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)

Fig. 4. Variance accounted for (VAF) of the neural networks with respect to the number of
neurons (Q). The VAF in the vertical axis is averaged over VAF of all 21 neural networks.
As more neurons are used, the accuracy of the neural network increases until Q = 14.

After calibration, the wavelength and power estimate algorithm was tested with the data set
{λ ,v,yt}, where λ is considered unknown. For each ”unknown” wavelength λx,i, i ∈ [1,401],
the corresponding photodiode signals yt,i,k,k = 1, · · · ,21 are scaled by a random number px,i ∈
[0.1,10]. This simulates an input that has both an unknown wavelength and an unknown power,
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Fig. 5. Wavelength estimation error λ̂x −λx in the test set.
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Fig. 6. Histogram of the wavelength estimation error. The maximal estimation error for the
test set is 22 pm. 95% of the wavelength estimation errors are below 8 pm in the range
between 1549 nm and 1553 nm.

which are to be estimated. The set of scaled photodiode signals are given as ỹt,i,k = px,iyt,i,k,k =
1, · · · ,21. Heating voltages, vk, and signals, ỹt,i,k, were then fed into the wavelength estimation
algorithm and the unknown wavelength λx,i, and power-scaling factor px,i were estimated.

Fig. 5 shows the wavelength estimation error λ̂x − λx with respect to wavelength, λx, and
Fig. 6 shows the estimation error in a histogram of occurrence. It can be seen that the maximum
absolute wavelength estimation error for the test set is 22 pm and that 95% of the wavelength
estimation errors are below 8 pm in the range from 1549 nm to 1553 nm. Fig. 7 shows the
histogram of the relative power estimation error ( p̂x − px)/px with p̂x the estimate of px . The
error in power estimation is 1.6% at maximum with respect to the known value; and in 95%
cases, the power estimation error is less than 0.8% with respect to the known value.

To analyze whether the proposed neural network and nonlinear least square (NN+NLLS)
method provides improved accuracy over a simple LUT method, we chose a LUT where the
ratio between two spectral sensitivity curves strictly decreases. For the MRR used here, we
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Fig. 7. Histogram of the relative power estimation error (p̂x − px)/px in the test data set.
The relative power estimation error is at maximum 1.6%, and in 95% of the cases less than
0.8%.
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Fig. 8. Comparison between LUT and the proposed NN+NLLS method. 95% of the errors
fall below 27 pm for LUT and 5 pm for the proposed method (about one fifth of that for
LUT).

found a spectral region that satisfied this constraint, e.g., between 1550.3 nm and 1550.8 nm for
the heater voltages vk=0 V and 5 V. The wavelength was estimated using the LUT method and
for the same data using the NN+NLLS method, as described above. The methods are compared
in Fig. 8. The maximum wavelength estimation error in the named range is 42 pm for the LUT
and 6 pm for our NN+NLLS approach. 95% of the errors are less than 27 pm for the LUT and
less than 5 pm for NN+NLLS. This shows the NN+NLLS method, indeed, provides improved
accuracy over that of LUT. The latter corresponds to a relative precision of about 3·10−6. The
improvement is as big as a factor of five.
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4. Discussion

The accuracy of the wavelength and power estimation depends on not only on the accuracy of
the neural networks, but also on the number of data points used for estimation and the noise in
the data.

As more data points are used, more equations can be added to the nonlinear equation set and
the accuracy of wavelength and power estimation will be improved. To verify this, wavelength
and power estimation has been carried out where the number of data points used increases from
3 to 21 at a step of 2 (i.e., N=3, 5, · · · , 21). The result is shown in Fig. 9. It can be seen that the
mean of the wavelength estimation error decreases as more data points are used as expected.
There is a significant drop in the estimation error when more than 15 data points are used and
the mean of the wavelength estimation error is limited to around 4 pm, which is mainly due to
the modeling error of the neural networks and the noise in the measurement.
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Fig. 9. Mean of the wavelength estimation error decreases as more data points are used in
the estimation.
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Fig. 10. Influence of noise on the wavelength estimation error. 95% of the wavelength
estimation error is still within 10 pm when the standard deviation of the noise is 22.5 mV
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Currently, the noise between the calibration and test data points has a mean value of
0.054 mV and standard deviation of 2.7 mV. To show how our algorithm is sensitive to the
noise, a simulation has been carried out, where random noise has been added to the test data
artificially and the wavelength and power are estimated. Simulation result has been shown in
Fig. 10, which indicates that 95% of the wavelength estimation error is still within 10 pm when
the standard deviation of the noise is 22.5 mV.

5. Conclusions

In conclusion, we have presented a novel method to measure the unknown power and wave-
length of a laser with high precision and an extended measurement range. The method has been
verified in a simple setup, based on an integrated optics micro ring resonator, which allows
the wavemeter to be integrated with other on-chip optical components. Neural networks were
used to approximate the spectral sensitivity functions of the optical channel at different heating
voltages. When injecting light with an unknown wavelength and power, nonlinear equations
are formed and solved to provide an estimate of the wavelength and power. In our experimental
verification, we demonstrated a spectral precision of about 8 pm (5·10−6) in the wavelength
range between 1549 nm and 1553 nm. A higher precision of 5 pm (3·10−6) was achieved in
the range between 1550.3 nm and 1550.8 nm, which is a factor of five compared to a simple
lookup of data.

The advantage of our approach is that it does not attempt to obtain a high precision and an
increased wavelength range with a sophisticated and highly precise design of an appropriate
spectral response function. Instead, our approach is able to handle all deviations that may enter
via fabrication processes or fiber input and output coupling, as long as the optical transmission
function is reproducible. Essentially, the approach replaces the need for a complex and precise
optical design with a smart readout (”trading hardware for software”). This can help to reduce
the cost of fabrication and expand the range of applications.
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