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Free edge delamination in carbon—epoxy

laminates: a novel numerical/experimental

approach

J. C. J. Schellekens* & R. De Borst

Department of Civil Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands

A geometrically and physically nonlinear finite element approach is presented
for the analysis of mode-I and mixed-mode free edge delamination in
composite laminates which properly accounts for the effects of initial thermal
and hygroscopic stresses. A constitutive model based on nonlinear fracture
mechanics is used to describe delamination. An orthotropic softening plasticity
model is used to determine the initiation and propagation of delamination.
Although the orthotropic yield surface is based on stresses, it is proved, that, in
combination with a softening type of post-failure response controlled by the
fracture toughness, the approach results in a unique and physically realistic
solution upon mesh refinement. The results from the nonlinear finite element
computations, including predictive analysis, are compared with mode-I and
mixed-mode free edge delamination experiments. This comparison shows that
the numerical results are within 10% of the experimental data.

1 INTRODUCTION

Due to the varying fibre orientations and the
ensuing anisotropy of a composite material, each
ply of a laminate behaves independently of the
other plies. Large edge stresses are then necessary
to preserve compatibility of deformations.
Together with matrix cracks these transverse
stresses near the free edge are primarily respon-
sible for the initiation of this type of delamination.
To gain more insight into the complex pheno-
menon of delamination, we need procedures
that give us accurate predictions of delamination
onset and growth. In this contribution we shall
focus on free edge delamination in uniaxially
loaded laminates (Fig. 1). which has been the
subject of much research since the early
1970s.!-12

Although a finite element analysis combined
with stress-based or strain-based fracture criteria
like the one proposed by Tsai and Wu'3 is often
used to predict the failure of a composite struc-
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ture, it is widely recognised that the results of such
a procedure should be regarded with caution
because they strongly depend upon the finite ele-
ment discretisation. To avoid this problem of
mesh dependence Kim and Soni* have used an
average stress criterion. The introduction of the
ply thickness as a length scale, which basically is a
first step towards so-called non-local models,'* is
essential in their approach. However, delamina-
tion not necessarily progresses at the location
where the stresses have the maximum values, but
grows at the interface where the energy release
rate exceeds the fracture toughness of the
material. This casts doubt on failure predictions
that are purely based on stress or strain criteria.

In view of the above arguments a crack-exten-
sion or crack-closure method seems more appro-
priate in delamination analysis.5>=*-'115 Since these
linear elastic fracture mechanics procedures
calculate the energy release rate from nodal forces
and displacements rather than from stresses and
strains, the results are mesh independent,
although a certain level of mesh refinement is
necessary. A disadvantage of these linear fracture
mechanics options is that, before we can deter-
mine the interface that is the most critical, the
energy release rate has to be calculated at each
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location where delamination may initiate. This
can become an expensive exercise, especially for
large structures.

In this contribution a procedure is presented
for the prediction of delamination onset and
growth in axially loaded graphite-epoxy lami-
nates. The plies of the laminate are modelled by
generalised plane-strain elements with cubic inter-
polations (Section 2.1), which are connected by
cubic line interface elements which have the
ability to model the geometric discontinuity that
arises during the delamination process (Fig. 2). As
will be outlined in Section 2.2, these interface
elements have initially a zero thickness with four
pairs of overlapping nodes. After initiation of
delamination, that is, when the elastic limit of the
interface elements is exceeded, the nodes of a pair
are gradually released and an internal traction-

free boundary is created. In the present approach
initiation appears once an orthotropic yield
condition is violated.'®!7 Since this criterion is
purely based on stresses, the initiation of delami-
nation suffers to a certain extent from mesh sensi-
tivity, that is, for smaller elements the high stress
gradients are captured more accurately. High
peak stresses are computed, which for a lower
level of loading cause violation of the stress-based
delamination initiation criterion. The situation is
different with respect to delamination propaga-
tion. The stress—strain behaviour after the onset of
delamination is governed by a softening type of
response, i.e. a degradation of strength and stiff-
ness of the interface with increasing inelastic
deformations. This implies a negative slope in the
stress—strain diagram. The quintessence of our
approach is that the surface under the softening
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Fig. 1.
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A free edge delamination specimen subjected to a uniaxial strain.

Fig. 2.

A cubic interface element.
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curve is equal to the critical energy release rate
(fracture toughness) G, of the ply interface that
delaminates. This ensures on the one hand a
correct energy release during delamination propa-
gation, so that propagation is independent of the
mesh refinement, and on the other hand it results
in a proper description of the size effect, i.e. a
thicker laminate fails at a lower ultimate strain
(more brittle).

