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SUMMARY

The main themes of this thesis are the design and analysis of payoff distribution methods
for situations where agents collaborate to generate a utility. For modeling such scenarios,
we majorly focus on the coalitional game theoretic framework that provides mathemat-
ical formalism to study the behavior of rational agents when they cooperate for selfish
interests [69]. We utilize the tools from coalitional game theory to develop mechanisms
for demand-side energy management, namely, energy coalitions, peer-to-peer energy
trading (P2P), and real-time local electricity markets, that can help accelerate the energy
transition [106]. For the solution of resulting games, we design distributed algorithms
that converge to a payoff distribution characterized by stability and fairness. The pri-
mary approach to convergence analysis of proposed algorithms relies on the operator
theory and fixed-point iterations. Finally, we also propose payoff distribution criteria for
awagering-based forecasting market that can help energy generation sources to improve
their forecast.

We start with developing the framework of robust coalitional games, a class of dy-
namic coalitional games where the actual coalitional values are unknown but vary within
known bounds. We formalize a solution of robust games, i.e., the “robust core" and de-
sign two distributed algorithms, namely, distributed payoff allocation and distributed
bargaining, that converge to a consensual payoff distribution in the robust core [13]. We
show convergence of both algorithms that are executed on time-varying communica-
tion networks. We motivate our setup by energy storage optimization as an application
of coalitional resource utilization, which aligns with the idea of sharing economy [65].

The algorithms designed for robust coalitional games have a high computational
burden. Thus, for the implementation of large-scale systems, we exploit the geomet-
ric structure of the solution set, i.e., the core, to develop faster payoff distribution al-
gorithms. We demonstrate the performance of our algorithms by proposing a bilateral
peer-to-peer (P2P) energy trading scheme that empowers prosumers to have control
over trading their energy resources [111]. Our market model (assignment game [98]) al-
lows buyers to have heterogeneous preferences (product differentiation) over the energy
sellers, which can be economic, social, or environmental. For solving the P2P market,
we execute a novel distributed negotiation process over a time-varying communication
network that guarantees stable trading prices in a coalitional game theoretic sense and
satisfies the desired economic properties. Furthermore, as the different points of the
core set treat buyer and seller sides differently, we also designed a bilateral negotiation
mechanism that enables participants to reach a trading contract (r-value) [77], which
fairly divides the resulting market welfare among buyers and sellers.

To generalize the setup of robust coalitional games in which we assume that the core
remains within certain bounds, we introduce a framework for online coalitional games.
In these games, the time variation of coalitional values is not restricted to a set and, con-
sequently, the solution as well. For a dynamic setting of the online games, we then pro-
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Xii SUMMARY

pose two online distributed algorithms for real-time payoff distribution. The goal of a
real-time payoff distribution in an online coalitional game setup is to track a consensus
on the payoff distribution solutions, namely, Shapley value [97] and the core. The online
setup allows us to model real-time markets operating on fast time scales, for example, a
real-time local electricity market [42]. In such markets, we can execute market clearing
very close to the time of delivery, which enables accurate forecasting for the integration
of small to medium-scale RES.

High quality forecasts can help deal with uncertainty effecting the processes, for ex-
ample, uncertainty in weather effecting the wind energy generation [75]. Therefore, we
design a platform for improving predictions via implicit pooling of private information
in return for possible remuneration [124]. Specifically, we design a wagering-based fore-
cast elicitation market platform, where a buyer intending to improve their forecasts posts
a prediction task, and sellers respond to it with their forecast reports and wagers. This
market delivers an aggregated forecast to the buyer (pre-event) and allocates a payoff to
the sellers (post-event) for their contribution. Our mechanism is history-free and gen-
eral, i.e, it does not consider previous performance of forecasters and can accommodate
various forms of predictive distributions, namely, binary, multi-category and continu-
ous. For such a mechanism, we propose a payoff distribution criterion and prove that it
satisfies several desirable economic properties.



SAMENVATTING

De hoofdthema’s van dit proefschrift zijn het ontwerp en de analyse van uitbetalingsdis-
tributiemethoden voor situaties waarin agenten samenwerken om een hulpprogramma
te genereren. Voor het modelleren van dergelijke scenario’s richten we ons voorname-
lijk op het theoretische raamwerk van coalities dat wiskundig formalisme biedt om het
gedrag van rationele agenten te bestuderen wanneer ze samenwerken voor egoistische
belangen [69]. We gebruiken de tools uit de coalitiespeltheorie om mechanismen te
ontwikkelen voor energiebeheer aan de vraagzijde, namelijk het delen van energiebron-
nen via P2P, peer-to-peer energiehandel (P2P) en realtime lokale elektriciteitsmarkten,
die kunnen helpen de energieproductie te versnellen transitie [106]. Voor de oplos-
sing van resulterende spellen ontwerpen we gedistribueerde algoritmen die converge-
ren naar een uitbetalingsverdeling die wordt gekenmerkt door stability en fairness. De
primaire benadering van convergentieanalyse van voorgestelde algoritmen is gebaseerd
op de operatortheorie en vaste-puntiteraties. Ten slotte stellen we ook uitbetalingsver-
delingscriteria voor voor een op weddenschappen gebaseerde voorspellingsmarkt die
energieopwekkingsbronnen kan helpen hun voorspelling te verbeteren.

We beginnen met het ontwikkelen van het raamwerk van robuuste coalitiespellen,
een klasse van dynamische coalitiespellen waarbij de werkelijke coalitiewaarden onbe-
kend zijn maar binnen bekende grenzen variéren. We formaliseren een oplossing van
robuuste games, d.w.z. de 'robuuste kern’ en ontwerpen twee gedistribueerde algorit-
men, namelijk gedistribueerde uitbetalingstoewijzing en gedistribueerde onderhande-
lingen, die convergeren naar een consensuele uitbetalingsverdeling in de robuuste kern
[13]. convergentie van beide algoritmen die worden uitgevoerd op in de tijd variérende
communicatienetwerken.

De algoritmen die zijn ontworpen voor robuuste coalitiespellen hebben een hoge
rekenbelasting. Voor de implementatie van grootschalige systemen maken we dus ge-
bruik van de geometrische structuur van de oplossingsset, d.w.z. de kern, om snellere
algoritmen voor uitbetalingsdistributie te ontwikkelen. We demonstreren de prestaties
van onze algoritmen door een bilateraal peer-to-peer (P2P) energiehandelssysteem voor
te stellen dat prosumenten in staat stelt controle te hebben over de handel in hun ener-
giebronnen [111]. Ons marktmodel (toewijzingsspel [98]) stelt kopers in staat om he-
terogene voorkeuren (productdifferentiatie) te hebben ten opzichte van de energiever-
kopers, die economisch, sociaal of ecologisch kunnen zijn. Voor het oplossen van de
P2P-markt voeren we een nieuw gedistribueerd onderhandelingsproces uit via een in
de tijd variérend communicatienetwerk dat stabiele handelsprijzen garandeert in een
coalitiespel-theoretische zin en voldoet aan de gewenste economische eigenschappen.
Bovendien, aangezien de verschillende punten van de kernset de koper- en verkoper-
zijde verschillend behandelen, hebben we ook een bilateraal onderhandelingsmecha-
nisme ontworpen dat deelnemers in staat stelt een handelscontract (7-waarde) [77] te
bereiken, dat de resulterende marktwelvaart bij kopers en verkopers.

Xiii
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Om de opzet van robuuste coalitiespellen te veralgemenen waarbij we ervan uit-
gaan dat de kern binnen bepaalde grenzen blijft, introduceren we een raamwerk voor
online coalitiespellen. In deze spellen is de tijdsvariatie van coalitiewaarden niet be-
perkt tot een set en dus ook de oplossing. Voor een dynamische setting van de online
games stellen we vervolgens twee online gedistribueerde algoritmen voor voor realtime
uitbetalingsdistributie. Het doel van een realtime uitbetalingsdistributie in een online
coalitiegame-opstelling is om een consensus te volgen over de uitbetalingsdistributie-
oplossingen, namelijk Shapley-waarde [97] en de kern. De online opzet stelt ons in staat
om realtime markten te modelleren die werken op snelle tijdschalen, bijvoorbeeld een
realtime lokale elektriciteitsmarkt [42]. In dergelijke markten kunnen we marktclearing
zeer dicht bij het moment van levering uitvoeren, wat nauwkeurige voorspellingen mo-
gelijk maakt voor de integratie van kleine tot middelgrote RES.

Hoogwaardige voorspellingen kunnen helpen om te gaan met onzekerheid die de
processen beinvloedt, bijvoorbeeld onzekerheid in het weer die de opwekking van wind-
energie beinvloedt [75]. Daarom ontwerpen we een platform voor het verbeteren van
voorspellingen via impliciete pooling van privé-informatie in ruil voor een eventuele
vergoeding [124]. In het bijzonder ontwerpen we een op weddenschappen gebaseerd
marktplatform voor het uitlokken van voorspellingen, waar een koper die van plan is zijn
voorspellingen te verbeteren, een voorspellingstaak plaatst en verkopers hierop reageren
met hun voorspellingsrapporten en weddenschappen. Deze markt levert een geaggre-
geerde prognose aan de koper (pre-event) en kent een uitbetaling toe aan de verkopers
(post-event) voor hun bijdrage. Ons mechanisme is geschiedenisvrij en algemeen, d.w.z.
het houdt geen rekening met eerdere prestaties van voorspellers en is geschikt voor ver-
schillende vormen van voorspellende distributies, namelijk binair, multi-categorie en
continu. Voor een dergelijk mechanisme stellen we een uitbetalingsverdelingscriterium
voor en bewijzen we dat het aan verschillende wenselijke economische eigenschappen
voldoet.
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INTRODUCTION

In this chapter, we provide background and motivation for this thesis by presenting chal-
lenges and opportunities in energy management and market design domains for aiding

the so-called energy transition. We discuss our research objectives and state the organiza-
tion of the thesis.



2 1. INTRODUCTION

1.1. ENERGY TRANSITION

N recent years, climate change emerged as a critical challenge faced by humanity.

As a response to this challenge, global initiatives are being taken in which reform of
the energy sector has a central role. The pathway of this reform in the energy sector is
termed the energy transition, i.e., the transformation from fossil-based to renewable en-
ergy sources (RES) to limit the energy-related carbon emissions [103]. It is estimated that
renewable energy and energy efficiency measures have the potential to achieve 90% of
the required carbon reductions [29]. Within the energy sector, a considerable contribu-
tion to decarbonization can be achieved via electrification of consumption while replac-
ing fossil fuel-generated electricity with low/zero-carbon sources [120]. It is important
to note that the energy transition is not limited to the replacement of energy sources,
instead it is a paradigm shift that concerns the entire system. This system includes all
connected technical, economic, and social sectors. Figure 1.1 shows an ongoing transi-
tion in the energy systems.

In the power sector, the energy transition is being led by the rapid deployment of dis-
tributed energy resources (DER), such as demand-side generators, storage units, electric
vehicles, and flexible loads [10]. These decentralized resources spurring on the demand-
side increase the operational complexity of the system, particularly because of the as-
sociated uncertainty. We can mitigate this uncertainty linked to DERs by employing
demand-side management techniques (e.g., community storage) and by utilizing the
relevant data [108]. Demand-side management limits the impact of uncertainty to reach
the main system while data and analytics allow making high quality predictions thereby
equipping operators to make more informed decisions.

In this thesis, we focus primarily on coalitional solutions for demand-side man-
agement and acquiring energy analytics that can help accelerate the energy transition
[106]. Such solutions reside in the intersection of technical, economic, and social sec-
tors. Thus, their implementation requires the employment of sophisticated mechanisms
on complex infrastructures. Fortunately, with the widespread deployment of sensing,
information, and communication technology our systems can support establishment of
smart solutions. For a demand-side energy management we design mechanisms for en-
ergy communities [65], peer-to-peer energy trading (P2P) [109] and real-time local elec-
tricity markets [42]. Furthermore, for market-based analytics we propose a real-time
payoff mechanism and a wagering based forecasting market that can help generation
sources to improve their forecast.

1.1.1. ENERGY COALITIONS

Motivated by energy transition, consumer behavior across the spectrum of markets is
experiencing a disruptive shift. Driven by social conscience to limit the use of resources
and to reduce wastage, consumers are moving from a “sole-ownership” to a “shared-
ownership” model with guaranteed access [65]. This model is regarded as a shared econ-
omy where examples include car/bike-sharing systems, etc. The applications of shar-
ing economy in the power sector (e.g., community energy storage) can improve cost-
effectiveness, while grid asset management becomes more efficient [65]. Community-
scale collaborative applications have considerable environmental benefits because the
self-consumption of locally generated green energy can be maximized to reduce CO ,
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Figure 1.1: Transition of energy systems [28], CC BY 4.0

emissions. While the value of the sharing economy is not in question, remarkably, struc-
tured platforms to support the deployment of shared energy services, and algorithmic
tools to enable such services, require a significant amount of work [48]. In this thesis, we
develop coalitional game-theoretic mechanisms for energy coalitions utilizing the prin-
ciples of sharing economy.

1.1.2. P2P ELECTRICITY MARKETS

In recent years, power systems have started to evolve towards a more decentralized man-
agement driven by the decentralized generation sources. However, electricity markets
maintained conventional top-down approach for resource allocation and pricing based
[47]. To realize their full potential, prosumers should engage more actively with elec-
tricity markets. Currently the direct participation of prosumers in the whole sale energy
market is technically and economically non-viable, hence small-scale prosumers inter-
act with aggregating entities such as retailers to deliver their excess energy to the grid
[66]. Retailers usually offer a considerably lower price for the energy sold by prosumers,
e.g. feed-in-tariff (FiT), compared to the buying price they charge [44]. To ensure an
economically appealing role of prosumers, P2P energy trading represents a disruptive
demand side energy management strategy [111] that enables prosumers to exchange
energy on their own terms of transactions. However, modelling the P2P interaction of
self-interested agents with possibly conflicting interests poses a significant mathemati-
cal challenge.

In the literature, researchers have utilized various approaches to design P2P energy
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Figure 1.2: Conceptual design of bilateral P2P energy trading platform

trading mechanisms. For example, the authors in [105] and [74] present optimization
based methods, [68] formulates P2P as a matching market, in [115] and [25], the authors
propose a two-tier market for two-levels of energy exchange, i.e., within a group and with
other groups of energy agents. The blockchain based implementations to address pri-
vacy and security in P2P platforms are also addressed [34], [5]. Finally, coalitional game
theory has also received attention from smart-grid researchers in designing of P2P plat-
forms [109], [112]. Generally, A decision-making process of agents in a P2P paradigm en-
visions the application of distributed intelligence to controlling and optimizing the be-
haviour of the consumers that interact through P2P trading networks. Design challenges
involve simultaneous consideration of individual and collective objectives to achieve co-
ordination [104], establishment of an interoperable architecture to allow for interactions
between the heterogeneous domains of energy actors and system operators and consid-
eration of a pressing issues of data privacy [116]. Furthermore, efficient P2P platforms
require development of new rigorous mathematical models to improve distributed com-
putation techniques to tackle the tractability concerns related to modelling of complex
multi-actor and multi-interest energy systems. These systems integrate large amounts
of data from different sources, time scales and granularity. Figure 1.2 shows the concep-
tual design of bilateral P2P energy trading platform. The International Energy Agency in
[35] presents the basic architecture and components required for the implementation of
P2P systems. In this thesis, we attempt to address above mentioned challenges by coali-
tional game theoretic formulation of P2P systems and design distributed algorithms with
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convergence guarantees for the solution of resulting games.

1.1.3. REAL-TIME LOCAL ELECTRICITY MARKETS
One of the key challenges in the large-scale integration of RES is the inherent uncertainty
[131]. This uncertainty considerably complicates the implementation of demand-side
management techniques like local electricity markets, including P2P, that are envisioned
for small RES generators. The prosumers participating in these markets utilize forecasts
of generation or demand for bidding. The accuracy of these forecasts can be improved
by decreasing the lead time [75]. In other words, market clearing closer to the time of
delivery, i.e., in real-time can mitigate the possible imbalance caused by the uncertainty
associated with RES. The adoption of real-time markets has shown a significant potential
in the power system sector [118]. However, very little work has been done towards real-
time local electricity markets [42]. The mechanisms for such markets require a large
amount of information exchange and execution of negotiation processes on fast time
scales. In this thesis, we introduce a framework for online coalitional games to model a
real-time market clearing for local electricity markets.

We note that the applications described in Sections 1.1.1, 1.1.2 and 1.1.3 share some
important characteristics.

* Large-scale: They can involve a large population of decision makers or agents, i.e.,
prosumers.

e Self-interested: The decision makers cooperate or compete to achieve their desired
local objectives via local decision making. Each decision maker is interested in
maximizing their own utility regardless of the interest of the other decision makers.

 Shared Resources: Although the objectives of decision makers are local, they share
common resources and infrastructures e.g., community energy storage, the com-
mon power grid, etc.

* Locality of information: The agents have a limited knowledge of the overall system
as the communication among them is local and with neighbors only. This limited
information transmission is mandated by the privacy concern.

The research objectives in designing demand-side management solutions for energy
transition are as follows:

* (Obj 1) Present a coalitional game theory based mathematical framework for en-
ergy coalitions that enforce principles of sharing economy and design market
mechanisms that enable real-time and P2P energy trading;

* (ODbj 2) Design consensus-based distributed algorithms that are scalable, fast, ro-
bust and privacy preserving by possibly exploiting the geometric structure of equi-
librium solution.

1.1.4. MARKET-BASED ANALYTICS
The energy transition is characterised by the rise of new actors in the power sector with
complex energy behavior like distributed energy resources, prosumers, electric vehicles,
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and storage. All these energy actors bring high uncertainty to the energy network’s op-
eration and threaten the system’s security [10]. However, at the same time, these energy
actors also generate vast amount of data that can be utilized to mitigate the associated
uncertainty by predicting their behavior. Such predictions can allow system operators to
efficiently fulfill balancing and congestion management requirements, exploit flexibility
on the demand side and help energy generators to make more profitable biding at the
energy markets [95].

Often, the data and information is deemed proprietary which is collected and held
by different owners. The data of one owner can be of an additional value for other own-
ers as well as for data consumers. However, the data owned by firms or individuals are
perceived to have a cost when exposed. For businesses, this cost can be in terms of com-
petitive disadvantage, and for individuals, in terms of privacy loss. This cost of exposing
data can be compensated by offering monetary incentive via market-based platforms,
i.e., data markets. Various designs of data markets are proposed in the literature includ-
ing the platforms that allow bilateral exchange of data, i.e., data in return for data [91],
iterative auction mechanisms for the exclusive allocation of data [21] and more recently
aregression market framework for the forecasting tasks modeled as regression problems
by [82] and [45].

Designing data markets face two main challenges of data valuation and privacy
preservation [1]. The value of data of a particular provider for a buyer, in a market
setting, is in principle a combinatorial problem, computation requirements for which
grow exponentially with increase in number of providers. Furthermore, for personal
data providers the market setup causes depressed prices with increased participation
or because of the presence of externality thus possibly making it non-attractive for the
participants [1]. Similarly, for data owners the competition may come down to collecting
more and more data for maximizing monetary rewards that consequently will diminish
the value of individual contribution.

The issues of data valuation and privacy can be addressed, to some extent, by the so-
called information markets [59]. In these markets, the participants post their predictions
about a given uncertain event and are remunerated according to their prediction’s qual-
ity. The authors in [53] and [56] present forecast elicitation platforms with formal mathe-
matical guarantees on desirable economic properties. Inspired from these forecast elic-
itation platforms, in this thesis, we design a payoff mechanism for a wagering-based
forecasting market with single buyer and multiple sellers. Furthermore, we also design
an online mechanism to evaluate real-time payoffs for markets operating in highly dy-
namic environments. The research objectives in designing market-based anlytics plat-
forms for aiding energy transition are as follows:

* (Obj 3) Present a framework of a market-based platform for probabilistic forecast
elicitation with formal mathematical guarantees on desirable economic proper-
ties;

* (Obj 4) Design an online distributed payoff mechanism for near real-time energy
forecasting markets possibly operating with streaming data.

Remark 1. The mechanisms we design for energy coalitions, P2P paradigm, real-time
markets and market-based analytics platforms are general and can be adopted for wide
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area of applications. We focus on energy applications to stay consistent with our motiva-
tion of accelerating energy transition.

1.2. STRUCTURE OF THE THESIS

Figure 1.3 presents the outline of the thesis and the connections of the chapters.

The contents of each chapter and the related publications are summarized next.

In Chapter 2, we review some mathematical tools and theoretical concepts from
coalitional game theory, operator theory and fixed point theory, frequently exploited
throughout the thesis.

Appendix A collects the basic notation adopted throughout the thesis.

1.2.1. CHAPTER 3: PAYOFF DISTRIBUTION IN ROBUST COALITIONAL GAMES
In this chapter, we develop two distributed algorithms for payoff distribution in dy-
namic coalitional games where the actual coalitional values are unknown but vary within
known bounds. The algorithms are presented as fixed-point iterations of time-varying
operators, namely nonexpansive and paracontractions. Furthermore, we motivate our
framework of “robust coalitional games" by an energy storage optimization application.
This chapter partially answers key research question (Q1) and is based on the following
publications:

* A. Raja and S. Grammatico, "Payoff Distribution in Robust Coalitional Games on
Time-Varying Networks", IEEE Transactions on Control of Network Systems, vol.
9, no. 1, pp. 511-520, 2022.

* A.Rajaand S. Grammatico, "On the approachability principle for distributed pay-
off allocation in coalitional games", 21st IFAC World Congress, vol. 53, no. 2, pp.
2690-2695, 2020.

1.2.2. CHAPTER 4: PEER-TO-PEER ENERGY TRADING VIA COALITIONAL

GAMES

In this chapter, we model a peer-to-peer (P2P) electricity market that enables prosumers
to bilaterally trade energy. For a solution of proposed P2P market, we designed a novel
distributed negotiation algorithm that utilizes the geometric structure of the equilibrium
solution to improve the convergence speed. The convergence analysis of this algorithm
is fundamentally based on the theory developed in Chapter 3. The mechanism guaran-
tees stable trading prices and satisfies the desired economic properties. This chapter is
based on the following publication:

* A. Raja and S. Grammatico, "Bilateral Peer-to-Peer Energy Trading via Coalitional
Games", IEEE Transactions on Industrial Informatics, 2022, (Early Access).

1.2.3. CHAPTER 5: PEER-TO-PEER ELECTRICITY MARKET FOR RESIDEN-
TIAL PROSUMERS

This chapter presents a similar market model for P2P energy trading as in Chapter 4

but characterises the equilibrium point with a different notion of fairness. Specifically,
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the bilateral negotiation mechanism enables participants to converge to the 7-value, a
solution that fairly divides the resulting market welfare among buyers and sellers. This
chapter is based on the following publication:

* A.Raja and S. Grammatico, "A fair Peer-to-Peer Electricity Market model for Res-
idential Prosumers", 2021 IEEE PES Innovative Smart Grid Technologies Europe
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(ISGT Europe), 2021.

1.2.4. CHAPTER 6: ONLINE COALITIONAL GAMES FOR REAL-TIME PAYOFF
DISTRIBUTION

In this chapter, we relax the assumption on dynamic coalitional values made in Chapter
3, i.e., time variation within known bounds. This allows us to introduce a framework for
online coalitional games. We then propose two online distributed algorithms that track
coalitional game theoretic solutions for a real-time payoff distribution. The convergence
is shown to be in the neighbourhood of the time-varying solutions. This chapter is based
on the following paper:

* A.RajaandS. Grammatico, "Online coalitional games for real-time payoff distribu-
tion with applications to energy markets", (under review for journal publication).

1.2.5. CHAPTER 7: A MARKET FOR TRADING FORECASTS
In this chapter, we propose a market-based analytics platform with a single buyer (client)
and multiple sellers. The market design is based on a wagering mechanism that enables
a client to improve their prediction via implicit pooling of information by the sellers. For
a solution, we propose a payoff mechanism and prove that it satisfies several desirable
economic properties. This chapter is based on the following paper:

* A. Raja, P Pinson, J. Kazempour, and S. Grammatico, "A Market for Trading Fore-
casts: A Wagering Mechanism", arXiv:2205.02668 [econ.TH], (under review for
Jjournal publication).

1.2.6. CHAPTER 8: CONCLUSION AND OUTLOOK

In this chapter, we draw some concluding remarks regarding the results obtained and
presented in the previous chapters. We also discuss the achievement of this thesis on
addressing the the key research objectives. Finally, we suggest some open questions for
future research.







THEORETICAL AND MATHEMATICAL
BACKGROUND

In this chapter, we review the mathematical framework of coalitional game theory and
results from operator theory that are frequently exploited throughout the thesis. We refer
to [11] for exhaustive collection of operator-theoretic results and definitions.

11
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2.1. COALITIONAL GAME THEORY

OALITIONAL game theory provides an analytical framework and mathematical for-

malism, to study the behavior of selfish and rational agents, when they are willing
to cooperate. In this thesis, we focus on a particular class of coalitional games, namely
transferable utility (TU) coalitional game, which consists of a set of agents indexed by
7 =1{1,..., N} who cooperate to receive a higher individual return compared to that due
to non-cooperative actions. The utility generated by this cooperation is defined by a
value function v [69]. The TU property implies that the total utility evaluated by a value
function v can be divided among the coalition members, according to a defined criteria.
Formally,

Definition 1 (Coalitional game). LetZ ={1,..., N} be a set of agents. A coalitional game is
apairG = (Z,v) where v : 2L — R is a value function that assigns a real value, v(S), to each
coalition S 7. v(Z) is the value of so-called grand coalition. By convention, v(2) =0. O

For any coalitional game it is desired that the formation of large coalition is never
detrimental to any of the involved agents, i.e., no group of agents can do worse by coop-
erating instead of acting non-cooperatively. This pertains to the mathematical property
of superadditivity.

Definition 2 (Superadditivity). A coalitional game G = (Z,v) is superadditive if for all
S1,S2 < Z it holds that

v(S1US) =v(S))+v(Sy) s.t. S1NSy;=¢.
O

Thus, in a superadditive game, cooperation is always beneficial which makes the for-
mation of a grand coalition 7 a rational choice. Next, the value generated by a coalition
S, i.e., v(9), is distributed among the members of S as a payoff.

Definition 3 (Payoff vector). Let (Z, v) be a coalitional game and S < T be a coalition. For
each i € S, the element x; of a payoff vector x € RIS represents the share of agent i of the
value v(S). |

The two important characteristics of a payoff vector are rationality and efficiency. For
a game with a grand coalition Z, a payoff vector x € R" is said to be efficient if ¥ ;o7 x; =
v(Z). In words, all of the value generated by grand coalition will be distributed among
the agents. Second, a payoff vector is rational if for every possible coalition S € 7 we
have ) ;csx; = v(S). Note that this should also hold for singleton coalitions S = {i} i.e.
x; =2 v(i),Vi € Z. It means that, payoff allocated to each agent should be at least equal to
what they can get individually or by forming any coalition S other than Z.

We assume that each agent i € Z acts rationally and efficiently in the game. Math-
ematically, this means that the payoff vector, given in Definition 3, proposed by each
agent must belong to its bounding set, as formalized next.
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Definition 4 (Bounding set). For a coalitional game G = (Z, v), the set

Xi:z {XERNl ZjEIxj:V(I);
2.1)
Yjesxjzv(S),¥Sclstie S}

denotes the bounding set of an agenti € S. O

Since a rational agent i agrees on a payoff vector in its bounding set X; thus, a mutu-
ally agreed payoff shall belong to the intersection of the bounding sets of all the agents.
Interestingly, this intersection corresponds to the core, the solution concept that relates
to the disinterest of agents, or a sub-coalition of agents, in defecting a grand coalition,
i.e., stability of a grand coalition [92].

Definition 5. (Core): The coreC of a coalitional game (L, v) is the following set of payoff
vectors:

C={xeRY| Y xi=v@),Y x; 2 v(S),¥Sc T}, 2.2)

i€ i€S
where, the term Y_;c1 x; = v(Z) ensures the efficiency and }_;c5 x; = v(S) shows the ratio-
nality of a payoff. O

We note that by using the bounding sets, as in Definition 4, we can write the core as
C=NY, X

The core set ensures stability of the grand coalition however, it does not comply with
the notion of fairness. In fact, different core allocations can treat agents differently with
the possibility of some agents being at advantageous position over the others. Here, the
idea of fairness is characterized by axioms presented by Shapley in [97] and the unique
payoff allocation that satisfies these fairness axioms is known as the Shapley value. Note
that the Shapley value does not necessarily belong to the core set.

Definition 6 (Shapley value). For a coalitional game G = (Z, v), let I1 be the set of all (N!)
permutations of the grand coalition I and, for an ordering of agents o €11, let P{ be the
set of predecessors of i in o with P{ = &. Then, for every agent i € T the Shapley value
¢ (v) assigns the payoff ¢; (v) given by:

1
$iv) =+ Y (wP{ ulih) - v(PY)). (2.3)

*oell

O

Here, we refer to the term (vk (Pl‘.T uf{i}) — vk(Plf’ )) in (6.1) as incremental marginal
contribution which shows the value added by an agent i when it joins the coalition. In
words, the Shapley value assigned to an agent i is its incremental marginal contribution
averaged over all permutations.

All the definitions above are provided for the static form of the coalitional games,
i.e., the value function does not depend on time. However, in this thesis we also address
situation with time-varying value functions and consequently the time-varying cores. In
dynamic context, a coalition generates utility at each time k € N as defined by a value

function v¥.
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Definition 7 (Coalitional game [73, Sec. II-Al). LetZ ={1,..., N} be a set of agents. For
each time k € N, an instantaneous coalitional game is a pair G* = (Z, v*) where v* : 27
R is a value function that assigns a real value, vk (8), to each coalition S <Z. A dynamic
coalitional game is a sequence of instantaneous games, i.e., G = (Z, ) keN)- O

For an instantaneous game, an instantaneous value of a coalition S has to be dis-
tributed as a payoff x* € RS and a rational and efficient payoff of an agent i belongs to
its bounding set [73, Sec. II-B ].

Xl.kzz{xelRNl Y jezxj=v*D),
(2.4)
Yjesxj= vk(S),VScTsit. iES}

Similarly, the core C of an instantaneous coalitional game G k = (Z,v5), k e N, is the fol-
lowing set of payoff vectors:

cwh = {xe RN | ¥ ez xi = vF(@D),

TiesXi = v¥(S),¥S gz}, (2.5)

2.2. OPERATOR THEORY

In this section, we briefly introduce the definitions of the mathematical tools from op-
erator theory and the framework in which we utilize those tools. These definitions are
central to the convergence analysis of our proposed algorithms.

2.2.1. OPERATORS

Let the two non-empty sets be A < R"” and B < R™ then the notation T : A = B shows
that the operator T maps every x € A to a set T(x) c B. If T(x) is singleton then we
can represent the mapping from A to B as T : A — B. Few notations that we will use to
characterize operator T are,

¢ domain as dom(T) := {xe€ A| T(x) # @};
e range as range(7T) := T(A);
* fixed-points set as fix (T) :={xe A| x€ T(x)}.

