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The paper discusses the separation of partially overlapping data packets by an antenna array in 
narrowband communication systems. This problem occurs in asynchronous communication systems 
and several transponder systems such as Radio Frequency Identification (RFID) for wireless tags, 
Automatic Identification System (AIS) for ships, and Secondary Surveillance Radar (SSR) and Automatic 
Dependent Surveillance—Broadcast (ADS—B) for aircraft. Partially overlapping data packages also occur 
as inter-cell interference in mutually unsynchronized communication systems. Arbitrary arrival times 
of the overlapping packets cause nonstationary scenarios and makes it difficult to identify the signals 
using standard blind beamforming techniques. After selecting an observation interval, we propose 
subspace-based algorithms to suppress partially present (interfering) packets, as a preprocessing step 
for existing blind beamforming algorithms that assume stationary (fully overlapping) sources. The 
proposed algorithms are based on a subspace intersection, computed using a generalized singular 
value decomposition (GSVD) or a generalized eigenvalue decomposition (GEVD). In the second part of 
the paper, the algorithm is refined using a recently developed subspace estimation tool, the Signed 
URV algorithm, which is closely related to the GSVD but can be computed non-iteratively and allows 
for efficient subspace tracking. Simulation results show that the proposed algorithms significantly 
improve the performance of classical algorithms designed for block stationary scenarios in cases where 
asynchronous co-channel interference is present. An example on experimental data from the AIS ship 
transponder system confirms the effectiveness of the proposed algorithms in a real application.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Co-channel interference is a growing concern in wireless com-
munication applications. One approach for interference mitigation 
is to use an antenna array. Beamforming techniques allow to re-
ceive the target signals and suppress the interference signals, as-
suming the array response vector of each of the signals is known. 
Blind beamforming techniques aim to estimate these array re-
sponse vectors.

In many cases, the interference is intermittent and unsynchro-
nized. For example, inter-cell interference reduces channel capacity 
in Multiple Input Multiple Output (MIMO) cellular networks [6,

✩ This work was supported in part by the China Scholarship Council from P.R. 
China. Some parts of this paper were presented at the Asilomar Conference on Sig-
nals, Systems, and Computers, Pacific Grove, California, USA, Nov. 2011 [1], IEEE 
CAMSAP’11 [2], IEEE Sensors Array Multichannel Workshop (SAM) 2012 [3], and 
IEEE ICASSP’14 [4]. These conference papers showed early versions of the proposed 
algorithms and did not contain explanations, proofs or simulations of the final algo-
rithm. More extensive results have been published in the PhD thesis of Mu Zhou [5].
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7]. Also, ad-hoc communication systems or wireless sensor net-
works where devices transmit whenever data is available result in 
multiple partially overlapping data packets at the receiver. Other 
examples are Radio Frequency Identification (RFID) systems with 
multiple tags, the Automatic Identification System (AIS) for ships, 
wherein transponders periodically report their locations [8,9], the 
secondary surveillance radar (SSR) [10,11,2] and similar Automatic 
Dependent Surveillance—Broadcast (ADS—B) transponder systems 
for aircraft. Another example is multiple unsynchronized Wireless 
Local Area Network (WLAN) systems in the same service area.

In this paper we consider the separation of partially overlapping 
data packets using blind beamforming techniques under narrow-
band assumptions. We consider an observation interval (typically 
a sliding window) matched to the length of the data packets, and 
consider packets that are fully inside this window as target signals, 
and packets that are partially in the window as interfering signals. 
It is important to realize that, in this scenario, there is no inherent 
property that defines a “target” or “interference” signal, the clas-
sification is based on the position of packets in the observation 
interval.

The approach is to collect a block of data from an analysis win-
dow. The data block is split into two sub-blocks, and we compare 
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the subspaces present in each block. Specifically, a generalized sin-
gular value decomposition (GSVD) allows to match basis vectors 
within the subspaces to each other, and target/interference signal 
classification is based on detecting differences in signal power be-
tween the two blocks. The subspace information from the GSVD 
directly leads to a beamformer to suppress the interfering signals 
while keeping the target signals. The analysis window can then 
shift a number of samples and the process is repeated, allow-
ing previously classified “interference signals” to become properly 
aligned and be detected as target signals.

It could happen that the resulting subspace contains multi-
ple target signals. In that case, the proposed algorithm return a 
mixture of the nearly fully overlapping target signals, and other 
properties should provide further separation, such as constant 
modulus properties (the Algebraic Constant Modulus (ACMA) al-
gorithm [12]) or related algorithms based on fourth-order cumu-
lants (the Joint Approximation Diagonalization of Eigen-matrices 
(JADE) [13] and the Multi-User Kurtosis (MUK) algorithms [14]). 
Such algorithms explicitly assume stationary signals and therefore 
typically cannot handle intermittent interference or signals with 
non-stationary properties, and the algorithms in this paper can 
serve as a preprocessing step both to filter out the intermittent 
signals and to arrive at a nearly synchronous scenario.

To understand why traditional blind source separation algo-
rithms based on cumulants such as ACMA and JADE fail on in-
termittent sources, consider first a data matrix X consisting of N
samples of a mixture of stationary sources. Based on X, these algo-
rithms estimate a cumulant matrix Q and derive separating beam-
formers from it. Each entry of Q can be written as S4/N − S2/N2, 
where S4 is a sum of fourth-order products of entries of X, and 
S2 a combination of sums of second-order products. If we now 
augment X with N “zero” columns to [X, 0], then S4 and S2 do 
not change, while the weights (1/N) and (1/N2) scale with factors 
(1/2) and (1/4), respectively. Very quickly, Q loses the structure 
on which the computation of the beamformers rely. This simple 
example shows that ACMA and JADE are not reliable for separat-
ing intermittent sources, and this is confirmed in the simulations 
in Sec. 8.

The paper has two parts. We first propose a generic algorithm 
based on the GSVD [15] or the related generalized eigenvalue de-
composition (GEVD). We then work out an implementation based 
on a new tool—the Signed URV (SURV) algorithm [16,17]. This 
leads to a computationally efficient technique that allows for track-
ing and improved noise processing. Simulations and an experiment 
using acquired AIS data are provided to confirm the results.

Interference cancellation using oblique projections has been 
studied in [18,19], assuming the “target” and “’interference” sub-
spaces are known. Here, we focus on the estimation of the re-
quired subspace information so that these tools can be applied. 
Not many papers consider intermittent interference cancellation 
based on subspace techniques. For the blind separation of partially 
overlapping SSR signals, Petrochilos et al. proposed a block-based 
tracking algorithm [20,21] based on detecting and projecting out 
rank-1 components representing time segments where only a sin-
gle source is present. The existence of such segments can be con-
sidered as a simplified special case of our scenarios.

Notation

Matrices and vectors are denoted by uppercase and lowercase 
boldface symbols, respectively. (A)i j denotes the i, jth entry of a 
matrix A. For a matrix A, AH denotes the complex conjugate trans-
pose, and A† denotes the Moore–Penrose matrix pseudo-inverse. If 
A has full column rank, then A† = (AH A)−1AH .

E{·} is the expectation operator.
‖·‖ denotes the matrix 2-norm, which is equal to the largest 
singular value of the matrix.

Subspaces are denoted by calligraphic symbols. The column 
span (range) of a matrix A is A = ran(A).

