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for Hurricane Flood Risk Analysis in a Coastal
Watershed
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bFaculty of Civil Engineering and Geosciences, Delft Technical University, Delft, The
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Abstract

In recent years significant emphasis has been placed on quantifying coastal flood

hazards in the U.S. using high resolution 2-D hydrodynamic and nearshore wave

models. However, these studies are computationally expensive and often neglect

to consider the flooding that arises from the combined hazards of precipita-

tion and storm surge in coastal watersheds. This paper describes a method

to stochastically simulate a large number of combinations of peak storm surge

and cumulative precipitation to determine the hydraulic boundary conditions

for a low-lying coastal watershed draining into a semi-enclosed tidal bay. The

method is computationally efficient and takes into consideration five tropical

cyclone characteristics at landfall: windspeed, angle of approach, landfall lo-

cation, radius of maximum winds, and forward speed. A precipitation gage

network and tidal gage data were used, along with observations from over 300

tropical cyclones in the Gulf of Mexico. A Non-parametric Bayesian Network

was built to generate 100,000 synthetic storm events and used as input to an

empirical wind set-up model to simulate storm surge within a tidal bay and

at the downstream boundary of the watershed. Based on the results, probable

combinations of cumulative precipitation and peak storm surge for the water-

shed during hurricane conditions are determined. These boundary conditions

can be easily incorporated into a coastal riverine model to determine flood risk

in the watershed.
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1. Introduction

Integrated flood risk assessment is critical for the determination of appro-

priate flood mitigation strategies for heavily populated, low-lying coastal areas.

While the number of deaths from tropical cyclones have decreased with the de-

velopment of advanced prediction and early warning systems, economic losses5

have increased exponentially due to rapid population growth and urban develop-

ment near the coast. It is estimated that today almost half of the global popula-

tion lives within 150 km of a coastline [1]. These highly urbanized coastal areas

are threatened by the combined impacts of severe storms, especially hurricane-

induced storm surge and heavy precipitation. Communities along the U.S. Gulf10

Coast and in delta regions around the world, where storm surge often coincides

with heavy precipitation, are especially vulnerable.

In the United States, the 100-year Federal Emergency Management Agency

(FEMA) floodplain is used as the primary instrument for delineating and miti-

gating flood risk. This boundary, indicating the 1% percent chance of inunda-15

tion each year from riverine or coastal flooding, drives federal flood insurance

requirements, household protective actions, and local mitigation policies. It also

determines where future development can take place and what it will look like.

However, increasing evidence suggests that the FEMA 100-year floodplain is a

poor predictor of actual flood damage and that in some watersheds, upwards20

of 50% of insured losses are occurring outside of the demarcated flood hazard

areas [2]. This is especially apparent along the Gulf Coast where insured assets

account for 41% of flood insurance policies in the United States, but amounted

to more than 80% of claim payouts between 1978 and 2010 [3].

One of the primary contributing factors to floodplain inaccuracy is the age of25

existing FEMA floodplain maps; more than 60% of the maps are at least 10 years

old and in some coastal areas, maps date back as far as the mid-to-late 1970s [4,

5]. In addition to their age, riverine floodplains are derived using deterministic

hydrologic and hydraulic models based on a single design storm. This leads to
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compounding uncertainties since the modeled floodplain is only as accurate as30

the information used to define them, including the original assumptions made

about the design storm. Other sources of inaccuracy include: limited historical

hydrometeorological observations [6]; spatio-temporal variations in precipitation

[7]; and changes in climate, topography, and land use conditions [8].

Similarly, early FEMA coastal floodplains were generated using a design35

storm, or Standard Project Hurricane (SPH), which was intended to represent

a probable, yet infrequent hurricane along a section of the coast [9]. These

design storms were often based on a single storm characteristic: intensity, de-

rived from historical storm data prior to 1960. The relative calm in the period

prior to 1960 and the oversimplification of hurricane behavior typically led to40

an underestimation of surge heights at a particular coastal location [10]. In

subsequent studies, attempts were made to assess return period surge using his-

torical water level records; however, the lack of extreme water level events at

a single coastal location coupled with anonymously high single-storm records

made these estimates difficult to resolve [10]. In response, a move toward gen-45

erating a probabilistic suite of storms was made in the 1970s and 1980s and a

Joint Probability Method (JPM) approach based on cluster analysis of hurri-

cane characteristics at landfall was developed to generate parametric wind fields

at landfall [11]. However, the sources of uncertainty in this approach were quite

high, primarily due to lack of historical data [10].50

With the advent of complex computing and high-resolution storm surge and

wave models, renewed interest in improving joint probability methods (JPM)

for coastal modeling has taken place. Recently, JPM-Optimum Sampling (JPM-

OS) was introduced as a method to reduce the number of representative syn-

thetic storms needed for simulating storm surge at any particular section of the55

coast. This method is being applied in many of the current FEMA Flood In-

surance Studies (to be completed in 2020). However, even with the application

of the JPM-OS approach, probabilistic modeling using high-resolution storm

surge models is computationally demanding, requiring large computer clusters

to run [10, 12, 13]. Furthermore, despite the marked improvement in coastal60

modeling and storm surge mapping, the new FEMA floodplain maps still neglect

to consider the flood risk resulting from the interaction between rainfall-runoff
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and storm surge at the coast. In small, low-lying coastal watersheds, where

hydrologic response to precipitation is nearly instantaneous, determining the

joint exceedance of precipitation and storm surge is critical for assessing flood65

risk. Here, small variations in downstream elevation extend far upstream, im-

peding the propagation and exit of the precipitation-induced flood wave from

the watershed.

This paper introduces a method for quantifying hurricane boundary condi-

tions for small, urbanized coastal watersheds draining into a tidally influenced,70

semi-enclosed bay systems using a non-parametric Bayesian network (NPBN)

based on Gaussian copulas. The NPBN is used to generate a suite of synthetic

tropical cyclones and the events are input into an empirical wind setup model to

stochastically simulate a large number of storms in the bay system. The mod-

eled combinations of storm surge and precipitation provide an initial estimate75

of joint exceedance probabilities for a coastal watershed.

