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An Unscented Kalman Filter-Informed Neural
Network for Vehicle Sideslip Angle Estimation

Alberto Bertipaglia , Graduate Student Member, IEEE, Mohsen Alirezaei , Riender Happee ,
and Barys Shyrokau

Abstract—This paper proposes a novel vehicle sideslip angle
estimator, which uses the physical knowledge from an Unscented
Kalman Filter (UKF) based on a non-linear single-track vehicle
model to enhance the estimation accuracy of a Convolutional Neu-
ral Network (CNN). The model-based and data-driven approaches
interact mutually, and both use the standard inertial measurement
unit and the tyre forces measured by load sensing technology. CNN
benefits from the UKF the capacity to leverage the laws of physics.
Concurrently, the UKF uses the CNN outputs as sideslip angle
pseudo-measurement and adaptive process noise parameters. The
back-propagation through time algorithm is applied end-to-end to
the CNN and the UKF to employ the mutualistic property. Using
a large-scale experimental dataset of 216 manoeuvres containing a
great diversity of vehicle behaviours, we demonstrate a significant
improvement in the accuracy of the proposed architecture over the
current state-of-art hybrid approach combined with model-based
and data-driven techniques. In the case that a limited dataset is
provided for the training phase, the proposed hybrid approach still
guarantees estimation robustness.

Index Terms—State estimation, sideslip angle, physics-informed
neural network, unscented Kalman filter, machine learning.

I. INTRODUCTION

ACTIVE vehicle control systems rely on the sideslip an-
gle and yaw rate information to ensure stability and

controllability [1], [2]. Whereas low-cost gyro sensors mea-
sure the yaw rate, the vehicle sideslip angle must be esti-
mated. Its direct measurement is possible via optical speed
sensors or real-time kinematic positioning-global navigation
satellite system (RTK-GNSS), but they are expensive to be
installed in passenger vehicles [3]. Hence, the development
of filter architectures is required to estimate the sideslip an-
gle in real-time and with the desired accuracy error below
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Fig. 1. Framework overview of the CNN-UKF approach. A CNN provides
a sideslip angle pseudo-measurement and the process noise parameters to a
UKF based on a single-track vehicle model. The UKF monitors and weights the
CNN’s estimation through physical laws.

one degree in high excitation driving conditions [4]. Sideslip
angle estimation is particularly challenging for the following
aspects:
� A large diversity of vehicle manoeuvres, e.g. steady-state,

transient, low, and high excitation.
� The highly non-linear behaviour of tyres leads

to a substantial limitation due to tyre model
accuracy.

� Data collection requires expensive and high calibration
sensitive instruments.

� Numerous external disturbances, e.g. bank angle, road
slope, and road friction coefficient.

Several approaches have been proposed for vehicle sideslip
angle estimation [5], [6]. They are split into three main groups,
i.e. model-based, data-driven and hybrid approaches. The
model-based approach relies on the physical knowledge of a
vehicle model for state estimation. Open-loop deterministic
models are insufficient to provide an accurate estimation, so
stochastic closed-loop observers, e.g. extended Kalman filter
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(EKF), unscented Kalman filter (UKF), and particle filters are
currently applied to estimate unmeasurable states. EKF and
UKF are the industrial state-of-the-art for vehicle sideslip angle
estimation because their accuracy can be guaranteed in a specific
operating region, and their properties are easily assessed [7].
However, they both struggle in transient and high excitation
driving conditions due to the growing non-linearities in the
vehicle model [8]. Another branch of model-based approaches is
based on deterministic observers adapted to deal with stochastic
noise, e.g. Luenberger observer, the sliding-mode observer and
H-infinity methods. Despite their advantage in computational
complexities, their need for a higher model fidelity makes
them less utilised in industry [9], [10]. Nevertheless, these
model-based approaches require extensive system knowledge.
The data-driven approach has higher accuracy than the model-
based approach when enough quality data are provided in the
training phase [8]. Different neural network (NN) architec-
tures have been proposed, e.g. feed forward neural network
(FFNN) and recurrent neural network (RNN). However, they
all lack interpretability and generalisation capabilities. Thus,
a purely data-driven approach is hardly applicable for safety
applications in the automotive domain [7]. The third approach,
named hybrid, combines the pros of the model-based and data-
driven approaches. It improves the model-based accuracy thanks
to the NN outputs and, simultaneously, gives the data-driven
approach an interpretability thanks to the vehicle model. In
the proposed hybrid architectures [7], [11], [12], the model
and the neural network work in a unidirectional way. Thus,
the model in the hybrid architecture relies on the NN knowl-
edge without backward communication, reducing the approach’s
potential.

This paper proposes a new hybrid approach for vehicle
sideslip angle estimation. Its novelty is in the mutualistic
relationship between the model-based approach, characterised
by a UKF based on a single-track model, and the data-driven ap-
proach, represented by a Convolutional Neural Network (CNN).
The proposed approach consists of a sequential hybrid archi-
tecture in which the CNN passes the pseudo-measurement of
the sideslip angle, the level of distrust of its estimation and
the process noise parameters of the vehicle model to the UKF,
see Fig. 1. A key aspect of the proposed hybrid approach is
the training process, which allows the development of a physics-
informed NN [13]. Considering that the non-linear vehicle
dynamics are described in a UKF, the physics-informed NN
will also be referenced as a UKF-informed NN. The training
is end-to-end, so the Back-Propagation Through Time (BPTT)
algorithm moves through the CNN, the UKF and backwards.
Thus, the CNN is constrained to respect the physical laws of
vehicle dynamics. Furthermore, it allows the CNN to estimate
variables for which a reference is unavailable, i.e. the process
noise parameters and pseudo-measurement level of distrust.
This will lead to a high estimation accuracy compared to
the state-of-the-art hybrid approaches, which always separate
the data-driven component from the model-based one during
the training [11], [12], [14], [15], [16]. The split proposed in
the literature makes the hybrid approach training lighter from a
memory and computational point of view. However, it does not

TABLE I
OVERVIEW OF THE VEHICLE SIDESLIP ANGLE ESTIMATION APPROACHES

allow the model-based approach to understand when it can rely
on the CNN and at the same time, it does not allow the CNN to
learn the physical laws of vehicle dynamics. The performance is
evaluated using a large-scale, real-world experimental dataset.
The dataset contains a great diversity of driving situations,
recorded with a constant high friction coefficient.

The paper is organised as follows. Section II contains a sum-
mary of the previous works and the main paper contributions.
Section III describes the CNN and UKF used in the proposed
hybrid approach. Section IV describes how the experiments are
conducted and evaluated. Section V reports the obtained results,
and Section VI summarises the conclusions and future research
paths.

II. RELATED WORKS

A summary of the three categories, i.e. model-based, data-
driven and hybrid, is presented in Table I.