2. Data model

2.1. Signals

We consider unknown discrete-time intermittent signals (data 
packets) si[k] where i is the signal index and k is the time index. 
Each signal consists of a stretch of Np nonzero values, preceded 
and followed by zeros. For simplicity of notation, all intermittent 
signals will have the same packet length Np (this is generalized at 
a later stage). There are d signals, and they are stacked in a vector 
s[k] = [s1[k], · · · , sd[k]]T .

We assume that the receiver has an antenna array with M an-
tennas, and we stack the (complex-valued) antenna signals into 
a vector x[k] ∈ CM . In a narrowband scenario, the received signal 
vector is an instantaneous mixture

x[k] = h1s1[k] + · · · + hdsd[k] + n[k] = Hs[k] + n[k] (1)

where the vectors hi , i = 1, · · · , d are the channel vectors (array 
response vectors) corresponding to each signal, H = [h1, · · · , hd] ∈
CM×d is the channel matrix, s = [s1, · · · , sd]T is the source vector, 
and n ∈ CM is the noise vector.

We assume that the unknown channel matrix H has full column 
rank. This also implies that d ≤ M . In our applications, we have an 
inherent scaling indeterminacy between signals and channel vec-
tors; without loss of generality we will assume that the channel 
vectors are all scaled to ‖hi‖ = 1 (this can be achieved by exchang-
ing a scaling factor with si[n]). No further parametric structure is 
assumed on H, e.g., we do not consider a calibrated array, with 
channel vectors functions of source directions and antenna loca-
tions. Also, multipath and antenna coupling may be present as this 
leads to the same instantaneous mixture model (1).

The noise is modeled by i.i.d. zero mean Gaussian vectors, with 
covariance matrix Rn = E{nnH } = σ 2I. We assume that the noise 
power σ 2 is known.

If we have collected Ns observations x[k], then we can col-
lect these into a matrix X = [x[1], · · · , x[Ns]], and similarly for the 
source signals and the noise. The corresponding data model is

X = HS + N . (2)

The sample covariance matrix is R̂x = 1
Ns

XXH .

2.2. Separation scenario

We assume that we have obtained Ns samples of data corre-
sponding to an “analysis window”. Thus, in the data model (2), 
X is known and H, S are unknown. Our algorithms are based on 
splitting this window into two parts and comparing the subspaces 
determined by each part. The splitting can be done in several 
ways, each corresponding to different definitions of target signals 
and interference signals. Here, we limit the presentation to one 
scenario, explained below. A second scenario applicable to contin-
uously present target signals is described in Appendix A.

We split the analysis window into three blocks (see Fig. 1). 
A target signal is defined by being centered in the middle block, 
and the corresponding data matrix is denoted by X1. Interfering 
signals are defined by being more present in the first or third 
block. Samples from these two blocks are combined into a single 
data matrix X2 as shown in Fig. 1.

As a refinement of (2), assume that there are ds target signals 
and d f interference signals. The channel vectors of the target sig-
nals are collected in a matrix Hs , and those of the interference 
signals in H f . We also define H = [Hs, H f ].
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Fig. 1. Separation scenario: target signals are present mostly in X1. The algorithms 
are based on comparing the power (or: number of samples) of each signal in X1

and X2.

The corresponding data model is then

x1[n] = Hsss1[n] + H f s f 1[n] + n1[n] , n = 1, · · · , N1
x2[n] = Hsss2[n] + H f s f 2[n] + n2[n] , n = 1, · · · , N2 .

(3)

The available observations x1[n] are collected in a data matrix X1, 
and likewise for X2. The target signal samples are collected in Ss1
and Ss2, respectively, and likewise the interference samples are col-
lected in S f 1 and S f 2.

In general, X1 contains N1 samples, X2 has N2 samples, and 
Ns = N1 + N2 is the number of samples in the analysis window. 
For simplicity of notation, we will initially assume that both data 
matrices have the same number of samples N = Ns/2, and also 
that N = Np , the number of samples in a data packet. The gener-
alization follows in Sec. 7.

The corresponding sample covariance matrices of the observa-
tions are R̂1 = 1

N X1XH
1 and R̂2 = 1

N X2XH
2 .

2.3. Covariance model

The target and interference signals are nonstationary, and this is 
reflected in the observations x1[n] and x2[n]. For algorithm devel-
opment, however, we will model the signals within a block as wide 
sense stationary (WSS) random vectors with the same second-
order statistics. I.e., in the first data block we model ss1[n] as a 
WSS complex random process with zero mean and a covariance 
matrix Rs1 of size ds × ds . This signal is uncorrelated to s f 1[n], 
which is zero mean with covariance matrix R f 1 of size d f × d f . 
Likewise, for the second data block we have uncorrelated WSS sig-
nals with covariance matrices Rs2 and R f 2.

The covariance matrices of the observations are then modeled 
by

R1 = HsRs1HH
s + H f R f 1HH

f + Rn1

R2 = HsRs2HH
s + H f R f 2HH

f + Rn2
(4)

where Rn1 = Rn2 = σ 2I.
The distinction between target signals and interference signals 

is defined by1

Rs1 > Rs2 , R f 1 < R f 2 . (5)

(We will later refine this by introducing a scaling factor α.) This 
defines target signals as those signals that are stronger (larger in 
power) in the first data block than in the second data block. Simi-
larly, in the second data block the interference signals are stronger 
than in the first data block.

1 For matrices A, B the notation “A > B” means that A − B is positive definite.
2.4. Objective

The objective of the paper is, given the data matrix X and with 
H, S unknown, to compute a single separating beamforming matrix 
W of size M × ds , such that

Ŝs1 = WH X1 , Ŝs2 = WH X2

are estimates of the target signals in each block, with the interfer-
ence signals suppressed. At this stage, we will not aim to separate 
the individual target signals but allow for an arbitrary linear com-
bination Ms , an unknown full rank matrix of size ds × ds . Thus, we 
will aim for

WH Hs = Ms , WH H f = 0 . (6)

Further separation of the, almost fully overlapping, target signals 
can be achieved by exploiting other properties, such as constant 
modulus properties (the ACMA algorithm [12]) or similar algo-
rithms based on higher-order statistics (JADE [13] and MUK [14]). 
Note that these algorithms include assumptions on stationarity, i.e., 
they do not work well on non-stationary (intermittent) signals. The 
algorithms proposed in this paper reduce the data to fit this as-
sumption.

3. Tools from linear algebra

3.1. Singular value decomposition (SVD)

The “skinny” SVD [22] of a matrix X : M × N with M ≤ N is 
given by X = U�VH , where U : M × M is unitary, V : N × M is 
semi-unitary (VH V = I), and � : M ×M is square and diagonal with 
nonnegative entries. For a given threshold ε ≥ 0, we can sort the 
singular values and partition the matrices as

X = [U1 U2]
[

�1
�2

][
VH

1

VH
2

]
,

where �1 > εI and �2 < εI. A low-rank approximation of X is 
then given by the truncated SVD (TSVD),

X̂ = U1�1VH
1 , (7)

which is such that ‖X̂−X‖ < ε . The columns of U1 form a basis for 
the “signal subspace” ran(X̂) of X, with threshold ε . An orthogonal 
projection onto this subspace is P = U1UH

1 . The columns of U2 span 
what is commonly called the “noise subspace”.