The performance of the method will be demon-
strated by means of the analyses of free edge
delamination in different graphite—epoxy speci-
mens under uniaxial tension (Sections 4 and 5). In
the analyses the emphasis is put on the effects on
the ultimate load capacity of the laminate thick-
ness (size effect), mesh refinement and of the
initial thermal stresses. A part of the simulations
of mode-I and mixed-mode delamination has
been compared with experiments reported by
Wang et al>! and O’Brien.” However, due to the
fact that not all essential parameters necessary for
our approach were available in the literature, a

2 ELEMENT FORMULATIONS

2.1 Generalised plane-strain elements

limited experimental programme was carried out.
The values for the delamination onset strain
obtained in the experiments have been predicted
by numerical analyses.

Since standard arc-length control methods!8-20
did not lead to a converged solution, the nonlinear
analyses have been carried out under indirect dis-
placement control, a solution procedure which is
described in Refs 15, 16, 21 and 22. Using this
numerical technique the increment of the applied
out-of-plane axial strain (Fig. 1) within a loading
step is determined by the requirement that sum of
the Crack Opening Displacements of the ply
interface where delamination occurs has a con-
stant value during each iteration in a loading step.
The occurrence of a negative pivot has been used
as a criterion for a sign-reversal of the load
increment.

The effects of matrix-cracking have been
neglected in the analyses. So the ply material is
assumed to remain elastic.

In free edge delamination testing specimens are subjected to a uniaxial tensile or compressive load in the
r,~direction (Fig, 1). Since the length of the laminates used in these experiments is large when compared
to their width and thickness it can be assumed that, at a certain distance from the ends of the specimen,
the in-plane displacements in the r,r,-plane are independent of the r-coordinate. For the displacement
field of a cross-section at a certain distance from the ends where the load is introduced, this results in the
following set of equations for the displacement field u(u,, u,, uy),"»%1?

u(7y, 7, 1r3)= gy 1y + 1y (1, 73)
Mz(”lg"za’”s):uz(”z,"s) (1)

Uy(ry, 1y, 73) = Us(1ry, 13)
with &,, a normalised strain that is prescribed in the r\~direction of the specimen and u is a parameter that
scales the applied strain load. This displacement field corresponds to a so-called generalised plane-strain
state in which there exists a constant (non-zero) strain in the direction normal to the element plane (7).
Equation (1) also shows that in contrast to regular two-dimensional elements, generalised plane-strain
elements have three translational degrees of freedom per node, which enables one to model the warping
of a cross-section.

With the increment of the Green-Lagrange strain tensor given by

1 [0Au; OAu; OJu, 0Au, OAu,0Ou, OAu, dAu,
Ay;== kg ke 2
Vit or, Or;, Or, Or dr, O, Or, Or )

and noting that, for generalised plane-strain conditions, Au, , =Apue;,Au, , =0 and Au; , =0 we obtain
for the strain increment Ay: '

Ay=Ag+Aé+A77+A,ue, (3)
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where Ag is of the order zero in the displacement increments Au,,

/ (Fyy—1)Auey +1/2Au%e},
0
0

Ag= FyApe, (4)

0
Fi3Auey, /

and A& and A are linear and quadratic in the displacement increments, respectively:

0
/FlgAuL,-z-FFzzAu2|,2+F32Au3‘r2 \
Fi;Auy,, + FpAu, , + Fy3Au,
Ag= (Fiu+Ape)Auy, (5)
FioAu, . + FisAuy,, + FpAu,  + FyAu, ,, + FpAus,, + Fy3Aug,, /

\ (Fy, +A,“511)Au1,r3

where the terms F;, designate the components of the deformation gradient (F;= 6+ du,/dr;), and

0
/1/2<(Au1,,z)2+(Auz,rz>2+<Au3,,2)2> \
1/2((Auy,,,)* +(Auy )" +(Aus ,,)°)
Ap= 0 (6)
\Au1,,2Au1',3+Auz,,zAuz‘,:+Au3,,2Au3‘,3)

0

In eqn (3) the contribution &, is due to the applied axial strain loading normal to the element plane and
reads,

ET=(£11>09050)030) (7)

Extension of eqn (3) to include the effect of moisture and initial thermal strains gives us
Ay=Ag+Ae+An+Aue+AT,a+ACH (8)

with AT; and AC; the incremental changes in temperature and moisture content in the current loading
step . The vectors a and § contain the thermal and hygroscopic expansion coefficients, respectively,
Hence, generalised plane-strain elements are not loaded by prescribed displacements or prescribed nodal
forces, but by hygro-thermal and out-of-plane surface strains. Assuming that there are no other non-
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linear effects in the plies (matrix-cracking, fibre breaking) the stress increment at iteration j is then given
by