The first approach is called model-based and relies on the
laws of physics. The vehicle behaviour can be described using
the geometric constraints, i.e. kinematic model, or considering
the forces and moments acting on the vehicle, i.e. dynamic
model. The kinematic model requires only geometrical pa-
rameters and does not need extensive vehicle parametrisation
because its reliability depends mainly on sensing capabilities.
The state-of-art kinematic observer [19] is based on a linear
parameter varying system, where the states are the vehicle
velocities, and the accelerations are the inputs. This approach
leads to high accuracy in transient manoeuvres, but the model
is not observable in nearly steady-state conditions [3]. Hence
to avoid unobservability, a heuristic function is applied to lead
the lateral velocity to zero when the vehicle is moving straight
or nearly straight [19]. The downside is the amount of data
necessary to define the heuristic function. Moreover, despite the
performance improvement, it is still susceptible to integration
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error and sensor drifting. Thus, in recent publications [20], [21],
[22], [23], the measurements from the Inertial Measurement
Unit (IMU) are coupled with those from a Global Navigation
Satellite System (GNSS) to increase the amount of information
available for the estimator. The velocities measured by the GNSS
are integrated into an estimation-prediction framework, which
estimates the sideslip angle and partially compensates for the
error induced by the low GNSS sampling rate [20]. However,
GNSS/IMU fusion kinematic approach still suffers from the low
GNSS sampling rate. Furthermore, a high-precision GNSS is
too expensive as the standard sensor in passenger vehicles, and
signal reception cannot always be assured. Therefore, it is mainly
applied to racing [24]. Thus, a solution is to consider dynamic
models to rely less on the sensor signal quality. Dynamic models
allow a more robust noise computation of the accelerations than
kinematic models [3]. However, dynamic models require a more
profound knowledge of vehicle parameters and the presence of
a tyre model, which is a critical source of uncertainty [39]. EKF
and UKF are the state-of-art estimation techniques for the model-
based approach, and the process and the observation noises are
commonly assumed to be Gaussian and uncorrelated. The EKF
uses a first-order Taylor series expansion to linearise around the
current mean and covariance. It has excellent accuracy in nearly
steady-state conditions and when the vehicle behaves close to
linearity, i.e. up to a lateral acceleration of approximately 4
m/s2 [8]. When the vehicle behaves with strong non-linearities,
UKF assures a better estimation accuracy because it linearises
up to the third order of the Taylor series expansion [8]. However,
both observers suffer from the mismatches between the physical
and modelled tyre behaviour. A possible solution is to combine
the pros of dynamic and kinematic models to develop a hybrid
kinematic-dynamic observer [46], [47]. This family combines
the accuracy in transient manoeuvres of the kinematic models
and the better robustness to sensor noise of the dynamic models.
The kinematic and the dynamic filters work simultaneously,
and the final sideslip angle estimation is a weighted average
of the two approaches. The weights are chosen according to
the lateral acceleration signal [47]. However, the weighting
coefficients’ tuning is complex, and the optimum solution varies
according to the considered manoeuvres. Another solution to
combine dynamic and kinematic models is the development of
a modular scheme to estimate in sequential steps tyre forces,
longitudinal and lateral velocities [50]. It consists of monitoring
the wheel capacities under combined slip at each vehicle corner
to estimate the individual forces and velocities. The approach
is experimentally validated in different road conditions, but the
results do not show its performance when the vehicle is driven at
the limit of handling. Thus, the approach applicability to evasive
manoeuvres is limited.

Despite EKF and UKF being the most implemented filters
for vehicle sideslip angle estimation [10], also different kinds
of observers are proposed in the literature for their advan-
tages in computational complexity and theoretical guarantees
of convergence [9], e.g. sliding mode observer [40], [41], [42],
H-infinity [43], [44], state-dependent Riccati equations [32]
and Luenberger observer [45]. Particularly interesting is the
combination of an adaptive sliding mode observer to estimate

the lateral tyre force with an adaptive compensation algorithm
to estimate the sideslip angle [44]. Despite the improved perfor-
mance compared with EKF in an experimental scenario, there is
no comparison with UKF, which is the state-of-the-art in extreme
driving conditions. Moreover, these observers fail to perform
well in evasive manoeuvres due to increased model mismatches,
especially in tyre forces [65].

A solution to enhance the state estimation robustness to tyre
model inaccuracies of dynamic model is the introduction of
adaptive tyre models [27], [58] or new proprioceptive load-
sensing technology, e.g. intelligent bearings or smart tyres [39],
[66]. The Kalman filter can use tyre force measurements as
an additional feedback to improve the estimation and magnify
the Kalman gain, especially in the case of non-linear vehicle
behaviour. The enhanced vehicle safety and the sensor’s cost
efficiency (lower than 1000 € per vehicle) make the innovative
load-sensing technologies candidate to become part of the stan-
dard sensor setup for passenger vehicles [39].

A data-driven approach reduces extensive requirements of
system knowledge compared to the model-based approach. A
deep NN with eight hidden layers, each having a different num-
ber of long short-term memory (LSTM) cells, is proposed [55].
Despite the increased training time of such a deep NN, the
authors state that a smaller network was incapable of reaching
the level of accuracy of deeper NN. The issue is that deep
NNs are prone to overfit, and their performance strongly lacks
generalisation capabilities. To overtake this issue, an NN classifi-
cation is applied to choose which available NN is most suitable
for specific road conditions [54]. Each of the three FFNNs is
built with a single hidden layer, and they are trained with three
different datasets corresponding to three different road friction
conditions, i.e. dry, wet and icy. Moreover, the performance of
data-driven approach can be enhanced by the availability of
tyre force measurements [8]. In this case, a FFNN with two
hidden layers outperforms the accuracy of a more complex RNN
architecture based on LSTM cells. A FFNN also exceeds the
performance of various model-based approaches, even if it tends
to sporadic higher maximum error. However, the data-driven
performance is highly dependent on the amount of representative
data, and the data-driven approach will lack performance as soon
as the dataset contains a lower amount of data in a particular
range of the sideslip angle.

Although the data-driven approach generally has a better
estimation performance than the model-based approach, it is
impossible to guarantee robust performance over vehicle op-
erating conditions. Conversely, a model-based approach based
on a dynamic model with tyre force measurements has lower
accuracy, but its performance is consistent over the working
region [8]. Thus, a hybrid model-based and data-driven approach
is proposed. We employ two leading typologies, model-to-NN
and NN-to-model, as explained below.

The model-to-NN family aims to augment the number of
the NN’s inputs using the output of a vehicle model. This will
transfer some immeasurable physical states to a NN. A kinematic
vehicle model can compute the derivative of the sideslip angle,
which is used as extra input for the following RNN based on
a Gated Recurrent Unit (GRU) cell [7]. The kinematic model
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provides the NN with a pseudo-measurement that contains sig-
nificant errors, biases and drift. However, with the extra vehicle
model information, the NN reduces the sideslip angle’s Mean
Squared Error (MSE) of the non-informed NN by 2.7%, 5.6%,
and 1.2%, respectively, for dry, wet and snow conditions [7]. The
slight improvement shows the benefits of developing a hybrid
approach and highlights the importance of providing a more
accurate pseudo-measurement.

The NN-to-model family aims to provide a sideslip an-
gle pseudo-measurement to the following EKF/UKF. In this
case, the NN output is post-processed by a Kalman filter to
improve the sideslip angle estimation. One of the first ap-
proaches combines an Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) [14] with a UKF to estimate sideslip angle. The
model-based component is employed as a filter to minimise
the noise of the NN output and the variance of the estimation
mean square error [15]. The ANFIS is trained using synthetic
data generated through a high-fidelity simulation environment
(CarSim). The ANFIS-UKF improves the performance of only
an ANFIS [14] by 21% on average for five manoeuvres with
high friction conditions. However, the presented figures show a
maximum value of sideslip angle of only 3deg in absolute value,
which makes the estimation performance easier than in extreme
driving conditions. Furthermore, there is no explanation of how
the observation noise parameter related to the pseudo-sideslip
angle is tuned. This value is essential because it defines the level
of distrust the UKF can give to the NN output. A similar approach
involves integrating an FFNN with a UKF based on a kinematic
vehicle model [59]. Contrary to the ANFIS-UKF approach, the
model-based component of the hybrid approach is responsible
for filtering the estimation noise and correcting the NN output.
This is possible thanks to a proportional feedback correction,
which improves the performance of the pseudo-sideslip angle.
Although the NN is trained using synthetic measurements, the
approach is validated using experimental data and the presented
results. Unfortunately, all the results are normalised, so it is
impossible to understand if the vehicle was driven at the limit
of handling. The presented approach improves the data-driven
approach estimation accuracy of 73.3%. However, there needs
to be an analysis of how to decide the distrust level of the
pseudo-sideslip angle. Otherwise, when the NN is uncertain due
to a lack of data, it will negatively influence the UKF’s per-
formance. Furthermore, the kinematic vehicle model is highly
susceptible to measurement noise and is not observable in
steady-state driving. For this reason, the FFNN is substi-
tuted by a deep ensemble NN in more recent publications
[11], [12].

