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Abstract

With the electrification in freight transportation, fast-charging facilities are crucial to support
enroute charging for long-distance freight trips. The goal of this study is to develop an integrated
fast-charging facility planning framework to prepare for the increasing enroute freight charging
demand in the Netherlands. Based on highway traffic data, the travel temporal and spatial patterns
of general traffic flow and freight flow are extracted and analyzed comparatively. The charging
demand is derived from freight traffic data, and network evaluation based on graph theory is used
to identify traffic nodes with significance in highway networks. A candidate selection method is
proposed to obtain potential deployment locations for charging stations and to-go chargers. On
this basis, a multi-period bi-objective optimization model with minimum investment cost and
maximum demand coverage is proposed to find optimal solutions for charging facility planning.
The case study is formulated based on the Amsterdam highway network. The results show that
the proposed model can leverage the potential of early investment to increase the final demand
coverage in the last planning horizon.

1 Background

Greenhouse gases (GHGs) have posed serious threats to human living environments and ecosystems glob-
ally. According to the European Green Deal, European Commission promised significant greenhouse gas
emissions reduction and a climate-neutral goal by 2050[1], which will offer substantial benefits to the
environment, economy, safety, and society. Transport has become one of the major contributing sectors
to emissions, accounting for approximately one-quarter of all greenhouse gas emissions in the EU[2].
Hence, the feasibility of climate stabilization goals and a decrease in GHG emissions depend on trans-
port electrification [3]. Compared with conventional vehicles, electric vehicles (EVs) provide numerous
benefits, such as producing low amounts of noise [4], being highly energy efficient and avoiding high oil
prices in the future [5]. EVs also make a considerable contribution to reducing GHG emissions [3]. The
Netherlands is ambitious to achieve zero-emission road traffic by 2050. Thanks to the incentivizing policy
and tax-related measures, the Netherlands has become one of the leading electric transport players in
the world. In 2015, the Netherlands has listed second in the global EV fleet rankings for market share,
following Norway[6]. In freight transport, Netherlands’ government plans to rise the market share of clean
heavy-duty vehicles to reach 30%[7] by 2030. Considering the ambition of zero-emission policy and the
current developing trend, the market for freight electric vehicles will grow continuously and thus requires
the construction of new charging infrastructure.

There are two main types of charging solutions: alternating current (AC) slow charging and direct
current (DC) fast charging. AC charging is mainly served for destination charging at workplaces or
residences, as it requires more time to load. An AC slow charger may take 6–8 hours to recharge the
vehicle battery to full state, while a DC fast charger can recharge up to 80% within about 30 minutes[8].
The high efficiency of DC fast chargers is attributed to the higher voltage and direct flow of DC current
into the battery without conversion. This characteristic makes DC charging a promising solution for
long-distance travel[8]. It allows en-route charging to ease driving anxiety and driving range restrictions.
The current charging infrastructure is insufficient to support the future growth of EVs. In particular,
the existing charging infrastructure lacks enough fast chargers[9]. In 2019, there are more than 200 fast-
charging stations in the Netherlands. Researchers expect significant growth in the number of fast-charge
points for electric cars over the coming years, to a maximum of 8,000 by 2025[10]. Amsterdam, The
Hague, Rotterdam, Utrecht, and Brabantstad have been designated as the focus areas to develop charg-
ing infrastructure since 2009[6].

To promote electrification in freight transport, the goal of this research is to propose fast-charging
infrastructure planning strategies for the en-route charging of commercial freight vehicles along the high-
way. This research builds a planning framework consisting of data fusion, network evaluation, candidate
location selection, and an optimization model for planning. A multi-period bi-objective optimization
model is constructed to find the optimal locations and scales of fast charging facilities considering the
investment and charging-demand coverage. The research will provide evidence for long-term charging
facility investment and support electrification of intercity logistics[8].
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2 Literature review