Ag;=DyAg;+Ae;+An;+Aue+ AT,a+ACH) (9)
with Dp the elastic stress—strain matrix for the plies and Au; the value of the incremental load parameter

at iteration j. Subtracting the relation for the stresses at the end of the previous iteration j— 1 from the
stresses at the end of the current iteration j results in

0,=0;_,+Dyldg+de,+dn,+duse) (10)

The d-symbol denotes the iterative change of a scalar or vector quantity from iteration j— 1 to iteration j,
whereas the A-symbol (e.g. eqn (9)) denotes the change of a quantity from the beginning of the current
load step to the end of the current iteration.

Because of the absence of external loadings in-plane the equilibrium equation can be written as:

J dy;0;dV,=0 (11)
Va

where 6 indicates the variation of a variable. The variation of the Green-Lagrange strain 6y,=d¥,_,
+ d(dy;) is given by

57,’: 6(dgj)+ 6(‘1'3/) + 5(‘1”/) ' : ' (12)
since AT, and AC; are constant during the loading/time step. We now substitute eqns (10) and (12) in the
equilibrium expression (11) and linearise in order to apply Newton’s method for the solution of the set of

non-linear equations. If we collect the terms that are of the order of zero in the displacement increments
at the right hand side we obtain for the virtual work of a body

6(d ﬂ/)T<a]§ 1 +Dpdgj+ d,ujDPel) dVO = "‘J 5(d£j)T(0]-_1 +Dpdg]+ d[uij‘E[) dVO

Vo

J 6(d£j)TDPd8,dV0+J
Vo

Vo
(13)
In the remainder of this section we shall elaborate the discretisation of the virtual work eqn (13).

The linear part dg; of the incremental strain vector is related to the incremental nodal displacement
vector da=(dal, da3,...,da},dal,...,da}, dal,...,da})" through

d8/-=BLdaj (14)

B, denotes the linear strain displacement matrix, which is equal to (cf. eqn (5))

0 0 0
Fimn,, Fyn, Fyn,
B, = Fizn,,, Fyn Fyn,,
(Fyy + d:ujell)n,rz 0 0
Fin, +Fpn Fyn , +Fpn . Fyn , + Fypn
i (Fyy +dwegm, 0 0 )
(15)
where n ,, is given by
) 0
n, = N, ON, N oo (16)

" ari ’ ar,- >y ar,
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with N,,...,N,,, the interpolation polynomials. Using eqn (14) the first term of eqn (13) can be written as

Vo

J é(ds,.)TDPds,dVo=a(da,)TJ B{D.B; dV,da, (17)
Vo

We next introduce the non-linear strain displacement matrix By

0 009d, 0 0 3,0 0
By,=|/0 0 0 0 9, 0 0 93, 0 (18)
0000 O 93, 0 0 9,

with @ , =0/dr,. Then, the second term in the left hand of the virtual work expression, which represents
the geometric stiffness contribution, becomes

Vﬂ VO
where Z;_, is given by

‘711.;‘—113 012,,'—113 alS.j—lI3
Ej—1= 0'21,;—113 022,]—113 023,j-113

(20)
O31,-113 03115 033,115
andEjreads:
03.1113 Og12ds  0y15]5
Ej'= O'g'2113 Ug‘2213 0g,23I3 (21)

Ug,3iI3 0g,32I3 O’g’3313

with o; the Second Piola-Kirchhoff stress tensor and o, given by
0,=Dy(dg,+ du,¢)) (22)

Substitution of eqns (14), (17) and (19) into eqn (13) and requiring that the virtual work principle holds
for any virtual displacement increment yields

K;da;= —J Bon_ldVo—dy/J BEDPe,dVO—J B{D.dg,dV, (23)
Vo Vo Vo
where
K,=j BEDPBLdVO+J B (Z+E)By dV, (24)
Vo Yo

defines the element tangent stiffness matrix.
2.2 Interface elements

The generalised plane strain elements that are used to model the plies of the laminate are connected by
interface elements (see Figs 2 and 3).!5-17:22-26 Although Figs 2 and 3 do not show it explicitly, initially the
nodes of the upper and lower side of the element are located at the same position. In the elastic stage of
the calculation no additional deformations are allowed in the finite element model because of the
introduction of the interface elements in the finite element model. Therefore a sufficiently high dummy
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VI'D tl‘l

y )__‘ Ve, ts
vt’tl
(a) cubic line interface (b) nodal (c) tractions and
dlsplacements relative
displacements