Deep Ensemble (DE) of RNN, based on LSTM cells, es-
timates a sideslip angle pseudo-measurement and its level of
distrust, which are then provided as extra measurements to a
UKF [11], [12]. The level of distrust is modified through a
user-defined linear function before being used by the UKF. This
further step is mandatory to scale the NN’s distrust level to a
meaningful value for the UKF. This hybrid architecture reduces
the Root Mean Squared Error (RMSE) by, on average, 8% vs the
RNNs [11]. The extra tuning of the level of distrust can easily
lead the approach to overfit. Moreover, the level of distrust is

computed through the standard deviation of the sideslip angle
pseudo-measurements estimated by the RNNs. This does not
lead to a physics-informed NN, so it is still complex to assess
the properties of this hybrid approach. The reason is that the
DE-RNN is not aware of the performance of the UKF, so the
estimated level of distrust is not scaled according to the UKF’s
accuracy. Vice-versa, a physics-informed NN learns the Kalman
filter’s precision during the training, providing the best level of
distrust to maximise the hybrid sideslip angle estimation.

This work proposes a hybrid approach employing a mutual re-
lationship between the model-based and data-driven approaches
for vehicle sideslip angle estimation. The inputs and outputs
of the NN are, respectively, inputs and measurements of the
UKF. The end-to-end training enforces the mutual relationship,
meaning that the back-propagation algorithm passes through the
NN, UKF and vice-versa. The UKF benefits from the CNN
when the mismatch in the UKF process model is particularly
significant, for instance, due to the high non-linearity in the
tire model or the non-modelled phenomena. Thus, the CNN
provides a vehicle sideslip angle pseudo-measurement to the
UKF, which guides it towards an accurate estimation. At the
same time, a purely model-based approach, unable to rely on any
extra information, would only face a decrease in the estimation
accuracy. On the other hand, the CNN gains from the UKF
a physics domain knowledge, which helps CNN improve its
robustness and accuracy in all the real-life situations that were
not fully described by the data used during the training. This is
particularly relevant in emergencies that cannot be adequately
represented in a vehicle sideslip angle estimation dataset.

The main contribution of this paper is threefold.1 The first
is a mutual hybrid approach in which the CNN is trained
end-to-end with the UKF, developing an innovative stochastic,
deterministic state estimation method [63] for vehicle sideslip
angle estimation. Thus, the UKF observation model has access
to CNN’s deterministic estimation of a pseudo-measurement of
the sideslip angle and its level of distrust. On the other hand,
CNN is informed by the following stochastic state estimation
filter during the training, so it learns how to estimate the level
of distrust independently without requiring extra tuning after
its training, as previously proposed in the literature [11], [12].
Hence, the proposed hybrid approach enhances the accuracy
(MSE) of the state-of-the-art model-based, data-driven, and
hybrid approach for vehicle sideslip angle estimation.

The second contribution is that the proposed hybrid archi-
tecture considers the hetero-stochasticity of the model dynam-
ics [63], [67], [68]. Thus, the proposed approach estimates the
UKF process model uncertainties online thanks to the CNN and
UKF end-to-end training, which helps improve the estimation
accuracy. Moreover, it provides higher robustness than the state-
of-art, even when a limited dataset is used for the training.

The third contribution is that the proposed hybrid architecture
is a UKF-informed NN, which means that the NN incorporates
the domain knowledge described in the UKF, and it complies
with the vehicle dynamics laws of physics. Thus, the proposed

1The code for our method will be released upon paper acceptance.
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Fig. 2. (a) Shows the proposed hybrid approach architecture (CNN-UKF). (b) Shows the baseline hybrid architecture (DE-UKF) proposed by [11]. The black
arrows show the flow of information during the online estimation, while the green arrows show the flow of information during the back-propagation. The dashed
green arrow represents a term used in the cost function computation but not used by the optimiser to update the NN weights.

approach has a lower Maximum Error (ME) than a state-of-art
model-based [39] and data-driven [8] approach, as well as the
state-of-art hybrid approach [11].

III. UKF-INFORMED NEURAL NETWORK

This section describes the proposed hybrid approach based
on a CNN end-to-end trained with a UKF (CNN-UKF). A
comparison between the proposed mutualistic hybrid approach
and the hybrid unidirectional baseline [11] is represented in
Fig. 2(a) and (b), respectively. The proposed approach develops
a UKF-informed NN, where the NN is constrained to respect
the vehicle dynamics. At the same time, the baseline (DE-
UKF) corresponds to a UKF augmented by the DE outputs.
The approach’s discretisation is performed through a zero-order
hold method [50] due to its good trade-off between simplicity
and accuracy. The discretisation works at 100 Hz, the standard
frequency for vehicle state estimation.

A. Data-Driven Component

A straightforward CNN can cope with the complexity of
the task because the approach’s strength is inside the hybrid
architecture. It consists of an input layer, two hidden layers and
an output layer.

Seventeen measurements form the input layer (x): longitudi-
nal and lateral accelerations ax and ay respectively, longitudinal

velocity Vx, road wheel angle δ, yaw rate ψ̇, and longitudinal,
lateral and vertical tyre forces for each of the four wheels,
respectively Fx, Fy and Fz . Before being used, the input mea-
surements are normalised because each input has a different
physical meaning and order of magnitude. Thus, all the inputs
are mapped onto the interval [0, 1] to speed up and stabilise the
training process [69]. A different normalisation method which
scales the data to a mean of zero and a standard deviation of
one has been tested. Still, the mapping onto the interval [0, 1]
produced the best results after the training.

The two hidden layers consist of 200 and 100 neurons and
Rectified Linear Unit (ReLU) activation functions. The hidden
layers are 2D convolutions with kernel sizes 1 × 1, 0 padding,
stride equal to 1 and active bias. The CNN uses a dropout regular-
isation technique equal to 0.2 and a Xavier weight initialisation
to avoid overfitting.

The output layer is formed by four neurons corresponding to
the pseudo-measurement of the sideslip angle βDD, the level of
distrust in the pseudo-measurement σDD, the uncertainty of the
UKF process model lateral velocity σVy and the uncertainty of
the UKF process model σψ̇. A reference is available only for
βDD, but the other three outputs strongly affect the estimation
of the model-based component, which is used in the training loss
function; see Section III-C for further details. Thus, all four CNN
outputs are correctly trained during the end-to-end training. σVy ,
σψ̇ and σDD are further processed with a sigmoid function to
constrain their values inside the meaningful interval [0, 1]. This
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Fig. 3. Single-track vehicle model.

last step assures that the CNN can produce uncertainties which
not lead to UKF failure.