As a case study, the method is applied to the Clear Creek Watershed lo-

cated 32 km southeast of Houston, Texas on the west side of Galveston Bay

(see Section 3). Galveston Bay creates a complex environment where surge is

often higher on the north and west side of the bay than on the east due to80

local wind-setup caused by counter-clockwise hurricane winds over the Bay [14].

Furthermore, the combined impacts of little topographic relief, slow or limited

infiltration, rapid urban development, regional subsidence and sea level rise, and

intense storms have led to frequent and severe flooding in the watershed. In the

next section, we provide an overview of non-parametric Bayesian networks and85

introduce key terms. This is followed by a description of the study area and an

overview of the method, model results, discussion and conclusion.

2. Bayesian Networks

Bayesian Networks (BN) are probabilistic graphical models that can be used

to represent a large number of interdependent variables [15, 16, 17]. The vari-90

ables in the network can be either discrete or continuous, and their dependency

on one another is quantified by conditional probability functions. One of the

primary advantages of BNs is that the probability distribution functions in the

graph can be easily updated to reflect changes in the joint distribution (i.e., in-
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ference). Given their characteristics, BNs can be efficiently sampled to generate95

large synthetic data sets [18].

BNs are composed of a number of children (successor) and parent (prede-

cessor) ”nodes”, which represent a set of random variables (X1, X2, ..., Xn). In

this paper, the nodes are labeled on the set of positive integers. An ordered

pair of elements of this set is called an ”arc” which represents the dependence100

between each parent-child pair in the graphical network and has a defined direc-

tion such that the graph remains acyclic. Together, the nodes and arcs represent

the dependence structure between the variables in the model, where the joint

distribution of the child nodes can be computed as a product of conditional

probability functions:105

f(x1, x2, ..., xn) =

n∏
i=1

f(xi|xPa(Xi)) (1)

where Pa(Xi) is the set of parent nodes of xi, with i = 1, ..., n. For nodes

without parents, Pa(Xi) = ∅ and the marginal density is used in Equation 1.

In this study, a non-parametric continuous Bayesian network (NPBN) based

on copulas is applied as presented in [17, 19, 18]. In this model, each con-

tinuous random variable is represented by its empirical distribution (hence the110

non-parametric part of the name in this class of BNs) and the dependence struc-

tures in the network are built using bivariate copula of the one-parameter class.

Although the term semi-parametric BNs may be more appropriate to describe

this type of BN (since the procedure relies on one-parameter copulas), to remain

consistent with the previous literature, we use the term NPBN in this paper.115

An example NPBN with three nodes is shown in Figure 1.

NPBNs have several advantages over traditional regression methods for ap-

plication to environmental data. For example, environmental data often exhibits

non-linear behavior making it difficult to represent using traditional regression

models. NPBNs can capture and model the interdependencies between complex120

environmental variables. Moreover, the graphical nature of a NPBN makes the

dependence configuration between environmental variables explicit [20].

In an NPBN, the arcs between each parent-child pair (i.e., Pa(Xi) → Xi)

are represented by one-parameter (conditional) copulas. In its most general

form, the bivariate cumulative distribution function FXi,Xj
(xi, xj) of the ran-125
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Figure 1: Example non-parametric Bayesian network (NPBN) with three nodes (X1,...X3)

connected by three arcs. In this paper, each arc represents a bivariate (conditional) copula of

the one-parameter class.

dom variables Xi and Xj becomes

FXi,Xj (xi, xj) = C[FXi(xi), FXj (xj)] (2)

where FXi
(xi) and FXj

(xj) are the marginal distributions of Xi and Xj and

there exists a copula, C, that describes their dependence structure [21]. The

advantage of using copulas is that the dependence structure of FXi,Xj (xi, xj)

is captured by the copula and the selection of the copula is independent of the130

marginal distributions of Xi and Xj [22, 23, 24].

To build a continuous NPBN, it is necessary to specify an empirical marginal

distribution for each variable and a rank correlation coefficient for each arc. Like

bivariate copulas, which are parameterized by (conditional) product moment

correlations, the NPBN is parameterized using (conditional) rank correlations.135

The rank correlation measures the monotonic dependence between the cumula-

tive distribution functions of two random variables. The rank correlation, r, of

two variables, Xi and Xj , is

r(Xi, Xj) = ρ(FXi(xi), FXj (xj)) (3)

where ρ is the product moment correlation of the cumulative distribution func-

tions FXi and FXj of Xi and Xj respectively. There exists a non-unique struc-140

ture of the NPBN such that the (conditional) rank correlation for each variable,
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Xi, with m parents, Pa1(Xi), ..., Pam(Xi), the arc, Paj(Xi) → Xi, can be

written as {
r(Xi, Paj(Xi)), j = 1

r(Xi, Paj(Xi)|Pa1(Xi), ..., Paj−1(Xi)), j = 2, ...,m
(4)

where j is the non-unique sampling order.

The assignment of the sampling order in Equation 4 in the case of the Gaus-145

sian copula necessitates that the resulting correlation matrix is positive definite.

However, depending on the assignment and ordering of arcs of the NPBN, the

unconditional rank correlations will be calculated recursively. For example, sup-

pose the product moment correlation matrix of interest has elements ρ1,2, ρ1,3

and ρ2,3, where ρ1,3 is related to ρ1,3|2 (which was specified in the assignment150

(4) through r1,3|2, together with r1,2 and r2,3) through the expression

ρ1,3|2 =
ρ1,3 − ρ1,2 · ρ2,3√
(1− ρ21,2)(1− ρ22,3)

. (5)

and ri,j = ( 6
π ) · arcsin(

ρi,j
2 ). This structure is shown in Figure 1.

Notice that for the small example above, an alternative assignment could

have been r1,2, r1,3 and r2,3|1. For these two small examples, the resulting de-

pendence structure of the NPBN through the Gaussian copula would be iden-155

tical; however, it becomes clear that for larger structures this would not be the

case. The dependence structure (summarized as a correlation matrix) can be

further investigated using the validation procedures described in Appendix A.3.

For a complete overview of NPBNs the reader is referred to [18].

Prior to 2003, the application of copulas to natural systems was limited,160

resulting in only a handful of relevant publications between 1979 and 2003 [25].