Fig. 3. Continuum elements connected by line interface elements. Initially the upper and lower interface sides overlap.

stiffness has to be supplied. We now define the differential operator matrix L which is used to relate the
continuous element displacement field to the relative displacement vector:

-1 +1 0 0 0 0
L=|0 0 -1 +1 0 0 (25)
0 0 0 0 -1 +1

With the interpolation matrix H

nT0 0 0 0 0 |
0 "0 0 0 O
0 0 nTO 0 O
H= (26)
0 0 0 nTO O
0 0 0 0 nTO
([0 0 0 0 0 nT |
where n is the interpolation polynomial vector and the nodal displacement vector
aT=(al,a},...,a%a},43,...,a},a},d3,...,a%) (27)

we can relate the relative displacement vector v to the nodal displacements through

v=LHa (28)
If we denote the stiffness matrix of the interface element in the elastic, non-fractured stage by D,, the
tractions "=t , t,, t,) are obtained from

t=Dyv (29)
For a line interface element in a generalised plane-strain situation the element stiffness matrix then reads

E=+ |
K=J B"D,B detJ dé& (30)
£=-1

in which £ is the iso-parametric coordinate and det J=[(0r,/0&)*+(dr;/0&)?]'? is determinant of the
Jacobian matrix. The formulation of the element stiffness matrix in a geometrically nonlinear analysis can
be found in Refs 16 and 22.

Once the criterion which defines the boundary of the area of elasticity in an integration point of inter-
face element is violated, the traction-relative displacement relation becomes nonlinear. In this contribu-
tion an orthotropic softening plasticity model is utilised to describe the mode-I and mixed-mode
delamination fracture in composites. Its formulation will be presented in the next section.
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3 AN ORTHOTROPIC SOFTENING PLASTICITY MODEL

The yield condition for interface plasticity is assumed to be of the form

@(t, x)= Cpot2+ C 2+ Cyt2+ C,t,— F2(x)=0 (31)
with C; and C, a set of material constants. £, is the normal traction in the interface and #, and ¢, are the
shear tractions. A cross-section of the applied yield surface and the 7, ¢, plane is depicted in Fig. 4. If ¢
and f} denote the compressive and tensile yield tractions in the direction normal to the interface plane,
and if £, and 7, are the shear yield tractions and 7 a normalised yield traction, substitution of these equa-
tions in condition (31) results in:

2 72 22 2 2
3 I t PoF
Cu g TR G T .

Recasting eqn (31) in matrix—-vector notation yields

d(t,x)==t"Pt+tp—F(x)=0 (33)

1
2
in which t*=(¢,,¢,1,), P=diag (2C,,,2C,,2C,)and p*=(C,,0,0).

As soon as this condition is satisfied, the total relative displacement rate v is decomposed into an
‘elastic’ part, v¢, and a ‘plastic’ part, VP!, as follows:

v=vyel 4 yo! - (34)
The elastic relative displacement rate is related to the traction rate by
t=Dv* (35)

and the assumption of an associated flow rule yield for the plastic relative displacement rate:

W=7 Cicd (36)

ot

For the present orthotropic yield criterion (33) this gives:
vo'=[(Pt+p) (37)

Furthermore, we introduce the scalar x as a measure of the amount of softening. In the case of a work
-softening hypothesis x reads

'x=J7€dt with x=t"" (38)

[

N
:\J

Fig. 4. Failure envelope of the orthotropic plasticity model,
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3.1 Integration of the elasto-plastic relations
A Backward-Euler scheme is used to integrate the rate equations (34)-(38). For finite increments of
loading we then obtain:

Av;=Ave'+ AvP (39)

Avd=Dr At (40)

AvP'= A, (Pt +p) (41)

Ax;=tTAVP (42)
A combination of relations (39)~(41) yields after some rearranging

t=(D'+ALP)" (v, +Av,— Al p) (43)

Subsitution of this expression for t; in the yield condition (33) results in a nonlinear equation in A4
®(A4,)=0, which can be solved by a local Newton-Raphson procedure:

P
AAFTT=ANE- (44)
0D(AR)
0AA laxk
The derivative of ®(A 4,) with respect to A4, in eqn (44) reads
T
00(AL) _ a(D ot; +a(I) oK [aAv 0D (k) dt, (45)
A4, at 0AA;, Ox 0AYT 0AL; 3x at 0AA;
and can be elaborated to give:
OP(AA; - 1y - -
~6<AA/1—%’)= —(Pt,+p)' (D +AALP) (DT +ALP) PV, +Av,—Adp)+p)—h (46)
J
where
od JP
h=———t"— 47
ox Ot |, (47)
is the softening modulus. The softening parameter « is then updated according to
Aw;=AAtT(Pt+p) (48)

3.2 The consistent tangent operator for orthotropic plasticity

The derivation of the consistent tangent stiffness relation for orthotropic softening plasticity in interface
elements is outlined below. Due to the softening type of response, terms occur in the nonlinear equations
which eventually result in a non-symmetric tangent stiffness relation.