B. Model-Based Component

A UKF based on a non-linear single-track model with tyre
axle forces computed by the Dugoff tyre is chosen as the model
component of this study [8], see Fig. 3. The Dugoff tyre is
adapted to only assume pure lateral slip condition, reducing
the computational complexity [8], [28], [31]. The tyre model
parameters (pt), i.e. tyre cornering stiffness, peak friction coef-
ficient and velocity reduction friction coefficient, are optimised
offline using experimental skidpad measurements [34], [36],
[39]. The implemented optimisation is a genetic algorithm due
to its efficiency with a non-linear and non-convex cost function.
The vehicle’s symmetry is exploited to merge the left and right
wheels into a single central axle, which emulates the entire
vehicle’s behaviour. This model considers only the in-plane
dynamics, so the lateral weight transfer, roll and pitch dynamics
are ignored. The static weight distribution is considered together
with the effect of steady-state longitudinal weight transfer con-
cerning the normal forces on the front and rear axle. A UKF
is implemented for its superior estimation accuracy when the
vehicle behaves strongly non-linearly. The vehicle states (xs)
are the Vy and the ψ̇, while the vehicle inputs (uv) are the Vx and
the δ. The stochastic process model is responsible for predicting
the next time steps of the states according to the following
equation:

ẋs(t) = f (xs(t), uv(t), pt) + ω(t) (1)

where f(xs(t), uv(t), pt) is the non-linear single track vehicle
model, (2), and ω is the vector containing the process noise
parameters [σVy , σψ̇].

f (xs, uv, pt)

=

⎧⎨
⎩
V̇y = 1

m (Fyf (xs, uv, pt) cos (δ) + Fyr (xs, uv, pt))+

−Vxψ̇
ψ̈= 1

Izz
(lfFyf (xs, uv, pt) cos (δ)−lrFyr (xs, uv, pt))

(2)

where m (1970 kg) is the vehicle mass, Izz (3498 kg m2) is the
vehicle moment of inertia about the vertical axis, lf (1.47 m)
and lr (1.41 m) are, respectively, the distance of front and rear
axles from the vehicle CoG. Fyf and Fyr are, respectively, the
lateral tyre forces at the front and rear axles. The process noise

parameters, σVy and σψ̇, are assumed Gaussian and uncorrelated
and they capture the uncertainties due to:
� The mismatch between the physical and modelled vehicle

behaviour.
� The discretisation error.
� The various operational environments in which the sensors

operate.
The filter performance is strongly connected with the process

noise parameters, so these are initially tuned using a two-stage
Bayesian optimisation (TSBO) [70]. During the estimation, they
are computed online by CNN. This is only possible thanks to
the mutualistic relationship between CNN and the UKF.

The observation model is responsible for comparing the
process model predictions with the available measurements,
according to the following equation.

ym(t) = g (xs(t), uv(t), pt) + v(t) (3)

where g(xs(t), uv(t), pt) is the measurement vehicle model, (4),
and v is the vector containing the observation noise parameters
[σayme , σψ̇me , σFyfme , σFyrme , σDD].

g (xs, uv, pt)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ayme =
1
m (Fyf (xs, uv, pt) cos (δ) + Fyr (xs, uv, pt))

ψ̇me = ψ̇
Fyf me = Fyf (xs, uv, pt)
Fyrme = Fyr (xs, uv, pt)

βDD = atan
(
Vy
Vx

)
(4)

where ayme, ψ̇me, Fyf me and Fyrme are the vehicle mea-
surements, and βDD is the pseudo-measurement, corresponding
to the CNN’s output. The observation noise parameters σayme
(0.033 m/s2), σψ̇me (0.001 rad/s), σFyfme (26N) and σFyrme
(56N) are the uncertainties of the vehicle measurements and they
compensate for the sensor noises. They are tuned by a statistical
analysis of the vehicle sensor measurements, which consists of
computing the standard deviation of the low-pass measured sig-
nal when the steering angle is null and the longitudinal velocity is
constant [70]. The variable σDD is the level of distrust assigned
to the pseudo-measurement βDD provided by CNN. The level of
distrust computed by the CNN differs from a classic uncertainty
measurement because it corresponds to the uncertainty of the
pseudo-measurement scaled to match the weight of the noise
parameters.

The observability analysis is performed to assess under which
conditions it is possible to infer the internal states given the
vehicle inputs and measurement. Being the mode highly non-
linear, only the local observability around an operating point
can be computed, performing a system linearisation [34]. The
observation matrix is built on the Jacobian matrices of the
process and observation models, and it is full rank, equal to
two, for all the operating regions in which δ �= kπ, ∀k ∈ Z and
Vx �= 0, where Z is the integers set. The second condition is
always respected because the measurement is considered when
Vx is higher than 5 m/s. The steering angle is always inside the
range |δ| ≤ π/2, so the only realistic unobservability happens
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when δ = 0. However, the vehicle sideslip angle is relevant for
lateral dynamics, so it only happens when δ �= 0.

C. Training Phase

The UKF-informed CNN is trained in a supervised way using
a labelled dataset. The training is split into two phases: pre-
training and end-to-end learning.

1) Pre-Training: IIt consists of the back-propagation algo-
rithm applied only to the CNN to speed up and stabilise the
following end-to-end training phase. The pre-training loss func-
tion is constituted by the sum of σVy , σψ̇ MSE losses and by
the βDD, σDD Gaussian negative log-likelihood loss. The MSE
loss functions (MSEL,σVy and MSEL,σψ̇ ) are represented as:

MSEL,σVy =
1
N

N∑
i=1

(
σ̂Vy, i − σVy, i

)2

MSEL,σψ̇ =
1
N

N∑
i=1

(
σ̂ψ̇, i − σψ̇, i

)2
(5)

where N is the mini-batch size (256), σ̂Vy (0.0007 m/s) and
σ̂ψ̇ (0.002 rad/s) are the initial process model uncertainties
tuned by the TSBO for the model-based approach. These losses
steer the CNN to predict the process model uncertainties with a
meaningful order of magnitude. For σDD, the Gaussian negative
log-likelihood loss function (NLLL,βDD ) represented in the
following equation is chosen:

NLLL,βDD
(
βDD, σ

2
DD|βme

)
=

1
2

N∑
i=1

(
log (max (σDDi, ε)) +

(βme, i − βDD, i)
2

max (σDDi, ε)

)

(6)

where ε (10−6) is a constant term for stability, and βme is the
sideslip angle ground truth. Thus, this loss function adjusts
CNN’s weight to maximise the likelihood of the observed data,
performing negative log-likelihood minimisation. This process
naturally leads to the CNN learning to predict both the mean
(βDD) and the variance (σ2

DD). By predicting the variance
alongside the mean, the pre-training leads the CNN to provide
a point estimate and a measure of confidence or uncertainty
associated with each prediction. Thus, it assures a meaningful
σDD, even without its ground truth.

The sideslip angle ground truth is measured through the
Corrsys-Datron optical speed sensor installed in the vehicle’s
front bumper. The sensor reference system is moved to corre-
spond with the vehicle CoG. The measurement is filtered using a
zero-phase low-pass filter (bandwidth 5 Hz) because the training
phase is sensitive to extreme outliers or noisy references [6].
The cost function is minimised by a mini-batch stochastic
gradient descent algorithm based on a standard ADAM op-
timiser with a learning rate (0.0008). The training proce-
dures’ user-defined parameters are optimised through a Bayesian
optimisation.