Examples: Next, we provide some examples of operators that we use frequently in this
thesis.

* The identity mapping Id is such that Id(x) = x;

* Fora closed convex set C < R”, the mapping proj. : R" — C denotes the projection
onto C, i.e., projc(x) :=argminyec ly — x| ;

* An over-projection operator is denoted by overproj := 2proj. —Id.
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Figure 2.1: Illustration of projection and overprojection of x and y on set C.

2.2.2. OPERATOR PROPERTIES

Let us introduce some properties of the operators that we use in the sequel to prove
the convergence of our proposed algorithms. For a detailed mathematical exposition on
these properties, we refer the reader to [11].

A mapping T:R" — R" is

1. Lipschitz continuous if there exists a scalar ¢ > 0 such that

IT@)-TWI<llx—yl, Vx,yeR™

2. Nonexpansive if it is 1-Lipschitz continuous, i.e.,

ITX)-TWI<lx-yl, Vx,yeR"
3. Averaged if there exists a constant & € (0, 1) such that

1-
1T - T < llx—yll* - Tall(ld— )x) - Ud-T)WI?, VYx,yeR"

4. Contractive if it is £-Lipschitz continuous with ¢ € (0, 1), hence

IT@-TWI<lx—yl, Vx,yeR™

5. Paracontraction if
ITx)-yl<lx=yl, Vx,yeR"

such that x ¢ fix(7), y € fix(T).

2.3. FIXED POINT THEORY

A variety of optimization and consensus tracking problems can be formulated as that of
finding fixed points of operators with certain properties. Mathematically, for a mapping
T : R" = R" the set of fixed points consists of states x* € R” that satisfy x* € T(x").
We denote this set by fix(7). Next we present some fundamental results on existence
(Browder’s fixed-point theorem) and uniqueness of the fixed points of operators.
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Theorem 1 (Existence by Browder). Let C c R" be a non-empty, bounded, closed and
convex set. Let T : C — C be a nonexpansive operator. Then, fix(T) # @. O

Theorem 2 (Uniqueness by Banach). Let T : R" — R" be a contraction operator. Then,
the fixed point of T is unique, i.e., T = {x*}. d

We note that the nonexpansive and paracontraction operators can have several fixed
points, e.g. a nonexpansive mapping Id, which is not a contraction, has infinitely many
fixed points as Id(x) = x, for all x € R”. Similarly, for a paraontraction operator proj, i.e.,
projection on a set C the set of fixed points is C, denoted by fix(proj.) = C.

To find the fixed-points of operators with certain properties (e.g contractive) plethora
of iterative algorithms have been proposed in the literature. Generally, the basic struc-
ture of such algorithms is composed of repeated application of an operator T to generate
a sequence (xX) ey such that x* — x* € fix(T). A fixed-point algorithm in its most basic
form is the so-called Banach-Picard iteration which, for all k € N, is given as

K+ = (5. (2.6)

The iteration in (2.6) converges to a fixed-point of an averaged mapping T [11, Prop.
5.16]. However, Banach-Picard iteration may fail to reach a a fixed-point for an operator
that is merely nonexpansive. In this case, we can use a relaxation of iteration in (2.6)
known as Krasnosel’'skii-Mann fixed-point iteration, stated as

= xR AR (T (xR - x5 @2.7)

where (AF) ¢ is a sequence in [0, 1] such that ¥ gey A* (1 =A%) = +o0.
In this sequel, we formulate our proposed algorithms as fixed-point iterations and use
operator-theoretic tools, presented above, to prove their convergence.

2.4. DISTRIBUTED FORMULATION

In this thesis, we mainly design algorithms for learning a solution of a coalitional game,
i.e., a payoff for each agent i € 7 as in Definition 3. We approach this multi-agent sce-
nario in a distributed paradigm. Thus, our proposed algorithms are generally formulated
as iterative procedures in which, at each step, an agent i estimates a payoff distribution
x; € RN for all agents by applying an operator on the proposals of neighboring agents. To
cast this problem as a fixed-point iteration we use the so-called stacked vector notation
which we elaborate next. An elementary form of fixed-point iteration for an agent i is
given as
xi =T (b

2,
where x € RV is a stacked vector of the form

X1
X2

XN
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Similarly for the mapping T: RY’ — RM* where

11 (x1)

T (x3)
T(x)=

Tn(xN)

the iteration in collective compact form becomes x* = T(x). Finally, in the distributed
setting payoffs estimated by agents independently, i.e., (x;);c7 must eventually reach
consensus.

2.
Definition 8 (Consensus set). The consensus set A< RYN" is defined as:

A:={col(xy,..., xn) RN | x; = x,Vi, j € T). 2.8)






PAYOFF DISTRIBUTION IN ROBUST
COALITIONAL GAMES

In this chapter, we consider a sequence of transferable utility (TU) coalitional games where
the actual coalitional values are unknown but vary within known bounds. As a solution to
the resulting family of games, we formalize the notion of “robust core". Our main contri-
bution is to design two distributed algorithms, namely, distributed payoff allocation and
distributed bargaining, that converge to a consensual payoff distribution in the robust
core. We adopt an operator-theoretic perspective to show convergence of both algorithms
executed on time-varying communication networks. An energy storage optimization ap-
plication motivates our framework for “robust coalitional games".

19
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3.1. INTRODUCTION

Coalitional game theory provides a framework to study the behavior of selfish and ratio-
nal agents when they cooperate effectively. This willingness to cooperate arise from the
aspiration of gaining a higher return, compared to that for behaving as individuals [69].

Specifically, a transferable utility (TU) coalitional game consists of a set of agents
and a value/characteristic function that provides the value of each of the possible coali-
tions [69]. Multi-agent decision problems modelled by TU coalitional games arise in
many application areas, such as demand-side energy management [43] and energy stor-
age sharing [22], in various areas of communication networks [92] and as the foundation
of coalitional control [30].

One key problem studied by coalitional game theory is the distribution of the value
generated by cooperation. Along this research direction, several solution concepts have
been proposed with special attention to criteria like stability and fairness. In payoff dis-
tribution, stability means that none of the agents has an incentive to defect the coalition.
Perhaps the most studied solution concepts in coalitional games that ensures the stabil-
ity of a payoff is the core. The second criterion, i.e., fairness means that the payoff for
an agent should reflect its contribution to or impact in the game. A seminal work on the
axiomatic characterization of fairness is that of Shapley [97], where the unique value sat-
isfying the fairness axioms is in fact known as the Shapley value which depends on the
marginal contribution of each agent. The later depicts the impact each agent has on the
collective value of the coalition. Other related solution concepts are also proposed in the
literature, e.g. the nucleolus and the kernel [61].

We consider the problem of finding a payoff distribution that encourages cooper-
ation, i.e., belongs to the core [85]. Now, to evaluate such a payoff, the value of each
possible coalition is required, which seems implausible in many practical applications,
mainly because an agent cannot be certain about the values that collaborations may
generate. However, one can assume that an agent does hold a belief about the value of
some possible collaborations via informed estimation or mere experience. In practice,
this brings uncertainty to the coalitional values and, consequently, to the core set. It fol-
lows that one should consider solutions that are robust to uncertainty on the coalitional
values and we do that via the notion of robust core.

The robustness aspect in coalitional games falls into the framework of dynamic TU
coalitional games, which has been studied in the literature. Among others, the authors
in [31] analyzed the time consistency of the Shapley value and the core under the tempo-
ral evolution of the game. Then, the authors in [57] characterized three versions of core
allocations for a dynamic game where the worth of the coalitions varies over time ac-
cording to the previous allocations. In both papers, the coalitional values at the current
time are determined endogenously and depend on previous events. In [55], the authors
consider a finite sequence of exogenously defined coalitional games, where the agents
receive a payoff at each stage of the sequence and consequently, the final utility of an
agent depends on the whole stream of payoffs.

Robust coalitional games are the subclass of dynamic TU coalitional games where
the coalitional values are unknown and exogenous. In [15], Bauso and Timmer charac-
terized robust allocation rules for the dynamic coalitional game where the average value
of each coalition is known with certainty, while at each instant, the coalitional value fluc-
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tuates within a bounded polyhedron. The static version of their setup, called cooperative
interval games, is presented by the authors in [6], where the coalitional values are con-
sidered yet to be uncertain within some bounded intervals. In their setup, they have
introduced the interval solutions, which assign a closed real interval as a payoff to each
agent instead of a single real value. In [73], Nedich and Bauso have presented a dis-
tributed bargaining algorithm for finding a solution in the core under the framework of
robust games and dynamic average games. Inspired by the motivation of cooperative
interval games and the setup in [73], we consider the value generated by each coalition
to vary within certain bounds.

3.1.1. MOTIVATIONAL EXAMPLE

Let us consider the energy optimization application inspired by [43] which justifies a dy-
namic robust coalitional game model. Consider a group of N prosumers, each of whom
owns a renewable energy source (RES) and energy storage (ES). Together they form an
energy coalition 7 where the participating agents operate their ES systems collectively
to minimize their total energy cost. When the energy coalition has an excess of energy,
they can store it in an ES for later utilization and any additional energy can be sold to
a retailer. The retailer buys energy and remunerates, a few hours ahead of the delivery
time. The coalition considers the corresponding remuneration for optimizing their ES
operation and consequently minimizing the associated cost function.

Now, the cost saving as a result of the collaborative operation should be distributed in
such a way that each prosumer is satisfied by its share, and hence the coalition remains
intact. To achieve this, the agents assert their position by presenting the estimated cost
saving of possible energy sub-coalitions, S € Z, which they could have been part of and
use them to define acceptable payoffs, namely payoffs in the core. Since there is uncer-
tainty in the RES generation, the cost savings, v(S), of each sub-coalition S < 7 is uncer-
tain. How the agents share this saving under such uncertainty is a part of the solution
generated by an iterative payoff distribution methods.

Let bl.t represent the charge or discharge of energy by the ES of prosumer i at time
t. Further, denote the net energy demand of prosumer i by qit and let p! and p{) be
an electricity sell price and buy price at time ¢, respectively. Let proj.,(x)(proj,(x))
denote the projection onto the non-negative (non-positive) orthant. Then, the energy
cost function of any energy sub-coalition S < 7 for a time period of length K is given as:

Fs(b):=x X | {p{)( YiesProjoo(q; + bf))

+pi( Ziesproizota +5D)
where b e RVK
K time steps.
For a given coalition S, the coalitional energy cost for the time period of length K is de-
fined as:

contains the ES charge and discharge profiles of all the IV agents over the

c(S):= mgnFs(b), (3.1)

and the cost saving during this period, v(S), as the difference between the sum of the
costs of the coalitions of the individual agents in S and the cost of the coalition itself,
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namely,
v(8) := Y jeslcit —c(S). (3.2)

Note that, the cost ¢(S) is unknown but bounded, from above when each agent i € S has
RES generation equal to the installed capacity, which gives minimum value of net energy
consumption qlr.ni“ for the whole period K, and from below when there is no generation,
hence g;"*. Due to these bounds, the cost saving v(S) is also bounded. Let c(S) be the
coalitional cost corresponding to ¢}, and let ¢; be the individual cost corresponding to
q?‘m, i€ Sthen v(S) <} esi{ci} —c(S). Here, the uniform bound on the coalitional values
and the fixed value of grand coalition, for a period of length K, allows us to consider
the setup of robust games presented in [73]. We refer to [22], [9] for other engineering

problems that can be modeled as robust coalitional games.

3.1.2. CONTRIBUTION
We propose two payoff distribution algorithms within the framework of robust coali-
tional games:

* We formalize the notion of robust core, a set of payoffs that stabilizes a grand coali-
tion under variations in the coalitional values (Section 3.2);

* We develop a distributed payoff allocation algorithm where, given the bounds on
the coalitional values, agents communicate and negotiate only locally, i.e., with
their neighbors, over a time-varying and repeatedly-connected communication
network. We show that the proposed algorithm converges to a common payoff
allocation in the robust core (Section 6.3);

* We generalize the distributed bargaining protocol in [73] and prove its conver-
gence to a mutually agreed payoffin the robust core. We assume similar communi-
cation requirements for the bargaining protocol as for the allocation process; but
less information on the coalitional bounds is available to the agents (Section 3.4);

* We introduce some tools from operator theory (paracontraction, nonexpansive
operators and Krasnoselskii-Mann fixed-point iterations) to the domain of coali-
tional games which allows us to generalize existing results and in turn to propose
faster algorithms. This approach represents a new general analysis framework for
coalitional games.

We refer the reader to Appendix A for basic notation and Chapter 2, Section 2.2.2 for
operator-theoretic definitions.

3.2. BACKGROUND ON ROBUST COALITIONAL GAMES

In this chapter, we consider a similar class of dynamic coalitional games asin [73], where
an instantaneous value of each coalition v*(S) belongs to a finite set bounded by a min-
imum and a maximum value, i.e., v(S) < vk(S) < T(S). This restriction of values on v*
gives rise to a family of games which we collectively regard as a robust coalitional game.

Definition 9 (Robust coalitional game). LetZ = {1,..., N} index a set of agents. A robust
coalitional game R = (Z,V), is a set of instantaneous coalitional games (I, v*) with v* €
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Vi={uy, uy,...,u,} with |V| < oo, for all k e N, where each u; is a value function such that
u(S) = uy(S) =u(S) forallScZ and u;(Z) =u). O

In words, a robust coalitional game (Z,))) is a family of a finite number of instanta-
neous coalitional games such that the value of the grand coalition Z is fixed. This setup
adequately addresses the practical scenario of negotiations where after the formation
of the grand coalition its value becomes certain. However, to compute a core payoff in
(2.5) anticipated values of sub-coalitions are also required, which involves uncertainty.
We note that our formulation of robust coalitional game is called “robust game" in [73].
Next, we formalize the core of a robust coalitional game as the robust core.

Definition 10 (Robust core). For a robust coalitional game R = (Z,V), the robust core is
the intersection of all the possible instantaneous core sets, i.e.,

Co:=Nyey C(V). (3.3)
]

Remark 2. LetR = (Z,V) be a robust coalitional game. If there exists v € V such that for
all k e N, v*(T) = T(T) and v*(S) < T(S) for any coalition S c Z, then, Cy = C(V) and thus
Co € C(vF) for all v* € V. Consequently, ifCy # @ thenC(v*) # @ forall k e N. O

In the sequel, we deal with the grand coalition only, therefore, we use the core as the
solution concept. We note from (2.5) that the core C(v¥) is closed and convex. Further-
more, the robust core Cp in (3.3) is assumed to be nonempty throughout the chapter.
Nonemptiness implies that even under the variations in coalitional values, a mutually
agreeable payoff exists.

Assumption 1. The robust core is non-empty, Cy # &. O

Next, we discuss a possible strategy for finding a payoff that belongs to core, Cy in
(3.3) of a robust game. Since centralized methods for finding a payoff x € Cy do not
capture realistic scenarios of interaction among autonomous selfish agents, we propose
distributed methods that allow agents to autonomously reach a common agreement on
a payoff distribution. We note that our analysis and methods can be adapted for games
with empty cores by defining a quasi-core (e-core) set [93].

Remark 3. Given € > 0, the e-core is the set Ce(v) = {x € RV | YiezXxi = v(@),Yies Xi =
v(S)—¢,VS S I}. Thus, the corein (2.5) is an e—core with € = 0. The e-core models the cost
of coalition formation where € is a minimum threshold for a gain in coalitional value,
below which it is not rational for a coalition S c I to defect the grand coalition. O

The two payoff distribution methods which we focus on are distributed payoff al-
location and distributed bargaining. The former is an iterative procedure in which, at
each step, an agent i proposes a payoff distribution x; € RN by averaging the proposals
of neighboring agents and by introducing an innovation factor. This procedure aspires
to reach a mutually agreed payoff among agents. In a bargaining process, to propose a
payoff distribution x; € R, an agent i, after averaging the proposals of all agents, makes
it compliant to its own interest. Bargaining procedure also aspires to reach a mutually
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agreed payoff. Thus, in both methods, the proposed payoff distributions (x;);c7 must
eventually reach consensus as in (2.8).

In the sequel, we consider the problem of iteratively computing a mutually agreed,
payoff vector in the core, i.e., x¥ = xe AnCN. We address this problem via distributed
algorithms under the payoff allocation and bargaining frameworks. Both algorithms,
starting from any initial payoff proposal x°, converge to some consensual payoff in the
robust core in (3.3).

3.3. DISTRIBUTED PAYOFF ALLOCATION

In coalitional games, the agents cooperate because they foresee a higher individual pay-
off compared to non-cooperative actions. A payoff that can sustain such cooperation,
referred as a stable payoff, shall satisfy the criteria in (2.5). Thus, the goal of a payoff allo-
cation process is to let the agents achieve a consensus on a stable payoff in a distributed
manner. During the allocation process, each agent proposes a payoff for all the involved
agents based on the previous proposals of his neighbors and an innovation term.

In this section, we propose a payoff allocation in the context of robust coalitional
games, where the value function v, at each iteration k, takes a value within the given
bounds. We model our setup in a distributed paradigm, where each agent estimates
the coalitional values independently, hence different agents can assign different values
to the same coalition. In context of a robust coalitional game (Z,V), this distributed
evaluation of the coalitional values implies that at each negotiation step, an agent can
choose any value function v from a family ), without central coordination. However,
the determination of the family V is application-specific and generally involves a cen-
tral evaluation before the distributed negotiation process. We prove that even under the
distributed evaluation of the value function and variation of the coalitional values, the
proposed algorithm converges to a stable payoff distribution. In particular, our goal is to
construct a distributed fixed-point algorithm, using which the agents can reach consen-
sus (2.8) on a payoff distribution in the robust core (3.3).

3.3.1. DISTRIBUTED PAYOFF ALLOCATION ALGORITHM
Consider aset of agentsZ = {1,..., N} who synchronously propose a distribution of utility
at each discrete time step k € N. Specifically, each agent i € Z proposes a payoff distribu-
tion xﬁf € RN, where the jth element denotes the share of agent j proposed by agent i at
iteration k € N.

Let the agents communicate over a time-varying network represented by a graph
Gk = (Z,£%), where ( ji)e& k means that there is an active link between the agents i
and j atiteration k and they are then referred as neighbours. Therefore, the set of neigh-
bors of agent i at iteration k is defined as /\/l.’C ={jeTlt,j) e Sk}. We assume that at
each iteration k an agent i observes only the proposals of its neighbouring agents. Fur-
thermore, we assume that the union of the communication graphs over a time period
of length Q is connected. The following assumption is typical for many works in multi-
agent coordination, e.g. [70, Assumption 3.2].

Assumption 2 (Q—connected graph). For all k € N, the union graph (I,u?zlé' +ky s
strongly connected for some integer Q = 1.
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The edges in the communication graph G* are weighted using an adjacency matrix
k _ k k . . .
Wt = [wl.,j], whose element w; ; represents the weight assigned by agent i to the payoff
distribution proposed by agent j, xﬁ? . Note that, for some j, wlk] =0 implies that j ¢ /\/ik
hence, the state of agent i is independent from that of agent j. We assume the adjacency
matrix to be doubly stochastic with positive diagonal, as assumed in [70, Assumption
3.3], [71, Assumption 2, 3].

Assumption 3 (Stochastic adjacency matrix). For all k = 0, the adjacency matrix W* =
[wgC j] of the communication graph G* satisfies following conditions:

. . . N _ N _ .
1. Itis doubly stochastic, i.e., ijl wi =Y Wij=1;
2. its diagonal elements are strictly positive, i.e., wfl. >0,Viel;

3. 3y >0 such that wfj = v whenever wl’.cj > 0. O

Assumptions 9 and 17 ensure that the agents communicate sufficiently often to each
other and have sufficient influence on the resulting allocation. We further assume that
the elements of communication matrix W¥ take values from a finite set hence, finitely
many adjacency matrices are available.

Assumption 4 (Finitely many adjacency matrices). The adjacency matrices {W*}en, of
the communication graphs belong to W, a finite family of matrices that satisfy Assump-
tion 17, i.e., Wk e W forall k e N. O

This assumption on the adjacency matrices allows us to exploit important results
from the literature regarding finite families of mappings for proving convergence of our
algorithms.

In our setup, at iteration k, each agent i proposes a payoff allocation xi.‘“, for all
agents j € Z, as a convex combination of its estimate x{? and an innovation term. To gen-
erate the latter, agent i first takes an average of the observed estimates of its neighbors
x?, je /\/l.k, weighted by an adjacency matrix, and then applies an operator Tl.k on the

evaluated average.
Specifically, we propose the following update rule for each agent i € Z:

k+1 _ k k(vN  k Lk
x; 7 =0 -ap)x; +aiT; (ijl wi'jxj),

that is, in collective compact form,
= (1 - ap)x® + ap T WF (x5, (3.4)

where (@) en € [€,1—€] for some e € (0,1/2], T*(x) := col(le(xl), e TII\C/(XN)) and Wk :=
Wk & Iy represents an adjacency matrix.

In (3.4), we require the operator T ik to be nonexpansive and its fixed-point set to
include the robust core in (3.3). For example, Tl.’c can be the projection onto the core, i.e.,
Tl.k = Projoyky-
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Assumption 5 (Nonexpansiveness). For all k € N, the operator T* in (3.4) is such that
T* € T, where T is a finite family of nonexpansive operators such that (\ge7 fix(T) = Cév ,
with Cy being the robust core in (3.3). O

Let us elaborate on this assumption in context of a robust coalitional game R =
(Z,V), as in Definition 9. Here, for all k € N, we assume that an instantaneous core
C(v*) in (2.5) generated by the value function v* € V is the fixed-point set of an oper-
ator TF for all i € Z which implies that fix(T¥) = CN(v¥). Consequently, the intersection
of the fixed-point sets of the operators T* € T corresponds to the robust core in (3.3),
i.e, Nre7 xX(T) = Nyey CN (v) = C}. Furthermore, we note that having a finite family of
nonexpansive operators implies that the value function v* can only take finitely many
values within a specified set. This limitation does not pose a significant hindrance in
practical scenarios. First, because the number of discrete values inside bounded inter-
vals can be arbitrarily large and secondly, because the most common interpretation of
value is in a monetary sense, which is always rounded off to some currency division.

Next, we assume that each T* € T appears at least once in every Q iterations of (3.4),
with Q being the integer in Assumption 9, which can be arbitrarily large.

Assumption 6. Let Q be the integer in Assumption 9. The operators (Tk)keN in (3.4) are
such that, forallneN, UZ:Q{T"} =T, withT asin Assumption 16. a

n

This assumption ensures that the resulting robust core in (3.3) correspond to all the
value functions that belong to the family V. Under Assumptions 1-6, we can guaran-
tee the convergence of the state in iteration (3.4) to some payoff in the set AN Cév , as
formalized in the following statement.

Theorem 3 (Convergence of payoff allocation). Let Assumptions 1-6 hold and the step
sizes satisfy ay € e,1—e¢] forall k € N, for some e > 0. Then, starting from any x° € RN,
the sequence (x’“)‘,’c":0 generated by the iteration in (3.4) converges to some X € ANCY, with
A as in (2.8) and Cy being the robust core (3.3). d

3.3.2. CONVERGENCE ANALYSIS

To prove the convergence of the payoff allocation process in (3.4), we build upon a well-
known result on time-varying nonexpansive mappings, presented by Browder in [18]. To
proceed, let us first define the notion of admissible sequence and then recall Browder’s
result.

Definition 11 (Admissible sequence ([18], Def. 5)). A function j : N>g — D < Nsq is
said to be an admissible sequence of integers in D if for each integer r € D, there exists
m(r) € Nsg such that the image under the function j of m(r) successive integers contains
r,ie,re{jn),jin+1),...,j(n+m(r))}, forall n € dom(j). d

For example, every p—periodic sequence, i.e., {j¥}ren where j5+7 = j* is admissible
with m(r) = p for all r e ran(j) and a sequence { jk = k}ren is @ non-admissible sequence.

Lemma 1 ([18], Thm. 5). Let (U;),;ep,D S Nsy, be a (finite or infinite) sequence of non-
expansive mappings such that C = N,epfix(U;) # &. Let (ay)ren be a sequence where
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ay € le,1—e€] for somee € (0,1/2], and let (j*) en be an admissible sequence of integers in
D. Then, the sequence (xk)k€N>0 generated by

k

=1 -ap) xk+akUjk(xk)

converges to someXx € C. O

Next, we recall some useful properties of nonexpansive and paracontraction opera-
tors.

Lemma 2 (Doubly stochastic matrix ([32], Prop. 5), ([41], Prop. 3)). If W is a doubly
stochastic matrix then, the linear operator defined by the matrix W ® I, is nonexpansive.
Moreover, if the operator (W ® I,,) () satisfies Assumption 17 then, it is also a paracontrac-
tion with respect to the mixed vector norm | - ||2,2. O

The fixed-point sets of nonexpansive and paracontraction operators relate to their
compositions as follows.

Lemma 3 (Composition of nonexpansive operators ([12], Prop. 4.49)). Let Ty, T, : R" —

R”" be nonexpansive operators with respect to the norm | - ||. Then, the composition T} o
T, is also nonexpansive with respect to the norm | - |. Moreover, if either Ty or T is a
paracontraction and fix(T) Nfix(T») # @ then, fix(Ty o T>) = fix(T7) N fix(T>). O
Lemma 4 (Composition of paracontracting operators ([32], Prop. 1). Sup-
pose My,M, : R" — R"™ are paracontractions with respect to same norm | - | and
fix(My) nfix(M>) # &. Then, the composition My o M, is a paracontraction with respect to
the norm | - | and fix(M; o M) = fix(M;) Nnfix(M>). O

The Lemmas provided above are convenient operator-theoretic tools that help us in
keeping our proofs elegantly brief. Using these tools, let us prove the following Lemma
which we exploit later in the proof of Theorem 9.

Lemma 5. Ler Ty,..., T, be a set of nonexpansive operators with ﬂle fix(T,) = C. Let
the composition of the adjacency matrices that satisfy Assumption 17, i.e., WyWq_1--- Wy
represent a strongly connected graph. Let W, := W, ® Iy. Then, ﬂle fix(T,W,;)=AnC,
where A is the consensus set in (2.8). O

Proof. By Lemmas 15 and 3, fix(T,W,) = fix(T,) n fix(W,) hence, ﬂleﬁx(TrWr) =
fix(T,) n fix(W,) n--- N fix(Ty) nfix(W;). By Lemmas 15 and 10, ﬂleﬁx(Wr) =
fix(W,---W1) where, by the Perron-Frobenius theorem, fix(W;---W1) = A. Since
ﬂle fix(T,) = C, we conclude that ﬂle fix(T,W,)=AnC. O

Given these results, we are now ready to prove Theorem 9.

Proof. (Theorem 9). Let us define the operator Uy := T Wy with Ty € T and Wy e W,
where Wy := Wy ® Iy. We note that, by Assumptions 15 and 16 there are only finitely
many such operators and therefore, we can define the operator family I/ := {U f}j‘f:l. Let
I:U — N be a function such that /(U ) gives the maximal length of the sequence which
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Figure 3.1: llustration of the payoff allocation proposed by an agent i, as in (3.5) where j/i.C = overprojcwk)fcf.

contains the operator Uy. Furthermore, let D = {f | l(Uf) <oo}c{l,...F}, ie., the set of
indices of the operators that occur at least once in a finite length interval. Since F is finite,
there always exist an integer representing the length of sequences in which each index
f €D appears at least once, thereby fulfilling the admissibility condition in Definition
11. Thus, by Lemmas 1 and 3, the iteration in (3.4) converges to some X € (gep fix(Uy).
Let K1 be the interval of a sequence containing L consecutive operators from the
family {Urlrep such that Nexc, fix(U*) = NfeD ﬁx(Uf). As we can choose an arbitrarily
long interval, without loss of generality, let L = Q, with Q being the integer in Assump-
tions 9 and 6. Then, it holds that Nexc, fix(U k) € MNke Ko fix(U k) because, having a longer
interval of operators can either reduce the intersection set or leave it unchanged. Finally,
by Lemma 5, ﬂkEKQﬁX(Uk)Z.AﬂCéV. O

3.3.3. DISCUSSION
Let us now visualize a proposal of an agent i in (3.4) by employing an over-projection
operator, i.e., Tl.k = overprojc(yk) which is a nonexpansive operator, see [[12], Prop. 4.2].

For brevity, let fcf = Z}V: 1 wlk jxj? . Then, the proposal of an agent i reads as:

xlg+1

;o=0- ak)xf.‘ + akoverprojc(vk)icf, (3.5)

where ay. € [€,1 — €] for some € € (0,1/2].

In Figure 3.1, we illustrate an arbitrary instance of (3.5), where the proposed payoff allo-
cation xf“ does not belong to the instantaneous core C (v*) and hence it is not an ac-
ceptable payoff, even for agent i. Nevertheless, as stated in Theorem 9, repeated payoff
allocations by all agents will eventually reach an agreement on the payoff in the robust
core Cy. Note that, in a payoff allocation process, intermediate allocation proposals can
be irrational and therefore, the adoption of this process by a rational agent shall be mo-
tivated, e.g. via mechanism design, where a central authority incentivize a cooperative
behavior among agents to derive the process towards equilibrium.
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We remark that the number of possible coalitions grows exponentially in N, i.e., 2%,
hence so does the computations required to evaluate the core by an individual agent.
This feature is inherent in coalitional games where the aim is to democratize systems by
providing agents with decision autonomy [73], [14].

3.4. DISTRIBUTED BARGAINING PROTOCOL

In this section, we propose a bargaining protocol under a typical negotiation framework
and a distributed paradigm, similar to the payoff allocation in Section 6.3. Specifically,
at iteration k, each agent i € Z proposes a payoff distribution that belongs to its negotia-
tion set, referred to as the bounding set Xl.k in (2.1). The intersection of negotiation sets
represents the set of all plausible deals, i.e., the core and mutual agreement of agents
on one such deal concludes the bargaining process. This struck deal corresponds to the
final payoff distribution.

3.4.1. DISTRIBUTED BARGAINING ALGORITHM
For our distributed bargaining protocol, we use a similar setup as the payoff allocation
algorithm (3.3.1). Briefly, we consider a set of agents Z = {1,..., N}, each of whom pro-
poses a payoff distribution xi.‘ € RV at each iteration k € N. These agents communicate
over a sequence of time-varying network graphs (G¥)ep, that satisfies Assumption 9,
and the corresponding adjacency matrices W5 ken satisfy Assumptions 17 and 15.
During the negotiation, at each iteration k, an agent i first takes an average of the es-
timates of neighboring agents x;?, jE€ J\/'l.k , weighted by an adjacency matrix W*, and then

applies an operator M lk on the resulting average. Specifically, we propose the following
negotiation protocol for each agent i € Z:

k+1 _ aqk(vN k Lk
xfr = M (2 wf ),

that is, in collective compact form,
= MF Wk, (3.6)

where M¥*(x) := col(M{C(xl),...,M}f,(xN)) and Wk := Wke Iy represents an adjacency
matrix.