With the increasing market share of electric vehicles in road transportation, extensive research has inves-
tigated the charging infrastructure-planning problem. Based on the way to represent charging demand,
research approaches can be categorized into the node-based model, flow-based model, and trajectory-
based model[11][12]. In the node-based model, it is assumed that the charging demand is generated
at the nodes in the network[13, 14]. The flow-based model uses a set of origin–destination trips and
allows charging demand to be served during journeys [15]. The trajectory-based model considers the
travel pattern of electric vehicles[16, 17] and might incorporate the individual charging decision and
route scheduling[18]. Optimization models would be established after obtaining charging demand. Many
researchers considered multiple objectives for various benefits of different stakeholders. Yang et al.[8]
established bi-objective programming models for charging demand assignment, fast charging station op-
eration, and power line expansion, with objectives to maximize charging service profit and minimize total
charging time. Bian et al.[19] proposed the charging station configuration model from the perspective of
users considering traffic congestion and signal-lights waiting time. To find the Pareto optimal solution
set, the simulated annealing particle swarm optimization algorithm was used with objectives of minimum
investment cost, maximum profitability, and minimum time-consuming cost. Liu et at.[?] established
the bi-level planning model for electric vehicle charging stations and used the firefly algorithm to find
solutions. The upper model optimized the location and capacity of charging stations with the objective
of maximizing the annual profit. The lower model optimized individual electric vehicle charging plans
to achieve minimum charging cost. Wang et al.[20] proposed an optimization model for the planning
of slow-charging piles and fast-charging piles, incorporating the impact of road traffic conditions on the
user’s charging additional cost. To efficiently find the Pareto solution sets, the NSGA-II algorithm was
improved by modifying the initial population generation and crossover operator. The algorithm was
proved to have better performance in terms of searchability and global convergence. Yan et al. [21]
proposed a multi-objective and multivariate planning model based on hierarchical genetics considering
investment costs and energy losses; compared with other algorithms, this algorithm is better for finding
viable solutions in the population.

The development of charging infrastructure is likely to take several years in practice. Considering
the dynamic charging demand and limited investment, it is difficult to deploy all the charging stations
within one-step planning[22]. Some researchers have suggested that sing-stage optimization could lack
the capacity to deal with long-term charging demand dynamics[23]. Charging infrastructure planning
can be formulated as a sequential decision-making process, enabling the construction strategies to be
changed according to charging demand[24, 25]. Meng el at.[26] selected candidate charging station sites
based on social limitations and proposed a sequential expansion-downsizing strategy for station construc-
tion. The proposed method provided flexible construction plans to balance the increase and decrease of
charging demand. The objective was to minimize the total social cost by incorporating drivers’ cost and
construction investment. Kadri et al.[22] used a multi-stage stochastic integer programming approach
to address uncertainties in both EV-trip numbers within the road network and EV flows within trips.
Scenario trees were used to approximate the evolution of the stochastic process over time, and the ben-
ders decomposition approach was extended to find optimality. Compared to the deterministic model,
the proposed stochastic one provided a significantly greater coverage of charging demand. Lin et al.[12]
considered the planning of large-scale charging stations for electric buses and proposed a multistage joint
planning model of the transportation system and the power grid to minimize the total cost in multiple
stages. Based on the assumption that the number of e-buses continues to increase, the proposed model
was implemented on the Shenzhen transportation network and showed robustness to changes in demand.
The research provided evidence regarding the capability of multi-stage models to transfer facility costs
from later stages to early stages by considering demand in advance.

Previous studies have provided in-depth insights into the charging station location problem. A major-
ity of charging facility deployment strategies are based solely on mathematical modeling and implemented
in hypothetical scenarios. As real-world data becomes more accessible and informative, more research is
needed to develop data-driven planning methods capturing valuable information from a variety of sources
(traffic flow, point-of-interest (POI) information, network configuration). In addition, the charging infras-
tructure layout should fit in the structure of the road network, reflecting the characteristic of the network.
Yet, research into potential charging station locations has rarely considered network evaluation. Further-
more, many studies have applied multi-period planning and multi-objective planning in recent years,
but few have combined these two aspects into a model that takes into account both demand dynamics
and benefit trade-offs. In response, the contribution of this research has three folds: 1) to leverage the
information of freight traffic data and POI data into the charging facility planning process; 2) to propose
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a comprehensive selection process of candidate locations for charging facilities incorporating charging
demand, network structure, interests of service providers, and construction flexibility; 3) to develop a
multi-period bi-objective optimization model considering the charging demand dynamics over years and
the trade-offs between total cost and demand coverage.

