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Abstract. This paper presents a hierarchy of compressible two-phase flow models. It is
shown that using Chapman-Enskog expansions in the limit of zero relaxation time toward
the various equilibria that exist in these flows, a full set of models of decreasing complexity
can be constructed. At the top of this hierarchy, we have a complete seven equation model
with two pressures, two velocities and two temperatures while the simplest model is given
in the inviscid case by the Euler equations of compressible flows. We also show how some
non-equilibrium effects can be retained in these models under the form of second-order
dissipative terms. This paper concludes by some representative test-cases.

1 A general description of an immiscible binary fluid

1.1 Description as a continuous medium

We consider a binary fluid which consists of two components labelled 1 and 2. At the
microscopic level, these two fluids are considered as immiscible and unable to mix. Thus
for any subdomain Ω of the fluid domain D, the fluid i occupies a volume Ωi such that
Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = φ. In each subdomain Ωk, we assume that the fluid can be
described by the Navier-Stokes equations for compressible fluid that writes

∂ρk

∂t
+ divρkuk = 0 for k = 1, 2

∂ρkuk

∂t
+ divρkuk ⊗ uk +∇(pk) = div(τ

k
) for k = 1, 2

∂ρkek

∂t
+ div(ρkek + pk)uk = div(τ

k
uk)− div(Q

k
) for k = 1, 2

(1)
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with the usual notations, ρk denotes here the density of the fluid in the subdomain Ωk, uk

the vector velocities, pk the pressures and ek = εk + u2
k/2 the specific total energies, with

εk the specific internal energies. These equations are supplemented by two complete state
laws that can be given for instance by two relations of the form εk = εk(sk, ρk) where
sk are the entropies and by the definition of the stress tensors τ

k
and heat fluxes Q

k
.

However, from a macroscopic point of view, the previous description of this binary fluid is
inadequate and an homogeneized description have to be preferred. This description will
use two distributions called the volume fractions α1(x, t) and α2(x, t) with value in [0, 1]
such that for an arbitrary subvolume Ω ⊂ D, the volume occupied by fluid i will be :

V ol(Ωi) =
∫

Ω
αidx

Obviously, we have α1 + α2 = 1. In a region composed of a pure fluid, αi ∈ {0, 1}.
However, in Eulerian numerical schemes, the space steps can include many microscopic
pure fluid entities and we have to define a thermodynamically consistent homogeneized
model for the macroscopic zones where α ∈]0, 1[. For this purpose we introduce the
following definitions. If Mass(Ωi) is the mass of component i contained in the volume Ω,
the apparent and ”true” densities ρ̃i and ρi will be defined by

Mass(Ωi) =
∫

Ω
ρ̃idx and ρi = ρ̃i/αi (2)

and we proceed similarly to define the apparent entropies s̃i and the “true” entropies si

of the two components. The thermodynamical states of the two fluids are defined by two
complete state equations giving the internal energy εi as a function of entropy and density
in the form εi = εi(si, ρi) such that a Gibbs relation holds for the two components :

dεi = Tidsi − pidτi with τi = 1/ρi , Ti = (
∂εi

∂si

)τi
and pi = (

∂εi

∂τi

)si
(3)

With these defintions, the thermodynamical state of the mixture appears as a function of
the thermodynamical variables s1, s2, τ1, τ2, α. To complete the description of the system,
we add to these variables, two mechanical variables u1 and u2 representing the velocities
of the two fluids. The binary fluid is then completely described by the 7-vector (in 1-D)
q = (s1, s2, τ1, τ2, α, u1, u2)

t and a model for this binary fluid will require to find 7 closure
relations for these variables. To formulate, these closure relations, it may be useful to
define mixture variables for this binary fluid. The local density and mass fraction Yi at
any x and t of the fluid domain is given as :

ρ = ρ̃1 + ρ̃2 = α1ρ1 + α2ρ2 and Yi = ρ̃i/ρ = αiρi/ρ (4)

Since entropy and energy are extensive variables, the mixture specific entropy s and
specific internal energy are defined by