In (5.5) we require the operator M lk to be paracontraction, not necessarily a non-
expansive operator as in (3.4). Utilizing a paracontraction operator allows us to prove
convergence of our bargaining algorithm without the need of a—averaging with the in-
ertial term x*, as required for payoff allocation in (3.4). Furthermore, in (5.5), we also
require the fixed-point set of MZ“ to be the bounding set in (2.1), i.e., ﬁx(Mf) = Xl.k.
Therefore, fix(M*) = NN, Xl.k = C(v¥) and for a robust coalitional game (Z, V), it holds
thatM ke Cwh =¢,.

Assumption 7 (Paracontractions). ForallkeN, MF¥ in (5.5) is such that Mk e M, where
M is a finite family of paracontraction operators such that (N\pge p fix(M) = Cév with Cy
being the robust core in (3.3). O
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Similar to the payoff allocation setup, we also assume that each M* € M appears at
least once in every Q iterations of (5.5), with Q being the integer in Assumption 9.

Assumption 8. Let Q be the integer in Assumption 9. The operators (M*) ey in (5.5) are
such that, forallneN, UZ;Q{M’C} = M, with M as in Assumption 12. O

n

Next, we formalize the main convergence result of the bargaining protocol in (5.5).

Theorem 4 (Convergence of bargaining protocol). Let Assumptions 1—15, 12—13 hold.
Then, starting from any x° € RV 2, the sequence (xk)fzo generated by the iteration in (5.5)
converges to some X € An C(I,V , with A as in (2.8) and Cy being the robust core (3.3). d

3.4.2. CONVERGENCE ANALYSIS
We prove the convergence of the bargaining protocol in (5.5) by building upon a result
related to the time-varying paracontractions, presented in [27].

Lemma 6 ([27], Thm. 1). Let M be a finite family of paracontractions such that
Natem AiX(M) # @. Then, the sequence (x*) ey generated by x*+' := M*(x*) converges to
a common fixed-point of the paracontractions that occur infinitely often in the sequence.

O In the following lemma, we provide a technical result about the composition of
paracontractions which we exploit later in the proof of Theorem 6.

Lemma 7. Let Q be the integer in Assumption 9. Let My, ..., Mq be paracontraction op-

erators with ﬂerl fix(M;) =: C and let WoWgq_1 - Wy be the composition of the adjacency
matrices where W, € W, with W as in Assumption 15. Let W, := W, ® Iy. Then, the
composed mapping x — (MqoWgo---o M1 W1)(x)

(i) is a paracontraction with respect to norm || - ll2,2;
(ii) ﬁX(MQWQ o---oMiWy1)=ANC,
where A is the consensus set in (2.8). O

Proof. (i): It follows directly from Lemmas 15 and 10.

(ii): By Lemmas 15 and 10, fix(MoWqo---o M1 W) = fix(Mqg) Nn---nfix(M7) nfix(Wg) N
-+ N fix(W;). Again, by Lemmas 15 and 10, ﬂerlﬁx(W,) = fix(W¢q---W;) and since
the composition Wg---W; is strongly connected, by the Perron-Frobenius theorem,
fix(Wq---W1) = A. Finally, as N, fix(M,) = C, fix(MgWqo---oMiW1) = AnC. O

Given these preliminary results, we are now ready to present the proof of Theorem 6.

Proof. (Theorem 6) Let us define the sub-sequence of x* for all k € N as z* = x(“~PQ for
each t = 2 with Q being the integer in Assumptions 9 and 13. Then,

2 = ptQ- 1y iQ-1 4. o gDy (=1Q 4t (3.7)

for ¢ > 2. It follows from assertion 1 of Lemma 12 that the maps x — (M‘Q- 1w Q=1o...0
MU=DQWU-DQ)(x), ¢ > 2 are all paracontractions. Also, under Assumption 15, there can
be only finitely many such maps. Furthermore, by assertion 2 of Lemma 12, the set of
fixed-points of each map is ANC™. Thus, by Lemma 8, the iteration in (4.10) converges
tosome ze ANCV. 0
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3.4.3. DISCUSSION

In our proposed bargaining process in (5.5), let Mk = proj y«, for all k € N, which
is a paracontraction [[12], Prop. 4.16]. Then, the resulting iteration, i.e., x**! =
proj Xk(kak) reduces to the bargaining protocol presented in [73]. In that setup, the
communication graphs and adjacency matrices also satisfy our Assumptions 9 and 17,
respectively. The bargaining algorithm in [73] lies within our bargaining framework, but
with the exception that, in our setup, the value function v* can only take finitely many
values in a bounded set. We emphasize that our framework provides an agent with the
flexibility to choose a paracontraction operator, not necessarily a projection. This allows
an agent to propose a payoff on the boundary or in the interior of its bounding set.

Finally, we note that in the bargaining process, each agent requires the coalitional
value bounds of his coalitions only to evaluate the bounding set, hence lower informa-
tion requirement compared to the payoff allocation in Section 6.3.

3.5. NUMERICAL SIMULATIONS

In this section, we present numerical illustrations of two realistic scenarios modeled as
coalitional games with uncertain coalitional values. In the first scenario, we present a
collaboration among three firms for providing abstract services; in the second scenario,
we simulate the motivational application introduced in Section 3.1. Our goal for present-
ing the former is to illustrate the robust core and to differentiate between the structure
of payoff allocation and bargaining processes during the negotiation stages. Therefore,
we use only three agents (firms) to be able to illustrate the outcome graphically in di-
mension 2. Further, in the second simulation scenario, we demonstrate a more com-
prehensive application, namely cooperative energy storage optimization in a smart grid
framework.

3.5.1. [LLUSTRATIVE EXAMPLE

Consider three firms 7 = {1, 2, 3}, which individually provide certain services to their cus-
tomers. These firms can improve their efficiency by collaborating activities and hence
generate a higher value. This collective value is a remuneration of services agreed upon
by a customer and the coalition of firms in advance. To make this collaboration viable, all
three firms have to agree upon their share of the generated value. The resulting scenario
is a coalitional game among firms, a solution to which is an agreed payoff distribution in
the core.

The core allocation in (2.5) depends on the value of all possible sub-coalitions. In
our example, the firms know with certainty about their individual values v({i}) and the
value of the grand coalition v(Z), i.e., the final contract. However, the sub-coalitions
are never formed and hence their values are unknown. We assume that the values of
the sub-coalitions are random within a bounded interval. Under the above conditions,
the coalitional game among the three firms takes the form of a robust coalitional game.
Thus, we can apply the robust payoff distribution methods proposed in Sections 6.3 and
3.4.

The coalitional values of this coalitional game among firms are given in Table 3.1. For
example, at each iteration k, the value function of the coalition {1,2}, i.e., v({1,2}), takes
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Table 3.1: Coalitional values for the illustrative example

v{ih,ieZ v(L,2h)  v({1L,3)  v(2,3) v({l1,2,3})
1 2,34 {2,348 {3,435} 8

(1,3,4)

(3,1,4)

(3,4,1)

Figure 3.2: Three instances of the core set, CO,C,,C” and final payoff allocation x.

its value randomly from the set {2,3,4} with uniform probability. The possibility of re-
alizing only an integer value, with uniform probability, satisfies the assumption of finite
operator families in Theorems 9—6 and also ensures that the resulting sequence satisfies
Assumption 6. Furthermore, we consider a fixed, strongly connected communication
graph which therefore satisfies Assumptions 9—15. For the initial proposals, we assume
that each agent allocates entire value of coalition to itself, e.g. the initial proposal by firm
1will be x;(1) =[800]7. Next, we evaluate the payoff distributions generated by payoff
allocation algorithm in (3.4) and the bargaining protocol in (5.5).

DISTRIBUTED PAYOFF ALLOCATION

Forimplementation, we choose an over-projection operator, which is nonexpansive, and
the step size ay = 0.5 for all k € N. The resulting iteration for each agent i is as in (3.5). In
Figure 3.2, we depict two arbitrary instances of the core set ¢',C" and the robust core Cy
in (3.3). The allocation process in (3.4) converges to consensus on the payoff allocation,
X = [2.4,3,2.6], which belongs to the robust core, i.e., AN Cév . An allocation in the robust
core ensures that even under uncertainty on coalitional values, the collaboration will
emerge as the only rational choice. We note that, in payoff allocation process each firm
does not need to have deterministic information of the core, which is weaker from the
usual assumption of coalitional games [14]. In fact, here the firms only know the bounds
on coalitional values.

DISTRIBUTED BARGAINING PROTOCOL

We implement the iteration in (5.5), by using the projection operator, which is a para-
contraction and therefore, it satisfies the assumptions of Theorem 6. In Figure 3.3, we
show an arbitrary negotiation step during the bargaining process. Here, a firm i agrees
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0 8 0y (8.0,0)

Figure 3.3: An instance of bargaining process showing the bounding sets of the agents, X7, X», A3, and the
robust core Cg = ;7 X;. X is the final payoff vector.

with the payoff distribution only if it belongs to its bounding set X;. Thus, any mu-
tually agreed payoff distribution must belong to the intersection of bounding sets, i.e.,
C = Njez Xi. Because of the uncertainty in the values of sub-coalitions, the bounding
sets vary with iterations resulting in an instantaneous core as in (2.5). The bargain-
ing process in (5.5) ensures convergence to the intersection of the instantaneous cores,
i.e., the robust core Cp in (3.3). Thus, in our example, the resulting payoff distribution
X =[2.33,2.833,2.833] belongs to the set AN Cév.

Compared with the payoff allocation process, the knowledge requirement for the
firms in the bargaining protocol is even weaker. Here, the firms are required to know the
bounds on the values of their own sub-coalitions only, which is a reasonable assumption
for a cooperation scenario.

3.5.2. COOPERATIVE ENERGY STORAGE OPTIMIZATION

In this subsection, we simulate the cooperative ES optimization problem described in
Section 3.1 as a motivational example. We partially adapt the optimization setup from
[43] and, additionally, introduce uncertainty in the RES generation.

PROBLEM SETUP

Consider N prosumers in an energy coalition Z, each equipped with RES generation and
ES system. Our goal is to cooperatively optimize ES systems, by considering them as a
single collective storage, for minimizing the coalitional cost in (3.1) and, distribute the
resulting cost savings, i.e., coalitional value in (3.2) among prosumers. Moreover, the
share of each prosumer, i.e., the payoff should belong to the robust core in (3.3). We
compute the coalitional value of each coalition S € 7 for a time period of length K by
solving a linear optimization problem. We assume that the ES system of each prosumer
i has an energy capacity of e; = 0, a charge and discharge limit, b; =0 and b; =0 re-
spectively, a charge and discharge efficiency n?h and n‘l.i‘: € (0,1), respectively. We also
consider an initial state of charge for each ES, SOC? € [0,1] where 1 represents a fully
charged battery. We denote the amount of energy stored and released from agent i’s ES
during time ¢ be b/* and b;~, respectively.
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Figure 3.4: (a) Sampled average of the trajectories of dist(xk s .AmC(I)V )/ dist(xO,AmCéV ) for distributed allocation
algorithm with operator proj, wh) for @ = 1/5,4/5 and overprojc(vk) for @ = 1/5,4/5. (b) Sampled average of
selected trajectories with spread of samples shown by shaded region.

Next, let us denote the vectors representing charge and discharge energies of all pro-
sumers by b~ and b*. Moreover, because of the difference in buying and selling prices
of electricity, let us divide the coalitional net load into a positive part L*, which corre-
sponds to the energy bought from the grid, and a non-positive part L™, which represents
the energy sold to the grid. These four vectors are the decision variables of our ES op-
timization problem that computes the coalitional cost ¢(S) for each coalition S € 7 as
follows:

K

min - {p} L+ L} 120

b*, b7, o1 ies i€S

L L

st. LiT=<o0s<L* (12b)
YiesBi" +b;” +q) = XjesLi* (12¢)
Yies" +b;” +q0) =Lies(LIT +Li7) (12d)
b;<b"<0<b!*<b; (12e)
YK (b4 b mic) =0, Vies (12f)
0< e,-SoC? +X, (bl“n?h + bf‘/n?c) <e; (12g)

VieS§ Vie[l,K],Vme|[],K].

The constraints (12e)—(12g) are related to the physical limitations of ES systems. Specif-
ically, (12e) represents the limitation on the rate of charge/discharge, (12g) represents
energy storage capacity and (12f) ensures that the state of charge of each ES at the end
of the horizon K is same as the initial, i.e., Son = SOC?. For further details, we refer to
[43].

To proceed, we introduce uncertainty in the net energy consumption ql.’ , since the
generation of RES is uncertain. However, qit can only realize values from the interval
[q?‘i“, q?‘a"] as explained in Section 3.1. Here, these bounds refer to the optimistic and
conservative forecasts.

ES OPTIMIZATION AS A ROBUST COALITIONAL GAME
Let us now put the optimisation setup, presented above, in the perspective of the pay-
off distribution problem. At the first stage, the grand prosumer coalition Z optimizes
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Figure 3.5: (a) Sampled average of the trajectories of dist(x¥, AN Cév )/dist(x?, AN Cév ) for distributed bargain-
ing with operator proj . and T .k := (1 - f)proj y-« (-) + poverproj ,.i (-) for f = 1/5,4/5. (b) Sampled average
of trajectories with spread of samples shown by shaded region.

their energy operation collectively via an aggregator over a time horizon of length K and
sells any expected excess of energy (available at each time interval ¢) to the retailer. The
coalition performs this process in advance and gets remunerated by the retailer. The ad-
ditional value gained by the coalition as a result of the cooperation is given by (3.2). At
the second stage, the attained coalitional value, i.e., v(Z) is distributed among the agents
so that the payoff to each agent belongs to the robust core in (3.3). Thus, for the payoff
distribution, an aggregator computes the value v(S) for all S « Z by solving the optimiza-
tion problem presented above. To account for the uncertainty in the RES generation, the
aggregator computes the bounds on the coalitional values as v(S) < v(S) = v(S),ScZ
and communicates the vector v containing these bounds to all the agents, who in turn
initiate the payoff distribution process. We remark that, a central entity is not necessarily
required for the evaluation of coalitional values, except for the grand coalition.

This scenario with uncertainty requires a robust solution and thus demonstrates the
practicality of our payoff distribution algorithms. Furthermore, since the core set is not
a singleton, it is possible that certain payoff vectors favour some specific agents [93].
Consequently, a central computation of the payoffs might be unacceptable for the pro-
sumers. Instead, distributed mechanisms defer this responsibility on the prosumers as
they arrive at a mutual agreement by themselves.

SIMULATIONS STUDIES

For the numerical simulation, we select a time horizon of K = 6 hours and an interval
t =1 hour. We consider a coalition of 6 prosumers where each prosumer i is equipped
with the battery of energy capacity e; = 7 kWh, a maximum charge power b; = 3.5 kW,
a maximum discharge power b; = 3.5 kW, both charge and discharge efficiencies of
n?h = n‘l.ic = 95% and an initial state of charge SOC? = 50%. We put the bounds of op-
timistic and conservative forecast on the RES generation of each agent and randomly
generate net consumption scenarios. We then evaluate the coalitional value in (3.2) for
each scenario and compute the bounds v(S) and v(S), S < Z. We then run 100 different
trajectories of payoff distribution processes. We assume, for each trajectory, that agents
initially allocate the whole value v(Z) to themselves. Also, to make sure that every pro-
sumer’s payoff proposal receives adequate importance and sufficient exposure, during
negotiation, we assume a strongly connected communication graph among them which
satisfies Assumptions 9 and 17. Furthermore, as the coalitional value in cooperative en-
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ergy optimization is in monetary terms, the prosumers consider reasonably rounded
of units (dollars, cents etc.) which results in a finite set of points between the bounds
v(S) and v(S), according to Assumption 6.

Moreover, for the distributed allocation process in (3.4), the whole coalitional value
vector v is communicated to the agents whereas, for the bargaining process in (5.5) only
the value of agent’s own coalitions are communicated. Finally, the agents initiate a ro-
bust coalitional game to reach the consensus on a payoff which belongs to the robust
core in (3.3). This payoff guarantees the stability of the grand coalition which in turn has
considerable operational benefits for the power grid [43].

We first report the numerical results for the distributed allocation process. In Figure
3.4a, we compute the average of the sample trajectories obtained by 100 runs and re-
port the normalized distances dist(x(k),Co n.4)/dist(x(0),Co N.A), for the projection and
over-projection operators, by varying the parameter a. We can observe that an over-
projection operator with higher value of a results in faster convergence. In Figure 3.4b,
we provide the spread of the sample trajectories to depict the best and worst conver-
gence scenarios in our sample set.

Lastly, we simulate the distributed bargaining process in (5.5) and report the average
of the sample trajectories. In Figure 3.5a, we show the comparison of the normalized
distances. We conduct the analysis by utilizing the projection operator and the convex
combination of projection and over-projection operators, i.e., Ty« 1= (1 — B)proj y« () +
PBoverproj v« (-) for varying B. Both the operators are paracontraction operators [12]. Fig-
ure 3.5b shows the spread of the sample trajectories.

3.6. CONCLUSION

We have addressed the problem of payoff distribution in robust coalitional games over
time-varying networks where the goal is to make players reach a consensus on the pay-
off distribution that belongs to the robust core. We have shown that distributed payoff
allocation and bargaining algorithms, with known coalitional value bounds and based
on nonexpansive and paracontraction operators, e.g. over-projections, and network av-
eraging converge consensually to the robust core, even with varying coalitional values.



PEER-TO-PEER ENERGY TRADING
VIA COALITIONAL GAMES

Democratization of energy is envisioned to be an essential step towards the energy tran-
sition. Thus, to empower prosumers we propose a bilateral peer-to-peer (P2P) energy
trading scheme under single-contract and multi-contract market setups, both as an as-
signment game, a special class of coalitional games. The proposed market formulation
allows for efficient computation of a market equilibrium while keeping the desired eco-
nomic properties offered by the coalitional games. Furthermore, our market model allows
buyers to have heterogeneous preferences (product differentiation) over the energy sellers,
which can be economic, social, or environmental. To address the problem of scalability in
coalitional games, we design a novel distributed negotiation mechanism that utilizes the
geometric structure of the equilibrium solution to improve the convergence speed. Our al-
gorithm enables market participants (prosumers) to reach a consensus on a set of “stable"
and “fair" bilateral contracts which encourages prosumer participation. The negotiation
process is executed with virtually minimal information requirements on a time-varying
communication network that in turn preserves privacy. We use operator-theoretic tools to
rigorously prove its convergence. Numerical simulations illustrate the benefits of our ne-
gotiation protocol and show that the average execution time of a negotiation step is much
faster than the benchmark.

37
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4.1. INTRODUCTION

Modernization of power systems is rapidly materializing under the smart grid frame-
work. A major part of this transformation is taking place on the consumer side, due to the
increasing penetration of distributed energy resources (DER) along with the deployment
of communication and control technologies. These technologies enable consumers to
have an active interaction with the grid by an informed control over their energy behav-
ior, thus they are referred as “prosumers".

To realize their full potential, prosumers should engage more actively with energy
markets. Currently the direct participation of prosumers in the whole sale energy mar-
ket is technically and economically non-viable. Hence, small-scale prosumers interact
with aggregating entities such as retailers to deliver their excess energy to the grid [66].
Retailers usually offer a considerably lower price for the energy sold by prosumers, e.g.
feed-in-tariff (FiT), compared to the buying price that they charge [44]. Moreover, with
increasing number of participants, the benefits to prosumers in recent FiT schemes be-
come quite marginal.

To ensure an economically appealing role of prosumers, peer-to-peer (P2P) energy
trading represents a disruptive demand side energy management strategy [111]. In fact,
P2P markets enable prosumers to locally exchange energy on their own terms of transac-
tions. This direct control over trading allows prosumers to make profitable interactions,
thus it encourages wider participation [109]. Furthermore, such a local exchange of en-
ergy at the demand side also provides significant benefits to the system operators for
example in terms of peak shaving [65], lower investments in grid capacity [62] and im-
provement in overall system reliability [66].

However, there are strong mathematical challenges in designing a comprehensive
P2P energy market mechanism which seeks a market equilibrium while incorporating
a self-interested decision-making attitude by the participants [114]. Despite its mathe-
matical sophistication, the mechanisms need to be easily interpretable for the partici-
pation of laypersons, e.g. residential prosumers. Along this direction, researchers have
recently presented several interesting formulations. In the literature, P2P energy mar-
kets are proposed under various architectures that can be broadly categorized as cen-
tralized markets (community-based trading), decentralized markets (bilateral trading)
and combinations there of. The features of centralized market architecture include an
indirect interaction of market participants via assisting platforms, no negotiatory role
for market participants and single market wide energy trading price, evaluated centrally.
Among others, in [65] Moret and Pinson present a centralized local energy market where
groups of prosumers (energy collectives) interact with each other and with the system
operator via a community manager to make energy exchanges. In [67], Morstyn and Mc-
Culloch treat energy as a heterogeneous product that can be differentiated based on the
attributes of its source. Centralization is achieved by a platform agent that is supposed to
maximize social welfare by setting prices and that enables energy exchanges among pro-
sumers and with the wholesale electricity market. In [24], Vazquez, Al-Skaif and Rueda
present a community based market that models the decision making into three sequen-
tial steps, solved using distributed optimization, where the energy is exchanged via a
local pool at single clearing price.

Decentralized P2P markets can allow for direct buyer-seller (bilateral) interaction
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with possibly different energy trade price for each bilateral contract. In [105], Sorin,
Bobo and Pinson formulate a decentralized P2P market architecture based on a multi-
bilateral economic dispatch with a possibility of product differentiation, where the so-
lution is obtained by solving a distributed optimization problem. Another decentralized
P2P market is presented by Morstyn, Teytelboym and McCulloch in [68], which is formu-
lated as a matching market that seeks a stable bilateral contract network. In both works,
prosumers are allowed to make bilateral contracts, i.e., each energy transaction can take
place at a different price. In [74], Nguyen also presents a decentralized P2P market with
a clearing mechanism based on the alternating direction method of multipliers.

Within the industrial informatics community, P2P energy platforms have received
strong research attention under both centralized and decentralized architectures. Re-
cently, in [115], the authors propose a two-tier market corresponding to inter and intra-
region interactions where a DSO acts as a representative for each region and the price of
energy trade between regions is evaluated centrally. In [25], the authors also present a
two-level market for trading energy with and within energy communities. Each commu-
nity is represented by an aggregator that decides inter-community trading price whereas
intra-community trading is done at a fixed price. Both the works propose distributed op-
timization based market solutions and don’t allow for bilateral economic interaction on
prosumer (peer) level. A decentralized P2P market is analysed in [7] with the possibility
of a bilateral trade however, their focus is on the trading preferences of prosumers rather
than the mechanism design. The blockchain based implementations to address privacy
and security in P2P platforms are also addressed [84]. Most of the works reviewed above
lack any discussion on the economic properties of the proposed trading strategies, which
are critical for the practicality of any market mechanism. Next, we build a case for our
proposal of a P2P market mechanism that allows for a decentralized (fully P2P) interac-
tion and also ensures desirable economic properties.

4.1.1. MARKET DESIGN

The key desirable properties of electricity market design are market efficiency, incentive
compatibility, cost recovery and revenue adequacy [94]. Unfortunately, by Hurwicz’s im-
possibility theorem [49], no market mechanism can satisfy all four properties simultane-
ously and a trade-off has to be found. Centralized electricity markets are usually cleared
based on the locational marginal pricing, which only satisfies cost recovery and revenue
adequacy. Similarly, the VCG mechanism, utilized in several P2P market designs satis-
fies market efficiency, incentive compatibility, and cost recovery making financial deficit
possible for the market operator. In our context of P2P market design where the par-
ticipants are relatively small prosumers, hence are not generally capable of exercising
market power, we can reasonably assume them to be truthful, thus enforcing incentive
compatibility. The other market properties can be satisfied by the solutions of canonical
coalitional games, thus they provide the required mathematical foundation for the de-
sign of P2P markets. We refer the reader to [92] for details about the classes (canonical,
coalition formation, and coalitional graph) of coalitional games. In the general setup of
coalitional games, the solutions with the required properties, such as the core, suffer the
issue of scalability as all possible sub-coalitions, i.e, 2N _1for N agents, must be con-
sidered. Based on these considerations, here we model the P2P electricity market as an
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assignment game, a special class of coalitional games, for which the solution requires
the information about coalition pairs only. This solves the scalability issue while keep-
ing the desired market properties [98]. Furthermore, our model also allows for bilateral
interactions where buyers can exercise their preferences over the sellers, as well as their
energy sources which, in our opinion, captures the true spirit of P2P trading. Specif-
ically, in this chapter, we propose an easily interpretable decentralized (bilateral) P2P
energy market that allows for a heterogeneous treatment of energy by utilizing concepts
from coalitional game theory for mechanism design and for proving the plausibility of
the equilibrium solution.

4.1.2. LITERATURE REVIEW

Coalitional game theory provides rigorous analytical tools for the cooperative interac-
tions among agents with selfish interests, and in fact it has received a strong atten-
tion from smart-grid researchers recently. For instance, the authors in [109] propose a
P2P energy trading scheme in which prosumers form a coalition to trade energy among
themselves at a (centralized) mid-market rate which in turn ensures the stability of the
coalition [112]. In [110], the authors formulate a coalition formation game for P2P en-
ergy exchange among prosumers, and the resulting coalition structure is shown to be
stable. The price of exchange is determined by a central auctioneer based on a double
auction mechanism. Another coalition formation game is presented in [113], which al-
lows prosumers to optimize their battery usage for P2P energy trading. The outcome is
shown to be stable, optimal and prosumer-centric. The authors in [60] propose decen-
tralized bilateral negotiation among prosumers for energy exchange via coalition forma-
tion, but without considering coalitional-game-theoretic stability. Coalition formation
games have also been utilized for cooperative charging of electric vehicles (EVs). The au-
thors in [127] consider EVs in different regions with different discharging prices. Based
on this difference, EVs form a coalition structure to exchange energy. Then in [119], the
authors formulate a coalition formation game among private charging piles to optimally
provide charging services to EVs by sharing their resources. In both works the considered
games are non-super-additive, thus they employee a merge-and-split protocol to reach
a stable coalition structure. The protocol does not determine the price of exchange but
only a stable match. In Table 4.1, we provide a comparison between the features of our
P2P market model and those of the most relevant literature. We note that in Table 4.1,
stability is considered in the context of coalitional game theory and we mark the pres-
ence of guarantees on the market properties only if they are explicitly discussed in the
paper.

To the best of our knowledge, the literature on coalitional game theoretic formulation
of P2P markets lacks a development of bilateral P2P model via most widely studied and
easily interpretable class of coalitional games, i.e., canonical coalitional games. Along
with the mathematical rigor provided by the game formulation, its straight forward in-
terpretation is also an important feature for a P2P market design, intended to encourage
the participation of small prosumers with low technical knowledge. Though canoni-
cal games seem the most natural approach to model bilateral market, the hindrance in
its adoption comes from high computational complexity and coalition stabilizing con-
tract prices might not exist, i.e., the core set might be empty. To address these, here, we
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Table 4.1: Comparison with the state-of-the-art employing coalitional game theory

Features [109] [110] [113] [60] This chapter

Bilateral contracts X X X v v

Guarantees on

market properties v x x x v
Product differentiation x x x x v
Distributed computation X X X v v
Stability of market v v v x v

model P2P energy trading as a canonical coalitional game that allows for bilateral energy
trading contracts and guarantees the existence of stable contract prices that represent
a competitive equilibrium of the market. Furthermore, the negotiation mechanism en-
ables market participants for an efficient and convenient settlement on the stable and
fair contract prices.

4.1.3. CONTRIBUTION
Our key contributions are summarized next:

* We formulate P2P energy trading as a bilateral assignment game (coalitional
game), which is easily interpretable and allows for product differentiation to ac-
commodate the heterogeneous preferences of buyers. This novel formulation en-
sures the existence of a “stable" set of bilateral contracts that is an equilibrium
(Section 5.3). Furthermore, our market formulation ensures the desirable eco-
nomic properties of the mechanism, which are market efficiency, cost recovery,
and revenue adequacy;

* We develop single-contract and multi-contract setups of bilateral P2P energy mar-
ket with different computational burdens and features (Section 4.3.2 and 4.3.3);

* We develop a novel distributed negotiation mechanism presented as a fixed-point
iteration where buyers-sellers communicate locally over a possibly time-varying
communication network. We exploit the geometrical structure of the core solu-
tion together with operator theory to formulate our algorithm via linear opera-
tions, thus considerably reducing the computational complexity of the negotia-
tion, strongly improving over [86], [13]. We show that the mechanism converges to
a payoff allocation in the core of the assignment game (Section 4.4);

* We present our algorithm in a generalized form which enables fast convergence
and allows participants to negotiate for “fair" contracts in the interior of the core
set [98]. The level of information requirement in our mechanism preserves privacy
among the market participants. Furthermore, our algorithm is based on consen-
sus protocols, which are easier to analyze and embed on real hardware, instead of
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dual variables (e.g. in [74]), to reach a common price vector among the partici-
pants.

For basic notation and operator-theoretic definitions see Appendix A and Chapter 2,
Section 2.2.2, respectively.

4.2. BACKGROUND ON ASSIGNMENT GAMES

4.2.1. ASSIGNMENT GAMES

An assignment game models a bilateral one-to-one matching market with the primary
objective of finding optimal assignments between the two sides, for example, matching
buyers to sellers [98]. Thus, let us refer to the sets of agents on the two sides of the market
as buyers and sellers and denote them by Zg and Zg, respectively. Here, each seller
J € Ls owns a good for which declares the value of at least c;; whereas, for each buyer
i € Ip, the ceiling worth of the good of seller j is h;, ;. Then, the value function that gives
value to a simplest meaningful coalition, i.e., a buyer-seller pair, reads as:

v(i, j) = max{0, hj j — cj}. 4.1)

Here, with a slight abuse of notation, we refer to v({7, j}) by v(i, j). We note that any
assignment which is favorable to both parties must satisfy k; ; > ¢;. Furthermore, one-
sided coalitions generate no value, i.e., v(S) = 0 if S € Zg or S < Zg, thus only mixed
coalitions are meaningful.

Interestingly, the buyer-seller pairs alone suffice to determine the market completely.
Using this observation, we define an assignment matrix M = [v(i, j)] for all pairs (i, j) €
IpxIs.

Definition 12 (Value function). LetZg ={1,...,Ng} and Ig = {1,...,Ng} be the sets of
buyers and sellers, respectively. Let M = [v(i, j)1(; jeZ5xTs De an assignment matrix with
v(i,j) asin (4.1). Given B<Zg andS <ZIg, let P(B,S) be the set of all possible matching
configurations between B and S, where a matching configuration is a set of two-sided
matchings such that a seller (buyer) is matched with at most one buyer (seller). Then, the

value function vy : Ig UZg — R is defined as, vy;(BUS) = 17131%5(8 2, jep V(, J). d
PeP(B,S)

Let us now formally define an assignment game.