3 Methodology

3.1 Problem description

This study will model the charging facility planning problem and provide insight into how charging facility
providers can make construction plans for the future of freight transportation electrification. The pro-
posed research framework shown in Figure 1 consists of four parts: data preparation, network evaluation,
candidate location selection, and charging location optimization. Data preparation and network evalua-
tion leverage the valuable information of data and knowledge of graph theory into the planning process.
Using indicators of centrality, the rankings of nodes within the highway network can be determined. We
will identify the nodes that play a more significant role in the network by evaluating the connections
among nodes. Moreover, a clear procedure for selecting candidate locations is established. For integrated
planning, the mathematical model considered rolling-horizon optimization with two objectives minimizing
total cost and maximizing demand coverage. The detailed procedures for network evaluation and can-
didate location selection are presented in Sections 2.3 and 2.4. A multi-period bi-objective optimization
model and corresponding algorithms are illustrated in Section 2.5.

Figure 1: Research framework

3.2 Data preparation

The proposed framework will be implemented on the real highway network in the Netherlands. The
datasets required in this study include freight traffic flow data, highway network data, and POI data.
Traffic data on highways can be obtained from the data website, NDW[27]. We extracted one-week traffic
data from the date 2022-06-27 to 2022-07-03. The traffic data includes the following information:

• Date: the date that data was collected;

• Time period: morning peak hours/ evening peak hours;

• Route ID: the ID of the route;

• Flow: the traffic flow for one segment (200 m) at a time step;

• Speed: the average speed of traffic flow for one segment in a time step;

• Vehicle class information: The flow of vehicle category includes private cars, buses, and trucks.
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Freight traffic flow data can be used to determine freight charging demand. As a percentage of the
total traffic flow, the market penetration rate is used to determine the amount of traffic to be charged.
The datasets of the highway road network and POI data can be obtained from Open Street Map[28].
POI data would provide information on the category of locations and geographical coordinates. Figure 2
shows the highway network in the study area. In traffic flow data, roads are segmented per 200 meters.
To model demand coverage, we assign the freight flow to the starting point of segments.

Figure 2: The study area

3.3 Network evaluation

The highway network can be defined as an undirected graph G = (N,A), where N represents the set of
nodes (highway junctions) and A = {(i, j), i, j ∈ N, i ̸= j} represents the set of arcs (roads). Network
evaluation would answer the question of how important a node is in the highway network. To evaluate
the role of nodes, centrality indicators are calculated including degree centrality, closeness centrality, and
betweenness centrality.

Degree centrality (DC) measures the number of connected nodes. Nodes with a high degree score
have higher connectiveness. DCi is defined as follows:

DCi =
D

N − 1
(1)

Where DCi represents the number of nodes directly connected with station i; N is the total number of
nodes.

Closeness centrality (CC) measures the average inverse distance to all other nodes, reflecting a node’s
closeness to others. Nodes with a high closeness score have a shorter total distance to all other nodes.

CCi =
1∑

i,j∈G,i̸=j di,j
(2)

Where di,j represents the shortest path length between node i and node j; G is the vertices set in the
network.

Betweenness centrality (BC) represents the degree to which nodes stand between each other. It
involves calculating the shortest paths between all pairs of nodes in the network.

BCi =
∑

i,j,v∈G,i ̸=j ̸=v

σi,j(v)

σi,j
(3)

Where σi,j is the total number of shortest paths from node i and node j; σi,j(v) is the number of those
paths passing through node v.
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3.4 Candidate location selection

Freight transportation charges can be divided into two categories: enroute charging and destination
charging. Highway charging facilities serve as enroute charging facilities. A destination charging system,
on the other hand, is used at a hub or depot. Specifically, this study examines enroute charging along
highways. The charging facility planning model (introduced in Section 2.4) considers deploying charging
facilities in the candidate locations rather than all possible locations. There are four types of candidate
locations for the deployment of charging facilities: 1) those with existing facilities; 2) those recommended
by network evaluation results; 3) those selected by service providers; and 4) those for to-go charging.

Existing facilities are included first on the list as it may be more convenient to expand charging
stations than build new ones. Truck parking areas are included due to the potential to be transformed
into charging stations. In the second type of candidate locations, the graph theory will determine the
highway nodes of importance, and candidate locations will be selected around these nodes. In Section
2.3, we described three indicators for evaluating networks: degree centrality, closeness centrality, and
betweenness centrality. Furthermore, this research includes locations chosen by service providers based
on business considerations. Additionally to building charging stations, fast chargers can also be deployed
at supermarkets (instead of charging stations) to provide high-efficiency charging. Thus, the last type of
candidate location is selected based on the supermarket along the highway.