2) End-to-End Learning: The back-propagation through
time (BPTT) algorithm is applied end-to-end to the CNN and

UKF. This step creates a mutualistic relationship between the
model-based and data-driven approaches. Thus, the UKF is
treated as a computation graph unrolled through time, so the
CNN-UKF is discriminatively trained over the entire mini-batch
length and not on a single step. The procedure to compute
the loss function gradient is close to [63], but in the proposed
study, a UKF is implemented rather than a linear Kalman filter.
The first step is the computation of a loss of a function (L(θ))
that connects the output of the UKF-CNN (β) structure with
the available ground truth (βme), given the CNN weights (θ).
The training phase minimises the loss function error between
the estimated and the measured sideslip angle, allowing
to correctly estimate β and all the variables influencing
it, so σDD, σψ̇ and σVy . The loss function depends on
the CNN’s weights (θ) and is based on the following
equation:

L (θ) =
1
N

N∑
i=1

(βme, i − βDD, i)
2 +

1
N

N∑
i=1

(βme, i − βi)
2

(7)
where βDD is the output of the CNN, and βme is the sideslip an-
gle ground truth. The first loss function part, 1

N

∑N
i=1(βme, i −

βDD, i)
2, helps the CNN to estimate the correct pseudo-

measurement βDD. The second part of the loss function,
1
N

∑N
i=1(βme, i − βi)

2, is affected by all four CNN outputs and
the UKF. The following step to train the proposed UKF-CNN is
the computation of the loss function’s gradient with respect to the
CNN weights (∇θL(θ)). This is performed following the typical
BPTT algorithm. Moving backwards from the loss function, the
∇θL(θ) is computed by a recursive computation of the loss
function gradient with respect to the vehicle states from t− 1 to
t according to:

∂L

∂xs, t−1
=
∂ukf t−1

∂xs, t−1

∂L

∂ukf t−1
+

∂xs, t
∂xs, t−1

∂L

∂xs, t
(8)

where ukf t−1 represents all the functions that describe the
UKF algorithm, i.e. process model, observation model and
Kalman gain computation. The UKF process and observations
model, see (2) and (7) respectively, are non-linear models with
a non-differentiable point only in the tyre force model. Thus,
the Dugoff tyre model, described in (9), has been modified to be
fully differentiable according to (10).

μ = μ0

(
1 − erVx

√
κ2 + tan (α)2

)

λ =
μFz (1 − κ)

2
√
(Cxκ)

2 + (Cy tan (α))
2

fλ =

{
λ (2 − λ) , if λ <= 1
1

Fy =
Cy tan (α) fλ

1 − κ
(9)

fλ =
2

e−4λ + 1
− 1 (10)
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where μ0 is the peak friction coefficient, er is the friction
reduction coefficient, Vx is the longitudinal velocity, κ and
α are the longitudinal and lateral slip, Cx is the longitudinal
slip stiffness, and Cy is the cornering stiffness. Regarding all
the UKF operations, they are differentiable and available in
the open-source machine learning platform TensorFlow or Py-
Torch. The gradient computation continues applying the chain
rule to (8) and moving backwards, computing the derivative
to each CNN weight as for a normal NN. This step is per-
formed automatically by the chosen machine learning plat-
form, PyTorch. The training is based on a mini-batch stochas-
tic gradient descent algorithm (mini-batch size of 256) based
on a standard ADAM optimiser with a learning rate equal to
0.0008.

IV. EXPERIMENT SETUP

This section describes how the experiments have been con-
ducted and how the proposed approach has been compared to
the baseline methods.

A. Experimental Setup and Dataset

The experiments have been conducted at the Automotive
Testing Papenburg GmbH with the test platform based on a
BMW Series 545i. The test vehicle was instrumented with the
standard IMU, Kistler wheel force transducers and SKF intelli-
gent bearings for each wheel, a dual antenna GNSS from Oxford
Technical Solutions and a Corrsys-Datron non-contact optical
sensor to measure the sideslip angle (measurement accuracy of
±0.2◦). The high-end optical speed sensor was used to measure
the ground truth of the vehicle sideslip angle. The vehicle was
equipped with a dSPACE 1007 AutoBox as a real-time control
platform. All the equipment was interconnected through the
Controller Area Network (CAN) interface, and the sampling
rate was set up at 100 Hz. The intelligent bearings demonstrate
a similar accuracy to the wheel force transducer [71], the most
common sensor technique in research for tyre force measure-
ment. Thus, the tyre forces in the training dataset are taken
from the wheel force transducers, making the paper easier to
reproduce. The dataset contains 216 manoeuvres corresponding
to two hours of driving and consists of standard vehicle dynamics
manoeuvres, e.g. double lane change, slalom, random steer, J-
turn, spiral, braking in the turn, and steady-state circular tests, to-
gether with recorded laps at the handling track. All manoeuvres
were driven on dry asphalt with tyres inflated according to the
manufacturer’s specifications. The bank angle and the road slope
were negligible, and the friction coefficient was approximately
constant. Two different electronic stability control settings (On,
Off) were used. All the measurements were recorded at 100 Hz,
the standard frequency for vehicle state estimation. A statistical
outlier removal has been applied to remove extreme outliers.
However, particular attention is paid to not deleting edge case
measurements, which are the most valuable data. Furthermore,
all the manoeuvres were manually inspected to check the outlier
removal efficacy. The measurements are considered when Vx is
higher than 5 m/s and are filtered using a low-pass zero-phase

Fig. 4. Log distribution of sideslip angle and lateral acceleration. Each bin
corresponds to 1deg and 1 m/s2.

filter with a cut-off frequency of 5 Hz based on a finite impulse
response technique [6].

The log distribution of the sideslip angle and lateral ac-
celeration is represented in Fig. 4. The lateral acceleration
is almost spread equally in the range [−10, 10] m/s2. In
contrast, the sideslip angle measurements mainly distribute
in the range [−3, 3] deg. The latter is a common phe-
nomenon because it is challenging to perform manoeuvres
with a high sideslip angle, even when the vehicle has a
very high lateral acceleration. Especially in dry road condi-
tions, only a professional driver can induce a high sideslip
angle.

A second dataset is selected from the same measurements.
It will be referenced as limited dataset because it only con-
tains measurements of when the vehicle has lateral acceleration
|ay| ≤ 7m/s2. This simulates the cost and complexity of record-
ing a large number of manoeuvres in which the vehicle is driven
at the extreme vehicle behaviour, but not at the handling limits.
Such a situation is common in the automotive field because, at the
handling limits, the driver can easily lose the vehicle’s control.
Thus, the limited dataset will be used to analyse the proposed
hybrid approach regarding its robustness and generalisation
capabilities.

Both datasets are split into three sub-sets: training (75%),
validation (15%) and test (10%). The test set contains the same
manoeuvres for both the full and limited datasets. It consists
of manoeuvres representing the entire driving behaviour, but
more focus is paid to highly non-linear situations. It includes 23
manoeuvres: two braking in the turn, two skidpad, five J-turn,
four slalom, four lane change, two random steers, three spiral
and one lap track.

B. Key Performance Indicators

The performance of the different approaches is assessed
through four key performance indicators (KPIs), which are
commonly used in sideslip angle estimation [8], [34], [39].
� The MSE assesses the overall estimation performance.
� The non-linear MSE (MSEnl) corresponds to the MSE

computed only when |ay| ≥ 4m/s2. It measures the es-
timation performance when the vehicle behaves non-
linearly.

� The absolute maximum error (ME) measures the worst
estimation performance.

� The non-linear ME (MEnl) measures the worst estimation
performance in the case of non-linear vehicle behaviour.
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The non-linear KPIs analyse the hybrid approach performance
in the most critical scenarios. The MSE and MSEnl are used to
evaluate the estimation accuracy, while ME and MEnl are used
to assess temporary high errors in the estimation. The latter is
relevant to assess whether the estimation is always coherent with
the physical vehicle behaviour.

C. Baseline Methods

The proposed hybrid approach is compared with the state-
of-art model-based, data-driven and hybrid approaches. All
the considered baselines are adapted and optimised to use the
same sensor setup and dataset, ensuring an objective and fair
comparison.