Definition 13 (Assignment game). LetZg ={1,..., Ng} andZs =1{1,..., Ng} be the sets of
buyers and sellers, respectively. An assignment game is a pair M = (Zg UZg, v), where
the value function vy is as in Definition 12. d

For a game with a grand coalition Z we assume that each agent i € 7 is rational and
demands an efficient payoff vector. Mathematically, this means that the payoff vector
proposed by each agent must belong to its bounding set as in (2.1). We note from (2.1)
that Bounding half space is closed and convex, a polytope with special geometry, thus
we can represent the bounding set as the intersection of bounding half-spaces.

Definition 14 (Bounding half-spaces). For a coalitional game (Z, v) and a coalition Sc T
the bounding half-space is a set H(S) := {x e RV | ;s x; = v(S)}. Moreover, let the set

Hi:={H(S)|ScZ,ieS} (4.2)
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denote the set of all bounding half-spaces corresponding to the set of rational and efficient
payoffs for an agent i, i.e., the bounding set X; in (2.1). O

Now, using half-spaces as in Definition 14, we can write the bounding set as X; =
Nscziies H(S).
Since a rational agent i agrees only on a payoff in its bounding set X; thus, a mutually
agreed payoff shall belong to the intersection of the bounding sets of all the agents. In-
terestingly, this intersection corresponds to the core,

Next, we reformulate the core in (2.2) for assignment games.

Definition 15 (Core of assignment game). The core Cp; of an assignment game (Zg U
Is,vy) is the following set:

N N
Crr =1, x") € RYE x RYS | X7, X} + X et X}IZ

vmMTRUIs), x;+ x;.’ =v(i,j) forall (i, j) e Ig x Is}. 4.3)
O

Remark 4 (Non-emptiness of core [98]). An assignment game (as in Definition 13) has a
non-empty core. O

We note that the core of an assignment game is defined by two sided pair coalitions
instead of all possible coalitions in (2.2), which considerably reduces the complexity of
solving an assignment game. Thus, an assignment game presents a more practical ap-
proach, compared to the general coalitional game theory, towards formulating a bilateral
P2P market.

For an optimally matched pair (i, j) € Zg x Zs, the payoff (x], x}’) determines the con-
tract price A; ;. In a bilateral trade, buyer i pays to seller j the difference of the price they
initially offered and his payoff, i.e., A;; = h; j — x;. For brevity, in the sequel, we use
the collective payoff vector for buyers and sellers, i.e., x = col(x’, x"), where x' € Zg and
x"e Is.

We remark that, for P2P markets modelled as coalitional games it is not plausible to
adopt centralized methods for computation of a payoff in the core because the core set is
not singleton and different core payoffs can favor different sides (buyers or sellers) of the
market. In fact, each core set has a buyer optimal and a seller optimal point as the two
extremes [98]. Thus, it raises the possibility of biased behavior of the central operator
which may jeopardize the confidence of market participants. Furthermore, in practice,
bilateral agreements should be directly negotiated by the self-interested agents. Thus, in
Section 4.4 we propose a distributed solution mechanism in which the agents negotiate
to autonomously reach a mutual agreement, i.e., consensus on the payoff vector and
consequently on the trading prices as in (2.8).

4.3. P2P MARKET AS AN ASSIGNMENT GAME

4.3.1. MODELLING
In this section, we present two setups of a bilateral P2P energy market as assignment
games namely, single-contract market and multi-contract market. The participants of
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Figure 4.1: Illustrative scheme of a bilateral P2P energy market.

the market are partitioned into buyers and sellers where, a seller is a prosumer who owns
an energy source including renewable (RES) and/or energy storage (ES) with an excess
energy available, for a trading period, while a buyer can be a mere consumer as well.
The market is operated by a central coordinator (market operator) who has complete
information of buying and selling bids, and is also responsible for maximizing the overall
market welfare. In Figure 4.1, we illustrate the high level concept of the proposed P2P
energy market structure.

Let ¢; denote the valuation of a seller j € Zg for each unit (e.g. 1 KWh) of energy and let
sj represent the total energy offered; then, an offer of a seller j is given by a pair (¢}, s;).
Similarly, we denote the energy demand of a buyer i € Zi by d; and his valuation for the
energy offered by seller j by a; ;p; where, a; ; is the preference factor assigned by buyer
i to seller j. The preference factor allows a buyer to differentiate between the offered
energy and can depend on several metrics, such as source of energy (green vs. brown),
location of the seller, user rating, etc. Furthermore, p; is a base price that the buyer i is
willing to pay for each unit of energy, hence they present their bid as (a;,j p;, d;). Next,
we impose some practical limitations on the valuations of buyers and sellers to make our
P2P market setup economically appealing for the participants.

Prosumers generally sell energy to the grid via a retailer, thus an offer higher than the
retailer’s remuneration makes it favorable for the sellers to join the P2P market instead.
Furthermore, the rationality of the buyer demands that his offers are not higher than the
cost of energy from the grid. Let g, and g5 denote the buying price and the selling price
of energy provided by the grid, respectively. Then, the buyer i should offer a seller j a
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higher energy price than that of the grid, but not more than the grid’s selling price, i.e.,
ai,jpi € (8b, &8sl (4.4)

Analogously, we require the selling price of seller j to fulfill the similar limitations,
Cj € [8b)8s)- (4.5)

We remark that similar assumptions are also made in [110]. These assumptions are rea-
sonable as the feed-in tariffs have seen a decreasing trend and were also discontinued
in some regions [109]. Nevertheless, if the feed-in tariff offered by the grid is very high,
then it will impact the prosumer participation in the P2P market.

4.3.2. SINGLE-CONTRACT MARKET

In a single-contract P2P market setup, the buyers and sellers make one-to-one bilateral
contracts that generate certain utility (value) for both. Let buyer i € Zg and seller j € Zg
make a bilateral contract; then, the contract generates the value,

v(i, j) = max{0, @; j p; — c¢j} min{s;, d;} (4.6)

Let us elaborate on the formulation of the bilateral contract value in (5.3). First, the
contract is only viable when buyer’s valuation of the energy is higher than seller’s de-
mand, i.e., @; jp; > c¢;. If s; = d;, then the welfare generated by each traded unit is given
by a; jpi — cj where, the total traded units are d;. Now after the bilateral contract, the
excess energy of the seller (s; —d;) is sold to the grid. Analogously if d; > s;. We note that,
the value of a non-viable contract will be zero.

Due to the bilateral structure of our P2P market, we can express the worth of possi-
ble contracts in a matrix form, which further allows us to model the market welfare maxi-
mization as an assignment problem. Let M = [v(i, j)];, jyez,5xZs D€ an assignment matrix
where each element v(i, j) represents the value of a bilateral contract between buyer i
and seller j. Then, we denote the corresponding assignment game by M = (Zp UZg, vp).
The resulting value function of an assignment game v,(S) utilized by the market opera-
tor is given by the following assignment problem, for each S < 7:

max YooY vl i

i€eZrnSjeZsnS
P(S): st Y mpijs1 VjeIsnS @.7)
i€eIpnsS
Z wij=1 VieIpnS$
JjeZsnS

with matching factors y; ; € {0, 1}, where y; ; = 1 represents the matching between buyer
i and seller j. The problem (5.4) determines the optimal assignment of buyers to sellers
and the constraints imposed on the matching factors ensure that one buyer is matched
to only one seller, i.e., one-to-one matching. By using the results of the assignment prob-
lem in (5.4) the market operator can evaluate the core of the game, as in (2.2). We note
that, even though the assignment problem in (5.4) is a combinatorial optimization prob-
lem, because of its special structure it can be solved in polynomial time using specifically
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designed algorithms like the Hungarian algorithm. Next, we list the notable features of
our bilateral P2P market design:

 Existence: There always exist a set of bilateral contracts which is satisfactory for
all of self-interested participants. In other words, the core of a bilateral P2P energy
market is always non-empty (Remark 4).

* Product differentiation: Buyers can prioritise sellers or the categories of sellers via
preference factors @;, j, based on the desired criteria (e.g. green energy).

* Mechanism properties: Market formulation ensures the desirable economic prop-
erties of the clearing mechanism.

* Social optimality: The bilateral contracts maximize the overall welfare of the mar-
ket and the contract price is negotiated internally between buyers and sellers.

4.3.3. MULTI-CONTRACT MARKET

The formulation of a P2P market presented in Section 4.3.2 is a one step single-contract
bilateral market where each buyer can make an energy trade with only one seller and vice
versa. Therefore, even though the proposed formulation maximizes the overall welfare,
the market participants on both sides can have partially fulfilled energy trades. Hence, in
this section we extend the single-contract P2P energy market to accommodate multiple
contracts between buyers and sellers which in turn allows for the complete fulfilment of
energy trades.

For an assignment market, we model multiple contracts between buyers and sellers
by granulation of energy demand or offered into the units (packets) of fixed size (e.g. 1
KWh). Consequently, the matching takes place between these units of energy. Another
way of looking at this setup is that each market participant (buyer or seller) is repre-
sented in the market by multiple agents, with each agent offering or demanding single
unit of energy. Hence, the number of agents representing each participant in the market
are equal to the number of energy units offered/demanded. To provide further flexibility,
in our multi-contract model, we allow participants to associate different trading charac-
teristics (e.g. valuation, energy source) to each traded unit. For example, a seller can offer
energy units from RES (green) and an energy storage (possibly brown); similarly a buyer
can bid higher for the energy needed for the critical tasks and lower for the deferrable
tasks. In the mathematical formulation, we interpret each agent as an independent seller
or buyer, thus the resulting value v(i, j) generated by contracts is similar to the expres-
sion in (5.3) for single traded unit (d; = s; = 1 unit), i.e., v(i, j) = max{0, &; jp; — ¢}, and
the corresponding assignment game M = (Zp UZg, v) is solved using the assignment
problem in (5.4).

In the multi-contract setup, in addition to maximizing the overall welfare, we can
maximize the energy traded inside the bilateral P2P energy market by varying the level
of granulation. Specifically, if all the contracts are viable and } ;7 d; > Y je7, Sj, then
by selecting the appropriate size of single energy unit, we can ensure that the total energy
offered will be traded inside the P2P market, bilaterally.

The additional features of this multi-contract setup, however come at the cost of
higher computational burden due to increased number of agents, representing the trade
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Figure 4.2: Flowchart of our proposed bilateral P2P market mechanism.

of each energy unit. We note that the appropriate size of the energy unit, decided by the
market operator, can limit the number of agents and the associated computational bur-
den. Furthermore, single-contract and multi-contract setup can be deployed in differ-
ent contexts. For example, the former is more suitable for implementation in the larger
scales, whereas, the later can bring additional features for localized implementation with
lower number of participants such as in energy communities.

4.4, DISTRIBUTED SOLUTION MECHANISM

After the market operator solves (5.4), in the second stage of our design, the participants
negotiate among themselves for a bilateral agreement on the trading price. Here, our
goal is to enable the participants to autonomously reach a consensus on a set of bilateral
contract prices such that no party can raise any objection on the contracts. Therefore, we
propose a novel negotiation mechanism that allows for faster convergence rates, thus it
is suitable for both single and multi-contract market setups. We model our algorithm in
a distributed architecture, where a central market operator with complete information
of the game initially transmits information of the bounding sets in (2.1) to the respec-
tive agents (market participants). The knowledge of a bounding set implies that each
agent knows the values of their own coalitions only. After receiving the required infor-
mation, each agent distributedly proposes a payoff allocation for all the agents. We prove
that even with the partial information available, the proposed solution mechanism con-
verges to a stable payoff distribution. The mechanism for the proposed bilateral P2P
electricity market is detailed in Figure 4.2. In particular, we design a distributed fixed-
point algorithm, using which the agents can reach consensus (2.8) on a payoff distribu-
tion in the core of the P2P market in (5.4).

4.4.1. DISTRIBUTED NEGOTIATION MECHANISM

We consider a bilateral negotiation process in which, at each negotiation step k, a buyer
(seller) can communicate with a set of neighbouring sellers (buyers) to bargain for their
payoff. Therefore, we model their communication over a time-varying network repre-
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sented by a bipartite graph G* = (Zg x Z5,£%), where for i € Iz and j € Zg, (i, j) € £F
means that there is an active link between buyer i and seller j at iteration k and they are
then referred as neighbours.

We assume that at each iteration k an agent i observes only the proposals of its neigh-
bouring agents. Furthermore, we assume that each buyer-seller pair communicates at
least once during a time period of length Q (arbitrarily large), which ensures that the
agents communicate sufficiently often. In other words, we assume that the union of the
communication graphs over a time period of length Q is connected. This assumption is
fairly common in multi-agent coordination, e.g. [70, Assumption 3.2].

Assumption 9 (Q—connected graph). Forall k € N, the union graph (Zg x Zg, Ulelé'”k)
is strongly connected for some integer Q = 1. d

The edges (links) in the communication graph G are weighted using an adjacency

matrix Wk = [wk ]] whose element w j represents the weight assigned by agent i to the

payoff proposal of agent j, x* i where, for some j, wllf i= 0 implies that the agent i does
not negotiate with agent j at iteration k, i.e., (i, j) ¢ . We note that in a P2P market
the buyers (sellers) do not negotiate among themselves hence, w p ] =0, forall (i,j) e Zp
(Zs). Furthermore, to ensure that all the agents have sufficient influence on the result-
ing payoff distribution, we assume the adjacency matrix to be doubly stochastic with
positive diagonal, which means that an agent always gives some weight to his previous
proposal.

Assumption 10 (Stochastic adjacency matrix). Forall k =0, the adjacency matrix W =
[w ] of the communication graph G* is doublystochastzc, ie., Z] L Wij = Zﬁil wij=1,

its dtagonal elements are strictly positive, i.e., w ; >0, foralli € T and 3y >0 such that
wk =y whenever w 0> 0 /70, Assumption 3.3]. a

We further assume that the elements of the communication matrix W take values
from a finite set hence, finitely many adjacency matrices are available.

Assumption 11 (Finitely many adjacency matrices). The adjacency matrices {(W*} e of
the communication graphs belong to W, a finite family of matrices that satisfy Assump-
tion 17, i.e, WX e W forall k e N. O

This assumption on the adjacency matrices is purely technical and allows us to ex-
ploit important results from the literature, for proving convergence of our negotiation
mechanism. We remark that the set of adjacency matrices can be arbitrarily large hence
Assumption 15 poses no practical limitation on our negotiation mechanism, which we
propose next.

At each negotiation step k, an agent i bargains by proposing a payoff distribution
xi.“ € RV, for all the agents. To evaluate a proposal, they first take an average of the es-
timates of neighboring agents, xf such that (i, j) € £, weighted by an adjacency ma-

N
trix W¥, Z l ] ]

bounding half space H. lk € H; asin (4.2) of a bounding set in (2.1). An agent selects the
half-spaces from the set ; such that each bounding half-space appears at-least once in

Next, agent i utilizes a partial game information in the form of a
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every Q negotiation steps with Q as in Assumption 9. In practice, one way of selecting
these half-spaces can be a predefined sequence that is arbitrarily chosen by each agent.
Finally, agent i projects the average 565“ = Z;V: 1 wf} jxj? on the bounding half-space.
Thus, the algorithm reads as
x;‘“ = projngC (xf). (4.8)
The protocol in (4.8) allows agents to propose a payoff at each negotiation step that is
acceptable for them. Let us further generalize the iteration in (4.8) by replacing the pro-
jection operator, proj(-), with a special class of operators namely, paracontractions. This
generalization enables the agents to choose any paracontraction operator Tl.k, for evalu-
ating a payoff proposal xi.“ , which in turn allows for a faster convergence to the interior
of the core in (4.3). The latter is an important feature because the interior of the core
is associated with the fairness of the payoff in assignment games. Specifically, for each
i € Z, we propose the negotiation protocol xf” = Tl.k (kf), that in collective form, reads
as the fixed-point iteration

x5 = TR (wk kK, (4.9)

where T¥(x) := col(le(xl), ey Tllf,(xN)) and Wk:=wke I represents an adjacency ma-
trix. In (5.5), we require the paracontraction operator Tl.k to have H;‘ € H; in (4.2) as
fixed-point set, i.e., ﬁx(Tl.") = Hll‘.

Assumption 12 (Paracontractions). For k€ N, T* in (5.5) is such that Tl.k €T, whereT is
a finite family of paracontraction operators such that fix(T;) = H; with H; e H; in (4.2). O

Here, for utilizing the negotiation mechanism in iteration (5.5), an agent can choose
any operator 7T; that satisfies Assumption 12. This choice can affect the speed of con-
vergence, as demonstrated in Section 4.5, and also the specific limit point inside the
core. Examples of paracontractions include the projection on a closed convex set C,
proj-(-), and the convex combination of projection and over-projection operators, i.e.,
T = (1- B)proj. () + Boverproj.(-) with g € [0,1).

We also assume that each T € TN appears at least once in every Q iterations of (5.5),
with Q as in Assumption 9.

Assumption 13. Let Q be the integer in Assumption 9. The operators (T*) ey in (5.5) are
such that, foralln €N, UZ;’Q{T’C} =TN, withT as in Assumption 12. O

n

Next, we formalize our main convergence result for the negotiation mechanism in

Theorem 5 (Convergence of negotiation mechanism). Let Assumptions 9—13 hold. Let
X*:=An CAA,; with A as in (2.8) and Cy; being the core in (4.3). Then, starting from any

2 . .o -
x° e RN, the sequence (xk)z":0 generated by the iteration in (5.5) converges to someXx € X'*.

O We provide the proof of Theorem 6 in Appendix. We remark that, presenting
the mechanism as a fixed-point iteration and in terms of operators allows us to utilize
results from operator theory to keep our convergence analysis general and brief.
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4.4.2. TECHNICAL DISCUSSION

Theorem 6 shows that the repeated proposals by all agents, generated by our negotiation
mechanism, eventually reach an agreement on a payoff that belongs to the intersection
of the bounding sets, i.e., the core. This core payoff allows us to compute the stable
contract prices. Let the payoff of buyer i and seller j be x; and x; respectively then, the
contract price is A;,; = @;,jp; — x;. We note that the core of an assignment game has a
special structure with two extreme points, i.e. buyer optimal and seller optimal at its
boundary. A buyer optimal payoff is the worst core payoff for the seller side and vice
versa. Thus, the payoff in the interior of the core corresponds to a fairer allocation and a
consensus on such allocation can be achieved via the proposed algorithm in (5.5).

Let us now mention the features of our algorithm that enhance its practicality.First,
for the negotiation, the market participants do not require full information of the game
but only the values of their own contracts represented by the bounding sets in (2.1),
which is privacy preserving. Such a lower information requirement of our mechanism
is a considerable benefit over the algorithm presented in [13], which requires each par-
ticipant to have complete information of the corresponding core set in (2.2). Secondly,
utilizing the half-spaces H; € H; as the fixed-point sets of the operators T; € 7 in (5.5) al-
lows us to design 7 as a set of linear operators. For example, let ey, be the vector of coeffi-
cients of the inequality that defines the bounding half-space, i.e., H lk ={yeRN| ez y=n
Then, we can write the iteration in (4.8) as

n-ey xk
e ek
legl

I§+1

k
i i

=Xx!

if 5:5“ ¢ H lk [12, Example 28.16]. This closed-form expression reduces the computational
burden of our algorithm greatly since no optimization problem should be solved at each
iteration. Clearly, both privacy preservation and low computational burden are highly
desirable features of a market mechanism.

4.5. NUMERICAL SIMULATIONS

In this section, we simulate the proposed bilateral P2P energy market with prosumers
employing the negotiation mechanism designed in Section 4.4. We conduct the anal-
ysis for the time slots that incur peak prices and have considerable PV generation and
compare it with the conventional approach of trading with the grid via aggregators and
retailers, to demonstrate the effectiveness of our algorithm and show the economic ben-
efits for the prosumers. Next, the size of the time slots should be decided by the market
operator considering the variation in the demand and production of energy at prosumer
level. For our economic analysis, we use hourly time slots of four peak hours for each
day over a week and for convergence analysis we consider 100 scenarios of prosumer
demand and generation to report their average and spread of samples. Furthermore,
as our focus is on the economic and algorithmic design of the market mechanism, we
do not consider network constraints (as also done in [109], [112]) and remark that their
incorporation would not effect the resulting market properties.
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Table 4.2: Profiles of buyers and sellers

Concern for
Buyers environment rating Sellers Energy source

B1 v X S1 PV (green)

B2 X x S2 Storage (brown)
B3 x v S3 PV (green)

B4 v v S4 fossil (brown)

4.5.1. SIMULATION SETUP

We consider 4 residential prosumers with energy deficiency and 4 with surplus to act as
buyers and sellers, respectively for each time slot. During different sessions of the mar-
ket, prosumers can vary between the roles of sellers and buyers, depending on their en-
ergy profiles. However, during each session (time slot) a prosumer acts as either a buyer
or a seller. The energy deficiency and surplus of each prosumer lies within the range of
[2, 8]. Next, we purposefully build the profiles of prosumers to show diverse participa-
tion and to emphasize various features of our P2P market designs. To buy energy for a
given time-slot, a buyer i enters a P2P market with its bid and demand (a;,j p;, d;) as in
(5.3) where, the factor a;,j represents his preference valuation for the energy offered by
seller j. For the design of preference factor, we let buyer specify his level of environmen-
tal concern (preference to the green energy) a? on the scale of {0, ---,5} and his concern
to seller’s user rating a; €{0,---,5} by y’; € {0,1}, with 0 being indifference to the associ-

ated factor. Let us indicate the energy type of seller j by y? € {0, 1} with 1 specifying green
energy then, the preference factor is evaluated as a; ; = 1+ O.l(a?y? + a;)/;). The value

of a% is randomly chosen for the buyers who include the environmental concern in their
profiles, given in Table 4.2, and the consumer rating of each seller is chosen randomly
from the range of [3,5]. We note that our design of preference factor is arbitrary and the
market operator can design it differently to include other considerations.

The buyers choose base valuation of the energy p; such that their bid is higher than
the grid’s buying price g, = 0.05 £/kWh and not more than the grid’s selling price g5 =
0.17 £/kWh as in condition (4.4) [44]. Furthermore, the sellers choose their valuation c;
less than the grid’s selling price gs as in (4.5).

4.5.2. BILATERAL P2P ENERGY MARKET

In our P2P market setup, at the first stage, the market operator performs the optimal
matching as formulated in (5.4), which results in the optimal buyer-seller pairs. Next,
the participants adopt the negotiation mechanism in (5.5) to mutually decide the bilat-
eral contract prices. In Figure 5.1, we show, for a particular time slot, the convergence
of our negotiation algorithm using the operators projy« () and Ty := (1 — B)proj g« (+) +
poverproj i (), for single-contract and multi-contract market setups. We report the av-
erage of 100 samples of convergence trajectories obtained by varying energy offer and
demand conditions and the sequence of half-spaces, i.e., negotiation strategy of each
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Figure 4.3: Trajectories of dist(xk ,X*)/ dist(xo, X'*) for distributed bilateral negotiation with operators proj Hk
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Figure 4.4: Sampled average of the trajectories in Figure 5.1, with spread of samples shown by shaded region.

agent (see Section 5.4). We can observe that the operator T} results in the faster con-
vergence, as we claimed in Section 4.4. We remark that the convergence speed of ne-
gotiation in a multi-contract market decreases with an increase in the level of energy
granulation. In Figure 4.4 we plot the spread of the sample trajectories to illustrate the
best and worst convergence scenario for both single-contract and multi-contract setups
using the operator Tpx. Next, we benchmark the computational performance of our al-
gorithm. We choose a static case of a distributed bargaining algorithm proposed in [72]
for payoff allocation in coalitional games, as a benchmark. In Figure 4.5, we present
the trajectories of our algorithm and the benchmark. Since, the benchmark algorithm
utilizes the whole bounding set instead of just the bounding half space in (4.2) at each
iteration, it proceeds faster initially. However, in the long run, our proposed algorithm
performs better. Lower information requirement in our approach makes the execution
of a negotiation step considerably faster. In this simulation scenario, the average execu-
tion time of a negotiation step is about 40x times faster than the benchmark.

Now, to evaluate the economic benefit for prosumers we setup P2P markets for peak
hours and show the average change in revenues and costs of sellers and buyers, re-
spectively, in Figure 5.3. The revenues of sellers are higher and the costs of buyers are
lower in both the market setups compared to the trade with the grid/retailer. We also
observe that for the market with similar category of participants (e.g. residential) and
adequate participation from both sides (buyers and sellers), the economic performance
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Figure 4.5: Comparison of the trajectories of dist(x’C LX)/ dist(xo, X'*) for our distributed bilateral negotiation
(red) and the benchmark (green).
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Figure 4.6: Average revenue improvement (sellers) and average cost reduction (buyers) in single-contract (s-c)
and multi-contract (m-c) P2P setups compared to trading with the grid.

of single-contract and multi-contract markets is comparable. This is due the fact that
similar excesses and demands of energy reduces the trade outside the P2P market. We
also remark that moving from single-contract to a multi contract market can maximize
the total amount of energy traded inside P2P market hence increasing the overall market
welfare but it does not guarantee individual improvements for all parties. This is because
a random payoff inside the core set in (4.3) can assign a higher share of the value gen-
erated by a buyer-seller pair to the either side of the market. For instance, this can be
observed in Figure 5.3 for seller 2. In Figure 4.7, we observe that the proposed P2P mar-
ket designs strongly encourage prosumer participation in bilateral energy trading and,
in particular, the multi-contract setup increases the internal energy trade.

Now, observe from (5.4) that allowing for product differentiation (e.g. on environ-
mental or social basis) can increase the overall social welfare of the market compared
to mere economic considerations. This increase comes from the higher user satisfac-
tion which is achieved by catering to their personal preferences. Therefore, we define a
metric of user satisfaction as the number of times the buyers with green energy prefer-
ences are matched to the green sellers in 100 scenarios of our study. In Figure 4.8, we
compare this user satisfaction with a traditional market that only considers economic

factors. The figure shows that product differentiation offers higher user satisfaction and
thus encourages prosumer participation.
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Figure 4.7: Reduction in energy traded with the grid via single-contract (s-c) and multi-contract (m-c) P2P
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Figure 4.8: User satisfaction for the buyers with a preference for green energy in P2P market setups with and
without product differentiation.

Finally, in Table 4.3, we present the computational times of an agent’s negotiation
process in proposed P2P market mechanism to numerically show the scalability with re-
spect to the market size. We note that because of the distributed implementation the
negotiation protocol of agents run in parallel on their personal computational resource.
Here, the simulations are executed in MATLAB 2020b installed on a laptop computer
with 2.3 GHz Intel Core i5 and 8GB RAM. These numerical results can help in decid-
ing how far ahead in time from the actual energy delivery should such markets operate,
depending on the expected level of prosumer participation (e.g. the size of energy com-
munity). Furthermore, we can conclude that the adoption of the assignment game for-
mulation provides opportunity for the practical implementation of reasonably large P2P
markets while guaranteeing contract prices that represent a competitive market equilib-
rium. We note that the regulator can also decide the market size systematically, e.g. on
geographical basis and also put the eligibility criteria on the power capacity of installed
generation source. Such regulatory restrictions are often imposed on trading mecha-
nisms for example, in Queensland, Australia, a prosumer cannot participate in a feed-
in-tariff program if they have solar panels beyond 5kW capacity [113].

4.6. CONCLUSION

We have formulated P2P energy trading as an assignment game (coalitional game) over
time-varying communication networks and proposed a novel distributed negotiation al-
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Table 4.3: Avg. negotiation time per agent with market size

Agents 40 60 80 100
Negotiation time (seconds) 4.1437 10.5930 19.9979 43.9713

gorithm as a clearing mechanism that guarantees stable trading prices in a coalitional
game theoretic sense and satisfies the desired economic properties.

The proposed bilateral P2P energy market designs namely, single-contract and
multi-contract, encourage prosumers to participate by making P2P trading a favourable
choice, considering their economic and social priorities. Furthermore, enabling product
differentiation increases user satisfaction and allows for a higher overall market welfare.
Finally, the negotiation mechanism via paracontraction operators enables faster con-
vergence to a consensus on a set of bilateral contract prices that represent a competitive
equilibrium and belong to the core.

An interesting extension of our work would be the design of online mechanisms for
real-time markets where the core set varies over time, thus accommodating for the short-
term uncertainty in RES generation and demand.

4.7. APPENDIX
To prove the convergence of (5.5), as stated in Theorem 6, we first provide useful results
regarding paracontractions.

Lemma 8 ([27], Thm. 1). Let T be a finite family of paracontractions such that
Nre7 fix(T) # B. Then, the sequence (x*)icn generated by x**1 := T*(x*) converges to
a common fixed-point of the paracontractions that occur infinitely often in the sequence.

O

Lemma 9 (Doubly stochastic matrix ([32], Prop. 5)). IfW is a doubly stochastic matrix
then, the linear operator defined by the matrix W ® I, under Assumption 17 is a paracon-
traction with respect to the mixed vector norm || - |l2,2. O

Lemma 10 (Composition of paracontracting operators ([32], Prop. 1)). Suppose Ty, T» :

R"™ — R" are paracontractions with respect to same norm | - || and fix(T1) nfix(T») # &.
Then, the composition Ty o T, is a paracontraction with respect to the norm ||| and fix(T; o
T») = fix(T7) N fix(T>»). 0O

Lemma 11 (Stacked vector of paracontractions ([32], Prop. 4)). Suppose each map
T1,..., Tm is a paracontraction with respect to || - 2. Then, the map T := col(Ty,..., Tn)
is a paracontraction with respect to || - ll2,2. O

Using these properties, we now show that the sequence of operators generated by
the iteration in (5.5) is a paracontraction and the set of its fixed-points is a consensus in
the intersection of the fixed-point sets of the operators.

Lemma 12. Let Q be the integer in Assumption 9. Let T1,..., T be paracontraction op-
erators with ﬂ?:l fix(T;) =: C and let WoWq_1 --- W1 be the composition of the adjacency
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matrices where W, € W, with W as in Assumption 15. Let W, := W, ® Iy. Then, the
composed mapping x — (ToWqo---o T W1)(x)

(i) is a paracontraction with respect to norm || - |l2,2;

(ii) ﬁX(TQWQ o---0oT{W;)= An C,
where A is the consensus set in (2.8). a
Proof. (i): It follows directly from Lemmas 15 and 10.
(ii): By Lemmas 15 and 10, fix(TgWgo---o T1 W) = fix(Tg) n---nfix(T1) nfix(Wg)n---N
fix(W,). Again, by Lemmas 15, 10 ﬂerl fix(W;) = fix(Wq--- W1) and since the composi-

tion Wy --- W is strongly connected, by the Perron-Frobenius theorem, fix(Wq--- W) =
A. Furthermore, as ﬂ?zl fix(T,) =C, fix(ToWgqo---oT1W;) =AnC. O

With these results, we are now ready to prove Theorem 6.