3.2. Generalized singular value decomposition (GSVD)

The GSVD [15] of two matrices X1, X2 (each of size M × N with 
M ≤ N) is denoted by

GSVD(X1,X2) ⇔
{

X1 = FCUH

X2 = FSVH

where F : M × M is an invertible matrix, C and S are square posi-
tive diagonal matrices, and U, V are semi-unitary matrices of size 
N × M . Without loss of generality (and not following the usual 
convention), we scale each column of F to norm 1 by exchanging 
factors with C and S.2

For a given threshold ε ≥ 0, we can further sort the entries of 
C and S and partition the matrices as

2 In comparison to the usual definition of the GSVD and its Matlab implemen-
tation, a transpose has been introduced here. The norm scaling of F is also not 
standard but necessary to introduce a noise threshold ε .
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C =

⎡
⎢⎢⎣

C1
C2

C3
C4

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

S1
S2

S3
S4

⎤
⎥⎥⎦

where the partitioning is defined by

C1 > εI , S1 > εI , C3 < εI , S3 > εI
C2 > εI , S2 < εI , C4 < εI , S4 < εI .

This enumerate all possibilities for entries of C and corresponding 
entries of S to be larger or smaller than ε . Depending on this, cor-
responding columns of F are dominantly present in X1 and/or X2. 
This provides information on the intersection of the column span 
of X1 with that of X2. Indeed, if we define a corresponding parti-
tioning of F as

F = [F1 F2 F3 F4] ,
then the partitioning generates the following subspace informa-
tion:

• ran(F1) contains the common column span (with tolerance ε), 
i.e., ran(X1) ∩ ran(X2)

• ran(F2) is the subspace of columns that are in ran(X1) but not 
in ran(X2),

• Similarly, ran(F3) is the subspace of columns that are in 
ran(X2) but not in ran(X1),

• ran(F4) is a common left null space, the “noise subspace”.

Thus, the GSVD provides a general technique for subspace intersec-
tion, and this has been exploited in source separation applications, 
see e.g., [23,24]. Note that F is invertible but generally not uni-
tary, so that these subspaces are not necessarily orthogonal to each 
other.

3.3. Generalized eigenvalue decomposition (GEVD)

If we “square” the data matrices in the previous subsection, we 
obtain a related decomposition for positive definite matrices R1, 
R2:

GEVD(R1,R2) ⇔
{

R1 = 1
N FDFH

R2 = 1
N FKFH

where F is invertible and D, K are diagonal and positive. If R1 =
1
N X1XH

1 and R2 = 1
N X2XH

2 , then the GEVD is related to the GSVD 
via D = C2 and K = S2. We can define the same partitioning into 
four subspaces as for the GSVD. For symmetric matrices, the GEVD 
is sure to exist if R1 > 0 or R2 > 0, but otherwise the existence of 
the decomposition is unclear (D or K may become complex).

4. Separation by comparing two data blocks

Interference suppression by beamforming is related to an 
oblique projection, wherein the interference subspace is projected 
out while the target signal subspace is kept [19]. To compute the 
beamformer, we need to know both subspaces. In this section, we 
develop algorithms to estimate these subspaces.

Recall that the covariance model for X1, X2 is

R1 = HsRs1HH
s + H f R f 1HH

f + Rn1

R2 = HsRs2HH
s + H f R f 2HH

f + Rn2 ,
(8)

where [Hs, H f ] is of full column rank, with columns normalized to 
norm 1.

The distinction between target signals and interference signals 
is based on
Rs1 > α2Rs2 , R f 1 < α2R f 2 , (9)

where in comparison to (5) we have introduced a parameter α > 1
as a way to control the threshold on detecting a target. The choice 
of α is discussed later in Sec. 7. Consider first the noise-free case. 
In this case, we can write

R1 = [Hs H f ]
[

Rs1
R f 1

][
HH

s
HH

f

]

R2 = [Hs H f ]
[

Rs2
R f 2

][
HH

s
HH

f

]
.

(10)

We can compute a GSVD of (X1, X2), or equivalently a GEVD of 
(R1, R2). This leads to{

R1 = 1
N FDFH

R2 = 1
N FKFH .

(11)

For a given threshold ε ≥ 0, let us sort the generalized eigenvalues 
and partition F, D, K as F = [F1 F2 F3],

D =
⎡
⎣ D1

D2
D3

⎤
⎦ , K =

⎡
⎣ K1

K2
K3

⎤
⎦ (12)

where the partitioning is defined such that

D1 > ε2I
D3 < ε2I

K2 > ε2I
K3 < ε2I

and moreover

D1 > α2K1 , D2 < α2K2 . (13)

Comparing this decomposition to (9)–(10) and using the unique-
ness of the GEVD, we immediately find

ran(F1) = ran(Hs) , ran(F2) = ran(H f ) ,

while F3 spans the noise subspace. Thus, a GEVD of (R1, R2), 
or equivalently the GSVD of (X1, X2), gives directly the required 
subspace information. By using F, we can construct a separating 
beamformer as

WH = [I 0][F1 F2]† . (14)

This beamformer is such that

WH [Hs H f ] = [Ms 0]
where Ms is a square invertible matrix which depends on the se-
lected basis for the subspaces (F). Thus, we achieved our source 
separation objective stated in (6).

So far, we did not assume that the Rsi and R f i are diagonal. 
However, if they are diagonal (the signals are independent), and if 
a generalized eigenvalue (D)ii/(K)ii is unique, then the correspond-
ing vector fi is a column of Hs or H f . If all ratios are unique, then 
Hs = F1 and H f = F2 (up to permutations of the columns). In that 
case, the beamformer directly provides the individual signals. The 
technique to use the GEVD of two covariance matrices is reminis-
cent of the Second Order Blind Identification (SOBI) algorithm [25], 
which considers a rather different class of applications, namely to 
separate sources with differing temporal correlation structures, but 
arrives at similar properties of two (time-domain) covariance ma-
trices.

Now we consider the case where both X1 and X2 are contam-
inated by white noise, and Rn1 = Rn2 = σ 2I. If we compute the 
GSVD of (X1, X2), or the GEVD of (R1, R2), then F will change com-
pared with the noiseless case. This is unlike the case of the SVD 
or EVD for a single matrix, where the addition of white noise will 
shift the singular values (eigenvalues) but leave the singular vec-
tors (eigenvectors) intact. For significant noise powers, the matrix 
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Table 1
Source separation algorithm using GSVD.

Input: Data matrices X1, X2 each of size M × N; the noise power σ 2; a scaling parameter α > 1 that controls the signal classification (choice for α is 
discussed in Sec. 7)
Output: a separating beamformer W.

1. Rank reduction: compute the SVD:

[X1 X2] = [U1 U2]
[

�1

�2

][
VH

1
VH

2

]
,

where �1 > εI and �2 < εI, and ε is a noise threshold, e.g., ε = σ(
√

2N + √
M) or slightly larger by a factor β as discussed in (B.2).

Then apply a rank and dimension reduction:

X̃1 = UH
1 X1 , X̃2 = UH

1 X2

2. Estimation of signal subspaces F: Compute

GSVD(X̃1, X̃2) ⇒
{

X̃1 = FCUH

X̃2 = FSVH

3. Using α, sort the entries of D = C2, K = S2 and correspondingly partition F according to (12)–(13).
4. The separating beamformer is

WH = [I 0][F1 F2]−1UH
1

F as computed in this way will tend to lose its information. Fortu-
nately, for reasonable noise powers (SNR larger than 0 dB, say), the 
effect is not noticeable in simulations, and the algorithm performs 
well.

Nonetheless, to limit the effect of the noise, we propose to 
perform a preprocessing step wherein the noise subspace of X =
[X1, X2] is estimated via an SVD, and projected away. This removes 
the subspace corresponding to F3 (the noise subspace).