Since then, the volume of literature in the hydrological sciences has increased

significantly. Copulas have been widely applied to hydrologic problems rang-

ing from the analysis of return period flows in river systems [26, 20, 27] to

precipitation forecasts [28] and, more recently, water levels in coastal systems165

[29, 30, 31, 32]. Copulas have also been applied to study hurricane character-

istics in the U.S., but have been limited to analyzing the joint probabilities of

wind and surge [33]. To our knowledge, this paper provides the first exam-

ple of an extension of bivariate copulas to multivariate prediction of hurricane

characteristics for the Gulf of Mexico.170
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3. Study Area

The Houston-Galveston region lies on the banks of Galveston Bay and is

the fastest growing coastal area in the Gulf of Mexico. Galveston Bay is the

seventh largest estuary in the United States. It has a surface area of approxi-

mately 1554 km2 and is a shallow, wind-driven system with an average depth175

of approximately 3 meters. The Bay is separated from the Gulf of Mexico by

two barrier islands: Bolivar and Galveston. Currently, more than 1.6 million

people live in the Hurricane Evacuation Zones bordering Galveston Bay and it

is projected that this number will approach 2.4 million by 2035 [34].

On average, the Houston-Galveston region experiences a tropical cyclone180

once every nine years and a major hurricane (Category 3 or greater) once every

25 years [35]. During the 1900 Hurricane, surge at the coast exceeded 4 m

and to date, it remains the deadliest hurricane in U.S. history. While tropical

cyclones have the potential to cause considerable storm surge in the region, they

also bring with them heavy rainfall. The most notable rainfall events include185

Tropical Storm Claudette (1979) and Tropical Storm Allison (2001). Wahl et

al. [36] note that there is a high risk of compound flooding in the Houston-

Galveston region and that the frequency with which compound flood events

occur along the U.S. Atlantic and Gulf Coasts is expected to increase under

changing climate conditions.190

In this paper we focus on the Clear Creek Watershed, located in the rapidly

developing region on the west side of Galveston Bay, 32 km south of Houston

(Figure 2). The Watershed is approximately 72 km long and covers 666 km2. It

is drained by two primary tributaries that feed Clear Lake, an estuarine lake with

an average depth of 1.0 m, which empties into Galveston Bay via two outlets near195

Kemah, Texas. This analysis focuses on determining boundary conditions (i.e.,

storm surge and precipitation) for the Clear Creek Watershed. Like at many

locations along the Gulf of Mexico, historical data near the watershed outlet is

limited (<25 years), making it difficult to statistically determine return period

surge at the downstream boundary of the watershed (Figure 2). In this study,200

we utilize the longer tidal record located at Galveston Pier 21 in combination

with local precipitation gages and the full tropical cyclone data set for the Gulf

of Mexico to generate boundary conditions for the Clear Creek Watershed.
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Figure 2: Figure showing the location of the study area on the west side of Galveston Bay

and relevant tide and precipitation gages. The circle designates the location where frequency

surge information is needed for coastal floodplain studies.

4. Method

The method applied in this analysis consists of several steps shown in the205

schematic in Figure 3. First, historical tropical cyclone data was collected for

the Gulf of Mexico and a database of tropical cyclone characteristics for land-

falling storms was created using ArcGIS and Matlab (I). Observed hourly and

predicted water levels were collected from a tidal gage and used to calculate

maximum daily residual water levels (RWL) near the entrance to Galveston210

Bay (II). Average daily precipitation was calculated using six rainfall gages sur-

rounding the Clear Creek Watershed (III). Then, the dependence structures

between the recorded hurricane characteristics at landfall, peak surge, and cu-

mulative precipitation were analyzed through copulas, and a non-parametric

Bayesian network was constructed and validated (IV). The NPBN was used to215

generate 100,000 synthetic hurricanes which were simulated using an empiri-

cal wind set-up model for Galveston Bay to calculate surge at the downstream

boundary of the watershed for the synthetic hurricane events (V). Finally, the

modeled results were fitted to probability distributions and used to evaluate

annual return frequencies for peak storm surge and cumulative precipitation in220
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Figure 3: Schematic work flow for generating joint exceedance probabilities of peak storm

surge and cumulative precipitation in a coastal watershed.

the watershed (VI). The method is described in more detail in the following

sections.

4.1. Data Collection

Tropical Cyclones. Several datasets were combined to generate historical storm

characteristics used in this study. The primary dataset is the historical tropi-225

cal cyclone track information obtained from the National Oceanic and Atmo-

spheric Administration (NOAA) National Climatic Data Center’s International

Best Track Archive for Climate Stewardship (IBTrACS) [37]. IBTrACS com-

bines best track data from more than ten meteorological centers worldwide for

observed tropical cyclones since 1848. For the purpose of this study, only land-230

falling tropical cyclones in the Gulf of Mexico have been considered.
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Figure 4: Landfall locations, angle, and intensities of Tropical Cyclones in the Gulf of Mexico

(1848-2014).

The IBTrACS dataset was modified in ArcGIS 10.2 to remove all storms that

did not enter the Gulf of Mexico or make landfall on the Gulf Coast. For each

of the remaining 596 storms, a landfall location was determined where the track

intersected the coastline and were assigned cyclone characteristics from one time235

step - typically six hours - before landfall (Figure 4). The cyclone characteristics

obtained from the IBTrACS database include windspeed, pressure, and radius

to maximum winds (Rmax). In addition, angle of approach and forward speed

were calculated in Matlab using the latitude-longitude and time-step data for

each storm. The landfall location variable was calculated as distance relative to240

Cancún, Mexico, along the simplified coastline. A summary of available data

corresponding to tropical cyclones in the Gulf of Mexico is shown in Table 1.

Storm Surge. Historic water levels were collected at Galveston Pier 21 tide

gage (Station ID: 8771450), which is located in the harbor between Galveston

and Pelican Islands near the entrance to Galveston Bay (location: 29◦18.6′N ,245

94◦47.5′W ). The Pier 21 gage is maintained by NOAA and is the longest

operating tide gage in the Gulf of Mexico. It has a fairly comprehensive record
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Table 1: Summary of data collected for tropical cyclones in the Gulf of Mexico (1848-2014).