The model-based approach is a UKF-based on a single-
track model with tyre force measurements, as presented in [8].
The process noise parameters are tuned with the TSBO, and
the observation noise parameters associated with the tyre
force measurements are adapted online to enhance the
observer’s performance. The adaptability is related to
the reduction of the level of noise coupled with tyre
force measurements, this increases the Kalman gain when
the vehicle behaves non-linearly. Thus, the effect of
the Kalman gain is magnified during manoeuvres at
the handling limit. Otherwise, a magnified Kalman gain when
the vehicle behaves linearly could influence the vehicle states to
follow the measurement sensor noises. The adaptability is trig-
gered with a hysteresis loop to avoid the chattering phenomenon.

The data-driven approach is a FFNN that uses IMU and
tyre force measurements as inputs, as evaluated in [8]. A sim-
ple FFNN reaches a better performance than a RNN when
the tyre force measurements are included in the input set because
the RNN prediction power is insufficient to compensate for the
higher numbers of parameters to be trained. The NN is formed
by two hidden layers with respectively 250 and 125 neurons each
and ReLU activation functions. It uses a dropout regularisation
technique (0.2) and a Xavier initialisation to avoid overfitting.
An early stopping method with patience equal to 20 is applied
for the same reason. The MSE is the loss function minimised
by a mini-batch stochastic gradient descent algorithm based on
a standard ADAM optimiser with a learning rate (0.001). The
mini-batch size is 1024. For the training procedures, user-defined
parameters are optimised through a Bayesian optimisation.

The hybrid approach is a deep ensemble-UKF (DE-UKF) [11]
adapted to maximise the estimation performance on a dataset
with tyre force measurements. The DE is formed by 20 FFNNs
trained independently on the same dataset. The FFNNs different
estimations are combined in a model averaging. Hence, the
final βDD is the mean of the FFNNs estimations, and σDD
is the variance of the different model estimations. Each FFNN
is trained using a Gaussian negative log-likelihood cost func-
tion optimised through mini-batch stochastic gradient descent
based on an ADAM optimiser with a learning rate (0.0008).
The epoch’s number for each FFNN is 30. DE relies on the
stochasticity of neural network training, which allows every
FFNN to converge to a different set of parameters. However, the
estimation accuracy is low when all models predict incorrectly,

TABLE II
SIDESLIP ANGLE ESTIMATION COMPARISON USING THE FULL DATASET

and there is no guarantee that the σDD will be high. This
especially happens when the error is in the low sideslip angle
range because the NNs estimations tend to be closer. A high
level of distrust suggests that the UKF does not rely on the
data-driven pseudo-measurement but trusts the estimation of the
UKF process model. Vice-versa, when the level of distrust is
low, the UKF considers the neural network estimation reliable.
σDD must be scaled before being used by the UKF because
the output of the DE does not match the weight of the other
noise parameters. Otherwise, the UKF puts too much trust in
βDD. The scaling is based on an exponential function ( (11))
which differentiates approximately similar σDD.

σDD,sc = 10p1σp2
DD (11)

where p1 (−4.2690 for the full dataset and −1.4353 for the
limited one) and p2 (0.7901 for the full dataset and 1.465 for the
limited one) are two scaling parameters tuned using a Bayesian
Optimisation. The values of p1 and p2 change according to
the dataset because they strongly influence the DE’s estimation
performance. If p1 and p2 are not re-tuned for the limited dataset,
the UKF will put too much trust in the DE, even if it lacks
performance.

V. RESULTS

This section demonstrates the performance of the pro-
posed approach. Section V-A analyses how accurate the pro-
posed approach is with respect to the baselines when it is
trained using a full dataset. Section V-B shows the results of the
robustness analysis when only a limited dataset is available. This
demonstrates that the data-driven approach is highly influenced
by the amount and quality of the data. Section V-C proves the
approaches’ robustness to different tyre model parameters.

A. Full Dataset Results

The CNN-UKF, the DE-UKF and the data-driven approach
have been trained using the full dataset.

The overall comparison is presented in Table II. Both hy-
brid approaches perform better than the model-based and data-
driven approaches considering all four KPIs. This highlights
the importance of the hybrid architecture for vehicle sideslip
angle estimation. For instance, the model-based approach has
a higher MSE and MSEnl than the data-driven approach but a
lower average ME and MEnl. The hybrid approaches have the
same estimation accuracy (MSE and MSEnl) as the data-driven
approach without the average higher ME. The reason is that in
a hybrid approach, data-driven estimation is always validated
through the model-based approach.
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Fig. 5. Distribution of the sideslip angle error when the vehicle |ay | > 4 m/s2

for every approach in the test set. Each bin is 0.25deg wide. The x represents the
mean and the line between the vertical symbols (| − |) is the standard deviation
of the sideslip angle error.

It can be seen that CNN-UKF outperforms the three other
approaches for all the proposed KPIs. However, it does not have
the same benefits in magnitude for all of them. The overall MSE
and ME of DE-UKF and CNN-UKF are comparable. The minor
improvements for the linear vehicle behaviour are respectively
1.15% and 0.20% in favour of the CNN-UKF. Anyhow, if the
performance is evaluated when the vehicle behaves non-linearly,
the CNN-UKF will strongly outperform DE-UKF with an im-
provement of 24.84% for the MSEnl and 5.60% for the MEnl.
A possible explanation is that the end-to-end training informs
CNN about the vehicle dynamics compensating for the lower
amount of data in this operating condition.

On the contrary, the DE during the training is not aware of
the physical vehicle behaviour, so it is subjected to a decay in
performance where the dataset has fewer samples. The DE be-
comes aware of the UKF performance only while tuning the level
of distrust scaling parameters. Furthermore, the process model
noise parameters are online adapted in the CNN-UKF, allowing
the UKF to accommodate better the mismatches between the
physical and modelled vehicle behaviour.

Similar conclusions can be stated from the log distribution
of the sideslip angle error in the non-linear operating range,
see Fig. 5. The data-driven and the hybrid approaches have a
similar amount of β error samples in the range [−1.5, 1.5] deg.
In contrast, the model-based approach suffers from the lower
accuracy of the vehicle model in the non-linear operating region.
However, the data-driven approach and partially the DE-UKF
are more prone to high estimation errors (≥1.5deg) than the
model-based and CNN-UKF. The latter outperforms all other ap-
proaches and has the β error mean closest to zero and the lowest
standard deviation. Hence, a UKF coupled with a data-driven
approach has the same performance as a data-driven approach
in a low error range, but it reduces the sporadic high errors
of a purely data-driven approach. Furthermore, the end-to-end
training and the process noise parameters adaption allow the
CNN-UKF to maximise the hybrid capability especially when
the vehicle |ay| > 4 m/s2. Fig. 6 analyses how the estimation
performance change for different manoeuvres. The model-based
approach has a weak accuracy, especially in braking-in-the-turn,
J-turn and skidpad tests. The braking-in-the-turn involves a
coupling between the longitudinal and lateral dynamics, which
is not modelled in the used single-track vehicle model. In a J-turn

Fig. 6. Sideslip angle MSEnl comparison for every group of manoeuvres.