The proposed algorithm is specified in Table 1. In the algo-
rithm, step 1) is the preprocessing (rank reduction, or projecting 
out the noise subspace) using a threshold ε on the singular values 
of X that separates the signal subspace from the noise subspace. 
This matrix contains 2N samples. Asymptotically, we could take 
ε = σ

√
2N , but with finite samples, random matrix theory (see 

Appendix B) shows that the expected value of the largest singular 
value due to the noise is σ(

√
2N + √

M). We should also allow for 
a variance on top of this. Thus, we suggest to set

ε = β1σ(
√

2N + √
M) (15)

where the “Tracy–Widom” factor β1 > 1 depends on M and N , and 
is derived in detail in Appendix B, equation (B.2). Typically, this is 
a small correction factor, e.g., β1 < 2 for reasonable values of N .

After this preprocessing step, the term F3 in the subsequent 
GSVD step is absent as the noise subspace has been removed. This 
simplifies the algorithm at that stage (note that there is no litera-
ture on threshold selection for the noise subspace in GSVD and by 
preprocessing this complication is avoided).

In the algorithm, α > 1 is an input parameter that controls the 
threshold on detecting a target (see Sec. 7).

5. Signed URV decomposition

We now enter into the second part of the paper, wherein we 
discuss a computationally efficient implementation of the algo-
rithm, suitable for online applications.

The proposed algorithm in Table 1 is block-based and requires 
two steps. It detects the signals that are fully present in seg-
ment 1 of the analysis window (the “target signals”). However, in 
general we would like to detect all signals, over durations much 
longer than the analysis window. To do so, the analysis window 
is shifted over one or a few samples, and the detection process is 
repeated. It is obviously inefficient if we compute the decomposi-
tions from scratch. Instead, we would like to update the SVD, and 
subsequently the GSVD, to take advantage that most of the data in 
the matrices is the same. Unfortunately, the SVD is not amenable 
to sliding window updates. Also, the two-step process makes this 
even harder for the subsequent GSVD.

In the next two sections, we propose an algorithm that replaces 
the GSVD by a different subspace estimator. This estimator works 
directly on the data and is suitable to efficient subspace tracking 
for sliding-window updates. It is based on the Schur Subspace Es-
timator (SSE) introduced in [16,26] and its algorithm in [17]. After 
a brief introduction of this estimator, we derive its connection to 
the GSVD.

5.1. Definition of the SSE

For two given matrices N : M × N1 and X : M × N2, with N1 +
N2 ≥ M , the SSE is obtained from the decomposition

[N | X]� = [A 0 | B 0] (16)

where “|” denotes a matrix partitioning, A : M ×dA , B : M ×dB , and 
� is a J-unitary matrix:

�J�H = J , �H J� = J , J =
[

IN1 0
0 −IN2

]
.

J is called a signature matrix. The partitioning of J (and hence of 
�) follows the partitioning indicated by “|” in (16), and we say 
that N and A have a positive signature, whereas X and B have a 
negative signature. The matrix [A, B] is square or tall and has full 
column rank, and the 0-blocks augment A and B to N1 and N2
columns, respectively. After “J-squaring” the data (i.e., computing 
[A, B]J[A, B]H ), we obtain from (16)

NNH − XXH = AAH − BBH

and it is seen that A and B capture the positive and negative parts 
of NNH − XXH , respectively, using factors of minimal dimensions. 
We will assume that there is no “neutral subspace”, i.e., NNH −
XXH is of full rank; in that case the dimensions of A, B satisfy dA +
dB = M , i.e., [A, B] is a square matrix. Although the dimensions are 
well defined, A, B and � are not unique.
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The computation of the decomposition is facilitated by intro-
ducing in (16) a QR-factorization of [A, B]:
[A B] = Q[RA RB]
where Q is unitary and [RA, RB] is lower triangular, giving rise to 
a two-sided decomposition of [N, X] as

QH [N |X]� = [RA 0 |RB 0] (17)

that always exists but is not unique. This “hyperbolic URV” decom-
position is reminiscent of the URV [27], except that it involves a 
J-unitary matrix �.

The “signed URV” (SURV) algorithm [17] is a numerically stable 
algorithm to compute (17), meanwhile posing some implicit struc-
tural constraints on � that ensures its stability. The constraints 
ensure that

AAH ≤ NNH , BBH ≤ XXH . (18)

This prevents the introduction of large common components in A
and B that cancel each other in AAH − BBH . The SURV algorithm is 
non-iterative and easily updated for new columns of N and X, with 
a complexity similar to that of a QR-update. Downdating (removing 
a column of N or X) is elegantly achieved by updating X or N, 
respectively, and is also numerically stable. This makes SURV very 
suitable for sliding window tracking of subspaces.

5.2. Properties

We list some properties of the SURV to reflect its potential for 
subspace tracking and its connection to the GSVD. First consider 
N = εI, where ε is a threshold, and introduce the SVD of X as

X = U1�1VH
1 + U2�2VH

2

where �1 > εI and �2 < εI. Assume that �1 has size d × d (i.e., X
has d singular values larger than ε; we assume none are equal to 
ε). We compute the SURV

[εI | X]� = [A 0 | B 0] (19)

which corresponds to

XXH − ε2I = BBH − AAH . (20)

It is seen that the spectrum of XXH is shifted by ε2, which will in-
troduce M − d negative eigenvalues. Thus, B has d columns and A
has M −d columns. By means of this decomposition, it was shown 
in [16] that (A, B, �) can be used to parametrize all rank-d ap-
proximants X̂ such that

‖X − X̂‖ < ε . (21)

In particular, it was shown that the column span of any such X̂ is 
parametrized as ran(B′) with

B′ = B − AM , ‖M‖ < 1 (22)

where the matrix M : dA × dB contains free parameters, reflecting 
the non-uniqueness in the decomposition (17).

It was shown in [17] that the TSVD (7) is a special case of an 
approximant satisfying (21), corresponding to an SURV decompo-
sition with

B = U1(�
2
1 − ε2I)1/2 , A = U2(ε

2I − �2
2)

1/2 (23)

and a specific �. In this case the column span of B is equal to the 
principal subspace obtained from the SVD of X.

More in general, consider matrices N, X, each with N columns, 
and the SURV [N | X]� = [A 0 | B 0] with N such that NNH =
ε2Rn . Then a direct generalization of (21) shows that all low-rank 
approximants X̂ such that
‖R−1/2
n (X − X̂)‖ < ε (24)

have a column span parametrized by B − AM , ‖M‖ < 1. The fac-
tor R−1/2

n can be interpreted as a prewhitening of the noise. Thus, 
properly weighted approximants of the form (24) are obtained 
without additional effort from the SURV decomposition.