Variable Units Record No. Obs Range Mean St.Dev.

Windspeed (kts) (1851-2014) 596 15-150 59.80 26.73

Pressure (mb) (1852-2014) 229 913-1013 981.57 22.95

Rmax (km) (2001-2014) 59 5-150 33.05 25.29

Approach Angle (deg) (1851-2014) 596 4.6-359.9 245.45 65.44

Forward Velocity (mps) (1851-2014) 596 0.22-23.85 5.62 2.96

Landfall Location (km) (1851-2014) 596 568.6-4778.2 3021.2 1046.35

Storm Surge (m) (1900-2014) 385 -0.28-4.50 0.20 0.44

Precipitation (mm) (1900-2014) 414 0-358.17 28.99 55.01

of hourly water levels beginning January 1, 1908 and extending to December

31, 2013. The long-term linear trend of sea level rise at the gage between

1908 and 2014 was previously studied by NOAA; it was calculated to be 6.34250

+/- 0.24 mm/yr based on monthly sea level data and includes corrections for

seasonal variations in coastal ocean temperatures, salinities, winds, atmospheric

pressures, and ocean currents [38]. The hourly verified water levels collected

at the gage were adjusted for sea level rise and are reported herein relative

to NAVD88 based on the present (1983-2001) National Tidal Datum Epoch255

(NTDE) established by the Center for Operational Oceanographic Products

and Services (CO-OPS). For the purpose of this study, it is also assumed that

the gage location is fairly well-protected from wave activity.

To find the peak storm surge caused by a given tropical cyclone at the

gage, the hourly predicted water level (i.e., tide) was subtracted from the SLR-260

corrected verified water level (i.e., storm tide). For each of the storms that made

landfall on the Gulf of Coast, the maximum residual water level (RWL) in the

48 hours surrounding landfall (+/- 48 hours) (when available) was taken as the

peak storm surge. This was considered to be effective since no two surge events

occur within the same five-day period and this also accounts for the time-lag265

from any surge generated by storms that make landfall far from the study area.

Finally, this time period accounts for the majority of the rainfall associated with
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a landfalling event.

In addition, peak water levels for known tropical cyclones were also compared

to the maximum water levels reported by NOAA for the top ten events at270

the gage [39]. For the Unnamed 1915, Unnamed 1919, and Ike 2008 tropical

cyclone events, the maximum verified water level did not match the water levels

reported by NOAA. For these events, the maximum storm surge was estimated

by subtracting the maximum predicted tide level during the period missing

from the record from the maximum water level reported by NOAA. This was275

considered to be a conservative approach. The database was also extended to

include the 1900 Galveston Hurricane, a known extreme surge event and the

deadliest hurricane in U.S. history [40]. Since no predicted tides are available

for this date, the maximum water level is used to represent storm surge. Based

on the hurricane record, no significant events occurred in the Houston-Galveston280

region between 1900 and 1908 making this a reasonable extension of the data

set.

Cumulative Precipitation. Daily precipitation was collected from the National

Climatic Data Center (NCDC) for six gages in the vicinity of the Clear Creek

watershed (Figure 2). The daily precipitation over the Clear Creek Water-285

shed between January 1, 1900 and December 31, 2013 was calculated using the

Thiessen polygon method to spatially average the rainfall over the watershed

for the combination of available gages on each day in the record. To identify

cumulative precipitation corresponding to peak surge, the five-day cumulative

precipitation surrounding the date of hurricane landfall was calculated. The290

decision to use the five-day cumulative rainfall was made based on the average

time to peak of the hyetograph for rainfall events during hurricanes. For the

majority of events, greater than 90% of the total cumulative rainfall occurs dur-

ing the first 72 hours after landfall when analyzed over a 10-day period. No lag

was applied to the rainfall data as the response time of the watershed is nearly295

instantaneous (i.e., peak daily rainfall coincides with peak daily runoff within

one day) and, for the purpose of this study, only the cumulative rainfall near

the time of peak surge is of interest.
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4.2. NPBN Construction & Validation

In this section, we provide further details about the construction and val-300

idation of the NPBN applied in this study. The bivariate copulas giving rise

to the dependence structure under investigation are assumed to come from the

Gaussian (Normal) copula and have the following distribution function:

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)), (u, v) ∈ [0, 1]2 (6)

where Φ−1 is the inverse Gaussian cumulative distribution and ρ is the (con-

ditional) product moment correlation. The advantage of using the Gaussian305

Copula to describe the joint distributions in the model is the rapid calculation

of the synthetic storm data set in subsequent steps.

The Gaussian copula assumption was tested against two alternative copu-

las (i.e., Gumbel and Clayton) using the semi-correlation ([24]) and Cramér-

von-Mises tests described in [41] and provided for reference in Appendix A.2.310

Together, these three copula models were used to investigate the ranges of de-

pendence that are usually observed in environmental data, (See discussion of

tail dependencies in Appendix A.1). The results of the goodness-of-fit tests for

variable pairs where the absolute value of the correlation coefficient, ρ, exceeds

0.1 are shown in Table 2. In general, the tests show that the Gaussian copula is315

an acceptable approximation indicated by low Cramér-von-Mises statistic values

and small differences in semi-correlations (bolded values in Table 2). For those

variable pairs in which the Gaussian copula was not the best fit, the difference

in the Cramér-von-Mises statistic with respect to the Gaussian copula is suffi-

ciently small. Additional discussion of the results of these tests is included in320

Appendix A.2.

After validating the application of the Gaussian Copula to describe the de-

pendence relationships between the variables, the NPBN was constructed in

Matlab and the UniNet software package was used to visualize the model [42].

To maximize the number of samples used to build the network (i.e., 302), the325

NPBN was built using the empirical distributions and joint data for six variables:

wind, forward velocity, angle, landfall location, storm surge, and precipitation.

Arcs were drawn between nodes where absolute value of the (conditional) cor-

relation coefficient, ρ, exceeded 0.1.
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Table 2: Goodness-of-Fit tests. Semi-correlation and Cramér-von-Mises statistic (CMn) for

pairs where |ρ| > 0.1 . ρNW , ρNE , ρSE , and ρSW are the correlation coefficients calculated

in the four quadrants (e.g., northwest, northeast, southeast, and southwest), respectively, for

each pair of variables. Relevant semi-correlations and lowest CMn values are bolded.