For the selection process, POI data can be used to identify candidate locations for existing facilities
and to-go charging locations. Those POIs with the labels ’fuel station’, ’truck stop’, and ’parking area’
are considered for existing facilities, while those with the label ’supermarket’ are for to-go charging. It
should be noted that only POIs that are less than 500 meters from the highway are considered to serve
enroute charging demand. Choosing these candidate locations involves four steps: 1) presenting POI data
and road network using ArcGIS Pro; 2) selecting the stations with the required labels; 3) creating 500 m
radius buffers on the road; 4) selecting the specific POIs within these buffers. Furthermore, networks are
evaluated in order to determine which locations will serve important nodes.

3.5 Multi-stage bi-objective optimization model

The charging facility planning problem is formulated as an integer programming problem. A multi-
stage optimization model is proposed with the objective of minimizing the total cost and maximizing
the coverage number of freight vehicles. Considering the development of transport electrification, it is
assumed that the proportion of electric freight vehicles is increase by the years. The notation for the
optimization model is presented in Table 1.

3.5.1 Planning horizons

Five planning horizons are considered in this model representing different developing stages, each with
the corresponding EFV penetration rate of 20 %, 40%, 60%, 80% and 100%. The first planning period
is based on the current charging facility layout. From the second period of planning, each period will be
built on the layout of previous periods, which means that the results of one horizon would offer the input
of the next-horizon optimization model. The algorithm can be found in Section 2.5.4.

3.5.2 Model formulation

The first objective is to minimize the total cost in equation 4, considering that the service provider would
control the project investment and reduce it as much as possible. As indicated by the previous research
on charging facility planning, the total cost could be an influential factor in the scale of the planning
project (e.g. number and size of charging stations). The construction cost in each horizon consists of the
cost of charging stations and the cost of to-go charging at supermarkets (in Equation 5).

minZ1(k) = Ck (4)

Ck =

I∑
i=1

c
xk−1
i ,xk

i
s +

J∑
j=1

(yki − yk−1
i ) ∗ ct, k ∈ K (5)

Equation 6 shows the second objective, to maximize the coverage of charging demand. γk decides
whether the next-horizon planning is incorporated into the current planning objectives. It is noted
that when it comes to last-horizon planning, the second term will not be included by setting γk = 0. In
Equation 7 and 8, the demand coverage is determined by electric freight flow coverage and facility capacity.
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Variable Description
Parameters
K Set of planning horizons.
I Set of candidate locations for charging stations.
J Set of candidate locations for to-go charging piles.
Ck The total cost of the planning horizon k.
Dk The demand coverage of the planning horizon k.
γ The weight in the objective of demand coverage.

c
xk−1
i ,xk

i
s The cost of station i from the state xk−1

i to xk
i .

ct The cost for installing one fast charging file near the supermarket.
dki The demand coverage of charging station i in horizon k.
dkj The demand coverage of to-go charging facilities j in horizon k.
qki The freight flow can be covered by facility i.
pk The market penetration rate of electric freight vehicles in horizon k.
bk The maximum investment in horizon k.
capl The capacity of a charging station with the scale l.
capt The capacity of a to-go charging pile.
Nmink The minimum number of charging stations.
Nmaxk The maximum number of charging stations.
Mmink The minimum number of locations for to-go chargers.
Mmaxk The maximum number of locations for to-go chargers.
disti,j The distance between station i and station j.
distmin The minimum distance between two charging stations.
s The maximum construction scale of charging stations.
n The maximum number of fast-charging plies near the supermarket.
Decision variables
ηki Binary variable: whether a charging station is deployed at the location i.
ηkj Binary variable: whether to-go chargers are deployed at the location j.
xki The construction scale of station i in horizon k.
ykj The number of installed fast-charging piles near supermarket j.