Furthermore, we can relate the SURV in (16) to the GSVD as 
follows. Introduce the GSVD⎧⎪⎪⎨
⎪⎪⎩

N = FCUH = [F1 F2]
[

C1
C2

]
UH

X = FSVH = [F1 F2]
[

S1
S2

]
VH

(25)

where the sorting and partitioning is such that C1 > S1 and C2 < S2
(for simplicity of notation, we assume there is no common null 
space: F3 is missing). Equivalently, we have the GEVD⎧⎪⎪⎨
⎪⎪⎩

NNH = FDFH = [F1 F2]
[

D1
D2

]
[F1 F2]H

XXH = FKFH = [F1 F2]
[

K1
K2

]
[F1 F2]H

with a partitioning such that D1 > K1, D2 < K2. Then

NNH − XXH = F(D − K)FH

= F1(D1 − K1)FH
1 − F2(K2 − D2)FH

2 .
(26)

But squaring (16) provides

NNH − XXH = AAH − BBH

so that we obtain

A = F1(D1 − K1)
1/2 = F1(C2

1 − S2
1)

1/2 ,

B = F2(K2 − D2)
1/2 = F2(S2

2 − C2
2)

1/2 .
(27)

as one possible solution to (16)—recall that this decomposition is 
not unique. This solution provides, in particular, ran(A) = ran(F1), 
ran(B) = ran(F2).

We have thus shown that the GSVD provides a special case of 
an SURV, where the pair (F1, F2) in the GSVD is directly related 
to the pair (A, B) in the SURV—with coinciding subspaces. Con-
versely, we will propose in the next section to replace the GSVD in 
the source separation algorithm by the SURV algorithm, with the 
expectation that the resulting subspace estimates are close to that 
of the GSVD. Simulations that confirm this are in Sec. 8. The ad-
vantage of using SURV is that it is a simple non-iterative algorithm 
which is easily updated and thus enables sliding window tracking.

6. Source separation using SURV

We have a pair of data matrices (X1, X2) each with N samples, 
with sample covariance matrices (R̂1, R̂2) converging to covariance 
matrices (R1, R2) that satisfy the data model (8). Instead of the 
GSVD or GEVD, we compute the SURV

[X1 | αX2]� = [A 0 | B 0] (28)

where the factor α > 1 controls the signal classification (see 
Sec. 7). Consider first the noiseless case, and assume that [Hs, H f ]
is square (M columns) and of full rank (this can be ensured by an 
initial rank reduction). Squaring (28) gives

R̂1 − α2R̂2 = 1

N

(
AAH − BBH)

. (29)

As discussed in the previous section, the GSVD or GEVD provides 
a special case of this decomposition (cf. (26)–(27)), i.e.,

R̂1 − α2R̂2 = 1 (
F1(D1 − α2K1)FH

1 − F2(α
2K2 − D2)FH

2

)

N
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Table 2
Source separation algorithm using SURV.

Input: Data matrices X1, X2; the noise power σ 2; a scaling parameter α > 1 that controls the signal classification (choice for α is discussed in Sec. 7)
Output: a separating beamformer W.

1. Compute τ as in (33). Set γ = √
N|τ |. Compute one SURV:

(if τ > 0) QH [γ I X1 | αX2]� = [RA 0|RB 0] (35)

(if τ < 0) QH [X1 | γ I αX2]� = [RA 0|RB 0] (36)

2. Split Q = [QA QB]. The separating beamformer is given by W = QA .
(the partitioning of F is such that D1 −α2K1 > 0 and α2K2 − D2 >

0) such that ran(A) = ran(F1) and ran(B) = ran(F2). On the other 
hand, the covariance model provides

R1 − α2R2 = Hs(Rs1 − α2Rs2)HH
s − H f (α

2R f 2 − R f 1)HH
f .

Asymptotically (for sufficiently large N such that R̂1 → R1 and 
R̂2 → R2), we have that ran(F1) = ran(Hs) and ran(F2) = ran(H f ). 
Generally, for finite N , we therefore have{

ran(A) ≈ ran(Hs)

ran(B) ≈ ran(H f )

Thus, the decomposition SURV(X1, αX2) directly gives estimates 
of the subspaces required for constructing a separating beam-
former W.

Consider now the case with noise, where we assume Rn1 =
Rn2 = σ 2I. The GSVD of (X1, X2), or equivalently the GEVD of 
(R̂1, R̂2), and its data model are

R̂1 = 1
N FDFH , R1 = HsRs1HH

s + H f R f 1HH
f + σ 2I

R̂2 = 1
N FKFH , R2 = HsRs2HH

s + H f R f 2HH
f + σ 2I

(the parameter α defines the partitioning of F), and

R1 − α2R2 = Hs(Rs1 − α2Rs2)HH
s − H f (α

2R f 2 − R f 1)HH
f

+ (1 − α2)σ 2I (30)

The presence of (1 −α2)σ 2I will tend to disturb the decomposition 
into “positive” and “negative” subspaces. However, if we consider 
α = 1 and look at R1 − R2, then the noise covariance matrices will 
cancel each other in (30). In this case, SURV(X1, αX2) produces 
(asymptotically) the same result as in the noiseless case.

For α > 1, the noise term (1 − α2)σ 2I in (30) is not zero. Al-
though the SURV decomposition will still give reasonable results, 
we expect improved results if we compensate the noise power 
by adding a term τ I to R̂1 − α2R̂2. The resulting data model for 
R1 − α2R2 + τ I has a noise power term (1 − α2)σ 2I + τ I. We ob-
tain noise power cancellation if we choose

τ = σ 2(α2 − 1) . (31)

Note that τ > 0. Adding τ I can be achieved quite simply: instead 
of (28), compute the SURV

[γ I X1 | αX2]� = [A 0 | B 0] . (32)

If we set γ = √
Nτ , then it follows that

R̂1 − α2R̂2 + γ 2

N
I = R̂1 − α2R̂2 + τ I = 1

N
(AAH − BBH )

and we obtain noise power compensation, asymptotically.
Several refinements are in order. For finite samples, the result-

ing noise power R̂n1 − α2R̂n2 + τ I will not be exactly zero, but 
some indefinite matrix. For optimal accuracy of A, it is better to 
ensure that this matrix is small but negative definite. As shown in 
Appendix C, this is achieved by setting

τ = σ 2
(
α2(1 −

√
M√
N

)2 − (1 +
√

M√
N

)2
)

(33)

which replaces (31) by a slightly smaller τ . If τ > 0, then we set 
γ = √

Nτ and compute the SURV in (32). If α or N is small, then it 
may happen that τ < 0. In that case we set γ = √

N|τ | and instead 
of (32) compute the slightly different SURV

[X1 | γ I αX2]� = [A 0 | B 0] (34)

By squaring this equation, it is seen that we obtain

R̂1 − α2R̂2 − γ 2

N
I = R̂1 − α2R̂2 + τ I = 1

N
(AAH − BBH )

which is the required expression for noise compensation. Ap-
pendix C also lists refinements for matrices X1, X2 of unequal di-
mensions, and a more accurate result using Tracy–Widom factors.

In the original GSVD algorithm in Table 1, we introduced an 
initial rank-reduction step as the first step. This required an initial 
SVD of [X1, X2]. Although this SVD can be replaced by an SURV, 
this initial rank reduction can also be omitted, since we ensured 
that the noise components cancel each other implicitly while com-
puting the SURV (32) or (34).

Further, if we consider that [A, B] = Q[RA, RB] and use the fact 
that [RA, RB] is lower triangular, we see that ran(B) = ran(QB). 
This is an estimate of the interference subspace H f and the noise 
subspace. The column span of QA is orthogonal to these subspaces. 
A beamformer which projects out the interference and noise sub-
space is simply WH = QH

A .
The resulting algorithm is shown in Table 2. Compared to the 

GSVD-based algorithm, this algorithm is particularly simple, and is 
suitable for tracking as the single SURV is easily used in a sliding 
window update setting [17].