ρ ρNW ρNE ρSE ρSW CMn (Ga) CMn (Gu) CMn (Cl)

Windspeed Angle -0.11 0.16 -0.35 0.14 -0.06 0.31 0.44 0.43

Windspeed Surge 0.36 0.28 0.31 0.12 -0.07 0.41 0.40 0.91

Velocity Angle 0.39 -0.21 0.38 0.10 0.29 0.21 0.18 0.46

Velocity Landfall Loc. 0.26 -0.12 0.44 0.06 0.00 0.33 0.25 0.66

Angle Landfall Loc. 0.71 -0.26 0.32 0.35 0.55 0.24 0.44 0.86

Landfall Loc. Precipitation -0.13 0.34 -0.18 -0.28 -0.04 1.16 1.00 1.76

Surge Precipitation 0.38 0.33 0.36 -0.12 -0.02 0.45 0.28 1.16

In addition, radius to maximum winds was added to the NPBN as a user-330

defined random variable (UDRV). Radius to maximum winds (Rmax) has only

become part of the tropical cyclone record since the early 2000s when its impor-

tance was recognized for predicting hurricane intensity and damage. Therefore,

there are only 59 records of Rmax in the IBTrACS database for the Gulf of

Mexico. We used these records to establish relationships between Rmax and335

the other variables and found correlations (|ρ| > 0.1) between Rmax and max-

imum wind speed and landfall location. Rmax was added to the NPBN model

as a continuous UDRV with a log-normal parametric distribution. The NPBN

structure was validated using the tests described in the supplementary material

and is shown in Figure 5.340

Because the empirical wind set-up model for the bay requires that all storms

make landfall perpendicular to the coast, the NPBN is conditioned on a fixed

angle of 235 degrees relative to due east. After conditioning, the remaining

probability distributions are updated and the NPBN is sampled to generate

100,000 synthetic storms that were then input into the empirical wind set-up345

model. Two examples demonstrating the flexibility of the NPBN are included

in Appendix A.4.

4.3. Probabilistic Empirical Wind Set-up Model

Of particular interest in this study is the return period surge and precipita-

tion for the Clear Creek watershed. To obtain surge heights at the downstream350

boundary of the Clear Creek watershed, we use a simplified 1-D, empirical wind

15



Figure 5: The Bayesian network (BN) structure for tropical cyclones impacting the Galveston

Bay Region. The nodes are presented as histograms and the mean and standard deviations

for each variable are given. The (conditional) rank correlation coefficients are shown on each

arc.
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Figure 6: Comparison of modeled output with observed data at USGS Gage SSS-TX-GAL008

for Hurricane Ike (2008).

set-up model for the bay as proposed by [43]. In this model, a parametric hur-

ricane wind field is built using values of pressure and Rmax. Forward velocity

and landfall location are used to translate the synthetic hurricane along a track

perpendicular to the coast. Storm surge at the coast is calculated by solving355

the one-dimensional depth integrated shallow water equations, and storm surge

within the bay is calculated based on a parametric relation between wind set-

up and storm surge at the open-coast. Hindcasts of historic storms show that

the model provides a reasonable estimate of storm surge in the bay within 0.5

meters [43]. A comparison between observed and model results for Hurricane360

Ike (2008) is plotted in Figure 6.

To estimate the annual return periods for storm surge at the downstream

boundary of Clear Creek, we fit the output from the probabilistic model to the

three-parameter generalized Pareto distribution (GPD):

y = f(x|k, σ, θ) = (
1

σ
)(1 + k

(x− θ)
σ

)−1−
1
k (7)

where k is the shape parameter, σ is the scale parameter, and θ is the location365

parameter. This distribution is often used to model the tails of extreme data

and has been applied in previous studies of storm surge [10]. The distribution

has three forms: the tail increases exponentially (k = 0); the tail decreases as a

polynomial (k > 0); the tail has a finite limit (k < 0). For the entire data set,
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the best fit was a GPD distribution where k = 0. However, to avoid completely370

unrealistic estimates of surge within Galveston Bay, we chose to fit the upper

tail of the data where surge exceeded a minimum threshold of 0.55 m, which

resulted in a negative shape parameter and finite limit for storm surge at our

location of interest. The probable maximum surge was then evaluated using the

equation:375

x = θ − σ

k
(8)

The GPD distribution was adjusted for the annual return frequency of tropi-

cal cyclones exceeding the minimum threshold in Galveston Bay using the Pois-

son estimator, λ̂, based on the average annual number of tropical cyclones.

5. Simulation Results

The results from the NPBN-based approach were visually compared to an-380

nual return frequency graphs from two recently published studies that used the

ADvanced CIRCulation (ADCIRC) Model to analyze storm surge in the Galve-

ston Bay region (Figure 7). Both studies apply the Joint Probability Method-

Optimum Sampling (JPM-OS) approach to reduce the number of representative

synthetic storms needed for simulation [44, 13]. However, even with the appli-385

cation of the JPM-OS approach, probabilistic modeling using high-resolution

storm surge models is computationally demanding, requiring large computer

clusters to run [10, 12, 13].

As seen in Figure 7, the NPBN-approach produces lower predictions of surge

in the low-frequency region as compared to other studies; however, there is390

general agreement on the 50-year return period surge. It is important to note

that neither the FEMA [13] study, nor the study by Ebersole et al. [44] discuss

the validity or accuracy of their results with respect to historical data. When

compared to the available observed data at Eagle Point (1994-2014), our model

shows similar limitations to existing studies: it over-predicts storm surge in395

the high-frequency region of the graph and potentially under-predicts in the

low-frequency portion of the graph. However, the frequency of observed events

is not well-understood due to lack of historical data in Galveston Bay. Most

importantly, we see here that there is little consensus on the return frequency

values for surge in the Galveston Bay region even when using high-resolution,400
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Figure 7: Comparison of modeled output at the downstream boundary of Clear Lake with

existing studies published by Ebersole et al. [44] and FEMA [13]. The empirical distribution

of available storm surge data at Eagle Point (1994-2014) is shown in red for comparison.
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computationally expensive models. While the two existing studies generally

agree on a value for the 1/50 year storm surge, there is no consensus for other

return periods, making it difficult to establish a benchmark against which to

verify our model results.