Table 1: Variable description

The electric freight flow coverage can be calculated by penetration rate pk multiplying the average freight
flow at the nearest starting point of highway segments. Facility capacity can be determined by the
construction scale of charging stations and to-go charging facilities.

minZ2(k) = −(Dk + γkDk+1) (6)

Dk =

I∑
i=1

min(qki ∗ pk, caplxk
i ) +

J∑
j=1

min(qkj ∗ pk, captykj ), i ∈ I, j ∈ J, k ∈ K (7)

Dk+1 =

I∑
i=1

min(qki ∗ pk+1, caplx
k
i ) +

J∑
j=1

min(qkj ∗ pk+1, capty
k
j ), i ∈ I, j ∈ J, k ∈ K, k ̸= 5 (8)

γk =

{
1 k=1,2,3,4

0 k=5
(9)

Subject to constraints:

I∑
i=1

c
xk−1
i ,xk

i
s +

J∑
j=1

(ykj − yk−1
j ) ∗ ct < bk, k ∈ K (10)

ηki ∗ ηkj ∗ disti,j < dist min, i, j ∈ I, k ∈ K (11)

xk
i ≤ xk+1

i , i ∈ I, k ∈ K (12)
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ykj ≤ yk+1
j , j ∈ J, k ∈ K (13)

Nmink <

I∑
i=1

ηki < Nmaxk, k ∈ K (14)

Mmink <

J∑
j=1

ηkj < Mmaxk, k ∈ K (15)

ηki ∈ (0, 1), i ∈ I, k ∈ K (16)

ηkj ∈ (0, 1), j ∈ J, k ∈ K (17)

0 ≤ xk
i ≤ s, i ∈ I, k ∈ K (18)

0 ≤ ykj ≤ n, j ∈ J, k ∈ K (19)

The limitations for investment are set for each planning horizon. The constraint in (10) ensures that
the cost in each horizon can not exceed the pre-set value. The constraint in (11) indicates that the
distance between two stations should be larger than the minimum distance threshold. The constraints in
(12) and (13) ensure that the scale of charging stations and the number of to-go chargers can not decrease
with development, as it is considered that the charging facilities constructed in the previous horizons will
remain in the subsequent horizons. For the first horizon (k = 1), the planning is based on the initial
(existing) facility layout (k = 0). The constraints in (14) and (15) set the restrictions on the number
of facilities. The constraint in (16) and (17) represent the binary decision variables on whether to build
facilities on candidate locations. The constraint in (18,19) defines two sets of integer variables for the
scale of charging facilities, namely, scales of charging stations xxk

i and scales of to-go charging facilities
yki .

3.5.3 Solution algorithm

The non-dominated sorting genetic algorithm II (NSGA-II) has been widely used for solving multi-
objective optimization problems, especially bi-objective function optimization problems, due to its ro-
bustness and ability to find Pareto optimal solution. This research applied the classical NSGA-II to solve
the bi-objective optimization problem with multiple horizons. The optimization process of NSGA-II is
as follows: 1) The first step is to randomly generate the initial population based on the problem range
and constraint; 2) the objective values are calculated based on the generated population. 3) Based on
the non-dominated theory of the population, members are assigned a non-dominated solution, and solu-
tions are stored in each level of the Pareto set; 4) Once the sorting is complete, the crowding distance
is calculated. In the selection, the crowding comparison operator is used to sort the solutions in the
Pareto set. Those solutions with a low rank and large crowding distance will be selected for the next
generation; 5) By mutation and crossover mating of selected parents, the new offspring is generated.
The new offspring and the parent population are then merged to create a combined population; 6) The
procedure will stop and output the Pareto front until the maximum number of iterations is reached. For
more detailed information about this algorithm, we recommend the research of [29].

Figure 3 shows how NSGA-II can be used to solve the proposed multi-stage bi-objective optimization
model. In each planning horizon, NSGA-II will be used to produce Pareto optimal solutions. These
solutions will be compared to select one for implementation and to be used to update the facility layout
preparing for the next-period optimization.

4 Numerical experiments

4.1 Travel pattern analysis

Figure 4 (a)-(d) shows the traffic flow on workdays and weekends during morning peak hours (MPH)
and evening peak hours (EPH). By comparing Figure 4 (a)(b) to Figure 4 (c)(d), it can be seen that the
overall traffic demand on workdays was higher than that on weekends considering both morning peak
and evening peak. During the morning peak hours on workdays, more demand occurred in the north part
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Figure 3: The procedure of optimization

of the study area, such as A4, A9, and A2. In the evening, the demand became lower especially in the
north while A9 and A1 still had heavy traffic demand. On weekends (Figure 4 (c)), the traffic demand
of the road network maintained at a low level with an average volume below 1400 vehicles per hour in
the morning. While during the evening peak hours, more vehicles used A9, A4, and A1.