Proof. (Theorem 6) Let us define the sub-sequence of xFforall ke Nas z! = x~DQ for
each t = 2 with Q being the integer in Assumptions 9 and 13. Then,

21— ptQ-ly Q-1 o p-DQp (t-1Q ¢ (4.10)

for t = 2. Tt follows from Lemma 11 and assertion 1 of Lemma 12 that the maps
x— (T IWIQ 1o...o TU-DQW-DQ)(x) ¢ > 2 are all paracontractions. Also, under
Assumption 15, there can be only finitely many such maps. Furthermore, by assertion 2
of Lemma 12, the set of fixed-points of each map is X'*. Thus, by Lemma 8, the iteration
in (4.10) converges to some z € X'*. O



PEER-TO-PEER ELECTRICITY
MARKET FOR RESIDENTIAL
PROSUMERS

Coalitional game theory offers rigorous tools for modelling cooperative interaction of
agents. In this chapter, we utilize those tools to model a bilateral peer-to-peer (P2P) en-
ergy trading scheme for residential prosumers with a simplified entry to the market. We
formulate the market as an assignment game, a special class of coalitional games. For
solving the resulting decision problem, we design a bilateral negotiation mechanism that
enables matched buyer-seller pairs to reach a consensus on a set of “stable" and “fair" trad-
ing contracts. The proposed negotiation process can be executed on possibly time-varying
communication networks with virtually minimal information requirements that in turn
preserves privacy among prosumers. Numerical simulations illustrate the beneficial fea-
tures of our P2P market model and negotiation protocol.

57
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5.1. INTRODUCTION

Decarbonization of energy systems is one of the key agenda of the climate action plan
and to achieve this goal, power systems are envisioning large scale integration of re-
newable energy sources (RES). Wide scale decentralized deployment of RES, especially
photo-voltaic (PV), is being undertaken by the small prosumers (e.g. residential) which
brings them at the center of this transformation [20]. Thus, many demand-side tools
are being developed for the technical and economic integration of the residential pro-
sumers.

Local or community based electricity markets can effectively facilitate the dis-
tributed deployment of RES by managing the associate uncertainty locally and by pro-
viding financial benefits. Therefore, such market based solutions have received consid-
erable attention from smart-grid researchers, especially towards the peer-to-peer (P2P)
market paradigm [111]. P2P markets provide prosumers with the direct control over the
trade of their energy sources on their own terms of transactions to make profitable inter-
actions. Thus, it encourages wider prosumer participation and also provides significant
benefits to the system operators for example in terms of peak shaving [65], and lower
investments in grid capacity [62].

However, the design of the local P2P electricity markets presents mathematical and
structural challenges. The whole sale market in EU requires sellers to enter with the
complex offers, which requires high level of technical abilities. Such structure cannot be
replicated in the markets where the participants are laypersons (residential prosumers).
Thus, the key tasks are to design: a mechanism which seeks a market equilibrium while
incorporating a self-interested decision-making attitude by the participants and a struc-
ture simple enough to encourage the entry by residential prosumers. Therefore, in this
chapter, we first design a bilateral P2P market that simplifies the entry of a typical resi-
dential prosumer and then we present an algorithm that enables prosumers to converge
to a fair and stable market solution, in context of coalitional game theory.

Coalitional game theory provides analytical tools to study the cooperative interac-
tion of selfish and rational agents and thus, holds adequate prospects for the design of
P2P markets. The authors in [109] propose a P2P energy trading scheme in which pro-
sumers form a coalition to trade energy among themselves, at a mid-market rate which
ensures the stability of the coalition. In [44] the authors use coalitional game theory to
formulate a community based architecture for local energy exchange to minimize over-
all energy cost. A coalition formation game is formulated by the authors in [110] for P2P
energy exchange among prosumers, and the resulting coalition structure is shown to be
stable. The price of exchange is determined by the double auction mechanism. Another
coalition formation game is presented by the authors in [113], that allows prosumers
to optimize their battery usage for P2P energy trading. In [52] the authors present an
iterative procedure for peer matching among prosumers, who then undertake a bilat-
eral negotiation to come to an agreement on the price and quantity of energy trade, but
without coalitional game theoretic guarantees.

In this chapter, we model P2P energy trading as an assignment game, a special class
of coalitional games, that allows for bilateral contracts and for a mutual settlement on
the fair and stable contract prices via distributed negotiation. Broadly, we propose a bi-
lateral P2P electricity market and a solution mechanism within the framework of coali-
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tional game theory. Our key contributions are summarized next:

* We formulate bilateral P2P energy trading as an assignment game which simpli-
fies the prosumer participation, amidst of RES uncertainty, and allows for product
differentiation. Our formulation ensures the existence of a “stable" set of bilateral
contracts (Section 5.3);

* We develop a distributed negotiation mechanism where the buyer (seller) com-
municates only with the matched seller (buyer) and the market operator, and we
show that the mechanism converges to the 7-value in the core of the assignment
game while preserving the privacy among the market participants (Section 4.4);

For basic notation see Appendix A and refer to Chapter 2, Section 2.2.2 for operator-
theoretic definitions.

5.2. PAYOFF IN ASSIGNMENT GAMES

Assignment games (see detailed mathematical background in Chapter 4) are a class of
coalitional games that model a two sided matching market with the objective of finding
optimal assignments between the opposite sides for a bilateral trade [98]. The payoff
(xg, x}’ ) as aresult of a bilateral trade between an optimally matched pair (i, j) € Zg x Zg
determines the bilateral contract price A;,j. The contract price is defined as the differ-
ence of the bid of buyer i and his payoff, i.e., 1; ; = h; ; — x.. A set of efficient and rational
payoff vectors is called the core as in (4.3). However, the core set is not singleton and dif-
ferent core payoffs can favor different sides of the market [98]. The two extreme points
of the core are referred as the buyer optimal payoff (x', x”") and the seller optimal payoff
(x',X"). Therefore, it is important to identify a fair payoff that belongs to the core. Next,
we provide one such fair payoff, namely the 7-value in context of assignment games [77].

The 7-value is generally defined as an average of the utopic payoff and the minimal
rights payoff where, the utopia payoff is regarded as the maximal payoff an agent can
receive in the core and the minimal rights payoff is what an agent can guarantee himself.
In context of an assignment game (Zg UZg, v)r), the utopia payoff for a buyer i is given
by his marginal contribution to the grand coalition, which is also the buyer optimal, i.e.,
X = vmM(ZUZs)—vm(ZBUZLs\;y)- Furthermore, the minimal rights payoff of buyer i that
is optimally matched with seller j is given as {2 = vmMTpUZls\j) — vm@p\iy VLsy)-
Finally, the 7-value of an assignment game is as follows:

&, X"+, X"

T(vpm) = — 5 (5.1)
Remark 5 (7-value in core [77]). Thet-value of an assignment game (as in Definition 13)
belongs to the core. O

Using the fact that the 7-value is a midpoint between the buyer-optimal and the
seller-optimal core payoff, we can define a set of favorable payoffs for each side.

Definition 16 (Favorable payoff). For buyer i in an optimally matched pair (i, j), the set
of favorable payoffs is

x; +x1)
X;:={x}eR|x} = %,x;+x}': v(i, j)}. (5.2)
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a

In the sequel, we associate the idea of fairness to the r-value and use it as a solution
concept for our bilateral P2P market design. In practice, bilateral agreements should
be directly negotiated by self-interested agents. Thus, we propose a distributed solution
mechanism in which the agents negotiate bilaterally to autonomously reach a consensus
on the payoff.

5.3. P2P MARKET AS AN ASSIGNMENT GAME

In this section, we formulate a bilateral P2P energy market as assignment game where
the participants are partitioned into buyers and sellers. A prosumer who owns an energy
source is regarded as a seller while a buyer can be a mere consumer as well. For mod-
elling a seller, we consider a typical residential prosumer who is not present at home
during high PV generation hours on the weekdays. Therefore, it makes high economic
sense for such prosumer to sell the energy produced in the market. Let us elaborate on
the models of the market participants namely, sellers, buyers and the market operator.
First, a sellers’ offer is composed of a rated power of the generation source and the price
per KWh of energy for the period of availability. Such offer structure, with easily known
parameters, greatly simplifies the process of prosumer’s entry into the market which in
fact is an important practical requirement for enabling the participation of residential
prosumers (layman) in P2P markets. Another way of looking at our model is that a seller
offers to rent out his generation source for the desired time period. Our market design
also creates an opportunity for the data markets in energy systems that allows partici-
pants to share their generation and demand data for additional financial or operational
benefits. This data is then utilized by the market operator to optimize amidst of uncer-
tainty. We note that our model can accommodate other energy sources as well (e.g. ES)
but we maintain our focus on PV as it is most widely adopted RES at residential level.

A buyer enters the market with the energy demand, bid per KWh and the preference
factor that allows a buyer to prioritise sellers based on the desired criteria (e.g. green
energy, seller rating). Finally, the market is operated by a central operator who has com-
plete information of bids and offers, and is also responsible for maximizing the market
welfare.

Let ¢; denote the price demanded by a seller j € Zs per KWh of energy and let s;
represent the rated power of the offered energy source; then, an offer of a seller j is given
by a pair (cj, s;). Similarly, let us denote the energy demand of a buyer i € 73 by d; and
his preference factor for seller j by a; ;. Furthermore, let p; be a base price that the buyer
i is willing to pay for each unit (1 KWh) of energy, hence he presents its bid as (a;, ; p;, d;).
Next, we impose some practical limitations on the buyer bids and seller offers to make
our market setup economically rational for the participants. Let g, and g5 denote the
buying price and the selling price of energy provided by the grid, respectively. Then, the
rational buyer i should offer a seller j a higher energy price than that of the grid, but
not more than the grid’s selling price, i.e., @; jp; € (gb, gs] and analogously, the seller j
satisfies ¢; € [gp, &s)-

The energy generation by RES (PV) is inherently uncertain thus to encourage pro-
sumer participation we transfer the responsibility of accounting for this uncertainty
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from a seller to the market operator. We achieve this by allowing seller to only include
the rated power of his energy asset instead of the energy. Therefore, a stochastic market
mechanism is required. For this purpose we use scenario modeling of uncertainty in RES
generation. Let the set of generation scenarios of future be 7 and denote the probability
of occurrence of the scenario f € F by pr. Also, let us denote the generation forecast
of seller j’s energy source in scenario f by §;(f) then the corresponding expected value
is given by E[$;] = X reF pr8j(f). We note that, without the loss of generality, the un-
certainty can also be considered in demand. However, in this chapter we assume the
demand forecast to be deterministic. Next, we formulate a P2P energy market as an as-
signment game.

In our P2P market setup, the sellers and buyers make bilateral contracts that generate
certain utility (value) for both. Let buyer i € 7 and seller j € Zs make a bilateral contract
then, the value 7(i, j) generated by this contract reads as

(max{O,a,-,jp,-—Cj})di if[E[§j] =>d;
0(i, j) = R . (5.3)
(max{0, a; jp; — ¢;HE[S]] otherwise.
Let us elaborate on the bilateral contract value in (5.3). First, the contract is only viable
when buyer’s bid of the energy is higher than seller’s offer, i.e., a; jp; > c¢j. Then, in
the first case, i.e., E[§;] = d;, trading each unit generates the welfare equal to a;,;jp; — ¢;
where, the total traded units are d;. Furthermore, the excess energy of the seller (s; - d;)
is sold to the grid. The second case has a similar explanation. We note that, the value of
anon-viable contract will be zero and that if s; = d; then the two cases are equivalent.
Now, let us define an assignment matrix M = [D(i, j)1(; jyez;xZs Where each element
D(i, j) represents the value of a bilateral contract between buyer i € Z and seller j € Zg.
Then, the corresponding assignment game is given by M = (Zg UZg, vps). To solve the
resulting game, the market operator first evaluates the value vy;(S), for each S < Z, by
solving the following assignment problem:

max Y ) 0 Puig

i€eZrnSjeZsnS
P(S): st Y i<l VjeIsnS 5.4)
i€eIpnsS
Z wij=1 YieIpnS$
JjeZsnS

with matching factors y; ; € {0, 1}, where y; ; = 1 represents the matching between buyer
i and seller j. The constraints imposed on the matching factors ensure one-to-one
matching. We note that the sellers and buyers can also enter as multiple agents to ensure
adequate energy trading in the case of participation discrepancy on two sides of the mar-
ket. The results obtained by solving the assignment problem in (5.4) enable the market
operator to evaluate the optimal buyer-seller assignment and the marginal contribution
of the agents. Following are the notable features of our P2P market design:

 Existence: There always exist a set of unobjectionable bilateral contracts for all
participants, i.e., the core of a bilateral P2P market is always non-empty (Remark
4).
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* Product differentiation: Buyers can assign priority to seller characteristics (e.g.
green energy, location of seller) via preference factors a; ;.

* Convenience: Residential prosumers do not require any technical tools or meth-
ods to offer suitable amount of energy for given time interval (offer includes power
rating) thereby simplifying the market entry.

¢ Bilateral negotiation: Optimal bilateral contracts are assigned centrally by the
market operator but the contract price is negotiated internally between matched
buyer and seller, thus preserving the inter-prosumer privacy.

5.4. DISTRIBUTED BILATERAL NEGOTIATION
After the market operator’s evaluation of the optimal assignment, members of each
matched pair negotiate between themselves for a bilateral agreement on the trading
price. The goal of our mechanism design is to enable the matched pairs to indepen-
dently reach a consensus on a fair bilateral contract price such that the corresponding
collective vector of payoffs belong to the core in (4.3). Thus, to achieve our goal, we
propose a distributed bilateral negotiation mechanism, where a central market operator
with complete information of the game transmits to the market participants only their
marginal contribution to the grand coalition (P2P market). After receiving the required
information, each agent distributedly proposes a payoff allocation to his matched agent.
We prove that utilizing such a limited information, the proposed solution converges to a
fair and stable payoff distribution, i.e, to the 7-value.

We consider a bilateral negotiation process in which, at each negotiation step k,
a buyer (seller) communicates with the matched seller (buyer) to bargain for his pay-
off. We present the process of negotiation for a matched pair &; j € £ := {(i,j) | pi,j =
1, for all (i, j) € Zg x Zs} where, £ is a set of matchings in an optimal assignment attained
by solving (5.4) for the grand coalition (Zp UZs). The matched pair communicates over
a directed network link

weighted using an adjacency matrix W* = [wf' ].], whose element wf j represents the

weight assigned by agent i to the payoff proposal of his matched agent j, xj?. Here, the
time-variation k refers to the variation of the weights assigned by each agent to the pro-
posal of the corresponding matched agent.

Furthermore, we assume the adjacency matrix to be stochastic with the positive en-
tries, which means that an agent always gives some weight to his previous proposal and
the proposal of the matched agent.

Assumption 14 (Stochastic adjacency matrix). For all k =0, the adjacency matrix W* =
[wllC j] of the communication links is row-stochastic and 3y > 0 such that wll‘j =vy. a

We further make a technical assumption on the elements of the adjacency matrix
Wk i.e., they belong to a finite set hence, finitely many adjacency matrices are available.

Assumption 15 (Finitely many adjacency matrices). The adjacency matrices {W*}en of
the communication graphs belong to W, a finite family of matrices that satisfy Assump-
tion 17, i.e, WX e W forall k e N. d
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At each negotiation step k, an agent i bargains by proposing a payoff distribution
xf € R?, for both of the agents in a matched pair (i, j). To evaluate a proposal, he first
takes an average of the estimate of the matched agent x;? and his own proposal weighted

by an adjacency matrix Wk, ¥ jeks ” f Next, agent i receives the information of
his marginal contribution in the market by the market operator, which allows agent i to
evaluate the set of his favorable payoffs X, as in (5.2). We note that our algorithm does
not require evaluation of the complete core as for the algorithms presented in [13]. After
receiving the required information, agent i projects the average xk =Y je&; wk x* on

L™
the set of favorable payoffs &;. Thus, the iteration reads as karl = projy, (xl. ). We can

generalize this iteration by replacing the projection operator, proj(~), with a special class
of operators namely, paracontractions. This generalization enables us to utilize operator
theory for showing the convergence of our algorithm later. The protocol we propose for
an agent i € &; j is x’“rl T; (xk) that in collective form, for negotiation between pair
(i, j), reads as the ﬁxed -point iteration

k+1 k

x; 5 =TW x(l])), (5.5)
where T (x) := col(T;(x1), T»(x2)) and wk.=wke I, represents an adjacency matrix. In
(5.5), we require the operator T; to have &X; in (5.2) as fixed-point set, i.e., fix(T;) = X,

Assumption 16 (Paracontractions). The operator T in (5.5) is such that T; € T, where T
is a finite family of paracontraction operators such that fix(T;) = X; with X; in (5.2). O

The iteration in (5.5) provides the bilateral negotiation process that will be executed
by each matched pair (i, j) € Zg x Zs independently. Next, we provide our main conver-
gence result.

Theorem 6 (Convergence of bilateral negotiation). Let Assumptions 17 — 16 hold. Let
X, j = Xin X; with X; asin (5.2). Then, starting from anyx?l. Y the sequence (x(l D) oo
generated by the iteration in (5.5) converges to x(l ]) (l ) NnA with A as in (2.8) and the
collective payoff vector x* € [1(; jeg Xii,j) is the T-value in (5.1) thus belongs to the core,

Cyp in (4.3). O

5.5. NUMERICAL SIMULATIONS

In this section, we demonstrate the effectiveness of proposed algorithm by conducting
numerical simulations of our bilateral P2P market design for time slots with high PV gen-
eration. We consider 3 residential prosumers with energy deficiency and 3 with surplus
to act as buyers and sellers, respectively. Sellers are equipped with either a PV source of
capacity 2 - 5 kWp or an ES of 4 kWh. The buyers assign preference level to each seller
using the priority factor a; ; € [1,1.5] with 1 being indifference to any criteria, e.g. green
source (PV) vs brown source (ES), etc. Furthermore, buyers choose base valuation of the
energy p; such that their bid is higher than the grid’s buying price g}, = 0.05 £/kWh and
not more than the grid’s selling price g = 0.17 £/kWh and the sellers choose their valu-
ation c; less than the grid’s selling price gs [44]. To account for the uncertainty, we use
three PV generation scenarios.
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Figure 5.1: Trajectories of dist(x¥, 7-value) via bilateral negotiation algorithm with operator 7; := proj X; for
optimally matched buyer-seller pairs.
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Figure 5.2: Percentage distribution of total welfare between buyers and sellers via seller optimal, buyer optimal
and 7-value payoffs.

In our P2P market setup, first the market operator evaluates the optimal trading pairs
of buyers and sellers using the formulation in (5.4). Then, each matched pair internally
negotiates for the contract prices via mechanism in (5.5). In Figure 5.1, we show the con-
vergence of bilateral negotiation algorithm to the respective 7-value payoffs. In Figure
5.2 we show the welfare allocation by respective points in the core. As the payoff is ne-
gotiated bilaterally the gain of buyer corresponds to the loss of seller and vice versa thus,
we observe that, the 7-value payoff provides more fair treatment to both sides. Next, we
illustrate the economic benefit of trading inside the P2P market, compared to trading
with the grid, in Figure 5.3.

5.6. CONCLUSION

We have modelled P2P energy trading as an assignment game (coalitional game) and
proposed a bilateral negotiation process as a clearing mechanism. The proposed P2P
electricity market model encourages prosumers to participate by providing ease of ac-
cessibility, flexibility of choice and economic benefits, i.e., higher revenue (sellers) and
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Figure 5.3: Average revenue improvement (sellers) and average cost reduction (buyers) via seller optimal, buyer
optimal and 7-value payoffs compared to energy trading with the grid.

lower energy costs (buyers) compared to trading with the grid. Furthermore, the bilat-
eral negotiation mechanism enables participants to reach a trading contract (7-value)
which fairly divides the resulting market welfare among buyers and sellers.

5.7. APPENDIX

To prove the convergence of (5.5), as stated in Theorem 6, we first provide useful property
of a paracontraction operator.

Lemma 13 ([32], Thm. 2). Let M = {Mj,..., My} be a set of paracontractions such that
Nyem x(M) # . Let the communication graph be connected and consider the iteration
xk+l = M(W* (x%)), where M(x) := col(M; (x1), ..., My (Xn). Then, the state x* converges
to a state in the set AN fix(M) as k — oo. O
& x+(xh X))
Proof. By (5.2), X, jy = —~5——. Let Assumptions 17 and 16 hold then, by Lemma
13 the iteration in (5.5) converges to AN X (21.' i Next, by Definition in (5.1) the collective
payoff x* is the 7-value thus, by Remark 5, x* € Cy,. O







ONLINE COALITIONAL GAMES FOR
REAL-TIME PAYOFF DISTRIBUTION

Motivated by the markets operating on fast time scales, we present a framework for online
coalitional games with time-varying coalitional values and propose real-time payoff dis-
tribution mechanisms. Specifically, we design two online distributed algorithms to track
the Shapley value and the core, the two most widely studied payoff distribution criteria in
coalitional game theory. We show that the payoff distribution trajectory resulting from our
proposed algorithms converges to a neighborhood of the time-varying solutions. We adopt
an operator-theoretic perspective to show the convergence of our algorithms. Numerical
simulations of a real-time local electricity market and cooperative energy forecasting mar-
ket illustrate the performance of our algorithms: the difference between online payoffs and
static payoffs (Shapley and the core) to the participants is little; online algorithms consid-
erably improve the scalability of the mechanism with respect to the number of market
participants.
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6.1. INTRODUCTION

A technological transformation is currently underway converting key infrastructures,
such as power grids, commerce, and trading platforms, into highly dynamic complex
systems. In these domains, predictive decision-making and operational planning un-
der uncertainty traditionally rely on forecasts. The reliability of a forecast generally de-
creases as the lead time increases, especially for systems operating in highly dynamic
environments. Thus, acting closer to the time of occurrence of an event decreases the
chance of inaccurate or erroneous decision-making. Alongside, the sweeping technolog-
ical advances across sectors like communication, sensing, data acquisition, and compu-
tation are making time-ahead decision-making a dormant approach. Therefore, we need
methodologies and mechanisms that make use of real-time data streams and respond to
the fast dynamics of the underlying system via online decision-making [26].

Among the systems operating in highly dynamic environments, here we focus on
real-time markets. The adoption of real-time markets has shown significant potential in
the power system sector [118]. In particular, the increased presence of distributed en-
ergy resources (DERs) and demand response (DR) programs on the consumer side allow
system operators to utilize them for providing demand-supply balancing services in real
time [80]. Unlike conventional generators, the response time of DERs and DR fulfills
the operational requirements of participation in real-time balancing markets. In [42],
the authors build a model for the real-time operation of a recent market paradigm, i.e.,
peer-to-peer (P2P) markets. P2P markets envision a bilateral trade of renewable energy
among small prosumers. As the accuracy of forecasts can be improved by decreasing
the lead time [75], market clearing closer to the time of delivery can mitigate the possi-
ble imbalance caused by the uncertainty associated with RES. In both balancing and P2P
markets, the key enabling feature is the computational speed of the clearing mechanism.
The mechanisms for such markets require a large amount of information exchange and
execution of negotiation processes. Consequently, in the context of real-time markets,
the computational time for market clearing can be higher than the gap between two
market instances.

Another marketplace operating in a dynamic environment that has recently gained a
lot of interest from both academia and industry, is the data market [17]. With the emer-
gence of machine learning across all business and social sectors, the need for quality
training data has grown enormously. One way to ensure data availability is by creating
a market that compensates data providers. Various structures and mechanisms are pro-
posed in the literature for data markets including bilateral exchange of data [91] and a
regression market framework for wind power forecasting [45]. In general, assigning a
value to a particular data set among many is inherently a combinatorial problem. The
authors in [33] address the problem of data valuation for a specified machine learning al-
gorithm under a static market structure. Here, we are interested in the mechanisms that
can handle continuous data streams, hence real-time data markets. In this direction, the
authors in [2] present a real-time data market for buying and selling training data and
propose a mechanism to fairly compensate the data providers. However, the compensa-
tion in their mechanism is computed offline. In the presence of continuous data streams
and combinatorial complexity of data valuation, offline solutions cannot be executed in
the time scales that match the dynamics of the underlying process. Therefore, in this
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paper, we adopt a game-theoretic approach to design online market mechanisms for
real-time markets operating at fast time scales. We present these mechanisms in a gen-
eral form that is applicable to several domains. For the data markets in [2], the online
formulation enables us to better remunerate the market players under continuous data
streams. Similarly, for the real-time P2P market of [42], we can employ online market
mechanisms grounded in coalitional game theory, which offers mathematical tools for
analysing the interaction of self-interested agents and provides guarantees of fairness or
stability on the remuneration criteria. From an economic perspective, these properties
are highly desirable for a payoff distribution mechanism.

In this paper, we focus on a particular class of coalitional games, namely transferable
utility (TU) coalitional game, which consists of a set of agents Z and a value function
v that assigns a value v(S) to each possible coalition of agents S < Z. Collectively, a
TU coalitional game is represented by a pair (Z, v) [69]. Multi-agent decision-making
problems modeled by coalitional games arise in many application areas, such as energy
systems [43], [22] and communication networks [92]. In particular, we study markets
modeled as coalitional games. Coalitional game theory studies the mechanism of the
distribution of the value generated by cooperation to respective agents. Two key solution
concepts that undertake the task of value distribution (payoff) are the Shapley value and
the core. The Shapley value addresses the fairness aspect, which implies that the payoff
for an agent should reflect its impact on the game. This property is ensured by the ax-
iomatic characterization of fairness [97]. The core payoff ensures that no agent has any
incentive to defect the coalition and thus addresses stability.

We consider the problems of evaluating both fair and stable payoff allocations, i.e.,
the Shapley value and the core payoff respectively, under a dynamic coalitional game
setting. Essentially, our work lies at the intersection of time-varying optimization and
dynamic coalitional games. In the direction of the former, algorithms proposed in the lit-
erature [100], [102] track trajectories of the optimizers of the time-varying optimization
problems up to asymptotic error bounds, under the assumption of strong convexity. The
problem of payoff allocation in dynamic coalitional games has also been studied in the
literature. Among others, the authors in [57] characterize the core allocations when the
coalitional values vary over time and are dependent on previous events. In [15], Bauso
and Timmer propose payoff allocation rules for a dynamic game where the coalitional
value fluctuates within a bounded polyhedron while the average value of each coalition
over time is known. As we are seeking to design iterative algorithms, a closer work is
[73] by Nedich and Bauso. The paper considers a core payoff allocation in a sequence
of games where the intersection of all the corresponding cores is non-empty. Further
generalization of their work is presented by the authors in [88] under the same assump-
tion on the core sets. However, in the context of real-time markets it is not reasonable
to assume that the coalitional values evolve only within a particular set or that we have
knowledge about the average coalitional value over time. Thus, the assumptions made
on the non-empty intersection of the solution sets in the works mentioned above make
their algorithms inapplicable to real-time markets. Considering these short-comings, in
this paper, we drop the assumptions on the knowledge of average coalitional values as
well as of non-empty intersection of solution sets to formulate coalitional games in an
online paradigm and in turn propose solutions for real-time market setups.
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A typical problem of real-time markets modelled as a coalitional game is the expo-
nential computational complexity of an equilibrium solution which usually makes ex-
actly evaluating the core and Shapley value impractical. Therefore, we introduce online
distributed payoff allocation algorithms that instead of evaluating at each time instant
the exact solution, track the solutions of the continuously-varying coalitional games up
to an asymptotic error bound. Among all energy-related markets, here we focus on the
advanced real-time markets that are operating at a high frequency, where the time in-
terval between the opening and the clearing of the market is not enough to compute a
coalitional solution in an offline manner. We note that online mechanisms are instead
not necessary or suitable for traditional centralised wholesale markets.

Before listing our contributions, let us further motivate our setting through an exam-
ple. Note that, here, we present our example in a general setting to show the extent of
our contribution. Later, we simulate the energy-related market as a specific case of this
motivational setting.

6.1.1. MOTIVATIONAL EXAMPLE

Let us consider an online forecast valuation scheme, inspired by [53] and [89], for pool-
ing the information and expertise held by different owners and generating a combined
forecast. First, let us introduce the forecasting markets that are designed to predict an
event e.g. renewable energy generation [95]. Generally, in such markets, the market par-
ticipants (forecasters) sell predictions in the form of a probability distribution; then the
true outcome of the event is observed and the market pays each expert based on the
quality of their predictions. Let there be a central platform £ designed for a prediction
task, e.g. to predict the wind energy generation. Consider a set of N forecasters, Z, that
have expertise in making such predictions. To generate accurate predictions, the fore-
casters take into account various factors, e.g. wind speed and overall weather conditions
effecting the wind energy generation. Each provider i € Z posts a bid to the forecasting
market. To achieve the forecast valuation, the following steps are performed:

* A client posts a prediction task Y to the central platform;
* Each forecaster i € Z posts their prediction f; of the announced task;

* The platform combines these forecasts using a pooling method [117] and the re-
sulting aggregate forecast f is delivered to the client;

 After the event occurs, the client announces a reward y corresponding to the im-
provement that they achieved in decision making. Then, the quality of posted pre-
dictions is evaluated and the reward is distributed fairly among the forecasters as
a payoff x.

In our setting, we consider high frequency events with fast dynamics which thus requires
an online forecast valuation scheme. This process of eliciting a combined forecast, i.e.,
cooperative forecasting results in an online coalitional game among the forecasters, rep-
resented by a triplet (Z, £, v¥). The setup of real-time valuation results in a time varying
value function v¥, where v¥(S) represents the utility of a client attained by a coopera-
tive forecast of coalition S ¢ Z. After the occurrence of the event, forecasters negotiate
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Figure 6.1: Overview of an online data valuation scheme in the context of a cooperative forecasting market.

their share of resulting value according to a criteria that acknowledges their individual
contributions in predicting that event. In Figure 6.1, we present a cooperative forecast-
ing scheme with an online payoff distribution mechanism. In the literature, the Shapley
value is utilized for payoff allocation in an offline setting for similar markets [50], [3]
as it fulfills the key criterion of a fair forecast valuation scheme. For further details on
the criterion, we refer to [33]. In this chapter, we design online algorithms for the most
widely used payoff distribution methods in the coalitional games, namely the core and
the Shapley value.

6.1.2. CONTRIBUTION

* We introduce the concept of online tracking of solutions (Shapley value and the
core) in context of coalitional game theory;

* We develop a novel distributed online payoff allocation algorithm to track the
Shapley value up to an asymptotic error bound. We also present the static version
of the algorithm which converges to the Shapley value exactly (Section 6.3);

* We relax the assumption on the core sets of the sequence of coalitional games in
[88] and present an online algorithm to track the payoff allocation in a neighbor-
hood of the core. We show that the proposed algorithm is asymptotically consis-

tent, i.e., converges to the core payoff exactly in the absence of dynamics (Section
6.3.2);

* We introduce an operator-theoretic analysis for the design of online algorithms in
the domain of dynamic coalitional games, which allows us to generalize existing
results.