The total relative displacement vector at the end of iteration j is given by

V=i + AV + Avp! | | (49)

where v;_ is the relative displacement vector at the beginning of the loading step. With the relations for
the incremental elastic and plastic relative displacements

Av§' =Dyt —¢t;_,) (50)



366 J. C. J. Schellekens, R. De Borst

and

AvP'=AR; %—q) (51)

the traction-relative displacement relation can be written as

_ a(I)

The time derivative of eqn (52) reads

- 9’ . o0
v,=D{ G+ AL o t,+;t—a—t- (53)
From eqns (42) and (51) we obtain after differentiation
dx | 0°D . dx)od [9x\".
b= AL — | —t.+ —=+{=]t 54
K= A4 (av;") av; b4, (a P‘) ot (at,-) ! (54

which, upon substitution in the consistency condition

é= (aa‘f t+%£;x 0 (55)
leads to
¢=(a—‘1’ +Aaa—¢(a—1€1)y—?i-+ aq’(a")a‘l’+a®(a")Ti.=o (56)
ot; dx \ovl') at; 7 Tox \ov?'| ot ax dt;
Now the time derivative of the plastic multiplier 4 can be solved as
il

in which 4 is given by eqn (47). Substituting the above expression for 1 into eqn (53) yields the consist-
ently linearised traction-relative displacement relation v,

_ 0°® 13 (3@|" A4 (3%} (0x)d*®_ 103® (00} (3x|"|.
=D +AN—F +—— = —+ =1 |t
Y [ ' ’a" hat,- (at,.) h ax(at,) (avp‘) ot; hax(at,) (at, ‘ (58)
At this point a matrix H is introduced
' ’® AL D [dD|[0x|0’® 13 (3D [0k
H=D; +A/1——~ — = —+
"ot h ax(at,)(av;" ot; hax(at)(at) (59)

The underlined part in eqn (59) introduces the non-symmetry in the matrix H, which renders the
tangential stiffness matrix to be non-symmetric (see eqn (61)). With eqn (59), eqn (58) can conveniently be
rewritten as

$ = H+la_®. a_(D.T i
Y kot \ot) | (60)
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Use of the Sherman-Morrison-Woodbury formula then yields the consistent tangent stiffness relation

bl
A

92 TH*l(@)
ot at,

t=| H (61)

]
h+

3.3 Model aspects

Due to the fact that we intend to model both plasticity and cracking in the interface we can no longer
regard the inelastic deformations as being purely plastic. We define the inelastic relative displacements as
crack relative displacements (v¢") except for the mode-I inelastic relative displacements that are induced
by a compressive loading. These are considered as plastic (see Fig. 5).

The degradation of the elastic properties of the interface is coupled with the inelastic relative displace-
ment due to cracking (v*"). In this case the stiffness that determines the tractions in unloading or reloading
is the so-called secant stiffness matrix denoted by DS{. From the moment of crack-closure, that is in the
compressive loading regime, the initial elastic stiffness governs the interface behaviour. It is assumed that
due to the irreversible plastic relative displacements (vf') that may occur, the traction relative displace-
ment diagram shifts horizontally over a distance v¥' (see Fig. 5). Furthermore the assumption is made that
the degradation of the equivalent yield traction 7 is not influenced by yielding in compression. Thus the
amount of inelastic work that is used to determine 7 and C, is defined as ®=t™v*" In the computations
presented in Sections 4 and 5 we have assumed a linear dependency between the equivalent yield traction
fand x according to: 7= £,(1 — x /G,), with f, and G, denoting the initial transverse tensile strength and the
fracture toughness of the ply interface respectively.

A physical interpretation of the work-softening model is that once the fracture toughness of the inter-
face has been released as free-surface energy, the strength and stiffness of the interface will have
completely reduced to zero.