Fig. 7. Slalom manoeuvre. Comparison of the sideslip angle estimation be-
tween all four approaches.

manoeuvre, the vehicle is driven at the limits of handling, where
the mismatches between the physical and modelled vehicle
behaviour are higher. Whereas for skidpad tests, the explanation
is that it is a quasi steady-state manoeuvre, so the vehicle yaw
acceleration is almost null, and the difference between estimated
and measured tyre forces becomes essential for the β estimation.
The tyre model is one of the most significant uncertainty sources
in the model-based approach. The data-driven approach almost
constantly behaves better than the model-based but worse than
the hybrid approaches for estimation accuracy. However, it
outperforms the DE-UKF in a spiral manoeuvre, and a possible
explanation is that the DE-UKF puts too much trust in the
UKF process model. The CNN-UKF outperforms all the other
approaches in five out of seven manoeuvres. Particularly relevant
is the improvement in the slalom and spiral manoeuvres. The
slalom has the highest number of sideslip angle peaks (Fig. 7),
which are the most difficult moments to estimate sideslip. Spiral
manoeuvres are particularly challenging because it has an extra
turn respect the J-turn. Fig. 7 shows the sideslip angle estimation
in a slalom manoeuvre at the handling limits. All four approaches
provide a reliable estimation, but the CNN-UKF outperforms the
other approaches when the vehicle reaches a β peak of 10deg at
around 14 s. This is a typical situation where a correct estimation
of β is essential to help the vehicle control system maintain ve-
hicle stability. Thus, an improved estimation in this condition is
particularly relevant for safety. The already mentioned high non-
linearities reduce the accuracy of the model-based approach. The
data-driven approach lacks accuracy at 15 s due to the few data
in the training set describing this vehicle’s operation point. The
DE-UKF improves the estimation performance between 5 s and
13 s combining the pros of the model-based and data-driven
approach, but it lacks performance at around 14 s. CNN-UKF
improves the estimation accuracy not only in the range of [5, 10]
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Fig. 8. (a) Shows the estimated and the pseudo-measurement of the sideslip angle. (b) Shows the process noise parameter associated with the Vy . (c) Shows the
level of distrust in the NN for the hybrid approaches. (d) Shows the process noise parameter associated with the ψ̇.

s but also in the highest peak at 14 s, as can be observed in
Fig. 8.

Fig. 8(a) shows the β and βDD for the hybrid approaches.
CNN-UKF and DE-UKF βDDs lack accuracy between 12s
and 15s, but the CNN-UKF β is accurate because the UKF is
correctly weighting the UKF process model’s information with
the NN’s pseudo-measurement. Vice-versa, the UKF of the DE-
UKF puts too much trust in βDD. When the βDD error rises, the
corresponding level of distrust (Fig. 8(c)) also grows. CNN-UKF
and DE-UKF σDDs have the same order of magnitude in normal
driving, but the one related to CNN-UKF rises much more than
the DE-UKF. This broader range makes the proposed approach
much less confident in the NN when its output is incorrect.
This is not possible for the DE-UKF due to its training process.
The DE-UKF does not have end-to-end training, so its σDD
cannot match the weight of the other UKF noise parameters. The
DE-UKF σDD non-linear scaling compensates only partially
this issue. Fig. 8(c) clearly demonstrates how the CNN-UKF
distrust level range is [10−3, 1], while the range for the DE-UKF
is only [10−3, 10−2].

Another explanation for the better performance of the CNN-
UKF is related to the online adaptation of the process noise
parameters. The adaptive parameters allow the UKF to know
the current mismatches between the modelled and physical
vehicle behaviour. The process noise parameters of the DE-UKF
and model-based approach are constant, so they correspond to
a trade-off between the different driving conditions. Vice-versa,
the CNN-UKF relies on optimal tuned process noise parameters
every instant. Fig. 8(b) and (d) show the values of σVy and σψ̇ ,
respectively. As expected from the literature [72], both increase
with the growth of vehicle non-linearities. This further proves
that CNN-UKF behaves according to physical vehicle motion.

σVy has a peak at 14s, corresponding to the last vehicle’s right
turn, where the rear inner tyre is even detached from the ground
due to the aggressiveness of the manoeuvre. This extreme condi-
tion is created by a transient lateral load transfer (not modelled)
which strongly influences lateral tyre force production, resulting
in a significant Vy model mismatch. Moreover, the effect of the
front axle longitudinal force (Fxf ) on the lateral velocity is not

modelled
(
Fxf sin(δ)

m

)
. Overall, the constant and the adapted

process noise parameter have the same magnitude. Still, the
one associated with CNN-UKF is generally bigger (apart from
13s to 14s). The reason is that the constant σVy was optimised,
considering also less aggressive manoeuvres where the vehicle
model is more reliable.

The process noise parameter σψ̇ rises by two orders of mag-
nitude when the vehicle has a high sideslip angle. At the same
time, when β is low, the adapted σψ̇ is slightly lower than the
constant process noise parameter. A possible explanation is that
the mismatches of the modelled ψ̇ are higher than that ofVy . The
meaningful adaptability of the process parameter noises shows
the CNN-UKF has an insight into vehicle dynamics physics
and it can online compensate for it. Similar conclusions are
obtained from the spiral manoeuvre represented in Fig. 9. Here,
the CNN-UKF approach outperforms the accuracy of all other
three approaches, particularly from 5s to 13s. The performance
of the CNN-UKF is similar to sum of the best estimation between
the data-driven approach, from 4s to 6s, and the model-based
approach, from 6s to 10s.

The test set also contains a recording of an entire lap in a
racing circuit, where the effect of combined slip is maximal.
Fig. 10(b) shows the vehicle’s lateral and longitudinal acceler-
ation, and it highlights how the driver is pushing the vehicle at
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Fig. 9. Spiral manoeuvre. Comparison of the sideslip angle estimation be-
tween all four approaches.

Fig. 10. (a) Compares the sideslip angle estimation between four approaches
in a portion of a racing track. (b) Shows the recorded lateral and longitudinal
acceleration of the vehicle. It highlights the combined slip situation at which
the vehicle is driven. (c) Shows the level of distrust in the NN for the hybrid
approaches.

the limit of handling in all the corners, see [1, 7] s, [16, 19] s
and [23, 29] s. The sideslip angle estimation performance of the
four approaches is represented in Fig. 10(a). The model-based
approach has the lowest performance, especially in the range
[1, 7] s. This result is expected because the implemented Dugoff
tyre model works in pure slip conditions. A similar conclusion
is also visible in the spiral manoeuvre, Fig. 9. The data-driven
approach performs better than a model-based approach. How-
ever, it has the maximum absolute error at 23s and 26s, where
the vehicle performs a cornering while braking. Both proposed
hybrid approaches have higher accuracy than the others, but the
CNN-UKF has the best performance. A possible explanation is
the physic-informed NN architecture, which allows evaluating a
very accurate NN level of distrust. Fig. 10(c) shows the NN level
of distrust for the DE-UKF and CNN-UKF. While the DE-UKF
level of distrust is almost constant along the manoeuvre, the
one associated with CNN-UKF has two peaks in correspon-
dence with the data-driven maximum errors. This allows the

TABLE III
SIDESLIP ANGLE ESTIMATION COMPARISON USING THE LIMITED DATASET

CNN-UKF to avoid following the high estimation error of the
data-driven component. It is further proof of how the CNN-UKF
is a physics-informed NN in which the UKF and NN are mutually
cooperating to improve the overall estimation of the hybrid
approach.

B. Robustness Analysis Using the Limited Dataset

A sideslip angle filter must not only be accurate, but it should
be robust to a different amount of qualitative data during the
training and tuning phase. Hence, to prove the robustness of
the proposed hybrid approach, its estimation performance is
compared with the baseline methods when they all have been
trained using the limited dataset.