7. Considerations for a nonstationary data model

We derived algorithms for a block-stationary data model, but 
apply the algorithms to nonstationary data consisting of intermit-
tent signals. Moreover, in general X1 and X2 have an unequal num-
ber of samples N1 and N2. In this section, we verify the validity of 
the algorithms for the more general nonstationary case and discuss 
the choice of the detection parameter α.

As shown in Appendix D, for nonstationary signals the sam-
ple correlation matrix converges faster to its model than it would 
for corresponding stationary signals. This was shown for the cor-
relation matrix of two signals that are partly zero, but the same 
holds for the more elaborate model (X1, X2) of mixed intermittent 
signals in noise. Thus, the derived algorithms are valid and will 
perhaps even have better performance for finite samples because 
of the faster convergence.
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For the proper selection of α, define n(k)
1 and n(k)

2 to be the 
number of nonzero samples of the kth source (packet) within X1
and X2, respectively. We detect a target signal if Rs1 > α2Rs2. As-
suming independent sources, Rs1 and Rs2 are diagonal, and it is 
seen that the power (amplitude) of a source does not play a role, 
but only the ratio of its number of nonzero samples in block X1
and X2. In particular, the kth source is considered a target signal if 
n(k)

1 > α2n(k)
2 . To design α, first choose a parameter n1 that defines 

a target packet to have more than n1 nonzero samples in X1 (and 
fewer than n2 = Np − n1 samples in X2). Then set

α2 = n1

n2
. (37)

This choice for α is suitable for a large number of samples such 
that the cross-correlations among the independent sources have 
diminished.

With a finite number of samples, α plays the role of a detec-
tion threshold parameter with regard to the definition of a target 
packet (defined by n1, n2), as its choice determines a certain proba-
bility of detection and false alarm. We will not attempt to compute 
these probabilities as function of α and the number of samples. 
Instead, we will propose a suitable α such that the probability of 
false alarm is zero. Assume, in a worst-case scenario, that there are 
M packets at a marginal position, i.e., with n(k)

1 = n1 and n(k)
2 = n2. 

Further assume without loss of generality that the sources have 
equal unit power, and assume for convenience that all sources have 
a Gaussian distribution. If for this scenario the packets have to be 
classified as interferers (i.e., no false alarm), then we require

n1λ̂1 < α2n2λ̂M ,

where λ̂1 is the largest eigenvalue of a sample covariance matrix 
generated by n1 i.i.d. complex white Gaussian noise samples, and 
λ̂M is the smallest eigenvalue of such a matrix, now for n2 samples. 
Results from random matrix theory listed in Appendix B allow to 
approximate these eigenvalues, and it follows that we have to set

α2 > αmin, αmin := β2
1 (n1)

β2
M(n2)

(√
n1 + √

M√
n2 − √

M

)2
(38)

where β1(n) and βM(n) are Tracy–Widom factors defined in (B.2), 
(B.3). This generalizes (37) for a finite number of samples.

Finally, if the two matrices X1, X2 of the two blocks have differ-
ent lengths N1, N2, the noise power threshold ε in (15) and similar 
equations should use N1 +N2 = Ns in place of 2N . The noise power 
shift parameter γ in (33) also needs to be adjusted. Appendix C
lists the appropriate generalizations.

8. Simulation results

8.1. Data model with stationary sub-blocks

To show the algorithms on the data model for which they have 
been derived, we first show their performance on stationary data 
matrices, each of size M × N . Specifically, we generate data accord-
ing to

X1 = HsSs1 + √
rH f S f 1 + N1

X2 = √
rHsSs2 + H f S f 2 + N2

(39)

where the signal and interference data matrices Ss1, Ss2, S f 1, and 
S f 1 correspond to unit-power QPSK sources with symbols taken 
from the alphabet {+1, + j, −1, − j}. The “mixing” parameter r
(0 ≤ r < 1) controls the signal to interference ratio (SIR), defined 
by −10 log10(r) dB. The algorithms are tested using α = 1, which 
determines the classification threshold: a signal is classified as 
“target” if it is more present in segment 1 than in segment 2.
To simplify the comparison, we consider only one signal and 
one interference in (39). We generate the columns of H as the ar-
ray response vectors of a uniform linear antenna array consisting 
of M = 4 elements spaced at half wavelength. The target signal di-
rection of arrival (DOA) is fixed at 0◦ . The interference DOA is set 
at 20◦ unless specified otherwise. The noise matrices are gener-
ated from i.i.d. complex Gaussian sources with variance σ 2. The 
SNR is defined as SNR = 10 log10(1/σ 2). The SNR is set at 15 dB 
unless specified otherwise. We test the algorithms based on GSVD
as shown in Table 1 and on SURV as in Table 2.

Instead of looking at beamformers, we consider the underlying 
estimates for ran(Hs) and ran(H f ) for each algorithm. As perfor-
mance measure we consider the subspace error E(U, Ue), defined 
for an orthonormal basis U for the “true” subspace and an or-
thonormal basis Ue for its estimate, as

E(U,Ue) = ‖(I − UeUH
e )U‖ .

In Fig. 2(a), the subspace error of the algorithms is shown as 
function of the mixing factor r at SNR = 15 dB. There is not much 
difference between the algorithms. It is seen that the performance 
of both algorithms drops when the mixing factor r goes towards 
1 (SIR = 0 dB). At this marginal case, we cannot expect to distin-
guish the subspaces.

Fig. 2(b) shows the performance for varying separation in DOA 
between both sources, for r = 0.5 (SIR = 3 dB). The target DOA 
is fixed at 0◦ and the interference DOA goes from 0◦ to 90◦ . Both 
algorithms give the same performance.

Fig. 2(c) shows the performance as function of N , for r = 0.5.
Fig. 2(d) shows the performance as function of SNR, for r =

0.5 (SIR = 3 dB). Unless the SNR is small, the performance of 
the algorithms is dominated by the non-zero finite sample cross-
correlations of the sources, and essentially independent of the SNR. 
(We did not consider negative SNRs as the resulting signal esti-
mates would not be meaningful in applications.)

Overall, we can conclude that essentially there is no per-
formance difference between the two algorithms in the block-
stationary data model (39).

8.2. Data model with partially overlapping data packets

We now compare the proposed algorithms for separating par-
tially overlapping data packets, as shown in Fig. 1. All packets have 
the same length Np = 256 symbols. The length of the analysis win-
dow is set to Ns = 3Np , where the length of X1 is N1 = Np and the 
length of X2 is N2 = 2Np .

The source data are QPSK symbols. A uniform linear antenna 
array of M = 5 elements spaced at half wavelength is used. We 
consider up to 2 target packets with DOAs [−10◦, 40◦], and 3 par-
tially overlapping interference packets with DOAs [5◦, −30◦, −60◦].

We generate packets with arbitrary arrival times. To describe 
the extent of overlap, let n(k)

1 be the number of nonzero samples 
of the kth packet in block X1, and define the “overlapping ratio” rk

as rk = n(k)
1

N p
. We generate target packets with rk randomly selected 

in the interval [0.85, 1], and interference packets with rk ∈ [0, 0.5].
We compare the interference suppression algorithms based on 

GSVD (Table 1) and on SURV (Table 2). We consider cases with ds =
1 and ds = 2 target sources. In the latter case, a postprocessing 
follows to separate the remaining mixture of the two target signals 
into two individual target signals using ACMA [12]. To ensure that 
ACMA acts only on the stationary part of these signals, we process 
only the central 100 samples of the mixture.