4 FINITE ELEMENT COMPUTATIONS a [£25/90], specimen. The results of the experi-
' ments are reported by Wang et al>'' The
4,1 Numerical simulations mechanical are thermal properties of the AS-
3501-06 graphite-epoxy prepreg are collected in

We will start the simulations of free edge delami-  Table 1.
nation with the analysis of mode-I delamination in The values for G,; and v,; are assumptions

which had to be made owing to a lack of data. In
the nonlinear analyses the laminates are exposed
to a temperature drop equal to AT= —125°C to
account for the residual thermal stresses that are
present in the laminate due to the manufacturing
process. Also hygroscopic effects can have a signi-
ficant influence on the laminate strength (cf. Ref.
9). Nevertheless they have not been included in

! the analyses (AC=0) because of the lack of ex-
/ perimental data.

i The total width of the laminates and the thick-
ness of the plies were equal to 25-0 mm and 0-132
mm respectively (Fig. 6). Because of symmetry
considerations only a quarter of the cross-section
B of the specimen was modelled. Cubic twelve-
-t noded generalised plane-strain elements were
Fig. 5. Traction-relative displacement diagram for the used to model the individual plies and cubic line
normal component (#, versus v, ). interface elements were supplied to connect the

Vﬁ’

or
Vn

T

s=
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Table 1. Material properties for AS-3501-06 graphite-epoxy (MPa)

Young’s moduli Shear moduli Poisson ratios Thermal expansion
coefficients
E, 140x10%3 G,,55%x10%3 vy, 029 ay, 0136 X1076/°C
E,, 11x10%? Gy3 55 x10%2 v13 029 a5 28:8X1076/°C
E;; 11x10%3 G, 55 %103 53 0-3 033 28:8X 107¢/°C
E - 5mm____,
T
—gg M Ih/z = 0.396 mm
90 i .

- r2

b/2 = 12.5 mm

Uy (0, 0, r3) =0, UZ(O, 0, |'3) = 0, U3(O, Iy, O) =(

Fig. 6.

plies. Calculations have shown that cubic ele-
ments are well suited to represent the high stress
gradients near the free edge. Along the r,-axis of
the laminate the nodal translations in the r;-direc-
tion were prevented, while translations in the r-
and r,~directions are suppressed along the r;-axis.

The continuum elements were integrated using
a 4 X4 GauBl scheme. For the interface elements
four-point Newton-Cotes integration rule was
applied, since a Gauf3 scheme results in spurious
oscillations in the stress profiles at locations
where high stress gradients exist.!%2%26 The initial
stiffness of the interface elements was chosen
equal to d,=10"8 N/mm?3 (i= n, s, t). For the trans-
verse tensile strength of graphite-epoxy a value of
f',=51-6 N/mm? was substituted as is given in Ref.
27. In all the nonlinear analyses the post-failure
behaviour of the interface elements was deter-
mined by a linear softening relation. To achieve a
rate-controlled delamination a fracture toughness
equalto G,=0-175N/mm has been used.>'!

In the mode-I delamination analyses we have
investigated the mesh sensitivity of the results.
Three different finite element meshes were used
with a varying number of elements over the width
of the specimen. In all cases the element height
was chosen to equal the ply thickness. The part of
the specimen within 5 mm of the free edge was
modelled using 50, 100 and 200 elements
respectively for each ply (element lengths: 01,
0-05 and 0-025 mm). The remaining 7-5 mm was
modelled using three elements per ply. The non-
linear analyses start with a stepwise decrease in
the temperature to —125°C followed by the
application of the uniaxial strain load. Figure 7

Finite element model for a quarter of a cross-section and the associated boundary conditions.

0.50

—

0,40

o
w
=3

curves for 50, 100, and 200
elements per laminate ply

applied strain [%]
o
n
o

0.10

0.00 . . +
0.0 0.5 1.0 1.5 20

delamination length [rm)
Fig. 7. Effects of the element size (element lengths 01,
0-05, 0-025 mm) on the numerical results, Ultimate strain
versus the length of the delamination crack,

presents the results for the three different meshes.
The value obtained for the ultimate uniaxial strain
£,=048% is in good agreement with the result
¢,=0-53% that can be derived from data given in
Refs 5 and 11. Even more importantly, it is
observed that, upon mesh refinement, the differ-
ent analyses converge to the same solution.

In the mixed-mode delamination analyses frac-
ture was investigated in [+ 30/ 30/0/90}, lami-
nates and [+45,/0,/90,], laminates subjected to
tensile loading.>7 The material data for the T300-
5208 epoxy prepreg are listed in Table 2. The
values for the tensile, compressive and shear
strengths are taken from Ref. 27.