We note that, even though we focus on mechanism design of energy-related real-time
markets, our solutions can be applied to other applications of cooperative game theory
as well. For instance, a community based energy storage optimisation presented in [43]
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can be addressed in an online fashion to mitigate the effects of uncertainty in load and
RES generation. Similarly, the coalition between EV owners and their work places for
optimal charging proposed in [130] can implement online payoff distribution to make
use of accurate data on generation and dynamic pricing. A real-time fair pricing can
be achieved for a ride-hailing service proposed in [96]. Next, we provide preliminaries
on online coalitional games. For basic notation see Appendix A and refer to Chapter 2,
Section 2.2.2 for operator-theoretic definitions.

6.2. PRELIMINARIES

For the necessary mathematical background on coalitional game theory in dynamic con-
text we refer the reader to Chapter 2. Next, we provide preliminaries for proposed online
payoff distribution processes to track Shapley value and the core.

The Shapley value, as in definition 6, is given by

1

N1 2 WEPT U = vE ). 6.1)

oell

i (5 =

where the term (v* (P7uf{ih) - vk (P7)) in (6.1) is referred as incremental marginal con-
tribution. this term shows the value added by an agent i when it joins the coalition.
Thus, the Shapley value assigned to an agent i is its incremental marginal contribution
averaged over all permutations. We note from (6.1) that to evaluate its Shapley payoff an
agent needs to know the value of all possible coalitions, which is impractical for many
real-world applications and renders distributed computation useless. For the purpose
of designing a distributed algorithm, we identify the orderings o € IT for which an agent
i can evaluate the incremental marginal contributions of all the agents with only the
knowledge of the coalitional values of its own coalitions. These orderings are the ones
in which i joins the coalition at first position. To clarify further, we present the following
example.

Example 1. Let us consider a three player coalitional game ({a, b, c},v). Here, agent a
can compute the incremental marginal contributions for ordering (a, b, ¢) and (a, c,b) as
(v({a}, v(ia, b} -v({a}, v({a, b,c}—v({a, b}) and (v({a}, v(ia, c}—v(ia}, v({a, b, c}-v(ia,c})),
respectively by knowing the values of its own coalitions only. However, for the order-
ing (b, ¢, a) the incremental marginal contributions are (v({b}, v({b, c} — v({b}, v({a, b, c} -
v({b, c}) and to evaluate them, agent a requires the knowledge of v({b, c}) which is unrea-
sonable as the coalition (b, ¢) is not its coalition. O

To exploit the observation from Example 1, in the sequel, we define the marginal
contribution vector #z; that is the average of incremental marginal contribution vectors
corresponding to those orderings for which an agent i can evaluate with minimal infor-
mation.

Definition 17 (Marginal contribution vector). Let w; < I be the set of permutations of
the grand coalition I in which an agent i occupies the first position. For each ordering
o €11, let my; € RN be a vector of incremental marginal contributions with jth element

m;’ = vk(P;7 u{jh - vk(P;.’). Then, for every agent i € T, the marginal contribution vector
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is
1
m; = mg. 6.2
i (N_D!UEZ]” o (6.2)

O

Now, the Shapley value, in terms of marginal contribution vectors, becomes ¢(v) =
%~ Xiez .

Next, we note that for a dynamic coalitional game the solution also varies with time
and that the complexity of both the solutions, i.e., the core in (2.2) and the Shapley value
in (6.1) grows exponentially with the number of agents. Therefore, guaranteeing conver-
gence to a solution payoff vector for each instantaneous game is not necessarily possible,
especially in highly dynamic settings, e.g. real-time applications, where computational
and communication bottlenecks can hinder the exact tracking of a solution trajectory.
Therefore, in the sequel, we propose a distributed online algorithm to track the Shapley
value and provide bounds on the asymptotic error, defined as the “distance" between
the evaluated payoff vector and the Shapley value. Furthermore, we also design a dis-
tributed online algorithm that provides bound on the asymptotic error for tracking the
core set.

In general, a distributed online payoff allocation method is an iterative procedure
in which, at each step, an agent i proposes a payoff distribution x; € RN by averaging
the proposals of neighboring agents and by then making it compliant to its own interest.
The allocation procedure aspires to reach a mutually agreed payoff in the core. Thus, the
proposed payoff distributions (x;) ;7 must also pursue consensus, as in (2.8).

In the sequel, first we consider the problem of computing a trajectory of payoff
vectors that converges to the Shapley value up to a bounded error, i.e., klim sup llx* -

—00

o~ | is small. Then, we address the problem of tracking the core set such that
klim sup dist(x*, AnC(v")) is small. In both problems, an online payoff distribution is
—00

achieved via discrete-time distributed algorithms.

6.3. DISTRIBUTED ONLINE PAYOFF ALLOCATION

In this section, we propose a payoff distribution in the context of online coalitional
games, where the value function v varies with time k on a fast scale hence, the exact com-
putation of the solution for each instantaneous game is not computationally achievable.
Therefore, our goal is to design a distributed algorithm to compute a payoff trajectory
that tracks a solution reasonably well. We remark that we analyse the most conserva-
tive case where agents evaluate one iteration per sample v*. The tracking performance
can be improved with multiple iterations per sample, depending on the lead time of a
market. Let a set of agents Z = {1,..., N} synchronously propose a distribution of util-
ity at each discrete time step k € N, i.e., each agent i € Z proposes a payoff distribution
xi.“ € RN, where the jth element denotes the share of agent j proposed by agent i at step
keN.

Let the agents communicate over a time-varying network represented by a graph G* =
(Z,EX), where ( jie& k means that there is an active link between the agents i and j
at iteration k and they are then referred as neighbours. Therefore, the set of neighbors
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of agent i at iteration k is defined as ./\/l.’C ={jeTlti,e& k}. We assume that at each
iteration k the communication graph is connected. The edges in the communication
graph G* are weighted using an adjacency matrix Wk = [wfj], whose element wll‘]. rep-
resents the weight assigned by agent i to the payoff distribution proposed by agent j, x;? .
Note that, for some j, wll‘j =0 implies that j ¢ ./\/'l.k hence, the state of agent i is indepen-
dent from that of agent j. We assume the adjacency matrix to be doubly stochastic with
positive diagonal elements, as assumed in [70, Assumption 3.3], [71, Assumptions 2, 3].

Assumption 17 (Stochastic adjacency matrix). For all k =0, the adjacency matrix Wk =
[wllC j] of the communication graph G* satisfies following conditions:

1. It is symmetric and doubly stochastic, i.e., Z;.V:l w;j= Zfil wij=1;
2. its diagonal elements are strictly positive, i.e., wf >0, Viel;

3. 3y >0 such that wfj =y whenever wlk]. >0. d

Assumption 17 ensure that the agents communicate sufficiently often to each other
and have sufficient influence on the resulting allocation. Finally, we propose distributed
discrete-time algorithms of the form:

Xt = ME (),

where xi.c € RN is agent i’s estimate of the payoff allocation of all the agents and and
M lk is a time-varying update operator. We can write the above iteration for all agents in

collective compact form:
= MF by, (6.3)

where M*(x) := col(M{C (x1),...,.M ]’f,(xN)). Next, we assume a bound on the time varia-
tion of the fixed-point of the time-varying operators M¥ in (6.3).

Assumption 18 (Bounded time variations). Let (M¥) e be the sequence of operators in
(6.3). The distance between the fixed-points of two consecutive operators is bounded, i.e.,
SUP ke SUP 3k k+1)efix(MF) x fix(M**1) |Z5~1 - %K|| < 8, for some s > 0. d

We note that Assumption 18 bounds the time variations of the fixed point sets of the
time-varying operators, rather than the Euclidean distance between the optimal points
at consecutive times, i.e., [|x¥~! — x¥|| < §, which is standard in the time-varying op-
timization [100, Assumption 1], [101, Theorem 1]. Next, we present an online payoff
allocation algorithm where we design the operator M lk with the Shapley payoff as its
fixed-point set, i.e., fix(M' f) = ¢(v*). We note that in the context of Shapley payoff dis-
tribution, Assumption 18 relates to the dynamics of the coalitional game and implies a
bounded variation of the Shapley value from one time step to the next.

6.3.1. ONLINE TRACKING OF THE SHAPLEY ALLOCATION
Let us formulate the distributed tracking of the Shapley value via time-varying opera-
tors and provide convergence results. The problem of computing the Shapley value for
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a static coalitional game can be formulated as an unconstrained convex optimization
problem with the objective of achieving a consensus on the Shapley value, i.e.,

min_ Z llx— (6.4)
zeI

where 7; is a marginal contribution vector as in (6.2). Here, we consider dynamic
coalitional games executed on time-varying networks and design an algorithm in a dis-
tributed paradigm, thus the marginal contribution vector is also time-varying. Each
agent i minimizes a local objective function fl.k = %”x,- - n%f”z For solving the re-
sulting optimization problem, an agent i can adopt a gradient based algorithm. Let

y{.“ = Zj.vzl w;,jXj, then the state update is given as

k+l _y _avfk(yl

In operator-theoretic terms, we can define an operator M¥ in (6.3) as a composition of a
gradient step operator and a consensus operator, i.e., M* = (Id—aV f¥)oW* where W* .=
W* ® Iy represents an adjacency matrix. We note that for a strongly convex function f
the operator M is a contraction mapping, a fact we use later on to prove convergence of
proposed algorithm.

Assumption 19 (Contractions). For all k € N, the operator M* in (6.3) is such that M* €
M, where M is a family of contraction operators with contraction factor Ly € (0, 1).

Finally, the compact and simplified iteration takes the following form:
= (1 - )WrxF + am*. (6.5)

The authors in [128] present an iteration based on the static version of the operator
M, i.e., zt = Mz and show an inexact convergence which achieves an asymptotic er-
ror bound O(a) with respect to the consensus optimizer z. In our setting, z refers to
the Shapley value ¢p. Here we derive a bound for an online setting in terms of O(«a)-
neighborhood as defined in [128, Lemma 1] under the same conditions on the step size
a. We note that the solution in the context of online coalitional games means conver-
gence of the payoff allocation trajectory to a neighbourhood of the time-varying Shapley
value, as shown by the following convergence result for (6.5).

Theorem 7 (Convergence of online Shapley allocation). Let Assumptions 17— 19 hold.
Starting from any xVe IRNZ, the error norm ||x* — ®¥|| generated by the iteration in (6.5)
satisfies the following bound:

_ k-1
I — @) < Lil1x® - @) + %m O(a),

— Lk

where Ly := Hk_l Li, Ly = maxy Ly and ®* := ¢p* ® 1y is the Shapley value in (6.1) where
O(a) isasin [128, Lemma 1]. Therefore, we have thatlimy._,, lx* — ®F| < —6 +O0O(a).
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a
The result of Theorem 7 asserts that the sequence (x*)en tracks the trajectory of the
Shapley value up to a bound that linearly depends on the parameter §, which comes
from Assumption 18 and relates to the time variability of the Shapley allocation of a dy-
namic coalitional game in Definition 7. We provide the proof of Theorem 7 in Appendix.
We note that if the coalitional game is static then by using the setting in [126, The-
orem 1] we can design a distributed algorithm that converges to the Shapley allocation.
Let us present a corollary for the static case.

Corollary 1 (Convergence to Shapley allocation). Let Assumptions 17 and 19 hold. Let

Assumption 18 hold with & = 0. Then, starting from any x° € R 2, the sequence (xk)‘]’co:0
generated by the iteration

= Q- apWrxk + apmk,

converges to the Shapley value in (6.1), i.e., xF = ®, where (@) ken € (0,1) such that ay —
0, keN @k = +00, X gen @11 — ag| < +o00. O

Discussion: The solutions offered by coalitional game theory have interesting math-
ematical properties, but their computational complexity poses a challenge to their uti-
lization in real-world applications. As the evaluation of the Shapley value requires the
computation of the value of all possible permutations of the set of agents, the compu-
tational time increases exponentially with the number of agents. This challenge makes
it impractical to utilize the Shapley payoff allocation in almost real-time. In this direc-
tion, the distributed structure of proposed algorithm in (6.1) mitigates the problem of
high computational times by logically distributing the computational burden among the
agents. Furthermore, it democratizes the negotiation process by autonomizing the deci-
sion making of agents, which is an important feature of liberal markets.

For coalitional games, the payoff allocated via the Shapley value guarantees fairness.
However, it does not ensure the stability of a grand coalition Z, i.e., the Shapley value
does not necessarily belong to the core in (2.2). As a consequence, if a coalition structure
is not encouraged externally, then the Shapley payoff might not provide an adequate
incentive for agents to join a coalitional game. Therefore, it is highly desirable to design
a distributed algorithm for an online tracking of the core in dynamic coalitional games.

6.3.2. ONLINE TRACKING OF A CORE ALLOCATION
Let us now turn our attention towards the problem of tracking the core solution in (2.2)
for online coalitional games. As the core is a set which in dynamic game setting varies
with time, the problem takes the form of distributively tracking a time-varying set. Let
us make an assumption on the non-emptiness of the core.

Assumption 20. The core of each instantaneous game (Z, vk), is non-empty, i.e., C (vk) #
& forall k € N. d

For an agent i, the problem of tracking the core set C( v¥) can be formulated as an un-
constrained time-varying convex optimization problem with objective of minimizing the
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distance of agent’s payoff allocation estimate from its bounding setin (2.1). Mathemati-

cally, each agent i has an objective function fk 3 ||x —PIoj x, (yky (X {?) 12+ 72—’ &% —xk-1)2
with y > 0. Thus, the optimization problem takes the followmg form:
min FIE = projy, (6 GH 12 + L1%5 - xF1)2
“ k N Lk Lk (6.6)
S. t Z - Wi %]

The optimization problem in (6.6) can be solved by using an iteration based on the for-
ward operator Id — aV f; which is a contraction mapping for a strongly convex and a
strongly smooth function f;. In our setup, for each time step k € N, an agent i updates
its state as

k“ =(l-a- ay)x +aprojy, (vk)(xf) + ayxf_l, (6.7)
where A; is a bounding set in (2.1). In a stacked vector notation the forward operator
applied on (6.6) gets composed with the consensus operator, i.e., Id —Vf) o W(:). Let
us further generalize the iteration in (6.7) by replacing the projection operator, proj(-),
with contractions in Assumption 19. This generalization enables the agents to choose
any contraction operator Tl.k for evaluating a payoff x{?. For consistency we require the
fixed-point set of Tl.k to be the bounding setin (2.1), i.e., ﬁx(Tik) =X wh. Consequently;,
ﬁx(Tk) = ﬂf.\i 1 X,-(vk) =C (vk), the instantaneous core set. The contraction property al-
lows us to prove the convergence of the state x¥ to the set AN C" up to a specified error
bound. Specifically, we propose the following online allocation protocol:

1= Tk wkxky, (6.8)

where the operator M k.— Tk(W*() as in iteration (6.3) is a sequence of time-varying
contraction operators corresponding to the time-varying core set being tracked via time-
varying communication network. This formulation of online tracking in terms of op-
erators allows us to use the existing results from operator theory and to generalize the
algorithms in [73] and [88] by dropping their assumption that the intersection of time-
varying cores is non-empty. Furthermore, the operator theoretic analysis allows us to
keep our proofs brief and elegant. Next, we formalize the convergence result of online
tracking of the core allocation.

Theorem 8 (Online core payoff allocation). Let Assumptions 20— 19 hold. Then, starting

2 — . . . ~ - .
fromany x° e RN, the error norm ||x* — %*|| generated by the iteration in (6.3) satisfies the
following bound:

. 1-(Lp)*!
Ik - 20 < Ll - ol + ks,
1- I,
where Ly = [1¥-] L;, Ly = max; L and x* € AnCN (vX), with A as in (2.8) and C being the
core (2.2). Therefore, it holds thatlimy_. || x* — *|| < %. O

We provide the proof of Theorem 8 in Appendix. Note that we are addressing the
problem of tracking the core of a dynamic coalitional game, thus the result of Theorem
8 shows the convergence of the sequence (x¥) e to a neighborhood of the core set that
depends on the parameter 6 as in Assumption 18, which bounds the variability over time
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of the coalitional game. For the problem of tracking the core, the variability of the game
can be bounded by assuming non-empty intersection of the two consecutive cores, i.e.,
C (vk‘l) nC (yk) # <. Note that, if the game is static, then the iteration in (6.8) converges
to the common point in the core set, i.e., the agents employing the algorithm will reach
consensus on the core payoff distribution. Thus, the online payoff distribution proto-
col in (6.8) is asymptotically consistent [100], which is an important feature of online
algorithms.

6.3.3. DISCUSSION

To use the payoff distribution algorithm in (6.8), each agent requires information on its
own bounding set in (2.1) only that can be evaluated using the values of its own coali-
tions. Thus, this negotiation via bounding sets maintains inter-agent privacy. It is rea-
sonable to assume that the agents have knowledge of their own coalitions.

We note that the centralized version of online tracking in the context of time-varying
convex optimization is presented by Simonetto in [99]. However, centralized methods
for tracking a payoff in the core do not capture scenarios of interaction among au-
tonomous self-interested agents. Furthermore, as the core is a set in which different
payoffs treat agents differently, a centralized evaluation will demand the trust of agents
on the central entity, which is undesirable in many real-world applications, e.g. peer-to-
peer energy exchange [88]. Thus, we propose a distributed method in (6.8) that allows
agents to autonomously track a core payoff distribution.

Interestingly, for the class of games (e.g. convex games) where the Shapley value be-
longs to the core, the online tracking of Shapley value via the iteration in (6.5) implicitly
tracks the core and vice versa via the algorithm in (6.8).

6.4. REAL-TIME MARKET APPLICATIONS

In this section, we illustrate numerically the scenarios of two real-time markets, i.e., a
forecasting market and a local electricity market, modeled as the dynamic coalitional
games. In the first scenario, we present a distributed tracking of the Shapley value for
an online data valuation scheme; in the second scenario, we simulate a real-time local
electricity market and track the time-varying core payoff as an online market solution.

6.4.1. COLLABORATIVE FORECASTING MARKET

We simulate the near real-time collaborative forecasting market described in Section 3.1
for an application of wind power generation. Here, we model a market for trading point
forecasts instead of probabilistic forecasts to remain consistent with the most widely
adopted practice for wind power prediction [83]. Normally, wind energy is forecasted for
horizons of hours ahead. However, if the wind power penetration in a system reaches a
certain high level, it becomes crucial for the system’s security to also have forecasts with
alead time ranging from 1 to 30 minutes. These short-term to near real-time predictions
are required for various operations in the power systems, e.g. by the transmission system
operator (TSO) for the continuous balance of the power system, as an input to the (off-
shore) wind farm controllers, and for the operation of wind-storage systems providing
system regulation [81]. Therefore, we design a market-based prediction system for near
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Figure 6.2: Agents’ forecasts of wind energy generation with a lead time of 5 minutes and corresponding ob-
servation.

real-time wind energy forecasting based on online coalitional games.

PROBLEM SETUP

Consider a client’s platform £ (e.g. TSO, wind farm owner, energy trader, etc.) that uses a
wind energy forecast to optimise decision-making in highly dynamic environments. The
client organises a collaborative forecasting market with the task of predicting wind en-
ergy generation Y¥ at time instant k for time k + m, where m is on the scale of a few min-
utes. We consider N forecasters (agents) that register on the client’s platform to partic-
ipate in the near real-time collaborative forecasting market. Each forecaster i € Z posts
a point forecast fl.k”” at time k, which is a conditional expectation of Y** Then, the

client uses linear pooling to evaluate an aggregated forecast fI =Y ieT % fi. After the
event occurs and the actual wind energy generation w is observed, the client’s platform
evaluates the quality of the aggregated forecast. Then, the client announces the reward
¢ to be distributed among the forecasters according to the quality of their predictions.
In the literature, the most widely used criteria to evaluate the quality of forecasts are the
so-called scoring rules [36]. For our work, we use absolute error (AE) as a scoring rule
which is used for the evaluation of point forecasts. Let the reported prediction by a fore-
caster i, be f; and let w be the actual outcome, then their AE is given as AE; = |f; — o|.
We can now formulate this collaborative forecasting market as a coalitional game by let-
ting the value of a coalition S < 7 to be (1 — AE) of its combined forecast, i.e., v(S) =
1—] fs —w|. Each forecaster evaluates the values of its own coalitions and utilizes the on-
line protocol in (6.5) to distributedly track the Shapley payoff. The payoff represents the
share of each forecaster in the reward evaluated by Shapley value. Note that, we com-
pute the Shapley value as a payoff factor which corresponds to the monetary payoff that
an agent will receive. The correspondence of payoff factor to monetary payoff is appli-
cation specific and depends on the gain in the monetary utility of the client because of
the collaborative forecast. For instance, in our example of wind energy forecasting, the
payoff can correspond to the improvement in utility by optimal operation of combined
wind-hydro power plants or by avoiding an imbalance charge in the market. To keep our
focus on the market mechanism, we do not consider monetary payoffs and remark that
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Figure 6.4: Difference in payoff received by online PD and the Shapley payoff Ixi.c - ([)k | proportional to the total
value generated in the market ZIk(:l vk (D).

their incorporation would not affect the resulting solution properties.

SIMULATION STUDY

To illustrate the collaborative forecasting market, we consider that a client sets up a mi-
cro market with the task of forecasting wind energy generation in Germany with a lead
time of 5 minutes. Let 6 forecasters (agents) register at the client’s platform for provid-
ing the forecast reports. Each forecaster posts their prediction of wind power in the
form of a point forecast at time k for lead time k + 5 minutes. The client then aggregates
the reported forecasts to generate a collaborative prediction and utilizes the mechanism
in (6.5) for real-time payoff distribution. Let this market run continuously for 4 days
to create a time series. Here, we use synthetic data to simulate forecasters’ predictions
generated using the forecast and actual measurements provided by the Spotrenewables
and interpolate it to get the required resolution for the period of 25-28/05/2022. Fig. 6.2
shows the agents’ forecasts and corresponding observations in terms of the capacity fac-
tor, i.e., normalized to the theoretical maximum of wind power plant for a 4-day period.
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The high accuracy of generated forecasts simulates the near real-time forecasting effect.
Next, in Fig. 6.3, we present the tracking performance of our algorithm in (6.5) for differ-
ent values of a. We compute the tracking error by evaluating the online payoff and the
Shapley payoff (static case) for the market game at each instant k as % 2115:1 | % II. In
words, we report the norm of the normalized difference between the online payoff and
the Shapley payoff accumulated over time K. This cumulative tracking error is less than
4% for both values of a. Generally, for short-term to near real-time energy-related mar-
kets, the forecast accuracy is high and there is a low variation from one time-step to the
next. Thus under such setups, our algorithm shows promising performance. We stress
that the tracking performance of our algorithm depends on the dynamics of an underly-
ing problem. Abrupt changes in the value function v¥(S) can increase the tracking error
significantly. Fig. 6.4 shows the difference in forecasters’ payoff over four days with the
Shapley payoff.

6.4.2. REAL-TIME LOCAL ELECTRICITY MARKET

In this subsection, we simulate a real-time local energy trading with an electricity market
setup inspired by [42]. In our proposed setup, the prosumers and consumers participate
in a local electricity market, established within the community, to trade energy inter-
nally rather than with a grid. The economic viability of such a market setup is based
on the assumption that the buyers value energy higher than the grid’s buying price and
not more than the grid’s selling price. Similarly, the sellers choose their valuation less
than the grid’s selling price. We note that these assumptions are common in the liter-
ature [44]. Traditionally, electricity markets are organized in a day-ahead setting with
some intra-day arrangements for balancing purposes. However, due to uncertainty in
RES and consumer load, at the level of a community, the market-clearing so far ahead of
delivery can be considerably problematic for the system operator, responsible for system
security. One way to mitigate the effect of uncertainty is organizing a market close to the
time of delivery. In this direction, we design an online market mechanism based on dy-
namic coalitional game theory for a real-time market model. The dynamic formulation
incorporates an evolving energy demand and RES generation that change with time. In
this market setup, ideally, the goal is to maximize the social welfare of the local electric-
ity market and distribute the resulting amount among participants such that the payoff
should belong to the core in (2.2). However, in a real-time clearing setup, it is not possi-
ble to compute a payoff in the core exactly, thus we track it via the online mechanism in
(6.8).

PROBLEM SETUP

We consider a simplified setup with NV agents in an energy community Z, some equipped
with RES generation (prosumers). We compute the coalitional value of each coalition S <
7 for a time instant k by solving a linear optimization problem. At each k, an agent either
belongs to a set of buyers Sj, or sellers Ss where, S, US;s = S. Let us denote the energy
demand or generation of an agent i at a time instant k by E lk and the corresponding
utility function coefficient by pf.c . Here, we take the utility function coefficient of a seller
as negative, i.e., p; < 0if i € Z;. We compute the coalitional value v¥(8) for each coalition
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S c 7 as follows:

k 7k
max “E:
(Epies i%:'gpl !
k _ ky . 5k
v (S) = st. 0< (Ei )ies < (Ei )ies (6.9)
Y EE- Y Ef=o.
i€S; i€Sy

The constraints in (11) show instantaneous generation and consumption limits of sell-
ers and buyers, respectively, and a power balance. We note that only mixed coalitions,
i.e., with buyers and sellers, will produce a value, a fact that reduces the computational
burden. At every market instant, each agent computes its bounding set in (2.1) and
then proposes a payoff via the online protocol in (6.8). To compute their bounding sets,
agents need to compute the values of only their own coalitions, which requires informa-
tion on individual coalitional values. We assume our local market to be established in
an advanced paradigm, in combination with futuristic data markets for energy systems
like [40]. This allows the agents to acquire the information required for computing the
bounding sets. At the first instant of the market, agents allocate the whole value v(Z) to
themselves, which is in accordance with their rational and self-interested nature. The
goal here is to maximize the social welfare of the local electricity market and then dis-
tribute the resulting amount among participants such that the payoffs track the core.
Note that the unserved demand and unutilized generation will be traded with the grid.

SIMULATION STUDY

For the numerical simulation, we consider a small local electricity market of 10 par-
ticipants where the seller agents are equipped with PV systems and buyers are con-
sumers. We use real data of PV generation and consumer load, recorded at 10-minute
intervals, provided by a smart-grid demonstration project in the UK named Customer-
Led Network Revolution (CLNR) [23]. We analyse market-clearing with the lead time of
k+2,k+5, and k + 10 minutes. For the 2 and 5 minute lead time, we interpolate CLNR’s
data to achieve the required resolution. Furthermore, we only consider the time slots
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that have considerable PV generation during the day to demonstrate the effectiveness
of our algorithm. At each market instance, the seller agents post the energy available to
trade and its asking price. While buyer agents post their energy demand and willingness
to pay for it. After receiving offers and demands, the participants negotiate to divide the
optimal welfare of the market v*(N) by (6.9). We note that in an online setting, we track
a consensus among agents on a core payoff instead of exact convergence to it. Therefore,
because of the distributed formulation of our algorithm, the payoff proposals of agents
at each market instant can differ and a criterion is required to allocate a mutually agreed
payoff. In this simulation study, we select an average of all proposals to allocate a payoff
X, where X = % Y ;e7 X;. For evaluating the tracking error, we let the algorithm converge
to a consensus on a core payoff allocation, i.e., X; = X; for all i, j € Z. Finally, in Fig. 6.5,
we report mean cumulative tracking error %2115:1 II x’;?%), || that shows the core tracking
capability of the algorithm. Since with a lead time of 10 minutes the market conditions
(generation and load) change more from one market-clearing instance to another than
with a lead time of 2 minutes, the tracking error is higher in the former case. This ob-
servation is consistent with the result in Theorem 8. Interestingly, for our market setup,
the cumulative tracking error is below 5% even in the 10-minute case. Next, in Fig. 6.6,
we present the difference in the payoff of each agent from the core payoff for a lead time
of 5 minutes. The difference is at most 1.6% only, thus supporting the financial viability
of an online payoff distribution in real-time markets. Finally, to report a comparison of
computational times of online payoff distribution with the static case across the market
size, we simulate a time-varying version of the bilateral P2P market presented in [87]. In
Fig. 6.7, we show that exactly computing the core payoff is not feasible for fast-paced
markets.

6.5. CONCLUSION

In this paper, we propose a real-time payoff distribution in online coalitional games
where the goal is to track a consensus on the payoff distribution solutions, namely, Shap-
ley value and the core. We have shown that an online paradigm of coalitional games
provides promising tools for modeling collaborative systems working in environments
with fast dynamics, e.g., such as real-time markets. The proposed distributed algorithms
based on contraction operators adequately track the payoff distribution solutions. Our
examples oflocal electricity market and collaborative forecasting market show the extent
of energy-related applications that can be formulated with our proposed online frame-
work. Numerical simulations illustrate the benefits of our online protocol and show that
under the bounded variation in coalitional values a reasonable aggregate difference in
online payoff and corresponding exact solutions can be achieved. Thus, online algo-
rithms address the problem of scalability in real-time markets well modeled as coali-
tional games.

Next, we envision a competition platform to test the performance of the proposed on-
line market mechanism and the behavior of participants in practical scenarios. Such a
setup should provide useful insights for real-world implementation of the mechanism.
An interesting extension of our work would be to incorporate long-term forecasts in the
online formulation to provide better performance for events with high volatility.
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6.6. APPENDIX
To prove the convergence of iteration in (6.5) and (6.7), as stated in Theorem 7 and The-
orem 8, respectively, we first provide useful results regarding contraction operators.

Lemma 14 ([99], Thm. 3.1). Let {Mk}keN be a sequence of contraction operators with
(L%} keN as corresponding contraction factors such that AxX(MX) ey # @. Let Assumption

18 hold. Then, the error norm ||x* — x¥|| generated by xk*+l.= pk(aky converges as:
. 1— (L)t
I = 2] < Lyl — ol + kg,
1- Ly
where x* € fix(M*), L = TT¥2! L; and L. = maxy L. ]

Lemma 15 (Doubly stochastic matrix ([32], Prop. 5)). IfW is a doubly stochastic matrix
then, the linear operator defined by the matrix W ® I, under Assumption 17 is a paracon-
traction with respect to the mixed vector norm || - |l2,2.

O

Lemma 16 (Composition of a contraction and paracontraction operator ([11], Prop.
4.49)). Suppose T; : R™ — R" is a contraction operator and T, : R" — R" is a paracon-
traction with respect to same norm || - || and fix(T1) N fix(T2) # &. Then, the composition
Ty o T, is a contraction and fix(T o T,) = fix(T1) N fix(T»). O

With these results, we are now ready to present the proofs of Theorems 7 and 8.