For reference, we show as an upper bound the performance 
of the standard (non-blind) linear minimum mean squared error 
(LMMSE) receiver obtained when all source data is known. As a 
lower bound, we show the performance of directly applying ACMA 
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Fig. 2. Separation performance for block-stationary data model in terms of the subspace error E . (a) Varying SIR (parameter r) for SNR = 15 dB; (b) varying separation angle 
for r = 0.5; (c) varying N for r = 0.5; (d) varying SNR for r = 0.5.
on the central 100 samples of X1, without interference suppres-
sion (denoted by ACMA∗). We also show the performance of JADE, 
acting on the central 100 samples (denoted by JADE∗).

For further comparison, we show the performance of the Al-
gebraic Zero/Constant Modulus Algorithm (AZCMA [28,11]), which 
separates signals with samples s[n] that are either zero or con-
stant modulus, i.e., s(|s|2 − 1) = 0. By inserting s[n] = wH x[n] into 
this equation, it effectively uses 6-th order statistics of the data. It 
is known that this algorithm breaks down if two sources are fully 
non-overlapping or, on the other hand, do not contain zero entries. 
The output of the algorithm can be post-processed by ZCMA [28], 
which is a block-iterative algorithm similar to LS-CMA.3

The performance measure is the residual signal-to-interference-
plus-noise ratio (SINR) at the output of the beamformers. Here, 
the output SINR is defined as the worst SINR among the ds out-
put signals, after we make the best assignment of the estimated 
beamformers to target source indices.

3 No other algorithms seem suitable for comparison in the presented scenario. 
The papers [20,21] consider a similar scenario but the proposed algorithms are in-
sufficiently general as they assume that for each signal there is an interval where 
that signal is the only source present. The papers [29,30] consider semi-blind algo-
rithms for a single target signal containing known training symbols.
The values of the various parameters ε , γ and α in the algo-
rithms are set according to Sec. 7 and Appendix C.

Fig. 3 shows the output SINR of the beamformers for SNR = 15 
dB, for ds = 1 and ds = 2 target sources, respectively. Both GSVD 
and SURV were able to correctly detect the presence of the target 
signals in all cases. Their performance is very similar, nearly inde-
pendent on the number of target signals, and very close to that of 
the non-blind LMMSE receiver.

It is also seen that ACMA and JADE are not performing well, as 
they are not designed for non-stationary sources. AZCMA performs 
reasonable for ds = 1 target and high SIR, but fails for low SIR due 
to the presence of fully non-overlapping interfering sources. It also 
fails for multiple (fully overlapping) target sources. The results re-
garding JADE and AZCMA are consistent with what was already 
reported in [11].

In summary, it is seen that the two proposed algorithms have a 
rather similar performance, close to that of the (informed) LMMSE. 
Note that SURV has a lower complexity and admits an attractive 
sliding window implementation.

9. Example experiment

We have set up a demonstration system for testing the pro-
posed algorithms in a real application: the automatic identification 
system for ships. AIS data is used for exchanging navigational in-
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Fig. 3. Separation performance of the proposed algorithms. SINR as function of SIR for SNR = 15 dB, 3 interfering sources, and (a) 1 target source, (b) 2 target sources. 
∗ signifies algorithms that act on a subset of the data (central 100 samples).
Fig. 4. Example of the proposed source separation algorithm on experimental AIS 
data. The upper panel shows the amplitude of the raw data from the 4 antennas in 
one analysis window. The lower panel shows the amplitude of one packet separated 
by SURV.

formation among ships and between ships and base stations in 
the maritime frequency band at 162 MHz. Most AIS data pack-
ets are 256 symbols long, Gaussian minimum shift keying (GMSK) 
modulated, and transmitted at a rate of 9.6 kbps. We use an un-
calibrated receiver array consisting of M = 4 antennas to collect 
the baseband data samples. The antennas are roughly positioned 
at half wavelength spacing. The RF front-ends for the 4 antennas 
are not identical and uncalibrated. The receiver array is placed at 
an altitude of 68 meters in the window of a building in Delft, 
facing the extended harbor and coastline of Rotterdam, about 10 
nautical miles away. The receiver is behind two layers of window 
glass, and next to the metal frame of the building, i.e., multipath 
is expected to be present. Although AIS works in a synchronized 
network and no packet collision is tolerated in its protocol, the ac-
tual AIS packets from different communication cells are frequently 
seen overlapping by our receiver.

Fig. 4 shows in the top panel as example the amplitude of raw 
samples from the 4 antennas. The shown analysis window contains 
at least three overlapping data packets. The bottom panel shows 
one packet after separation from the other two partially overlap-
ping packets. The length of the analysis window is Ns = 2Np = 512
symbols. Data was sampled using an oversampling ratio of 10, so 
that the number of samples in one analysis window is 5120. The 
beamformers are computed after downsampling by a factor of 10. 
The upper panel in Fig. 4 shows that the antennas have different 
responses to the same packet, which is mainly caused by multipath 
fading. In the shown example, one interference packet overlaps the 
head of the middle packet while another packet overlaps the tail. 
The middle packet is the target packet in this analysis window. The 
input SIR is below 0 dB and the output SNR is around 10 dB. The 
lower panel in Fig. 4 shows the amplitude of one packet separated 
by SURV. Without the proposed algorithms, it is even difficult to 
visually identify the start and end of the separated packet.

Experience with this demonstrator shows that the separation 
performance is good; the algorithms are reliable and robust, and 
messages with good SNR are easily decoded after separation. Some 
related results including tracking are presented in [4]; more results 
are reported in [5].

10. Conclusions

In this paper, we proposed two blind beamforming algorithms 
for suppressing asynchronous co-channel interference. The first al-
gorithm was based on subspace estimations using GSVD. We sub-
sequently introduced the SURV as an elegant and computationally 
efficient replacement of the GSVD. Simulations showed that these 
algorithms have essentially equal performance, close to that of a 
reference MMSE receiver with completely known target signals. For 
high SNR, the performance of the algorithms is limited by the as-
sumption that sources are uncorrelated, while for a small number 
of samples the empirical cross-correlation is not yet zero.

The algorithm was also demonstrated on experimental data 
from a real application (AIS), which confirmed the effectiveness 
and robustness of the proposed algorithms.

Future research may include the design of tracking algorithms 
dedicated to specific applications, and extensions to wideband 
sources.

Appendix A. Scenario with continuously present target signals

In this Appendix, we consider a second scenario (see Fig. A.5), 
where we assume that a target signal fills the complete analysis 
window. This can be used to model target signals that transmit 
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Fig. A.5. Scenario 2: target signals are equally present in both data blocks, whereas 
each interference signal is concentrated in only one of these blocks. (a) Target 
sources transmit continuously; (b) the analysis window equals the length of a 
packet.

continuously, or short analysis windows that may be even shorter 
than the duration of a data packet. As shown in Fig. A.5, we can 
split the window into two consecutive blocks, where the assump-
tion is that each target signal is equally present in each block, 
while each interference signal is concentrated mostly in one of the 
blocks, but not equally strong in both. The data samples of each 
block are collected into two corresponding matrices X1 and X2, 
that have the same data model (3) as before. Each data block con-
sists of N samples. The covariance model is the same as in (4).