The analysis of these mixed-mode specimens is
somewhat different from the mode-I analyses,
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Table 2. Material properties for T300-5208 graphite-epoxy (MPa)

Young’s moduli Shear moduli Poisson ratios Yield strengths
E, 138x10% Gy, 59%10%3 v, 021 7L 400
E, 15x10*3 Gy 59X 10+ v,5 021 7 246:0
E, 15%10%3 Gy 59X 103 vy, 021

[t 680

£}

+45

-45

£}

e e e

0

-45

45

Fig. 8.

since the temperature drop that was imposed to
create the internal thermal stress field is now
omitted. This is because in the fracture toughness
value of these laminates as determined by
OBrien,® the effect of the initial thermal stresses
is implicitly included. Another important issue is
that the value for the critical energy release rate
G,=0137 N/mm as derived by O’Brien, corre-
sponds to a single delamination along the free
edge which §umps’ between the two 0/90 inter-
faces as depicted in Fig. 8 (see Ref. 6). Therefore
the value for G, that is substituted in the fracture
model should be equal to G,=0-0685 N/mm
since we assume mirror-symmetry about the r,-
axis.

The results of a mesh refinement study are pre-
sented in Fig. 9. The element length was again
varied between 0-025 and 0-1 mm. A laminate
with a stacking sequence equal to [+45/0/90]
was selected.” The ply thickness and the specimen
width for the mixed-mode specimens were
respectively 0-15 mm and 38:0 mm. It is observed
that also in the mixed-mode analyses the results
converge to a unique solution. In Fig. 10 the influ-
ence of mesh-refinement on the energy release
rate per mode is presented. We observe that
during delamination growth the energy released in
each mode is not constant. However, similar to
the strain curves, the energy curves are almost
identical for the three different meshes. Hence,
mesh-insensitivity has been achieved for the
energy release rates per fracture mode. Since the
mode-II energy release rates were not significant
they have been omitted from Fig. 10.

0.80

0.60 |

applied strain (%]

0.20

0.00

Fig. 9.

Schematic representation of the jumping of a delamination crack between an interface and its symmetric counterpart.
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Fig. 10. The effects of mesh refinement on the energy

release rate per mode.
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Finally Figs 11a and 11b show the effect of the
laminate thickness on the ultimate tensile strain
for these laminates. The element length in these
analysis was equal to 0-1 mm. Similar to the
mode-I analyses reported in Ref. 22 the results
demonstrate an inverse dependency of the ulti-
mate strain on the laminate thickness. The agree-
ment between numerical and experimental results
appears to be reasonable, as can be observed from
Fig. 11b (cf. Refs 6 and 7).

4.2 Numerical predictions

Although the numerical simulations of the mixed-
mode delamination experiments reported in the
literature indicate that the predictive value of the
applied finite element approach is good, it was
decided to carry out a limited experimental study
to obtain additional data for the verification of the
mixed-mode model.

Before starting the experiments, numerical
calculations on several laminates with varying

0,80

0.60 |

n=2

n=3

applied strain [%]
(=]
S
o

0.00 . ! !
0.0 0.5 1.0 1.5 2.0

delamination langth (mm]
Fig. 11a. Applied uniaxial strain versus delamination
length for different numbers of plies (8, 16 and 24).
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Fig.11b. Ultimate strain versus laminate thickness.

stacking sequences have been performed in order
to find a stacking sequence which would most
probably result in mixed-mode delamination.
Based on these analyses it was decided to use a [0/
+35/90], stacking sequence. The material that
has been used to manufacture the specimens is a
Fibredux 6376C/35/135/HTA (resin content
35+2:5%) increased toughness graphite-epoxy
prepreg of which the properties are collected in
Table 3.

The fracture toughness values of the material
were: G;;=0310 N/mm and G,.=0750 N/mm.
During delamination growth the ratio between G,
and G, was calculated to be 0-27/0-73. Therefore,
for the mixed-mode fracture toughness a value of
027%x0310+073x075=0631 N/mm was
substituted. The width of the specimen and the
ply-thickness were taken equal to 250 mm and
0-125 mm respectively. Numerical predictions
were made of the delamination onset strain and
location of the delamination crack. The analyses
started with a stepwise decrease in the tempera-
ture to —150-0°C followed by the strain loading.
For the thermal expansion coefficients the values
of Table 1 were substituted since they were not
given on the material suppliers data sheets. In the
calculations the effect of the laminate thickness on
the ultimate strain was determined. The results
are presented in Fig. 12.