ρs = ρ̃1s1 + ρ̃2s2 = α1ρ1s1 + α2ρ2s2

ρε = ρ̃1ε1 + ρ̃2ε2 = α1ρ1ε1 + α2ρ2ε2

(5)
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Similarly, for the mechanical variables u1 and u2, we introduce the velocity of the centre
of mass u and the diffusion velocities wi defined by :

u = Y1u1 + Y2u2 and wi = ui − u (6)

1.2 A thermodynamically consistent two-phase model

The usual way to obtain a two-phase model results from taking some average of the
single phase equations (1). Standard references on these procedures are the books [10],
[7]. The two phase models that results from these techniques are a system composed of
two mass conservation equations

∂αkρk

∂t
+ divαkρkuk = Γk for k = 1, 2 (7)

two momentum equations

∂αkρkuk

∂t
+ div(αkρkuk ⊗ uk) +∇(αkpk) = div(αkτ k

) + pI∇αk + uΓΓk + Md
k for k = 1, 2

(8)
and two equations expressing the conservation of energy

∂αkρkek

∂t
+ divαk(ρkek + pk)uk = div(αkτ k

uk)− div(αkQk
) + pI

∂αk

∂t

+hΓ
kΓk + Md

k.uI + QI for k = 1, 2

(9)

In these equations, Γk represents the averaged mass transfer between the phases, uΓ and
hΓ

k a velocity and enthalpy whose product with Γk model the momentum and energy
transfer between the phase associated with mass transfer, pI is the averaged interface
pressure, Md

k is the averaged momentum transfer between phases, uI is a velocity whose
product with Md

k models the kinetic energy transfer between the phases and finally QI is
the interface heat transfer.

These equations form an open system and modelling assumptions are needed for the
terms pI , Γk, u

Γ, hΓ
k , Md

k, uI , QI , τ k
, Q

k
in order to obtain a closed system. Following the

phenomenological approach of classical irreversible thermodynamics, these closure rela-
tions will be choosen in order to ensure a positive entropy production. Thus, we will write
the entropy balance equation in the form

∂ρs

∂t
+ divFs = ∆s (10)

where Fs is the entropy flux and ∆s, the entropy production term has to be positive.
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Using Gibbs relations (3) we obtain after some algebraic manipulations of (7)-(8)-(9)

∂ρs

∂t
+ div(α1ρ1s1u1 + α2ρ2s2u2) =

α1

T1

τ
1

: ∇u1 +
α2

T2

τ
2

: ∇u2 (11.1)

−(
div(α1Q1)

T1

+
div(α2Q2)

T2

) (11.2)

+
p1 − pI

T1

D1α1

Dt
+

p2 − pI

T2

D2α2

Dt
(11.3)

+[(
1

T1

− 1

T2

)hΓ
1 − (

u1

T1

− u2

T2

)uΓ + (
|u1|2
2T1

− |u2|2
2T2

)]Γ1 (11.4)

+[
uI − u1

T1

− uI − u2

T2

]Md
1 (11.5)

+[
1

T1

− 1

T2

]Q1 (11.6)

+[
g1

T1

− g2

T2

]Γ1 (11.7)

where gk = hk− skTk is the chemical potential. The first two lines are ”classical” and are
present in the entropy evolution equation for single phase flows. In the sequel, we will
assume that the heat flux and viscous tensor models are given as in single phase model
by second-order dissipative terms that ensure a positive entropy production. Assume now
that the volume fraction evolution equation can be written in the form :

∂αk

∂t
+ uα∇αk = α̇k (12)

then the line (11.3) can be re-written

(
p1 − pI

T1

− p2 − pI

T2

)α̇1 + (
p1 − pI

T1

(u1 − uα)− p2 − pI

T2

(u2 − uα))∇α1 (13)