However, we now define that for target signals the signal power 
is equal in each block (Rs1 ≈ Rs2), whereas for interference signals 
the power is unequal (R f 1 �= R f 2). To formulate this more pre-
cisely, we introduce again a parameter α that controls how “equal” 
two values of signal power should be to classify as a target signal. 
Specifically, we define that a target signal satisfies

1

α2
<

(Rs1)ii

(Rs2)ii
< α2 (A.1)

where α > 1.
The GEVD of (R1, R2) is defined in the same way as before in 

(11), but the partitioning of the generalized eigenvalues is now 
based on

1

α2
<

(D1)ii

(K1)ii
< α2 (A.2)

whereas D2, K2 collect the diagonal entries that do not satisfy any 
of these conditions. This replaces (13).

Comparing (A.2) to (A.1), we see that F1 corresponds to the 
target signal subspace and F2 to the interference signal subspace. 
The resulting algorithm is the same as for Scenario 1 (see Table 1), 
except that now the partitioning rule (A.2) is used. This algorithm 
could also be implemented using SURV decompositions.

The parameter α is used to tune the detection of a target signal, 
i.e., how “equal” the power in both blocks has to be to detect a 
target signal. If we take a finite number of samples into account, 
then following similar considerations as in Sec. 7, we obtain the 
two conditions (replacing (38))
α2 >
β2

1 (n2)

β2
M(n1)

(√
n2 + √

M√
n1 − √

M

)2

α2 >
β2

1 (n1)

β2
M(n2)

(√
n1 + √

M√
n2 − √

M

)2
.

The larger one of these lower bounds on α should be used.

Appendix B. Bounds on eigenvalues of random matrices

The following results from random matrix theory are needed in 
Appendix C. We consider a random complex white Gaussian noise 
variable n[k] with covariance matrix Rn = σ 2I. If we have N sam-
ples, the sample covariance matrix is R̂n = 1

N

∑N
k=1 n[k]n[k]H . The 

largest eigenvalue of R̂n is denoted by λ̂1 and the smallest by λ̂M .
For N → ∞, it follows from Bai and Yin [31] that (almost sure 

convergence)

λ̂1 → σ 2ρ2
1 , ρ1 := 1 +

√
M√
N

,

λ̂M → σ 2ρ2
M , ρM := 1 −

√
M√
N

.
(B.1)

These are equal to the expected values of λ̂1 and λ̂M . If more 
accurate upper bounds are needed, we can employ the known 
distributions of the eigenvalues, as follows. Define centering and 
scaling constants as

μ1 = Nρ2
1 , ν1 = N1/2M−1/6ρ

4/3
1

μM = Nρ2
M , νM = N1/2M−1/6ρ

4/3
M

Under some conditions, it was shown in [32] that w1 := Nλ̂1/σ 2−μ1
ν1

converges to the Tracy–Widom distribution of order 2, w1 ∼ F2(s)

[33]. Similarly, it was shown in [34] that w M := Nλ̂M/σ 2−μM
νM

con-
verges to the reflected Tracy–Widom distribution of order 2, w M ∼
1 − F2(−s).

For the largest eigenvalue, we are interested in a threshold u1
for which the probability that λ̂1 > u1 is zero. Using the distribu-
tion of λ̂1, we find

P (λ̂1 > u1) = 0 ⇔ P
( N λ̂1

σ 2 − μ1

ν1
>

N u1
σ 2 − μ1

ν1

) = 0

⇔ N u1
σ 2 − μ1

ν1
= F −1

2 (1)

where F −1
2 (s) is the inverse CDF, and f1 := F −1

2 (1) ≈ 2.24. It fol-
lows that

u1 = σ 2

N (μ1 + ν1 f1)

= σ 2

N

[
Nρ2

1 + N1/2M−1/6ρ
4/3
1 f1

]
= σ 2ρ2

1β2
1 , β2

1 (N) := 1 + N− 1
2 M− 1

6 ρ
− 2

3
1 f1 ,

(B.2)

which shows a refinement of (B.1) by a factor β2
1 . For the smallest 

eigenvalue, we require a threshold uM for which the probability 
that λ̂M < uM is zero, and we find similarly

uM = σ 2ρ2
Mβ2

M , β2
M(N) := 1 − N− 1

2 M− 1
6 ρ

− 2
3

M f1 . (B.3)

Appendix C. Noise power shifting using γ

In Eq. (33) ff. we introduced a parameter γ to shift the noise 
subspace such that it becomes a small but negative component 
in a covariance difference equation. This appendix shows a more 
detailed derivation for a slightly more general case.
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As the noise power shift is sometimes positive, sometimes neg-
ative, we introduce a more general notation that captures this in a 
single expression. Thus, let

+ − j

[X1 αX2 γ I]� =
+ −

[A 0 | B 0] (C.1)

Here, j = ±1, and the superscripts +, − and j indicate the “sig-
nature” of each component, i.e., the entries of the corresponding 
signature matrix J. Details on this notation can be found in [17]. 
Upon squaring this equation, we obtain

X1XH
1 − α2X2XH

2 + jγ 2I = AAH − BBH . (C.2)

Thus, for j = +1, we add γ 2I, and for j = −1, we subtract γ 2I in 
the covariance difference.

Assume X1 has N1 samples, and X2 has N2 samples. Then the 
data model for (C.2) is

N1R̂1 − α2N2R̂2 + jγ 2I ≈ Hs(N1R̂s1 − α2N2R̂s2)HH
s

− H f (α
2N2R̂ f 2 − N1R̂ f 1)HH

f + N1R̂n1 − α2N2R̂n2 + jγ 2I

where we ignored crossterms in the correlations (they diminish 
by order 1/N whereas the term we are interested in is of order 
1/

√
N). The objective is to choose j and γ such that N1R̂n1 −

α2N2R̂n2 + jγ 2I is guaranteed to be (slightly) negative definite, and 
thus becomes part of BBH that also contains the interference sub-
space.

Let λ̂1 be the largest eigenvalue of R̂n1 and λ̂M be the smallest 
eigenvalue of R̂n2, and define

t = α2N2λ̂M − N1λ̂1 .

It is sufficient that jγ 2 < t . Note that we can have t > 0 or t < 0, 
depending on α and the number of samples.

As shown in Appendix B, a good estimate for t is

t = σ 2[α2β2
M(N2) (N

1
2
2 − M

1
2 )2 − β2

1 (N1) (N
1
2
1 + M

1
2 )2] (C.3)

where β1(N) was defined in (B.2) and βM(N) in (B.3). We set j =
sign(t) and γ = √|t|. This result is used in (33).

Appendix D. Convergence of correlations

Consider two signals s1[k] and s2[k], k = 0, · · · , N − 1. Each sig-
nal has Np < N samples unequal to zero and the other samples 
are zero. The nonzero parts are random signals with zero mean 
and unit variance, and overlap with Nx < Np samples. Stack the 
two signals into a data matrix Sx of size 2 × N and compute the 
sample correlation matrix R̂x = 1

N SxSH
x . Similarly, let Sy be a 2 × N

data matrix with two equal-variance zero-mean stationary random 
sources, and compute R̂y = 1

N SySH
y .

To have equal auto-correlations in R̂x and R̂y , the variance of 
the sources in Sy should be set lower by a factor � = Np/N < 1. 
The cross-correlations in R̂x go to zero as O ( Nx

N2 ). For R̂y , taking 
into account the factor �, they go to zero as O (

N p

N2 ). As Nx < Np , 
the cross-correlations go faster to zero for the nonstationary (in-
termittent) signals. Essentially this is because cross-products of 
samples in the non-overlapping parts are all zero. In conclusion, 
the sample correlation matrix for the nonstationary signals con-
verges faster to its model than for stationary signals.
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