Figure 8 shows the joint probability contours for peak surge and cumulative405

precipitation. To calculate the joint probability of peak surge and precipitation,

the variables were fit to their marginal distributions and the iso-probability

contours were mapped in the probability density space. The contours for the

10-, 50-, 500-, and 1000-year recurrence intervals are shown as black dashed

lines and the contour for the 100-year event is shown as a black solid line. For410

hazard mitigation in the U.S., we are particularly interested in the 1% annual

chance of occurrence for storm surge and precipitation. For comparison, the

contours are plotted against the available observed data at Eagle Point (1999-

2014), the closest tide gage to Clear Creek. Based on the results, we see that

when considering both storm surge and precipitation, Hurricane Ike exceeded a415

100-year event.

6. Discussion

In this section, we discuss the limitations of the methodology and provide

suggestions for future work. We acknowledge that there are multiple sources

of uncertainty in this study and divide them into three categories: (1) uncer-420

tainty due to characterization of historical data and approximation of statistical

distributions; (2) accumulated errors and assumptions in the model; and (3) un-

certainty due to potential changes in climate and topology over time that are

not accounted for in this approach.

First, while the BN configuration presented in this study was a reasonable425

fit given the data available, it may not be the only solution possible. Previous

studies have noted the importance of tropical cyclone characteristics such as

radius to tropical storm winds, RTS , and tropical cyclone intensity prior to

landfall in predicting surge height [12, 10]. For example, Resio et al. [10] argue

that the use of landfall characteristics tends to underestimate tropical cyclone430

intensities offshore since storms typically loose energy as they make landfall.

However, in many cases, historical data pertaining to offshore characteristics is
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Figure 8: Joint probability plot for cumulative precipitation (mm) and peak storm surge (m).

The 10-, 50-, 500-, and 1000-year contours are shown as black dashed lines. The 100-year

contour is shown as a solid black line. Observed values at Eagle Point (surge) and in Clear

Creek (precipitation) are shown in red.
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difficult to obtain or non-existent. Future work should explore the uncertainty

associated with using landfall characteristics to build the Bayesian network and

strive to incorporate additional data from offshore observations when available.435

Second, for simplicity, we assumed that all of the dependence structures in

the Bayesian network can be described using the Gaussian copula. However,

based on the statistical tests described in Section 4.2, we observed that there

are some bivariate distributions that display non-Gaussian behavior. Most sig-

nificantly, the results indicate that surge and precipitation may exhibit upper440

tail dependence that may be better described using the Gumbel copula. Us-

ing the Gaussian copula to describe this dependence structure may have led

to conservative estimates of combinations of peak surge and precipitation for

extreme (i.e., low-frequency) events. Future work should further explore the

relationships between these two variables.445

In addition, we apply a simplified empirical wind-setup model to estimate

surge within the bay system. This model has noted weaknesses, including: over-

simplification of the coastline and bay bathymetry, assumption that all storms

make landfall perpendicular to the coast, and constant wind fields prior to

landfall. Despite these limitations, the lack of consensus between the different450

studies using the JPM-OS approach for ADCIRC and the comparison of our

results with historical data lead us to believe that our method is a reasonable

alternative to computationally-expensive modeling. While we recommend that

the simplified model be further improved, we find that proposed approach is

appropriate for estimating return period surge, especially in areas with limited455

historical data when considering computational time and processing power.

Third, while we corrected for sea level rise and tested the surge and pre-

cipitation for trends in the data, changes in topography and bathymetry over

the previous century (1900-2014) may have impacted the integrity of the water

levels recorded at Galveston Pier 21. Human and nature-induced changes to the460

barrier islands and Galveston Bay, such as the construction of a concrete seawall

on Galveston Island, dredging of the Houston Ship Channel, and long-term and

episodic erosion of the barrier islands, may have changed the response of the

system to tropical cyclones over time.

In future work, we also recommend investigating time-dependent rainfall and465
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surge intensities. For example, during Hurricane Carla (1961) surge reached 2.42

m and remained above 0.67 m for multiple days. In this case, a longer period of

rainfall might be of consequence because the surge would not allow the rainfall-

runoff to exit the watershed, thus causing an exacerbated backwater profile. In

contrast, during Hurricane Claudette (1979) the surge was lower; nevertheless,470

the rainfall spanned multiple days causing extreme flooding in the watershed.

Future studies should incorporate the timing and intensity of rainfall with the

timing and intensity of surge to account for worst-case scenario flood events for

the watershed.

7. Conclusion475

In this paper, we present a method for obtaining an initial approximation

of joint exceedance probabilities for peak surge and cumulative precipitation in

the Clear Creek Watershed in Southeast Texas. We present a statistical model

based on historical hurricanes in the Gulf of Mexico. The model was built using

the IBTrACS storm database and gage records for extreme water levels and480

precipitation in the study region, and was validated for historical events where

storm surge exceeded 0.5 meters at the coast. The results indicate that the mod-

eling scheme provides similar results for return frequency approximations when

compared to high-resolution coastal models previously applied to the Galveston

Bay system. In addition, the model provides a first estimate of probable precip-485

itation associated with return-period surge values and, to our knowledge, this is

the first study of joint probabilities for precipitation and surge from hurricanes

in the Gulf Coast region. The advantage of this methodology is that it is flexi-

ble and computationally efficient. Nevertheless, large uncertainties remain due

to assumptions made in the dependence structure of the NPBN (i.e., Gaussian490

copula), simplifications in the empirical wind set-up model (i.e., average depth

and circular bay), and quality of observed data.