The overall comparison is presented in Table III. Here, the
model-based approach shows the same performance as with
the full dataset (see Table II), because it is not influenced by
the amount of data. As expected the other approaches show a
reduced performance with the limited dataset where the MSE is
more than doubled while the ME sees a moderate increase. Now
the data-driven approach has the worst performance in all four
KPIs. The accuracy loss is higher than 30% for all the indicators,
without a particular weakness in one of the proposed KPIs. An
explanation is that the dataset does not have representative data
of the vehicle driven with |ay| ≥ 7 m/s2, so it must generalise
much more than with a full dataset. Significantly, the NN must
reconstruct the extreme non-linear vehicle behaviour, the most
complex vehicle operating region, without having representative
data for these conditions.

The model-based and hybrid approaches’ performance is very
similar, but DE-UKF and CNN-UKF have the best KPIs. The
explanation is that hybrid approaches use the best estimation
accuracy of the model and the NN together. Both hybrid ap-
proaches strongly rely on the estimation of the UKF process
model because they cannot put much trust in the data-driven
part. However, the NN still has benefits when the vehicle behaves
linearly due to the excellent amount of data in that range. This
highlights how the hybrid approaches improve the robustness
of both model-based and data-driven approaches. The hybrid
approach shows a minor improvement compared with the model-
based approach. However, the result is significant because it
highlights how the hybrid approach is as robust as a model, even
if trained with a limited training dataset. On the contrary, a purely
data-driven approach is not robust for using a small training set
resulting in poor estimation accuracy.

The CNN-UKF performs slightly better than DE-UKF in
all four KPIs. However, the CNN-UKF outperforms the DE-
UKF, mainly for the MSE and MSEnl. The main reason is the
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Fig. 11. Distribution of the sideslip angle error when the vehicle |ay | > 4 m/s2

for every approach in the test set. Each bin is 0.25deg wide. The x represents the
mean and the line between the vertical symbols (| − |) is the standard deviation
of the sideslip angle error. Results based on the limited dataset, see Fig. 12 the
for best results.

Fig. 12. J-turn manoeuvre. Comparison of the sideslip angle estimation be-
tween all four approaches using the limited dataset.

adaptability of the process noise parameters, which cope with
the change of vehicle model mismatches in the various vehicle
operating points. However, the improvement in accuracy is not
enough to be considered significant (< 5 %).

Fig. 11 shows the sideslip angle error log distribution in the
non-linear operating range. All the approaches which rely on a
model highly outperform the data-driven approach. The latter
have β error samples in the range [−3.8, 4] deg, while the other
approaches have β errors between [−1.8, 1.8] deg. This proves
that the data-driven approach is highly prone to high estimation
errors when trained with a limited dataset. The performance of
the model-based and hybrid approaches is very similar. They
also share an equal error distribution. The data-driven approach
slightly outperforms the other approaches in the very low error
range [−0.3, 0.6] deg. This explains why the hybrid approaches
are more accurate overall than the model-based one, despite
mainly relying on it.

Fig. 12 shows the sideslip angle estimation in a J-turn ma-
noeuvre at the handling limits. The model-based and hybrid ap-
proaches behave almost identically, and all strongly outperform
the purely data-driven approach. The only visible differences
are between [1.5, 3] s, where the CNN-UKF captures slightly
better the conclusion of the peak and between [4, 7] s where the
DE-UKF is closer to the β reference.

The major difference between DE-UKF and CNN-UKF is
visible from the comparison of the βDD, see Fig. 13. The
βDD computed by the CNN-UKF is highly outperforming
the one estimated by the DE-UKF. The explanation is that
the CNN-UKF is trained end-to-end, so the output of the CNN

Fig. 13. J-turn manoeuvre. Comparison of the estimated β and βDD between
the hybrid approaches using the limited dataset.

has physical information that the NN uses to increase its ac-
curacy. The DE is trained independently, performing similarly
to the purely data-driven approach. An higher accuracy of βDD
implies that the following UKF can rely on a better sideslip angle
pseudo-measurement. This proves the benefits of using a physi-
cal informed-NN. Despite this, the β estimation of DE-UKF and
CNN-UKF is similar because the model-based approach still
outperforms both βDD. Thus, both hybrid approaches mainly
rely on the UKF. Due to the high chances of dealing with a
limited dataset, the hybrid approach is fundamental to improving
vehicle sideslip angle estimation.

However, the performance of the proposed CNN-UKF ap-
proach is still influenced by the amount and quality of data
in the training set. Thus, it still represents a limitation of the
proposed approach that must be addressed in the future. This
highlights the importance of defining standards procedure to
collect valuable and broad datasets. Regardless, the proposed
CNN-UKF allows the introduction of possible solutions for lack
of data, e.g., weakly-supervised learning during the end-to-end
training, which allows for using data recorded without expensive
sensors.

C. Robustness Analysis to Tyre Model Parameters

An essential property of vehicle sideslip angle estimators is
the robustness to vehicle parameter variations. The variation
of cornering stiffness strongly influences the sideslip angle
estimation, because it can vary from its nominal value due to
numerous factors, e.g. tyre pressure, temperature, and wear [39].
Thus, to prove the robustness of the proposed approach, Fig. 14
shows how the MSEnl (Fig. 14(b)) and the MSE (Fig. 14(a))
of the vehicle sideslip angle vary at the variation of the axle
cornering stiffness. In particular, the front and rear axle cornering
stiffnesses are changed by ±10% [39]. Overall, it is visible that
the model-based approach is the most sensible to the variation of
the inner model, while the data-driven approach, which does not
have a physical model, is not affected. Both hybrid approaches
are less influenced by the variation in the physical model than
the purely model-based approach. However, Fig. 14 shows that
the CNN-UKF performance is more influenced by the model
mismatch than the DE-UKF. A possible explanation is that the
CNN-UKF varies the level of distrust in the NN during the ma-
noeuvre according to how it learned during the training, giving
more trust to the UKF at some specific moments. When it faces
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Fig. 14. (a) Shows how the axle cornering stiffness influences the vehicle
sideslip angle MSE of all four approaches. (b) Shows how the axle cornering
stiffness influences the vehicle sideslip angle MSEnl of all four approaches.

a different model mismatch than previously learned, it is more
influenced by it than the DE-UKF, which does not vary the level
of distrust to the NN, always prioritising the data-driven side
of the approach. Despite this, the CNN-UKF consistently has a
lower MSEnl than the DE-UKF, see Fig. 14(b) and only when
both axle cornering stiffness of the vehicle model are increased
by 10% as, on average, a higher MSE than the DE-UKF. Thus,
it can be concluded that hybrid approaches are more robust to
parameter uncertainties than purely model approaches and that
the DE-UKF performance is less affected by the internal model
accuracy than CNN-UKF.

VI. CONCLUSION

The paper presents a novel hybrid approach to vehicle sideslip
angle estimation, which involves utilising the physical knowl-
edge from a UKF based on a single-track vehicle model to
enhance the estimation accuracy of a CNN. Using a large-scale
experimental dataset of 216 manoeuvres, it has been shown that
the hybrid approach is more accurate than purely model-based
or data-driven approaches. Moreover, the CNN-UKF is slightly
reducing the MSE of the DE-UKF. However, when the MSEnl

is compared, the CNN-UKF outperforms the DE-UKF by 25%,
providing a much higher accuracy in the most critical operating
region for active vehicle control systems. The CNN-UKF, thanks
to the end-to-end training, is forcing the CNN to comply with
the vehicle physics, reducing the ME and MEnl of all other
approaches. When a limited dataset is provided, the proposed
hybrid approach has a minor improvement in the estimation ro-
bustness over the model-based and the DE-UKF approach for all
the KPIs. The CNN-UKF is highly outperforming the estimation
of a purely data-driven approach. Future works involve testing

the generalisation capability of the CNN-UKF utilising a dataset
with different levels of road grip, e.g. wet, snow or icy roads.
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