Let us examine the second term of this expression. In [4] is made the following interesting
remark. If system (7)-(8)-(9) and (12) is reduced to its first-order term, this system
is unconditionally hyperbolic and the field associated to the eigenvalue uα is linearly
degenerate if and only if uα ∈ {u1, u2, u} where u is the centre of mass velocity defined by
(6). The values u1 or u2 correspond to the original model of Baer and Nunziato [1]. Since
this property is an important one, we will adopt this recipe and set uα = βu1 + (1− β)u2

with β ∈ {0, 1, Y1}. With this choice, it is easy to define pI such that the second term

in (13) is indentically equal to zero. This gives pI = a1(1−β)
a1(1−β)+a2β

p1 + a2β
a1(1−β)+a2β

p1 with
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ak = (YkTk)
−1. Then, similarly, the line (11.4) can be set to zero, by an adequate choice

of uΓ and hΓ. Finally the entropy evolution equation reduces to

∂ρs

∂t
+ div(α1ρ1s1u1 + α2ρ2s2u2) =

α1

T1

τ
1

: ∇u1 +
α2

T2

τ
2

: ∇u2 (14.1)

−(
div(α1Q1)

T1

+
div(α2Q2)

T2

) (14.2)

+(
p1 − pI

T1

− p2 − pI

T2

)α̇1 (14.3)

+[
uI − u1

T1

− uI − u2

T2

]Md
1 (14.4)

+[
1

T1

− 1

T2

]Q1 (14.5)

+[
g1

T1

− g2

T2

]Γ1 (14.6)

and a positive entropy production can therefore be insured if we set

α̇1 = λp
p1 − p2)

εp

(15.1)

Md
1 = λu

(u2 − u1)

εu

(15.2)

Q1 = λT
T2 − T1

εT

(15.3)

Γ1 =
λg

εg

[
g2

T2

− g1

T1

] (15.4)

where the coefficients λ{p,u,T,g} are of order one while ε{p,u,T,g} are some relaxation time
scales.

2 A hierarchy of two-phase models

2.1 Relaxation times

Equation (14) shows that entropy is produced by disequilibriums between the pressures,
velocities, temperatures and chemical potentials of the two fluids. Therefore, the natural
evolution of the binary fluid drives the system toward an homogeneous state characterized
by a single common pressure, velocity, temperature and chemical potential. The time
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scales ε{p,u,T,g} measure the velocity of this evolution toward equilibrium.
While these time scales depend on many different conditions and may vary from one
experiment to another one, physical evidences show that in a large number of common
situations we have

0 ∼ εp < εu < εT < εg

see for instance [12] for some estimate of these time scales in granular materials. This gives
the opportunity to derive from the models (7)-(8)-(9) a hierarchy of two-phase models that
assume that some equilibrium have been reached.

2.2 Equilibrium models

2.2.1 General procedure

Here, we begin by describing the general procedure allowing to derive reduced models.
For a general discussion on relaxation hyperbolic problems, see [17]. In the sequel, we
concentrate on first-order terms and neglect dissipative viscous stress or heat flux terms.
Consider a first-order system with stiff source term :

∂U

∂t
+ A(U)

∂U

∂x
=

R(U)

ε
(16)

In this equation U = U(x, t) the state vector belongs to Ω, some open subset of IRN .
We are interested in the behavior of the solutions of (16) when the relaxation time ε goes
to zero. Therefore, we expect these solutions to be close to E the subset of IRN defined
by :

E = {U ∈ IRN ; R(U) = 0} (17)

Now, to obtain a reduced model, we look for a solution in the form :

U = M(u) + εV (18)

where M(u) (the Maxwellian) stands for a parametrisation of an element of E . Introducing
this expression in (16) gives :

∂M(u)

∂t
+ A(M(u))

∂M(u)

∂x
−R′(M(u)).V

+ε[
∂V

∂t
+ A(M(u))

∂V

∂x
+ [

∂A

∂U i

V i]
∂M(u)

∂x
− 1

2
R′′(M(u))(V , V )] = O(ε2)

(19)

Let P the projection on ker(R′(M(u))) in the direction of Rng(R′(M(u))), multiplying
(16) by P gives :

∂u

∂t
+ P.A(M(u)).dMu

∂u

∂x
= O(ε) (20)

The reduced model of (16) is thus obtained by neglecting the terms of order ε.