In the analyses a single delamination crack was
assumed, jumping between two symmetric ply
interfaces as was observed by O’Brien.® The plot
of the deformed model in Fig. 13 demonstrates
that the delamination crack occurs in the —35/90
interface. The delamination crack that is shown in
the figure has a length of approximately 2:0 mm.

5 MIXED-MODE EDGE DELAMINATION
EXPERIMENTS

In order to verify the predictive capabilities of the
constitutive model that has been developed for

- the description of delamination onset and growth,

mixed-mode delamination experiments have been
performed at the facilities of the Department of
Metallurgy and Applied Materials Science of the
Katholieke University Leuven.

The laminates that were used in the experi-
ments were fabricated from Fibredux increased
toughness graphite-epoxy prepregs (see previous
section} and autoclaved at 175°C according to the
recommendations provided by the supplier. The
dimensions of the test specimens that were cut
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Table 3. Material properties for 6376C/35/135/HTA graphite-epoxy (MPa)

Young's moduli Shear moduli Poisson ratios Yield strengths
E“ 140X10+3 GIZ 5'8)(‘10“-3 Via 0'21 f:,, 70'0
E;p 95%x10+3 G,; 58x10%3 ;5 029 72400
E;; 95%x10%3 G,; 58%x10%3 V3 029 7,1, 105:0
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Fig. 12. Numerical predictions of the failure strain of {0,/
+35,/90,]) laminates (n=1,2,3) showing the existence of
the size effect.

0.00

from the laminated plates were: length 240:0 mm
and width 25-0 mm. The cured ply thickness was
equal to approximately 0-118 mm. To assess the
quality of the prepreg plates from which the
delamination specimens were cut the ultrasonic
C-Scan technique has been applied. For the instal-
lation in the testing machine and to achieve a
proper load transfer end tabs with a length of 40-0
mm were attached to the strips. Three different
thicknesses were selected for the [0,/ % 35,/90,]
specimens in order to identify the size effects in
the fracture process (n=1, 2 and 3). For each
laminate thickness a series of five or six specimens
was fabricated in order to check the reproducibil-
ity of the results.

In the experiments the laminates were sub-
jected to uniaxial tensile loading in an Instron
6025 testing device at a controlled cross-head
speed of 025 mm/min, The uniaxial strain in the
laminates was recorded using an extensometer
which had glued to the specimens. The occur-
rence of matrix cracks and the onset of delamina-
tion was triggered by acoustic emission
techniques.

During the tests it was observed that prior to
delamination onset matrix cracks occurred in the
90° layers with a regular spacing, The crack

pattern appeared to have a saturation distance
approximately equal to the thickness of the 90°
layer as could be observed from X-radiographs.!®

Subsequent to the occurrence of the matrix
cracks an edge delamination started at the 35/90
interface and jumped through the cracks over to
the symmetric counterpart (see Figs 14 and 15).
Further in the loading process occasionally a
delamination crack appeared in the 35/—35
interface and in the 90° layer. The load level at
which the matrix cracks and delamination cracks
occurred decreased with increasing laminate
thickness. Furthermore the difference in load level
at delamination onset and at the start of matrix
cracking decreased with the laminate thickness.

The average values of the experimental results
are collected in Table 4 in terms of delamination
onset stresses and strains. In Fig. 16 the com-
parison is made between numerical predictions
and the experimental values and we see that there
is a good correspondence between them. This
observation still holds if we account for the differ-
ence in actual and modelled ply-thickness (0-118
mm and 0-125 mm respectively) and consequently
as a result of the thickness effect the values of the
calculated strains increase with =+ 3%. Further-
more from Fig. 16 it is observed that for all three
laminate thicknesses the experimental scatter is
limited.

6 CONCLUDING REMARKS

In view of the results presented in this contribu-
tion it is concluded that the present calculation
strategy for the analysis of mode-I and mixed-
mode free edge delamination does not suffer from
spurious influences of mesh refinement on the
delamination growth. This is a result of the inclu-
sion of the fracture toughness in the constitutive
relations for the interface elements which yields a
softening type of response after the onset of
delamination. The agreement with experimental
results and numerical simulations is good. Furthe-
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Fig. 13. Deformed model with a crack length of 2-0 mm (r,~r, plane).

Fig. 14. Edge delamination in a [0/£35/90], laminate,
view of the free edge (r,~r, plane),

Fig. 15. Edge delamination in a [0/%35/90], laminate.
Close-up of the jumping of the delamination crack between
the —35/90 interfaces (r,~r; plane).

more the approach results in a proper treatment
of size effects.
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