Proof. (Theorem 7) Let us formulate the iteration in (6.5) as xk*1 = MK (x*) where
M*:= (Id—aV f*)oW*. Then, by Lemmas 15 and 16 (x) ¢ generates a sequence of con-
traction operators. For a time-invariant case, i.e., zk+l = MzZF by [128, Lemma 1] k- z
as | z¥-z| = O(a) where z is optimizer of the problem in (6.4),1i.e., z = ¢(v) = % Y ieT ;.
Now, in time-varying case, under Assumption 18 the time variation of M* is bounded,
thus the application of Lemma 14 completes the proof. O

Proof. (Theorem 8) For the iteration in (6.8), it follows from Lemma 15 that fix(Tkowk) =
fix(T*) N fix(W*) = CV(v¥) n A. By Lemmas 15 and 16, the iteration in (6.8) generates a
sequence of time-varying contraction operators. Under Assumption 18 the time varia-
tion of T* is bounded, thus the application of Lemma 14 completes the proof. O







A MARKET FOR TRADING
FORECASTS

Several tech enterprises are collecting vast amounts of data that they deem proprietary,
for example, social media platforms. These data owners extract predictive information
of varying quality and relevance from data depending on quantity, inherent information
content and their own technical expertise. Aggregating these data and heterogeneous pre-
dictive skills, which are distributed in terms of ownership, can result in a higher collec-
tive value for a prediction task. In this chapter, we envision a platform for improving
predictions via implicit pooling of private information in return for possible remunera-
tion. Specifically, we design a wagering-based forecast elicitation market platform, where
a buyer intending to improve their forecasts posts a prediction task, and sellers respond to
it with their forecast reports and wagers. This market delivers an aggregated forecast to
the buyer (pre-event) and allocates a payoff to the sellers (post-event) for their contribu-
tion. We propose a payoff mechanism and prove that it satisfies several desirable economic
properties, including those specific to electronic platforms. Furthermore, we discuss the
properties of the forecast aggregation operator and scoring rules to emphasise their effect
on the sellers’ payoff. Finally, we provide numerical examples to illustrate the structure
and properties of the proposed market platform.
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7.1. INTRODUCTION

Forecasting plays a central role in planning and decision-making. Thus, it has always re-
ceived substantial attention from researchers and practitioners. For a comprehensive re-
view of forecasting and methodological advances, we refer the reader to an encyclopedic
article by [79]. To produce good quality predictions, forecasters rely on high-quality data
and sophisticated mathematical models. Often, the data are collected and held by differ-
ent owners at different locations, i.e., distributed in terms of geography and ownership.
The pooling of this distributed data can generate additional value. For example, logis-
tics companies can exchange their data on consumer behavior to improve their forecast
of future inventory demand. Such a forecast improvement by combining or accessing
more data from distributed sources is demonstrated in several studies, see [8] and [63],
for the example of energy applications. The general results such that forecasts can be im-
proved through combination is already well-known within the forecasting community.
However, in practice, the data owned by firms or individuals are perceived to have a cost
when exposed. For businesses, this cost can be in terms of competitive disadvantage,
and for individuals, in terms of privacy loss. Therefore, to utilize the distributed data,
we aim at designing platforms for the pooling of predictive information. Such platforms
allow for a monetary transfer from the buyer to the sellers, who are then compensated
for the costs incurred for data collection, processing, modelling, etc., without explicit
exposure of their private data. Because of the market context, in this work, we do not
consider the infrastructural cost associated with the data.

We position our work in the area of market-based analytics, which can be broadly
categorised into data markets and information markets depending on whether the
traded product is the raw data or extracted information. Both these platforms have re-
ceived increasing attention in the last few decades. In data markets, the key task is data
valuation based on the contribution of each data seller to a learning task posted by a
data buyer (the client), typically at a central platform [2], [33]. The market platform de-
termines the monetary compensation that corresponds to the data value. Another sig-
nificant factor in designing data markets is the cost of seller’s privacy loss [34], which
plays an important role in determining the value of data, see [107] and [1]. For details on
data markets, we refer the reader to a comprehensive review by [17].

Data markets empower data owners (sellers) to have control over the exposure of
their private resources and allow buyers to obtain high-quality training data for their
learning algorithms and prediction tasks. Despite their huge potential, data markets are
not free from limitations and challenges. First, determining the contribution of a partic-
ular data set for a buyer is, in principle, a combinatorial problem because of the possible
overlap of information among the data sets [2]. Thus, the computational requirements
for data valuation grow exponentially with the increase in the number of sellers and con-
sequently for the evaluation of remuneration. Second, each seller can have different sen-
sitivity to their data privacy, which makes it challenging to design a privacy-preserving
mechanism. Both these issues can be addressed, to some extent, by so-called informa-
tion markets.

Information markets [59], encompass the trade of a much broader category of infor-
mation goods like news, translations, legal information, etc. However, here, we focus on
the frameworks of forecasting platforms that can be categorised under the information
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markets. In this direction, prediction markets gained popularity beyond the academic
circles [16], [125]. Prediction markets generate aggregate forecasts of uncertain future
events, from dispersed information, by utilizing the notion of “wisdom of crowds”. For
example, in a prediction market designed for forecasting the election result, the share
price of political candidates indicates the aggregate opinion on the probability of a can-
didate’s win. Different from the structure of prediction markets, we design an informa-
tion market for the improvement of buyer’s forecast. This improvement offered by the
forecasters is remunerated via a mechanism with formal mathematical guarantees on
desirable economic properties like budget balanced, truthfulness, etc. [53]. Thus, in
terms of design, our work is closer to the markets proposed for forecast elicitation with
formal guarantees. In these works, typically, the sellers report their beliefs about a fu-
ture event. Then, after the event occurs, the sellers are ranked according to the quality
of their forecasts, evaluated by a scoring rule [53], [39].

An approach different from contribution-based reward, i.e., “winner takes it all", is
proposed in [123]. Interesting to note that rewarding the best encompasses many real-
world forecasting settings. For example, Netflix offered 1M USD to the team with the best
prediction on how users would rate movies [123]. Even though popular in forecasting
competitions, the “winner takes it all" approach ignores the fact that the forecasts other
than the best one can still provide additional information. Therefore, in line with the
idea of pooling the distributed information, we pursue the mechanisms that aggregate
information provided by all the sellers and reward according to the quality.

In our work, we particularly take inspiration from the self-financed wagering mar-
ket setup of [56] that features a weighted-score mechanism. In their setup, each player
posts a prediction report of an event and wagers a positive amount of money into a
common pool. After the occurrence of the event, the wager pool is redistributed among
the players according to their relative individual performance. The payoff function is a
weighted mixture of strictly proper scoring functions that satisfies several desirable eco-
nomic properties. Such self-financed mechanisms create a competition of forecasting
skills but do not include criteria for utilizing these forecasts, thus ignoring their value
for a particular application or for an observer. In other words, there is no external agent
who is aggregating, utilizing, and rewarding the resulting forecast based on the utility it
generates. Differently from the setting in [56], in this chapter, we design a mechanism
that considers both the forecasting skill of the players and the utility of the forecasts.

We consider a situation where a client (see [53]) posts a forecasting task on the market
platform, along with the monetary reward they are willing to pay for an improvement in
their own belief. In response, the sellers report their forecasts along with their wagers. A
central operator then aggregates these forecasts, considering the wagers as correspond-
ing weights, and passes to the client for planning or decision making. We note that,
unlike prediction markets, where their mechanism inherently elicits an aggregated in-
formation in terms of stock prices, the aggregation of forecasts here has to be performed
methodically [122]. Thus, our first goal is to select a suitable aggregation method that
reflects players’ wagers into the aggregated forecast. Next, a central operator evaluates
the quality and contribution of each reported forecast and their corresponding payoffs.
Our framework requires a payoff function with a utility component that rewards a con-
tribution to the forecast improvement and a competitive component that evaluates the
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relative performance of sellers to reward or penalize accordingly. Thus, our second goal
is to design a collective payoff function, with utility and competitive components that
enjoys desirable economic properties.

7.1.1. CONTRIBUTION

We propose a marketplace for aggregate forecast elicitation using a wagering mechanism
focused on improving the client’s utility in terms of an improvement in their forecast.
The proposed market model (Section 7.3.1) is general and history-free. It is general in the
sense that tasks from any application area can be posted in the form of binary, discrete,
or continuous random variables. History-free implies that we do not utilize past data
on sellers’ performance or market outcome, i.e., each instance of the market is set up
independently. Then, we provide requirements for the aggregation of forecast reports by
utilizing corresponding wagers and compare the quantile averaging to the linear pooling
method as examples. (Section 7.3.2). Finally, we design a payoff function that rewards
the skill of forecasters relative to each other as well as their contribution to the improve-
ment of the utility of the client. We show that the proposed payoff function satisfies the
desirable economic properties (Section 7.3.2).

7.2. PRELIMINARIES

7.2.1. FORECASTING TASK
Forecasting is a key requisite for decision making and planning employed in diverse situ-
ations for example, to predict a candidate’s probability of winning the election, to project
an economic condition of a country, businesses forecast their sales growth for produc-
tion planning, renewable energy producers make an energy generation forecast for bid-
ding in the market, etc. The diversity in the purpose of forecasting also translates into
the types of forecasting tasks faced by a decision-maker. Broadly speaking, we can cate-
gorize forecasts into point forecasts, probabilistic forecasts, and scenarios [37], [64].

Point forecasts do not communicate the uncertainty associated with the possible
outcomes of an event, hence an incomplete picture is delivered to a decision-maker.
This shortcoming of point forecasts is resolved by probabilistic forecasts that provide
decision-makers with the comprehensive information about potential future outcomes.
Thus, in this paper we focus on probabilistic forecasts. A probabilistic forecast consists
in a prediction of the probability distribution function (PDF) or of some summary mea-
sures of arandom variable Y. These summary measures can be quantile forecasts or pre-
diction intervals [38]. The market framework proposed in this chapter covers all types of
probabilistic forecasts, given that the forecast evaluation method satisfies the property
of being strictly proper. However, in the sequel, we focus on forecasting tasks in terms of
PDFs for better exposition. We consider the single category, multi-category, and contin-
uous forecasting tasks. Mathematically, these types of forecasts relate to forecasting of
binary, discrete, and continuous random variables, respectively. Therefore, these cases
suffice to cover most forecasting tasks we find in practice. Let us describe these forecast-
ing tasks for uncertain events and provide relevant examples.

A single category task covers the binary events where the probability of an event hap-
pening is forecasted. For example a hedge fund predicting a return from a prospec-
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tive investment has a single category forecasting task, i.e., will the quarterly growth of
prospective investment be greater than x%? In the probabilistic forecasting framework
the task will translate into; “the probability of the quarterly growth being greater than
x%”. For a multi-category forecast, take an example of a farming company that wants
to predict seasonal rainfall in categories of light, moderate and heavy. Here, the fore-
cast is in the form of a discrete probability distribution, e.g., the rainfall in the upcoming
season being {light, moderate, heavy} has probability distribution {0.2,0.5,0.3}. An even
more comprehensive probabilistic information can be obtained by forecasting an event
in terms of a continuous probability distribution. For example, a wind energy producer
bidding in an electricity market can obtain the whole uncertainty associated with the
day-ahead energy generation event by obtaining a forecast in terms of a probability den-
sity function [81], [129].

In all three forms of forecasting presented above, the decision-makers, i.e., the hedge
fund, farming company, and energy producer, can also have the in-house capability of
forecasting. However, they expect that additional data and expertise can help them im-
prove the quality of their forecasts for better planning and decision making, which in
turn can lead to a higher utility. One way to achieve such a quality improvement is by
designing a forecasting market platform where the data and expertise of the expert fore-
casters can be pooled in return for a competitive reward, depending on the contribution
of each expert. When a decision-maker utilizes such a platform for forecast improve-
ment, they expect experts to report their beliefs truthfully instead of gaming the market
for higher rewards. Furthermore, the decision-maker requires the improvement offered
by the experts to be measurable by formalized criteria. Both, the guaranteed truthful re-
porting and numeric evaluation of the quality of probabilistic forecast can be achieved
by so-called scoring rules.

7.2.2, QUALITY, SKILL AND SCORING

At a forecast pooling platform, a scoring rule is required for quantifying the improve-
ment in the forecast to be used by the decision-maker. Furthermore, it allows us to rank
the forecasters to assign rewards according to their contributions. We note that this as-
sessment is performed in an ex-post sense, i.e., after the event has occurred.

Definition 18 (Scoring rule). Letr be a reported probabilistic forecast and w represent the
event observed eventually. Then, a scoring rule s : (r,w) — R provides a summary mea-
sure that assigns a real value for the evaluation of a probabilistic forecast r in view of the
realization w.

In context of a marketplace for forecast elicitation, the role of the scoring rule s(r, w)
is to encourage the players to do their best in generating valuable predictive informa-
tion, as well as in incentivizing their honest reporting. These tasks can be achieved by
selecting scoring rules that satisfy certain properties. Next, we discuss the properties of
scoring rules that we need in this work.

PROPERTIES OF SCORING RULES
First, we can incentivize that the forecasters report their beliefs truthfully, by rewarding
them according to a strictly proper scoring rule [39].
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Definition 19 (Strictly proper scoring rule). Let a player report a probabilistic forecast
r of an uncertain event Y. Let an outcome w of an event be distributed according to the
probability distribution p. Then, a real-valued function s(-,w) is called strictly proper
when

Epls(r,w)]l <Epls(p,w)], forallr # p.

Here, let p be the support of p and fppr be the probability density function. Then,
Epls(p,w)] = [, s(p,®) fpr(p)dp.

Later, we utilize a strictly proper scoring rule for our payoff criteria to measure the
quality of the probabilistic forecasts and reward the players accordingly. There are many
such rules reported in the literature, e.g., Brier score, logarithmic score, quadratic score,
etc. [121]. In principle, a scoring rule is chosen based on the properties suitable for the
application. Here, for a strictly proper score rule we consider two more properties of
non-local and sensitivity to distance [39]. These properties consider a complete PDF
while ranking, and allocate a higher reward to a forecaster that concentrates the proba-
bility more around the realized event. This corresponds to rewarding a higher forecast-
ing skill on forecaster’s behalf. Next, we describe two other properties of scoring rules
which we relate later on to show the effect of the choice of scoring rules on the payoff
mechanism. This choice is important for implementing our proposed market design in
practical scenarios.

Definition 20 (Non-local scoring [121]). Let the forecasters reporta PDF of an eventY and
we observe the corresponding outcome w. Then, a scoring rule is called local if the score
depends only on the probability (for a categorical event), or likelihood (for a continuous
variable), assigned to w. Conversely, the rule is not local if it depends on the entire reported
PDE

Definition 21 (Sensitivity to distance [51]). Let r be a predictive PDF and R the corre-
sponding cumulative distribution function (CDF). Then, a CDF R’ is more distant from
the value x than R if R' # R,R'(y) = R(y) for y < x, and R'(y) < R(y) for y = x. Conse-
quently, a scoring rule s is said to be sensitive to distance if s (r,w) > s (r’ , w), whenever R’
is more distant from R.

In other words, a scoring rule that allocates a higher score to the player whose report
has assigned higher probability to the values closer to the observed value as compared
with probabilities assigned to the values farther from the true value is said to be sensitive
to the distance [121]. Later in Section 7.4.4, we numerically illustrate the properties of
locality and sensitivity to distance for building a better intuition and providing a com-
parison between scoring rules.

7.3. PROPOSED FORECAST ELICITATION MARKET DESIGN

We consider a setting of a market with a single buyer and multiple sellers for eliciting
a probabilistic forecast in the form of a probability distribution of an uncertain future
event. In our setting, we refer to a buyer as a client and sellers as players or forecasters. A
client posts a forecasting task on the market platform and announces a rate of monetary
compensation for improvement in their own belief. Players with resources and expertise
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Figure 7.1: Market structure showing information flow and pre and post event evaluations. The delivery of 7
occurs after all the inputs are received.
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in forecasting the posted task respond by reporting their forecasts along with the wagers.
The market then aggregates the received information and delivers it to the client. This
aggregated forecast, in turn, is expected to generate a utility for a client in terms of op-
erational improvement. The resulting utility, considering the announced reward rate, is
then distributed among the players such that it corresponds to their contribution. We
note that the proposed mechanism can generally be used for the forecast eliciting of any
event that can generate utility, such as the movement of a stock. Next, we formally de-
scribe our market model, and later we show the properties of the corresponding payoff
distribution function.

7.3.1. MARKET MODEL AND PARTICIPANTS

CLIENT

Let there be a client i, who is interested in improving their forecast (e.g., a generation
forecast for their renewable energy asset). We parameterize a client through the follow-
ing quantities:

» Forecasting task Y, an uncertain event that the client wants to predict better;

e Forecast report r, client’s own forecast which is used as a reference for improve-
ment;

* Reward rate ¢ > 0, a monetary value that the client offers for per unit improvement
in prediction.

A client can post a task Y in the form of a single category forecast (e.g., probability of en-
ergy generation being [0.4,0.6] per unit), a multi-category forecast (e.g., discrete proba-
bility distribution of energy generation in the intervals {[0.4,0.6],[0.6,0.8]} per unit) and
a continuous forecast (e.g., probability density function of energy generation). We note
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that the market design can also accommodate reports in the form of cumulative distri-
bution functions. In the sequel, we represent the forecast reports of all three forms by r
to keep the focus primarily on proposed mechanism, which holds for all forms of pre-
dictive distributions.

PLAYERS
LetZ =1{1,..., N} be the set of players that are forecasting experts in the area of a predic-
tion task. We parameterize a player through the following quantities:

e Forecast report r;, a prediction of forecasting task Y generated using player i’s data
resources and expertise; players try to improve r. in return for a monetary reward;

* Wager m; > 0 which accompanies the report r; and expresses player i’s confidence
on their forecast.

A wager is associated with the player’s confidence because it decides the level of impact
their prediction has on the resulting forecast. Furthermore, in proposed payoff function,
wagers also influence the reward (penalty) of the players.

MARKET OPERATOR

A central market operator manages the platform where a client and the players arrive
with respective parameters. This operator is also responsible for maintaining trans-
parency in the market process and is assumed to be honest. The functions of a market
operator are:

* evaluation of an aggregated forecast 7 (m, r), where r represents a set of predictive
distributions {ri}f.\i , bosted by the players and m is the vector of corresponding
wagers;

* evaluation of the score s(r;,w) of each player i € Z, after observing the outcome w;

* evaluation of the utility U that corresponds to the improvement in client’s fore-
cast; thus, in case of improvement the utility U o« ¢(s(7,w) — s(r¢,w)) and is zero
otherwise.

« evaluation of the payoff I1; of each player i € Z.

Here, after the occurrence of the event, the market operator observes the true out-
come o and evaluates the score s(r;,w) of each player i € Z, which shows how
“good” was the forecast reported by player i. Then, the operator evaluates the utility
U(s(?,w), s(r¢,w), ¢p) allocated by the client and distributes it among the players that have
contributed to the improvement. For transparency, the market operator publicly posts
the reward rate, forecast aggregation method, scoring rule and utility evaluation method,
as agreed with the client. The individual predictions posted by the players can be kept
private and only an aggregated forecast is delivered to the client. In Figure 7.1, we show
the schematic structure of the proposed market with all participants and stages. Note
that the allocated utility U depends on the improvement a client has made and, for the
purposes of this work, we treat it as an exogenously specified value. Further details of
the forecast aggregation methods, the payoff function and their properties are discussed
in the sequel.
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Remark 6. An important benefit of the proposed market architecture is that the client
cannot access the underlying features; instead they only receive an aggregated forecast.
This mitigates a key challenge faced by data markets where sellers are hesitant to release
their proprietary data streams as they are freely replicable.

The mechanism design of this market model requires three main components: (i)
an aggregation operator (to combine forecasts), (ii) a scoring rule, and (iii) a payoff
allocation mechanism. Our goal is to design a history-free mechanism, i.e., a mechanism
that does not require the past data or reputation of the players to compute a solution.
This allows us to keep our market general, where clients can post diverse tasks in various
forms without an assumption of a repetitive market with a pre-specified task. We note
that, in the sequel, we use and drop the arguments from the notations depending on the
necessity. Next, we present the components of our market mechanism and discuss their
properties.

7.3.2. MECHANISM DESIGN
AGGREGATION OPERATOR
After the players have submitted their reports and wagers, in response to the client’s
forecasting task, the market operator creates a collective forecast 7, using an aggrega-
tion operator. Then, the client utilizes the resulting aggregated forecast for the decision
making which in turn generates some utility. An improvement in the client’s forecast
r. is rewarded at a pre-announced rate ¢ by the client. Therefore, the selection of the
forecast aggregation operator constitutes an important part of the mechanism design.
Combining of probabilistic forecasts can be achieved via weighted averaging of pre-
dictive distributions. In this method, a weight assigned to a prediction reflects its relative
accuracy determined by the historical data [54]. In other words, the predictions of play-
ers are weighted by their historical performance and have a corresponding impact on
the evaluation of an aggregated forecast. Although logical, such methods are not useful
for history-free mechanisms. Thus, in our proposed mechanism, the performance of a
player is associated with their confidence in the reported prediction. Here, the players
quantify this confidence via a wagering amount. This allows assigning an appropriate
weightage to the individual forecasts while combining, which can improve the quality of
an aggregated forecast. It also allows our mechanism to penalize (reward) forecasters for
low (high) quality predictions, proportional to their influence on the aggregated forecast
via wagers. We present this penalizing property of the payoff function named stimulant
in the sequel.

Definition 22 (Aggregation operator). An aggregation operator A : (r,m) — 7 takes a set
of predictive reports {ri}ﬁ\i , and a vector of corresponding wagers m € RN as inputs, to
evaluate a combined prediction 7.

Two candidate methods that fulfil the criteria of aggregation operator are the so-
called linear opinion pool (LOP) and the quantile averaging (QA). In terms of distri-
butional forecasts, linear averaging of the probability forecasts can be viewed as verti-
cal combining and averaging the quantiles can be seen as horizontal combining [58].
Therefore, these two methods can be regarded as two extreme cases in averaging. The
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Figure 7.2: Comparison of LOP and quantile averaging/Wasserstein barycenter as aggregation operator

first method LOP is the most widely used method in literature [54], as well as in practice
and has several extensions such as weighted linear opinion pool and optimally weighted
linear opinion pool.

Definition 23 (Linear opinion pool). LetZ = {1,..., N} be a set of players. Let r; be the
forecast report of player i € T and m; be the corresponding wager. Then LOP is merely an

average of all the reports weighted by wagers as Y ; m;r; where m; = T E’Z .
] ]

For the optimally weighted extension, the weights m; foralli € Z, are evaluated
by setting up an optimization problem considering the past data of the same market.
However, even with optimized weights, the LOP suffers the problem of over-dispersed
(under-confident) forecasting, meaning that the aggregate forecast evaluated via LOP
has higher dispersion than the individual reports [90]. The authors in [90] propose a re-
calibration method to improve the combined forecast resulting from the LOP, where the
re-calibration parameters are evaluated by utilizing past data. Thus, this re-calibration
method is not suitable for our history-free market mechanism. Next, we explore the
quantile averaging which, interestingly, also corresponds to the Wasserstein barycenter
[4] of the reported forecasts.

Definition 24 (Quantile averaging). LetZ = {1,..., N} be a set of players. For each player
i € Z, let r; be the forecast report in terms of probability distribution function and R; be
the corresponding cumulative distribution function. Then, the average quantile forecast
is given by foa = ¥; MR

In Figure 7.2, we present an illustration for the comparison of the aggregate fore-
casts evaluated via LOP and QA with equal weights (wagers). It provides an intuition for
how the QA keeps the shape of individual forecasts reported as widely used parametric
families of distributions, e.g., normal distribution. Consequently, it also maintains the
properties of those parametric families that can comparatively provide more meaning-
ful aggregation for decision-makers. [58] show some useful properties of the aggregated
forecast evaluated via QA. For instance, an aggregated forecast attained by QA is sharper
than that by LOP and each of its even central moments is less than or equal to those
of the LOP [58, Prop. 8]. In a memory less market, like the proposed one, a prediction
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which is sharper around the observation can provide better information to the decision
makers and thus is regarded as of higher quality.

We note that the QA can also be interpreted as the report that minimizes the Wasser-
stein distance W (:,-) from all the forecast reports, i.e., 7 = min, Zf.\i W), which cor-
responds to the Wasserstein barycenter. We refer the reader to [4] for further details on
the Wasserstein distance and barycenter.

Remark 7. The preference of one forecasts aggregation method over the other is primarily
an empirical design choice that is largely application dependent.

SCORING RULES

In this subsection, we specify a scoring function s(r, w) to evaluate the quality of the fore-
cast in an ex-post sense. We present a continuous ranked probability score (CRPS), as a
strictly proper score function for elicitation of a forecast in terms of a probability den-
sity function. CRPS is non-local and sensitive to distance (see Section 7.2.2). For single
category and multi-category prediction tasks, we present scores with same properties as
of CRPS in 7.7.1. Note that, to stay consistent with the literature, we define scoring rules
as negatively oriented, i.e., the lower, the better. However, for our design of the payoff
function, presented later, we need a positively oriented scoring. Thus, in the sequel, we
re-orient scoring rules for illustrative examples.

Definition 25 (Continuous ranked probability score). For an event of interest x, let the
probability density function reported by a player be r, and let w be the event that actually
occurred. Let R denote the cumulative distribution. Then, the continuous ranked proba-
bility score is defined as

CRPS(R,w) = f [Ry (%) = Ry (x)1* dx (7.1)
where
0 ifx<ow
R, (x) =
1 ifxzw
In words, the CRPS presents a distance between the probabilistic forecast r and the truth
w.

Note that we can conveniently re-orient the CRPS depending on the application.
For example, renewable energy production can be normalized to obtain a continuous
random variable Pg € [0,1]. Then, we can re-orient the scoring function by defining
s(r,w) =1 - CRPS and consequently s(r,w) € [0, 1]. With all the components defined, we
are now read to propose a wagering-based payoff mechanism and its desired economic
properties.

PAYOFF ALLOCATION MECHANISM

A payoff function is central to the design of a market mechanism as it distributes the
pool of wagers }_; m; and the generated utility U among the market players according
to their performance. Therefore, it is critical for the design of a payoff function that it
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encourages market participation, on one hand by clearly reflecting the player’s relative
contribution, and on the other hand by enabling the delivery of valuable information
to the client. The payoff functions are characterized by several desirable properties that
can be proven mathematically, e.g., budget balanced, individual rationality, etc.

For the design of a payoff function, we take inspiration from [56], where the authors
present a self-financed wagering mechanism for competitive forecast elicitation. The
payoff function in [56] rewards the skill of the player relative to the other players by
re-distributing the wagers and is shown to satisfy several interesting properties. Such
self-financed markets work in the absence of a particular client with a task hence, the
payoff is only based on the skill component of the players and does not involve any util-
ity component. In other words, a player is rewarded for being better than other players
regardless of the value or utility of their forecast. However, our market model in Section
7.3.1 involves a client with a specified task and, therefore, our model involves an exter-
nal payment associated with the utility of the client. Consequently, we need a payoff
function that distributes the utility generated by the forecast, i.e., a monetary gain cor-
responding to an improvement in client’s operational decisions, apart from rewarding
the forecasting skill of the players. In practice, the incentive by the client can implicitly
help in improving the forecast quality and in growing the size of the market. For in-
stance, a player who believes their competitors are better informed than them will not
enter a market with only a skill payoff, as in [56]. On the other hand, if the same player
believes that their data can provide valuable information and insights to the client in
terms of probabilistic forecast, they will be encouraged to enter our market considering
the reward from a utility component. Let us first propose a payoff function, and then we
present its desirable economic properties.

We divide the payoff function in two parts, one representing the allocation from the
wager pool and another from the client’s allocated utility. The former evaluates the rela-
tive forecasting skill of a player, and the latter compensates for their contribution to an
improvement of the client’s utility U. Let the wager payoff of a player i be

I, (r, m,w) := m; 1+s(ri,w)—M . (7.2)
Ljmj

This term evaluates the relative performance of the players, considering the relative
quality of the forecasts and the amounts wagered. It shows that the reward of player
i, i.e., II;(r,m,w) — m; equals the difference between its performance (confidence and
quality) and the average performance of the players. We note that wager payoff can also
generate a loss for the players such that they can lose the amount wagered. We refer to
it as a penalty to players for posting low-quality forecasts which plays an important role
in showing that our payoff criterion incentivizes truthful reporting by the participants.
Now, let us define an indicator 1, p; that takes value 1 if a > b and 0 otherwise. Then, an
overall payoffis given as

f[l' = Hi +ﬂ{U>0} ( (7.3)
~

S(ri,w)m;
M
skill component

Y;§(rj0)m;

~

utility component
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where §(r;,w) = T3¢, 0)>5 S(ri, w) and § := s(r¢,w). Here, the utility component depends
on an improvement offered by the player beyond the client’s own resources r.. Thus,
to be eligible for a share of an allocated utility U, first, there should be an improvement
in the client’s resulting forecast, i.e., U > 0, and second, the score of player i, s(r;, )
should be greater than the score of the client. Here, the utility payoff of a player is al-
ways non-negative but a wager payoff can also create aloss, i.e., Il; — m; < 0 is possible.
The possibility of a loss encourages players to compete in improving the forecast by em-
ploying better models and acquiring more meaningful data. We note that the client can
achieve negative utility as well, i.e., the forecast becomes worst than their own predic-
tion. However, again with a penalty imposed by the wagering part of the payoff function,
it is expected from risk-averse players to report high-quality forecasts. Next, we provide
a brief explanation of some desirable properties of a payoff function.

Desirable properties: The properties are adapted from [56] and here we include their ex-
planations in context of the payoff function in (7.3).

i) Budget-balance: A mechanism is budget-balanced if the market generates no profit
and creates no loss, i.e., Y. ;7 [1; = Y;c7 m; + U. In other words, the generated utility
and the wager pool must be completely distributed, as a payoff, among the players.

ii) Anonymity: A mechanism satisfies anonymity if the payoff received by a player does
not depend on their identity; rather it depends only on the forecast reports and the
realization of an uncertain event. Formally, for any permutation o of Z, the payoff
I ((r), (M), 0,0) = oy ((ro-101)) » (Mg-1(3)) » 0, U) for all i € 7.

iii) Individually rational: Let the belief of a player i € Z about an event be p. Then, a
mechanism is individually rational if for any wager m; > 0 there exists r; such that
an expected profit of a player is non-negative, i.e., E,, [f[,- ((r—;, rlf“), m,w,U)—m;] =0,
for any vector of wagers m_; and reports r_;.

Individual rationality encourages the participation of players by ensuring a non-
negative expected profit according to their beliefs.

iv) Sybilproofness: A truthful mechanism is sybilproof if the players cannot improve
their payoff by creating fake identities and copies of their identities. Formally,
let the reports r and vectors of wagers m and m’ be such that for a subset of
players S c Z the reports r; = r; for i,j € S, the wagers m; = m} for i ¢ S
and that ) ;csm; = Y jes m; Then, the sybilproofness implies that, for all i ¢ S,
I1;(r,mo,U) =11, (r,m,0,U) and that ¥ ;s 11;(r, m,0,U) = ¥ ;s 11; (r,m', 0, U).
We note that the Shapley value, a solution used to evaluate data in market setting,
suffers the drawback of being prone to replication, i.e., players can increase their
payoff by creating fake copies of themselves [2]. This consideration takes special im-
portance in markets dealing with forecasts as the data are a freely-replicating good.

v) Conditionally truthful for players: A mechanism is conditionally truthful if the
player does not have enough information or influence over the payoff function to
manipulate it for their benefit. Thus, reporting their true belief becomes the best
strategy for a risk averse player.
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vi)

vii)

This definition of conditional truthfulness considers practical situations for the
players and the market operation. Truthfulness of a mechanism encourages the
players to post their true belief at the market platform thus, fulfilling the client’s
expectation of having an access to the honest assessments of the experts about an
event.