6
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2.2.2 The classical one-pressure two fluid model

We now apply this procedure to the basic two-phase model (7)-(8)-(9) and (12) and
let the relaxation time εp → 0. For the details of the computation see [14]. The following
system is obtained





∂α1ρ1

∂t
+ div (α1ρ1u1) = 0 (21.1)

∂α2ρ2

∂t
+ div (α2ρ2u2) = 0 (21.2)

∂α1ρ1u1

∂t
+ div (α1ρ1u1 ⊗ u1) + α1∇p = 0 (21.3)

∂α2ρ2u2

∂t
+ div (α2ρ2u2 ⊗ u2) + α2∇p = 0 (21.4)

∂α1ρ1e1

∂t
+ div α1 (ρ1e1 + p) u1 = 0 (21.5)

∂α2ρ2e2

∂t
+ div α2 (ρ2e2 + p) u2 = 0 (21.6)

This is the classical two-fluid system used in many two-phase flow studies [6],[19],[20],
[24],[2]. It is known for a long time that this model is not hyperbolic. As a result, the
linearized equations are ill-posed as an initial value problem and exponential growth of
unstable modes can be expected. This fact causes considerable numerical problems for the
approximation of the system (2.2.2). To solve this intrinsic problem in the formulation,
several remedies have been suggested. We just mention here the works [5],[23], [22], [13]
where pressure corrections are used in order to recover hyperbolicity.

2.2.3 One pressure-One velocity model

A step further toward equilibrium is to consider flows where both the pressure and the
velocity are equal. This situation can be investigated in the framework of section 2.2.1
by letting both εp and εu → 0. Analysis of this case can be found in [11] and [16]. This
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model can be written in term of conservative variables t(α1ρ1, α2ρ2, ρu, ρe, α2) as





∂α1ρ1

∂t
+ div(α1ρ1u) = 0 (22.1)

∂α2ρ2

∂t
+ div(α2ρ2u) = 0 (22.2)

∂ρu

∂t
+ div(ρu⊗ u) +∇p = 0 (22.3)

∂ρe

∂t
+ div(ρe + p)u = 0 (22.4)

∂α2

∂t
+ u.∇α2 = α1α2

ρ1a
2
1 − ρ2a

2
2∑2

k=1 αk′ρka2
k

divu (22.5)

This model is hyperbolic with velocity waves in the direction n given by u.n−a, a, u.n+a
where a is the Wood sound speed defined by

1

ρa2
=

α1

ρ1a2
1

+
α2

ρ2a2
2

(23)

2.2.4 Isobaric-Isothermal-One velocity model

If now the relaxation times for pressure, velocity and temperature are small (ε{p,u,T} →
0), the first-order system that we obtain is composed of the well-known multi-component
Euler equations : 




∂α1ρ1

∂t
+ div(α1ρ1u) = 0 (24.1)

∂α2ρ2

∂t
+ div(α2ρ2u) = 0 (24.2)

∂ρu

∂t
+ div(ρu⊗ u) +∇p = 0 (24.3)

∂ρe

∂t
+ div(ρe + p)u = 0 (24.4)

This system is also appropriate to represent multi-component mixture where α1 = α2 = 1.
However, here the requirement of immiscibility of the fluids is translated at the macro-
scopic level by α1 + α2 = 1 while the state law is given by the solution of the system
p2 = p1 and T2 = T1.
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2.2.5 Homogeneous Equilibrium model

The last stage in this procedure consists in assuming that pressures, velocities and
temperatures as well as the chemical potentials are in equilibrium, ε{p,u,T,g} → 0. The
model that results from these assumptions are simply the Euler equations of gas dynamiacs
expressing the conservation of mass, momentum and energy





∂ρ

∂t
+ div(ρu) = 0 (25.1)

∂ρu

∂t
+ div(ρu⊗ u) +∇p = 0 (25.2)

∂ρe

∂t
+ div(ρe + p)u = 0 (25.3)

The state law here results from solving the equations p2 = p1, T2 = T1 as well as g2 = g1. In
practice however, for this model, the state law is often given by experimental correlations,
see [3] for an exemple.