While the results from this study provide valuable information for the Clear

Creek Watershed in the Houston-Galveston region, future work will focus on

expanding the model to include observed data for more watersheds in region495

and for other sections of the Gulf Coast. Such results will provide critical infor-

mation for flood risk assessment in vulnerable communities along the U.S. Gulf
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Coast. The model can also be applied to event-response planning since it can be

used as a probabilistic prediction tool and has potential real-time applications

(see Appendix A.4). As the frequency and intensity of compound flood events500

increase under changing climate, and urban settlements grow around coastal

cities, it will become increasingly important to fully and accurately assess the

risk of compound flooding in coastal areas.
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thesis, Université Paris 8 (1959).
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Appendix A. Supplementary Material

This appendix provides additional information pertaining to the statistical

tests referenced in this paper. First we present an analysis of the historical670

data collected for the paper. Then, we describe the copulas that were tested for

the non-parametric Bayesian network (NPBN), the goodness-of-fit tests, and

a justification of the choice of the Gaussian copula. Finally, we provide the

equations used to validate the structure of the NPBN and present the results.

Appendix A.1. Copulas675

There are many families of copula models available (see [24]), however, Gaus-

sian and Archimedean Copulas, such as Clayton, Frank, and Gumbel, are most

often used for hydrologic analysis [22, 45, 32]. In our study we compare the

performance of three of the most popular copulas (Gaussian, Gumbel, Clayton)

in order to determine whether certain characteristics modeled by these families680

are present in the bivariate distributions for the variables included in the NPBN

model for Galveston Bay.

Gaussian Copula. Equation A.1 presents the Gaussian copula

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)), (u, v) ∈ [0, 1]2 (A.1)

where ρ is the (conditional) product moment correlation, Φ is the bivariate

Gaussian cumulative distribution, and Φ−1 is the inverse of the 1-D Gaussian685

cumulative distribution function (cdf).

Gumbel Copula. Equation A.2 presents the Gumbel copula

Cδ(u, v) = exp[−([−log(u)]δ + [−log(v)]δ)(1/δ)], δ ≥ 1 (A.2)

where the copula is parameterized by δ.

Clayton Copula. Equation A.3 presents the Clayton copula

Cα(u, v) = (u−α + v−α − 1)−α, α ∈ [−1,∞] (A.3)

where the copula is parameterized by α.690
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Together, these three copulas model cover a range of tail dependencies usu-

ally observed in the data, where the upper tail dependence coefficient λU for

random variables Xi and Xj is defined as

λU = lim
u→1

P (Xi > F−1Xi
(u)|Xj > F−1Xj

(u)) = lim
u→1

P (U > u|V > u) (A.4)

Lower tail dependence is defined similarly, but for the lower quadrant of

the joint distribution. In the case of the three copulas presented herein, the695

Gaussian copula exhibits no tail dependence (i.e., λU = 0), the Gumbel copula

exhibits upper tail dependence (i.e., λU = 1 − 21/δ), and the Clayton copula

exhibits lower tail dependence (i.e., λU = 21/α).

A complete introduction to copulas and multivariate models can be found

in the books written by [46] and [23], and a review of applications and types of700

copula models can be found in [47].

Appendix A.2. Goodness-of-Fit Tests for Copulas

In this study we apply two tests to determine whether certain characteristics

of the copulas under investigation are present in the data: semi-correlations and

the Crámer-von-Mises statistic.705

Semi-correlations. Semi-correlations are used to test how well a chosen copula

fits the tail(s) of a data set [24]. We compare the overall correlation, ρ, for the

normal transform of the original data, Zλ, to the Pearson’s product moment

correlation coefficient (i.e. semi-correlation) in the ”tail” quadrants. That is

upper right (ρne) and lower left (ρsw) for positively correlated data, and upper710

left (ρnw) and lower right (ρse) for negatively correlated data. In general, if

the absolute value of the semi-correlation is greater than the overall correlation,

then the data is considered to be tail dependent.

For positively correlated variables Xi and Xj , the semi-correlations are com-

puted as follows:715

ρne = ρ(Zi, Zj |Zi > 0, Zj < 0) (A.5)

ρsw = ρ((Zi, Zj |Zi > 0, Zj < 0) (A.6)
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where (Zi, Zj) are the standard normal transforms of Xi and Xj . Similarly, if

the variables Xi and Xj are negatively correlated, the semi-correlations are:

ρnw = ρ(Zi, Zj |Zi > 0, Zj > 0) (A.7)

ρse = ρ((Zi, Zj |Zi < 0, Zj < 0) (A.8)

Cramér-von Mises statistic. The Cramér-von Mises (CM) Statistic performs as720

a ”blanket test” for the entire data set [41]. The CM statistic is the sum of the

squared differences between the empirical copula and the parametric estimate

(e.g., Gaussian, Gumbel, or Clayton) for a given number of samples. In general,

the copula with the lowest CM Statistic is the best estimate for the data set.

The test statistic for a sample of length n is computed as725

CMn(u) =
∑
|u|
{Cθ̂n(u)−B(u)}2,u ∈ [0, 1]2 (A.9)

where B(u) =
∑

1(Ui ≤ u) is the empirical copula and Cθ̂n(u) is a parametric

copula with parameter θ̂n estimated from the sample.

The results from both tests applied to the variables in our study are presented

in Table A.3 and plots for interesting cases are shown in Figures A.9(a-d). The

results indicate that the Gaussian copula behaves well for many of the variable730

pairs (i.e., 7/15) indicated by low CMn statistic values and small differences

in the semi-correlations (see bolded values in TableA.3). The CMn statistic

indicates that the Gumbel copula is the best fit for six pairs and that the Clayton

copula is the best fit for two pairs. In the case of five of the eight pairs in which

the Gaussian copula is not the best fit, the difference in the CMn statistic is735

small with respect to the Gaussian copula (≤ 0.03) (i.e., Windspeed-Velocity,

Windspeed-Landfall Location, Windspeed-Surge, Velocity-Angle).

However, for four variable pairs (i.e., Velocity-Landfall Location, Distance-

Surge, Distance-Precipitation, and Surge-Precipitation), the differences between

the CMn Statistic for the Gaussian and Gumbel copulas is larger (0.08-0.17). In740

general, these variable pairs display only slight upper tail dependence and the

Gaussian copula is still a valid assumption. The four variable pairs are plotted in

Figure A.9. Interestingly, surge and precipitation display upper tail dependence

characteristic of the Gumbel copula and in future studies this should be further

evaluated.745
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Table A.3: Semi-correlations and Cramér-von Mises statistics (CMn) for all variable pairs

analyzed in the Bayesian network. Relevant semi-correlations and lowest CMn values are

bolded.