Truthful for the client: A mechanism is truthful for a client, in terms of re-
ported prediction, if the client’s expected allocated utility is minimized by re-
porting their true belief p as their own forecast, i.e., Ep [U(s(f,w),s(rc,w),(p)] >
Ep [U (s(7,w), s(p, w),gb)] is satisfied for all r, # p. We note that the truthfulness of
the client concerns the prediction report 7. and not the reward rate ¢b. Since, with
our single-buyer design, it is not possible to elicit their true willingness to pay.

Stimulant: Let a player i’s payoff be the sum of skill and utility components, i.e.,

i (r,(m_;,m;),w,U) = nls. (r,(m_;,m;),w) +n;‘ (r,(m_;, m;),w, U). Let the wager be
m; > m;. Then, this payoff is monotonic if it holds that for the skill component,
either

0<Ep, 7} (r,(m_;,m;),0) — m;] <E, [} (r,(m_;, m}),0) — m}]

or

0>E, 7] (r,(m_;,m;),w) —m;| >Ep [} (r,(m_-;,m}),0) - m}].
In words, a mechanism is monotonic if a player’s expected profit, as well as loss from
the skill component, increases by increasing the wager. Now, for a utility factor, let
U >0 and s(r;,w) > S. Then,

i (r,(m-j, my),0) <z} (r,(m-;, m), ).

These properties encourage the players to post higher wagers considering their con-
fidence in their forecasts thus we refer to them as stimulant. Importantly, it also
justifies weighting the forecasts by the corresponding wagers while creating an ag-
gregate forecast. We note that, for real-world applications, the market operator can
place lower and upper bounds on the amounts of wagers considering the viability
of the market.

Now, we show that the proposed payoff criterion in (7.3) satisfies all the desirable

properties described above.

Theorem 9 (Characteristics of payoff allocation). Let s(r,w) € [0,1] be a strictly proper
score function. Then, the payoff function given in (7.3) is (i) budget-balanced, (ii) anony-
mous, (iii) individually rational, (iv) sybilproof, (v) conditionally truthful for players,
(vi) truthful for client, and (vii) stimulant.

We provide the proof of the theorem in Appendix to improve the reading flow.
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Table 7.1: Profit (payoff - wager) evaluation for forecast reports in Figure 7.3

and its sensitivity to wagers

(@) (b)
Players 1 2 3 Players 1 2 3
Wager 100 100 100 Wager 100 100 500
Scores  0.9430 0.8450  0.4830 Scores  0.9430 0.8450  0.4830
Profit 546 481.39 -27.40 Profit 552.85 488.24 —41.10

7.4. [LLUSTRATIVE EXAMPLES

In this section, we illustrate several numerical examples to provide some intuition on
the proposed market model and to numerically demonstrate the properties of the pro-
posed payoff function in (7.3). For all the illustrations, we use a beta distribution, with
parameters (a, 8), as a base predictive density. We then vary its parameters to simulate
potential forecast reports of different players. We acknowledge that these reports might
not represent a real-world scenario. However, these examples are sufficient to illustrate
and discuss interesting properties of the payoff function.

7.4.1. EFFECT OF WAGER AMOUNT

Let a client post a prediction task Y on a market platform along with their own forecast
that has a score of 0.5, i.e., s(r;,w) = 0.5. In response, let the players Z = {1,2,3} post
the predictive densities of a random variable Y € [0,1], as shown in Figure 7.3. Though,
in reality we expect the reports by expert forecasters to be concentrated around nearby
values but here we consider an extreme case to emphasize our observations. First, we
evaluate the players’ payoff for equal wagers and then increase the wager of player 3 to
demonstrate the stimulant property of the payoff function, defined in Section 7.3.2. Sup-
pose the market operator announces the cap on the wager amount, i.e., maximum value
a player can wager, m = 500. The case of equal wagers in Table 7.1a shows a loss for
player 3, taken from their wager, for posting a sharp predictive density concentrated far
from the realized event, w = 0.8. The corresponding aggregate prediction 7,, shown in
Figure 7.3, has a score of 0.867. Here, the score of player 3 is lower then clients score and
thus it doesn't receive any share from utility payoff. We note that the score of each player
is given by a positively oriented scoring rule (1-CRPS) and the utility of a client is as-
sumed to be specified exogenously. Next, for the case in Table 7.1b, the wager of player 3
is increased to maximum, which results in the increase of loss. This implies that showing
more confidence via higher wager on a “bad” forecast will result in a higher loss which is
an important consequence as a higher wager by player 3 resulted in the reduced quality
of the aggregated prediction 7}, as shown in Figure 7.3, with s(#}, w) = 0.822. This exam-
ple illustrates the justification for using wagers as weights in the aggregation method. It
also demonstrates how using a wager as a player’s confidence results in a fair penalty or
reward for them.




102 7. A MARKET FOR TRADING FORECASTS

-1y

5 T,
S
[¢] 0.9 1
>
= ~
o -Tp

0.9 1

Figure 7.3: Plot on the top shows the reports on density forecast of random variable Y € [0, 1] by market partic-
ipants and the bottom plot shows aggregate density forecasts for wagering case (a) and (b) as in Table 7.1a and
7.1b, respectively. The vertical line is at the realization, w = 0.8.
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Figure 7.4: Plots of aggregate predictive densities obtained by quantile averaging 74 and linear pooling f1op
in an equal wagering case.

Table 7.2: Sybilproofness of profit (payoff - wager) in proposed mechanism

(@) (b)
Players 1 2 Players 1 2(a) 2(b)
Wager 100 100 Wager 100 40 60
Scores  0.9430 0.8450 Scores  0.9430 0.8450  0.8450

Profit  532.30 467.69 Profit  532.30 187.07 280.61
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7.4.2, COMPARISON OF QA AND LOP

In Figure 7.4, we present the comparison of aggregate predictive distributions obtained
via quantile averaging o4 and linear pooling 7;op. It is evident how 7;op can be prob-
lematic for a decision-maker. The loss of sharpness translates into lower scores for lin-
ear opinion pool as well where, s(71op,w) = 0.817 compared with (74, w) = 0.867. Fur-
thermore, for commonly used parametric distributions quantile averaging maintains the
shape of the distribution, while linear pooling does not.

7.4.3. DEMONSTRATION OF SYBILPROOFNESS

Now, we illustrate the property of sybilproofness (see Section 7.3.2), which in truthful
mechanisms prevents players from manipulating identities. Sybilproofness of payoff
function is specially important for electronic platforms. Table 7.2a shows profit and
scores of two players with reported predictive densities r; and r,, as in Figure 7.3. Now,
let the player 2 create a fake identity and appear in the market as 2(a) and 2(b) with dif-
ferent wagers, as reported in Table 7.2b. We note that, even after identity manipulation,
the collective profit of both identities of player 2 remained the same as with the true
identity. Consequently, it does not affect the player 1 as well.

7.4.4. SENSITIVITY OF SCORING RULES

In this section, we demonstrate various properties of scoring rules to emphasize their
effect on the design of a payoff function. Generally, the choice of a scoring rule depends
on the application area of the prediction task. Thus, these illustrations are important
to provide useful insights to the practitioners for adopting the proposed mechanism to
a particular application. The choice of scoring rules can also affect the willingness of
players to participate and constitute an important part of the design.

LOCAL VS. NON-LOCAL SCORING

Different scoring rules differ in their sensitivity to the variation in prediction quality. For
applications where sharp predictions are required because of the high stakes, the scor-
ing rules with higher sensitivity can perform better. Let us now compare the sensitivity
of CRPS and log score by varying parameters («, 8) of predictive densities. To illustrate
these effects across the variation in single parameter @, we fix the mean of densities and
then evaluate f as f = % We note that in parametric case the variation in pa-
rameters simulates the varying quality or features utilized to construct the predictive
densities. In Figure 7.5b, we show the predictive beta distributions for different values
of a and the corresponding CRPS and log scores. As the log score depends only on the
realization w, it has considerable variation for given predictive densities. Whereas, CRPS
takes complete information into account thus varies slightly with the slight change in
densities. The scoring rules are selected essentially by considering the nature of the pre-
diction task at hand. We note that our results hold for all strictly proper scoring rules,
including the normalized log score.

SENSITIVITY TO DISTANCE
In this example, we illustrate the impact of the scoring rules’ sensitivity to dis-
tance (see Definition 21). Let the three forecasters Ej, E» and E3 provide a normal-
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Comparison of scores assigned to predictive distributions via CRPS and log-score.

ized multi-category probabilistic forecasts for the energy generation y of a wind pro-
ducer for intervals {[0 — 0.2],(0.2 — 0.4], (0.4 — 0.6], (0.6 — 0.8], (0.8 — 1]} per-unit repre-
sented by {1,2,3,4,5}. Let the reported probabilistic forecasts of Ej, E» and E3 be
{0.1,0.1,0.6,0.1,0.1} ,{0,0.2,0.6,0.2,0} and {0.2,0,0.6,0,0.2}, respectively. Suppose we ob-
serve the actual wind production in the third interval, i.e., y = 3. Let us now assess
the quality of the forecasts using quadratic and ranked probability scoring (RPS) rules
(see [121] and Section 7.7.1 for mathematical expressions). Here, E) receives a quadratic
score of 0.8 while E, and Ej receive 0.76. We first observe that all three forecasters have
assigned a probability of 0.6 to the realized value of y. Next, we note that E» assigns the
remaining probability of 0.4 to the intervals 2 and 4, that are adjacent to the realized in-
terval, i.e., 3, while E3 assigns it to the farthest (more distant) intervals. This probability
assignment shows comparatively a better forecasting skill on behalf of E». However, their
scores are same, which shows that the quadratic scoring is not sensitive to distance. In
comparison, RPS assigns 0.975,0.98 and 0.96 to the predictions of E;, E» and E3, respec-
tively. We note that RPS acknowledges the concentration of probability around the ob-
servation and assigns highest score to E,. Thus, RPS is sensitive to distance which can
be important for the practitioners while designing a payoff function.

7.5. WIND ENERGY FORECASTING: A CASE STUDY

In this section, we present an energy forecasting application of the proposed market
mechanism. Here, we differentiate forecasters based on their forecasting skill and re-
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sourcefulness. In former, the players utilize same data but different models (forecasting
skill) to construct predictive densities and vice versa in the latter. This differentiation
criteria covers an important feature of forecasting market that it creates a competition of
both resourcefulness (data) and forecasting skill among the players. The aim of this case
study is to demonstrate the compensation allocated by our market mechanism for elicit-
ing forecasts evaluated by experts based on their private information and skills. Elicited
forecasts are aggregated and delivered to the client.

7.5.1. SIMULATION SETUP

Consider a wind energy producer who wants to improve its generation forecast for more
informed bidding in an electricity market, thereby avoiding a penalty for causing an im-
balance. For this purpose, the energy producer arrives at the wagering based forecasting
market, described in Section 7.3, as a client. We assume that the client submits the task
of forecasting the next 24-hours of wind energy generation. In response, let the forecast-
ers Z submit the probabilistic forecasts along with their wagers. The market operator
evaluates the scores of submitted forecasts on hourly basis and compensates accord-
ingly. For our case study, we use an open data set from the Global Energy Forecasting
Competition 2014, GEFcom2014 [46] and an open-source toolkit ProbCast by [19]. The
wind power measurements are normalized and thus take values in [0, 1]. For the market
setup, we assume fixed utility U, offered by the client, to analyse scores and the share of
each player’s payoff IT; in Y_; m; + U. We note that, in reality, the compensation provided
by the client depends on the operational benefits that they receive through an improve-
ment in their forecast. Next, we first present a simpler case of wind energy forecasting
with 2 players evaluate the resulting payoff allocation, as in (7.3), and later we move to
more extensive cases.

7.5.2. FORECASTING MARKET WITH 2 PLAYERS

Let the players Z = {1,2} provide wind energy generation forecast for the next 24 hours.
Here, we assume that both forecasters have the same data but they utilize different mod-
els to generate predictive densities for wind energy forecasting. Selection of a particular
forecasting model can be seen as a forecasting skill of a player thus, the players have dif-
ferent forecasting skills. In this case, player 1 provides their wager m; and the forecast
report r; as a parametric distribution, i.e., an inflated beta distribution as proposed by
[78] generated by using a generalised additive model GAMLSS. Whereas, player 2 uti-
lizes gradient boosted regression trees to generate non-parametric predictive densities
and submits the forecast report r, along with the wager my. Let the market operator
announce wager bounds such that m;, m, € [10,100]. We assume that the score of the
client’s own forecast is constant at 0.5 for all 24 hours. Such a low score shows that the
client has a low-quality forecast and consequently, for our data, the players will be el-
igible for utility payoff at each hour. After receiving the reports, the market operator
evaluates an aggregate forecast # and delivers it to the wind energy producer (client),
who in turn uses it for operational planning. Figures 7.6a and 7.6b show the reports of
player 1 and player 2, i.e., r; and r, respectively. The hourly observations represent the
realization w, i.e., the actual wind energy generation during the corresponding hour. Af-
ter the forecasting period has passed, the market operator evaluates the score of each
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Figure 7.6: (a) Wind energy generation forecast reported by player 1 via inflated beta distribution, i.e., 1. (b)
Wind energy generation forecast reported by player 2 via non-parametric predictive density, i.e., r2. Observa-
tions represent realization w.



7.5. WIND ENERGY FORECASTING: A CASE STUDY 107

2

”\ £y
b N \\VL‘/\
0.9 N
\ [N\
— \
3 \ /
~0.8-
~— /
@ \ /
\J
07V
06 | 1 1 1
1 4 8 12 16 20 24

Lead time |[hours|
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Figure 7.8: Players’ total payoff of 24 hours as a share of money pool }_; m; + U for different wagers.

player and that of an aggregate forecast. Figure 7.7 shows the scores (CRPS) of r1, r» and
7. We note that the aggregate forecast 7 evaluated via quantile averaging, as in Definition
24, depends on the wagers of the players, and Figure 7.7 is the case of equal wagers. The
difference in the scores of both players is not much as their reported predictive densi-
ties follow a similar trend. Though the score rank of players varies at different hours the
parametric forecaster performs slightly better in a cumulative sense, for this particular
instance of market. If this variation in score rank is considerable the aggregate forecast
can score better than both players. We illustrate this fact later in our case study. Next, we
show players’ total payoff for 24 hours as a share of money pool }_; m; + U. The payoff,
as in (7.3), also depends on wagers m; and in the case of equal wagers it corresponds
directly to the scores. To observe the effect of wager, in Figure 7.8 we plot payoff across
different wager pairs. As both players offer improvement and the scores of both players
do not differ much, the stimulant property of our payoff function, explained in Section
7.3.2, allocates higher payoff to high wagering player.
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Table 7.3: Total score (CRPS) of reported forecasts over 24 hour period.

Report rn ) r3 T4 7

Total score  21.0480 20.6978 20.6090 20.2514 21.0074

7.5.3. FORECASTING MARKET WITH 4 PLAYERS

Now, let two more players join the market referred as player 3 and player 4. We assume
that these new players have the same forecasting skill, i.e., both players utilize same fore-
casting method. However, the data held/ collected by the players is different. Player 3
holds the data of wind forecasts, as predictor, at the height of 10 m above the ground level
whereas player 4 has the data of wind forecasts at 100 m above ground level. Wind fore-
cast being a key predictor effects the quality of energy generation forecasts. The quality
of all 4 reports is evaluated by CRPS and is presented in Figure 7.9 along with the score of
an aggregate forecast. In Table 7.3, we report total scores of all forecast reports over the
period of 24 hours. Interestingly, for this market instance, the score of aggregate forecast
s(#,w) is higher than that of individual forecast reports of all the players.

To analyse the hourly payoff allocation when the client has a forecast report of a rea-
sonable quality, we assume player 4 to be the client, i.e., r; = ry, asin (7.3). Consequently,
according to proposed payoff function in (7.3), a player becomes eligible for a utility pay-
off only when it offers an improvement to the client, i.e., scores higher than the client.
Assuming a fixed utility payoff U, we present players’ payoff allocation in Figure 7.10. We
can observe that for the first 3 hours the score of client’s forecast report (r4) in Figure 7.9
is higher than the players thus, the payoff distribution occurs only from the wager pool
Y. m;. As we consider a fixed utility component U, there remains an unallocated utility
payoff component which is returned back to the client. In contrast, if utility component
depends on the forecast improvement of the client then U = 0 in case of first 3 hours.
Next, observe that at the 12th hour only player 2 offers slight improvement, i.e., scores
higher than the client (see Figure 7.9) thus, they receive the whole offered utility payoff.

7.6. CONCLUSION

We have designed a marketplace for revealing an aggregate forecast by eliciting truthful
individual forecasts from a group of forecasters. In the proposed model, a client with a
prediction task calls for forecasts on a market platform and announces a monetary re-
ward for it. The forecasters respond with predictive reports and wagers showing their
confidence. The platform aggregates the forecasts and delivers them to the client. Here,
the utilized aggregation criteria allows us to make our mechanism a one-shot history-
free method that does not account for the forecaster’s performance in the past. Next,
upon the realization of the event, it allocates payoffs to the forecasters depending on the
quality of their forecasts. We have proposed a payoff function with skill and utility com-
ponents that depend on the relative forecast quality of a forecaster and their contribu-
tion to improving the forecast of the client, respectively. We show that the proposed pay-
off allocation satisfies several desirable economic properties, including budget balance,
anonymity, conditional truthfulness, sybilproofness, individual rationality, and stimu-
lant. The simplicity of scoring-based market design, with a wagering mechanism, allows
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it to cater diverse forecasting tasks with forecasting reports taking forms of discrete to
continuous probability distributions.

From the success story of platforms like NUMERAI [76], we see a high potential for
real-world aggregative forecasting marketplaces. Differently from current implementa-
tions, the mechanism proposed in this chapter is designed for the improvement of pre-
dictions and provides theoretical guarantees on the monetary compensation that can
encourage and retain the participation of experts. Next, we envision a competition plat-
form to test the performance of the proposed market model and the behavior of players
in practical scenarios. Such an experimental setup would help us gain further insights
for real-world implementation. Furthermore, our market setup opens several paths for
applied modelling of information eliciting platforms and their analysis. An important
step is to design a mechanism for online predictions based on streaming data and in
turn analyse if it maintains the economic properties discussed in this chapter. Another
interesting research avenue is to design models that value the reputation of forecasters
(historic credits) as well.

7.7. APPENDIX

7.7.1. SCORING RULES

Let us present strictly proper scoring rules for single-category and multi-category re-
porting that are non-local and sensitive to distance (see Section 7.2.2). A strictly proper
scoring rule which is non-local and can be used for eliciting a single-category forecast
for binary events, is the Brier score.

Definition 26 (Brier score). Let the probability of occurrence of an event x, reported by a
player, be r and let w be the actual outcome. Then, the Brier score is given as

BS = (r — w)?. (7.4)

Interestingly, a generalization of the Brier score known as ranked probability score
(RPS), which is also non-local and sensitive to distance, can be used for multi-category
forecasting tasks where the reports are in the form of discrete probability distributions.

Definition 27 (Ranked probability score). Let the multi-category forecasting task have J
categories. Let r(i) be the forecasted probability of outcome i and w(j) represents if the
category j has occurred. Then, the ranked probability score is defined as

(R(i) - O(i))? (7.5)

J
RPS =

i=1
with R() = X4_, r(j) and OG) = Xl w(j).

7.7.2. PROOF OF THEOREM 9
Let us now provide the proof of the properties mentioned in Theorem 9.
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1. Budget balance: For any vector of reports r, wagers m and an outcome w,
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3. Individually rational: The skill factor I1; of the payoff function in (7.3) is individ-
ually rational by Theorem 1 in [56] and the utility factor is always non-negative.
Thus, the payoff Il; is individually rational, i.e., E[f1; — m;] = 0.

4. Sybilproofness: Let a vector of reports r and vectors of wagers m and m’ such that
for a subset of players S c Z the reports r; = r; for i, j € S, the wagers m; = m/, for

i ¢ Sand that Y_;cgm; = ¥ jesm;. Let players i € S post a common forecast report
r then, foranyi¢ S,
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5. Conditionally truthful for players: The skill factor II; of the payoff function in
(7.3) is truthful by Theorem 1 in [56]. Furthermore, for U > 0 utility becomes
proportional to the strictly proper score function given that U « ¢(s(?,w) —
s(r¢,w)). Hence, players can maximize utility by reporting their true belief p, i.e.,
Ep [U(s(A(p, m),w), s(rc,w),$)] > Ep, [U(s(A(r,m), ), s(p,w), )] is satisfied for all
r # p. Finally, a player does not have enough information and influence on term
( Strpw)m;

X 8(rjw)m;
tors. Thus, we conclude that the payoff I1; is conditionally truthful in practical
situations.

) in (7.3) to create a beneficial arbitrage between skill and utility fac-

6. Truthful for client: From the design of utility, i.e, U o ¢(s(F,w) — s(r¢,w)), it
is proportional to the strictly proper score function. Furthermore, the predic-
tions of forecasters r;, for all i € Z are independent of client’s forecast r.. Thus,
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the expected utility is minimized when the client posts their true belief p, i.e.,
Ep [U(s(7,0), s(re, ), )| > Ep, [U(s(7, ), s(p,w),$)].

7. Stimulant: For a player i € Z, the skill factor II; of the payoff function in (7.3) is
monotone by Theorem 1 in [56] and the utility factor is proportional to wager m;
thus, the payoff I1; is stimulant.







CONCLUSION AND OUTLOOK

Motivated by fast evolving energy scenario, in this thesis, we developed mechanisms for
cooperative and market-based solutions for the energy transition. In this final chapter, we
summarize our main contributions to the literature on cooperative game theory and the
design of forecasting markets. We discuss the extent to which the research objectives have

been achieved. Finally, we conclude the thesis by discussing some open challenges and
future research directions.
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8.1. CONCLUSION

The main objectives of this thesis are to develop payoff distribution mechanisms for co-
operative and market-based energy management strategies that can help accelerate the
energy transition. We proposed coalitional game theoretic solutions for payoff distri-
bution in the context of energy resource sharing, P2P energy trading, and real-time en-
ergy markets. Furthermore, we also designed a payoff mechanism for a wagering-based
forecasting market for the elicitation of probabilistic energy forecasts with desirable eco-
nomic properties. Next, we summarize the contributions of this thesis and conclude the
chapters by relating to our research objectives that are as follows:

* (Obj 1) Present a coalitional game theory based mathematical framework for en-
ergy coalitions that enforce principles of sharing economy and design market
mechanisms that enable real-time and P2P energy trading;

* (Obj 2) Design consensus-based distributed algorithms that are scalable, fast, ro-
bust and privacy preserving by possibly exploiting the geometric structure of equi-
librium solution.

* (Obj 3) Present a framework of a market-based platform for probabilistic forecast
elicitation with formal mathematical guarantees on desirable economic proper-
ties;

* (Obj 4) Design an online distributed payoff mechanism for near real-time energy
forecasting markets possibly operating with streaming data.

The first contribution (chapter 3) is the development of two distributed algorithms
for payoff distribution in coalitional resource utilization, which aligns with the idea of
sharing economy. We have formulated this problem of payoff distribution in the con-
text of robust coalitional games over time-varying networks where the goal is to make
players reach a consensus on the payoff distribution that belongs to the robust core. We
motivated our setup by coalitional energy storage optimization where prosumers form
a coalition to share their storage for jointly minimizing the cost of energy bought from
the grid. For a solution, we have designed distributed payoff allocation and bargain-
ing algorithms. Furthermore, we have shown that proposed algorithms, with known
coalitional value bounds and based on nonexpansive and paracontraction operators,
e.g. over-projections, converge consensually to the robust core, even with varying coali-
tional values. Therefore, this chapter partially achieves objectives 1 and 2.

The algorithms designed in chapter 3 solve robust coalitional games, but their com-
putational burden grows exponentially with the number of agents. Thus, for the imple-
mentation of large-scale systems like P2P markets, we exploit the geometric structure of
the solution set, i.e., the core, to develop faster payoff distribution algorithms. We pre-
sented this contribution in chapter 4, where to further liberalize the electricity market
and empower prosumers to have control over trading their generation, we have formu-
lated P2P energy trading as an assignment game (coalitional game) over time-varying
communication networks. For solving the resulting game, we have proposed a novel dis-
tributed negotiation algorithm as a clearing mechanism that guarantees stable trading
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prices in a coalitional game theoretic sense and satisfies the desired economic proper-
ties.

The proposed bilateral P2P energy market designs namely, single-contract and
multi-contract, encourage prosumers to participate by making P2P trading a favourable
choice, considering their economic and social priorities. Furthermore, enabling product
differentiation increases user satisfaction and allows for a higher overall market welfare.
Finally, the negotiation mechanism via paracontraction operators enables faster con-
vergence to a consensus on a set of bilateral contract prices that represent a competitive
equilibrium and belong to the core. This chapter achieves the objectives of designing
a scalable and distributed mechanism for P2P energy trading (objective 1 and 2) with
coalitional game theoretic solution.

In chapter 5, we utilized a similar model of the P2P electricity market as in Chap-
ter 4, i.e., an assignment game (coalitional game). However, as the core in Chapter 4
is a set, its different points treat buyer and seller sides differently. Thus, we designed a
bilateral negotiation mechanism that enables participants to reach a trading contract (z-
value) which fairly divides the resulting market welfare among buyers and sellers. The
proposed P2P electricity market model encourages prosumers to participate by provid-
ing ease of accessibility, flexibility of choice, and economic benefits, i.e., higher revenue
(sellers) and lower energy costs (buyers) compared to trading with the grid.

The algorithms presented above can model uncertainty under the framework of ro-
bust coalitional games in which we assume that the core varies with time albeit within
certain bounds resulting in finite core sets. However, this setup of robust games cannot
model the real-time payoff distribution in which the variation of a game is not restricted
within bounds and consequently the solution. Therefore, we introduce a framework of
online coalitional games for real-time payoff distribution mechanism in chapter 6.

A central problem in designing a local electricity market for the integration of small
to medium scale RES is managing the associated uncertainty. We have addressed this
problem by designing a real-time market mechanism, i.e., clearing the market very close
to the delivery time, which enables accurate forecasting. The goal of a real-time payoff
distribution in an online coalitional game setup is to track a consensus on the payoff
distribution solutions, namely, Shapley value and the core. We have shown that online
coalitional games provide promising tools for modeling cooperative systems working in
environments with fast dynamics, e.g., the real-time markets. Furthermore, in such set-
tings, our proposed distributed algorithms based on contraction operators adequately
track the payoff distribution solutions. In the context of local electricity markets, our re-
sults imply that we can guarantee a prosumer that, asymptotically, their payoff will be in
the neighborhood of equilibrium. Such guarantees allowed us to address our research
objective of enabling real-time energy trading (obj 1).

Finally, to address research objectives 3 and 4, in chapter 7, we design a platform for
improving predictions via implicit pooling of private information in return for possible
remuneration. Motivated by the fact that forecasts play a critical role in operational ef-
ficiency and viability of energy systems, we design a wagering-based forecast elicitation
market platform, where a buyer intending to improve their forecasts posts a prediction
task, and sellers respond to it with their forecast reports and wagers. This market de-
livers an aggregated forecast to the buyer and allocates a payoff to the sellers for their
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contribution. We have proposed a payoff function with skill and utility components that
depend on the relative forecast quality of a forecaster and their contribution to improv-
ing the forecast of the client, respectively. We showed that the proposed payoff allocation
satisfies several desirable economic properties. These theoretical guarantees on mone-
tary compensation can encourage and retain the participation of forecasting experts.
The simplicity of scoring-based market design, with a wagering mechanism, allows it
to cater to diverse forecasting tasks, with forecasting reports taking forms of discrete to
continuous probability distributions.

8.2. OUTLOOK

This thesis has investigated some payoff distribution algorithms for energy resources
sharing, P2P energy trading and forecast improvement schemes. The mechanisms that
have been developed can be further improved, extended, and evaluated for comprehen-
sive scenarios. Hence, an outlook for future research is outlined as follows:

* The distributed algorithms presented in chapter 3 and 4 for payoff distribution
converge to random points in the core set. As different points in the core treat
agents differently, an interesting addition can be to design the operators of algo-
rithms such that the convergence point inside the core can be characterised with
additional properties like fairness.

* The setups of P2P markets proposed in chapter 4 and 5 require central operator
for optimal matching. This requires an assumption of trust in the central operator.
To autonomise the process of bilateral matching, a coalition formation game can
be designed at the first stage that optimally pairs complementary prosumers to
maximize operational performance.

* In the real-time payoff distribution process presented in chapter 6, we track the
time-varying coalitional game theoretic solutions without considering any infor-
mation on the future. It can be interesting to explore if the asymptotic bounds on
tracking error can be improved by combining a prediction method with the track-
ing. For example, we can evaluate the payoff of prosumers in a local electricity
market considering long-term predictions of RES and demand. Then, we adjust
those payments online in a real-time setup. In case of low forecast errors, the per-
formance of a real-time payoff distribution algorithm might be improved.

* Our focus has been on providing theoretical guarantees for proposed algorithms,
and we illustrated their features via numerical examples and small case studies.
We can gain useful insights into the performance of algorithms in practical sce-
narios by conducting large-scale case studies on real data.

* For the forecast elicitation mechanism in chapter 7, we envision a competition
platform to test the performance of the proposed market model and the behavior
of players in practical scenarios. Such an experimental setup would help us gain
further insights for real-world implementation. Furthermore, our market setup
opens several paths for applied modelling of information eliciting platforms and
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their analysis. An important step is to design a mechanism for online predictions
based on streaming data and in turn analyse if it maintains the economic prop-
erties discussed in this paper. Another interesting research avenue is to design
models that value the reputation of forecasters (historic credits) as well.







BASIC NOTATION

Given a mapping M : R" — R",fix(M) := {x € R" | x = M(x)} denotes the set of its
fixed points.

For a closed set C < R”, the mapping proj.: R” — C denotes the projection onto
C, i.e., projc(x) = argminyeclly — x|.

An over-projection operator is denoted by overproj. := 2proj. —Id.
For a set S the power set is denoted by 25.
A® B denotes the Kronecker product between the matrices A and B.

.....

For anorm |- ||, on R” and a norm || - 4 on R™  the mixed vector norm || - l p,q on
R™" is defined as || x|l p,4 = llcol(lx1llp, -+, I xXmll p) Il 4-

dist(x, C) denotes the distance of x from a closed set C < R”, i.e., dist(x,C) :=
infyeclly — x|

For a closed set CSR" and NeN,CV:=[I¥, C;.
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