2.3 First-order Chapman-Enskog expansion and near-equilibrium models

The previous class of models have been obtained from the basic two phase model
by assuming that the relaxation times ε{p,u,T,g} vanishes to zero and neglecting terms of
order ε in an asymptotic expansion of the solution. It is possible by using a first order
Chapman-Enskog expansion of the solution to obtain more accurate models that will keep
some influences of non-equilibrium through dissipative terms. We explain here briefly, the
principle of this procedure on the example of the pressure-velocity relaxation. More details
can be found in [18], [14] or [9]. The basic idea of the Chapman-Enskog expansion is to
look for a solution of (16) of the form :

U = M(v) + εV +O(ε2) with V ∈ Rng(R′(M(v))) (26)

Introducing Q the projection on Rng(R′(M(u))) in the direction of ker(R′(M(u))), we see
that (16) is totally equivalent to the following two sub-systems obtained by multiplying
it by P and Q :

∂v

∂t
+ PA(M(v))

∂M(v)

∂x

+εP [
∂V

∂t
+ A(M(v))

∂V

∂x
+ [

∂A

∂U i

V i]
∂M(v)

∂x
− 1

2
R′′(M(v))(V , V )] = O(ε2)

(27)
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and

QA(M(v))
∂M(v)

∂x
−QR′(M(v)).V

+Qε[
∂V

∂t
+ A(M(v))

∂V

∂x
+ [

∂A

∂U i

V i]
∂M(v)

∂x
− 1

2
R′′(M(v))(V , V )] = O(ε2)

(28)

Solving (28) for V gives :

QR′(M(v)).V = QA(M(v)).dMv
∂v

∂x
+O(ε) (29)

Since Q is the projection on Rng (R′(M(v))), equation (29) has a unique solution. Actu-
ally, it can be shown (see ([9]) that (29) can be written :

V = D(v)
∂v

∂x
+O(ε) (30)

that establish that the correction terms expressing non-equilibrium have the form of
second-order terms. Now, introducing this expression into (27) and neglecting terms
of order O(ε2) gives the first-order system :

∂v

∂t
+ PA(M(v))

∂M(v)

∂x

= −εP [A(M(v))
∂

∂x
(D(v)

∂v

∂x
) + [

∂A

∂U i

(D(v)
∂v

∂x
)
i
]
∂M(v)

∂x
− 1

2
R′′(M(v))(D(v)

∂v

∂x
,D(v)

∂v

∂x
))]

(31)
As an example, we will apply this technique to the one-pressure, one-velocity model
described in section 2.2.3. Details of the computation can be found in [9]. The non-
equilibrium corrections satisfies :

λ(u2 − u1) = ρY1Y2(
1

ρ1

− 1

ρ2

)
∂p

∂x
(32.1)

µ(p2 − p1) = α1α2
C1 − C2

α1C2 + α2C1

∂u

∂x
(32.2)

10



Hervé Guillard and Mathieu Labois

where Ck = ρka
2
k with ak the speed of sound in the phase k. One then obtain, the system

(compare with the non-disspative system (22))

∂

∂t
(α1ρ1) +

∂

∂x
(α1ρ1u)− ε

∂

∂x
J1 = 0 (33.1)

∂

∂t
(α2ρ2) +

∂

∂x
(α2ρ2u)− ε

∂

∂x
J2 = 0 (33.2)

∂

∂t
(ρu) +

∂

∂x
(ρ(u)2 + p)− ε

∂

∂x

(
µ

∂u

∂x

)
= 0 (33.3)

∂

∂t
(ρe) +

∂

∂x
(ρe + p)u− ε

∂

∂x
(h1J1 + h2J2 + uµ

∂u

∂x
) = 0 (33.4)

Dα2

Dt
− α1α2

C1 − C2

α1C2 + α2C1

∂u

∂x
− ε

D

Dt

(
1

µ

(α1α2)
2(C1 − C2)

(α1C2 + α2C1)2

∂u

∂x

)
= 0 (33.5)

where D/Dt = ∂/∂t + u.∇ denote the Lagrangian derivative and the expression for Jk

and µ are given by :

Jk =
(ρY1Y2)

2

λ
(

1

ρk

− 1

ρ′k
)
∂p

∂x
(34)

and

µ =
(C2 − C1)

2

µ(
C2

α2

+
C1

α1

)2
=

while the hk are the specific phase enthalpies.