The temporal and spatial distributions of truck demand (in Figure 5 (a)-(d)) were relatively different
from the overall traffic on the highway. Temporal patterns of truck volume were similar between workdays
and weekends, morning and evening. When looking into the spatial distribution, it can be found that the
truck travel demand on some road segments stayed significantly high on both workdays and weekends,
including A9, the intersection of A1 and A10, southwest part of A10. The segments of A4 and A1 in
suburban areas had high traffic demand, however, the average truck demand remained below 25 vehicles
per hour.

Figure 4: The distribution of overall traffic flow
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Figure 5: The distribution of truck traffic flow

4.2 Candidate location selection

To select the candidate locations, POI information was filtered according to the built-environment cat-
egory. POIs with the label ’fuel station’, ’parking area’, ’truck stop’, and ’supermarket’ remained. It
is noted that only the locations that lie in the 500-meter buffering of the highway would be used as
candidates. Next, nodes in the highway network were evaluated. Table 2 shows the numerical evaluation
results. The indicators, degree centrality (DC), closeness centrality (CC), and betweenness centrality
(BC) were calculated and normalized. The score was the average of indicators. Node 17 ranked the top
with the highest values for all indicators, followed by Node 11, 5, and 3.

Rank Score DD BC CC ID Rank Score DD BC CC ID
1 1.673 1.000 0.363 0.310 17 17 0.983 0.667 0.127 0.189 13
2 1.609 1.000 0.342 0.267 11 18 0.879 0.667 0.000 0.212 32
3 1.489 1.000 0.202 0.287 5 19 0.846 0.667 0.000 0.179 1
4 1.446 1.000 0.181 0.265 3 20 0.705 0.333 0.085 0.287 6
5 1.250 0.667 0.306 0.277 20 21 0.655 0.333 0.065 0.256 10
6 1.209 0.667 0.249 0.292 18 22 0.389 0.000 0.181 0.208 26
7 1.188 0.667 0.226 0.295 4 23 0.304 0.000 0.127 0.177 28
8 1.164 0.667 0.249 0.248 25 24 0.209 0.000 0.000 0.209 31
9 1.136 0.667 0.202 0.267 24 25 0.185 0.000 0.000 0.185 16
10 1.130 0.667 0.239 0.225 12 26 0.185 0.000 0.000 0.185 22
11 1.095 0.667 0.166 0.263 9 27 0.185 0.000 0.000 0.185 23
12 1.056 0.667 0.137 0.252 8 28 0.179 0.000 0.000 0.179 0
13 1.018 0.667 0.127 0.225 21 29 0.160 0.000 0.000 0.160 14
14 1.010 0.667 0.127 0.217 2 30 0.160 0.000 0.000 0.160 15
15 1.007 0.667 0.069 0.272 7 31 0.151 0.000 0.000 0.151 29
16 1.003 0.667 0.055 0.282 19 32 0.151 0.000 0.000 0.151 30

Table 2: The numerical results of network evaluation

Figure 6 shows the distribution of nodes in the highway network. The nodes in red color represented
the nodes with the top 10 rankings, which play a more important role in this highway network. These
nodes were the highway junctions that were more connected with other junctions and were more likely
to influence other junctions in the network. As shown in Figure 7, 119 candidate locations are selected
in total, with 84 candidates for charging station deployment and 35 candidates for to-go charging points
installment. The candidates selected by POI data accounted for the largest proportion 63.4%. According
to the network evaluation, 15 candidate locations were added near the top 10 nodes in the network, as
indicated by the orange points.
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Figure 6: The distribution of evaluated nodes

Figure 7: The distribution of evaluated nodes and candidate locations

4.3 Integrated charging facility planning

The optimization model can find the (near) optimal solutions for locations and construction scales
of charging facilities. For charging stations, we define five construction scales for charging stations,
extremely-small scale stations, small-scale stations, medium-scale stations, large-scale stations, and extremely-
large-scale stations, represented by xk

i = (1, 2, 3, 4, 5). xk
i = 0 means there is no station constructed at the

location i. For to-go chargers at supermarkets, we optimize the number of charging piles to install (yki ).
The optimization model has parameters in terms of investment, capacity, construction scale, distance,
etc. The settings of parameters are presented in Table 4 in Appendix A. In setting these parameters, we
have taken into account the parameter settings in previous research [3, 30] and have tuned the parameters
based on our case study. For NSGA-II algorithm, we set the population size to be 500, the iterations
number to be 300, the crossover probability to be 0.9, and the mutation probability to be 0.1.