ρ ρNW ρNE ρSE ρSW CMn(Ga) CMn(Gu) CMn(Cl)

Windspeed Velocity 0.04 0.15 -0.03 0.14 -0.02 0.24 0.31 0.23

Windspeed Angle -0.11 0.16 -0.35 0.14 -0.06 0.31 0.44 0.43

Windspeed Landfall Loc. -0.07 -0.08 -0.10 0.25 -0.09 0.28 0.44 0.25

Windspeed Surge 0.36 0.28 0.31 0.12 -0.07 0.41 0.40 0.91

Windspeed Precipitation 0.00 0.25 0.12 -0.09 -0.03 0.30 0.36 0.39

Velocity Angle 0.39 -0.21 0.38 0.10 0.29 0.21 0.18 0.46

Velocity Landfall Loc. 0.26 -0.12 0.44 0.06 0.00 0.33 0.25 0.66

Velocity Surge 0.11 -0.14 -0.12 0.00 -0.11 0.16 0.26 0.17

Velocity Precipitation -0.07 -0.13 -0.15 -0.34 0.04 0.15 0.18 0.15

Angle Landfall Loc. 0.71 -0.26 0.32 0.35 0.55 0.24 0.44 0.86

Angle Surge 0.01 0.19 -0.30 0.16 -0.11 0.34 0.35 0.34

Angle Precipitation -0.03 0.10 -0.19 -0.24 -0.01 0.35 0.35 0.37

Landfall Loc. Surge -0.09 0.54 -0.18 -0.09 0.11 1.99 1.82 2.26

Landfall Loc. Precipitation -0.13 0.34 -0.18 -0.28 -0.04 1.16 1.00 1.76

Surge Precipitation 0.38 0.33 0.36 -0.12 -0.02 0.45 0.28 1.16

Appendix A.3. Validation of the Network

In this study, we utilize two tests to validate the network construction: the

validation tests presented by [18] and the d-calibration score presented by [42].

The objective of these tests is to determine whether the normal copula hypoth-

esis is valid for the network and whether the network structure is appropriate.750

To do so, it is necessary to calculate the ”closeness” between the determinant

of the empirical rank correlation matrix (DER) and the determinant of the

empirical normal rank correlation matrix (DNR), and the ”closeness” between

the DNR and the determinant for a non-parametric Bayesian network based on

normal copulas (DBN). The DER is calculated by transforming the marginals755

to uniforms (normalizing) and then calculating the product moment correlation

of the transformed variables. Similarly, the DNR is obtained by transforming

the marginals to standard normal and then transforming the product moment

correlations to rank correlations using the formula:

r(Xi, Xj) =
6

π
arcsin

(
ρ(Xi, Xj)

2

)
(A.10)

If the DER is within the 90% confidence bounds of the DNR (and, similarly,760

the DNR is within the 90% of the DBN), the network structure is considered to
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(a) (b)

(c) (d)

Figure A.9: Graphs of selected variable pairs transformed to standard normal where the

difference between the CMn Statistic for the Gaussian and Gumbel copulas is larger than

0.08. The correlation coefficients for the whole sample and the semi-correlations for each

quadrant are given.

be valid [18].

Based on this test, we find that the Gaussian copula is a good assumption for

the network presented in this study. The DER was within the 90% confidence

bound of the DNR for when up to 1500 samples are drawn and the DNR was765

within the 90% confidence bound of the DBN for a sample size of about 600.

This indicates that the joint normal copula is an adequate assumption for the

BN in this study.

d-Calibration Score. Because it is possible that the DNR and DER can be equal

even for a situation in which the two matrices are not equivalent, a new score770

measuring the validation of the network has been presented by [42] which mea-

sures the closeness between two correlation matrices using a ”d-calibration”
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score. The score is 1 if the matrices are equal and 0 if one matrix contains

perfectly correlated variables and the other does not. The closer the score is to

1, the closer the two matrices are to each other.775

The d-calibration score is calculated as follows [42]:

d(Σ1,Σ2) = 1−
√

1− η(Σ1,Σ2) (A.11)

η(Σ1,Σ2) =
|Σ1|1/4|Σ2|1/4

| 12Σ1 + 1
2Σ2|1/2

(A.12)

where Σ1 and Σ2 are the correlation matrices. In the case of our network, the

distance between the empirical and empirical normal rank correlation matrices

under the normal copula is 0.9526. This within the uncertainty bounds (90%)

for a sample of about 2000. The distance between the empirical normal and780

normal rank correlation matrices under the normal copula is 0.9088. This is

within the uncertainty bounds for a sample of about 700. This confirms that

the BN construction is valid for our data set.

Appendix A.4. Conditionalizing the Network

To demonstrate the flexibility of the model, we present two states of the785

NPBN: (1), where the landfall location and windspeed are conditionalized to

generate probable estimates for surge and precipitation and (2), where surge is

conditionalized to lend insight into the hurricane characteristics that lead to high

surge at Galveston Pier 21. Figure A.10 shows the BN conditionalized for angle

of approach and windspeed. In this network, we have chosen to model a strong790

Category 3 (windspeed = 110 kts) hurricane making landfall perpendicular to

the coast (angle=235 degrees). This provides interesting information about

landfall location as we see that these types of hurricanes are more likely to

make landfall in the central portion of the Gulf Coast (near the Upper Texas

Coast Coast or Western Louisiana Coast). As expected, surge increases with795

respect to the base case (Figure 5).

Similarly, we can derive valuable information about the types of hurricanes

that could produce high storm surge at Galveston Pier 21. For example, con-

ditionalizing the NPBN for storm surge of 4.2 meters, yields windspeeds of 106

kts, or a medium Category 3 hurricane (Figure A.11). Furthermore, we see800
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Figure A.10: Example conditionalized network for windspeed and landfall location.

that the predicted precipitation corresponding with a 4.2 meter surge will be

approximately 170 mm which is a significant increase with respect to the base

case.
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Figure A.11: Example conditionalized network for surge.
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