3 Some applications

3.1 Comparison between the complete two-phase and the isobaric-One ve-
locity model

This numerical experiment consider problems where two phases are simultaneously
present at the same location and compare the results obtained with the isobaric-one
velocity model (22) with those obtained by the seven equation model composed of ((7)-
(8)-(9) and the topological equation (12). The closure assumptions used for this model
are the ones of [21]. This computation considers a two-phase shock tube problem where
the initial volume fraction is constant and equal to α1 = 0.5 everywhere in the domain.
On the left side (x < 0.5) the pressure is 109 Pa while it is equal to 105 Pa on the right
side. The velocity is zero at time 0. The discretization is done on a 1000 cells grid and the
CFL number is fixed and equal to 0.6. The results are shown at time 200µs. We compare
in Figure 1 the results obtained with the model (22) with those obtained by the complete
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seven equation model. The numerical method used to solve the seven equation model is
the one described in [21], except that the relaxation procedures have been improved as
described in [15]. The numerical method used to solve the model (22) is described in [16].
The results are in perfect agreement and this confirms that the five equation model (22)
is a correct asymptotic limit of the seven equation model in the limit of zero pressure and
velocity relaxation times. In particular, we observe that even if the initial composition of
the mixture is constant, it evolves in space and time and that this evolution is the same
in the results obtained with the two models.

Figure 1: 5 equation reduced model (left) and 7 equation model (right) for a two-phase shock
tube problem. Computed solutions with 1000 cells (symbols).

3.2 A 3-D interface computation

In this second example, we use the isobaric-one velocity model (22) to compute a
three-dimensional multifluid interface problem. The 3-D model and numerical method
are described in [25] and this test case is from [26]. It computes the interaction of a
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shockwave moving through a low density fluid and interacting with a bubble of high
density fluid. For this three dimensional test-case, the number of mesh vertices was 1.03M
and an explicit three-stage RK was used to advance the solution in time. Figure 2 shows
the three-dimensional pressure contours after 720 time steps at which time the shockwave
has passed through the bubble reflected off the top boundary and passed through the
bubble a second time. These computations shows that the model (22) is not only useful
to compute two-phase flows but that it can also be used to compute interface problems
between two immiscible compressible fluids.

Figure 2: Pressure contours in a 3-D shock-bubble interaction

3.3 Phase separation in a pipe

We consider here in a classical two-phase test case designed to investigate the effect
of gravity induced phase separation. Initial conditions represent a 7.5 m vertical tube
filled with an homogeneous mixture of volume fraction αk = 0.5. Under the effect of
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gravity, the two phases will separate and a final situation where the high density fluid lies
under the light one will be reached. This situation is interesting because obviously the
velocities of the two phase are different. Therefore, it is expected that only a two-velocity
model (either the complete seven equation model or the classical isobaric (2.2.2) one)
can compute this situation. We show here, that near equilibrium models as described
in section 2.3 that retains some non-equilibrium phenomena through dissipative second-
order terms are also able to compute this situation. This computation done in [8] uses
an isothermal model developped in [18] where a non-equilibrium between the two phase
velocities exists throught a Darcy-like law that writes





α1ρ1u1 = α1ρ1u −(ρY1Y2)
2

λ
(

1

ρ1

− 1

ρ2

)
∂p

∂x
+O(ε2) (35.1)

α2ρ2u2 = α2ρ2u +
(ρY1Y2)

2

λ
(

1

ρ1

− 1

ρ2

)
∂p

∂x
+O(ε2) (35.2)

The figure 3 shows the propagation of two waves travelling from the two ends of the pipe
that meet in the middle section of the pipe to form a sharp separation between liquid and
gas.
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Figure 3: Volume fraction and pressure evolution in a sedimentation test case(gravity is here
in the x-direction)
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