4.4 Results of multi-period facility planning

During multistage planning, the initial results of the infrastructure planning can certainly affect sub-
sequent planning stages. As bi-objective optimization could have more than one optimal solution in
each horizon, called Pareto optimal solutions, one solution should be selected from the Pareto set for
the next-horizon planning. To evaluate these impacts of solution selection, two scenarios are defined
following different solution selection rules in each horizon planning. In Scenario 1, the solution with
maximum demand coverage was selected for next-horizon planning. In Scenario 2, the solution with (the
nearest) median demand coverage was selected. To evaluate the performance of looking ahead policy of
our model, we defined Scenario 3 in which the planning of each horizon only considers the demand in the
current horizon, instead of the potential changing in the nearest future. In Scenario 3, the objective on
the demand coverage only considers the effects on the current horizon, and the solution with maximum
demand coverage was selected for next-horizon planning.

By comparing Scenario 1 and Scenario 2, we can observe the impact of solution selection on the final
deployment layout. And Scenario 2 and Scenario 3 can show whether planning one step ahead can benefit
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long-term planning. As shown in Table 3, Scenario 1 has a total cost of 6.250 million euros (MER), and
the demand coverage can reach 369 freight vehicles per hour in the last planning horizon. Scenario 2 saves
61% of total cost compared to Scenario 1, the covered demand decreases by 29%. Therefore, selecting
maximum demand coverage in every horizon could obtain solutions with higher demand coverage, while it
is noted that the cost-efficiency of investment could be smaller. When looking into the planning horizons,
it could be found that Scenario 1 tends to construct new facilities as many as possible reaching the upper
limit of the maximum number of facilities. The investigation of to-go chargers at the early stage indi-
cates the advantage of flexible chargers at supermarkets for capturing charging demand with a relatively
lower initial investment. The number of facilities in Scenario 2 is above the half level of that in Scenario 1.

Compared to Scenario 1, Scenario 3 neglects the growth of charging demand and tends to invest less in
the first four horizons. Although in each horizon, Scenario 3 selects the solution with the largest demand
coverage, it covers 94% charging demand compared to that in Scenario 1. In the final horizon, Scenario
1 constructed more charging stations than Scenario 3 and have the same number of to-go chargers.

Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5 Total
Scenario 1
Construction cost (MEUR) 1.450 1.500 1.000 1.300 1.000 6.250(100%)
Demand coverage (veh/h) 98 204 256 316 369 369(100%)
Number of stations 9 12 12 13 15 15
Number of to-go chargers 25 25 25 25 25 25
Scenario 2
Construction cost (MEUR) 0.03 0.508 0.508 0.502 0.9 2.448(39%)
Demand coverage (veh/h) 37 95 157 203 262 262(71%)
Number of stations 7 8 9 10 11 11
Number of to-go chargers 15 19 23 24 24 24
Scenario 3
Construction cost (MEUR) 1.142 1.458 0.700 0.950 1.100 5.350(86%)
Demand coverage (veh/h) 98 196 256 304 346 346(94%)
Number of stations 9 11 12 12 12 12
Number of to-go chargers 21 25 25 25 25 25

Table 3: The optimization results of Scenario 1, Scenario 2, and Scenario 3

Figure 8 showed the distribution of charging facility deployment plans of Scenario 1 and Scenario 2
respectively. In order to display the locations of newly constructed stations, existing stations are not
shown. The yellow points represent the constructed charging stations only in Scenario 1. The red points
represent the charging stations constructed both in Scenario 1 and Scenario 2. It should be noted that the
locations for charging stations in Scenario 2 are also selected in Scenario 1. The overlap of scenarios may
help facility planners to identify the locations that are more cost-efficient in the configuration of optimal
deployment strategies. The spatial distribution of these stations is in line with the highway segments
with high freight traffic flow in 5.

Figure 8: The distribution of charging stations in Scenario 1 and Scenario 2
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4.5 Sensitivity analysis on investment limitation

In the optimization model, the cost in each horizon can not exceed an investment limit (b = 1.5 million
euro). To investigate the impact of the investment limitation, we defined an investment rate θ. By setting
the maximum investment to be b∗ θ, the optimization results for θ = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 in
each horizon were derived and the demand coverages were presented in Figure 9a. The demand coverage
grows with facilities building/upgrading from Horizon 1 to 5. Higher values of investment limits result in
larger demand coverage in each horizon. The investment limitation has a significant impact on increas-
ing demand coverage when θ increases from 0.4 to 1.0. It is possible that θ =1.4 may leverage the full
potential of investment, as the small difference between θ =1.4 and θ =1.6 may result from limitations
on facility size and number. In addition, the market penetration rate of freight vehicles has been set to
be increased evenly across horizons, the covered demand does not change in the same manner. With the
larger value of θ, the slopes of lines in Figure 9a become closer to the growth rate of market penetration.

Taking θ = 1.0 as the reference, Figure 9b shows the percentages of total construction cost and demand
coverage with varying θ. It is noted that θ less 1.0 could produce solutions that are more cost-efficient,
as the percentage of total construction cost is lower than the percentage of demand coverage. Therefore,
higher investment limitation tends to increase charging demand coverage, but this effect weakens as it
increases. When θ is larger than 1.0, even with higher investment, the demand coverage can not be
improved significantly.

(a) The demand coverage in each planning horizon (b) The total demand coverage of planning horizons

Figure 9: Sensitivity analysis of investment limitation

5 Conclusion

To prepare for the increasing enroute freight charging demand in the Netherlands, this study aims to
develop an integrated fast-charging facility planning framework. Using highway traffic data, the tempo-
ral and spatial patterns of general traffic flow and freight flow are extracted and compared. We derive
charging demand based on freight traffic data and use graph theory to identify significant traffic nodes
along highways. To locate potential deployment sites for charging stations and to-go chargers, a method
of candidate selection is proposed. We propose a multi-period bi-objective optimization model to find op-
timal charging facility locations with minimum investment cost and maximum demand coverage. Based
on the network of highways in Amsterdam, a case study is developed and NSGA-II is implemented to
solve the model. In scenario comparison, the scenario (Scenario 1) that considers next-horizon planning
and selects the solution with highest demand coverage can cover larger number of charging demand than
other scenarios (Scenario 2 and 3). In sensitivity analysis, it is found that when the parameter θ is less
than 1.0, higher investment can significantly increase demand coverage in each horizon, and the impact
decreases as the investiment increases.

In the future, the research framework can include logistics-related POI information including distri-
bution centers, warehouses and use the origin-destination data of electric freight vehicles. In addition,
this research applis Euclidean distance to select the potential locations, however, this can be less realistic
as roads in the real-world network are connected. Future research may consider obtain the route between
potential stations and freight vehicles on highways and calculate the charging demand coverage based on
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the real network. It is assumed in this study that the market penetration rate will increase evenly over
time and the value will be the same for each road segment. Future study may predict the specific number
of electric freight vehicles and identify the charging demand according to the journey of vehicles and state
of charge. Finally, this study take the highway near Amsterdam as a case study, more investigations can
be done to extend the problem modeling to large highway networks.
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6 Appendix

6.1 Appendix A

The parameters are listed in Table 4. The values of station capacity and construction cost are related to
the construction scale. The parameters for investment limits, market penetration rate, and the number
of facilities are related to the planning horizons. In setting these parameters, we have taken into account
the parameter settings in previous research [3, 30] and have tuned the parameters based on our case
study.

Variable Setting
distmin 3 (km)
s 5
n 5
ct 2000 (euro)
capl, l ∈ L [0, 30, 35, 40, 45, 50] (vehicles/hour)
capt 2 (vehicles/hour)
pk, k ∈ K [0.2, 0.4, 0.6, 0.8, 1]
bk, k ∈ K [1.5, 1.5, 1.5, 1.5, 1.5, 1.5] (million euro)
Nmink, k ∈ K [0, 0, 0, 0, 0]
Nmaxk, k ∈ K [5, 5, 5, 5, 5]
Mmink, k ∈ K [0, 0, 0, 0, 0]
Mmaxk, k ∈ K [15, 15, 15, 15, 15]
c0,ls , l ∈ L [[0, 0.5, 0.6, 0.7, 0.8, 0.9] (million euro)
c1,ls , l ∈ L [0, 0, 0.2, 0.3, 0.4, 0.5] (million euro)
c2,ls , l ∈ L [0, 0, 0, 0.25, 0.35, 0.45] (million euro)
c3,ls , l ∈ L [0, 0, 0, 0, 0.3,0.4] (million euro)
c4,ls , l ∈ L [0, 0, 0, 0, 0, 0.45] (million euro)

Table 4: Parameter settings
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